
BIND, dynamic DNS

From FreeBSDwiki

Contents

1 The task
2 Checking versions of BIND and its tools
3 Preparing a "seed" zone file
4 Genera�ng a cryptographic key
5 Se�ng up named.conf
6 Restar�ng and tes�ng BIND at the server
7 Upda�ng the zone from the client
8 set-ddns.pl (a freebsdwiki.net original)
9 Se�ng up a crontab
10 See Also

The task

You've got your own BIND server with a sta�c, public IP address, and your own domain which you host on it. You've also got one or more machines on dynamic
public IP addresses - perhaps your or your customers' or friends' home machines, or small offices in areas that don't offer sta�c addresses - and you want to use
your own equipment to maintain DNS records to point to the machines on dynamic addresses, rather than using third-party solu�ons.

Checking versions of BIND and its tools

In order to set up dynamic DNS on your server, first you need to make sure you're running BIND9 or be�er - as of this ar�cle, you want BIND 9.3.1.

server# which named
/usr/sbin/named
server# named -v
BIND 9.3.1

client# which named
/usr/sbin/named
client# named -v
BIND 9.3.1

Okay, good. But we also need to dig a li�le further, because FreeBSD systems have a nasty habit of shipping with some elderly BIND8 components higher up in the
PATH than the newer BIND9 versions that go with the actual server. Specifically, we need to make sure we're using the new version of nsupdate, which we'll be using
to do the dynamic updates from client to server:

client# where nsupdate
/usr/sbin/nsupdate
/usr/bin/nsupdate

Aha - there are two copies of nsupdate on this machine! Now we need to see which one of them is higher up in the PATH (and therefore will be the one that runs if
you don't specify which one you want), and whether they're both the same version or not:

client# which nsupdate
/usr/sbin/nsupdate
client# ls -l /usr/bin/nsupdate && ls -l /usr/sbin/nsupdate
-r-xr-xr-x 1 root wheel 1252248 May 8 2005 /usr/bin/nsupdate
-r-xr-xr-x 1 root wheel 245324 Jul 5 2004 /usr/sbin/nsupdate

AHA! As we suspected, there's a copy of the nsupdate from BIND8 lurking in our PATH higher up than the BIND9 version - and BIND8's nsupdate tool was
completely broken and useless. So, we'll get rid of it. (Obviously, if you don't have an older version in the way, you don't need to do this step - but it's important to
check and make sure, because you'll be tearing your hair out later wondering why everything looks like it's working but isn't if you have this problem but don't catch
it.)

client# rm /usr/sbin/nsupdate

With that taken care of, we can start working on the subdomain we want to dynamically update. In this example, we're going to use a (fic��ous) parent zone,
server.net, which is maintained by a sta�cally-addressed FreeBSD server which we have (root) control of, and we already have func�onal DNS for the parent zone.

Preparing a "seed" zone file

First, we need to prepare a "seed" zone file for the subdomain we want to be able to dynamically update. In this example, our dynamic subdomain is going to be
client.server.net. This zone file should be very minimal - we only want to put the barest amount of informa�on in here, to define those parts of the domain that
WON'T ever change. In this case, that will be the SOA record, the NS records, and the MX record. (Since MX records are based on A records, not on IP addresses, the
MX record won't change even when the IP address of the mailserver itself does).

$ORIGIN .
$TTL 10 ; 10 seconds
client.server.net IN SOA ns1.server.net. hostmaster.server.net. (
 18 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 10 ; minimum (10 seconds)
)
$TTL 3600 ; 1 hour
 NS ns1.server.net.
 NS ns2.server.net.
 MX 10 client.server.net.

$ORIGIN client.server.net.

Genera�ng a cryptographic key

While it's possible to allow zone updates without any cryptographic security, it's certainly not recommended - and implemen�ng the crypto isn't difficult, anyway, so
let's get to it. We're storing our zones in /etc/namedb/zones, and we'll park our key(s) in /etc/namedb/zones/keys.

server# mkdir /etc/namedb/zones/keys
server# cd /etc/namedb/zones/keys
server# dnssec-keygen -b 512 -a HMAC-MD5 -v 2 -n HOST client.server.net.
Kclient.server.net.+157+15661
server# ls -l
-rw------- 1 root wheel 134 May 20 19:46 Kclient.server.net.+157+15661.key
-rw------- 1 root wheel 145 May 20 19:46 Kclient.server.net.+157+15661.private

And there they are - one public key, one private key. The next step is incorpora�ng them into the named.conf file.

Se�ng up named.conf

First, we need to pluck the actual value of the private key out of its file to insert it directly into the zone defini�on.

server# cat /etc/namedb/zones/keys/Kclient.server.net.+157+15661.private
Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: omr5O5so/tZB5XeGuBBf42rrRJRQZB8I9f+uIIxxei8qm7AVgNBprxtcU+FQMzBvU/Y+nyM2xbs/C8kF3eJQUA==

That last bit of the private key is what we need. So, we copy and paste it into the new zone defini�on and key reference we're appending to /etc/namedb
/named.conf:

key client.server.net. {
 algorithm "HMAC-MD5";
 secret "omr5O5so/tZB5XeGuBBf42rrRJRQZB8I9f+uIIxxei8qm7AVgNBprxtcU+FQMzBvU/Y+nyM2xbs/C8kF3eJQUA==";
};

zone "client.server.net" {
 type master;
 file "zones/client.server.net";
 allow-update{
 key client.server.net;
 };
};

Now that we have the keys set up, we need to make sure nobody can read them, either in their original directory or in the line we just added to named.conf with the
value of the private key:

server# chmod -R 400 /etc/namedb/zones/keys;
server# chmod -R 400 /etc/namedb/named.conf;

And we're done. If you like, you may also chmod 400 /etc/namedb/zones, but it's not strictly necessary since everything in there is available by normal DNS query
from the internet anyway. The only thing le� to do on the server side is restart named and make sure it s�ll works!

Restar�ng and tes�ng BIND at the server

#server ps ax | grep named
76949 ?? Ss 0:01.03 named
#server kill 76949
#server named
#server ps ax | grep named
81230 ?? Ss 0:00.49 named

Ok, we've found and killed our previous instance of BIND (don't just use -HUP - you need to kill it all the way), then go�en it back up and confirmed it's running. Now
let's see if it responds properly when we ask it about the new zone:

#server dig @localhost client.server.net
; <<>> DiG 9.3.1 <<>> @localhost ANY client.server.net
; (1 server found)
;; global op�ons: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13783
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;client.server.net. IN ANY

;; ANSWER SECTION:
client.server.net. 10 IN SOA ns1.server.net. hostmaster.server.net. 18 10800 3600 604800 10
client.server.net. 3600 IN NS ns1.server.net.
client.server.net. 3600 IN NS ns2.server.net.
client.server.net. 3600 IN MX 5 client.server.net.

;; ADDITIONAL SECTION:
ns1.server.net. 21600 IN A 63.126.69.120

;; Query �me: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sat May 20 20:15:36 2006
;; MSG SIZE rcvd: 231

Excellent - that's exactly what we were looking for; we don't have an A record for client.server.net yet, but the SOA, NS, and MX records - all of which are sta�c - are
up and responding perfectly. If you aren't so lucky and get a SERVFAIL or other unfriendly response, try a tail -n 500 /var/log/messages | grep named and see if you
can narrow your problem down. Once you've got the server responding properly, grab copies of both the .private and the .key file, and get them to your dynamic
client box.

Upda�ng the zone from the client

What I did was make a user account specifically for the purpose of handling my automa�c updates - since there's no need for any special privileges on the client's
end, it's the best way to keep things nice, �dy, and non-risky.

client# pw useradd ddns -s /sbin/nologin -d /usr/home/ddns
client# mkdir /usr/home/ddns
client# chown ddns /usr/home/ddns

Now let's park our keys in there, however you decided to move them. It's usually best with files this small to just copy and paste them from one window to another,
rather than pu�ng copies in less-secure folders that you can scp from and possibly forge�ng you le� them there - but whatever works for you is fine, as long as they
end up in /home/ddns on client and you get rid of or secure any extra copies you made elsewhere.

client# cd /usr/home/ddns
client# ls -l K*
-rw------- 1 root wheel 134 May 20 19:46 Kclient.server.net.+157+15661.key
-rw------- 1 root wheel 145 May 20 19:46 Kclient.server.net.+157+15661.private

And there they are. Note: even though we only specifically refer to the .private key in the following script, nsupdate does require the presence of the .key file in the
same directory. ALSO note: the keys MUST be in the working directory nsupdate is called from; there is a bug in the version of nsupdate currently shipping (BIND
9.3.1) which causes it to fail if it tries to read keys outside of its own directory!

Before we get started with our client-side scripts, please note that in addi�on to having BIND 9.3.1 or be�er (and matching versions of the BIND tools such as
nsupdate) installed, your client system will also need /usr/ports/www/p5-libwww so that it can fetch HTML pages containing its effec�ve public IP address.

Once that's squared away, we'll proceed to the customized stuff:

set-ddns.pl (a freebsdwiki.net original)

This script does two things for you: first, it parses your WAN IP address out of a web page. If at all possible, I strongly recommend that you tailor the regex and the
URL used to fetch your WAN IP from your router instead of using a remote server. You can also check the set-ddns.pl router se�ngs list to see if somebody's
already done the work for you - or to add details for your own router, if you have a model nobody's covered yet and end up sussing it out yourself!

If you can't figure out how to parse the WAN address out of your router, you can set up a simple web page using php. In the default example, we'll assume that's
what you're doing, and that you're hos�ng this page at h�p://server.net/ip.php. (Note: THIS METHOD REQUIRES A WORKING PHP INSTALLATION!)

<html>
<head>
<?php $ip = $_SERVER['REMOTE_ADDR']; ?>
<�tle><?php echo $ip; ?></�tle>
</head>
<body>
<?php echo "Current IP Address: " . $ip; ?>
</body>
</html>

If all else fails, h�p://checkip.dyndns.org will work in the place of a self-hosted copy of the php script shown above. But I don't recommend it. For one thing, you're
relying unnecessarily on somebody else's stuff; for another thing, you're unnecessarily taxing somebody else's resources - and the whole point is to get this done on
your own hardware! Anyway, get it working whichever way you choose, and then we're ready to move on to the fun stuff.

Once set-ddns.pl has parsed your WAN IP address (or addresses, if you have a mul�-homed network - see the Xincom Twin-WAN Router sec�on in the router config
list; fun stuff!) out of whatever you've given it to work with, it then calls on nsupdate to update your zone file with the data.

Without further ado, here it is! As you're entering / once you've entered in the script, be mindful of its user-configurable variables: in general, the UPPERCASE
variables are things that you should set yourself, while lower or mixed-case variables are used internally and you probably won't need to mess with.

#!/usr/bin/perl

set-ddns.pl
#
Copyright (c) 05-20-2006, JRS System Solu�ons
All rights reserved under standard BSD license
details: h�p://www.opensource.org/licenses/bsd-license.php

note: requires BIND 9.3.1 and CPAN LWP::UserAgent, HTTP::Request, and HTTP::Response
FreeBSD admins may find the CPAN modules under /usr/ports/www/p5-libwww
#
WARNING: FreeBSD admins must make CERTAIN they are calling the BIND9 version
of nsupdate - FreeBSD systems have a nasty habit of leaving a copy
of the BIND8 version higher up in the PATH, even in systems shipped
with BIND9 in the base install!
#
Updated to adhere to Modern Perl conven�ons (see
h�p://perl-begin.org/tutorials/bad-elements/) by Shlomi Fish
(h�p://www.shlomifish.org/).
Copyright (c) 15-April-2012, Shlomi Fish
Under standard BSD license
details: h�p://www.opensource.org/licenses/bsd-license.php

use strict;
use warnings;

use LWP::UserAgent;
use HTTP::Request;
use HTTP::Response;

my $NAMESERVER = 'server.net.';
my $KEYDIR = '/usr/home/ddns';
my $KEYFILE = 'Kclient.server.net.+157+15661.private';
my $TYPE = 'A';
my $TTL = '10';
my $HOST = 'client.server.net';

my $url_string = 'h�p://server.net/ip.php';
my $ua = LWP::UserAgent->new;
my $req = HTTP::Request->new('GET',$url_string);
my $resp = $ua->request($req)->as_string();

my $WAN;

if (not
 (
 ($WAN) =
 $resp =~ m/Current IP Address\: (\d{0,3}\.\d{0,3}\.\d{0,3}\.\d{0,3}).*/s
)
)
{
 die "Cannot match Current IP Address in response.";
}

print "==============================\nWAN IP parsed: $WAN\n==============================\n";

chdir ($KEYDIR);

open (my $nsupdate_�, "| /usr/sbin/nsupdate -k $KEYFILE")
 or die "Cannot open nsupdate! $!";
print {$nsupdate_�} "server $NAMESERVER\n";
print {$nsupdate_�} "update delete $HOST A\n";
print {$nsupdate_�} "update add $HOST $TTL A $WAN\n";
print {$nsupdate_�} "show\n";
print {$nsupdate_�} "send\n";
close ($nsupdate_�) or die "Cannot close nsupdate - $!.";

OK, that should be it - let's lock down our permissions:

client# chown -R ddns /usr/home/ddns
client# chmod 400 /usr/home/ddns/Kclient.server.net*
client# chmod 500 /usr/home/ddns/set-ddns.pl

Done - now only the neutered, no-shell-allowed user "ddns" (or root, of course) can access our keys or our script. So let's fire it up and see if everything's working
right!

client# /usr/home/ddns/set-ddns.pl
==============================
WAN IP parsed: 24.38.194.62
==============================
Outgoing update query:
;; ->>HEADER<<- opcode: UPDATE, status: NOERROR, id: 0
;; flags: ; ZONE: 0, PREREQ: 0, UPDATE: 0, ADDITIONAL: 0
;; UPDATE SECTION:
client.server.net. 0 ANY A
client.server.net. 10 IN A 24.38.194.62

Outstanding! If your results didn't come out right the first �me, check to see if your WAN IP parsed correctly, then check the output of nsupdate below it for ZONE
FAILED, UPDATE REFUSED, or ROLLFORWARD FAIL messages. If you got a ROLLFORWARD FAIL message, that basically means that you messed with the seed file on
the server a�er you'd begun dynamically upda�ng it - but don't let that scare you, you'll just have to go rm its journal file. Journal files are typically found in the /var
working mirror of namedb; in the example above it would be at /var/named/etc/namedb/zones/client.server.net.jnl.

If your server does update, but you get "; Communica�on with server failed: �med out" on the client, add "-v" to the open call: open (NSUPDATE, "| /usr/sbin
/nsupdate -k $KEYFILE -v");

Se�ng up a crontab

Once you get your first successful update, all that's le� to do is set up a crontab on your client box to keep the updates happening automagically. Fire off a crontab
-u ddns -e at the prompt (possibly doing a setenv editor ee first, if you're allergic to vi) and add this tab (which should be the ONLY tab on our new and neutered
ddns user):

* * * * * /usr/bin/perl /usr/home/ddns/set-ddns.pl

And that should be it! From here on out, cron will call your new tab once every 60 seconds, and issue updates to any records you've set to update. If you like, you
can even get fancy and add checks to the script to keep it from issuing unnecessary updates when the IP hasn't changed. You might also consider se�ng up fancy
tricks with TCP redirectors or VPN tunnels like datapipe or OpenVPN to follow you through your IP changes; or if you have a mul�-homed network you might want to
set up a "failover" A record to automa�cally send you to the lower latency of two IPs for the same machine.

If you come up with any par�cularly interes�ng bells, whistles, or parlor tricks not covered here, be sure to let us know!

For se�ng up "failover" A records when you have more than one IP address resolving to a par�cular server, see also: BIND, dynamic DNS, failover A records.

To get your WAN IP address, see set-ddns.pl router se�ngs list.

See Also

The DynDNS ar�cle contains instruc�ons on how to configure public internet Dynamic-DNS service providers.

Samba has an implementa�on of Microso�'s Windows Internet Name Server (WINS) service which offers dynamic registra�on for and resolu�on of NetBIOS names.

Retrieved from "h�p://www.freebsdwiki.net/index.php?�tle=BIND,_dynamic_DNS&oldid=13298"

Categories: Common Tasks FreeBSD for Servers DNS

This page was last modified on 25 August 2012, at 17:30.

