
ENCOM About
Raspberry Pi, Coding, Linux

Build your own IPv6 VPN with Wireguard

Saturday, January 9, 2021

Finally, no /etc/network/interfaces and wg-quick

Update Mar 23 ‘21: Improve the stability of IPv6 tunnel.

I like IPv6, but Cox’s IPv6 network is suboptimal.

I like the idea of a VPN providing millions of IPv6 addresses to its clients.

Wireguard, it seems, is the obvious choice for creating an IPv6 VPN.

Yes, I did set up Wireguard servers before using Debian, /etc/network/interfaces and wg-quick . It
was not the best experience. Since I was using Hurricane Electric’s IPv6 tunnel broker to provide pub‐
lic IPv6 addresses to clients, I need to write the tunnel configuration in /etc/network/interfaces ,
and then set up Wireguard with wg-quick .

Well, I mean it works, right?

Unfortunately I needed some brand new kernel modules on my Wireguard server, mptcp to be exact.
(to combine bandwidth from multiple interface…) And Debian’s kernel does not have multipath kernel
support compiled. How convenient, Debian.

Well, I could compile a custom kernel with mptcp enabled, like any other conscious sysadmin would
do. But I was feeling adventurous, and took the risk to attempting to set up another Wireguard server
on Arch Linux. The first thing I noticed, well, was that /etc/network/interfaces was completely
empty. Apparently Ubuntu and Arch Linux can use something called systemd-networkd instead.

Some Background Information

Wireguard

Wireguard is for setting up VPNs (virtual private networks).

I am using it to proivide public IPv6 addresses and prefixes to devices behind NAT without IPv6 ad‐
dresses. And also to hide my devices’ real IP, yes.

Hurricane Electric’s IPv6 Tunnel

Well, it turns out you need IPv6 prefix larger than /64 to provide each client with individual /64 IPv6
prefixes. Any prefix smaller than /64 would not work, sadly.

And conveniently, most VPS providers only provide /64 IPv6 prefixes.

The good news is that Hurricane Electric provides IPv6 tunnel with /48 prefix for free, with no band‐
width limits.

Anyway the sign up link is here .

systemd-networkd

The heck is this.

Well, it is a systemd unit for setting up networking interfaces, used by Ubuntu, Arch Linux, etc. And it
is much easier to use than Debian’s networking.service .

In systemd-networkd , you write interface configurations in /etc/systemd/network/your-
interface.network , and virtual interface configurations in /etc/systemd/network/your-
netdev.netdev .

And to my surprise, Wireguard and IPv6 tunnel are all virtual interfaces! Wow!

That means systemd-networkd would work.

Actually Setting Up

Yes, I am using Arch Linux. For some reason it is quite stable and lightweight on my servers.

Enable IP Forwarding

First, enable IPv4 and IPv6 forwarding.

Create /etc/sysctl.d/20-ip-forward.conf and input:

net.ipv4.ip_forward = 1

net.ipv6.conf.all.forwarding = 1

net.ipv6.conf.all.accept_ra = 2

This is for IPv4 NAT and forwarding public IPv6 addresses.

Then, run sudo sysctl --system to apply new configuration.

Install Wireguard and systemd-networkd

Wireguard is included in most Linux distributions, you just need to install wireguard-tools .

sudo pacman -S wireguard-tools

systemd-networkd is included in systemd, so if your distribution uses systemd, you have it. Just
need to enable it (It should already be enabled though).

sudo systemctl enable --now systemd-networkd

IPv6 Tunnel Configuration

You should already obtained IPv6 tunnel configuration from before.

It looks like this:

IPv6 Tunnel Endpoints
Server IPv4 Address: Tunnel's IPv4 endpoint

Server IPv6 Address: Tunnel's IPv6 endpoint

Client IPv4 Address: Your server's IPv4

Client IPv6 Address: Obtained IPv6

Routed IPv6 Prefixes
Routed /64: Obtained /64 prefix

Routed /48: Obtained /48 prefix

DNS Resolvers:
Anycast IPv6 Caching Nameserver: IPv6 DNS

I could never get those configurations right on the first try.

Create /etc/systemd/network/30-he.network and input:

[Match]

Name=he-ipv6

[Network]

Address=<Obtained IPv6, with "/64" suffix>

Gateway=<Tunnel's IPv6 endpoint, without "/64" suffix>

DNS=<IPv6 DNS>

Then, create /etc/systemd/network/30-he.netdev and input:

[Match]

[NetDev]

Name=he-ipv6

Kind=sit

MTUBytes=1480

[Tunnel]

Local=<Your server's IPv4>

Remote=<Tunnel's IPv4 endpoint>

TTL=255

In your existing network connection config file, for example /etc/systemd/network/20-wired.network ,
insert Tunnel=he-ipv6 in its [Network] section.

[Match]

Name=ens18

[Network]

DHCP=ipv4

Tunnel=he-ipv6

Wireguard Configuration

First generating Wireguard Server’s public key and private key.

sudo -i

cd /etc/wireguard/

umask 077; wg genkey | tee privatekey | wg pubkey > publickey

Your public key and private key are now stored in /etc/wireguard/publickey and /etc/wireguard
/privatekey .

cat /etc/wireguard/publickey

<Your Wireguard public key>

cat /etc/wireguard/privatekey

<Your Wireguard private key>

Create /etc/systemd/network/99-wg0.network and input:

[Match]

Name=wg0

[Network]

IPMasquerade=true

[Address]

Address=10.64.0.1/16

[Address]

Address=<Obtained /48 prefix>::1/48

10.64.0.1/64 is your NATed IPv4 subnet.

You can use the entire /48 IPv6 prefix, so might as well use it.

Create /etc/systemd/network/99-wg0.netdev and input:

[NetDev]

Name=wg0

Kind=wireguard

Description=WireGuard tunnel wg0

[WireGuard]

ListenPort=<Wireguard server port>

PrivateKey=<Your Wireguard private key>

[WireGuardPeer]

PublicKey=<Your Wireguard client's public key>

AllowedIPs=10.64.10.0/24

AllowedIPs=<Obtained /48 prefix>:100::/56

Now restart systemd-networkd to apply settings, or just reboot.

sudo systemctl restart systemd-networkd

Try setting up your Wireguard client, you should be able to use the whole /56 IPv6 prefix.

Yeah, you basically just created an IPv6 VPN!

Plus, I had no idea systemd-networkd was that convenient. Never would I touch /etc/network/in-
terfaces again.

I am also testing multipath TCP in conjunction with Wireguard. If succeeded, it means you can com‐
bine network bandwidth from multiple networks, along with automatic fail-over and roaming. It is go‐
ing to take some time, however.

Wireguard VPN IPv6 systemd systemd-networkd Linux

CC BY-SA 4.0

 Dedicated IPv6 address per Shadowsocks Instance

OTG Ethernet: Connect to Raspberry Pi 4 via USB-C

#

Thoughts?

0 Responses

Upvote Funny Love Surprised Angry Sad

0 Comments ENCOM 🔒 Disqus' Privacy Policy Login1

Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Do Not Sell My Data⚠

Recommend

©2019-2021 ENCOM/Black Hat
Powered by Hugo & Notepadium

