
Related articles

File systems

Snapper

dm-crypt/Encryp�ng an
en�re system#Btrfs
subvolumes with swap

Btrfs

From Btrfs Wiki (https://btrfs.wiki.kernel.org/index.php/Main_Page):

Btrfs is a modern copy on write (CoW) filesystem for Linux aimed at implemen�ng advanced features while also
focusing on fault tolerance, repair and easy administra�on. Jointly developed at mul�ple companies, Btrfs is
licensed under the GPL and open for contribu�on from anyone.

Warning: Btrfs has some features that are unstable. See the Btrfs Wiki's Status (https://btrfs.wiki.kernel.org/index.p
hp/Status), Is Btrfs stable? (https://btrfs.wiki.kernel.org/index.php/FAQ#Is_Btrfs_stable.3F) and Getting started
(https://btrfs.wiki.kernel.org/index.php/Getting_started) for more detailed information. See the #Known issues
section.

Prepara�on

File system crea�on

File system on a single device

Mul�-device file system

Configuring the file system

Copy-on-Write (CoW)

Disabling CoW

Crea�ng lightweight copies

Compression

View compression types and ra�os

Subvolumes

Crea�ng a subvolume

Lis�ng subvolumes

Dele�ng a subvolume

Moun�ng subvolumes

Moun�ng subvolume as root

Changing the default sub-volume

Quota

Commit interval

SSD TRIM

Usage

Swap file

Displaying used/free space

Defragmenta�on

RAID

Scrub

Start manually

Start with a service or �mer

Balance

Snapshots

Send/receive

Deduplica�on

Known issues

Contents

Encryp�on

btrfs check issues

Tips and tricks

Par��onless Btrfs disk

Ext3/4 to Btrfs conversion

Checksum hardware accelera�on

Corrup�on recovery

Boo�ng into snapshots

Use Btrfs subvolumes with systemd-nspawn

Reducing access �me metadata updates

Troubleshoo�ng

GRUB

Par��on offset

Missing root

Moun�ng �med out

BTRFS: open_ctree failed

btrfs check

See also

For user space utilities install the btrfs-progs (h�ps://archlinux.org/packages/?name=btrfs-progs) package, which is
required for basic operations.

If you need to boot from a Btrfs file system (i.e., your kernel and initramfs reside on a Btrfs partition), check if your boot
loader supports Btrfs.

The following shows how to create a new Btrfs file system. To convert an ext3/4 partition to Btrfs, see #Ext3/4 to Btrfs
conversion. To use a partitionless setup, see #Partitionless Btrfs disk.

See mkfs.btrfs(8) (h�ps://man.archlinux.org/man/mkfs.btrfs.8) for more information.

To create a Btrfs filesystem on partition /dev/par��on :

mkfs.btrfs -L mylabel /dev/par��on

The Btrfs default nodesize for metadata is 16KB, while the default sectorsize for data is equal to page size and autodetected.
To use a larger nodesize for metadata (must be a multiple of sectorsize, up to 64KB is allowed), specify a value for the

nodesize via the -n switch as shown in this example using 32KB blocks:

mkfs.btrfs -L mylabel -n 32k /dev/par��on

Note: According to mkfs.btrfs(8) § OPTIONS (h�ps://man.archlinux.org/man/mkfs.btrfs.8#OPTIONS), "[a] smaller node size increases
fragmentation but leads to taller b-trees which in turn leads to lower locking contention. Higher node sizes give better packing and less fragmentation at the cost
of more expensive memory operations while updating the metadata blocks".

Prepara�on

File system crea�on

File system on a single device

Warning: The RAID 5 and RAID 6 modes of Btrfs are fatally flawed, and should not be used for "anything but testing with throw-away data." List of known
problems and partial workarounds. (https://lore.kernel.org/linux-btrfs/20200627032414.GX10769@hungrycats.org/) See the Btrfs page on RAID5 and
RAID6 (https://btrfs.wiki.kernel.org/index.php/RAID56) for status updates (seems to not be updated).

Multiple devices can be used to create a RAID. Supported RAID levels include RAID 0, RAID 1, RAID 10, RAID 5 and
RAID 6. Starting from kernel 5.5 RAID1c3 and RAID1c4 for 3- and 4- copies of RAID 1 level. The RAID levels can be

configured separately for data and metadata using the -d and -m options respectively. By default the data has one copy (

single) and the metadata is mirrored (raid1). This is similar to creating a JBOD configuration, where disks are seen as
one filesystem, but files are not duplicated. See Using Btrfs with Multiple Devices (https://btrfs.wiki.kernel.org/index.p
hp/Using_Btrfs_with_Multiple_Devices) for more information about how to create a Btrfs RAID volume.

mkfs.btrfs -d single -m raid1 /dev/part1 /dev/part2 ...

You must include either the udev hook or the btrfs hook in /etc/mkinitcpio.conf in order to use multiple Btrfs devices
in a pool. See the Mkinitcpio#Common hooks article for more information.

Note:

It is possible to add devices to a mul�ple-device filesystem later on. See the Btrfs wiki ar�cle (h�ps://btrfs.wiki.kern
el.org/index.php/Using_Btrfs_with_Mul�ple_Devices) for more informa�on.

Devices can be of different sizes. However, if one drive in a RAID configura�on is bigger than the others, this extra
space will not be used.

Some boot loaders such as Syslinux do not support mul�-device file systems.

Btrfs does not automa�cally read from the fastest device, so mixing different kinds of disks results in inconsistent
performance. See this Stack Overflow answer (h�ps://stackoverflow.com/a/55408367) for details.

See #RAID for advice on maintenance specific to multi-device Btrfs file systems.

By default, Btrfs uses copy-on-write for all files all the time. See the Btrfs Sysadmin Guide section (https://btrfs.wiki.ke
rnel.org/index.php/SysadminGuide#Copy_on_Write_.28CoW.29) for implementation details, as well as advantages and
disadvantages.

To disable copy-on-write for newly created files in a mounted subvolume, use the nodatacow mount option. This will only

affect newly created files. Copy-on-write will still happen for existing files. The nodatacow option also disables

compression. See btrfs(5) (h�ps://man.archlinux.org/man/btrfs.5) for details.

Note: From btrfs(5) § MOUNT OPTIONS (h�ps://man.archlinux.org/man/btrfs.5#MOUNT_OPTIONS): "within a single file system, it is not

possible to mount some subvolumes with nodatacow and others with datacow . The mount option of the first mounted subvolume applies to any other
subvolumes."

To disable copy-on-write for single files/directories do:

$ cha�r +C /dir/file

This will disable copy-on-write for those operation in which there is only one reference to the file. If there is more than one

reference (e.g. through cp --reflink=always or because of a filesystem snapshot), copy-on-write still occurs.

Mul�-device file system

Configuring the file system

Copy-on-Write (CoW)

Disabling CoW

Note: From chattr man page: "For btrfs, the 'C' flag should be set on new or empty files. If it is set on a file which already has data blocks, it is undefined when
the blocks assigned to the file will be fully stable. If the 'C' flag is set on a directory, it will have no effect on the directory, but new files created in that directory
will have the No_COW attribute."

Tip: In accordance with the note above, you can use the following trick to disable copy-on-write on existing files in a directory:

$ mv /path/to/dir /path/to/dir_old
$ mkdir /path/to/dir
$ cha�r +C /path/to/dir
$ cp -a /path/to/dir_old/* /path/to/dir
$ rm -rf /path/to/dir_old

Make sure that the data are not used during this process. Also note that mv or cp --reflink as described below will not
work.

By default, when copying files on a Btrfs filesystem with cp , actual copies are created. To create a lightweight copy
referencing to the original data, use the reflink option:

$ cp --reflink source dest

See the man page on cp(1) (h�ps://man.archlinux.org/man/cp.1) for more details on the --reflink flag.

Btrfs supports transparent and automatic compression (https://btrfs.wiki.kernel.org/index.php/Compression). This
reduces the size of files as well as significantly increases the lifespan of flash-based media by reducing write amplification.
[1] (https://fedoraproject.org/wiki/Changes/BtrfsByDefault#Compression)[2] (https://lists.fedoraproject.org/archives
/list/devel@lists.fedoraproject.org/message/NTV77NFF6NDZM3QTPUM2TQZ5PCM6GOO2/)[3] (https://pagure.io
/fedora-btrfs/project/issue/36#comment-701551) It can also improve performance (https://www.phoronix.com/scan.p
hp?page=article&item=btrfs_compress_2635&num=1), in some cases (e.g. single thread with heavy file I/O), while
obviously harming performance in other cases (e.g. multi-threaded and/or CPU intensive tasks with large file I/O). Better
performance is generally achieved with the fastest compress algorithms, zstd and lzo, and some benchmarks (https://www.
phoronix.com/scan.php?page=article&item=btrfs-zstd-compress) provide detailed comparisons.

The compress=alg mount option enables automatically considering every file for compression, where alg is either zlib ,

lzo , zstd , or no (for no compression). Using this option, btrfs will check if compressing the first portion of the data
shrinks it. If it does, the entire write to that file will be compressed. If it does not, none of it is compressed. With this option,
if the first portion of the write does not shrink, no compression will be applied to the write even if the rest of the data would
shrink tremendously. [4] (https://btrfs.wiki.kernel.org/index.php/Compression#What_happens_to_incompressible_file
s.3F) This is done to prevent making the disk wait to start writing until all of the data to be written is fully given to btrfs and
compressed.

The compress-force=alg mount option can be used instead, which makes btrfs skip checking if compression shrinks the
first portion, and enables automatic compression try for every file. In a worst-case scenario, this can cause (slightly) more
CPU usage for no purpose. However, empirical testing on multiple mixed-use systems showed a significant improvement of

about 10% disk compression from using compress-force=zstd over just compress=zstd , which also had 10% disk
compression.

Only files created or modified after the mount option is added will be compressed.

To apply compression to existing files, use the btrfs filesystem defragment -calg command, where alg is either zlib , lzo

or zstd . For example, in order to re-compress the whole file system with zstd (h�ps://archlinux.org/packages/?name=zst

d), run the following command:

Crea�ng lightweight copies

Compression

btrfs filesystem defragment -r -v -czstd /

To enable compression when installing Arch to an empty Btrfs partition, use the compress option when mounting the file

system: mount -o compress=zstd /dev/sdxY /mnt/ . During configuration, add compress=zstd to the mount options of the
root file system in fstab.

Tip: Compression can also be enabled per-file without using the compress mount option; to do so apply cha�r +c to the file. When applied to directories, it
will cause new files to be automatically compressed as they come.

Warning:

Systems using older kernels or btrfs-progs (h�ps://archlinux.org/packages/?name=btrfs-progs) without zstd
support may be unable to read or repair your filesystem if you use this op�on.

GRUB introduced zstd support in 2.04. Make sure you have actually upgraded the bootloader installed in your
MBR/ESP since then, by running grub-install with the appropriate op�ons for your BIOS/UEFI setup, since that is not
done automa�cally. See FS#63235 (h�ps://bugs.archlinux.org/task/63235).

compsize (h�ps://archlinux.org/packages/?name=compsize) takes a list of files (or an entire btrfs filesystem) and
measures compression types used and effective compression ratios. Uncompressed size may not match the number given by

other programs such as du , because every extent is counted once, even if it is reflinked several times, and even if part of it

is no longer used anywhere but has not been garbage collected. The -x option keeps it on a single filesystem, which is

useful in situations like compsize -x / to avoid it from attempting to look in non-btrfs subdirectories and fail the entire run.

"A btrfs subvolume is not a block device (and cannot be treated as one) instead, a btrfs subvolume can be thought of as a
POSIX file namespace. This namespace can be accessed via the top-level subvolume of the filesystem, or it can be mounted
in its own right." [5] (https://btrfs.wiki.kernel.org/index.php/SysadminGuide#Subvolumes)

Each Btrfs file system has a top-level subvolume with ID 5. It can be mounted as / (by default), or another subvolume can
be mounted instead. Subvolumes can be moved around in the filesystem and are rather identified by their id than their path.

See the following links for more details:

Btrfs Wiki SysadminGuide#Subvolumes (h�ps://btrfs.wiki.kernel.org/index.php/SysadminGuide#Subvolumes)

Btrfs Wiki Ge�ng started#Basic Filesystem Commands (h�ps://btrfs.wiki.kernel.org/index.php/Ge�ng_started#Bas
ic_Filesystem_Commands)

Btrfs Wiki Trees (h�ps://btrfs.wiki.kernel.org/index.php/Trees)

To create a subvolume:

btrfs subvolume create /path/to/subvolume

To see a list of current subvolumes and their ids under path :

btrfs subvolume list -p path

View compression types and ra�os

Subvolumes

Crea�ng a subvolume

Lis�ng subvolumes

To delete a subvolume:

btrfs subvolume delete /path/to/subvolume

Since Linux 4.18, one can also delete a subvolume like a regular directory (rm -r , rmdir).

Subvolumes can be mounted like file system partitions using the subvol=/path/to/subvolume or subvolid=objec�d mount

flags. For example, you could have a subvolume named subvol_root and mount it as / . One can mimic traditional file
system partitions by creating various subvolumes under the top level of the file system and then mounting them at the
appropriate mount points. Thus one can easily restore a file system (or part of it) to a previous state using #Snapshots.

Tip: Changing subvolume layouts is made simpler by not using the toplevel subvolume (ID=5) as / (which is done by default). Instead, consider creating a

subvolume to house your actual data and mounting it as / .

Note: From btrfs(5) § MOUNT OPTIONS (h�ps://man.archlinux.org/man/btrfs.5#MOUNT_OPTIONS): "Most mount options apply to the whole
filesystem, and only the options for the first subvolume to be mounted will take effect. This is due to lack of implementation and may change in the future.". See
the Btrfs Wiki FAQ (https://btrfs.wiki.kernel.org/index.php/FAQ#Can_I_mount_subvolumes_with_different_mount_options.3F) for which mount options
can be used per subvolume.

See Snapper#Suggested filesystem layout, Btrfs SysadminGuide#Managing Snapshots (https://btrfs.wiki.kernel.org/i
ndex.php/SysadminGuide#Managing_Snapshots), and Btrfs SysadminGuide#Layout (https://btrfs.wiki.kernel.org/in
dex.php/SysadminGuide#Layout) for example file system layouts using subvolumes.

See btrfs(5) (h�ps://man.archlinux.org/man/btrfs.5) for a full list of btrfs-specific mount options.

To use a subvolume as the root mountpoint specify the subvolume via a kernel parameter using

roo�lags=subvol=/path/to/subvolume . Edit the root mountpoint in /etc/fstab and specify the mount option subvol= .

Alternatively the subvolume can be specified with its id, roo�lags=subvolid=objec�d as kernel parameter and

subvolid=objec�d as mount option in /etc/fstab .

The default sub-volume is mounted if no subvol= mount option is provided. To change the default subvolume, do:

btrfs subvolume set-default subvolume-id /

where subvolume-id can be found by listing.

Note: After changing the default subvolume on a system with GRUB, you should run grub-install again to notify the bootloader of the changes. See this
forum thread (https://bbs.archlinux.org/viewtopic.php?pid=1615373).

Changing the default subvolume with btrfs subvolume set-default will make the top level of the filesystem inaccessible,

except by use of the subvol=/ or subvolid=5 mount options [6] (https://btrfs.wiki.kernel.org/index.php/SysadminGui
de).

Warning: Qgroup is not stable yet and combining quota with (too many) snapshots of subvolumes can cause performance problems, for example when deleting
snapshots. Plus there are several more known issues (https://btrfs.wiki.kernel.org/index.php/Quota_support#Known_issues).

Dele�ng a subvolume

Moun�ng subvolumes

Moun�ng subvolume as root

Changing the default sub-volume

Quota

Quota support in Btrfs is implemented at a subvolume level by the use of quota groups or qgroup: Each subvolume is
assigned a quota groups in the form of 0/subvolume_id by default. However it is possible to create a quota group using any
number if desired.

To use qgroups you need to enable quota first using

btrfs quota enable path

From this point onwards newly created subvolumes will be controlled by those groups. In order to retrospectively enable
them for already existing subvolumes, enable quota normally, then create a qgroup (quota group) for each of those
subvolume using their subvolume_id and rescan them:

btrfs subvolume list path | cut -d' ' -f2 | xargs -I{} -n1 btrfs qgroup create 0/{} path
btrfs quota rescan path

Quota groups in Btrfs form a tree hierarchy, whereby qgroups are attached to subvolumes. The size limits are set per qgroup
and apply when any limit is reached in tree that contains a given subvolume.

Limits on quota groups can be applied either to the total data usage, un-shared data usage, compressed data usage or both.
File copy and file deletion may both affect limits since the unshared limit of another qgroup can change if the original
volume's files are deleted and only one copy is remaining. For example a fresh snapshot shares almost all the blocks with the
original subvolume, new writes to either subvolume will raise towards the exclusive limit, deletions of common data in one
volume raises towards the exclusive limit in the other one.

To apply a limit to a qgroup, use the command btrfs qgroup limit . Depending on your usage either use a total limit,

unshared limit (-e) or compressed limit (-c). To show usage and limits for a given path within a filesystem use

btrfs qgroup show -reF path

The resolution at which data are written to the filesystem is dictated by Btrfs itself and by system-wide settings. Btrfs
defaults to a 30 seconds checkpoint interval in which new data are committed to the filesystem. This can be changed by

appending the commit mount option in /etc/fstab for the btrfs partition.

LABEL=arch64 / btrfs defaults,compress=zstd,commit=120 0 0

System-wide settings also affect commit intervals. They include the files under /proc/sys/vm/* and are out-of-scope of this

wiki article. The kernel documentation for them resides in Documenta�on/sysctl/vm.txt .

A Btrfs filesystem is able to free unused blocks from an SSD drive supporting the TRIM command. Starting with kernel

version 5.6 there is asynchronous discard support, enabled with mount option discard=async . Freed extents are not
discarded immediately, but grouped together and trimmed later by a separate worker thread, improving commit latency.

More information about enabling and using TRIM can be found in Solid State Drives#TRIM.

Swap files in Btrfs are supported since Linux kernel 5.0.[7] (https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/lin

Commit interval

SSD TRIM

Usage

Swap file

ux.git/commit/?id=ed46ff3d423780fa5173b38a844bf0fdb210a2a7) The proper way to initialize a swap file is to first
create a non-compressed, non-snapshotted subvolume to host the file, cd into its directory, then create a zero length file, set

the No_COW attribute on it with chattr, and make sure compression is disabled:

cd /path/to/swapfile
truncate -s 0 ./swapfile
cha�r +C ./swapfile
btrfs property set ./swapfile compression none

Continue with the steps in Swap file#Swap file creation. Configuring hibernation to a swap file is described in Power
management/Suspend and hibernate#Hibernation into swap file on Btrfs.

Note: Since Linux kernel 5.0, Btrfs has native swap file support with some limitations:

The swap file cannot be on a snapsho�ed subvolume. The proper procedure is to create a new subvolume to place
the swap file in.

It does not support swap files on file systems that span mul�ple devices. See Btrfs wiki: Does btrfs support swap
files? (h�ps://btrfs.wiki.kernel.org/index.php/FAQ#Does_Btrfs_support_swap_files.3F) and Arch forums
discussion (h�ps://bbs.archlinux.org/viewtopic.php?pid=1849371#p1849371).

General linux userspace tools such as df will inaccurately report free space on a Btrfs partition. It is recommended to use

btrfs filesystem usage to query Btrfs partitions. For example, for a full breakdown of device allocation and usage stats:

btrfs filesystem usage /

Note: The btrfs filesystem usage command does not currently work correctly with RAID5/RAID6 RAID levels.

Alternatively, btrfs filesystem df allows a quick check on usage of allocated space without the requirement to run as root:

$ btrfs filesystem df /

See [8] (https://btrfs.wiki.kernel.org/index.php/FAQ#How_much_free_space_do_I_have.3F) for more information.

Btrfs supports online defragmentation through the mount option autodefrag , see btrfs(5) § MOUNT OPTIONS (h�ps://ma

n.archlinux.org/man/btrfs.5#MOUNT_OPTIONS). To manually defragment your root, use:

btrfs filesystem defragment -r /

Using the above command without the -r switch will result in only the metadata held by the subvolume containing the
directory being defragmented. This allows for single file defragmentation by simply specifying the path.

Defragmenting a file which has a COW copy (either a snapshot copy or one made with cp --reflink or bcp) plus using the

-c switch with a compression algorithm may result in two unrelated files effectively increasing the disk usage.

Btrfs offers native "RAID" for #Multi-device file systems. Notable features which set btrfs RAID apart from mdadm are
self-healing redundant arrays and online balancing. See the Btrfs wiki page (https://btrfs.wiki.kernel.org/index.php/Usin
g_Btrfs_with_Multiple_Devices) for more information. The Btrfs sysadmin page also has a section (https://btrfs.wiki.ke

Displaying used/free space

Defragmenta�on

RAID

rnel.org/index.php/SysadminGuide#RAID_and_data_replication) with some more technical background.

Warning: Parity RAID (RAID 5/6) code has multiple serious data-loss bugs in it. See the Btrfs Wiki's RAID5/6 page (https://btrfs.wiki.kernel.org/index.php/
RAID56) and a bug report on linux-btrfs mailing list (https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg55161.html) for more detailed
information. In June 2020, somebody posted a comprehensive list of current issues (https://lore.kernel.org/linux-btrfs/20200627030614.GW10769@hungryc
ats.org/) and a helpful recovery guide (https://lore.kernel.org/linux-btrfs/20200627032414.GX10769@hungrycats.org/).

The Btrfs Wiki Glossary (https://btrfs.wiki.kernel.org/index.php/Glossary) says that Btrfs scrub is "[a]n online
filesystem checking tool. Reads all the data and metadata on the filesystem, and uses checksums and the duplicate copies
from RAID storage to identify and repair any corrupt data."

Note: A running scrub process will prevent the system from suspending, see this thread (https://web.archive.org/web/20160723034801/http://comments.gma
ne.org/gmane.comp.file-systems.btrfs/33106) for details.

To start a (background) scrub on the filesystem which contains / :

btrfs scrub start /

To check the status of a running scrub:

btrfs scrub status /

The btrfs-progs (h�ps://archlinux.org/packages/?name=btrfs-progs) package brings the btrfs-scrub@.�mer unit for

monthly scrubbing the specified mountpoint. Enable the timer with an escaped path, e.g. btrfs-scrub@-.�mer for / and

btrfs-scrub@home.�mer for /home . You can use systemd-escape -p /path/to/mountpoint to escape the path, see

systemd-escape(1) (h�ps://man.archlinux.org/man/systemd-escape.1) for details.

You can also run the scrub by starting btrfs-scrub@.service (with the same encoded path). The advantage of this over

btrfs scrub (as the root user) is that the results of the scrub will be logged in the systemd journal.

On large NVMe drives with insufficient cooling (e.g. in a laptop), scrubbing can read the drive fast enough and long enough
to get it very hot. If you are running scrubs with systemd, you can easily limit the rate of scrubbing with the

IOReadBandwidthMax option described in systemd.resource-control(5) (h�ps://man.archlinux.org/man/systemd.reso

urce-control.5) by using a drop-in file.

"A balance passes all data in the filesystem through the allocator again. It is primarily intended to rebalance the data in the
filesystem across the devices when a device is added or removed. A balance will regenerate missing copies for the redundant
RAID levels, if a device has failed." [9] (https://btrfs.wiki.kernel.org/index.php/Glossary) See Upstream FAQ page (htt
ps://btrfs.wiki.kernel.org/index.php/FAQ#What_does_.22balance.22_do.3F).

On a single-device filesystem a balance may be also useful for (temporarily) reducing the amount of allocated but unused
(meta)data chunks. Sometimes this is needed for fixing "filesystem full" issues (https://btrfs.wiki.kernel.org/index.php/
FAQ#Help.21_Btrfs_claims_I.27m_out_of_space.2C_but_it_looks_like_I_should_have_lots_left.21).

btrfs balance start --bg /
btrfs balance status /

Scrub

Start manually

Start with a service or �mer

Balance

"A snapshot is simply a subvolume that shares its data (and metadata) with some other subvolume, using btrfs's COW
capabilities." See Btrfs Wiki SysadminGuide#Snapshots (https://btrfs.wiki.kernel.org/index.php/SysadminGuide#Sna
pshots) for details.

To create a snapshot:

btrfs subvolume snapshot source [dest/]name

To create a readonly snapshot add the -r flag. To create writable version of a readonly snapshot, simply create a snapshot of
it.

Note: Snapshots are not recursive. Every nested subvolume will be an empty directory inside the snapshot.

A subvolume can be sent to stdout or a file using the send command. This is usually most useful when piped to a Btrfs

receive command. For example, to send a snapshot named /root_backup (perhaps of a snapshot you made of / earlier)

to /backup you would do the following:

btrfs send /root_backup | btrfs receive /backup

The snapshot that is sent must be readonly. The above command is useful for copying a subvolume to an external device

(e.g. a USB disk mounted at /backup above).

You can also send only the difference between two snapshots. For example, if you have already sent a copy of

root_backup above and have made a new readonly snapshot on your system named root_backup_new , then to send only

the incremental difference to /backup do:

btrfs send -p /root_backup /root_backup_new | btrfs receive /backup

Now a new subvolume named root_backup_new will be present in /backup .

See Btrfs Wiki's Incremental Backup page (https://btrfs.wiki.kernel.org/index.php/Incremental_Backup) on how to
use this for incremental backups and for tools that automate the process.

Using copy-on-write, Btrfs is able to copy files or whole subvolumes without actually copying the data. However whenever a
file is altered a new proper copy is created. Deduplication takes this a step further, by actively identifying blocks of data
which share common sequences and combining them into an extent with the same copy-on-write semantics.

Tools dedicated to deduplicate a Btrfs formatted partition include duperemove (h�ps://archlinux.org/packages/?name=d

uperemove), bedup (h�ps://aur.archlinux.org/packages/bedup/)AUR and btrfs-dedup. One may also want to merely

deduplicate data on a file based level instead using e.g. rmlint (h�ps://archlinux.org/packages/?name=rmlint), jdupes (h�

ps://aur.archlinux.org/packages/jdupes/)AUR or dduper-git (h�ps://aur.archlinux.org/packages/dduper-git/)AUR. For an
overview of available features of those programs and additional information have a look at the upstream Wiki entry (http
s://btrfs.wiki.kernel.org/index.php/Deduplication#Batch).

Furthermore Btrfs developers are working on inband (also known as synchronous or inline) deduplication, meaning
deduplication done when writing new data to the filesystem. Currently it is still an experiment which is developed out-of-
tree. Users willing to test the new feature should read the appropriate kernel wiki page (https://btrfs.wiki.kernel.org/ind
ex.php/User_notes_on_dedupe).

Snapshots

Send/receive

Deduplica�on

A few limitations should be known before trying.

Btrfs has no built-in encryption support, but this may (https://lwn.net/Articles/700487/) come in the future. Users can

encrypt the partition before running mkfs.btrfs . See dm-crypt/Encrypting an entire system#Btrfs subvolumes with
swap.

Existing Btrfs file systems can use something like EncFS or TrueCrypt, though perhaps without some of Btrfs' features.

The tool btrfs check has known issues and should not be run without further reading, see section #btrfs check.

Warning:

Most users do not want this type of setup and instead should install Btrfs on a regular par��on. Furthermore, GRUB
strongly discourages installa�on to a par��onless disk.

Since grub (h�ps://archlinux.org/packages/?name=grub) 2.04, GRUB's core.img is too big to fit in Btrfs VBR. See
FS#63656 (h�ps://bugs.archlinux.org/task/63656).

Btrfs can occupy an entire data storage device, replacing the MBR or GPT partitioning schemes, using subvolumes to
simulate partitions. However, using a partitionless setup is not required to simply create a Btrfs filesystem on an existing
partition that was created using another method. There are some limitations to partitionless single disk setups:

Cannot place other file systems on another par��on on the same disk.

If using a Linux kernel version before 5.0, you cannot use swap area as Btrfs did not support swap files pre-5.0 and
there is no place to create swap par��on

Cannot use UEFI to boot.

To overwrite the existing partition table with Btrfs, run the following command:

mkfs.btrfs /dev/sdX

For example, use /dev/sda rather than /dev/sda1 . The latter would format an existing partition instead of replacing the

entire partitioning scheme. Because the root partition is Btrfs, make sure btrfs is compiled into the kernel, or put btrfs
into mkinitcpio.conf#MODULES and regenerate the initramfs.

Install the boot loader like you would for a data storage device with a Master Boot Record. See Syslinux#Manual install
or GRUB/Tips and tricks#Install to partition or partitionless disk. If your kernel does not boot due to

Failed to mount /sysroot. , please add GRUB_PRELOAD_MODULES="btrfs" in /etc/default/grub and generate the grub
configuration (GRUB#Generate the main configuration file).

Warning: There are many reports on the btrfs mailing list about incomplete/corrupt/broken conversions. Make sure you have working backups of any data you
cannot afford to lose. See Conversion from Ext3 (https://btrfs.wiki.kernel.org/index.php/Conversion_from_Ext3) on the btrfs wiki for more information.

Known issues

Encryp�on

btrfs check issues

Tips and tricks

Par��onless Btrfs disk

Ext3/4 to Btrfs conversion

Warning: There is a bug in btrfs-progs 5.6.1 and before, that will yield a btrfs filesystem with wrong size for the last block group, thus preventing to mount the
newly converted btrfs. This bug is fixed in btrfs-progs 5.7 in this commit (https://github.com/kdave/btrfs-progs/commit/0ff7a9b5210723bd4ad0d9d78dbbb1
8ee8fdd2b1#diff-31168275dcaac634489082b54c4c66d0). Please use btrfs-convert from btrfs-progs 5.7-1 and above.

Boot from an install CD, then convert by doing:

btrfs-convert /dev/par��on

Mount the partion and test the conversion by checking the files. Be sure to change the /etc/fstab to reflect the change (type

to btrfs and fs_passno [the last field] to 0 as Btrfs does not do a file system check on boot). Also note that the UUID of

the partition will have changed, so update fstab accordingly when using UUIDs. chroot into the system and rebuild your
bootloaders menu list (see Install from existing Linux). If converting a root filesystem, while still chrooted run

mkinitcpio -p linux to regenerate the initramfs or the system will not successfully boot.

Note: If there is anything wrong, either unable to mount or write files to the newly converted btrfs, there is always the option to rollback as long as the backup

subvolume /ext2_saved is still there. Use btrfs-convert -r /dev/par��on command to rollback, this will discard any modifications to the newly
converted btrfs filesystem.

After confirming that there are no problems, complete the conversion by deleting the backup ext2_saved sub-volume. Note
that you cannot revert back to ext3/4 without it.

btrfs subvolume delete /ext2_saved

Finally balance the file system to reclaim the space.

Remember that some applications which were installed prior have to be adapted to Btrfs.

CRC32 is a new instruction in Intel SSE4.2. To verify if Btrfs checksum is hardware accelerated:

dmesg | grep crc32c

Btrfs loaded, crc32c=crc32c-intel

If you see crc32c=crc32c-generic , it is probably because your root partition is Btrfs, and you will have to compile

crc32c-intel into the kernel to make it work. Putting crc32c-intel into mkinitcpio.conf does not work.

Warning: The tool btrfs check has known issues, see section #btrfs check

btrfs-check cannot be used on a mounted file system. To be able to use btrfs-check without booting from a live USB, add it
to the initial ramdisk:

/etc/mkinitcpio.conf

BINARIES=("/usr/bin/btrfs")

Regenerate the initramfs.

Then if there is a problem booting, the utility is available for repair.

Note: If the fsck process has to invalidate the space cache (and/or other caches?) then it is normal for a subsequent boot to hang up for a while (it may give
console messages about btrfs-transaction being hung). The system should recover from this after a while.

Checksum hardware accelera�on

Corrup�on recovery

See the Btrfs Wiki page (https://btrfs.wiki.kernel.org/index.php/Btrfsck) for more information.

In order to boot into a snapshot, the same procedure applies as for mounting a subvolume as your root parition, as given in
section mounting a subvolume as your root partition, because snapshots can be mounted like subvolumes.

If using GRUB you can automa�cally populate your boot menu with btrfs snapshots when regenera�ng the
configura�on file with the help of grub-btrfs (h�ps://archlinux.org/packages/?name=grub-btrfs) or grub-btrfs-git (h�

ps://aur.archlinux.org/packages/grub-btrfs-git/)AUR.

If using rEFInd you can automa�cally populate your boot menu with btrfs snapshots with the help of refind-btrfs (h�p

s://aur.archlinux.org/packages/refind-btrfs/)AUR, a�er enabling refind-btrfs.service .

See the Systemd-nspawn#Use Btrfs subvolume as container root and Systemd-nspawn#Use temporary Btrfs snapshot
of container articles.

Because of the copy-on-write nature of Btrfs simply accessing files can trigger the metadata copy and writing. Reducing the
frequency of access time updates may eliminate this unexpected disk usage and increase performance. See fstab#atime
options for the available options.

See the Btrfs Problem FAQ (https://btrfs.wiki.kernel.org/index.php/Problem_FAQ) for general troubleshooting.

The offset problem may happen when you try to embed core.img into a partitioned disk. It means that it is OK to embed

GRUB's core.img into a Btrfs pool on a partitionless disk (e.g. /dev/sdX) directly.

GRUB can boot Btrfs partitions, however the module may be larger than other file systems. And the core.img file made by

grub-install may not fit in the first 63 sectors (31.5KiB) of the drive between the MBR and the first partition. Up-to-date

partitioning tools such as fdisk and gdisk avoid this issue by offsetting the first partition by roughly 1MiB or 2MiB.

Users experiencing the following: error no such device: root when booting from a RAID style setup then edit /usr/share
/grub/grub-mkconfig_lib and remove both quotes from the line

echo " search --no-floppy --fs-uuid --set=root ${hints} ${fs_uuid}" . Regenerate the config for grub and the system should
boot without an error.

Sometimes, especially with large RAID1 arrays, mounting might time out during boot with a journal message such as:

Jan 25 18:05:12 host systemd[1]: storage.mount: Moun�ng �med out. Termina�ng.
Jan 25 18:05:46 host systemd[1]: storage.mount: Mount process exited, code=killed, status=15/TERM

Boo�ng into snapshots

Use Btrfs subvolumes with systemd-nspawn

Reducing access �me metadata updates

Troubleshoo�ng

GRUB

Par��on offset

Missing root

Moun�ng �med out

Jan 25 18:05:46 host systemd[1]: storage.mount: Failed with result '�meout'.
Jan 25 18:05:46 host systemd[1]: Failed to mount /storage.
Jan 25 18:05:46 host systemd[1]: Startup finished in 32.943s (firmware) + 3.097s (loader) + 7.247s (kernel)>
Jan 25 18:05:46 host kernel: BTRFS error (device sda): open_ctree failed

This can easily be worked around by providing a longer timeout via the systemd-specific mount option

x-systemd.mount-�meout in fstab. For example:

/dev/sda /storage btrfs rw,rela�me,x-systemd.mount-�meout=5min 0 0

As of November 2014 there seems to be a bug in systemd or mkinitcpio causing the following error on systems with multi-

device Btrfs filesystem using the btrfs hook in mkinitcpio.conf :

BTRFS: open_ctree failed
mount: wrong fs type, bad op�on, bad superblock on /dev/sdb2, missing codepage or helper program, or other error

In some cases useful info is found in syslog - try dmesg|tail or so.

You are now being dropped into an emergency shell.

A workaround is to remove btrfs from the HOOKS array in /etc/mkinitcpio.conf and instead add btrfs to the

MODULES array. Then regenerate the initramfs and reboot.

You will get the same error if you try to mount a raid array without one of the devices. In that case you must add the

degraded mount option to /etc/fstab . If your root resides on the array, you must also add roo�lags=degraded to your
kernel parameters.

As of August 2016, a potential workaround for this bug is to mount the array by a single drive only in /etc/fstab , and allow
btrfs to discover and append the other drives automatically. Group-based identifiers such as UUID and LABEL appear to
contribute to the failure. For example, a two-device RAID1 array consisting of 'disk1' and disk2' will have a UUID allocated

to it, but instead of using the UUID, use only /dev/mapper/disk1 in /etc/fstab . For a more detailed explanation, see the
following blog post (https://web.archive.org/web/20161108175034/http://blog.samcater.com/fix-for-btrfs-open_ctree-f
ailed-when-running-root-fs-on-raid-1-or-raid10-arch-linux/).

Another possible workaround is to remove the udev hook in mkinitcpio.conf and replace it with the systemd hook. In

this case, btrfs should not be in the HOOKS or MODULES arrays.

See the original forums thread (https://bbs.archlinux.org/viewtopic.php?id=189845) and FS#42884 (https://bugs.arch
linux.org/task/42884) for further information and discussion.

Warning: Since Btrfs is under heavy development, especially the btrfs check command, it is highly recommended to create a backup and consult the Btrfsck

documentation (https://btrfs.wiki.kernel.org/index.php/Btrfsck) before executing btrfs check with the --repair switch.

The btrfs check (https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-check) command can be used to check or repair
an unmounted Btrfs filesystem. However, this repair tool is still immature and not able to repair certain filesystem errors
even those that do not render the filesystem unmountable.

Official site

Btrfs Wiki (h�ps://btrfs.wiki.kernel.org/)

Performance related

BTRFS: open_ctree failed

btrfs check

See also

Btrfs on raw disks? (h�ps://superuser.com/ques�ons/432188/should-i-put-my-mul�-device-btrfs-filesystem-on-
disk-par��ons-or-raw-devices)

Varying leafsize and nodesize in Btrfs (h�ps://www.spinics.net/lists/linux-btrfs/msg18652.html)

Btrfs support for efficient SSD opera�on (data blocks alignment) (h�ps://web.archive.org/web/20150717135111
/h�p://comments.gmane.org/gmane.comp.file-systems.btrfs/15646)

Is Btrfs op�mized for SSDs? (h�ps://btrfs.wiki.kernel.org/index.php/FAQ#Is_Btrfs_op�mized_for_SSD.3F)

Phoronix mount op�on benchmarking

Linux 4.9 (h�ps://www.phoronix.com/scan.php?page=ar�cle&item=btrfs-mount-linux49)

Linux 3.14 (h�ps://www.phoronix.com/scan.php?page=ar�cle&item=linux_314_btrfs)

Linux 3.11 (h�ps://www.phoronix.com/scan.php?page=ar�cle&item=linux_btrfs_311&num=1)

Linux 3.9 (h�ps://www.phoronix.com/scan.php?page=news_item&px=MTM0OTU)

Linux 3.7 (h�ps://www.phoronix.com/scan.php?page=ar�cle&item=btrfs_linux37_mounts&num=1)

Linux 3.2 (h�ps://www.phoronix.com/scan.php?page=ar�cle&item=linux_btrfs_op�ons&num=1)

Lzo vs. zLib (h�ps://blog.erdemagaoglu.com/post/4605524309/lzo-vs-snappy-vs-lzf-vs-zlib-a-comparison-of)

Miscellaneous

Funtoo Wiki Btrfs Fun (h�ps://www.funtoo.org/wiki/BTRFS_Fun)

Avi Miller presen�ng Btrfs (h�ps://www.phoronix.com/scan.php?page=news_item&px=MTA0ODU) at SCALE
10x, January 2012.

Summary of Chris Mason's talk (h�ps://www.phoronix.com/scan.php?page=news_item&px=MTA4Mzc) from
LFCS 2012

Btrfs: stop providing a bmap opera�on to avoid swapfile corrup�ons (h�ps://git.kernel.org/pub/scm/linux/kern
el/git/torvalds/linux.git/commit/?id=35054394c4b3cecd52577c2662c84da1f3e73525) 2009-01-21

Doing Fast Incremental Backups With Btrfs Send and Receive (h�p://marc.merlins.org/perso/btrfs/post_2014-03
-22_Btrfs-Tips_-Doing-Fast-Incremental-Backups-With-Btrfs-Send-and-Receive.html)

Retrieved from "h�ps://wiki.archlinux.org/index.php?�tle=Btrfs&oldid=676695"

This page was last edited on 7 June 2021, at 18:59.

Content is available under GNU Free Documenta�on License 1.3 or later unless otherwise noted.

