

Chapter 26: Making Constructive Arguments .. 303
Chapter 27: Coping with the Copy Constructor... 323

Part VI: Advanced Strokes .. 333
Chapter 28: Inheriting a Class .. 335
Chapter 29: Are Virtual Functions for Real? ... 343
Chapter 30: Overloading Assignment Operators ... 355
Chapter 31: Performing Streaming I/O .. 363
Chapter 32: I Take Exception! ... 387

Part VII: The Part of Tens ... 397
Chapter 33: Ten Ways to Avoid Bugs .. 399
Chapter 34: Ten Features Not Covered in This Book .. 405

Appendix: About the CD ... 411

Index .. 415

Beginning Programming with C++ For Dummies x
Finding What Could Go Wrong .. 38

Misspelled commands ... 38
Missing semicolon ... 40

Using the Enclosed CD-ROM .. 41
Running the Program .. 42
How the Program Works ... 42

The template .. 42
The Conversion program .. 44

Part II: Writing a Program: Decisions, Decisions 45

Chapter 4: Integer Expressions .47

Declaring Variables ... 47
Variable names ... 48
Assigning a value to a variable ... 49
Initializing a variable at declaration .. 49

Integer Constants .. 50
Expressions .. 51

Binary operators .. 51
Decomposing compound expressions .. 53

Unary Operators .. 54
The Special Assignment Operators ... 56

Chapter 5: Character Expressions. .59

Defi ning Character Variables ... 59
Encoding characters .. 60
Example of character encoding ... 63

Encoding Strings of Characters ... 65
Special Character Constants .. 65

Chapter 6: if I Could Make My Own Decisions.69

The if Statement ... 69
Comparison operators .. 70
Say “No” to “No braces” .. 72

What else Is There? ... 73
Nesting if Statements .. 75
Compound Conditional Expressions ... 78

Chapter 7: Switching Paths .81

Controlling Flow with the switch Statement .. 81
Control Fell Through: Did I break It? ... 84
Implementing an Example Calculator with the switch Statement 85

xi Table of Contents

Chapter 8: Debugging Your Programs, Part I. .89

Identifying Types of Errors ... 89
Avoiding Introducing Errors .. 90

Coding with style ... 90
Establishing variable naming conventions 91

Finding the First Error with a Little Help .. 92
Finding the Run-Time Error .. 93

Formulating test data .. 93
Executing the test cases.. 94
Seeing what’s going on in your program .. 95

Part III: Becoming a Functional Programmer 97

Chapter 9: while Running in Circles .99

Creating a while Loop ... 99
Breaking out of the Middle of a Loop .. 102
Nested Loops ... 105

Chapter 10: Looping for the Fun of It .109

The for Parts of Every Loop ... 109
Looking at an Example .. 111
Getting More Done with the Comma Operator .. 113

Chapter 11: Functions, I Declare! .117

Breaking Your Problem Down into Functions ... 117
Understanding How Functions Are Useful ... 118
Writing and Using a Function ... 119

Returning things ... 120
Reviewing an example ... 121

Passing Arguments to Functions ... 123
Function with arguments .. 124
Functions with multiple arguments ... 125
Exposing main() ... 125

Defi ning Function Prototype Declarations ... 127

Chapter 12: Dividing Programs into Modules .129

Breaking Programs Apart ... 129
Breaking Up Isn’t That Hard to Do .. 130

Creating Factorial.cpp ... 131
Creating an #include fi le ... 133
Including #include fi les ... 134
Creating main.cpp .. 136
Building the result ... 137

Beginning Programming with C++ For Dummies xii
Using the Standard C++ Library ... 137
Variable Scope ... 137

Chapter 13: Debugging Your Programs, Part 2 139

Debugging a Dys-Functional Program ... 139
Performing unit level testing .. 141
Outfi tting a function for testing.. 143
Returning to unit test .. 146

Part IV: Data Structures ... 149

Chapter 14: Other Numerical Variable Types .151

The Limitations of Integers in C++ ... 151
Integer round-off .. 151
Limited range.. 152

A Type That “doubles” as a Real Number .. 153
Solving the truncation problem ... 153
When an integer is not an integer .. 154
Discovering the limits of double .. 155

Variable Size — the “long” and “short” of It ... 158
How far do numbers range? ... 159

Types of Constants .. 160
Passing Different Types to Functions ... 161

Overloading function names .. 162
Mixed mode overloading .. 162

Chapter 15: Arrays .165

What Is an Array? .. 165
Declaring an Array ... 166
Indexing into an Array .. 167
Looking at an Example .. 168
Initializing an Array ... 171

Chapter 16: Arrays with Character .173

The ASCII-Zero Character Array .. 173
Declaring and Initializing an ASCIIZ Array .. 174
Looking at an Example .. 175
Looking at a More Detailed Example ... 177

Foiling hackers ... 181
Do I Really Have to Do All That Work? .. 182

Chapter 17: Pointing the Way to C++ Pointers 187

What’s a Pointer? ... 187
Declaring a Pointer .. 188

xiii Table of Contents

Passing Arguments to a Function .. 190
Passing arguments by value ... 190
Passing arguments by reference .. 193
Putting it together .. 195

Playing with Heaps of Memory .. 197
Do you really need a new keyword? .. 197
Don’t forget to clean up after yourself .. 198
Looking at an example .. 199

Chapter 18: Taking a Second Look at C++ Pointers203

Pointers and Arrays .. 203
Operations on pointers ... 203
Pointer addition versus indexing into an array 205
Using the pointer increment operator .. 208
Why bother with array pointers?... 210

Operations on Different Pointer Types ... 212
Constant Nags .. 212
Differences Between Pointers and Arrays .. 214
My main() Arguments ... 214

Arrays of pointers .. 215
Arrays of arguments .. 216

Chapter 19: Programming with Class .223

Grouping Data .. 223
The Class .. 224
The Object .. 225
Arrays of Objects ... 226
Looking at an Example .. 227

Chapter 20: Debugging Your Programs, Part 3 235

A New Approach to Debugging ... 235
The solution .. 236

Entomology for Dummies ... 236
Starting the debugger .. 239
Navigating through a program with the debugger 241
Fixing the (fi rst) bug .. 245
Finding and fi xing the second bug ... 246

Part V: Object-Oriented Programming 251

Chapter 21: What Is Object-Oriented Programming? 253

Abstraction and Microwave Ovens ... 253
Functional nachos .. 254
Object-oriented nachos ... 255

Classifi cation and Microwave Ovens .. 256
Why Build Objects This Way? .. 256
Self-Contained Classes .. 257

Beginning Programming with C++ For Dummies xiv
Chapter 22: Structured Play: Making Classes Do Things259

Activating Our Objects ... 259
Creating a Member Function .. 261

Defi ning a member function ... 261
Naming class members ... 262
Calling a member function .. 263
Accessing other members from within a member function 264

Keeping a Member Function after Class ... 266
Overloading Member Functions .. 267

Chapter 23: Pointers to Objects .269

Pointers to Objects .. 269
Arrow syntax .. 270
Calling all member functions .. 271

Passing Objects to Functions ... 271
Calling a function with an object value ... 271
Calling a function with an object pointer 272
Looking at an example .. 274

Allocating Objects off the Heap ... 278

Chapter 24: Do Not Disturb: Protected Members281

Protecting Members .. 281
Why you need protected members ... 282
Making members protected ... 282
So what? .. 285

Who Needs Friends Anyway? ... 286

Chapter 25: Getting Objects Off to a Good Start289

The Constructor .. 289
Limitations on constructors ... 291
Can I see an example? ... 292
Constructing data members ... 294

Destructors ... 297
Looking at an example .. 297
Destructing data members ... 300

Chapter 26: Making Constructive Arguments .303

Constructors with Arguments ... 303
Looking at an example .. 304

Overloading the Constructor ... 307
The Default default Constructor .. 312
Constructing Data Members .. 313

Initializing data members with the default constructor 314
Initializing data members with a different constructor 315
Looking at an example .. 318
New with C++ 2009 ... 321

xv Table of Contents

Chapter 27: Coping with the Copy Constructor323

Copying an Object ... 323
The default copy constructor .. 324
Looking at an example .. 325

Creating a Copy Constructor ... 327
Avoiding Copies ... 330

Part VI: Advanced Strokes .. 333

Chapter 28: Inheriting a Class .335

Advantages of Inheritance .. 336
Learning the lingo .. 337

Implementing Inheritance in C++ ... 337
Looking at an example .. 338

Having a HAS_A Relationship ... 342

Chapter 29: Are Virtual Functions for Real? .343

Overriding Member Functions ... 343
Early binding .. 344
Ambiguous case ... 346
Enter late binding... 348

When Is Virtual Not? ... 351
Virtual Considerations .. 352

Chapter 30: Overloading Assignment Operators 355

Overloading an Operator .. 355
Overloading the Assignment Operator Is Critical 356
Looking at an Example .. 358
Writing Your Own (or Not) ... 361

Chapter 31: Performing Streaming I/O .363

How Stream I/O Works .. 363
Stream Input/Output ... 365

Creating an input object ... 365
Creating an output object ... 366
Open modes .. 367
What is binary mode? .. 368
Hey, fi le, what state are you in? ... 369

Other Member Functions of the fstream Classes 373
Reading and writing streams directly ... 375
Controlling format ... 378
What’s up with endl? ... 380

Manipulating Manipulators .. 380
Using the stringstream Classes .. 382

Beginning Programming with C++ For Dummies xvi
Chapter 32: I Take Exception! .387

The Exception Mechanism ... 387
Examining the exception mechanism in detail 390
Special considerations for throwing ... 391

Creating a Custom Exception Class .. 392
Restrictions on exception classes ... 395

Part VII: The Part of Tens .. 397

Chapter 33: Ten Ways to Avoid Bugs .399

Enable All Warnings and Error Messages ... 399
Adopt a Clear and Consistent Coding Style ... 400
Comment the Code While You Write It ... 401
Single-Step Every Path in the Debugger at Least Once 401
Limit the Visibility ... 402
Keep Track of Heap Memory .. 402
Zero Out Pointers after Deleting What They Point To 403
Use Exceptions to Handle Errors ... 403
Declare Destructors Virtual ... 403
Provide a Copy Constructor and Overloaded Assignment Operator ... 404

Chapter 34: Ten Features Not Covered in This Book405

The goto Command ... 405
The Ternary Operator ... 406
Binary Logic ... 407
Enumerated Types .. 407
Namespaces ... 407
Pure Virtual Functions .. 408
The string Class ... 408
Multiple Inheritance .. 409
Templates and the Standard Template Library 409
The 2009 C++ Standard ... 410

Appendix: About the CD .. 411

Index ... 415

2 Beginning Programming with C++ For Dummies

 ✓ Create data structures that better model the real world

 ✓ Define and use C++ pointers

 ✓ Manipulate character strings to generate the output the way you want to
see it

 ✓ Write to and read from files

Foolish Assumptions
I try to make very few assumptions in this book about the reader, but I do
assume the following:

 ✓ You have a computer. Most readers will have computers that run
Windows; however, the programs in this book run equally well on
Windows, Macintosh, Linux, and Unix. In fact, since C++ is a standard-
ized language, these programs should run on any computer that has a
C++ compiler.

 ✓ You know the basics of how to use your computer. For example, I
assume that you know how to run a program, copy a file, create a folder,
and so on.

 ✓ You know how to navigate through menus. I include lots of instructions
like “Click on File and then Open.” If you can follow that instruction, then
you’re good to go.

 ✓ You are new to programming. I don’t assume that you know anything
about programming. Heck, I don’t even assume that you know what pro-
gramming is.

Conventions Used in This Book
To help you navigate this book as efficiently as possible, I use a few
conventions:

 ✓ C++ terms are in monofont typeface, like this.

 ✓ New terms are emphasized with italics (and defined).

 ✓ Numbered steps that you need to follow and characters you need to
type are set in bold.

3 Introduction

What You Don’t Have to Read
I encourage you to read one part of the book; then put the book away and
play for a while before moving to the next part. The book is organized so that
by the end of each part, you have mastered enough new material to go out
and write programs.

I’d like to add the following advice:

 ✓ If you already know what programming is but nothing about C++, you
can skip Chapter 1.

 ✓ I recommend that you use the CodeBlocks compiler that comes with the
book, even if you want to use a different C++ compiler after you finish
the book. However, if you insist and don’t want to use CodeBlocks, you
can skip Chapter 2.

 ✓ Skim through Chapter 3 if you’ve already done a little computer
programming.

 ✓ Start concentrating at Chapter 4, even if you have experience with other
languages such as BASIC.

 ✓ You can stop reading after Chapter 20 if you’re starting to feel saturated.
Chapter 21 opens up the new topic of object-oriented programming —
you don’t want to take that on until you feel really comfortable with
what you’ve learned so far.

 ✓ You can skip any of the TechnicalStuff icons.

How This Book Is Organized
Beginning Programming with C++ For Dummies is split into seven parts. You
don’t have to read it sequentially, and you don’t even have to read all the
sections in any particular chapter. You can use the Table of Contents and the
Index to find the information you need and quickly get your answer. In this
section, I briefly describe what you’ll find in each part.

Part I: Let’s Get Started
This part describes what programs are and how they work. Using a fictitious
tire-changing computer, I take you through several algorithms for removing
a tire from a car to give you a feel for how programs work. You’ll also get
CodeBlocks up and running on your computer before leaving this part.

4 Beginning Programming with C++ For Dummies

Part II: Writing a Program:
Decisions, Decisions
This part introduces you to the basics of programming with C++. You will find
out how to declare integer variables and how to write simple expressions.
You’ll even discover how to make decisions within a program, but you won’t
be much of an expert by the time you finish this part.

Part III: Becoming a Functional
Programmer
Here you learn how to direct the flow of control within your programs.
You’ll find out how to loop, how to break your code into modules (and why),
and how to build these separate modules back into a single program. At the
end of this part, you’ll be able to write real programs that actually solve
problems.

Part IV: Data Structures
This part expands your knowledge of data types. Earlier sections of the book
are limited to integers; in this part, you work with characters, decimals, and
arrays; and you even get to define your own types. Finally, this is the part
where you master the most dreaded topic, the C++ pointer.

Part V: Object-Oriented Programming
This is where you expand your knowledge into object-oriented techniques,
the stuff that differentiates C++ from its predecessors, most notably C. (Don’t
worry if you don’t know what object-oriented programming is — you aren’t
supposed to yet.) You’ll want to be comfortable with the material in Parts I
through IV before jumping into this part, but you’ll be a much stronger pro-
grammer by the time you finish it.

Part VI: Advanced Strokes
This is a collection of topics that are important but that didn’t fit in the ear-
lier parts. For example, here’s where I discuss how to create, read to, and
write from files.

6 Beginning Programming with C++ For Dummies

Where to Go from Here
You can find a set of errata and Frequently Asked Questions for this and all
my books at www.stephendavis.com. You will also find a link to my e-mail
address there. Feel free to send me your questions and comments (that’s
how I learn). It’s through reader input that these books can improve.

Now you’ve stalled long enough, it’s time to turn to Chapter 1 and start dis-
covering how to program!

10 Part I: Let’s Get Started

For example, I say things to my son like, “Wash the dishes” (for all the good it
does me). This seems like clear enough instructions, but the vast majority of
the information contained in that sentence is implied and unspoken.

Let’s assume that my son knows what dishes are and that dirty dishes are nor-
mally in the sink. But what about knives and forks? After all, I only said dishes,
I didn’t say anything about eating utensils, and don’t even get me started on
glassware. And did I mean wash them manually, or is it okay to load them up
into the dishwasher to be washed, rinsed, and dried automatically?

But the fact is, “Wash the dishes” is sufficient instruction for my son. He
can decompose that sentence and combine it with information that we both
share, including an extensive working knowledge of dirty dishes, to come up
with a meaningful understanding of what I want him to do — whether he does
it or not is a different story. I would guess that he can perform all the mental
gymnastics necessary to understand that sentence in about the same amount
of time that it takes me to say it — about 1 to 2 seconds.

A computer can’t make heads or tails out of something as vague as “wash the
dishes.” You have to tell the computer exactly what to do with each different
type of dish, how to wash a fork, versus a spoon, versus a cup. When does
the program stop washing a dish (that is, how does it know when a dish is
clean)? When does it stop washing (that is, how does it know when it’s
finished)?

My son has gobs of memory — it isn’t clear exactly how much memory a
normal human has, but it’s boat loads. Unfortunately, human memory is
fuzzy. For example, witnesses to crimes are notoriously bad at recalling
details even a short time after the event. Two witnesses to the same event
often disagree radically on what transpired.

Computers also have gobs of memory, and that’s very good. Once stored, a
computer can retrieve a fact as often as you like without change. As expen-
sive as memory was back in the early 1980s, the original IBM PC had only
16K (that’s 16 thousand bytes). This could be expanded to a whopping 64K.
Compare this with the 1GB to 3GB of main storage available in most comput-
ers today (1GB is one billion bytes).

As expensive as memory was, however, the IBM PC included extra memory
chips and decoding hardware to detect a memory failure. If a memory chip
went bad, this circuitry was sure to find it and report it before the program
went haywire. This so-called Parity Memory was no longer offered after only
a few years, and as far as I know, it is unavailable today except in specific
applications where extreme reliability is required — because the memory
boards almost never fail.

11 Chapter 1: What Is a Program?

On the other hand, humans are very good at certain types of processing that
computers do poorly, if at all. For example, humans are very good at pulling
the meaning out of a sentence garbled by large amounts of background noise.
By contrast, digital cell phones have the infuriating habit of just going silent
whenever the noise level gets above a built-in threshold.

Programming a “Human Computer”
Before I dive into showing you how to write programs for computer con-
sumption, I start by showing you a program to guide human behavior so
that you can better see what you’re up against. Writing a program to guide a
human is much easier than writing programs for computer hardware because
we have a lot of familiarity with and understanding of humans and how they
work (I assume). We also share a common human language to start with. But
to make things fair, assume that the human computer has been instructed
to be particularly literal — so the program will have to be very specific. Our
guinea pig computer intends to take each instruction quite literally.

The problem I have chosen is to instruct our human computer in the chang-
ing of a flat tire.

The algorithm
The instructions for changing a flat tire are straightforward and go something
like the following:

 1. Raise the car.

 2. Remove the lug nuts that affix the faulty tire to the car.

 3. Remove the tire.

 4. Mount the new tire.

 5. Install the lug nuts.

 6. Lower the car.

(I know that technically the lug nuts hold the wheel onto the car and not the
tire, but that distinction isn’t important here. I use the terms “wheel” and
“tire” synonymously in this discussion.)

12 Part I: Let’s Get Started

As detailed as these instructions might seem to be, this is not a program.
This is called an algorithm. An algorithm is a description of the steps to be
performed, usually at a high level of abstraction. An algorithm is detailed but
general. I could use this algorithm to repair any of the flat tires that I have
experienced or ever will experience. But an algorithm does not contain suf-
ficient detail for even our intentionally obtuse human computer to perform
the task.

The Tire Changing Language
Before we can write a program, we need a language that we can all agree on.
For the remainder of this book, that language will be C++, but I use the newly
invented TCL (Tire Changing Language) for this example. I have specifically
adapted TCL to the problem of changing tires.

TCL includes a few nouns common in the tire-changing world:

 ✓ car

 ✓ tire

 ✓ nut

 ✓ jack

 ✓ toolbox

 ✓ spare tire

 ✓ wrench

TCL also includes the following verbs:

 ✓ grab

 ✓ move

 ✓ release

 ✓ turn

Finally, the TCL-executing processor will need the ability to count and to
make simple decisions.

This is all that the tire-changing robot understands. Any other command
that’s not part of Tire Changing Language generates a blank stare of incom-
prehension from the human tire-changing processor.

15 Chapter 1: What Is a Program?

 3. {

 4. Move wrench to lug nut.

 5. While (lug nut attached to car)

 6. {

 7. Turn wrench counterclockwise one turn.

 8. }

 9. }

 10. Move wrench to toolbox.

 11. Release wrench.

Here the program flows from Step 1 through Step 4 just as before. In Step 5,
however, the processor must make a decision: Is the lug nut attached? On
the first pass, we will assume that the answer is yes so that the processor
will execute Step 7 and turn the wrench counterclockwise one turn. At this
point, the program returns to Step 5 and repeats the test. If the lug nut is
still attached, the processor repeats Step 7 before returning to Step 5 again.
Eventually, the lug nut will come loose and the condition in Step 5 will return
a false. At this point, control within the program will pass on to Step 9, and
the program will continue as before.

This solution is superior to its predecessor: It makes no assumptions about
the number of turns required to remove a lug nut. It is not wasteful by requir-
ing the processor to turn a lug nut that is no longer attached, nor does it fail
because the lug nut is only half removed.

As nice as this solution is, however, it still has a problem: It removes only
a single lug nut. Most medium-sized cars have five nuts on each wheel. We
could repeat Steps 2 through 9 five times, once for each lug nut. However,
this doesn’t work very well either. Most compact cars have only four lug
nuts, and large pickups have up to eight.

The following program expands our grammar to include the ability to loop
across lug nuts. This program works irrespective of the number of lug nuts
on the wheel:

 1. Grab wrench.

 2. For each lug bolt on wheel

 3. {

 4. If lug nut is present

 5. {

16 Part I: Let’s Get Started

 6. Move wrench to lug nut.

 7. While (lug nut attached to car)

 8. {

 9. Turn wrench counterclockwise one turn.

 10. }

 11. }

 12. }

 13. Move wrench to toolbox.

 14. Release wrench.

This program begins just as before with the grabbing of a wrench from the
toolbox. Beginning with Step 2, however, the program loops through Step 12
for each lug nut bolt on the wheel.

Notice how Steps 7 through 10 are still repeated for each wheel. This is
known as a nested loop. Steps 7 through 10 are called the inner loop, while
Steps 2 through 12 are the outer loop.

The complete program consists of the addition of similar implementations of
each of the steps in the algorithm.

Computer processors
Removing the wheel from a car seems like such a simple task, and yet it takes
11 instructions in a language designed specifically for tire changing just to
get the lug nuts off. Once completed, this program is likely to include over 60
or 70 steps with numerous loops. Even more if you add in logic to check for
error conditions like stripped or missing lug nuts.

Think of how many instructions have to be executed just to do something as
mundane as move a window about on the display screen (remember that a
typical screen may have 1280 x 1024 or a little over a million pixels or more
displayed). Fortunately, though stupid, a computer processor is very fast.
For example, the processor that’s in your PC can likely execute several billion
instructions per second. The instructions in your generic processor don’t do
very much — it takes several instructions just to move one pixel — but when
you can rip through a billion or so at a time, scrolling a mere million pixels
becomes child’s play.

20 Part I: Let’s Get Started

In addition, C++ is efficient. The more things a high level language tries to
do automatically to make your programming job easier, the less efficient the
machine code generated tends to be. That doesn’t make much of a difference
for a small program like most of those in this book, but it can make a big dif-
ference when manipulating large amounts of data, like moving pixels around
on the screen, or when you want blazing real-time performance. It’s not an
accident that Unix and Windows are written in C++ and the Macintosh O/S is
written in a language very similar to C++.

60 Part II: Writing a Program: Decisions, Decisions

Encoding characters
As I mentioned in Chapter 1, everything in the computer is represented by
a pattern of ones and zeros that can be interpreted as numbers. Thus, the
bit pattern 0000 0001 is the number 1 when interpreted as an integer.
However, this same bit pattern means something completely different when
interpreted as an instruction by the processor. So it should come as no sur-
prise that the computer encodes the characters of the alphabet by assigning
each a number.

Consider the character ‘A’. You could assign it any value you want as long as
we all agree. For example, you could assign a value of 1 to ‘A’, if you wanted
to. Logically, you might then assign the value 2 to ‘B’, 3 to ‘C’, and so on. In
this scheme, ‘Z’ would get the value 26. You might then start over by assign-
ing the value 27 to ‘a’, 28 to ‘b’, right down to 52 for ‘z’. That still leaves the
digits ‘0’ through ‘9’ plus all the special symbols like space, period, comma,
slash, semicolon, and the funny characters you see when you press the
number keys while holding Shift down. Add to that the unprintable charac-
ters like tab and newline. When all is said and done, you could encode the
entire English keyboard using numbers between 1 and 127.

I say “you could” assign a value for ‘A’, ‘B’, and the remaining characters;
however, that wouldn’t be a very good idea because it has already been
done. Sometime around 1963, there was a general agreement on how charac-
ters should be encoded in English. The ASCII (American Standard Coding for
Information Interchange) character encoding shown in Table 5-1 was adopted
pretty much universally except for one company. IBM published its own stan-
dard in 1963 as well. The two encoding standards duked it out for about ten
years, but by the early 1970s when C and C++ were being created, ASCII had
just about won the battle. The char type was created with ASCII character
encoding in mind.

Table 5-1 The ASCII Character Set

Value Char Value Char

0 NULL 64 @

1 Start of Heading 65 A

2 Start of Text 66 B

3 End of Text 67 C

4 End of Transmission 68 D

5 Enquiry 69 E

61 Chapter 5: Character Expressions

Value Char Value Char

6 Acknowledge 70 F

7 Bell 71 G

8 Backspace 72 H

9 Tab 73 I

10 Newline 74 J

11 Vertical Tab 75 K

12 New Page; Form Feed 76 L

13 Carriage Return 77 M

14 Shift Out 78 N

15 Shift In 79 O

16 Data Link Escape 80 P

17 Device Control 1 81 Q

18 Device Control 2 82 R

19 Device Control 3 83 S

20 Device Control 4 84 T

21 Negative Acknowledge 85 U

22 Synchronous Idle 86 V

23 End of Transmission 87 W

24 Cancel 88 X

25 End of Medium 89 Y

26 Substitute 90 Z

27 Escape 91 [

28 File Separator 92 \

29 Group Separator 93]

30 Record Separator 94 ^

31 Unit Separator 95 _

32 Space 96 `

33 ! 97 a

34 “ 98 b

35 # 99 c

36 $ 100 d

37 % 101 e
(continued)

62 Part II: Writing a Program: Decisions, Decisions

Table 5-1 (continued)

Value Char Value Char

38 & 102 f

39 ‘ 103 g

40 (104 h

41) 105 i

42 * 106 j

43 + 107 k

44 , 108 l

45 = 109 m

46 . 110 n

47 / 111 o

48 0 112 p

49 1 113 q

50 2 114 r

51 3 115 s

52 4 116 t

53 5 117 u

54 6 118 v

55 7 119 w

56 8 120 x

57 9 121 y

58 : 122 z

59 ; 123 {

60 < 124 |

61 = 125 }

62 > 126 ~

63 ? 127 DEL

The first thing that you’ll notice is that the first 32 characters are the
“unprintable” characters. That doesn’t mean that these characters are so
naughty that the censor won’t allow them to be printed — it means that they
don’t display as a symbol when printed on the printer (or on the console
for that matter). Many of these characters are no longer used or only used

120 Part III: Becoming a Functional Programmer

This example contains all the critical elements necessary to create and
invoke a function:

 1. The declaration: The first thing is the declaration of the function. This
appears as the name of the function with a type in front followed by a
set of open and closed parentheses. In this case, the name of the func-
tion is someFunction(), and its return type is void. (I’ll explain what
that last part means in the “Returning things” section of this chapter.)

 2. The definition: The declaration of the function is followed by the defi-
nition of what it does. This is also called the body of the function. The
body of a function always starts with an open brace and ends with a
closed brace. The statements inside the body are just like those within a
loop or an if statement.

 3. The return: The body of the function contains zero or more return
statements. A return returns control to immediately after the point
where the function was invoked. Control returns automatically if it ever
reaches the final closed brace of the function body.

 4. The call: A function is called by invoking the name of the function fol-
lowed by open and closed parentheses.

The flow of control is shown in Figure 11-1.

Figure 11-1:
Invoking

a function
passes

control to
the module.

Control
returns to

immediately
after

the call.

void someFunction()
{
 // do tuff
 return;
}

int main(int nArgs, cha pArgs[])
{
 // do something

 // now invoke s Function()
 someFunction();

 // keep going where once control returns
}

1

3

2

Returning things
Functions often return a value to the caller. Sometimes this is a calculated
value — a function like factorial() might return the factorial of a number.
Sometimes this value is an indication of how things went — this is usually known
as an error return. So the function might return a zero if everything went OK, and
a non-zero if something went wrong during the execution of the function.

130 Part III: Becoming a Functional Programmer

Breaking programs into smaller, more manageable pieces has several advan-
tages. First, breaking a program into smaller modules reduces the compile
time. Code::Blocks takes only a few seconds to gobble up and digest the pro-
grams that appear in this book. Very large programs can take quite a while,
however. I have worked on projects that took most of the night to rebuild.

In addition, recompiling all of the source code in the project just because one
or two lines change is extremely wasteful. It’s much better to recompile just
the module containing the change and then relink it into all of the unchanged
modules to create a new executable with the change. (The updated module
may contain more than just the one changed function but not that many more.)

Second, it’s easier to comprehend and, therefore, easier to write and debug
a program that consists of a number of well thought out but quasi-indepen-
dent modules, each of which represents a logical grouping of functions. A
large, single source module full of all the functions that a program might use
quickly becomes hard to keep straight.

Third is the much vaunted specter of reuse. A module full of reusable func-
tions that can be linked into future programs is easier to document and
maintain. A change in the module to fix some bug is quickly incorporated into
other executables that use that module.

Finally, there’s the issue of working together as a team. Two programmers
can’t work on the same module (at least not very well). An easier approach
is to assign one set of functions contained in one module to a programmer
while assigning a different set of functions in a different module to a second
programmer. The modules can be linked together when ready for testing.

Breaking Up Isn’t That Hard to Do
I can’t really include a large program in a book like this . . . well, I could, but
there wouldn’t be enough left for anything else. I will use the FactorialFunction
demo from Chapter 11 as my example large-scale program. In this section, I
will create the FactorialModule project that separates the program into sev-
eral source modules. To do this, I will perform the following steps:

 1. Create the FactorialModule project.

 This is no different than creating any of the other project files up to this
point in the book.

 2. Create the Factorial.cpp file to contain the factorial function.

 3. Create the Factorial.h include file (whatever that is) to be used by all
modules that want to call.

 4. Update main.cpp to use the factorial() function.

134 Part III: Becoming a Functional Programmer

The most common preprocessor command is #include “filename.h”.
This command copies and pastes the contents of filename.h at the point of
the #include to create what is known as an intermediate source file. The pre-
processor then passes this intermediate source file on to the C++ compiler
for processing. This process is shown graphically in Figure 12-3.

Figure 12-3:
The pre-

processor
inserts the

contents of
an include

file at the
point of the
#include

command
before

passing
the results
to the C++
compiler.

factorial.h:

Preprocessor

main.cpp:

int factorial(int nTarget);
Intermediate file sent to C++ compiler

using namespace std;

int factorial(int nTarget);

int main(int nNumberofArgs, char* pszArgs[])
{
 for (;;)
 {
 // ,,,file continues...using namespace std;

#include "factorial.h"

int main(int nNumberofArgs, char* pszArgs{})
{
 for (;;)
 {
 // ,,,file continues...

Including #include files
The Code::Blocks wizard makes creating an include file painless. Just execute
the following steps:

 1. Select File➪New➪File.

 Code::Blocks responds by opening the window shown in Figure 12-1 just
as before. This time you’re creating an include file.

 2. Select Include File and then click Go.

 3. In the next window that warns you’re about to enter the Include File
Wizard, click Next.

 4. Click the ... next to the Filename with Full Path prompt.

 A File Open dialog box appears.

 5. Enter factorial.h as the name of the include file and click Save.

 6. You want this file added to all executables that you create, so select
All for the build targets.

 When you are finished, the dialog box should look like Figure 12-4.

142 Part III: Becoming a Functional Programmer

Table 13-1 (continued)

Operator Operand1 Operand2 Expected
Result

Actual
Result

Explanation

- 10 20 −10 Generate
a negative
number

* 10 20 200 Simple case

* 10 −5 −50 Try with a
negative
argument

X 10 20 200 Use the
other form
of multiply
operator

/ 20 10 2 Simple case

/ 10 0 Don’t
care
as long
error
gener-
ated and
program
doesn’t
crash

Try divide
by zero

% 23 10 3 Simple case

% 20 10 0 Generate a
zero result

% 23 −10 3 Try modulo
with a nega-
tive number

y 20 10 Don’t
care as
long as
error
gener-
ated and
program
doesn’t
crash

Illegal input

182 Part IV: Data Structures

 ✓ szSource[nS] is the null character, meaning that you’ve gotten to the
final character in szSource.

 ✓ nT is greater than or equal to nTargetSize - 1 meaning that you’ve
exhausted the space available in szTarget (- 1 because you have to
leave room for the terminating null at the end).

This extra check is irritating but necessary to avoid overrunning the array
and producing a program that can crash in strange and mysterious ways.

Do I Really Have to Do All That Work?
C++ doesn’t provide much help with manipulating strings in the language
itself. Fortunately, the standard library includes a number of functions for
manipulating these strings that save you the trouble of writing them yourself.
Table 16-1 shows the most common of these functions.

Table 16-1 Common ASCIIZ String Manipulation Functions

Function Description

isalpha(char c) Returns a true if the character is alpha-
betic (‘A’ through ‘Z’ or ‘a’ through ‘z’).

isdigit(char c) Returns a true if the character is a digit (‘0’
through ‘9’).

isupper(char c) Returns a true if the character is an upper-
case alphabetic.

islower(char c) Returns a true if the character is a lower-
case alphabetic.

isprint(char c) Returns a true if the character is printable.

isspace(char c) Returns a true if the character is a form of
white space (space, tab, newline, and so on).

strlen(char s[]) Returns the number of characters in a string
(not including the terminating null).

strcmp(char s1[],
 char s2[])

Compares two strings. Returns 0 if the
strings are identical. Returns a 1 if the first
string occurs later in the dictionary than the
second. Returns a −1 otherwise.

strncpy(char target[],
 char source[],
 int size)

Copies the source string into the target string
but not more than ‘size’ characters.

185 Chapter 16: Arrays with Character

In this chapter, you’ve seen how to handle ASCIIZ strings as a special case of
character arrays. In practice, many of the standard functions rely on some-
thing known as a pointer. In the next two chapters, you’ll see how pointers
work. I will then return to these same example functions and implement them
using pointers to demonstrate the elegance of the pointer solution.

254 Part V: Object-Oriented Programming

 ✓ I limit myself to the front panel of the microwave. I don’t look inside the
case. I don’t look at the listings of the code that tells the processor unit
what to do. I don’t study the wiring diagram that’s pasted on the inside
wall of the case.

 ✓ I don’t rewrite or change anything inside the microwave to get it to
work. The microwave oven that I use to make nachos is the exact same
microwave that I used earlier to heat up chili dogs (nothing but health
food at my house). And it will be the same microwave I use to heat up
my Malt-O-Meal tomorrow (assuming it doesn’t break).

 ✓ I don’t think about what might be going on inside my microwave oven in
order to use it. Even if I designed microwaves for a living, I’m not likely
to think about how it works when I make nachos before the big game.

These are not profound observations. Humans can think about only so much
at any one time. We tend to reduce the number of things that we have to deal
with by abstracting away all the little details. This allows us to work at the
level of detail appropriate to the problem we’re trying to solve.

Note: In object-oriented (OO) terms, this level of detail is known as the level
of abstraction.

When I’m working on nachos, I view my microwave oven as a black box. I
don’t concern myself with what’s going on inside that box unless, of course,
it breaks. Then I might take the top off and see if I can figure out what’s
wrong with it; then I am working at a different level of abstraction. I still don’t
take the tops off the chips on the circuit board or try to take apart the indi-
vidual components. (I’m not that crazy.)

As long as the microwave is heating food, I limit myself to the interface that
it exposes to the outside world: the keypad and LCD display. It is very impor-
tant that from this interface there is nothing that I can do that will cause the
microwave to:

 ✓ Enter an inconsistent state and crash (causing me to have to reboot my
microwave)

 ✓ Worse, turn my nachos into a blackened, flaming mass

 ✓ Worse yet, catch on fire and burn down the house

Functional nachos
Suppose I were to ask my son to write an algorithm for making nachos using
the same basic approach used for changing tires in Chapter 1. He would

256 Part V: Object-Oriented Programming

Classification and Microwave Ovens
Critical to the concept of abstraction is that of classification. If I were to ask
my son, “What’s a microwave oven?” he would probably say, “It’s an oven
that. . . .” If I then ask, “What’s an oven?” he might reply, “It’s a kitchen appli-
ance that. . . .” I could keep asking this question, ratcheting myself up the
abstraction ladder until I ended up with, “It’s a thing,” which is another way
of saying, “It’s an object.”

My son understands that our particular microwave is an instance of the type
of things called microwave ovens. In addition, he sees microwave ovens as
just a special kind of oven, which is, in turn, a special type of kitchen appli-
ance, and so on.

The technical way of saying this is that our oven is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the class
oven is a superclass of the class microwave.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things that we have to remember. Consider,
for example, the first time that you saw a hybrid car. The advertisement
called it a “revolutionary automobile, unlike any car you’ve ever seen,” but
you and I know that this just isn’t so. Sure, its propulsion system is different
from conventional cars, but it’s still a car and as such does the same things
that all cars do: convey you and your kin from one place to another. It has a
steering wheel, seats, a motor, brakes, and so on. I bet I could even drive one
without help.

I don’t have to clutter my limited storage with all the things that a hybrid card
has in common with other cars. All I have to remember is that “a hybrid car
is a car that. . . .” and tack on those few things that are unique to a hybrid.
Cars are a subclass of wheeled vehicles, of which there are other members,
such as trucks and pickups. Maybe wheeled vehicles are a subclass of vehi-
cles, which includes boats and planes. And on and on and on.

Why Build Objects This Way?
It may seem easier to design and build a microwave oven specifically for
this one problem, rather than to build a separate, more generic oven object.
Suppose, for example, that I were to build a microwave to cook nachos and
nachos only. I wouldn’t need to put a front panel on it, other than a START
button. I always cook nachos the same amount of time. I could dispense with
all that DEFROST and TEMP COOK nonsense. The microwave could be tiny. It
would need to hold only one fat, little plate. The cubic feet of space would be
completely wasted on nachos.

257 Chapter 21: What Is Object-Oriented Programming?

For that matter, suppose I just dispense with the concept of “microwave
oven” altogether. All I really need is the guts of the oven. Then in the recipe, I
can put the instructions to make it work: “Put nachos in the box. Connect the
red wire to the black wire. Notice a slight hum. Don’t stand too close if you
intend to have children.” Stuff like that.

Nevertheless, the functional approach does have some problems:

 ✓ Too complex. You don’t want the details of oven building mixed in with
the details of nacho building. If you can’t define the objects and pull
them out of the morass of details to deal with separately, you must deal
with all the complexities of the problem at the same time.

 ✓ Not flexible. If you need to replace the microwave oven with some other
type of oven, you should be able to do so as long as the interface to the
new oven is about the same as the old one. Without a simple and clearly
delineated interface, it becomes impossible to cleanly remove an object
type and replace it with another.

 ✓ Not reusable. Ovens are used to make many different dishes. You don’t
want to create a new oven each time you encounter a new recipe. Having
solved a problem once, it would be nice to reuse the solution in future
programs.

It does cost more to write a generic object. It would be cheaper to build a
microwave made specifically for nachos. You could dispense with expensive
timers, buttons, and the like that aren’t needed to make nachos. After you
have used a generic object in more than one application, however, the costs
of a slightly more expensive class more than outweigh the repeated costs of
building cheaper, less flexible classes for every new application.

Self-Contained Classes
Now, it’s time to reflect on what you’ve learned. In an object-oriented
approach to programming:

 ✓ The programmer identifies the classes necessary to solve the prob-
lem. (I knew right off that I was going to need an oven to make decent
nachos.)

 ✓ The programmer creates self-contained classes that fit the requirements
of the problem and doesn’t worry about the details of the overall
application.

 ✓ The programmer writes the application using the classes just created
without thinking about how they work internally.

258 Part V: Object-Oriented Programming

An integral part of this programming model is that each class is responsible
for itself. A class should be in a defined state at all times. It should not be
possible to crash the program by calling a class with illegal data or with an
illegal sequence of correct data.

Many of the features of C++ that are shown in subsequent chapters deal with
giving the class the capability to protect itself from errant programs just wait-
ing to trip it up.

268 Part V: Object-Oriented Programming

When calling a member function, the type of the object is just as important as
the number and type of the arguments. The first call to grade() invokes the
function Student::grade(double) to set the student’s grade point aver-
age. The second call is to Student::grade(), which returns the student’s
grade point average without changing it.

The third call is to a completely unrelated function, Hill::grade(double),
that sets the slope on the side of the hill. And the final call is to the non-
member function ::grade(double).

279 Chapter 23: Pointers to Objects

What is this anyway?
In Chapter 22, I mention that an otherwise unqualified reference to a member made from within
a member function always refers to the “current object.” I even mention that the current object
has a name: this. You can reference this explicitly. I could have written the Savings class
as follows:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount)
 {
 this->dBalance -= dAmount;
 return this->dBalance;
 }
 double deposit(double dAmount)
 {
 this->dBalance += dAmount;
 return this->dBalance;
 }
 double balance()
 {
 return this->dBalance;
 }
}

In fact, even without explicitly referring to it, you use this all the time. If you don’t specify an
object within a member function, C++ assumes a reference to this. Thus, the preceding is what
C++ actually “sees” even if you don’t mention this.

336 Part VI: Advanced Strokes

Advantages of Inheritance
Inheritance was added to C++ for several reasons. Of course, the major
reason is the capability to express the inheritance relationship: that
MicrowaveOven is an Oven is a KitchenAppliance thing. More on the IS_A
relationship a little later in this and the next chapter.

A minor reason is to reduce the amount of typing and the number of lines of
code that you and I have to write. You may have noticed that the commands
in C++ may be short, but you need a lot of them to do anything. C++ programs
tend to get pretty lengthy, so anything that reduces typing is a good thing.

To see how inheritance can reduce typing, consider the Duck example. I
don’t have to document all the properties about Duck that have to do with
flying and landing and eating and laying eggs. It inherits all that stuff from
Bird. I just need to add Duck’s quackness property and its ability to float.
That’s a considerable savings.

A more important and related issue is the major buzzword, reuse. Software
scientists realized some time ago that starting from scratch with each new
project and rebuilding the same software components doesn’t make much
sense.

Compare the situation in the software industry to that in other industries.
How many car manufacturers start from scratch each time they want to
design a new car? None. Practitioners in other industries have found it makes
more sense to start from screws, bolts, nuts, and even larger existing off-the-
shelf components such as motors and transmissions when designing a car.

Unfortunately, except for very small functions like those found in the
Standard C++ Library, it’s rare to find much reuse of software components.
One problem is that it’s virtually impossible to find a component from an ear-
lier program that does exactly what you want. Generally, these components
require “tweaking.” Inheritance allows you to adopt the major functionality of
an existing class and tweak the smaller features to adapt an existing class to
a new application.

This carries with it another benefit that’s more subtle but just as important:
adaptability. It never fails that as soon as users see your most recent pro-
gram, they like it but want just one more fix or addition. Consider checking
accounts for a moment. How long after I finish the program that handles
checking accounts for a bank will it be before the bank comes out with a new
“special” checking account that earns interest on the balance?

Not everyone gets this checking account, of course (that would be too
easy) — only certain customers get InterestChecking accounts. With
inheritance, however, I don’t need to go through the entire program and
recode all the checking account functions. All I need to do is create a new

374 Part VI: Advanced Strokes

Table 31-3 (continued)

Method Meaning

fmtflags flags()
fmtflags flags(fmtflags f)

Returns or sets format flags. (See next
section on format flags.)

void flush() Flushes the output buffer to the disk.

int gcount() Returns the number of bytes read
during the last input.

char get() Reads individual characters from file.

char getline(
 char* buffer,
 int count,
 char delimiter = ‘\n’)

Reads multiple characters up until
either End of File, until delimiter
encountered, or until count - 1
characters read. Tacks a null onto the
end of the line read. Does not store the
delimiter read into the buffer. The delim-
iter defaults to newline, but you can
provide a different one if you like.

bool good() Returns true if no error conditions
are set.

void open(
 const char* filename,
 openmode mode)

Same arguments as the constructor.
Performs the same file open on an
existing object that the constructor
performs when creating a new object.

streamsize precision()
streamsize precision(
 streamsize s)

Reads or sets the number of digits dis-
played for floating point variables.

ostream& put(char ch) Writes a single character to the
stream.

istream& read(
 char* buffer,
 streamsize num)

Reads a block of data. Reads either
num bytes or until an End of File is
encountered, whichever occurs first.

fmtflags setf(fmtflags) Sets specific format flags. Returns old
value.

fmtflags unsetf(fmtflags) Clears specific format flags. Returns
old value.

int width()
int width(int w)

Reads or sets the number of charac-
ters to be displayed by the next format-
ted output statement.

ostream& write(
 const char* buffer,
 streamsize num)

Writes a block of data to the output
file.

401 Chapter 33: Ten Ways to Avoid Bugs

Comment the Code While You Write It
You can avoid errors if you comment your code while you write it rather than
wait until everything works and then go back and add comments. I can under-
stand not taking the time to write voluminous headers and function descrip-
tions until later, but I have never understood not writing short comments as
you are coding.

Have you ever had the experience of asking someone a question, and even as
you got to the end of the question you knew the answer? Somehow formulat-
ing the question forced you to organize your thoughts sufficiently so that the
answer became clear.

Writing comments is like that. Formulating comments forces you to take
stock of what it is you’re trying to do. Short comments are enlightening, both
when you read them later and as you’re writing them.

Write comments like you’re talking to another, knowledgeable programmer.
You can assume that the reader understands the basics of the program, so
please don’t explain how C++ works. There’s no point in writing comments
that explain how a switch statement works unless you’re relying on some
obscure point of the language (like the fall-through capability of the switch
statement).

Single-Step Every Path in
the Debugger at Least Once

It may seem like an obvious statement, but I’ll say it anyway: As a program-
mer, it’s important that you understand what your program is doing. It isn’t
sufficient that the program outputs the expected value. You need to under-
stand everything your program is doing. Nothing gives you a better feel for
what’s going on under the hood than single-stepping the program with a
good debugger (like the one that comes with Code::Blocks).

Beyond that, as you debug a program, you sometimes need raw material to
figure out some bizarre behavior. Nothing gives you that material better than
single-stepping through each function as it comes into service.

Finally, when a function is finished and ready to be added to the program,
every logical path needs to be traveled at least once. Bugs are much easier
to find when the function is examined by itself rather than after it has been
thrown into the pot with the rest of the functions — and your attention has
gone on to new programming challenges.

402 Part VII: The Part of Tens

Limit the Visibility
Limiting the visibility of class internals to the outside world is a cornerstone
of object-oriented programming. The class should be responsible for its
internal state — if something gets screwed up in the class, then it’s the class
programmer’s fault. The application programmer should worry about solving
the problem at hand.

Specifically, limited visibility means that data members should not be acces-
sible outside of the class — that is, they should be marked as protected. In
addition, member functions that the application software does not need to
know about should also be marked protected. Don’t expose any more of the
class internals than necessary to get the job done.

A related rule is that public member functions should trust application code
as little as possible, even if the class programmer and the application pro-
grammer are the same person. The class programmer should act like it’s a
fact that the application programmer is a felonious hacker; if your program-
mer is accessible over the Internet, all too often this assumption is true.

Keep Track of Heap Memory
Losing track of heap memory is the most common source of fatal errors in
programs that have been released into the field and, at the same time, the
hardest problem to track down and remove (because this class of error is so
hard to find and remove, it’s prevalent in programs that you buy). You may
have to run a program for hours before problems start to arise (depending
upon how big the memory leak is).

As a general rule, programmers should always allocate and release heap
memory at the same “level.” If a member function MyClass::create() allo-
cates a block of heap memory and returns it to the caller, then there should
be a member MyClass::release() that returns it to the heap. Specifically,
MyClass::create() should not require the parent function to release the
memory.

If at all possible, MyClass should keep track of such memory pointers on its
own and delete them in the destructor.

Certainly, this doesn’t avoid all memory problems, but it does reduce their
prevalence somewhat.

403 Chapter 33: Ten Ways to Avoid Bugs

Zero Out Pointers after Deleting
What They Point To

Sort of a corollary to the warning in the preceding section is to make sure
that you zero out pointers after they are no longer valid. The reasons for this
become clear with experience: you can often continue to use a memory block
that has been returned to the heap and not even know it. A program might
run fine 99 percent of the time, making it very difficult to find the 1 percent of
cases where the block gets reallocated and the program doesn’t work.

If you zero out pointers that are no longer valid and you attempt to use them
to store a value (you can’t store anything at or near location 0), your pro-
gram will crash immediately. Crashing sounds bad, but it’s not. The problem
is there; it’s merely a question of whether you find it or not before putting it
into production.

It’s like finding a tumor at an early stage in an x-ray. Finding a tumor early
when it’s easy to treat is a good thing. Given that the tumor is there either
way, not finding it is much worse.

Use Exceptions to Handle Errors
The exception mechanism in C++ is designed to handle errors conveniently
and efficiently. In general, you should throw an error indicator rather than
return an error flag. The resulting code is easier to write, read, and maintain.
Besides, other programmers have come to expect it, and you wouldn’t want
to disappoint them, would you?

Having said that, limit your use of exceptions to true errors. It is not neces-
sary to throw an exception from a function that returns a “didn’t work” indi-
cator if this is a part of everyday life for that function. Consider a function
lcd() that returns the least common denominator of its two arguments.
That function will not return any values when presented with two mutually
prime numbers. This is not an error and should not result in an exception.

Declare Destructors Virtual
Don’t forget to create a destructor for your class if the constructor allocates
resources such as heap memory that need to be returned when the object

404 Part VII: The Part of Tens

reaches its ultimate demise. This rule is pretty easy to teach. What’s a little
harder for students to remember is this: Having created a destructor, don’t
forget to declare it virtual.

“But,” you say, “My class doesn’t inherit from anything, and it’s not sub-
classed by another class.” Yes, but it could become a base class in the future.
Unless you have some good reason for not declaring the destructor virtual,
then do so when you first create the class. (See Chapter 29 for a detailed dis-
cussion of virtual destructors.)

Provide a Copy Constructor and
Overloaded Assignment Operator

Here’s another rule to live by: If your class needs a destructor, it almost
surely needs a copy constructor and an overloaded assignment operator. If
your constructor allocates resources such as heap memory, the default copy
constructor and assignment operator will do nothing but create havoc by
generating multiple pointers to the same resources. When the destructor for
one of these objects is invoked, it will restore the assets. When the destruc-
tor for the other copy comes along, it will screw things up.

If you are too lazy or too confused or you just don’t need a copy construc-
tor and assignment operator, then declare “do nothing” versions, but make
them protected so that application software doesn’t try to invoke them by
accident. See Chapter 30 for more details. (The 2009 C++ standard allows you
to delete both the default copy constructor and assignment operator, but
declaring them protected works almost as well.)

412 Beginning Programming with C++ For Dummies

For Dummies, Windows Vista For Dummies, and Windows 7 For Dummies, all
by Andy Rathbone.

Using the CD
These steps will help you install the items from the CD to your hard drive:

 1. Insert the CD into your computer’s CD-ROM drive.

 The license agreement appears.

 Note to Windows users: The interface won’t launch if you have autorun
disabled. In that case, choose Start➪Run. (For Windows Vista, choose
Start➪All Programs➪Accessories➪Run.) In the dialog box that appears,
type D:\Start.exe. (Replace D with the proper letter if your CD drive
uses a different letter. If you don’t know the letter, see how your CD
drive is listed under My Computer.) Click OK.

 Note for Mac Users: When the CD icon appears on your desktop, double-
click the icon to open the CD and double-click the Start icon.

 Note for Linux Users: The specifics of mounting and using CDs vary greatly
between different versions of Linux. Please see the manual or help informa-
tion for your specific system if you experience trouble using this CD.

 2. Read through the license agreement and then click the Accept button
if you want to use the CD.

 The CD interface appears. The interface allows you to browse the con-
tents and install the programs with just a click of a button (or two).

 3. Copy the C++ source code onto your hard disk.

 You can view the source code on the CD-ROM but you cannot build or
execute programs there.

 4. Windows users will want to install the Code::Blocks environment.

 Chapter 2 takes you through step-by-step instructions on how to install
Code::Blocks and how to create your first program.

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of
the software and other goodies you’ll find on the CD. If you need help with
installing the items provided on the CD, refer to the installation instructions
in the preceding section.

414 Beginning Programming with C++ For Dummies

Troubleshooting
I tried my best to compile programs that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
programs may not work properly for some reason.

I include Code::Blocks workspace and project files for the included C++ source.
This allows you to recompile all the programs with literally a single click.
However, these project files assume that the programs are installed in the direc-
tory C:\\Beginning_Programming-CPP. You’ll have to set up your own proj-
ect files if you decide to install the source code in a different directory.

Other common problems are that you don’t have enough memory (RAM) for
the programs you want to use, or you have other programs running that are
affecting installation or running of a program. If you get an error message
such as Not enough memory or Setup cannot continue, try one or
more of the following suggestions and then try using the software again:

 ✓ Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that it’s being infected by a virus.

 ✓ Close all running programs. The more programs you have running, the
less memory is available to other programs. Installation programs typi-
cally update files and programs; so if you keep other programs running,
installation may not work properly.

 ✓ Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step. However, adding
more memory can really help the speed of your computer and allow
more programs to run at the same time.

Customer Care
If you have trouble with the CD-ROM, please call Wiley Product Technical
Support at 800-762-2974. Outside the United States, call 317-572-3993. You can
also contact Wiley Product Technical Support at http://support.wiley.
com. Wiley Publishing will provide technical support only for installation
and other general quality control items. For technical support on the
applications themselves, consult the program’s vendor or the author at
www.stephendavis.com.

To place additional orders or to request information about other Wiley prod-
ucts, please call 877-762-2974.

416 Beginning Programming with C++ For Dummies

• A •
abstraction

level of, 254–255
relationship to classifi cation, 256

access function, example of, 285
addition (+) operator, order of precedence,

52
algorithm

converting into program, 13–16
creating for “human computer,” 11–12

AmbiguousBinding program, 346–347,
350–351

AND (&&) logical operator, explained, 79
applications. See programs
ArgOutOfRange class, creating, 392–394
arguments

arrays of, 216–221
defaulting to constructors, 311
defi ning constructors with, 303–307
passing by reference, 193–195
passing by values, 190–193
passing from Code::Blocks, 219–220
passing through command line, 217–219
passing through Windows, 220–221
passing to functions, 123–126
promoting, 163

arithmetic, calculation speeds, 155–156.
See also mathematical operators

array length, specifying, 372–373
array pointers, using, 210–212
ArrayDemo program, 168–170
arrays. See also ASCIIZ array; parallel

arrays; pointers; variables
of arguments, 216–221
ASCII-zero character array, 173–174
computing size of, 198
declaring, 166–167
destroying to heap, 307
fi xed-size, 197
indexing into, 167–168
initializing, 171–172
of objects, 226–227
overview of, 165–166
performing Bubble Sort on, 232–233
versus pointers, 214
of pointers, 215–216
retaining scores’ input in, 168–171
tracking amount of data in, 174

use of, 172
using displayAverage() function with,

170
using for loop with, 171

arrow syntax, using with pointers to
objects, 270

ASCII character set, 60–62
ASCIIZ array. See also arrays

declaring and initializing, 174–175
string manipulation functions, 182–183

ASCIIZ string
copying, 198
terminating, 386

ASCII-zero character array, 173–174
assembler instructions, example from

Conversion program, 18
assembly language, explained, 17
assignment operators

as destructors, 358
orders of precedence, 52
overloading, 356–358, 362
overloading to avoid bugs, 404
in StudentAssignment program, 361
using, 56–57
using with classes, 226

asterisk (*), using with pointer variable, 188

• B •
backslash (\)

special symbol for, 66
use with fi lenames, 66

backslash (\ \), indicating in Windows/
DOS, 365

backup fi le, creating, 375–376
bad() function, returning for fstream

object, 369
base 8, explained, 65
base 16, coding characters in, 66
Beginning_Programming-CPP folder

accessing, 33
subfolders in, 35

bell, special symbol for, 66
binary data, writing, 368
binary logic, omission of, 407
binary mode, using, 369, 377
binary operators

format of, 70
order of precedence, 52

1417 Index

using # (pound sign) with, 56–57
using in expressions, 51–53

binary OR (|) operator, using, 368
binary versus text mode, 368
binding. See EarlyBinding program;

LateBinding program
birth year, using nested if statement with,

76–78
bits, defi ned, 188
bool methods, using with fstream

classes, 373–374
bool type, using in expressions, 75
boolalpha fl ag, explained, 378
braces ({})

using, 72–73
using with classes, 224–225

BranchDemo program, executing, 70–72
break statement

adding during debugging, 146
necessity of, 104
using, 84–85
using with loops, 102–104

breakpoints, setting in debugger, 240
Bubble Sort. See also class objects

performing, 232–233
using with class objects, 227

buffer
adding newline to, 380
avoiding overfl ow of, 372–373

bug avoidance. See also debugging; errors;
exceptions

commenting code while writing, 401
declaring destructors virtual, 403–404
enabling error messages, 399–400
enabling warnings, 399–400
limiting visibility of class internals, 402
providing copy constructor, 404
providing overloaded assignment

operator, 404
single-stepping paths in debugger, 401
tracking heap memory, 402
using exceptions to handle errors, 403
using good coding style, 400
zeroing out pointers, 403

Build step, performing, 38
byte, defi ned, 188

• C •
C++

as high level language, 19–20
managing compile time errors, 40
rules, 40
syntax, 37
uppercase versus lowercase, 37, 84

C++ programs, programs required for, 21.
See also programs

C++ Standard, release of, 410
cache, fl ushing, 380
calculator, implementing via switch

statement, 85–87
calculator() function

debugging, 148
displaying line numbers for, 146
testing, 141–143

CalculatorError program, error message
in, 147. See also SwitchCalculator
program

CalculatorError1 program, debugging,
139–141

CalculatorError2 program, 144–145
carriage return, special symbol for, 66
casts, using in character encoding, 64
catch keyword, using in exception

mechanism, 387–389
catch(...) phrase, using, 391
.cbp extension, use in Code::Blocks, 27, 35
CD-ROM

Code::Blocks IDE, 413
CPP programs, 413
demo software, 413
evaluation software, 413
freeware programs, 413
GNU software, 413
shareware programs, 413
trial software, 413
troubleshooting, 414
using, 41, 412

Celsius to Fahrenheit conversion code, 18–19
cerr object

versus cout, 365
use of, 364–365

char keyword, using, 59

418 Beginning Programming with C++ For Dummies

char methods, using with fstream
classes, 373–374

char type, number of bits in, 188
char variable

contents of, 188
explained, 159
limitations of, 67

char versus int values, 64
character encoding

example of, 63–65
using casts in, 64

character variables, defi ning, 59. See also
variables

characters. See also garbage characters
applying true/false values to, 75
encoding, 60–63
encoding strings of, 65
printable versus unprintable, 62–63
using double quotes (") with, 65
using single quotes (') with, 65

cin, extracting from, 364
class internals, limiting visibility of, 402
class members

declaring as friends, 288
naming, 262–263

class objects, initializing, 226, 289. See also
Bubble Sort

classes
assignment operators, 226
creating instances of, 225
declaring, 225
defi nition, 224
format of, 224
inheriting from, 340
naming rules for, 225
versus objects, 225
public keyword, 224–225
struct keyword, 225
use of open brace ({), 224–225

clear() function, calling for fail() fl ag,
369

COBOL (Common Business Oriented
Language), 18–19

code, commenting while writing, 401
CodeBlocks, lengths of addresses in, 189
Code::Blocks IDE

availability on CD-ROM, 413
Beginning_Programming-CPP folder,

27, 32

Build command, 30
.cbp extension, 27, 35
command line, 30
Console Application, 27
cout, 30
creating folders, 28
creating projects, 27–29
downloading, 23, 413
environment, 26
“Hello, world!” message, 32
HelloWorld project, 28–29
installing, 23–25
.layout extension, 27
main.cpp fi le, 30
organizing projects in, 35
passing arguments from, 219–220
Run command, 32
selecting C++ as language choice, 27–28
setting up subfolders, 29
starting, 26
Step Into command, 242
terminated status of process, 30–31
testing default project, 30–32
types of programs created by, 26–27
use of gcc compiler, 31
using to create include fi les, 134–135

coding style
avoiding errors in, 90–91, 400
being consistent in, 90–91, 400
variable naming conventions, 91

colon (:) syntax, using with variables, 320
comma (,) operator, using, 113–115
command line, passing arguments from,

217–219
commands, misspelling, 38–39
CommaOperator program, 113
comments, examples of, 43
Common Business Oriented Language

(COBOL), 18–19
comparison operators

binary format, 70
using in BranchDemo program, 71

compile time errors, managing, 40
compiler

function of, 22
requirement of, 21

compound expressions
conditional, 78–80
decomposing, 53–54

1419 Index

CompoundStudent program, 318–320
computer languages

assembly language, 17
C++, 19–20
high-level, 18–19
machine language, 17

ConcatenateError2 program, 245
ConcatenateHeap program, 199–201, 236–238
ConcatenateNString program, 181–182
concatenateString() function

bug in, 181
debugging, 245–249
executing in debugger, 242
pointer version of, 208–211

ConcatenateString program, 178–179
concatenating strings, 177–180
conditional expressions, compound, 78–80.

See also expressions
Console Application

defi ned, 23
selecting in Code::Blocks, 27

const arguments, problems with, 163
const char[] type, using, 177
const descriptor, using with variables, 158
const keyword, using to declare variables,

160
const string, throwing pointer to, 391
const variable, initializing, 161
constant characters, modifying, 177
constant values, initializing data members

to, 321
constants

managing, 212–214
for opening fi les, 366
types of, 51, 160–161

constructors. See also copy constructors
defaulting arguments to, 311
defaults, 312–313
defi ning with arguments, 303–307
versus destructors, 297
versus functions, 304
initializing data members with, 315–318
limitations on, 291
for opening fi les for output, 367
overloading, 307–311
in StudentAssignment program, 358–360
using, 289–291
using defaults with data members, 314–315

continue command, using with loops,
102–104

Conversion program
assembler instructions in, 18
building, 38
entering, 35–37
fi nding error in, 92–93
fi rst version of, 92
running, 42
templates, 42–44
test data for, 94
without template, 44

Conversion project
addition to HelloWorld project, 35
creating, 33–34

ConversionError2 program, examining, 95
copies

avoiding, 330–331
deep versus shallow, 328
shallow, 356

copy constructors. See also constructors
creating, 327–330
default, 324–325
invoking, 330
making shallow copies, 325–327
overview of, 323–324
providing to avoid bugs, 404
in StudentAssignment program, 358–360

CopyFiles program, 375–376
copying objects, 323–327
counting, using fl oating point variables in,

155
coupling, reducing, 282, 285–286
cout

versus cerr, 365
declaration of, 364

CPP programs, availability on CD-ROM, 413
customer care, accessing, 414
CustomExceptionClass program, 392–395

• D •
data, grouping, 223–224
data members

constructing, 294–296
destructing, 300–301
fl agging with keyword static, 302
initializing to constant values, 321

420 Beginning Programming with C++ For Dummies

data members (continued)

initializing with constructors, 315–318
initializing with default constructor, 314–315

data types, limit of number size in, 159–160
debug code, writing for calculator()

function, 143
debug functions, creating, 143–144
debugger utility

components of, 241
Continue option, 247
Debug window, 246–247
executing concatenateString()

function, 242
features of, 236
fi xing bugs, 245–249
Next Line option, 243–244, 246
rebuilding executable, 239
setting breakpoints, 240
single-step commands, 243
single-stepping paths in, 401
starting, 239–241
Tool Tips, 242
turning on information, 239
using to navigate through programs, 241–245
Watches window, 242, 246
while loop structure, 244

debugging. See also bug avoidance; errors;
exceptions

CalculatorError1 program, 139–141
ConcatenateHeap, 236–238
dividing programs into functions, 139–141
importance of 0 (zero) in, 247
outfi tting functions for testing, 143–146
performing unit level testing, 141–143
unit testing, 146–148

dec
fl ag, 378
manipulator, 381

decimal point, using 0 with, 154
decrement (--) operator

order of precedence, 52
prefi x and postfi x versions, 55–56
using, 54–55

deep copy, performing for source object, 328
DeepStudent program, 328–330
delete keyword

using with memory heap, 198–199
using with objects allocated off heap, 277

delete[] versus delete, 307
demotion, defi ned, 155
deposit() member function, defi ning,

261–262
destructors

assignment operators as, 358
versus constructors, 297
declaring virtual, 352–354, 403–404
invoking, 297
in StudentAssignment program, 358–361
for subclasses in inheritance, 342
using with constructors and arguments, 304
using with data members, 300–301

DisplayASCIIZ program, 175–176
division (/) operator, order of precedence, 52
DOS/Windows, indicating backslash in, 365
double limitations

calculation speed, 155–156
counting, 155
loss of accuracy, 156–157
memory consumption, 156
range, 157

double quotes (")
special symbol for, 66
using with characters, 65

double variable
assigning to int, 155
digits of accuracy, 156–157
explained, 159
largest number stored by, 157
memory consumption, 156
promoting int to, 154
size and range of, 160
using to fi x truncation, 153–154

• E •
EarlyBinding program, 344–345
else keyword, using, 73–74
endl object
strstream version, 386
using with output streams, 380

endl value, explained, 65
ends object, inserting, 386
enumerated types, problem with, 407
equality (==) operator, explained, 70
equals sign (=), using with variables, 49–50
error checking programs, 95–96

2421 Index

error messages, enabling to avoid bugs,
399–400

error return, defi ned, 120
errors. See also bug avoidance; debugging;

exceptions; run-time errors
avoiding introduction of, 90–91
build- versus compile-time, 89–90
fi nding, 92–93
forgetting to initialize variables, 50
handling, 391
handling via exceptions, 403
identifying types of, 89–90
missing semicolon, 40–41
misspelled commands, 38–39
run-time, 90, 93–96
shallow copies, 327

example programs. See program examples
exception classes

customizing, 392–395
restrictions on, 395

exception mechanism
catch keyword, 387–388
throw keyword, 387–388
try keyword, 387–388

exceptions. See also bug avoidance;
debugging; errors

catching, 391
processing, 390–391
rethrowing, 391
throwing, 391–392
using to handle errors, 403

executable fi le, fi nding path to, 218
expressions. See also conditional

expressions; mixed mode expression,
defi ned

binary operators, 51–53
compound, 53–54
decomposing compound, 53–54
defi ned, 14
example, 51
multiple operators in, 53–54
operators, 51
values and types of, 75
versus variables, 47

extensions, unhiding, 36
extractor, operator>>() as, 364

• F •
factorial(), error encountered in, 392–394
Factorial program
for loop in, 111–112
parts of loop in, 109–110
while loop in, 100–101

factorial.cpp, creating, 131–133
FactorialException program, 388–389
FactorialFunction program, 124–128
FactorialModule project

building result, 137
creating factorial.cpp, 131–133
#include fi le, 133–134
including #include fi les, 134–135
main.cpp, 136
steps for creation of, 130

fail() fl ag, setting and clearing, 369
fail() member function, using, 371–372
fi elds, sorting algorithms for, 232
FileCopy program, 375–376
fi lename extensions, unhiding, 36
fi les. See also input fi les; output fi les

adding to contents of, 368
open modes for, 367–368
opening in binary mode, 368
opening in text mode, 368
reading from, 368
saving, 37
writing to, 368

fill(char), calling, 379
fixed fl ag, explained, 378
fi xed-size arrays, problem with, 197
flags() member function

format fl ags for, 378–379
using, 379

fl at tire, changing, 11–17
float variable

explained, 159
size and range of, 160

fl oating point constant, assumption
about, 154

fl oating point result, assigning to int
variable, 155

fl oating point variables
overfl ow of, 160
types of, 153
using for counting, 155

422 Beginning Programming with C++ For Dummies

fl ow, controlling via switch statement, 81–84
flush() member function, calling, 380
fmtflags methods, using with fstream

classes, 374
fn() function

calling in NamedStudent program, 306
late-binding, 352
making changes permanent, 192–193
statements in, 192–193
using in StudentDestructor program,

299–300
folders, creating for projects, 33
for loop. See also loops

in arrays of pointers, 215–216
in Factorial program, 111–112
fl ow of, 110
sections of, 112
setup section, 112, 114
using in ConcatenateHeap program, 201
using in ConcatenateString program, 180
using with arrays, 171
using with main() program, 122–123
versus while loop, 111, 115

format of input, controlling, 378–380
formatting member functions, span of,

380–381. See also member functions
friend declaration, using with functions,

286–288
fstream classes

destructor for, 367
explained, 365
member functions of, 373–374

fstream objects
constructing, 369
errors related to, 369
returning bad() function for, 369

function arguments, using, 123–126
function names, overloading, 126, 162
function overloading, explained, 126
function prototype declarations, defi ning,

127–128
FunctionDemo program, 121–123
functions. See also getter function,

example of; member functions; setter
function, defi ned

call, 120
calling with object pointers, 272–274
calling with object values, 271–272
versus constructors, 304

declaration, 120
defi nition, 120
dividing programs into, 139–143
elements of, 120
fl ow of control, 120
friend declaration, 286–288
with multiple arguments, 125
outfi tting for testing, 143–146
overloading, 307
overview of, 118–119
passing variables to, 161–164
return, 120
returning values to callers, 120–121
similarities between, 409–410
testing separately, 141–143
writing and invoking, 119–120

• G •
garbage characters, displaying in

debugging, 247–249. See also
characters

gcc compiler, using with Code::Blocks, 31
get() method, using with input fi les, 375
getline() member function, using,

372–373, 375, 382–385
getter function, example of, 285. See also

functions
goto command, using, 405–406
greater than (>) operator, meaning of, 70
greater than or equal to (>=) operator,

meaning of, 70
GSInherit example, 338–340

• H •
HAS_A relationship, using in inheritance, 342
heap

allocating memory from, 197
allocating objects off, 278
returning memory to, 198–199

heap memory, keeping track of, 402
HelloWorld project, creating in

Code::Blocks, 28–29
hex

fl ag, 378
manipulator, 381

hexadecimal, coding characters in, 66

2423 Index

high level languages, overview of, 18–19
“human computer”

algorithm, 11–12
processors, 16–17
program, 13–16
tire changing language, 12

• I •
IDE (Integrated Development

Environment), 22–23
if clause, using with else, 74
IF statement in TCL (Tire Changing

Language), 13–14
if statements

encountering, 70
format of, 69
nesting, 75–78
versus switch statements, 84

ifstream class
constructor for, 365
defi nition of, 365
destructor for, 366
using with input objects, 365

#include directives, inclusion in standard
template, 137

#include fi les
creating for FactorialModule, 133–134
including, 134–135

include statements, examples of, 43
increment (++) operator

order of precedence, 52
prefi x and postfi x versions, 55–56
using, 54–55

indentation, use of, 91
index, providing for arrays, 167–168
index operator, using on pointer variables,

207–208
inequality (!=) operator, meaning of, 70
inheritance. See also object-oriented

programming, model for
advantages of, 336–337
from classes, 340
defi ned, 337
implementing, 337–342
multiple, 409
subclasses, 337
terminology, 337

init() function
in OverloadedStudent program, 310–311
using with protected members, 289–291

input fi les, using get() method with, 375.
See also fi les

input objects, creating, 365–366. See also
objects

input/output (I/O), errors related to, 369
InputPerson program, 227–230
inserter, operator>>() as, 364
inserter operator, using with output

objects, 366–367
int gcount() method, using with

fstream classes, 374
int keyword, using with variables, 47–48
int variable

assigning double to, 155
assigning fl oating point result to, 155
bytes taken up by, 191
explained, 151, 158
HAS_A relationship, 342
limited range of, 152–153
maximum value, 152–153
memory consumption, 156
promoting to double, 154
round-off limitation, 151–152
size and range of, 160
standard size of, 159

int versus char values, 64
int width() methods, using with

fstream classes, 374
integer constants, legal versus illegal, 50–51
integers

interpreting, 60
limited range of, 152–153
round-off limitation, 151–152
truncation of, 152

Integrated Development Environment
(IDE), 22–23

intrinsic type, explained, 151
I/O (input/output), errors related to, 369
I/O manipulators, member functions for, 381
I/O stream format fl ags, 378
iomanip, including for manipulators, 381
ios_base: :, using, 377
iostream include

declaration of, 364
prototype declarations in, 363–364

424 Beginning Programming with C++ For Dummies

isalppha(char c) function, described,
182

isdigit(char c) function, described, 182
islower(char c) function, described, 182
isprint(char c) function, described, 182
isspace(char c) function, described, 182
istream& put() method, using with

fstream classes, 374
istrstream versus istringstream

classes, 382
isupper(char c) function, described, 182

• K •
keyboard input, performing, 364
keystrokes, saving, 270
keywords, using with variables, 48

• L •
languages. See computer languages
LateBinding program, 349–351
.layout extension, use in Code::Blocks, 27
left fl ag, explained, 378
left-shift (<<) operator, role in stream I/O, 363
less than (<) operator, meaning of, 70
less than or equal to (<=) operator,

meaning of, 70
levels of abstraction, explained, 119
logical expressions

comparing values in, 70–72
defi ned, 14
values of, 75

logical operators, explained, 79
long double descriptor, using with

variables, 158
long double variable

explained, 159
size and range of, 160

long int descriptor, using with variables,
158

long int variable
explained, 159
size and range of, 160

long long int descriptor, using with
variables, 158

long long int variable
explained, 159
size and range of, 160

“loop and test” statement, including in
TCL, 14–16

loops. See also for loop; while loop
body, 109
increment, 109
nesting, 105–108
setup, 109
test expression, 109

lowercase versus uppercase, 37, 84

• M •
machine language, representing, 17
Macintosh, system requirements for, 411
main()

as function, 125–126
requirement of, 43

main() arguments
arrays of arguments, 216–221
arrays of pointers, 215–216
in program template, 214–215

main() program, using for loop with,
122–123

main.cpp fi le
creating for FactorialModule, 136
displaying, 35
editing contents of, 36–37
opening, 36

main.cpp.backup fi le, creating, 378
manipulators, member functions for, 381
mathematical operators. See also

arithmetic, calculation speeds;
operators, overloading

combining parentheses, 54
order of precedence, 52–53

member functions. See also formatting
member functions, span of; functions;
overriding member functions; protected
members, initializing objects with

accessing members from, 264–266
adding keyword protected:, 282–285
binding considerations, 351
calling, 263–264, 268
defi ning, 261–262

2425 Index

defi ning outside classes, 266–267
invoking for pointers to objects, 271
for manipulators, 381
overloading, 267–268, 343–344
protected keyword, 281
protecting, 282
virtual, 350

memory
address in, 188
arrangement for arrays of objects, 227
handling, 191
returning to heap, 198–199

memory address, including in pointer
variable, 188

memory heap. See heap
memory layout, example of, 192
memory model, applying for pointers, 204
mixed mode expression, defi ned, 154. See

also expressions
mixed mode overloading, 162–164
modules

breaking programs into, 129–130
linking, 129
naming, 132

modulo (%) operator, order of precedence,
52–53

MS-DOS window, opening in Windows, 219
multiplication (*) operator, order of

precedence, 52
multiplication table, creating, 105–108
MyData.txt fi le

opening and reading, 366
opening and writing to, 367
using with ReadIntegers program, 370–372

• N •
NamedStudent program, 304–307
namespaces, using, 407–408
negative (—) operator

order of precedence, 52
using, 54–55

nested if statements, using, 75–78
nested loops

explained, 16
using, 105–108

new keyword
using to allocate objects off heap, 277
using with memory heap, 197

newline
adding to buffer, 380
special symbol for, 66

NOT (!) operator
explained, 79
using with streams, 377

null character
adding after fi nal while loop, 248–249
using in string concatenation, 178
using with arrays, 174

NULL character, special symbol for, 66

• O •
object code, explained, 18
object pointers, calling functions with,

272–274
object-oriented programming, model for,

257–258. See also inheritance
objects. See also input objects, creating;

output objects, creating; pointers to
objects; source object, performing
deep copy of

accessing members of, 225–226
activating, 259–261
allocating off heap, 278
arrays of, 226–227
avoiding creating copies of, 274
versus classes, 225
copying, 323–327
initializing, 289
passing addresses of, 274–276, 330–331
passing by reference, 277
passing by values, 271–272, 274–276
“real types” of, 347

oct
fl ag, 378
manipulator, 381

octal, identifying, 65
ofstream class

constructor for, 366–367
defi nition of, 365

open modes, using with fi les, 367–368

426 Beginning Programming with C++ For Dummies

operator>>()
as inserter, 364
use as extractor, 364

operators, overloading, 355–356, 361–362.
See also mathematical operators

OR (|) operator, using, 368
OR (||) operator, explained, 79
ostream object, use of, 364
ostream& () methods, using with

fstream classes, 374
ostrstream versus ostringstream

classes, 382, 395
output and input. See I/O (input/output),

errors related to
output fi les, using put() method with,

375. See also fi les
output objects, creating, 366–367. See also

objects
output statements, using to fi nd errors, 95
output streams, terminating, 380
overfl ow, defi ned, 160
OverloadedStudent program, 308–310
overriding member functions. See also

member functions
AmbiguousBinding program, 346–347
EarlyBinding program, 344–345
late binding, 348–351

• P •
parallel arrays, storing data in, 223–224.

See also arrays
parentheses (())

combining for operators, 54
using with pointers and arrays, 206
using with pointers to objects, 270

PassByReference program, 191, 193–197
PassObjects program, 274–276
PC, system requirements for, 411
PL/1 language, 40
pointer increment operator, using, 208–210
pointer types, operations on, 212
pointer variables, using index operator on,

207–208
pointers. See also arrays

addition versus indexing, 205–208
applying memory model for, 204
versus arrays, 214
arrays of, 215–216

declaring, 188–190
operations on, 203–205
overview of, 187–188
using constants with, 213
zeroing out, 403

pointers to objects. See also objects
arrow syntax, 270
example of, 269–270
invoking member functions, 271
using parentheses (()) with, 270

pound sign (#)
use with binary operators, 56–57
using with include fi les, 133

precedence, order of, 52–53
PrintArgs program, 216–217
printErr() function, using, 144–146
Product program, break and continue

in, 102–103
program examples

AmbiguousBinding, 346–347
ArrayDemo, 168–170
BranchDemo, 70–72
CalculatorError1, 139–141
CalculatorError2, 144–145
CommaOperator, 113
CompoundStudent, 318–320
ConcatenateError2, 245
ConcatenateHeap, 199–201
ConcatenateNString, 181–182
ConcatenateString, 178–179
Conversion, 44, 92
ConversionError2, 95
CopyFiles, 375–376
CustomExceptionClass, 392–395
debugging ConcatenateHeap, 236–238
DeepStudent, 328–330
DisplayASCIIZ, 175–176
EarlyBinding, 344–345
Factorial, 100, 109–112
factorial.cpp, 131–133
FactorialException, 388–389
FactorialFunction, 124–128
FileCopy, 375–376
FunctionDemo, 121–123
GSInherit, 338–340
InputPerson, 227–230
LateBinding, 349–350
NamedStudent, 304–307
NestedLoops, 105–106

2427 Index

OverloadedStudent, 308–310
PassByReference, 191, 193–197
PassObjects, 274–276
pointer version of

concatenateString(), 208–211
PrintArgs, 216–217
Product, 102–103
prototype declaration, 128
ReadIntegers, 370
ShallowStudent, 325–327
SimpleStudent, 283–284
StringStream, 382–385
StudentAssignment, 358–360
StudentConstructor, 292–293
StudentDestructor, 298–299
StudentID class, 314–315
SwitchCalculator, 85–86
toupper() function, 183–184
TutorPairConstructor, 295–296, 300–301

programs. See also C++ programs,
programs required for

breaking into modules, 129–130
building, 21–22
development process, 22
dividing into functions, 139–143
error checking, 95–96
linking step, 22

project fi le, fi nding path to, 217–218
projects

activating, 35
adding source fi les to, 131
creating, 33–34
organizing, 35

protected: keyword adding, 282–285
protected keyword versus public

keyword, 281
protected members, initializing objects

with, 289–291. See also member
functions

prototype declaration, explained, 127–128
psz prefi x, using with pointers, 208
public keyword

versus protected keyword, 281
using in inheritance, 337–338
using with classes, 224–225

pure virtual member function, explained, 408
put() method, using with output fi les, 375

• R •
read() member function, using, 375–376
ReadIntegers program, 370
real numbers, defi ned, 153
right fl ag, explained, 378
right-shift (>>) operator, role in stream I/O,

363
run-time errors. See also errors

adding output statements, 94
versus compile-time errors, 40
executing test cases, 94
fi nding, 93–96
formulating test data, 93–94

run-time type, defi ned, 347

• S •
safeFn() function, using in ReadIntegers

program, 371–372
saving fi les, 37
Savings account class

calling member function in, 263–264
current object in, 265–266
deposits in, 260
functions in, 261–262

scientific fl ag, explained, 378
scores, averaging, 168–171
semicolon (;), missing, 40–41
setf() member function, format fl ags for,

378–379
setfill(c) manipulator, described, 381
setprecision(n) manipulator,

described, 381
setter function, defi ned, 285. See also

functions
setw(n) manipulator, described, 381
shallow copy, defi ned, 356
ShallowStudent program, 325–327
short int descriptor, using with

variables, 158
short int variable

explained, 159
size and range of, 160

showbase fl ag, explained, 378
showpoint fl ag, explained, 378
SimpleStudent program, 283–284

428 Beginning Programming with C++ For Dummies

single quotes (')
interpreting, 66
special symbol for, 66
using with characters, 65

skipws fl ag, explained, 378
SomeClass class example, 321
sorting algorithm. See Bubble Sort
source code, explained, 18
source fi le windows, closing, 35
source fi les, adding to projects, 131
source object, performing deep copy of,

328. See also objects
Sources folder, opening, 35
special characters, examples of, 66
stack unwinding, role in exceptions, 390
statements

adding to fi nd errors, 95
avoiding cramming of, 212
defi ned, 14
executing once, 93

static data members, overview of, 302
static keyword, using with variables, 138
strcmp() function, described, 182
stream I/O, overview of, 363–365
streams, reading and writing directly, 375–378
streamsize precision() methods,

using with fstream classes, 374
string class

behavior of, 382
omission of, 408
resizing, 373

strings
ASCIIZ manipulation functions, 182–183
concatenating, 177–180
displaying, 175–176

strlen() function, calling, 198
strlen(char s[]) function, described, 182
strncat() function, described, 183
strncpy() function, described, 182
strstream classes, deprecation of, 382
strstream versus stringstream

classes, 382–386
struct keyword, using with classes, 225
Student class

constructor with arguments, 303–304
default copy constructor, 324
default default constructor, 312
inheritance in, 337

initializing data member with
constructor, 317–318

from OverloadedStudent program, 308–310
public member functions, 283
using constructor with, 290–291

student object, performing deep copy of,
328–330

StudentAssignment program, 358–360
StudentConstructor program, 292–293
StudentDestructor program, 298–299
StudentID class example

with default constructor, 314–315
with different constructor, 315–318

subtraction (—) operator, order of
precedence, 52

sumSequence() function, using, 121–123
switch statement

calculator example, 84
versus if statements, 84
using to control fl ow, 81–84

SwitchCalculator program, 85–86, 139–141.
See also CalculatorError program

syntax requirements, 37
system requirements, 411–412

• T •
tab, special symbol for, 66
TCL (Tire Changing Language)

IF statement, 13–14
logical expression, 14
“loop and test” statement, 14–16
syntax, 13
verbs and nouns, 13

Technical Support, contacting, 414
templates

comments, 43
example, 42–43
features of, 409–410
include fi les, 43
main(), 43
system(“PAUSE”), 44

ternary operator (?), using, 406
test cases. See also unit testing

executing, 94
generating for calculator() function,

141–143

2429 Index

test data
for Conversion program, 94
deciding on, 93

text data, writing, 368
text editors, requirement of, 21
text versus binary mode, 368
this object, overview of, 279
throw, encountering, 390
throw; keyword, executing, 391
throw keyword, using in exception

mechanism, 387–389
throwing exceptions, 391–392
tilde (~), using with destructors, 297
Tire Changing Language (TCL). See TCL

(Tire Changing Language)
tire-changing module, components of, 118
tolower(char c) function, described, 183
toupper() function

described, 183
program example, 183–184

truncation, defi ned, 152
truncation problem, fi xing via double

variable type, 153–154
try block, fi nding end of, 390
try keyword, using in exception

mechanism, 387–389
TutorPairConstructor program, 295–296
types

dynamic versus static, 347
run-time versus declared, 347

typing, reducing via inheritance, 336

• U •
unary operators

order of precedence, 52
using, 54–56

underscore (_), using with variable names, 48
Unicode, variants of, 67
unit level testing, performing, 141–143
unit testing. See also test cases

defi ned, 89
performing, 146–148

unitbuf fl ag, explained, 378
unsafeFn() function, using in

ReadIntegers program, 370
unsetf() member function, format fl ags

for, 378–379
unsigned descriptor, using with variables, 158

unsigned int variable, explained, 158
unwinding the stack, role in exceptions, 390
uppercase fl ag, explained, 378
uppercase versus lowercase, 37, 84
UTF variants, explained, 67

• V •
variable types, size and range of, 159–160
variables. See also arrays; character variables

assigning values to, 49
const descriptor, 158
declaring, 47–48
declaring constant, 160
establishing naming conventions for, 91
versus expressions, 47
forgetting to initialize, 50
initializing at declaration, 49–50
legal combinations of, 158–159
local versus global scope, 137–138
long double descriptor, 158
long int descriptor, 158
long long int descriptor, 158
memory consumption, 156, 160
naming conventions, 48, 155
passing to functions, 161–164
promoting versus demoting, 155
short int descriptor, 158
unsigned descriptor, 158
using : (colon) syntax with, 320
using equals sign (=) with, 49–50
using static keyword with, 138

virtual declarations, using with
destructors, 352–354, 403–404

virtual keyword, using in late binding,
349–350

virtual member function, defi ned, 350
void keyword, using with functions, 121
void methods, using with fstream

classes, 373–374

• W •
warnings, enabling to avoid bugs, 399–400
wchar_t variable, explained, 159
wchar_t “wide character,” 67
while loop. See also loops

adding terminating null after, 248
creating, 99–102

430 Beginning Programming with C++ For Dummies

while loop (continued)

versus for loop, 111, 115
structure in debugger, 244

“wide character” of type wchar_t, 67
width(int) member function, using, 379–380
width(n) member function, using, 380–381
Wiley Product Technical Support,

contacting, 414
Windows

opening MS-DOS window in, 219
passing arguments from, 220–221
unhiding fi lename extensions in, 36

Windows/DOS, indicating backslash in, 365
withdraw() function, 266
withdraw() member function, defi ning,

261–262
workspace, defi ned, 35
write() member function, using, 375–376

• X •
X: :X(const X&) format, explained, 323

• Z •
zero (0)

importance in debugging, 247
using with decimal point, 154

