

Essential System
Administration

Essential System
Administration

THIRD EDITION

Æleen Frisch

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Essential System Administration, Third Edition
by Æleen Frisch

Copyright © 2002, 1995, 1991 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Michael Loukides

Production Editor: Leanne Clarke Soylemez

Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:

August 2002: Third Edition.

September 1995: Second Edition.

October 1991: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Essential System Administration, Third Edition, the image of an
armadillo, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Frisch, AEleen
Essential System Administration/by AEleen Frisch.--3rd ed.
 p. cm.
Includes index.
ISBN 0-596-00343-9
ISBN13 978-0-596-00343-2
1. UNIX (Computer file) 2. Operating systems (Computers) I. Title.

QA76.76.063 F75 2002
005.4'32--dc21 2002023321

[M] [05/07]

For Frank Willison

“Part of the problem is passive-aggressive

behavior, my pet peeve and bête noire, and I don’t

like it either. Everyone should get off their high

horse, particularly if that horse is my bête noire.

We all have pressures on us, and nobody’s

pressure is more important than anyone else’s.”

“Thanks also for not lending others your O’Reilly

books. Let others buy them. Buyers respect their

books. You seem to recognize that ‘lend’ and ‘lose’

are synonyms where books are concerned. If I

had been prudent like you, I would still

have Volume 3 (Cats–Dorc) of the

Encyclopedia Britannica.”

vii

Table of Contents

Preface . xi

1. Introduction to System Administration . 1
Thinking About System Administration 3
Becoming Superuser 6
Communicating with Users 12
About Menus and GUIs 14
Where Does the Time Go? 31

2. The Unix Way . 32
Files 33
Processes 53
Devices 61

3. Essential Administrative Tools and Techniques . 74
Getting the Most from Common Commands 74
Essential Administrative Techniques 90

4. Startup and Shutdown . 127
About the Unix Boot Process 127
Initialization Files and Boot Scripts 151
Shutting Down a Unix System 169
Troubleshooting: Handling Crashes and Boot Failures 173

5. TCP/IP Networking . 180
Understanding TCP/IP Networking 180
Adding a New Network Host 202
Network Testing and Troubleshooting 219

viii | Table of Contents

6. Managing Users and Groups . 222
Unix Users and Groups 222
Managing User Accounts 237
Administrative Tools for Managing User Accounts 256
Administering User Passwords 277
User Authentication with PAM 302
LDAP: Using a Directory Service
for User Authentication 313

7. Security . 330
Prelude: What’s Wrong with This Picture? 331
Thinking About Security 332
User Authentication Revisited 339
Protecting Files and the Filesystem 348
Role-Based Access Control 366
Network Security 373
Hardening Unix Systems 387
Detecting Problems 391

8. Managing Network Services . 414
Managing DNS Servers 414
Routing Daemons 452
Configuring a DHCP Server 457
Time Synchronization with NTP 469
Managing Network Daemons under AIX 475
Monitoring the Network 475

9. Electronic Mail . 521
About Electronic Mail 521
Configuring User Mail Programs 532
Configuring Access Agents 537
Configuring the Transport Agent 542
Retrieving Mail Messages 596
Mail Filtering with procmail 599
A Few Final Tools 614

10. Filesystems and Disks . 616
Filesystem Types 617
Managing Filesystems 621

Table of Contents | ix

From Disks to Filesystems 634
Sharing Filesystems 694

11. Backup and Restore . 707
Planning for Disasters and Everyday Needs 707
Backup Media 717
Backing Up Files and Filesystems 726
Restoring Files from Backups 736
Making Table of Contents Files 742
Network Backup Systems 744
Backing Up and Restoring
the System Filesystems 759

12. Serial Lines and Devices . 766
About Serial Lines 766
Specifying Terminal Characteristics 769
Adding a New Serial Device 776
Troubleshooting Terminal Problems 794
Controlling Access to Serial Lines 796
HP-UX and Tru64 Terminal Line Attributes 797
The HylaFAX Fax Service 799
USB Devices 807

13. Printers and the Spooling Subsystem . 814
The BSD Spooling Facility 818
System V Printing 829
The AIX Spooling Facility 848
Troubleshooting Printers 858
Sharing Printers with Windows Systems 860
LPRng 864
CUPS 874
Font Management Under X 878

14. Automating Administrative Tasks . 885
Creating Effective Shell Scripts 886
Perl: An Alternate Administrative Language 899
Expect: Automating Interactive Programs 911
When Only C Will Do 919
Automating Complex Configuration Tasks with Cfengine 921

x | Table of Contents

Stem: Simplified Creation of Client-Server Applications 932
Adding Local man Pages 942

15. Managing System Resources . 945
Thinking About System Performance 945
Monitoring and Controlling Processes 951
Managing CPU Resources 963
Managing Memory 978
Disk I/O Performance Issues 1001
Monitoring and Managing Disk Space Usage 1007
Network Performance 1017

16. Configuring and Building Kernels . 1024
FreeBSD and Tru64 1026
HP-UX 1031
Linux 1033
Solaris 1046
AIX System Parameters 1047

17. Accounting . 1049
Standard Accounting Files 1051
BSD-Style Accounting: FreeBSD, Linux, and AIX 1052
System V–Style Accounting: AIX, HP-UX, and Solaris 1058
Printing Accounting 1066

Afterword: The Profession of System Administration . 1069
SAGE: The System Administrators Guild 1069
Administrative Virtues 1070

Appendix: Administrative Shell Programming . 1073

Index . 1097

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xi

Preface

This book is an agglomeration of lean-tos and annexes
and there is no knowing how big the next addition will
be, or where it will be put. At any point, I can call the

book finished or unfinished.
—Alexander Solzhenitsyn

A poem is never finished, only abandoned.
—Paul Valery

This book covers the fundamental and essential tasks of Unix system administra-
tion. Although it includes information designed for people new to system administra-
tion, its contents extend well beyond the basics. The primary goal of this book is to
make system administration on Unix systems straightforward; it does so by provid-
ing you with exactly the information you need. As I see it, this means finding a mid-
dle ground between a general overview that is too simple to be of much use to
anyone but a complete novice, and a slog through all the obscurities and eccentrici-
ties that only a fanatic could love (some books actually suffer from both these condi-
tions at the same time). In other words, I won’t leave you hanging when the first
complication arrives, and I also won’t make you wade through a lot of extraneous
information to find what actually matters.

This book approaches system administration from a task-oriented perspective, so it
is organized around various facets of the system administrator’s job, rather than
around the features of the Unix operating system, or the workings of the hardware
subsystems in a typical system, or some designated group of administrative com-
mands. These are the raw materials and tools of system administration, but an effec-
tive administrator has to know when and how to apply and deploy them. You need
to have the ability, for example, to move from a user’s complaint (“This job only
needs 10 minutes of CPU time, but it takes it three hours to get it!”) through a diag-
nosis of the problem (“The system is thrashing because there isn’t enough swap
space”), to the particular command that will solve it (swap or swapon). Accordingly,
this book covers all facets of Unix system administration: the general concepts,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

underlying structure, and guiding assumptions that define the Unix environment, as
well as the commands, procedures, strategies, and policies essential to success as a
system administrator. It will talk about all the usual administrative tools that Unix
provides and also how to use them more smartly and efficiently.

Naturally, some of this information will constitute advice about system administra-
tion; I won’t be shy about letting you know what my opinion is. But I’m actually
much more interested in giving you the information you need to make informed
decisions for your own situation than in providing a single, univocal view of the
“right way” to administer a Unix system. It’s more important that you know what
the issues are concerning, say, system backups, than that you adopt anyone’s spe-
cific philosophy or scheme. When you are familiar with the problem and the poten-
tial approaches to it, you’ll be in a position to decide for yourself what’s right for
your system.

Although this book will be useful to anyone who takes care of a Unix system, I have
also included some material designed especially for system administration profes-
sionals. Another way that this book covers essential system administration is that it
tries to convey the essence of what system administration is, as well as a way of
approaching it when it is your job or a significant part thereof. This encompasses
intangibles such as system administration as a profession, professionalism (not the
same thing), human and humane factors inherent in system administration, and its
relationship to the world at large. When such issues are directly relevant to the pri-
mary, technical content of the book, I mention them. In addition, I’ve included other
information of this sort in special sidebars (the first one comes later in this Preface).
They are designed to be informative and thought-provoking and are, on occasion,
deliberately provocative.

The Unix Universe
More and more, people find themselves taking care of multiple computers, often
from more than one manufacturer; it’s quite rare to find a system administrator who
is responsible for only one system (unless he has other, unrelated duties as well).
While Unix is widely lauded in marketing brochures as the “standard” operating sys-
tem “from microcomputers to supercomputers”—and I must confess to having writ-
ten a few of those brochures myself—this is not at all the same as there being a
“standard” Unix.At this point, Unix is hopelessly plural, and nowhere is this plural-
ity more evident than in system administration. Before going on to discuss how this
book addresses that fact, let’s take a brief look at how things got to be the way they
are now.

Figure P-1 attempts to capture the main flow of Unix development. It illustrates a sim-
plified Unix genealogy, with an emphasis on influences and family relationships
(albeit Faulknerian ones) rather than on strict chronology and historical accuracy. It

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

traces the major lines of descent from an arbitrary point in time: Unix Version 6 in
1975 (note that the dates in the diagram refer to the earliest manifestation of each
version). Over time, two distinct flavors (strains) of Unix emerged from its beginnings
at AT&T Bell Laboratories—which I’ll refer to as System V and BSD—but there was
also considerable cross-influence between them (in fact, a more detailed diagram
would indicate this even more clearly).

For a Unix family tree at the other extreme of detail, see http://perso.
wanadoo.fr/levenez/unix/. Also, the opening chapters of Life with UNIX,
by Don Libes and Sandy Ressler (PTR Prentice Hall), give a very enter-
taining overview of the history of Unix. For a more detailed written his-
tory, see A Quarter Century of UNIX by Peter Salus (Addison-Wesley).

Figure P-1. Unix genealogy (simplified)

- direct descent

- strong influence

BSD
(1977)

Version 7
(1979)

Version 6
(1975)

XENIX
(1979 onward)

System III
(1982)

System V.2
(1984)

System V.3
(1986)

System V.4
(1988)

4.2 BSD
(1984)

4.3 BSD
(1985)

4.4 BSD
(1993)

OSF/1
(c.1992)

AT&T Bell Labs
(c.1969-1970)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

The split we see today between System V and BSD occurred after Version 6.* devel-
opers at the University of California, Berkeley, extended Unix in many ways, adding
virtual memory support, the C shell, job control, and TCP/IP networking, to name
just a few. Some of these contributions were merged into the AT&T code lines at
various points.

System V Release 4 was often described as a merger of the System V and BSD lines,
but this is not quite accurate. It incorporated the most important features of BSD
(and SunOS) into System V. The union was a marriage and not a merger, however,
with some but not all characteristics from each parent dominant in the offspring (as
well as a few whose origins no one is quite sure of).

The diagram also includes OSF/1.

In 1988, Sun and AT&T agreed to jointly develop future versions of System V. In
response, IBM, DEC, Hewlett-Packard, and other computer and computer-related
companies and organizations formed the Open Software Foundation (OSF), design-
ing it with the explicit goal of producing an alternative, compatible, non-AT&T-
dependent, Unix-like operating system. OSF/1 is the result of this effort (although its
importance is more as a standards definition than as an actual operating system
implementation).

The proliferation of new computer companies throughout the 1980s brought dozens
of new Unix systems to market—Unix was usually chosen as much for its low cost
and lack of serious alternatives as for its technical characteristics—and also as many
variants. These vendors tended to start with some version of System V or BSD and
then make small to extensive modifications and customizations. Extant operating
systems mostly spring from System V Release 3 (usually Release 3.2), System V
Release 4, and occasionally 4.2 or 4.3 BSD (SunOS is the major exception, derived
from an earlier BSD version). As a further complication, many vendors freely inter-
mixed System V and BSD features within a single operating system.

Recent years have seen a number of efforts at standardizing Unix. Competition has
shifted from acrimonious lawsuits and countersuits to surface-level cooperation in
unifying the various versions. However, existing standards simply don’t address sys-
tem administration at anything beyond the most superficial level. Since vendors are
free to do as they please in the absence of a standard, there is no guarantee that

* The movement from Version 7 to System III in the System V line is a simplification of strict chronology and
descent. System III was derived from an intermediate release between Version 6 and Version 7 (CB Unix),
and not every Version 7 feature was included in System III. A word about nomenclature: The successive
releases of Unix from the research group at Bell Labs were originally known as “editions”—the Sixth Edition,
for example—although these versions are now generally referred to as “Versions.” After Version 6, there are
two distinct sets of releases from Bell Labs: Versions 7 and following (constituting the original research line),
and System III through System V (commercial implementations started from this line). Later versions of Sys-
tem V are called “Releases,” as in System V Release 3 and System V Release 4.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

system administrative commands and procedures will even be similar under differ-
ent operating systems that uphold the same set of standards.

Unix Versions Discussed in This Book
How do you make sense out of the myriad of Unix variations? One approach is to
use computer systems only from a single vendor. However, since that often has other
disadvantages, most of us end up having to deal with more than one kind of Unix
system. Fortunately, taking care of n different kinds of systems doesn’t mean that
you have to learn as many different administrative command sets and approaches.
Ultimately, we get back to the fact that there are really just two distinct Unix variet-
ies; it’s just that the features of any specific Unix implementation can be an arbitrary
mixture of System V and BSD features (regardless of its history and origins). This
doesn’t always ensure that there are only two different commands to perform the
same administrative function—there are cases where practically every vendor uses a
different one—but it does mean that there are generally just two different approaches
to the area or issue. And once you understand the underlying structure, philosophy,
and assumptions, learning the specific commands for any given system is simple.

When you recognize and take advantage of this fact, juggling several Unix versions
becomes straightforward rather than impossibly difficult. In reality, lots of people do
it every day, and this book is designed to reflect that and to support them. It will also
make administering heterogeneous environments even easier by systematically pro-
viding information about different systems all in one place.

Figure P-2. Unix versions discussed in this book

- UNIX definition

- UNIX implementation

BSD System V.3

System V.4OSF/1

Solaris

HP-UX
AIXTru64

Linux

FreeBSD

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

The Unix versions covered by this book appear in Figure P-2, which illustrates the
influences on the various operating systems, rather than their actual origins. If the ver-
sion on your system isn’t one of them, don’t despair. Read on anyway, and you’ll find
that the general information given here applies to your system as well in most cases.

The specific operating system levels covered in this book are:

• AIX Version 5.1

• FreeBSD Version 4.6 (with a few glances at the upcoming Version 5)

• HP-UX Version 11 (including many Version 11i features)

• Linux: Red Hat Version 7.3 and SuSE Version 8

• Solaris Versions 8 and 9

• Tru64 Version 5.1

This list represents some changes from the second edition of this book. We’ve
dropped SCO Unix and IRIX and added FreeBSD. I decided to retain Tru64 despite
the recent merger of Compaq and Hewlett-Packard, because it’s likely that some
Tru64 features will eventually make their way into future HP-UX versions.

When there are significant differences between versions, I’ve made extensive use of
headers and other devices to indicate which version is being considered. You’ll find it
easy to keep track of where we are at any given point and even easier to find out the
specific information you need for whatever version you’re interested in. In addition,
the book will continue to be useful to you when you get your next, different Unix
system—and sooner or later, you will.

The book also covers a fair amount of free software that is not an official part of any
version of Unix. In general, the packages discussed can be built for any of the dis-
cussed operating systems.

Audience
This book will be of interest to:

• Full or part-time administrators of Unix computer systems. The book includes
help both for Unix users who are new to system administration and for experi-
enced system administrators who are new to Unix.

• Workstation and microcomputer users. For small, standalone systems, there is
often no distinction between the user and the system administrator. And even if
your workstation is part of a larger network with a designated administrator, in
practice, many system management tasks for your workstation will be left to
you.

• Users of Unix systems who are not full-time system managers but who perform
administrative tasks periodically.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

This book assumes that you are familiar with Unix user commands: that you know
how to change the current directory, get directory listings, search files for strings,
edit files, use I/O redirection and pipes, set environment variables, and so on. It also
assumes a very basic knowledge of shell scripts: you should know what a shell script
is, how to execute one, and be able to recognize commonly used features like if state-
ments and comment characters. If you need help at this level, consult Learning the
UNIX Operating System, by Grace Todino-Gonguet, John Strang, and Jerry Peek,
and the relevant editions of UNIX in a Nutshell (both published by O’Reilly & Asso-
ciates).

If you have previous Unix experience but no administrative experience, several sec-
tions in Chapter 1 will show you how to make the transition from user to system
manager. If you have some system administration experience but are new to Unix,
Chapter 2 will explain the Unix approach to major system management tasks; it will
also be helpful to current Unix users who are unfamiliar with Unix file, process, or
device concepts.

This book is not designed for people who are already Unix wizards. Accordingly, it
stays away from topics like writing device drivers.

Why Vendors Like Standards
Standards are supposed to help computer users by minimizing the differences between
products from different vendors and ensuring that such products will successfully
work together. However, standards have become a weapon in the competitive arsenal
of computer-related companies, and vendor product literature and presentations are
often a cacophony of acronyms. Warfare imagery dominates discussions comparing
standards compliance rates for different products.

For vendors of computer-related products, upholding standards is in large part moti-
vated by the desire to create a competitive advantage. There is nothing wrong with
that, but it’s important not to mistake it for the altruism that it is often purported to
be. “Proprietary” is a dirty word these days, and “open systems” are all the rage, but
that doesn’t mean that what’s going on is anything other than business as usual.

Proprietary features are now called “extensions” and “enhancements,” and defining
new standards has become a site of competition. New standards are frequently created
by starting from one of the existing alternatives, vendors are always ready to argue for
the one they developed, and successful attempts are then touted as further evidence of
their product’s superiority (and occasionally they really are).

Given all of this, though, we have to at least suspect that it is not really in most vendors’
interest for the standards definition process to ever stop.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

Organization
This book is the foundation volume for O’Reilly & Associates’ system administra-
tion series. As such, it provides you with the fundamental information needed by
everyone who takes care of Unix systems. At the same time, it consciously avoids try-
ing to be all things to all people; the other books in the series treat individual topics
in complete detail. Thus, you can expect this book to provide you with the essentials
for all major administrative tasks by discussing both the underlying high-level con-
cepts and the details of the procedures needed to carry them out. It will also tell you
where to get additional information as your needs become more highly specialized.

These are the major changes in content with respect to the second edition (in addi-
tion to updating all material to the most recent versions of the various operating sys-
tems):

• Greatly expanded networking coverage, especially of network server administra-
tion, including DHCP, DNS (BIND 8 and 9), NTP, network monitoring with
SNMP, and network performance tuning.

• Comprehensive coverage of email administration, including discussions of send-
mail, Postfix, procmail, and setting up POP3 and IMAP.

• Additional security topics and techniques, including the secure shell (ssh), one-
time passwords, role-based access control (RBAC), chroot jails and sandboxing,
and techniques for hardening Unix systems.

• Discussions of important new facilities that have emerged in the time since the
second edition. The most important of these are LDAP, PAM, and advanced file-
system features such as logical volume managers and fault tolerance features.

• Overviews and examples of some new scripting and automation tools, specifi-
cally Cfengine and Stem.

• Information about device types that have become available or common on Unix
systems relatively recently, including USB devices and DVD drives.

• Important open source packages are covered, including the following additions:
Samba (for file and printer sharing with Windows systems), the Amanda enter-
prise backup system, modern printing subsystems (LPRng and CUPS), font man-
agement, file and electronic mail encryption and digital signing (PGP and
GnuPG), the HylaFAX fax service, network monitoring tools (including RRD-
Tool, Cricket and NetSaint), and the GRUB boot loader.

Chapter Descriptions
The first three chapters of the book provide some essential background material
required by different types of readers. The remaining chapters generally focus on a
single administrative area of concern and discuss various aspects of everyday system
operation and configuration issues.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

Chapter 1, Introduction to System Administration, describes some general principles
of system administration and the root account. By the end of this chapter, you’ll be
thinking like a system administrator.

Chapter 2, The Unix Way, considers the ways that Unix structure and philosophy
affect system administration. It opens with a description of the man online help facil-
ity and then goes on to discuss how Unix approaches various operating system func-
tions, including file ownership, privilege, and protection; process creation and
control; and device handling. This chapter closes with an overview of the Unix sys-
tem directory structure and important configuration files.

Chapter 3, Essential Administrative Tools and Techniques, discusses the administra-
tive uses of Unix commands and capabilities. It also provides approaches to several
common administrative tasks. It concludes with a discussion of the cron and syslog
facilities and package management systems.

Chapter 4, Startup and Shutdown, describes how to boot up and shut down Unix sys-
tems. It also considers Unix boot scripts in detail, including how to modify them for
the needs of your system. It closes with information about how to troubleshoot boot-
ing problems.

Chapter 5, TCP/IP Networking, provides an overview of TCP/IP networking on Unix
systems. It focuses on fundamental concepts and configuring TCP/IP client systems,
including interface configuration, name resolution, routing, and automatic IP
address assignment with DHCP. The chapter concludes with a discussion of net-
work troubleshooting.

Chapter 6, Managing Users and Groups, details how to add new users to a Unix sys-
tem. It also discusses Unix login initialization files and groups. It covers user authen-
tication in detail, including both traditional passwords and newer authentication
facilities like PAM. The chapter also contains information about using LDAP for user
account data.

Chapter 7, Security, provides an overview of Unix security issues and solutions to
common problems, including how to use Unix groups to allow users to share files
and other system resources while maintaining a secure environment. It also dis-
cusses optional security-related facilities such as dialup passwords and secondary
authentication programs. The chapter also covers the more advanced security config-
uration available by using access control lists (ACLs) and role-based access control
(RBAC). It also discusses the process of hardening Unix systems. In reality, though,
security is something that is integral to every aspect of system administration, and a
good administrator consciously considers the security implications of every action
and decision. Thus, expecting to be able to isolate and abstract security into a sepa-
rate chapter is unrealistic, and so you will find discussion of security-related issues
and topics in every chapter of the book.

Chapter 8, Managing Network Services, returns to the topic of networking. It dis-
cusses configuring and managing various networking daemons, including those for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

DNS, DHCP, routing, and NTP. It also contains a discussion of network monitoring
and management tools, including the SNMP protocol and tools, Netsaint, RRDTool,
and Cricket.

Chapter 9, Electronic Mail, covers all aspects of managing the email subsystem. It
covers user mail programs, configuring the POP3 and IMAP protocols, the sendmail
and Postfix mail transport agents, and the procmail and fetchmail facilities.

Chapter 10, Filesystems and Disks, discusses how discrete disk partitions become part
of a Unix filesystem. It begins by describing the disk mounting commands and filesys-
tem configuration files. It also considers Unix disk partitioning schemes and describes
how to add a new disk to a Unix system. In addition, advanced features such as logi-
cal volume managers and software striping and RAID are covered. It also discusses
sharing files with remote Unix and Windows systems using NFS and Samba.

Chapter 11, Backup and Restore, begins by considering several possible backup strat-
egies before going on to discuss the various backup and restore services that Unix
provides. It also covers the open source Amanda backup facility.

Chapter 12, Serial Lines and Devices, discusses Unix handling of serial lines, includ-
ing how to add and configure new serial devices. It covers both traditional serial lines
and USB devices. It also includes a discussion of the HylaFAX fax service.

Chapter 13, Printers and the Spooling Subsystem, covers printing on Unix systems,
including both day-to-day operations and configuration issues. Remote printing via a
local area network is also discussed. Printing using open source spooling systems is
also covered, via Samba, LPRng, and CUPS.

Chapter 14, Automating Administrative Tasks, considers Unix shell scripts, scripts,
and programs in other languages and environments such as Perl, C, Expect, and
Stem. It provides advice about script design and discusses techniques for testing and
debugging them. It also covers the Cfengine facility, which provides high level auto-
mation features to system administrators.

Chapter 15, Managing System Resources, provides an introduction to performance
issues on Unix systems. It discusses monitoring and managing use of major system
resources: CPU, memory, and disk. It covers controlling process execution, optimiz-
ing memory performance and managing system paging space, and tracking and
apportioning disk usage. It concludes with a discussion of network performance
monitoring and tuning.

Chapter 16, Configuring and Building Kernels, discusses when and how to create a
customized kernel, as well as related system configuration issues. It also discusses
how to view and modify tunable kernel parameters.

Chapter 17, Accounting, describes the various Unix accounting services, including
printer accounting.

The Appendix covers the most important Bourne shell and bash features.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

The Afterword contains some final thoughts on system administration and informa-
tion about the System Administrator’s Guild (SAGE).

Conventions Used in This Book
The following typographic and usage conventions are used in this book:

italic
Used for filenames, directory names, hostnames, and URLs. Also used liberally
for annotations in configuration file examples.

constant width
Used for names of commands, utilities, daemons, and other options. Also used
in code and configuration file examples.

constant width italic
Used to indicate variables in code.

constant width bold
Used to indicate user input on a command line.

constant width bold italic
Used to indicate variables in command-line user input.

Indicates a warning.

Indicates a note.

Indicates a tip.

he, she
This book is meant to be straightforward and to the point. There are times when
using a third-person pronoun is just the best way to say something: “This set-
ting will force the user to change his password the next time he logs in.” Person-
ally, I don’t like always using “he” in such situations, and I abhor “he or she”
and “s/he,” so I use “he” some of the time and “she” some of the time, alternat-
ing semi-randomly. However, when the text refers to one of the example users
who appear from time to time throughout the book, the appropriate pronoun is
always used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/esa3/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments
Many people have helped this book at various points in its successive incarnations.
In writing this third edition, I’m afraid I fell at times into the omnipresent trap of
writing a different book rather than revising the one at hand; although this made the
book take longer to finish, I hope that readers will benefit from my rethinking many
topics and issues.

I am certain that few writers have been as fortunate as I have in the truly first-rate set
of technical reviewers who read and critiqued the manuscript of the third edition.
They were, without doubt, the most meticulous group I have ever encountered:

• Jon Forrest

• Peter Jeremy

• Jay Kreibich

• David Malone

• Eric Melander

• Jay Migliaccio

• Jay Nelson

• Christian Pruett

• Eric Stahl

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

Luke Boyett, Peter Norton and Nate Williams also commented on significant
amounts of the present edition.

My thanks go also to the technical reviews of the first two editions. The second edi-
tion reviewers were Nora Chuang, Clem Cole, Walt Daniels, Drew Eckhardt, Zenon
Fortuna, Russell Heise, Tanya Herlick, Karen Kerschen, Tom Madell, Hanna Nel-
son, Barry Saad, Pamela Sogard, Jaime Vazquez, and Dave Williams; first edition
reviewers were Jim Binkley, Tan Bronson, Clem Cole, Dick Dunn, Laura Hook,
Mike Loukides, and Tim O’Reilly. This book still benefits from their comments.

Many other people helped this edition along by pointing out bugs and providing
important information at key points: Jeff Andersen, John Andrea, Jay Ashworth,
Christoph Badura, Jiten Bardwaj, Clive Blackledge, Mark Burgess, Trevor Chandler,
Douglas Clark, Joseph C. Davidson, Jim Davis, Steven Dick, Matt Eakle, Doug
Edwards, Ed Flinn, Patrice Fournier, Rich Fuchs, Brian Gallagher, Michael Gerth,
Adam Goodman, Charles Gordon, Uri Guttman, Enhua He, Matthias Heidbrink,
Matthew A. Hennessy, Derek Hilliker, John Hobson, Lee Howard, Colin Douglas
Howell, Hugh Kennedy, Jonathan C. Knowles, Ki Hwan Lee, Tom Madell, Sean
Maguire, Steven Matheson, Jim McKinstry, Barnabus Misanik, John Montgomery,
Robert L. Montgomery, Dervi Morgan, John Mulshine, John Mulshine, Darren
Nickerson, Jeff Okimoto, Guilio Orsero, Jerry Peek, Chad Pelander, David B. Perry,
Tim Rice, Mark Ritchie, Michael Saunby, Carl Schelin, Mark Summerfield, Tetsuji
Tanigawa, Chuck Toporek, Gary Trucks, Sean Wang, Brian Whitehead, Bill Wis-
niewski, Simon Wright, and Michael Zehe.

Any errors that remain are mine alone.

I am also grateful to companies who loaned me or provided access to hardware and/
or software:

• Gaussian, Inc. gave me access to several computer systems. Thanks to Mike
Frisch, Jim Cheeseman, Jim Hess, John Montgomery, Thom Vreven and Gary
Trucks.

• Christopher Mahmood and Jay Migliaccio of SuSE, Inc. gave me advance access
to SuSE 8.

• Lorien Golarski of Red Hat gave me access to their beta program.

• Chris Molnar provided me with an advance copy of KDE version 3.

• Angela Loh of Compaq arranged for an equipment loan of an Alpha Linux sys-
tem.

• Steve Behling, Tony Perraglia and Carlos Sosa of IBM expedited AIX releases for
me and also provided useful information.

• Adam Goodman and the staff of Linux Magazine provided feedback on early ver-
sions of some sections of this book. Thanks also for their long suffering patience
with my habitual lateness.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

I’d also like to thank my stellar assistant Cat Dubail for all of her help on this third
edition. Felicia Bear also provided important editorial help. Thanks also to Laura
Lasala, my copy editor for the second edition.

At O’Reilly & Associates, my deepest gratitude goes to my amazing editor Mike
Loukides, whose support and guidance brought this edition to completion. Bob
Woodbury and Besty Waliszewski provided advice and help at key points. Darren
Kelly helped with some technical issues regarding the index. Finally, my enthusiastic
thanks go to the excellent production group at O’Reilly & Associates for putting the
finishing touches on all three editions of this book.

Finally, no one finishes a task of this size without a lot of support and encourage-
ment from their friends. I’d like to especially thank Mike and Mo for being there for
me throughout this project. Thanks also to the furry Frischs: Daphne, Susan, Lyta,
and Talia.

—ÆF; Day 200 of 2002; North Haven, CT, USA

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introduction to System
Administration

The traditional way to begin a book like this is to provide a list of system administra-
tion tasks—I’ve done it several times myself at this point. Nevertheless, it’s important
to remember that you have to take such lists with a grain of salt. Inevitably, they leave
out many intangibles, the sorts of things that require lots of time, energy, or knowl-
edge, but never make it into job descriptions. Such lists also tend to suggest that sys-
tem management has some kind of coherence across the vastly different environments
in which people find themselves responsible for computers. There are similarities, of
course, but what is important on one system won’t necessarily be important on
another system at another site or on the same system at a different time. Similarly,
systems that are very different may have similar system management needs, while
nearly identical systems in different environments might have very different needs.

But now to the list. In lieu of an idealized list, I offer the following table showing how
I spent most of my time in my first job as full-time system administrator (I managed
several central systems driving numerous CAD/CAM workstations at a Fortune 500
company) and how these activities have morphed in the intervening two decades.

Table 1-1. Typical system administration tasks

Then: early 1980s Now: early 2000s

Adding new users. I still do it, but it’s automated, and I only have to add a user
once for the entire network. Converting to LDAP did take a lot
of time, though.

Adding toner to electrostatic plotters. Printers need a lot less attention—just clearing the occa-
sional paper jam—but I still get my hands dirty changing
those inkjet tanks.

Doing backups to tape. Backups are still high priority, but the process is more cen-
tralized, and it uses CDs and occasionally spare disks as well
as tape.

Restoring files from backups that users accidentally deleted
or trashed.

This will never change.

Answering user questions (“How do I send mail?”), usually
not for the first or last time.

Users will always have questions. Mine also whine more:
“Why can’t I have an Internet connection on my desk?” or
“Why won’t IRC work through the firewall?”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introduction to System Administration

As this list indicates, system management is truly a hodgepodge of activities and
involves at least as many people skills as computer skills. While I’ll offer some advice
about the latter in a moment, interacting with people is best learned by watching
others, emulating their successes, and avoiding their mistakes.

Currently, I look after a potpourri of workstations from many different vendors, as
well as a couple of larger systems (in terms of physical size but not necessarily CPU
power), with some PCs and Macs thrown in to keep things interesting. Despite these
significant hardware changes, it’s surprising how many of the activities from the
early 1980s I still have to do. Adding toner now means changing a toner cartridge in
a laser printer or the ink tanks in an inkjet printer; backups go to 4 mm tape and
CDs rather than 9-track tape; user problems and questions are in different areas but

Monitoring system activity and trying to tune system param-
eters to give these overloaded systems the response time of
an idle system.

Installing and upgrading hardware to keep up with mono-
tonically increasing resource appetites.

Moving jobs up in the print queue, after more or less user
whining, pleading, or begging, contrary to stated policy
(about moving jobs, not about whining).

This is one problem that is no longer an issue for me. Printers
are cheap, so they are no longer a scare resource that has to
be managed.

Worrying about system security, and plugging the most nox-
ious security holes I inherited.

Security is always a worry, and keeping up with security
notices and patches takes a lot of time.

Installing programs and operating system updates. Same.

Trying to free up disk space (and especially contiguous disk
space).

The emphasis is more on high performance disk I/O (disk
space is cheap): RAID and so on.

Rebooting the system after a crash (always at late and incon-
venient times).

Systems crash a lot less than they used to (thankfully).

Straightening out network glitches (“Why isn’t hamlet talk-
ing to ophelia?”). Occasionally, this involved physically trac-
ing the Ethernet cable around the building, checking it at
each node.

Last year, I replaced my last Thinnet network with twisted-
pair cabling. I hope never to see the former again. However, I
now occasionally have to replace cable segments that have
malfunctioned.

Rearranging furniture to accommodate new equipment;
installing said equipment.

Machines still come and go on a regular basis and have to be
accommodated.

Figuring out why a program/command/account suddenly
and mysteriously stopped working yesterday, even though
the user swore he changed nothing.

Users will still be users.

Fixing—or rather, trying to fix—corrupted CAD/CAM binary
data files.

The current analog of this is dealing with email attachments
that users don’t know how to access. Protecting users from
potentially harmful attachments is another concern.

Going to meetings. No meetings, but lots of casual conversations.

Adding new systems to the network. This goes without saying: systems are virtually always added
to the network.

Writing scripts to automate as many of the above activities as
possible.

Automation is still the administrator’s salvation.

Table 1-1. Typical system administration tasks (continued)

Then: early 1980s Now: early 2000s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thinking About System Administration | 3

are still very much on the list. And while there are (thankfully) no more meetings,
there’s probably even more furniture-moving and cable-pulling.

Some of these topics—moving furniture and going to or avoiding meetings, most
obviously—are beyond the scope of this book. Space won’t allow other topics to be
treated exhaustively; in these cases, I’ll point you in the direction of another book
that takes up where I leave off. This book will cover most of the ordinary tasks that
fall under the category of “system administration.” The discussion will be relevant
whether you’ve got a single PC (running Unix), a room full of mainframes, a build-
ing full of networked workstations, or a combination of several types of computers.
Not all topics will apply to everyone, but I’ve learned not to rule out any of them a
priori for a given class of user. For example, it’s often thought that only big systems
need process-accounting facilities, but it’s now very common for small businesses to
address their computing needs with a moderately-sized Unix system. Because they
need to be able to bill their customers individually, they have to keep track of the
CPU and other resources expended on behalf of each customer. The moral is this:
take what you need and leave the rest; you’re the best judge of what’s relevant and
what isn’t.

Thinking About System Administration
I’ve touched briefly on some of the nontechnical aspects of system administration.
These dynamics will probably not be an issue if it really is just you and your PC, but
if you interact with other people at all, you’ll encounter these issues. It’s a cliché that
system administration is a thankless job—one widely-reprinted cartoon has a user
saying “I’d thank you but system administration is a thankless job”—but things are
actually more complicated than that. As another cliché puts it, system administra-
tion is like keeping the trains on time; no one notices except when they’re late.

System management often seems to involve a tension between authority and respon-
sibility on the one hand and service and cooperation on the other. The extremes
seem easier to maintain than any middle ground; fascistic dictators who rule “their
system” with an iron hand, unhindered by the needs of users, find their opposite in
the harried system managers who jump from one user request to the next, in contin-
ual interrupt mode. The trick is to find a balance between being accessible to users
and their needs—and sometimes even to their mere wants—while still maintaining
your authority and sticking to the policies you’ve put in place for the overall system
welfare. For me, the goal of effective system administration is to provide an environ-
ment where users can get done what they need to, in as easy and efficient a manner
as possible, given the demands of security, other users’ needs, the inherent capabili-
ties of the system, and the realities and constraints of the human community in
which they all are located.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction to System Administration

To put it more concretely, the key to successful, productive system administration is
knowing when to solve a CPU-overuse problem with a command like:*

kill -9 `ps aux | awk '$1=="chavez" {print $2}'

(This command blows away all of user chavez’s processes.) It’s also knowing when
to use:

$ write chavez
You've got a lot of identical processes running on dalton.
Any problem I can help with?
^D

and when to walk over to her desk and talk with her face-to-face. The first approach
displays Unix finesse as well as administrative brute force, and both tactics are cer-
tainly appropriate—even vital—at times. At other times, a simpler, less aggressive
approach will work better to resolve your system’s performance problems in addi-
tion to the user’s confusion. It’s also important to remember that there are some
problems no Unix command can address.

To a great extent, successful system administration is a combination of careful plan-
ning and habit, however much it may seem like crisis intervention at times. The key
to handling a crisis well lies in having had the foresight and taken the time to antici-
pate and plan for the type of emergency that has just come up. As long as it only hap-
pens once in a great while, snatching victory from the jaws of defeat can be very
satisfying and even exhilarating.

On the other hand, many crises can be prevented altogether by a determined devo-
tion to carrying out all the careful procedures you’ve designed: changing the root
password regularly, faithfully making backups (no matter how tedious), closely mon-
itoring system logs, logging out and clearing the terminal screen as a ritual, testing
every change several times before letting it loose, sticking to policies you’ve set for
users’ benefit—whatever you need to do for your system. (Emerson said, “A foolish
consistency is the hobgoblin of little minds,” but not a wise one.)

My philosophy of system administration boils down to a few basic strategies that can
be applied to virtually any of its component tasks:

• Know how things work. In these days, when operating systems are marketed as
requiring little or no system administration, and the omnipresent simple-to-use
tools attempt to make system administration simple for an uninformed novice,
someone has to understand the nuances and details of how things really work. It
should be you.

• Plan it before you do it.

• Make it reversible (backups help a lot with this one).

* On HP-UX systems, the command is ps -ef. Solaris systems can run either form depending on which version
of ps comes first in the search path. AIX and Linux can emulate both versions, depending on whether a
hyphen is used with options (System V style) or not (BSD style).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thinking About System Administration | 5

• Make changes incrementally.

• Test, test, test, before you unleash it on the world.

I learned about the importance of reversibility from a friend who worked in a
museum putting together ancient pottery fragments. The museum followed this
practice so that if better reconstructive techniques were developed in the future, they
could undo the current work and use the better method. As far as possible, I’ve tried
to do the same with computers, adding changes gradually and preserving a path by
which to back out of them.

A simple example of this sort of attitude in action concerns editing system configura-
tion files. Unix systems rely on many configuration files, and every major subsystem
has its own files (all of which we’ll get to). Many of these will need to be modified
from time to time.

I never modify the original copy of the configuration file, either as delivered with the
system or as I found it when I took over the system. Rather, I always make a copy of
these files the first time I change them, appending the suffix .dist to the filename; for
example:

cd /etc
cp inittab inittab.dist
chmod a-w inittab.dist

I write-protect the .dist file so I’ll always have it to refer to. On systems that support
it, use the cp command’s -p option to replicate the file’s current modification time in
the copy.

I also make a copy of the current configuration file before changing it in any way so
undesirable changes can be easily undone. I add a suffix like .old or .sav to the file-
name for these copies. At the same time, I formulate a plan (at least in my head)
about how I would recover from the worst consequence I can envision of an unsuc-
cessful change (e.g., I’ll boot to single-user mode and copy the old version back).

Once I’ve made the necessary changes (or the first major change, when several are
needed), I test the new version of the file, in a safe (nonproduction) environment if
possible. Of course, testing doesn’t always find every bug or prevent every problem,
but it eliminates the most obvious ones. Making only one major change at a time
also makes testing easier.

Some administrators use the a revision control system to track the
changes to important system configuration files (e.g., CVS or RCS).
Such packages are designed to track and manage changes to applica-
tion source code by multiple programmers, but they can also be used
to record changes to configuration files. Using a revision control sys-
tem allows you to record the author and reason for any particular
change, as well as reconstruct any previous version of a file at any
time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction to System Administration

The remaining sections of this chapter discuss some important administrative tools.
The first describes how to become the superuser (the Unix privileged account).
Because I believe a good system manager needs to have both technical expertise and
an awareness of and sensitivity to the user community of which he’s a part, this first
chapter includes a section on Unix communication commands. The goal of these dis-
cussions—as well as of this book as a whole—is to highlight how a system manager
thinks about system tasks and problems, rather than merely to provide literal, cook-
book solutions for common scenarios.

Important administrative tools of other kinds are covered in later chapters of this
book.

Becoming Superuser
On a Unix system, the superuser refers to a privileged account with unrestricted
access to all files and commands. The username of this account is root. Many admin-
istrative tasks and their associated commands require superuser status.

There are two ways to become the superuser. The first is to log in as root directly.
The second way is to execute the command su while logged in to another user
account. The su command may be used to change one’s current account to that of a
different user after entering the proper password. It takes the username correspond-
ing to the desired account as its argument; root is the default when no argument is
provided.

After you enter the su command (without arguments), the system prompts you for
the root password. If you type the password correctly, you’ll get the normal root
account prompt (by default, a number sign: #), indicating that you have successfully
become superuser and that the rules normally restricting file access and command
execution do not apply. For example:

$ su
Password: Not echoed
#

If you type the password incorrectly, you get an error message and return to the nor-
mal command prompt.

You may exit from the superuser account with exit or Ctrl-D. You may suspend the
shell and place it in the background with the suspend command; you can return to it
later using fg.

When you run su, the new shell inherits the environment from your current shell
environment rather than creating the environment that root would get after logging
in. However, you can simulate an actual root login session with the following com-
mand form:

$ su -

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Becoming Superuser | 7

Unlike some other operating systems, the Unix superuser has all privi-
leges all the time: access to all files, commands, etc. Therefore, it is
entirely too easy for a superuser to crash the system, destroy impor-
tant files, and create havoc inadvertently. For this reason, people who
know the superuser password (including the system administrator)
should not do their routine work as superuser. Only use superuser
status when it is needed.

The root account should always have a password, and this password should be
changed periodically. Only experienced Unix users with special requirements should
know the superuser password, and the number of people who know it should be
kept to an absolute minimum.

To set or change the superuser password, become superuser and execute one of the
following commands:

passwd Works most of the time.
passwd root Solaris and FreeBSD systems when su’d to root.

Generally, you’ll be asked to type the old superuser password and then the new pass-
word twice. The root password should also be changed whenever someone who
knows it stops using the system for any reason (e.g., transfer, new job, etc.), or if
there is any suspicion that an unauthorized user has learned it. Passwords are dis-
cussed in detail in Chapter 6.

I try to avoid logging in directly as root. Instead, I su to root only as necessary, exit-
ing from or suspending the superuser shell when possible. Alternatively, in a win-
dowing environment, you can create a separate window in which you su to root,
again executing commands there only as necessary.

For security reasons, it’s a bad idea to leave any logged-in session unattended; natu-
rally, that goes double for a root session. Whenever I leave a workstation where I am
logged in as root, I log out or lock the screen to prevent anyone from sneaking onto
the system. The xlock command will lock an X session; the password of the user who
ran xlock must be entered to unlock the session (on some systems, the root pass-
word can also unlock sessions locked by other users).* While screen locking pro-
grams may have security pitfalls of their own, they do prevent opportunistic breaches
of system security that would otherwise be caused by a momentary lapse into lazi-
ness.

If you are logged in as root on a serial console, you should also use a
locking utility provided by the operating system. In some cases, if you
are using multiple virtual consoles, you will need to lock each one
individually.

* For some unknown reason, FreeBSD does not provide xlock. However, the xlockmore (see http://www.tux.
org/~bagleyd/xlockmore.html) utility provides the same functionality (it’s actually a follow-on to xlock).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction to System Administration

Controlling Access to the Superuser Account
On many systems, any user who knows the root password may become superuser at
any time by running su. This is true for HP-UX, Linux, and Solaris systems in gen-
eral.* Solaris allows you to configure some aspects of how the command works via
settings in the /etc/default/su configuration file.

Traditionally, BSD systems limited access to su to members of group 0 (usually
named wheel); under FreeBSD, if the wheel group has a null user list in the group file
(/etc/group), any user may su to root; otherwise, only members of the wheel group
can use it. The default configuration is a wheel group consisting of just root.

AIX allows the system administrator to specify who can use su on an account-by-
account basis (no restrictions are imposed by default). The following commands dis-
play the current groups that are allowed to su to root and then limit that same access
to the system and admins groups:

lsuser -a sugroups root
root sugroups=ALL
chuser sugroups="system,admins" root

Most Unix versions also allow you to restrict direct root logins to certain terminals.
This topic is discussed in Chapter 12.

* When the PAM authentication facility is in use, it controls access to su (see “User Authentication with PAM”
in Chapter 6).

An Armadillo?
The armadillo typifies one attribute that a successful system administrator needs: a
thick skin. Armadillos thrive under difficult environmental conditions through
strength and perseverance, which is also what system administrators have to do a lot
of the time (see the colophon at the back of the book for more information about the
armadillo). System managers will find other qualities valuable as well, including the
quickness and cleverness of the mongoose (Unix is the snake), the sense of adventure
and playfulness of puppies and kittens, and at times, the chameleon’s ability to blend
in with the surroundings, becoming invisible even though you’re right in front of every-
one’s eyes.

Finally, however, as more than one reader has noted, the armadillo also provides a cau-
tionary warning to system administrators not to become so single-mindedly or nar-
rowly focused on what they are doing that they miss the big picture. Armadillos who
fail to heed this advice end up as roadkill.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Becoming Superuser | 9

Running a Single Command as root
su also has a mode whereby a single command can be run as root. This mode is not a
very convenient way to interactively execute superuser commands, and I tend to see
it as a pretty unimportant feature of su. Using su -c can be very useful in scripts,
however, keeping in mind that the target user need not be root.

Nevertheless, I have found that it does have one important use for a system adminis-
trator: it allows you to fix something quickly when you are at a user’s workstation
(or otherwise not at your own system) without having to worry about remembering
to exit from an su session.* There are users who will absolutely take advantage of
such lapses, so I’ve learned to be cautious.

You can run a single command as root by using a command of this form:

$ su root -c "command"

where command is replaced by the command you want to run. The command should
be enclosed in quotation marks if it contains any spaces or special shell characters.
When you execute a command of this form, su prompts for the root password. If you
enter the correct password, the specified command runs as root, and subsequent
commands are run normally from the original shell. If the command produces an
error or is terminated (e.g. with CTRL-C), control again returns to the unprivileged
user shell.

The following example illustrates this use of su to unmount and eject the CD-ROM
mounted in the /cdrom directory:

$ su root -c "eject /cdrom"
Password: root password entered

Commands and output would be slightly different on other systems.

You can start a background command as root by including a final ampersand within
the specified command (inside the quotation marks), but you’ll want to consider the
security implications of a user bringing it to the foreground before you do this at a
user’s workstation.

sudo: Selective Access to Superuser Commands
Standard Unix takes an all-or-nothing approach to granting root access, but often
what you actually want is something in between. The freely available sudo facility
allows specified users to run specific commands as root without having to know the
root password (available at http://www.courtesan.com/sudo/).†

* Another approach is always to open a new window when you need to do something at a user’s workstation.
It’s easy to get into the habit of always closing it down as you leave.

† Administrative roles are another, more sophisticated way of partitioning root access. They are discussed in
detail in “Role-Based Access Control” in Chapter 7.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction to System Administration

For example, a non-root user could use this sudo command to shut down the system:

$ sudo /sbin/shutdown ...
Password:

sudo requires only the user’s own password to run the command, not the root pass-
word. Once a user has successfully given a password to sudo, she may use it to run
additional commands for a limited period of time without having to enter a pass-
word again; this period defaults to five minutes. A user can extend the time period by
an equal amount by running sudo -v before it expires. She can also terminate the
grace period by running sudo -K.

sudo uses a configuration file, usually /etc/sudoers, to determine which users may use
the sudo command and the other commands available to each of them after they’ve
started a sudo session. The configuration file must be set up by the system adminis-
trator. Here is the beginning of a sample version:

Host alias specifications: names for host lists
Host_Alias PHYSICS = hamlet, ophelia, laertes
Host_Alias CHEM = duncan, puck, brutus

User alias specifications: named groups of users
User_Alias BACKUPOPS = chavez, vargas, smith

Command alias specifications: names for command groups
Cmnd_Alias MOUNT = /sbin/mount, /sbin/umount
Cmnd_Alias SHUTDOWN = /sbin/shutdown
Cmnd_Alias BACKUP = /usr/bin/tar, /usr/bin/mt
Cmnd_Alias CDROM = /sbin/mount /cdrom, /bin/eject

These three configuration file sections define sudo aliases—uppercase symbolic
names—for groups of computers, users and commands, respectively. This example
file defines two sets of hosts (PHYSICS and CHEM), one set of users (BACKUPOPS),
and four command aliases. For example, the MOUNT command alias is defined as
the mount and umount commands. Following good security practice, all commands
include the full pathname for the executable.

The final command alias illustrates the use of arguments within a command list. This
alias consists of a command to mount a CD at /cdrom and to eject the media from
the drive. Note, however, that it does not grant general use of the mount command.

The final section of the file (see below) specifies which users may use the sudo com-
mand, as well as what commands they can run with it and which computers they
may run them on. Each line in this section consists of a username or alias, followed
by one or more items of the form:

host = command(s) [: host = command(s) ...]

where host is a hostname or a host alias, and command(s) are one or more com-
mands or command aliases, with multiple commands or hosts separated by com-
mas. Multiple access specifications may be included for a single user, separated by
colons. The alias ALL stands for all hosts or commands, depending on its context.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Becoming Superuser | 11

Here is the remainder of our example configuration file:

User specifications: who can do what where
root ALL = ALL
%chem CHEM = SHUTDOWN, MOUNT
chavez PHYSICS = MOUNT : achilles = /sbin/swapon
harvey ALL = NOPASSWD: SHUTDOWN
BACKUPOPS ALL, !CHEM = BACKUP, /usr/local/bin

The first entry after the comment grants root access to all commands on all hosts.
The second entry applies to members of the chem group (indicated by the initial per-
cent sign), who may run system shutdown and mounting commands on any com-
puter in the CHEM list.

The third entry specifies that user chavez may run the mounting commands on the
hosts in the PHYSICS list and may also run the swapon command on host achilles.
The next entry allows user harvey to run the shutdown command on any system, and
sudo will not require him to enter his password (via the NOPASSWD: preceding the
command list).

The final entry applies to the users specified for the BACKOPS alias. On any system
except those in the CHEM list (the preceding exclamation point indicates exclu-
sion), they may run the command listed in the BACKUP alias as well as any com-
mand in the /usr/local/bin directory.

Users can use the sudo -l command form to list the commands available to them via
this facility.

Commands should be selected for use with sudo with some care. In par-
ticular, shell scripts should not be used, nor should any utility which
provides shell escapes—the ability to execute a shell command from
within a running interactive program (editors, games, and even output
display utilities like more and less are common examples). Here is the
reason: when a user runs a command with sudo, that command runs as
root, so if the command lets the user execute other commands via a
shell escape, any command he runs from within the utility will also be
run as root, and the whole purpose of sudo—to grant selective access to
superuser command—will be subverted. Following similar reasoning,
because most text editors provide shell escapes, any command that
allows the user to invoke an editor should also be avoided. Some
administrative utilities (e.g., AIX’s SMIT) also provide shell escapes.

The sudo package provides the visudo command for editing /etc/sudoers. It locks the
file, preventing two users from modifying the file simultaneously, and it performs
syntax checking when editing is complete (if there are errors, the editor is restarted,
but no explicit error messages are given).

There are other ways you might want to customize sudo. For example, I want to use a
somewhat longer interval for password-free use. Changes of this sort must be made
by rebuilding sudo from source code. This requires rerunning the configure script

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Introduction to System Administration

with options. Here is the command I used, which specifies a log file for all sudo oper-
ations, sets the password-free period to ten minutes, and tells visudo to use the text
editor specified in the EDITOR environment variable:

cd sudo-source-directory
./configure --with-logpath=/var/log/sudo.log \
 --with-timeout=10 --with-env-editor

Once the command completes, use the make command to rebuild sudo.*

sudo’s logging facility is important and useful in that it enables you to keep track of
privileged commands that are run. For this reason, using sudo can sometimes be pref-
erable to using su even when limiting root-level command access is not an issue.

The one disadvantage of sudo is that it provides no integrated remote-
access password protection. Thus, when you run sudo from an inse-
cure remote session, passwords are transmitted over the network for
any eavesdropper to see. Of course, using SSH can overcome this
limitation.

Communicating with Users
The commands discussed in this section are simple and familiar to most Unix users.
For this reason, they’re often overlooked in system administration discussions. How-
ever, I believe you’ll find them to be an indispensable part of your repertoire. One
other important communications mechanism is electronic mail (see Chapter 9).

Sending a Message
A system administrator frequently needs to send a message to a user’s screen (or win-
dow). write is one way to do so:

$ write username [tty]

where username indicates the user to whom you wish to send the message. If you
want to write to a user who is logged in more than once, the tty argument may be
used to select the appropriate terminal or window. You can find out where a user is
logged in using the who command.

Once the write command is executed, communication is established between your
terminal and the user’s terminal: lines that you type on your terminal will be trans-
mitted to him. End your message with a CTRL-D. Thus, to send a message to user
harvey for which no reply is needed, execute a command like this:

* A couple more configuration notes: sudo can also be integrated into the PAM authentication system (see
“User Authentication with PAM” in Chapter 6). Use the --use-pam option to configure. On the other hand,
if your system does not use a shadow password file, you must use the --disable-shadow option.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Communicating with Users | 13

$ write harvey
The file you needed has been restored.
Additional lines of message text
^D

In some implementations (e.g., AIX, HP-UX and Tru64), write may also be used
over a network by appending a hostname to the username. For example, the com-
mand below initiates a message to user chavez on the host named hamlet:

$ write chavez@hamlet

When available, the rwho command may be used to list all users on the local subnet
(it requires a remote who daemon be running on the remote system).

The talk command is a more sophisticated version of write. It formats the messages
between two users in two separate spaces on the screen. The recipient is notified that
someone is calling her, and she must issue her own talk command to begin commu-
nication. Figure 1-1 illustrates the use of talk.

Users may disable messages from both write and talk by using the command mesg n
(they can include it in their .login or .profile initialization file). Sending messages as
the superuser overrides this command. Be aware, however, that sometimes users
have good reasons for turning off messages.

In general, the effectiveness of system messages is inversely propor-
tional to their frequency.

Sending a Message to All Users
If you need to send a message to every user on the system, you can use the wall com-
mand. wall stands for “write all” and allows the administrator to send a message to
all users simultaneously.

Figure 1-1. Two-way communication with talk

[Connection Established]
Not bad. Link 501 compiles!
Sure. Ali Baba’s?_

Hi. How’s it going?
Great. Lunch?

Not bad. Link 501 compiles!
Sure. Ali Baba’s?_

[Connection Established]
Hi. How’s it going?
Great. Lunch?

First User’s screen Second User’s screen

How screens appear after both users have
executed talk commands:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Introduction to System Administration

To send a message to all users, execute the command:

$ wall
Followed by the message you want to send, terminated with CTRL-D on a separate line
^D

Unix then displays a phrase like:

Broadcast Message from root on console ...

to every user, followed by the text of your message. Similarly, the rwall command
sends a message to every user on the local subnet.

Anyone can use this facility; it does not require superuser status. However, as with
write and talk, only messages from the superuser override users’ mesg n commands.
A good example of such a message would be to give advance warning of an immi-
nent but unscheduled system shutdown.

The Message of the Day
Login time is a good time to communicate certain types of information to users. It’s
one of the few times that you can be reasonably sure of having a user’s attention
(sending a message to the screen won’t do much good if the user isn’t at the worksta-
tion). The file /etc/motd is the system’s message of the day. Whenever anyone logs in,
the system displays the contents of this file. You can use it to display system-wide
information such as maintenance schedules, news about new software, an announce-
ment about someone’s birthday, or anything else considered important and appro-
priate on your system. This file should be short enough so that it will fit entirely on a
typical screen or window. If it isn’t, users won’t be able to read the entire message as
they log in.

On many systems, a user can disable the message of the day by creating a file named
.hushlogin in her home directory.

Specifying the Pre-Login Message
On Solaris, HP-UX, Linux and Tru64 systems, the contents of the file /etc/issue is dis-
played immediately before the login prompt on unused terminals. You can custom-
ize this message by editing this file.

On other systems, login prompts are specified as part of the terminal-related configu-
ration files; these are discussed in Chapter 12.

About Menus and GUIs
For several years now, vendors and independent programmers have been developing
elaborate system administration applications. The first of these were menu-driven,
containing many levels of nested menus organized by subsystem or administrative

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 15

task. Now, the trend is toward independent GUI-based tools, each designed to man-
age some particular system area and perform the associated tasks.

Whatever their design, all of them are designed to allow even relative novices to per-
form routine administrative tasks. The scope and aesthetic complexity of these tools
vary considerably, ranging from shell scripts employing simple selections lists and
prompts to form-based utilities running under X. A few even offer a mouse-based
interface with which you perform operations by dragging icons around (e.g., drop-
ping a user icon on top of a group icon adds that user to that group, dragging a disk
icon into the trash unmounts a filesystem, and the like).

In this section, we’ll take a look at such tools, beginning with general concepts and
then going on to a few practical notes about the tools available on the systems we are
considering (usually things I wish I had known about earlier). The tools are very easy
to use, so I won’t be including detailed instructions for using them (consult the
appropriate documentation for that).

Ups and Downs
Graphical and menu-based system administration tools have some definite good
points:

• They can provide a quick start to system administration, allowing you to get
things done while you learn about the operating system and how things work.
The best tools include aids to help you learn the underlying standard administra-
tive commands.

Similarly, these tools can be helpful in figuring out how to perform some task for
the first time; when you don’t know how to begin, it can be hard to find a solu-
tion with just the manual pages.

• They can help you get the syntax right for complex commands with lots of
options.

• They make certain kinds of operations more convenient by combining several
steps into a single menu screen (e.g., adding a user or installing an operating sys-
tem upgrade).

On the other hand, they have their down side as well:

• Typing the equivalent command is usually significantly faster than running it
from an administrative tool.

• Not all commands are always available through the menu system, and some-
times only part of the functionality is implemented for commands that are
included. Often only the most frequently used commands and/or options are
available. Thus, you’ll still need to execute some versions of commands by hand.

• Using an administrative tool can slow down the learning process and sometimes
stop it altogether. I’ve met inexperienced administrators who had become

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Introduction to System Administration

convinced that certain operations just weren’t possible simply because the menu
system didn’t happen to include them.

• The GUI provides unique functionality accessible only through its interface, so
creating scripts to automate frequent tasks becomes much more difficult or
impossible, especially when you want to do things in a way that the original
author did not think of.

In my view, an ideal administrative tool has all of these characteristics:

• The tool must run normal operating system commands, not opaque, undocu-
mented programs stored in some obscure, out-of-the-way directory. The tool
thus makes system administration easier, leaving the thinking to the human
using it.

• You should be able to display the commands being run, ideally before they are
executed.

• The tool should log of all its activities (at least optionally).

• As much as possible, the tool should validate the values the user enters. In fact,
novice administrators frequently assume that the tools do make sure their selec-
tions are reasonable, falsely thinking that they are protected from anything
harmful.

• All of the options for commands included in the tool should be available for use,
except when doing so would violate the next item.

• The tool should not include every administrative command. More specifically, it
should deliberately omit commands that could cause catastrophic consequences
if they are used incorrectly. Which items to omit depends on the sort of adminis-
trators the tool is designed for; the scope of the tool should be directly propor-
tional to the amount of knowledge its user is assumed to have. In the extreme
case, dragging a disk icon into a trash can icon should never do anything other
than dismount it, and there should not be any way to, say, reformat an existing
filesystem. Given that such a tool is consciously designed for minimally-compe-
tent administrators, including such capabilities is just asking for trouble.

In addition, these features make using an administrative tool much more efficient,
but they are not absolutely essential:

• A way of specifying the desired starting location within a deep menu tree when
you invoke the tool.

• A one-keystroke exit command that works at every point within menu system.

• Context-sensitive help.

• The ability to limit access to subsections of the tool by user.

• Customization features.

If one uses these criteria, AIX’s SMIT comes closest to an ideal administrative tool, a
finding that many have found ironic.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 17

As usual, using menu interfaces in moderation is probably the best approach. These
applications are great when they save you time and effort, but relying on them to
lead you through every situation will inevitably lead to frustration and disappoint-
ment somewhere down the line.

The Unix versions we are considering offer various system administration facilities.
They are summarized and compared in Table 1-2. The table columns hold the Unix
version, tool command or name, tool type, whether or not the command to be run
can be previewed before execution, whether or not the facility can log its actions and
whether or not the tool can be used to administer remote systems.

There are also some other tools on some of these systems that will be mentioned in
this book when appropriate, but they are ignored here.

AIX: SMIT and WSM
AIX offers two main system administration facilities: the System Management Inter-
face Tool (SMIT) and the Workspace System Manager (WSM) facility. Both of them
run in both graphical and text mode.

SMIT consists of a many-leveled series of nested menus. Its main menu is illustrated
in Figure 1-2.

One of SMIT’s most helpful features is command preview: if you click on the Com-
mand button or press F6, SMIT displays the command to be executed by the current
dialog. This feature is illustrated in the window on the right in Figure 1-2.

You can also go directly to any screen by including the corresponding fast path key-
word on the smit command line. Many SMIT fast paths are the same as the command

Table 1-2. Some system administration facilities

Unix Version Command/tool Type Command preview? Creates logs?a

a Some tools do some rather half-hearted logging to the syslog facility, but it’s not very useful.

Remote admin?

AIX smit
WSM

menu
GUI

yes
no

yes
no

no
yes

FreeBSD sysinstall menu no no no

HP-UX sam both no yes yes

Linux linuxconf both no no no

Red Hat Linux redhat-config-* GUI no no no

SuSE Linux yast
yast2

menu
GUI

no
no

no
no

no
no

Solaris admintool
CDE admin tools
AdminSuite/SMC

menu
GUI
menu

no
no
no

no
no
yes

no
no
yes

Tru64 sysman
sysman -station

menu
menu

no
no

no
no

no
yes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Introduction to System Administration

executed from a particular screen. Many other fast paths fall into a predictable pat-
tern, beginning with one of the prefixes mk (make or start), ch (change or reconfigure),
ls (list), or rm (remove or stop), to which an object code is appended: mkuser, chuser,

Why Menus and Icons Aren’t Enough
Every site needs at least one experienced system administrator who can perform those
tasks that are beyond the abilities of the administrative tool. Not only does every cur-
rent tool leave significant amounts of uncovered territory, but they also all suffer from
limitations inherent in programs designed for routine operations under normal system
conditions. When the system is in trouble, and these assumptions no longer hold, the
tools don’t work.

For example, I’ve been in a situation where the administrative tool couldn’t configure
a replacement because the old disk hadn’t been unconfigured properly before being
removed. One part of the tool thought the old disk was still on the system and
wouldn’t replace it, while another part wouldn’t delete the old configuration data
because it couldn’t access the corresponding physical disk.

I was able to solve this problem because I understood enough about the device data-
base on that system to fix things manually. Not only will such things happen to every
system from time to time, they will happen to everyone, sooner or later. It’s a lot easier
to coax a system back to life from single user mode after a power failure when you
understand, for example, what the Check Filesystem Integrity menu item actually
does. In the end, you need to know how things really work.

Figure 1-2. The AIX SMIT facility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 19

lsuser, rmuser for working with user accounts; mkprt, chprt, lsprt, rmprt for working
with printers, and so on. Thus, it’s often easy to guess the fast path you want.

You can display the fast path for any SMIT screen by pressing F8 in the ASCII ver-
sion of the tool:

Current fast path:
 "mkuser"

If the screen doesn’t have a fast path, the second line will be blank. Other useful fast
paths that are harder to guess include the following:

chgsys
View/change AIX parameters.

configtcp
Reconfigure TCP/IP.

crfs
Create a new filesystem.

lvm
Main Logical Volume Manager menu.

_nfs
Main NFS menu.

spooler
Manipulate print jobs.

Here are a few additional SMIT notes:

• The smitty command may be used to start the ASCII version of SMIT from
within an X session (where the graphical version is invoked by default).

• Although I like them, many people are annoyed by the SMIT log files. You can
use a command like this one to eliminate the SMIT log files:

$ smit -s /dev/null -l /dev/null ...

You can define an alias in your shell initialization file to get rid of these files per-
manently (C shell users would omit the equals sign):

alias smit="/usr/sbin/smitty -s /dev/null -l /dev/null"

• smit -x provides a command preview mode. The commands that would be run
are written to the log file but not executed.

• Newer versions of smit have the following annoying feature: when a command
has successfully completed, and you click Done to close the output window, you
are taken back to the command setup window. At this point, to exit, you must
click Cancel, not OK. Doing the latter will cause the command to run again,
which is not what you want and is occasionally quite troublesome!

The WSM facility contains a variety of GUI-based tools for managing various aspects
of the system. Its functionality is a superset of SMIT’s, and it has the advantage of
being able to administer remote systems (it requires that remote systems be running

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Introduction to System Administration

a web server). You can access WSM via the Common Desktop Environment’s Appli-
cations area: click on the file cabinet icon (the one with the calculator peeking out of
it); the system administration tools are then accessible under the System_Admin
icon. You can also run a command-line version of WSM via the wsm command.

The WSM tools are run on a remote system via a Java-enabled web browser. You can
connect to the tools by pointing the browser at http://hostname/wsm.html, where
hostname corresponds to the desired remote system. Of course, you can also run the
text version by entering the wsm command into a remote terminal session.

HP-UX: SAM
HP-UX provides the System Administration Manager, also known as SAM. SAM is
easy to use and can perform a variety of system management tasks. SAM operates in
both menu-based and GUI mode, although the latter requires support for Motif.

The items on SAM’s menus invoke a combination of regular HP-UX commands and
special scripts and programs, so it’s not always obvious what they do. One way to
find out more is to use SAM’s built-in logging feature. SAM allows you to specify the
level of detail in log file displays, and you can optionally keep the log open as you are
working in order to monitor what is actually happening. The SAM main window and
log display are illustrated in Figure 1-3.

If you really want to know what SAM is doing, you’ll need to consult its configura-
tion files, stored in the subdirectories of /usr/sam/lib. Most subdirectories have two-
character names, closely related to a top-level icon or menu item. For example, the
ug subdirectory contains files for the Users and Groups module, and the pm subdi-
rectory contains those for Process Management. If you examine the .tm file there,
you can figure out what some of the menu items do. This example illustrates the
kinds of items to look for in these files:

#egrep '^task [a-z]|^ *execute' pm.tm
task pm_get_ps {
 execute "/usr/sam/lbin/pm_parse_ps"
task pm_add_cron {
 execute "/usr/sam/lbin/cron_change ADD /var/sam/pm_tmpfile"
task pm_add_cron_check {
 execute "/usr/sam/lbin/cron_change CHECK /var/sam/pm_tmpfile"
task pm_mod_nice {
 execute "unset UNIX95;/usr/sbin/renice -n %$INT_ID% %$STRING_ID%"
task pm_rm_cron {
 execute "/usr/sam/lbin/cron_change REMOVE /var/sam/pm_tmpfile"

The items come in pairs, relating a menu item or icon and an actual HP-UX com-
mand. For example, the fourth pair in the previous output allows you to figure out
what the Modify Nice Priority menu item does (runs the renice command). The sec-
ond pair indicates that the item related to adding cron entries executes the listed shell
script; you can examine that file directly to get further details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 21

There is another configuration file for each main menu item in the /usr/sam/lib/C
subdirectory, named pm.ui in this case. Examining the lines containing “action” and
“do” provides similar information. Note that “do” entries that end with parentheses
(e.g., do pm_forcekill_xmit()) indicate a call to a routine in one of SAM’s component
shared libraries, which will mean the end of the trail for your detective work.

SAM allows you to selectively grant access to its functional areas on a per-user basis.
Invoke it via sam -r to set up user privileges and restrictions. In this mode, you select
the user or group for which you want to define allowed access, and then you navi-
gate through the various icons and menus, enabling or disabling items as appropri-
ate. When you are finished, you can save these settings and also save groups of
settings as named permission templates that can subsequently be applied to other
users and groups.

In this mode, the SAM display changes, and the icons are colored indicating the
allowed access: red for prohibited, green for allowed, and yellow when some fea-
tures are allowed and others are prohibited.

You can use SAM for remote administration by selecting the Run SAM on Remote
System icon from the main window. The first time you connect to a specific remote
system, SAM automatically sets up the environment.

Figure 1-3. The HP-UX SAM facility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Introduction to System Administration

Solaris: admintool and Sun Management Console
From a certain point of view, current versions of Solaris actually offer three distinct
tool options:

• admintool, the menu-based system administration package available under
Solaris for many years. You must be a member of the sysadmin group to run this
program.

• A set of GUI-based tools found under the System_Admin icon of the Applica-
tions Manager window under the Common Desktop Environment (CDE), which
is illustrated on the left in Figure 1-4. Select the Applications ➝ Application
Manager menu path from the CDE’s menu to open this window. Most of these
tools are very simple, one-task utilities related to media management, although
there is also an icon there for admintool.

• The Solaris AdminSuite, whose components are controlled by the Sun Manage-
ment Console (SMC). The facility’s main window is illustrated on the right in
Figure 1-4.

In some cases, this package is included with the Solaris operating system. It is
also available for (free) download (from http://www.sun.com/bigadmin/content/
adminpack/). In fact, it is well worth the overnight download required if you
have only a slow modem (two nights if you want the documentation as well).

This tool can be used to perform administrative tasks on remote systems. You
specify the system on which you want to operate when you log in to the facility.

Linux: Linuxconf
Many Linux systems, including some Red Hat versions, offer the Linuxconf graphi-
cal administrative tool written by Jacques Gélinas. This tool can also be used with
other Linux distributions (see http://www.solucorp.qc.ca/linuxconf/). It is illustrated
in Figure 1-5.

Figure 1-4. Solaris system administration tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 23

The tool’s menu system is located in the area on the left, and forms related to the
current selection are displayed on the right. Several of the program’s subsections can
be accessed directly via separate commands (which are in fact just links to the main
linuxconf executable): fsconf, mailconf, modemconf, netconf, userconf, and uucpconf,
which administer filesystems, electronic mail, modems, networking parameters,
users and groups and UUCP, respectively.

Early versions of Linuxconf were dreadful: bug-rich and unbelievably slow. How-
ever, more recent versions have improved quite a bit, and the current version is
pretty good. Linuxconf leans toward supporting all available options at the expense
of novice’s ease-of-use at times (a choice with which I won’t quarrel). As a result, it is
a tool that can make many kinds of configuration tasks easier for an experienced
administrator; less expert users may find the number of settings in some dialogs to
be somewhat daunting. You can also specify access to Linuxconf and its various sub-
sections on a per-user basis (this is configured via the user account settings).

Red Hat Linux: redhat-config-*
Red Hat Linux provides several GUI-based administration tools, including these:

redhat-config-bindconf
Configure the DNS server (redhat-config-bind under Version 7.2).

redhat-config-network
Configure the networking on the local host (new with Red Hat Version 7.3).

redhat-config-printer-gui
Configure and manage print queues and the print server.

redhat-config-services
Select servers to be started at boot time.

Figure 1-5. The Linuxconf facility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Introduction to System Administration

redhat-config-date and redhat-config-time
Set the date and/or time.

redhat-config-users
Configure user accounts and groups.

There are often links to some of these utilities with different (shorter) names. They
can also be accessed via icons from the System Settings icon under Start Here.
Figure 1-6 illustrates the dialogs for creating a new user account (left) and specifying
the local system’s DNS server (right).

SuSE Linux: YaST2
The “YaST” in YaST2 stands for “yet another setup tool.” It is a follow-on to the
original YaST, and like the previous program (which is also available), it is a some-
what prettied up menu-based administration facility. The program’s main window is
illustrated in Figure 1-7.

The yast2 command is used to start the tool. Generally, the tool is easy to use and
does its job pretty well. It does have one disadvantage, however. Whenever you add
a new package or make other kinds of changes to the system configuration, the
SuSEconfig script runs (actually, a series of scripts in /sbin/conf.d). Before SuSE Ver-
sion 8, this process was fiendishly slow.

SuSEconfig’s actions are controlled by the settings in the /etc/rc.config configuration
file, as well as those in /etc/rc.config.d (SuSE Version 7) or /etc/sysconfig (SuSE Ver-
sion 8). Its slowness stems from the fact that every action is performed every time
anything changes on the system; in other words, it has no intelligence whatsoever
that would allow it to operate only on items and areas that were modified.

Even worse, on SuSE 7 systems, SuSEconfig’s actions are occasionally just plain
wrong. A particularly egregious example occurs with the Postfix electronic mail
package. By default, the primary Postfix configuration file, main.cf, is overwritten

Figure 1-6. Red Hat Linux system configuration tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 25

every time the Postfix SuSEconfig subscript is executed.* The latter happens every
time SuSEconfig runs, which is practically every time you change anything on the sys-
tem with YaST or YaST2 (regardless of its lack of relevance to Postfix). The net result
is that any local customizations to main.cf get lost. Clearly, adding a new game pack-
age, for example, shouldn’t clobber a key electronic-mail configuration file.

Fortunately, these problems have been cleared up in SuSE Version 8. I do also use
YaST2 on SuSE 7 systems, but I’ve examined all of the component subscripts thor-
oughly and made changes to configuration files to disable actions I didn’t want. You
should do the same.

FreeBSD: sysinstall
FreeBSD offers only the sysinstall utility in terms of administrative tools, the same
program that manages operating system installations and upgrades (its main menu is
illustrated in Figure 1-8). Accordingly, the tasks that it can handle are limited to the
ones that come up in the context of operating system installations: managing disks
and partitions, basic networking configuration, and so on.

Figure 1-7. The SuSE Linux YaST2 facility

* You can prevent this by setting POSTFIX_CREATECF to no in /etc/rc.config.d/postfix.rc.config.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Introduction to System Administration

Both the Configure and Index menu items are of interest for general system adminis-
tration tasks. The latter is especially useful in that it lists individually all the available
operations the tool can perform.

Tru64: SysMan
The Tru64 operating system offers the SysMan facility. This tool is essentially menu
driven despite the fact that it can run in various graphical environments, including via
a Java 1.1–enabled browser. SysMan can run in two different modes, as shown in
Figure 1-9: as a system administration utility for the local system or as a monitoring
and management station for the network. These two modes of operations are selected
with the sysman command’s -menu and -station options, respectively; -menu is the
default.

This utility does not have any command preview or logging features, but it does have
a variety of “accelerators”: keywords that can be used to initiate a session at a partic-
ular menu point. For example, sysman shutdown takes you directly to the system shut-
down dialog. Use the command sysman -list to obtain a complete list of all defined
accelerators.

One final note: the insightd daemon must be running in order to be able to access
the SysMan online help.

Other Freely Available Administration Tools
The freely available operating systems often provide some additional administrative
tools as part of the various window manager packages that they include. For exam-
ple, both the Gnome and KDE desktop environments include several administrative

Figure 1-8. The FreeBSD sysinstall facility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 27

applets and utilities. Those available under KDE on a SuSE Linux system are illus-
trated in Figure 1-10.

We will consider some of the best of these tools from time to time in this book.

The Ximian Setup Tools

The Ximian project brings together the latest release of the Gnome desktop, the Red
Carpet web-based system software update facility, and several other items into what
is designed to be a commercial-quality desktop environment. As of this writing, it is
available for several Linux distributions and for Solaris systems. Additional ports,
including to BSD, are planned for the future.

The Ximian Setup Tools are a series of applets designed to facilitate system adminis-
tration, ultimately in a multiplatform environment. Current modules allow you to

Figure 1-9. The SysMan facility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Introduction to System Administration

administer boot setup (i.e., kernel selection), disks, swap space, users, basic net-
working, shared filesystems, printing, and the system time. The applet for the latter
is illustrated in Figure 1-11.

This applet, even in this early incarnation, goes well beyond a simple dialog allowing
you to set the current date and time; it also allows you to specify time servers for
Internet-based time synchronization. The other tools are of similar quality, and the
package seems very promising for those who want GUI-based system administration
tools.

Figure 1-10. KDE administrative tools on a SuSE Linux system

Figure 1-11. The Ximian Setup Tools

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Menus and GUIs | 29

VNC
I’ll close this section by briefly looking at one additional administrative tool that can
be of great use for remote administration, especially in a heterogeneous environ-
ment. It is called VNC, which stands for “virtual network computing.” The package
is available for a wide variety of Unix systems* at http://www.uk.research.att.com/vnc/.
It is shown in Figure 1-12.

The illustration depicts the entire desktop on a SuSE Linux system. You can see sev-
eral of its icons along the left edge, as well as the tool bar at the bottom of the screen
(where you can determine that it is running the KDE window manager).

The four open windows are three individual VNC sessions to different remote com-
puters, each running a different operating system and a local YaST session. Begin-
ning at the upper left and moving clockwise, the remote sessions are a Red Hat Linux
system (Linuxconf is open), a Solaris system (we can see admintool), and an HP-UX
system (running SAM).

VNC has a couple of advantages over remote application sessions displayed via the X
Windows system:

* Official binary versions of the various tools are available for a few systems on the main web page. In addition,
consult the contrib area for ports to additional systems. It is also usually easy to build the tools from source
code.

Figure 1-12. Using VNC for remote system administration

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Introduction to System Administration

• With VNC you see the entire desktop, not just one application window. Thus,
you can access applications via the remote system’s own icons and menus
(which may be much less convenient to initiate via commands).

• You eliminate missing font issues and many other display and resource prob-
lems, because you are using the X server on the remote system to generate the
display images rather than the one on the local system.

In order to use VNC, you must download the software and build or install the five
executables that comprise it (conventionally, they are placed in /usr/local/bin). Then
you must start a server process on systems that you want to administer remotely,
using the vncserver command:

garden-$ vncserver
You will require a password to access your desktops.

Password: Not echoed.
Verify:

New 'X' desktop is garden:1

Creating default startup script /home/chavez/.vnc/xstartup
Starting applications specified in /home/chavez/.vnc/xstartup
Log file is /home/chavez/.vnc/garden:1.log

This example starts a server on host garden. The first time you run the vncserver
command, you will be asked for a password. This password, which is independent of
your normal Unix password, will be required in order to connect to the server.

Once the server is running, you connect to it by running the vncviewer command. In
this example, we connect to the vncserver on garden:

desert-$ vncviewer garden:1

The parameter given is the same as was indicated when the server was started. VNC
allows multiple servers to be running simultaneously.

In order to shut down a VNC server, execute a command like this one on the remote
system (i.e., the system where the server was started):

garden-$ vncserver -kill :1

Only the VNC server password is required for connection. Usernames
are not checked, so an ordinary user can connect to a server started by
root if she knows the proper password. Therefore, it is important to
select strong passwords for the server password (see “Administering
User Passwords” in Chapter 6) and to use a different password from
the normal one if such cross-user connections are needed.

Additionally, VNC passwords are sent in plain text over the network.
Thus, using VNC is problematic on an insecure network. In such cir-
cumstances, VNC traffic can be encrypted by tunneling it through a
secure protocol, such as SSH.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Where Does the Time Go? | 31

Where Does the Time Go?
We’ll close this chapter with a brief look at a nice utility that can be useful for keep-
ing track of how you spend your time, information that system administrators will
find comes in handy all too often. It is called plod and was written by Hal Pomeranz
(see http://bullwinkle.deer-run.com/~hal/plod/). While there are similar utilities with a
GUI interface (e.g., gtt and karm, from the Gnome and KDE window manager pack-
ages, respectively), I prefer this simpler one that doesn’t require a graphical environ-
ment.

plod works by maintaining a log file containing time stamped entries that you pro-
vide; the files’ default location is ~/.logdir/yyyymm, where yyyy and mm indicate the
current year and month, respectively. plod log files can optionally be encrypted.

The command has lots of options, but its simplest form is the following:

$ plod [text]

If some text is included on the command, it is written to the log file (tagged with the
current date and time). Otherwise, you enter the command’s interactive mode, in
which you can type in the desired text. Input ends with a line containing a lone
period.

Once you’ve accumulated some log entries, you can use the command’s -C, -P, and -
E options to display them, either as continuous output, piped through a paging com-
mand like more (although less is the default), or via an editor (vi is the default). You
can specify a different paging program or editor with the PAGER and EDITOR envi-
ronment variables (respectively).

You can also use the -G option to search plod log files; it differs from grep in that
matching entries are displayed in their entirety. By default, searches are not case sen-
sitive, but you can use -g to make them so.

Here is an example command that searches the current log file:

$ plod -g hp-ux

05/11/2001, 22:56 --
Starting to configure the new HP-UX box.

05/11/2001, 23:44 --
Finished configuring the new HP-UX box.

Given these features, plod can be used to record and categorize the various tasks that
you perform. We will look at a script which can read and summarize plod data in
Chapter 14.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32

Chapter 2CHAPTER 2

The Unix Way

It’s easy to identify the most important issues and concerns system managers face,
regardless of the type of computers they have. Almost every system manager has to
deal with user accounts, system startup and shutdown, peripheral devices, system
performance, security—the list could go on and on. While the commands and proce-
dures you use in each of these areas vary widely across different computer systems,
the general approach to such issues can be remarkably similar. For example, the pro-
cess of adding users to a system has the same basic shape everywhere: add the user to
the user account database, allocate some disk space for him, assign a password to the
account, enable him to use major system facilities and applications, and so on. Only
the commands to perform these tasks are different on different systems.

In other cases, however, even the approach to an administrative task or issue will
change from one computer system to the next. For example, “mounting disks”
doesn’t mean the same thing on a Unix system that it does on a VMS or MVS system
(where they’re not always even called disks). No matter what operating system
you’re using—Unix, Windows 2000, MVS—you need to know something about
what’s happening inside, at least more than an ordinary user does.

Like it or not, a system administrator is generally called on to be the resident guru. If
you’re responsible for a multiuser system, you’ll need to be able to answer user ques-
tions, come up with solutions to problems that are more than just band-aids, and
more. Even if you’re responsible only for your own workstation, you’ll find yourself
dealing with aspects of the computer’s operation that most ordinary users can sim-
ply ignore. In either case, you need to know a fair amount about how Unix really
works, both to manage your system and to navigate the eccentric and sometimes
confusing byways of the often jargon-ridden technical documentation.

This chapter will explore the Unix approach to some basic computer entities: files,
processes, and devices. In each case, I will discuss how the Unix approach affects
system administration procedures and objectives. The chapter concludes with an
overview of the standard Unix directory structure.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 33

If you have managed non-Unix computer systems, this chapter will serve as a bridge
between the administrative concepts you know and the specifics of Unix. If you have
some familiarity with user-level Unix commands, this chapter will show you their
place in the underlying operating system structure, enabling you to place them in an
administrative context. If you’re already familiar with things like file modes, inodes,
special files, and fork-and-exec, you can probably skip this chapter.

Files
Files are central to Unix in ways that are not true for some other operating systems.
Commands are executable files, usually stored in standard locations in the directory
tree. System privileges and permissions are controlled in large part via access to files.
Device I/O and file I/O are distinguished only at the lowest level. Even most inter-
process communication occurs via file-like entities. Accordingly, the Unix view of
files and its standard directory structure are among the first things a new administra-
tor needs to know about.

Like all modern operating systems, Unix has a hierarchical (tree-structured) directory
organization, know collectively as the filesystem.* The base of this tree is a directory
called the root directory. The root directory has the special name / (the forward slash
character). On Unix systems, all user-available disk space is transparently combined
into a single directory tree under /, and the physical disk a file resides on is not part of
a Unix file specification. We’ll discuss this topic in more detail later in this chapter.

Access to files is organized around file ownership and protection. Security on a Unix
system depends to a large extent on the interplay between the ownership and protec-
tion settings on its files and the system’s user account and group† structure (as well
as factors like physical access to the machine). The following sections discuss the
basic principles of Unix file ownership and protection.

File Ownership
Unix file ownership is a bit more complex than it is under some other operating sys-
tems. You are undoubtedly familiar with the basic concept of a file having an owner:
typically, the user who created it and has control over it. On Unix systems, files have
two owners: a user owner and a group owner. What is unusual about Unix file own-
ership is that these two owners are decoupled. A file’s group ownership is indepen-
dent of the user who owns it. In other words, although a file’s group owner is often,

* Or file system—the two forms refer to the same thing. To make things even more ambiguous, these terms
are also used to refer to the collection of files on an individual formatted disk partition.

† On Unix systems, individual user accounts are organized into groups. Groups are simply collections of users,
defined by the entries in /etc/passwd and /etc/group. The mechanics of defining groups and designating users
as members of them are described in Chapter 6. Using groups effectively to enhance system security is dis-
cussed in Chapter 7.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: The Unix Way

perhaps even usually, the same as the group its user owner belongs to, this is not
required. In fact, the user owner of a file does need not even need to be a member of
the group that owns it. There is no necessary connection between them at all. In
such a case, when file access is specified for a file’s group owner, it applies to mem-
bers of that group and not to other members of its user owner’s group, who are
treated simply as part of “other”: the rest of the world.

The motivation behind this group ownership of files is to allow file protections and
permissions to be organized according to your needs. The key point here is flexibil-
ity. Because Unix lets users be in more than one group, you are free to create groups
as you need them. Files can be made accessible to almost completely arbitrary collec-
tions of the system’s users. Group file ownership means that giving someone access
to an entire set of files and commands is as simple as adding her to the group that
owns them; similarly, taking access away from someone else involves removing her
from the relevant group.

To consider a more concrete example, suppose user chavez, who is in the chem
group, needs access to some files usually used by the physics group. There are sev-
eral ways you can give her access:

• Make copies of the files for her. If they change, however, her copies will need to
be updated. And if she needs to make changes too, it will be hard to avoid end-
ing up with two versions that need to be merged together. (Because of inconve-
niences like these, this choice is seldom taken.)

• Make the files world-readable. The disadvantage of this approach is that it opens
up the possibility that someone you don’t want to look at the files will see them.

• Make chavez a member of the physics group. This is the best alternative and also
the simplest. It involves changing only the group configuration file. The file per-
missions don’t need to be modified at all, since they already allow access for
physics group members.

Displaying file ownership

To display a file’s user and group ownership, use the long form of the ls command
by including the -l option (-lg under Solaris):

$ ls -l
-rwxr-xr-x 1 root system 120 Mar 12 09:32 bronze
-r--r--r-- 1 chavez chem 84 Feb 28 21:43 gold
-rw-rw-r-- 1 chavez physics 12842 Oct 24 12:04 platinum
-rw------- 1 harvey physics 512 Jan 2 16:10 silver

Columns three and four display the user and group owners for the listed files. For
example, we can see that the file bronze is owned by user root and group system. The
next two files are both owned by user chavez, but they have different group owners;
gold is owned by group chem, while platinum is owned by group physics. The last file,
silver, is owned by user harvey and group physics.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 35

Who owns new files?

When a new file is created, its user owner is the user who creates it. On most Unix
systems, the group owner is the current* group of the user who creates the file. How-
ever, on BSD-style systems, the group owner is the same as the group owner of the
directory in which the file is created. Of the versions we are considering, FreeBSD
and Tru64 Unix operate in the second manner by default.

Most current Unix versions, including all of those we are considering, allow a sys-
tem to selectively use BSD-style group inheritance from the directory group owner-
ship by setting the set group ID (setgid) attribute on the directory, which we discuss
in more detail later in this chapter.

Changing file ownership

If you need to change the ownership of a file, use the chown and chgrp commands.
The chown command changes the user owner of one or more files:

chown new-owner files

where new-owner is the username (or user ID) of the new owner for the specified
files. For example, to change the owner of the file brass to user harvey, execute this
chown command:

chown harvey brass

On most systems, only the superuser can run the chown command.

If you need to change the ownership of an entire directory tree, you can use the -R
option (R for recursive). For example, the following command will change the user
owner to harvey for the directory /home/iago/new/tgh and all files and subdirectories
contained underneath it:

chown -R harvey /home/iago/new/tgh

You can also change both the user and group owner in a single operation, using this
format:

chown new-owner:new-group files

For example, to change the user owner to chavez and the group owner to chem for
chavez’s home directory and all the files underneath it, use this command:

chown -R chavez:chem /home/chavez

If you just want to change a file’s group ownership, use the chgrp command:

$ chgrp new-group files

where new-group is the group name (or group ID) of the desired group owner for the
specified files. chgrp also supports the -R option. Non-root users of chgrp must be

* See “Unix Users and Groups” in Chapter 6 for information about how the user’s primary group is deter-
mined.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: The Unix Way

both the owner of the file and a member of the new group to change a file’s group
ownership (but need not be a member of its current group).

File Protection
Once ownership is set up properly, the next natural issue to consider is how to pro-
tect files from unwanted access (or the reverse: how to allow access to those people
who need it). The protection on a file is referred to as its file mode on Unix systems.
File modes are set with the chmod command; we’ll look at chmod after discussing the
file protection concepts it relies on.

Types of file and directory access

Unix supports three types of file access: read, write, and execute, designated by the
letters r, w, and x, respectively. Table 2-1 shows the meanings of those access types.

The file access types are fairly straightforward. If you have read access to a file, you
can see what’s in it. If you have write access, you can change what’s in it. If you have
execute access and the file is a binary executable program, you can run it. To run a
script, you need both read and execute access, since the shell has to read the com-
mands to interpret them. When you run a compiled program, the operating system
loads it into memory for you and begins execution, so you don’t need read access
yourself.

The corresponding meanings for directories may seem strange at first, but they do
make sense. If you have execute access to a directory, you can cd to it (or include it in
a path that you want to cd to). You can also access files in the directory by name.
However, to list all the files in the directory (i.e., to run the ls command without any
arguments), you also need read access to the directory. This is consistent because a
directory is just a file whose contents are the names of the files it contains, along with
information pointing to their disk locations. Thus, to cd to a directory, you need only
execute access since you don’t need to be able to read the directory file itself. In con-
trast, if you want to run any command lists or use files in the directory via an explicit
or implicit wildcard—e.g., ls without arguments or cat *.dat—you do need read
access to the directory file itself to expand the wildcards.

Table 2-2 illustrates the workings of these various access types by listing some sam-
ple commands and the minimum access you would need to successfully execute
them.

Table 2-1. File access types

Access Meaning for a file Meaning for a directory

r View file contents. Search directory contents (e.g., use ls).

w Alter file contents. Alter directory contents (e.g., delete or rename files).

x Run executable file. Make it your current directory (cd to it).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 37

Some items in this list are worth a second look. For example, when you don’t have
access to any of the component files, you still need only read access to a directory in
order to do a simple ls; if you include -l (or any other option that lists file sizes), you
also need execute access to the directory. This is because the file sizes must be deter-
mined from the disk information, an action which implicitly changes the directory in
question. In general, any operation that involves more than simply reading the list of
filenames from the directory file is going to require execute access if you don’t have
access to the relevant files themselves.

Note especially that write access on a file is not required to delete it; write access to
the directory where the file resides is sufficient (although in this case, you’ll be asked
whether to override the protection on the file):

$ rm copper
rm: override protection 440 for copper? y

If you answer yes, the file will be deleted (the default response is no). Why does this
work? Because deleting a file actually means removing its entry from the directory file
(among other things), which is a form of altering the directory file, for which you
need only write access to the directory. The moral is that write access to directories is
very powerful and should be granted with care.

Given these considerations, we can summarize the different options for protecting
directories as shown in Table 2-3.

Table 2-2. File protection examples

Minimum access needed

Command On file itself On directory file is in

cd /home/chavez N/A x

ls /home/chavez/*.c (none)
r

r
x

ls -l /home/chavez/*.c (none)
r

rx
x

cat myfile r x

cat >>myfile w x

runme (executable) x x

cleanup.sh (script) rx x

rm myfile (none) wx

Table 2-3. Directory protection summary

Access granted Resulting availability

(no access)

Does not allow any activity of any kind within the directory or any of its subdirectories.

r--
(read access only)

Allows users to list the names of the files in the directory, but does not reveal any of their
attributes (i.e., size, ownership, mode, and so on).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: The Unix Way

Access classes

Unix defines three basic classes of file access for which protection may be specified
separately:

User access (u)
Access granted to the owner of the file.

Group access (g)
Access granted to members of the same group as the group owner of the file (but
does not apply to the owner himself, even if he is a member of this group).

Other access (o)
Access granted to all other normal users.

Unix file protection specifies the access types available to members of each of the
three access classes for the file or directory.

The long version of the ls command also displays file permissions in addition to user
and group ownership:

$ ls -l
-rwxr-xr-x 1 root system 120 Mar 12 09:32 bronze
-r--r--r-- 1 chavez chem 84 Feb 28 21:43 gold
-rw-rw-r-- 1 chavez physics 12842 Oct 24 12:04 platinum

The set of letters and hyphens at the beginning of each line represents the file’s
mode. The 10 characters are interpreted as indicated in Table 2-4.

--x
(execute access only)

Lets users work with programs in the directory specified by full pathname, but hides all
other files.

r-x
(read and execute access)

Lets users work with programs in the directory and list the contents of the directory, but
does not allow them to create or delete files in the directory.

-wx
(write and execute access)

Used for a drop-box directory. Users can change to the directory and leave files there, but
can’t discover the names of files placed there by others. The sticky bit is also usually set on
such directories (see below).

rwx
(full access)

Lets users work with programs in the directory, look at the contents of the directory, and
create or delete files in the directory.

Table 2-4. Interpreting mode strings

User access Group access Other access

File
type

1
read

2
write

3
exec

4
read

5
write

6
exec

7
read

8
write

9
exec

10

bronze - r w x r - x r - x

gold - r - - r - - r - -

platinum - r w - r w - r - -

/etc/passwd - r w - r - - r - -

Table 2-3. Directory protection summary (continued)

Access granted Resulting availability

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 39

The first character indicates the file type: a hyphen indicates a plain file, and a d indi-
cates a directory (other possibilities are discussed later in this chapter). The remain-
ing nine characters are arranged in three groups of three. Moving from left to right,
the groups represent user, group, and other access. Within each group, the first char-
acter denotes read access, the second character write access, and the third character
execute access. If a certain type of access is allowed, its code letter appears in the
proper position within the triad; if it is not granted, a hyphen appears instead.

For example, in the previous listing, read access and no other is granted for all users
on the file gold. On the file bronze, the owner—in this case, root—is allowed read,
write, and execute access, while all other users are allowed only read and execute
access. Finally, for the file platinum, the owner (chavez) and all members of the
group physics are allowed read and write access, while everyone else is granted only
read access.

The remaining entries in Table 2-4 (below the line) are additional examples illustrat-
ing the usual protections for various common system files.

Setting file protection

The chmod command is used to specify the access mode for files:

$ chmod access-string files

chmod’s second argument is an access string, which states the permissions you want to
set (or remove) for the listed files. It has three parts: the code for one or more access
classes, the operator, and the code for one or more access types.

Figure 2-1 illustrates the structure of an access string. To create an access string, you
choose one or more codes from the access class column, one operator from the mid-
dle column, and one or more access types from the third column. Then you concate-
nate them into a single string (no spaces). For example, the access string u+w says to
add write access for the user owner of the file. Thus, to add write access for yourself
for a file you own (lead, for example), use:

$ chmod u+w lead

To add write access for everybody, use the all access class:

$ chmod a+w lead

/etc/shadow - r - - - - - - - -

/etc/inittab - r w - r w - r - -

/bin/sh - r - x r - x r - x

/tmp d r w x r w x r w t

Table 2-4. Interpreting mode strings (continued)

User access Group access Other access

File
type

1
read

2
write

3
exec

4
read

5
write

6
exec

7
read

8
write

9
exec

10

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: The Unix Way

To remove write access, use a minus sign instead of a plus sign:

$ chmod a-w lead

This command sets the permissions on the file lead to allow only read access for all
users:

$ chmod a=r lead

If execute or write access had previously been set for any access class, executing this
command removes it.

You can specify more than one access type and more than one access class. For exam-
ple, the access string g-rw says to remove read and write access from the group access.
The access string go=r says to set the group and other access to read-only (no execute
access, no write access), changing the current setting as needed. And the access string
go+rx says to add both read and execute access for both group and other users.

You can also include more than one set of operation–access type pairs for any given
access class specification. For example, the access string u+x-w adds execute access
and removes write access for the user owner. You can combine multiple access
strings by separating them with commas (no spaces between them). Thus, the fol-
lowing command adds write access for the file owner and removes write access and
adds read access for the group and other classes for the files bronze and brass:

$ chmod u+w,og+r-w bronze brass

The chmod command supports a recursive option (-R), to change the mode of a direc-
tory and all files under it. For example, if user chavez wants to protect all the files
under her home directory from everyone else, she can use the command:

$ chmod -R go-rwx /home/chavez

Beyond the basics

So far, this discussion has undoubtedly made chmod seem more rigid than it actually
is. In reality, it is a very flexible command. For example, both the access class and the
access type may be omitted under some circumstances.

Figure 2-1. Constructing an access string for chmod

ACCESS CLASS
One or more of:

u
g
o
a (for all 3)

OPERATOR ACCESS TYPE
One or more of:

r
w
x
...

+ +
+
-
=

(Add designated access)
(Remove designated access)
(Set exact access specified)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 41

When the access class is omitted, it defaults to a. For example, the following com-
mand grants read access to all users for the current directory and every file under it:

$ chmod -R +r .

On some systems, this form operates slightly differently than a chmod a+r command.
When the a access class is omitted, the specified permissions are compared against
the default permissions currently in effect (i.e., as specified by the umask). When
there is disagreement between them, the current default permissions take prece-
dence. We’ll look at this in more detail when we consider the umask a bit later.

The access string may be omitted altogether when using the = operator; this form has
the effect of removing all access. For example, this command prevents any access to
the file lead by anyone other than its owner:

$ chmod go= lead

Similarly, the form chmod = may be used to remove all access from a file (subject to
constraints on some systems, to be discussed shortly).

The X access type grants execute access to the specified access classes only when exe-
cute access is already set for some access class. A typical use for this access type is to
grant group or other read and execute access to all the directories and executable
files within a subtree while granting only read access to all other types of files (the
first group will all presumably have user execute access set). For example:

$ ls -lF
-rw------- 1 chavez chem609 Nov 29 14:31 data_file.txt
drwx------ 2 chavez chem512 Nov 29 18:23 more_stuff/
-rwx------ 1 chavez chem161 Nov 29 18:23 run_me*
$ chmod go+rX *
$ ls -lF
-rw-r--r-- 1 chavez chem609 Nov 29 14:31 data_file.txt
drwxr-xr-x 2 chavez chem512 Nov 29 18:23 more_stuff/
-rwxr-xr-x 1 chavez chem161 Nov 29 18:23 run_me*

By specifying X, we avoid making data_file.txt executable, which would be a mistake.

chmod also supports the u, g, and o access types, which may be used as a shorthand
form for the corresponding class’s current settings (determined separately for each
specified file). For example, this command makes the other access the same as the
current group access for each file in the current directory:

$ chmod o=g *

If you like thinking in octal, or if you’ve been around Unix a long time, you may find
numeric modes more convenient than incantations like go+rX. Numeric modes are
described in the next section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: The Unix Way

Specifying numeric file modes

The method just described for specifying file modes uses symbolic modes, since code
letters are used to refer to each access class and type. The mode may also be set as an
absolute mode by converting the symbolic representation used by ls to a numeric
form. Each access triad (for a different user class) is converted to a single digit by set-
ting each individual character in the triad to 1 or 0, depending on whether that type
of access is permitted or not, and then taking the resulting three-digit binary number
and converting it to an integer (which will be between 0 and 7). Here is a sample
conversion:

To set the protection on a file to match those above, you specify the numeric file
mode 754 to chmod as the access string:

$ chmod 754 pewter

Specifying the default file mode

You can use the umask command to specify the default mode for newly created files.
Its argument is a three-digit numeric mode that represents the access to be
inhibited—masked out—when a file is created. Thus, the value is the octal comple-
ment of the desired numeric file mode.

If masks confuse, you can compute the umask value by subtracting the numeric
access mode you want to assign from 777. For example, to obtain the mode 754 by
default, compute 777 – 754 = 023; this is the value you give to umask:

$ umask 023

Note that leading zeros are included to make the mask three digits long.

Once this command is executed, all future files created are given this protection
automatically. You usually put a umask command in the system-wide login initializa-
tion file and in the individual login initialization files you give to users when you cre-
ate their accounts (see Chapter 6).

As we mentioned earlier, the chmod command’s actions are affected by the default
permissions when no explicit access class is specified, as in this example:

% chmod +rx *

In such cases, the current umask is taken into account before the file access mode is
changed. More specifically, an individual access permission is not changed unless the
umask allows it to be set.

user group other

Mode r w x r - x r - -

Convert to binary 1 1 1 1 0 1 1 0 0

Convert to octal digit 7 5 4

Corresponding absolute mode 754

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 43

It takes a concrete example to fully appreciate this aspect of chmod:

$ umask Displays the current value.
23
$ ls -l gold silver
---------- 1 chavez chem 609 Oct 24 14:31 gold
-rwxrwxrwx 1 chavez chem 12874 Oct 22 23:14 silver
$ chmod +rwx gold
$ chmod -rwx silver
$ ls -l gold silver
-rwxr-xr-- 1 chavez chem 609 Nov 12 09:04 gold
-----w--wx 1 chavez chem 12874 Nov 12 09:04 silver

The current umask of 023 allows all access for the user, read and execute access for
the group, and read-only access for other users. Thus, the first chmod command acts
as one would expect, setting access in accordance with what is allowed by the
umask. However, the interaction between the current umask and chmod’s “–” opera-
tor may seem somewhat bizarre. The second chmod command clears only those access
bits that are permitted by the umask; in this case, write access for group and write
and execute access for other remain turned on.

Special-purpose access modes

The simple file access modes described previously do not exhaust the Unix possibili-
ties. Table 2-5 lists the other defined file modes.

The t access type turns on the sticky bit (the formal name is save text mode, which is
where the t comes from). For files, this traditionally told the Unix operating system
to keep an executable image in memory even after the process that was using it had
exited. This feature is seldom implemented in current Unix implementations. It was
designed to minimize startup overhead for frequently used programs like vi. We’ll
consider the sticky bit on directories below.

When the set user ID (setuid) or set group ID (setgid) access mode is set on an exe-
cutable file, processes that run it are granted access to system resources based upon
the file’s user or group owner, rather than based on the user who created the pro-
cess. We’ll consider these access modes in detail later in this chapter.

Table 2-5. Special-purpose access modes

Code Name Meaning

t save text mode, sticky bit Files: Keep executable in memory after exit.
Directories: Restrict deletions to each user’s own files.

s setuid bit Files: Set process user ID on execution.

s setgid bit Files: Set process group ID on execution.
Directories: New files inherit directory group owner.

l file locking Files: Set mandatory file locking on reads/writes (Solaris and Tru64 and some-
times Linux). This mode is set via the group access type and requires that group
execute access is off. Displayed as S in ls -l listings.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: The Unix Way

Save-text access on directories

The sticky bit has a different meaning when it is set on directories. If the sticky bit is
set on a directory, a user may only delete files that she owns or for which she has
explicit write permission granted, even when she has write access to the directory
(thus overriding the default Unix behavior). This feature is designed to be used with
directories like /tmp, which are world-writable, but in which it may not be desirable
to allow any user to delete files at will.

The sticky bit is set using the user access class. For example, to turn on the sticky bit
on /tmp, use this command:

chmod u+t /tmp

Oddly, Unix displays the sticky bit as a “t” in the other execute access slot in long
directory listings:

$ ls -ld /tmp
drwxrwxrwt 2 root 8704 Mar 21 00:37 /tmp

Setgid access on directories

Setgid access on a directory has a special meaning. When this mode is set, it means
that files created in that directory will have the same group ownership as the direc-
tory itself (rather than the user owner’s primary group), emulating the default behav-
ior on BSD-based systems (FreeBSD and Tru64). This approach is useful when you
have groups of users who need to share a lot of files. Having them work from a com-
mon directory with the setgid attribute means that correct group ownership will be
automatically set for new files, even if the people in the group don’t share the same
primary group.

To place setgid access on a directory, use a command like this one:

chmod g+s /pub/chem2

Numerical equivalents for special access modes

The special access modes can also be set numerically. They are set via an additional
octal digit prepended to the mode whose bits correspond to the sticky bit (lowest bit:
1), setgid/file locking (middle bit: 2), and setuid (high bit: 4). Here are some examples:

chmod 4755 uid Setuid access
chmod 2755 gid Setgid access
chmod 6755 both Setuid and setgid access: 2 highest bits on
chmod 1777 sticky Sticky bit
chmod 2745 locking File locking (note that group execute is off)
ls -ld
-rwsr-sr-x 1 root chem 0 Mar 30 11:37 both
-rwxr-sr-x 1 root chem 0 Mar 30 11:37 gid
-rwxr-Sr-x 1 root chem 0 Mar 30 11:37 locking
drwxrwxrwt 2 root chem 8192 Mar 30 11:39 sticky
-rwsr-xr-x 1 root chem 0 Mar 30 11:37 uid

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 45

How to Recognize a File Access Problem
My first rule of thumb about any user problem that comes up is this: it’s usually a file
ownership or protection problem.* Seriously, though, the majority of the problems
users encounter that aren’t the result of hardware problems really are file access
problems. One classic tip-off of a file protection problem is something that worked
yesterday, or last week, or even last year, but doesn’t today. Another clue is that
something works differently for root than it does for other users.

In order to work properly, programs and commands must have access to the input
and output files they use, any scratch areas they access, and any permanent files they
rely on, including the special files in /dev (which act as device interfaces).

When such a problem arises, it can come from either the file permissions being wrong
or the protection being correct but the ownership (user and/or group) being wrong.

The trickiest problem of this sort I’ve ever seen was at a customer site where I was
conducting a user training course. Suddenly, their main text editor, which happened
to be a clone of the VAX/VMS editor EDT, just stopped working. It seemed to start
up fine, but then it would bomb out when it got to its initialization file. But the edi-
tor worked without a hitch when root ran it. The system administrator admitted to
“changing a few things” the previous weekend but didn’t remember exactly what. I
checked the protections on everything I could think of, but found nothing. I even
checked the special files corresponding to the physical disks in /dev. My company
ultimately had to send out a debugging version of the editor, and the culprit turned
out to be /dev/null, which the system administrator had decided needed protecting
against random users!

There are at least three morals to this story:

• For the local administrator: always test every change before going on to the next
one—multiple, random changes almost always wreak havoc. Writing them
down as you do them also makes troubleshooting easier.

• For me: if you know it’s a protection problem, check the permissions on
everything.

• For the programmer who wrote the editor: always check the return value of sys-
tem calls (but that’s another book).

If you suspect a file protection problem, try running the command or program as
root. If it works fine, it’s almost certainly a protection problem.

A common, inadvertent way of creating file ownership problems is by accidentally
editing files as root. When you save the file, the file’s owner is changed by some edi-
tors. The most obscure variation on this effect that I’ve heard of is this: someone was

* At least, this was the case before the Internet.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: The Unix Way

editing a file as root using an editor that automatically creates backup files whenever
the edited file is saved. Creating a backup file meant writing a new file to the direc-
tory holding the original file. This caused the ownership on the directory to be set to
root.* Since this happened in the directory used by UUCP (the Unix-to-Unix copy
facility), and correct file and directory ownership are crucial for UUCP to function,
what at first seemed to be an innocuous change to an inconsequential file broke an
entire Unix subsystem. Running chown uucp on the directory fixed everything again.

Mapping Files to Disks
This section will change our focus from files as objects to files as collections of data
on disk. Users need not be aware of the actual disk locations of files they access, but
administrators need to have at least a basic conception of how Unix maps files to
disk blocks in order to understand the different file types and the purpose and func-
tioning of the various filesystem commands.

An inode (pronounced “eye-node”) is the data structure on disk that describes and
stores a file’s attributes, including its physical location on disk. When a filesystem is
initially created, a specific number of inodes are created. In most cases, this becomes
the maximum number of files of all types, including directories, special files, and
links (discussed later) that can exist in the filesystem. A typical formula is one inode
for every 8 KB of actual file storage. This is more than sufficient in most situations.†

Inodes are given unique numbers, and each distinct file has its own inode. When a
new file is created, an unused inode is assigned to it.

Information stored in inodes includes the following:

• User owner and group owner IDs.

• File type (regular, directory, etc., or 0 if the inode is unused).

• Access modes (permissions).

• Most recent inode modification, data access, and data modification times. If the
file’s metadata does not change, the first item will correspond to the file creation
time.

* Clearly, the system itself was somewhat “broken” as well, since adding a file to a directory should never
change the directory’s ownership. However, it is also possible to do this accidentally with text editors that
allow you to edit a directory.

† There are a couple of circumstances where this may not hold. One is a filesystem containing an enormous
number of very small files. The traditional example of this is the USENET news spool directory tree
(although some modern news servers now use a better storage scheme). News files are typically both very
small and inordinately numerous, and their numbers have been known to exceed normal inode limits. A sec-
ond potential problem situation occurs with facilities that make extensive use of symbolic links for functions
such as source code version control, again characterized by many, many tiny files. In such cases, you can run
out of inodes before disk capacity is exhausted. You will want to take these factors into account when pre-
paring the disk (see Chapter 10). At the other extreme, filesystems that are designed to hold only a few very
large files might save a nontrivial amount of space by being configured with far fewer than the normal num-
ber of inodes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 47

• Number of hard links to the file (links are discussed later in this chapter). This is
0 if the inode is unused, and one for most regular files.

• Size of the file.

• Disk addresses of:

— Disk locations for the data blocks that make up the file, and/or

— Disk locations of disk blocks that hold the disk locations of the file’s data
blocks (indirect blocks), and/or

— Disk locations of disk blocks that hold the disk locations of indirect blocks
(double indirect blocks: two disk addresses removed from the actual data
blocks).*

In short, inodes store all available information about the file except its name and
directory location. The inodes themselves are stored elsewhere on disk.

On Unix systems, it is reasonably safe to say that “everything is a file”: the operating
system even represents I/O devices as files. Accordingly, there are several different
kinds of files, each with a different function.

Regular files

Regular files are files containing data. They are normally called simply “files.” These
may be ASCII text files, binary data files, executable program binaries, program
input or output, and so on.

Directories

A directory is a binary file consisting of a list of the other files it contains, possibly
including other directories (try running od -c on one to see this). Directory entries
are filename-inode number pairs. This is the mechanism by which inodes and direc-
tory locations are associated; the data on disk has no knowledge of its (purely logi-
cal) location within its filesystem.

Special files: character and block device files

Special files are the mechanism used for device I/O under Unix. They reside in the
directory /dev and its subdirectories, as well as the directory /devices under Solaris.

Generally, there are two types of special files: character special files, corresponding to
character-based or raw device access, and block special files, corresponding to block
I/O device access. Character special files are used for unbuffered data transfers to
and from a device (e.g., a terminal). In contrast, block special files are used when
data is transferred in fixed-size chunks known as blocks (e.g., most file I/O). Both
kinds of special files exist for some devices (including disks). Character special files

* In traditional System V filesystems, inode disk addresses can point to triple indirect blocks. FreeBSD also
uses triple indirect blocks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: The Unix Way

generally have names beginning with r (for “raw”)—/dev/rsd0a, for example—or
reside in subdirectories of /dev whose names begin with r—/dev/rdsk/c0t3d0s7, for
example. The corresponding block special files have the same name, minus the ini-
tial r: /dev/disk0a, /dev/dsk/c0t3d0s7. Special files are discussed in more detail in later
in this chapter.

Links

A link is a mechanism that allows several filenames (actually, directory entries) to
refer to a single file on disk. There are two kinds of links: hard links and symbolic or
soft links. A hard link associates two (or more) filenames with the same inode. Hard
links are separate directory entries that all share the same disk data blocks. For
example, the command:

$ ln index hlink

creates an entry in the current directory named hlink with the same inode number as
index, and the link count in the corresponding inode is increased by 1. Hard links
may not span filesystems, because inode numbers are unique only within a filesys-
tem. In addition, hard links should be used only for files and not for directories, and
correctly implemented versions of ln won’t let you create the latter.

Symbolic links, on the other hand, are pointer files that refer to a different file or
directory elsewhere in the filesystem. Symbolic links may span filesystems, because
they point to a Unix pathname, not to a specific inode.

Symbolic links are created with the -s option to ln.

The two types of links behave similarly, but they are not identical. As an example,
consider a file index to which there is a hard link hlink and a symbolic link slink. List-
ing the contents using either name with a command like cat will result in the same
output. For both index and hlink, the disk contents pointed to by the addresses in
their common inode will be accessed and displayed. For slink, the disk contents refer-
enced by the address in its inode contain the pathname for index; when it is followed,
index’s inode will be accessed next, and finally its data blocks will be displayed.

In directory listings, hlink will be indistinguishable from index. Changes made to
either file will affect both of them, since they share the same disk blocks. However,
moving either file with the mv command will not affect the other one, since moving a
file involves only altering a directory entry (keep in mind that pathnames are not
stored in the inode). Similarly, deleting index will not affect hlink, which will still
point to the same inode (the corresponding disk blocks are only freed when an
inode’s link count reaches zero).

If a new file in the current directory named index is subsequently created, there will
be no connection between it and hlink, because when the new file is created, it will
be assigned a free inode. Although they are initially created by referencing an exist-
ing file, hard links are linked only to an inode, not to the other file. In fact, all regu-
lar files are technically hard links (i.e., inodes with a link count ≥ 1).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 49

In contrast, a symbolic link slink to index will behave differently. The symbolic link
appears as a separate entry in directory listings, marked as a link with an “l” as the
first character in the mode string:

% ls -l
-rw------- 2 chavez chem 5228 Mar 12 11:36 index
-rw------- 2 chavez chem 5228 Mar 12 11:36 hlink
lrwxrwxrwx 1 chavez chem 5 Mar 12 11:37 slink -> index

Symbolic links are always very small files, while every hard link to a given file (inode)
is exactly the same size (hlink is naturally the same length as index).

Changes made by referencing either the real filename or the symbolic link will affect
the contents of index. Deleting index will also break the symbolic link; slink will
point nowhere. But if another file index is subsequently recreated, slink will once
again be linked to it.* Deleting slink will have no effect on index.

Figure 2-2 illustrates the differences between hard and symbolic links. In the first pic-
ture, index and hlink share the inode N1 and its associated data blocks. The sym-
bolic link slink has a different inode, N2, and therefore different data blocks. The
contents of inode N2’s data blocks refer to the pathname to index.† Thus, accessing
slink eventually reaches the data blocks for inode N1.

When index is deleted (in the second picture), hlink is associated with inode N1 by
its own directory entry. Accessing slink will generate an error, however, since the
pathname it references does not exist. When a new index is created (in the third pic-
ture), its gets a new inode, N3. This new file clearly has no relationship to hlink, but
it does act as the target for slink.

Using the cd command can be a bit tricky when dealing with symbolic links to direc-
tories, as these examples illustrate:

$ pwd; cd ./htdocs
/home/chavez
$ cd ../bin
../bin: No such file or directory.
$ pwd
/public/web2/apache/htdocs
$ ls -l /home/chavez/htdocs
lrwxrwxrwx 1 chavez chem 18 Mar 30 12:06 htdocs ->
 /public/web2/apache/htdocs

The subdirectory htdocs in the current directory is a symbolic link (its target is indi-
cated in the final command). Accordingly, the second cd command does not work as

* Symbolic links are actually interpreted only when accessed, so they can’t really be said to point anywhere at
other times. But conceptually, this is what they do.

† Some operating systems, including FreeBSD, store the target of the symbolic link in the inode itself, provided
the target is short enough.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: The Unix Way

expected, and the current directory does not change to /home/chavez/bin. Similar
effects would occur with a command like this one:

$ cd /home/chavez/htdocs/../cgi-bin; pwd
/public/web2/apache/cgi-bin

For more information about links, see the ln manual page, and experiment with cre-
ating and modifying linked files.

Tru64 Context-Dependent Symbolic Links. In a Tru64 clustered environment, many stan-
dard system files and directories are actually a type of symbolic link known as

Figure 2-2. Comparing hard and symbolic links

When index
is deleted:

N1
N2

hlink slink

unaffected points
nowhere

(disk)

N1
N2

index hlink slink

same data
as index

points to
index

The file index has
both a hard and
symbolic link:

- Inode

- Data Block

If a new index
is created:

N1 N2

index hlink slink

no relation
to index

points to
index

N3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Files | 51

context-dependent symbolic links (CDSLs). They are symbolic links with a variable
component that is resolved to a specific cluster host at access time. For example,
consider this directory listing (the output is wrapped to fit):

$ ls -lF /var/adm/c*
-rw-r--r-- 1 root system 91 May 30 13:07 cdsl_admin.inv
-rw-r--r-- 1 root adm 232 May 30 13:07 cdsl_check_list
lrwxr-xr-x 1 root adm 43 Jan 3 12:09 collect.dated@ ->
 ../cluster/members/{memb}/adm/collect.dated
lrwxr-xr-x 1 root adm 35 Jan 3 12:04 crash@ ->
 ../cluster/members/{memb}/adm/crash/
lrwxr-xr-x 1 root adm 34 Jan 3 12:04 cron@ ->
 ../cluster/members/{memb}/adm/cron/

The first two files are regular files that reside in the /var/adm directory. The remain-
ing three files are context-dependent symbolic links, indicated by the {memb} compo-
nent. When such a file is accessed, this component is resolved to a directory named
membern, where n indicates the host’s number within the cluster.

Occasionally, you may need to create such a link. The mkcdsl command serves this
purpose, as in this example (output is wrapped):

cd /var/adm
mkcdsl pacct
ls -l pacct
lrwxr-xr-x 1 root adm 43 Jan 3 12:09 pacct ->
 ../cluster/members/{memb}/adm/pacct

The ln -s command may also be used to create context-dependent symbolic links:

ln -s "../cluster/members/{memb}/adm/pacct" ./pacct

The cdslinvchk -verify command may be used to verify that all expected CDSLs are
present on a system. It reports its findings to the file /var/adm/cdsl_check_list. Here is
some sample output (wrapped to fit):

Expected CDSL: ./usr/var/X11/Xserver.conf ->
 ../cluster/members/{memb}/X11/Xserver.conf
An administrator or application has replaced this CDSL with:
-rw-r--r-- 1 root system 4545 Jan 3 12:41
 /usr/var/X11/Xserver.conf

This report indicates that there is one missing CDSL.

Sockets

A socket, whose official name is a Unix domain socket, is a special type of file used
for communications between processes. A socket may be thought of as a communi-
cations end point, tied to a particular local system port, to which processes may
attach. For example, on a BSD-style system, the socket /dev/printer is used by pro-
cesses to send messages to the program lpd (the line-printer spooling daemon),
informing it that it has work to do.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: The Unix Way

Named pipes

Named pipes are pipes opened by applications for interprocess communication (they
are “named” in the sense that applications refer to them by their pathname). They
are a System V feature that has migrated to all versions of Unix. Named pipes often
reside in the /dev directory. They are also known as FIFOs (for “first-in, first-out”).

Using ls to identify file types

The long directory listing (produced by the ls -l command) identifies the type of
each file it lists via the initial character of the permissions string:

For example, the following ls -l output includes each of the file types discussed
above, in the same order:

-rw------- 2 chavez chem 28 Mar 12 11:36 gold.dat
-rw------- 2 chavez chem 28 Mar 12 11:36 hlink.dat
drwx------ 2 chavez chem 512 Mar 12 11:36 old_data
lrwxrwxrwx 1 chavez chem 8 Mar 12 11:37 zn.dat -> gold.dat
brw-r----- 1 root system 0 Mar 2 15:02 /dev/sd0a
crw-r----- 1 root system 0 Jun 12 1989 /dev/rsd0a
srw-rw-rw- 1 root system 0 Mar 11 08:19 /dev/log
prw------- 1 root system 0 Mar 11 08:32 /usr/lib/cron/FIFO

Note that the -l option also displays the target file for symbolic links (following the –>
symbol).

ls has other options to make identifying file types easy. On many systems, the -F
option will append a special character to each filename, indicating its type:

-rw------- 2 chavez chem 28 Mar 12 11:36 gold.dat
-rw------- 2 chavez chem 28 Mar 12 11:36 hlink.dat
drwx------ 2 chavez chem 512 Mar 12 11:36 old_data/
-rwxr-x--- 1 chavez chem 23478 Feb 23 09:45 test_prog*
lrwxrwxrwx 1 chavez chem 8 Mar 12 11:37 zn.dat@ -> gold.dat
srw-rw-rw- 1 root system 0 Mar 11 08:19 /dev/log=
prw------- 1 root system 0 Mar 11 08:32 /usr/lib/cron/FIFO|

Note than an asterisk indicates an executable file (program or script). Some versions
of ls also support a -o option, which color-codes filenames in the output based on
their file type.

You can use the -i option to ls to determine the equivalent file in the case of hard
links. Using -i tells ls to display the inode number associated with each filename.
Here is an example:

- Plain file (hard link)
d Directory
l Symbolic link
b Block special file
c Character special file
s Socket
p Named pipe

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Processes | 53

$ ls -i /dev/rmt0 /dev/rmt/*
290 /dev/rmt0 293 /dev/rmt/c0d6ln
292 /dev/rmt/c0d6h291 /dev/rmt/c0d6m
295 /dev/rmt/c0d6hn294 /dev/rmt/c0d6mn
290 /dev/rmt/c0d6l

From this display, we can determine that the special files /dev/rmt0 (the default tape
drive for many commands, including tar) and /dev/rmt/c0d6l are equivalent, because
they both reference inode number 290.

ls can’t distinguish between text and binary files (both are “regular” files). You can
use the file command to do so. Here is an example:

file *
appoint: ... executable not stripped
bin: directory
clean: symbolic link to bin/clean
fort.1: empty
gold.dat: ascii text
intro.ms: [nt]roff, tbl, or eqn input text
run_me.sh: commands text
xray.c: ascii text

The file appoint is an executable image; the additional information provided for such
files differs from system to system. Note that file tries to figure out what the con-
tents of ASCII files are, with varying success.

Processes
In simple terms, a process is a single executable program that is running in its own
address space.* It is distinct from a job or a command, which, on Unix systems, may
be composed of many processes working together to perform a specific task. Simple
commands like ls are executed as a single process. A compound command contain-
ing pipes will execute one process per pipe segment. For Unix systems, managing
CPU resources must be done in large part by controlling processes, because the
resource allocation and batch execution facilities available with other multitasking
operating systems are underdeveloped or missing.

Unix processes come in several types. We’ll look at the most common here.

Interactive Processes
Interactive processes are initiated from and controlled by a terminal session. Interac-
tive processes may run either in the foreground or the background. Foreground pro-
cesses remain attached to the terminal; the foreground process is the one with which

* I am not distinguishing between processes and threads at this point.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: The Unix Way

the terminal communicates directly. For example, typing a Unix command and wait-
ing for its output means running a foreground process.

While a foreground process is running, it alone can receive direct input from the ter-
minal. For example, if you run the diff command on two very large files, you will be
unable to run another command until it finishes (or you kill it with CTRL-C).

Job control allows a process to be moved between the foreground and the back-
ground at will. For example, when a process is moved from the foreground to the
background, the process is temporarily stopped, and terminal control returns to its
parent process (usually a shell). The background job may be resumed and continue
executing unattached to the terminal session that launched it. Alternatively, it may
eventually be brought to the foreground, and once again become the terminal’s cur-
rent process. Processes may also be started initially as background processes.

Table 2-6 reviews the ways to control foreground and background processes pro-
vided by most current shells.

Table 2-6. Controlling processes

Form Meaning and examples

& Run command in background.

$ long_cmd &

^Z Stop foreground process.

$ long_cmd
^Z Stopped
$

jobs List background processes.

$ jobs
[1] - Stopped emacs
[2] - big_job &
[3] + Stopped long_cmd

%n Refers to background job number n.

$ kill %2

fg Bring background process to foreground.

$ fg %1

%?str Refers to the background job command containing the specified characters.

$ fg %?em

bg Restart stopped background process.

$ long_cmd
^Z Stopped
$ bg
[3] long_cmd &

~^Z Suspend rlogin session.

bridget-27 $ ~^Z
Stopped
henry-85 $

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Processes | 55

Batch Processes
Batch processes are not associated with any terminal. Rather, they are submitted to a
queue, from which jobs are executed sequentially. Unix offers a very primitive batch
command, but vendors whose customers require queuing have generally imple-
mented something more substantial. Some of the best known are the Network Queu-
ing System (NQS), developed by NASA and used on many high-performance
computers including Crays, as well as several network-based process-scheduling sys-
tems from various vendors. These facilities usually support heterogeneous as well as
homogeneous networks, and they attempt to distribute the aggregate CPU load
evenly among the workstations in the network, a process known as load balancing or
load leveling.

Daemons
Daemons are server processes, often initiated at boot time, that run continuously
while the system is up, waiting in the background until a process requires their ser-
vice.* For example, network daemons are idle until a process requests network
access.

Table 2-7 provides a brief overview of the most important Unix daemons.

~~^Z Suspend second-level rlogin session. Useful for nested rlogins; each additional tilde says to pop
back to the next highest level of rlogin. Thus, one tilde pops all the way back to the lowest level job
(the job on the local system), two tildes pops back to the first rlogin session, and so on.

bridget-28 $ ~~^Z
Stopped
peter-46 $

* Daemon is an ancient Greek word meaning “divinity” or “spirit” (but keep the character of the Greek gods
in mind). The OED defines it as a “tutelary deity”: the guardian of a particular person, place or thing. More
recently, the poet Yeats wrote at length about daemons, defining them as that which we continually struggle
against yet paradoxically need in order to survive, simultaneously the source of our pain and of our strength,
even in some sense, the very essence of our being. For Yeats, the daemon is “of all things not impossible the
most difficult.”

Table 2-7. Important Unix daemons

Facility Description Daemon Names

init First created process init

syslog System status/error message logging syslogd

email Mail message transport sendmail

printing Print spooler lpd, lpsched, qdaemon, rlpdaemon

Table 2-6. Controlling processes (continued)

Form Meaning and examples

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: The Unix Way

Process Attributes
Unix processes have many associated attributes. Some of the most important are:

Process ID (PID)
A unique identifying number used to refer to the process.

Parent process ID (PPID)
The PID of the process’s parent process (the process that created it).

Nice number
The process’s scheduling priority, which is a number indicating its importance
relative to other processes. This needs to be distinguished from its actual execu-
tion priority, which is dynamically changed based on both the process’s nice
number and its recent CPU usage. See “Managing CPU Resources” in Chapter 15
for a detailed discussion of nice numbers and their effect on execution priority.

TTY
The terminal (or pseudo-terminal) device associated with the process.

Real and effective user ID (RUID, EUID)
A process’s real UID is the UID of the user who started it. Its effective UID is the
UID that is used to determine the process’s access to system resources (such as

cron Periodic process execution crond

tty Terminal support. getty (and similar)

sync Disk buffer flushing update,syncd,syncher,fsflush,bdflush,
kupdated

paging and swapping Daemons to support virtual memory
management

pagedaemon, vhand, kpiod, pageout,
swapper, kswapd, kreclaimd

inetd Master TCP/IP daemon, responsible for
starting many others on demand:
telnetd, ftpd, rshd, imapd, pop3d,
fingerd, rwhod (see /etc/inetd.conf for
a full list)

inetd

name resolution DNS server process named

routing Routing daemon routed, gated

DHCP Dynamic network client configuration dhcpd, dhcpsd

RPC Remote procedure call facility network
port-to-service mapper

portmap, rpcbind

NFS Network File System: native Unix network
file sharing

nfsd, rpc.mountd, rpc.nfsd, rpc.statd,
rpc.lockd, nfsiod

Samba File/print sharing with Windows systems smbd, nmbd

WWW HTTP server httpd

network time Network time synchronization timed, ntpd

Table 2-7. Important Unix daemons (continued)

Facility Description Daemon Names

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Processes | 57

files and devices). Usually the real and effective UIDs are the same, and the pro-
cess accordingly has the same access rights as the user who launched it. How-
ever, when the setuid access mode is set on an executable image, then the EUIDs
of processes executing it are set to the UID of the file’s user owner, and they are
accorded corresponding access rights.

Real and effective group ID (RGID, EGID)
A process’s real GID is the user’s primary or current group. Its effective GID,
used to determine the process’s access rights, is the same as the real GID except
when the setgid access mode is set on an executable image. The EGIDs of pro-
cesses executing such files are set to the GID of the file’s group owner, and they
are given corresponding access to system resources.

The life cycle of a process

A new process is created in the following manner. An existing process makes an
exact copy of itself, a procedure known as forking. The new process, called the child
process, has the same environment as its parent process, although it is assigned a dif-
ferent process ID. Then, this image in the child process’s address space is overwrit-
ten by the one the child will run; this is done via the exec system call. Hence, the
often-used phrase fork-and-exec. The new program (or command) completely
replaces the one duplicated from the parent. However, the environment of the par-
ent still remains, including the values of environment variables; the assignments of
standard input, standard output, and standard error; and its execution priority.

Let’s make this picture a bit more concrete. What happens when a user runs a com-
mand like grep? First, the user’s shell process forks, creating a new shell process to
run the command. Then, the new shell process execs grep, which overlays the shell’s
executable image in memory with grep’s, which begins executing. When the grep
command finishes, the process dies.

This is the way that all Unix processes are created. The ultimate ancestor for every
process on a Unix system is the process with PID 1, init, created during the boot
process (see Chapter 4). init creates many other processes (all by fork-and-exec).
Among them are usually one or more executing the getty program. The gettys are
each assigned to a different serial line; they display the login prompt and wait for
someone to respond to it. When someone does, the getty process execs the login
program, which validates user logins, among other activities.*

Once the username and password are verified,† login execs the user’s shell. Forking is
not always required to run a new program, and login does not fork in this case. After

* The process is similar for an X terminal window. In the latter case, the xterm or other process is created by
the window manager in use, which was itself started by a series of other X-related processes, ultimately deriv-
ing from a command issued from the login shell (e.g., startx) or as part of the login process itself.

† If the login attempt fails, login exits, sending a signal to its parent process, init, indicating it should create
a new getty process for the terminal.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: The Unix Way

logging in, the user’s shell is the same process as the getty that was watching the
unused serial line. That process changed programs twice by execing a new execut-
able, and it will go on to create new processes to execute the commands that the user
types. Figure 2-3 illustrates Unix process creation in the context of initial user login.

When any process exits, it sends a signal to inform its parent process that is has com-
pleted. So, when a user logs out, her login shell sends a signal to its parent, init, as it
dies, letting init know that it’s time to create a new getty process for the terminal.
init forks again and starts the getty, and the whole cycle repeats itself again and
again as different users use that terminal.

Setuid and setgid file access and process execution

The purpose of the setuid and setgid access modes is to allow ordinary users to per-
form tasks requiring privileges and access rights that are ordinarily denied to them.
For example, on many systems the write command is owned by the tty group, which
also owns all of the terminal and pseudo-terminal device files. The write command
has setgid access, allowing any user to use it to write a message to another user’s ter-
minal or window (to which they do not normally have any access). When users exe-
cute write, their effective GID is set to that of the group owner of the executable file
(often /usr/bin/write) for the duration of the command.

Figure 2-3. Unix process creation: fork and exec

PID 424 exec

grep

login

sh

fork initinit

getty

sh fork

PID 424

PID 424 exec

PID 424 exec

PID 424 exec

PID 563 exec
PID 1

init

Co
nt

in
ue

s t
o e

xe
cu

te

PID 1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Processes | 59

Setuid and/or setgid access are also used by the printing subsystem, by programs like
mailers, and by some other system facilities. However, setuid programs are also
notorious security risks. In practice, setuid almost always means setuid to root, and
the danger is that somehow, through program stupidity or their own cleverness or
both, users will figure out a way to perform additional, unauthorized functions while
the setuid command is running or to retain their inherited root status after the com-
mand ends. In general, setuid access should be avoided since it involves greater secu-
rity risks than setgid, and almost any function can be performed by using the latter in
conjunction with carefully designed groups. See Chapter 7 for a more detailed dis-
cussion of the security issues involved with setuid and setgid programs. Keep in
mind, though, that while setgid programs are safer than setuid ones, they are not
risk-free themselves.

The relationship between commands and files

The Unix operating system does not distinguish between commands and files in the
ways that some systems do. Aside from a few commands that are built into each Unix
shell, Unix commands are executable files stored in one of several standard locations
within the filesystem. Access to commands is exactly equivalent to access to these
files. By default, there is no other privilege mechanism. Even I/O is handled via special
files, stored in the directory /dev, which function as interfaces to the device drivers. All
I/O operations look just like ordinary file operations from the user’s point of view.

Unix shells use search paths to locate the executable’s images for commands that
users enter. In its simplest form, a search path is simply an ordered list of directories
in which to look for command executables, and it is typically set in an initialization
file ($HOME/.profile or $HOME/.login). A faulty (incomplete) search path is the
most common cause for “Command not found” error messages.

Search paths are stored in the PATH environment variable. Here is a typical PATH:

$ echo $PATH
/bin:/usr/ucb:/usr/bin:/usr/local/bin:.:$HOME/bin

The various directories in the PATH are separated by colons. The search path is used
whenever a command name is entered without an explicit directory location. As an
example, consider the following command:

$ od data.raw

The od command is used to display a raw dump of a file. To locate this command,
the operating system first looks for a file named od in /bin. If such a file exists, it is
executed. If there is no od file in the /bin directory, /usr/ucb is checked next, followed
by /usr/bin (where od is in fact usually located). If it were necessary, the search would
continue in /usr/local/bin, the current directory, and finally the bin subdirectory of
the user’s home directory.

The order of the directories in the search path is important when more than one ver-
sion of a command exists. Such effects come into play most frequently when both

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: The Unix Way

the BSD and the System V versions of commands are available on a system. In this
case, you should put the directory holding the versions you want to use first in your
search path. For example, if you want to use the BSD versions of commands such as
ls and ln on a System V–based system, then put /usr/ucb ahead of /usr/bin in your
search path. Similarly, if you want to use the System V–compatible commands avail-
able on some systems, put /usr/5bin ahead of /usr/bin and /usr/ucb in your search
path. These same considerations will obviously apply to users’ search paths that you
define for them in their initialization files (see “Initialization Files and Boot Scripts”
in Chapter 4).

Most of the Unix administrative utilities are located in the directories /sbin and /usr/
sbin. However, the locations of administrative commands can vary widely between
Unix versions. These directories typically aren’t in the search path unless you put
them there explicitly. When executing administrative commands, you can either add
these directories to your search path or provide the full pathname for the command,
as in the example below:

/usr/sbin/ping hamlet

I’m going to assume in my examples that the administrative directories have been
added to the search path. Thus, I won’t be including the full pathname for any of the
commands I’ll be discussing.

The Unix Way of System Administration
System administrators are stereotypically arrogant, single-minded, and opinionated.
For Unix system administrators, the stereotype was born in the days when Unix was
this bizarre operating system that ran on only a few systems, and the local Unix guru
was some guy who generally kept to himself, locked away with his system—or so the
story goes.

The skepticism I’m exhibiting with this view of Unix system managers does not mean
that there is no truth in it at all. Like most caricatures, this one has roots in reality. For
example, it is all too easy to find people who will tell you that there is one right editor
to use, one right shell for writing scripts, one right way to do anything you care to
name. Discussing the advantages and liabilities of alternative approaches to problems
can be both useful and entertaining, but only within reason.

Since you’re reading this introductory chapter, I’m assuming that you are only begin-
ning your exploration of Unix administration. I certainly want to encourage you to
consider for yourself all the tasks and issues you will face as you proceed and to provide
help when I can. You’ll quickly form your own opinions and define what system
administration is for you. Doing so is a process, which can continue for as long and
range as widely as you want it to. However, if you get to a point where fanaticism
replaces thinking, you’ve gone too far.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Devices | 61

Devices
One of the strengths of Unix is that users don’t need to worry about the specific
characteristics of devices and device I/O very often. They don’t need to know, for
example, what disk drive a file they want to access physically sits on. And the Unix
special file mechanism allows many device I/O operations to look just like file I/O.
As we’ve noted, the administrator doesn’t have these same luxuries, at least not all
the time. This section discusses Unix device handling and then surveys the special
files used to access devices.

Device files are characterized by their major and minor numbers, which allow the ker-
nel to determine which device driver to use to access the device (via the major num-
ber), as well as its specific method of access (via the minor number).

Major and minor numbers appear in place of the file size in long directory listings.
For example, consider these device files related to the mouse from a Linux system:

$ cd /dev; ls -l *mouse
crw-rw-r-- 1 root root 10, 10 Jan 19 03:36 adbmouse
crw-rw-r-- 1 root root 10, 4 Jan 19 03:35 amigamouse
crw-rw-r-- 1 root root 10, 5 Jan 19 03:35 atarimouse
crw-rw-r-- 1 root root 10, 8 Jan 19 03:35 smouse
crw-rw-r-- 1 root root 10, 6 Jan 19 03:35 sunmouse
crw-rw-r-- 1 root root 13, 32 Jan 19 03:36 usbmouse

The major number for all but the last special file is 10; only the minor number dif-
fers for these devices. Thus, all of these mouse device variations are handled by the
same device driver, and the minor number indicates the variation within that general
family. The final item, corresponding to a USB mouse, has a different major num-
ber, indicating that a different device driver is used.

Device files are created with the mknod command, and it takes the desired device
name and major and minor numbers as its arguments. Many systems provide a script
named MAKEDEV (located in /dev), which is an easy-to-use interface to mknod.

An In-Depth Device Example: Disks
We’ll use disk drives as an example in this overview discussion of Unix devices.* As
we’ve noted before, Unix organizes all user-accessible files into a single hierarchical
directory structure. The files and directories it contains may be spread across several
different disk drives.

On most Unix systems, disks are divided into one or more fixed-size partitions: phys-
ical subsets of the disk drive that are separately accessed by the operating system.

* This discussion will describe traditional ways of handling disks and filesystems. Unix versions that require
or offer a logical volume manager do things quite differently at the lowest level, but this overview is still con-
ceptually true for those systems (for “disk partition,” read “logical volume”). See Chapter 10 for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: The Unix Way

There may be several partitions or just one on each physical disk. The disk partition
containing the root filesystem is called the root partition and sometimes the root disk,
although it obviously needn’t comprise the entire disk drive. The disk containing the
root partition is generally called the system disk.

The root filesystem is the first one mounted, early in the Unix boot process, and the
remaining ones are mounted afterwards. On many operating systems, mounting a
disk refers to the process of making the device’s contents available. For Unix, it
means something more. Like the overall Unix filesystem, the files and directories
physically located on each disk partition are arranged in a tree structure.* An integral
part of the process of mounting a disk partition involves grafting its local directory
structure into the overall Unix directory tree. Once this is done, the files physically
residing on that device may be accessed via the usual Unix pathname syntax; Unix
takes care of mapping pathnames to the correct physical device and data blocks.

For administrators, however, there are a few times when the disk partition must be
accessed directly. The actual mount operation is the most common. Remember that
disk partitions may be accessed in two modes, block mode and raw (or character)
mode, and different special files are used from each mode. Character access mode
does unbuffered I/O, generally making a data transfer to or from the device with
every read or write system call. Block devices do buffered I/O on a block basis, col-
lecting data in a buffer until the operating system can transfer an entire block of data
at one time.

For example, the disk partition containing the root filesystem traditionally corre-
sponded to the special files /dev/disk0a and /dev/rdisk0a, specifying the first partition
on the first disk (disk 0, partition a), accessed in block and raw mode respectively,†

with the r designating raw device access.

Most disk partition–related commands require a specific type of spe-
cial file and won’t accept the other kind.

* For this reason, each separate disk partition may also be referred to as a filesystem. Thus, “filesystem” is used
to refer both to the overall system directory tree (as in “the Unix filesystem”), comprising every user-acces-
sible disk partition on the system, and to the files and directories on individual disk partitions (as in “build
a filesystem on the disk partition” or “mounting the user filesystems”). Whether the overall Unix directory
tree or an individual disk partition is meant will be clear from the context. On a related note, the terms par-
tition and filesystem are often used synonymously. Thus, while technically only filesystems can be mounted,
common usage often refers to “mounting a disk” or “mounting a partition.”

† The names given to the two types of special files are overdetermined. For example, the special file /dev/disk0a
is referred to as a block special file, and /dev/rdisk0a is called a character special file. However, block special
files are also sometimes called block devices, and character special files may be referred to as character devices
or raw devices.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Devices | 63

Note that most Linux versions and newer versions of BSD do not distinguish
between the two types of special files for IDE disks and provide only one special file
per disk partition.

As an example of the use of special files to access disk partitions, consider the mount
commands below:

mount /dev/disk0a /
mount /dev/disk1e /home

Naturally, the command to mount a disk partition needs to specify the physical disk
partition to be mounted (mount’s first argument) and the location to place it in the
filesystem, its mount point (the second argument).* Thus, the first command makes
the files in the first partition on drive 0 available, placing them at the root of the Unix
filesystem. The second command accesses a partition on drive 1, placing it at /home
in the overall directory tree. Thus, regular files in the top-level directory on this sec-
ond disk partition will appear in /home, and top-level directories on the disk parti-
tion become subdirectories of /home. The mount command is discussed in greater
detail in Chapter 10.

Fixed-disk special files

Currently used special file names for disk partitions are highly implementation-
dependent. However, a common logic underlies all of the various naming schemes.
Disk special files can encode the type of disk, the disk controller, the disk location on
its controller, and the disk partition within the physical disk (as well as the access
mode) within the special file name.

Let’s take the Tru64 special files for disks as an example; these special files have
names of the following form, where n is the disk number (beginning at 0), and x is a
letter from a to h designating the partition on the physical disk:

/dev/disk/dsknx
Block device

/dev/rdisk/dsknx
Character (raw) device

The partitions have conventional uses, and not all partitions are used on every disk
(see Chapter 10 for more details). Traditionally, the a partition on the root disk con-
tains the root filesystem. b partitions are conventionally used as swap partitions. On
the root disk, other partitions might be used for various system directories: for exam-
ple, e for /usr, h for /var, d for other filesystems, and so on.

* In fact, on most Unix systems, mount is smarter than this. If you give it a single argument—either the physical
disk partition or the mount point—it will look up the other argument in a table. But you can always supply
both arguments, which means that you can rearrange your filesystem at will. (Why you would want to is a
different question.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 2: The Unix Way

The c partition often refers to the entire disk as a whole: every bit of space on the
disk, including areas that should be accessed only by the kernel (such as the parti-
tion table at the beginning of the drive). For this reason, using the c partition for a
filesystem was not allowed under older versions of Unix. More recent versions gener-
ally do not have this restriction.

System V-based systems use a similar naming philosophy, although the actual names
differ. Special filenames for disk partitions are often of the form /dev/dsk/cktmdpsn,
where k is the controller number, m is the drive number on that controller (often the
SCSI target ID), and n is the partition (section) number on that drive (all numbers
start at 0). p refers to the logical unit number (LUN) for SCSI devices and is thus usu-
ally 0. HP-UX uses this form but typically omits the s component.

In this scheme, character and block special files have the same names, but they are
stored in two different subdirectories of /dev: /dev/dsk and /dev/rdsk, respectively.
Thus, the special file /dev/dsk/c1t4d0s2 is the block special file for the third partition
on the disk with SCSI ID 4 on controller 1 (the second controller). The correspond-
ing character device is /dev/rdsk/c1t4d0s2.

Names in this format, known as controller-drive-section identifiers, are specified for
all disk and tape devices under the System V.4 standard. Actual System V–based
implementations start with this framework and may vary it somewhat according to
the devices actually supported. Sometimes, they also provide links to more mnemon-
ically or intuitively-named special files. For example, on some (mostly older) Solaris
systems, /dev/sd0a might be linked to /dev/dsk/c0t3d0s0, allowing the conventional
SunOS name to be used for the 0 partition on the disk with SCSI ID 3 on the first
controller.*

Table 2-8 illustrates the similarities among disk special file names. The special files in
the table all refer to a partition on the second SCSI disk drive on the first controller,
using SCSI ID 4.

* Even this isn’t the full truth about Solaris special files. The files in /dev are usually links to the real device files
in the /devices directory subtree.

Table 2-8. Interpreting disk special file names

FreeBSD HP-UX Linux Solaris Tru64a

Special file /dev/rda1d /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c

Raw access /dev/rda1d /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c

Device = Disk /dev/rda1d /dev/rdsk/c0t4d0 /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c

Type = SCSI /dev/rda1d /dev/sdb1

Controller # /dev/rdsk/c0t4d0 /dev/rdsk/c0t4d0s3

SCSI ID /dev/rdsk/c0t4d0 /dev/rdsk/c0t4d0s3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Devices | 65

In yet another twist, systems that use logical volume managers (including AIX by
default) allow the system administrator to specify names for the special files for logi-
cal volumes—virtual disk partitions—when they are created. These special files often
have names of the form /dev/name, where name is chosen when the filesystem is cre-
ated. On such systems, it is logical volumes rather than physical partitions that hold
filesystems. We’ll leave the rest of the gory details about these topics until
Chapter 10.

Special Files for Other Devices
Other device types have special files named differently, but they follow the same
basic conventions. Some of the most common are summarized in Table 2-9 (they will
be discussed in more detail as appropriate in later chapters). In some cases, only the
more commonly used form (block versus character) of the file is listed. For example,
tape drives are seldom, if ever, accessed via the block device, and on many systems,
the block special files do not even exist.

Device # /dev/rda1d /dev/sdb1 /dev/rdisk/dsk1c

Disk Partition /dev/rda1d assumed /dev/sdb1 /dev/rdsk/c0t4d0s3 /dev/rdisk/dsk1c

a Older Tru64 systems use the now-obsolete device names of the form /dev/rz*, /dev/ra*, and /dev/re*.

Table 2-9. Common Unix special file names

Device/use Special file forms Example

Floppy disk /dev/[r]fdn*
/dev/floppy

/dev/fd0

Tape devicesa

nonrewinding
SCSI
default tape drive

/dev/rmtn

/dev/rmt/n
/dev/nrmtn
/dev/rstn
/dev/tape

/dev/rmt1

/dev/rmt/0
/dev/nrmt0
/dev/rst0

CD-ROM devices /dev/cdn
/dev/cdrom

/dev/cd0

Serial lines /dev/ttyn
/dev/term/n

/dev/tty1
/dev/tty01
/dev/term/01

Slave virtual terminal (windows, net-
work sessions, etc.)

/dev/tty[p-s]n
/dev/pts/n

/dev/ttyp1
/dev/pts/2

Master/control virtual terminal devices /dev/pty[p-s]n /dev/ptyp3

Console device

some System V
AIX

/dev/console

/dev/syscon
/dev/lft0

Table 2-8. Interpreting disk special file names (continued)

FreeBSD HP-UX Linux Solaris Tru64a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 2: The Unix Way

Commands for listing the devices on a system

Most Unix versions provide commands that make it easy to quickly determine what
devices are present on the system, as well as their current status. Table 2-10 lists the
commands for the systems we are considering.

Process controlling TTY (used to ensure
I/O comes from/goes to terminal,
regardless of any I/O redirection)

/dev/tty

Memory maps:

physical
kernel virtual

/dev/mem
/dev/kmem

Mouse interface /dev/mouse

Null devices: all output is discarded;
reads return nothing (0 characters, 0
bytes) or a zero-filled buffer, respec-
tively.

/dev/null
/dev/zero

a Tape devices often have suffixes that specify the tape density.

Table 2-10. Device listing and information commands

Unix Version Command(s) Description

AIX lscfg

lscfg -v -l device

lsdev -C -s scsi

lsattr -E -H -l device

List all devices.

Device configuration detail.

List all SCSI IDs.

Display device attributes.

FreeBSD pciconf -l -v

camcontrol devlist

List PCI devices

List SCSI devices.

HP-UX ioscan -f -n

ioscan -f -n -C disk

Detailed device listing.

Limit to device class.

Linux lsdev

scsiinfo -l

lspci

List major devices.

List SCSI devices.

List PCI devices.

Solarisa

a Unfortunately, the getdev and devattr commands are often of limited use.

dmesgb

getdev

getdev type=disk

devattr -v device

b dmesg is also available under FreeBSD, HP-UX, and Linux.

Boot messages identify all devices.

List devices.

Limit to device class.

Device detail.

Tru64 dsfmgr -s List devices.

Table 2-9. Common Unix special file names (continued)

Device/use Special file forms Example

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Devices | 67

The AIX Object Data Manager

Under AIX, information about the devices on the system and other system configura-
tion is stored in a binary database. The management apparatus for this database is
known as the Object Data Manager (ODM), although “ODM” is also used colloqui-
ally to refer to the database itself, as well. Information is stored in the ODM as
objects: items of various predefined types, with a collection of attributes and their
associated sets or ranges of legal values.

Here is a textual representation of a sample entry for a disk drive:

name = "hdisk0"
status = 1
chgstatus = 2
ddins = "scdisk"
location = "00-00-0S-0,0"
parent = "scsi0"
connwhere = "0,0"
PdDvLn = "disk/scsi/1000mb"

This entry illustrates the general form for a device; most devices use the same fields,
although their meaning varies somewhat depending on the device type. This entry
describes a 1 GB SCSI disk drive.

The preceding entry came from the current devices database, stored in /etc/objrepos/
CuDv. The attributes for this object (as well as those for the other objects on the sys-
tem) are stored in a separate, current attributes database (found in /etc/objrepos/
CuAt). This database may have several entries for any given object, one for each
defined attribute for that class of object for which a nondefault value is set. For
example, here are two of the attributes for the logical volume hd6 (one of the disk
partitions on hdisk0):

name = "hd6"
attribute = "type"
value = "paging"
type = "R"
generic = "DU"
rep = "s"
nls_index = 639
name = "hd6"
attribute = "size"
value = "16"
type = "R"
generic = "DU"
rep = "r"
nls_index = 647

The first entry indicates that this is a paging space, and the second indicates that its
size is 16 logical partitions (64 MB, assuming the default partition size).

SMIT and the AIX commands it runs retrieve information from the ODM, as well as
adding and modifying entries as necessary.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 2: The Unix Way

The Unix Filesystem Layout
Now that we’ve considered the Unix approach to major system components, it’s
time to acquaint you with the structure of the Unix filesystem. This brief tour will
begin with the root directory and its most important subdirectories.

The basic layout of traditional Unix filesystems is illustrated in Figure 2-4, which
shows an idealized directory structure (actually a superset of the items found on any
one system). Note that in practice, there are lots of variations with respect to this
paradigm.

You’ll find small deviations from this on most Unix systems you encounter, but the
basic structure will be quite similar. We’ll consider each of the major directories in
turn.

The Root Directory
This is the base of the filesystem’s tree structure; all other files and directories,
regardless of their physical disk locations, are logically contained underneath the
root directory (described in detail in Chapter 10).

There are a variety of important first-level directories under the / directory:

/bin
The traditional location for executable (binary) files for the various Unix user
commands and utilities. On many current systems, some files within /bin are
merely symbolic links to files in /usr/bin, and /bin is sometimes a link to /usr/bin.
Other directories that hold Unix commands are /usr/bin and /usr/ucb.

/dev
The device directory, containing special files as described previously. The /dev
directory is divided into subdirectories in most System V–based versions of
Unix, with each subdirectory holding special files of a given type. Subdirectory
names indicate the type of devices it contains: dsk and rdsk for disks accessed in
block and raw mode, mt and rmt for tape drives, term for terminals (serial lines),
pts and ptc for pseudo-terminals, and so on.

Solaris introduces a new device directory tree, beginning at /devices, and many
files under /dev are links to files in subdirectories of /devices.

/etc and /sbin
System configuration files and executables. These directories contain many
administrative files and configuration files. Among the most important files are
the System V–style boot script subdirectories, named rcn.d and init.d, which are
located under one of these two locations on systems using this style of booting.

/etc also traditionally contained the executable binaries for most administrative
commands. In recent Unix versions, these files have moved to /sbin and /usr/sbin.
Conventionally, the former is used for files required to boot the system, and the
latter contains all other administrative commands.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Devices | 69

On many systems, /etc also contains a subdirectory default, which holds files
containing default parameter values for various commands.

On Linux systems, the sysconfig subdirectory holds network configuration and
other package-specific, boot-related configuration files.

Figure 2-4. Generic Unix directory structure

rmt

pts

rc0.d

default

rc3.d

dsk

rdsk

term

auth

init.d

skel

rc2.d
/

/bin

/dev

/etc

/sbin

/home

/lost+found

/mnt

/proc

adm

log

news

run

share

bin

include

local

src
ucb

X11R6

sbin/tcb

/tmp

/usr

/var

/stand mail

cron

spool

preserve

lock

mqueue

cron

samba

lp

X11

bin

man

mail

(root directory)

/lib

/opt

lib

src

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 2: The Unix Way

Under AIX, /etc contains two additional directories of note: /etc/objrepos stores
the device configuration databases, and /etc/security stores most security-related
configuration files.

/home
This directory is a conventional location for users’ home directories. For exam-
ple, user chavez’s home directory is often /home/chavez. The name is completely
arbitrary, however, and is often changed by the local site. It may also be a sepa-
rate filesystem.

/lib
Location of shared libraries required for booting the system (i.e., before /usr is
mounted).

/lost+found
Lost files directory. Disk errors or incorrect system shutdown may cause files to
become lost: lost files refer to disk locations that are marked as in use in the data
structures on the disk, but that are not listed in any directory (i.e., an inode with
a link count greater than zero that isn’t listed in any directory). When the sys-
tem is booting, it runs a program called fsck that, among other things, finds
these files.

There is usually a lost+found directory on every disk partition; /lost+found is the
one on the root disk. However, some Unix systems do not create the directory
until it is needed.

/mnt
Temporary mount directory: an empty directory conventionally designed for
temporarily mounting filesystems.

/opt
Directory tree into which optional software is often installed. On some systems,
optional software products are installed instead under /var/opt. On AIX systems,
this function is provided by the directory /usr/lpp.

/proc
Process directory, designed to enable processes to be manipulated using Unix file
access system calls. Files in this directory correspond to active processes (entries
in the kernel process table). On Linux systems, there are also additional files
containing various information about the system configuration: interrupt usage,
I/O port use, DMA channel allocation, CPU type, and the like. The HP-UX
operating system does not use /proc.

/stand
Boot-related files, including the kernel executable. Solaris uses /kernel, and
Linux systems use /boot for the same purpose. FreeBSD systems use /stand for
installation and system configuration–related programs and use /boot for kernels
and related files used for booting.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Devices | 71

/tcb
Directory tree for security-related database files on some systems offering
enhanced security features, including HP-UX and Tru64 (the name stands for
“trusted computing base”). Configuration files related to the TCB are also stored
under /etc/auth. /usr/tcb may also be used for this purpose.

/tmp
Temporary directory, available to all users as a scratch directory. The system
administrator should see that all the files in this directory are deleted occasion-
ally. Normally, one of the Unix startup scripts will clear /tmp.

/usr
This directory contains subdirectories for locally generated programs, executa-
bles for user and administrative commands, shared libraries, and other parts of
the Unix operating system. The most important subdirectories of /usr are dis-
cussed in more detail in the next section. /usr also sometimes contains applica-
tion programs.

/var
Spooling and other volatile directories (varying data). Important subdirectories
are described below.

The /usr Directory
The directory /usr contains a number of important subdirectories:

/usr/bin
Command binary files and shell scripts. This directory contains public execut-
able programs that are part of the Unix system. Many executables for the X Win-
dow System are stored in /usr/bin/X11 or /usr/X11R6/bin.

/usr/include
Include files. This directory contains C-language header files that define the C
programmer’s interface to standard system features and program libraries. For
example, it contains the file stdio.h, which defines the user’s interface to the C
standard I/O library. The directory /usr/include/sys contains operating system
include files.

/usr/lib
Library directory, for public library files. Among other things, this directory con-
tains the standard C libraries for mathematics and I/O. Library files generally
have names of the form libx.a or libx.so, where x is one or more characters
related to the library’s contents; the extensions specify a regular (statically
linked) and shared library, respectively.

/usr/local
Local files. By convention, the directory /usr/local/bin holds executable pro-
grams that were developed locally or retrieved from the Internet and any sources

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 2: The Unix Way

other than the operating-system vendor. There may be other subdirectories here
to hold related files: man (manual pages), lib (libraries), src (source code), doc
(documentation), and so on.

/usr/sbin
Administrative commands (except ones required for booting, which are in /sbin).

/usr/share
Shared data. On some recent systems, certain CPU architecture-independent
static data files (such as the online manual pages, font directories, the dictionary
files for spell, and the like) are stored in subdirectories under /usr/share. The
name share reflects the idea that such files could be shared among a group of
networked systems, eliminating the need for separate copies on every system.

/usr/share/man
One location for the manual pages directory tree. This directory contains the
online version of the Unix reference manuals. It is divided into subdirectories for
the various sections of the manual.

Traditionally, the subdirectory structure contains several mann subdirectories
holding the raw source for the manual pages in that section and corresponding
catn subdirectories storing the formatted versions. On many current systems,
however, the latter are eliminated, and manual pages are formatted as needed. In
many cases, the source files are stored in compressed form to save even more
space.

The significance of the manual sections is described in the Table 2-11.

Among the systems we are considering, the BSD-style organization is used by
FreeBSD, Linux, and Tru64, and the System V–style organization is more or less
followed by AIX, HP-UX, and Solaris.

Table 2-11. Manual-page sections

Contents BSD style System V style

User commands 1 1

System calls 2 2

Functions and library routines 3 3

Special files and hardware 4 7

Configuration files and file formats 5 4

Games and demos 6 6 or 1

Miscellaneous: character sets, filesystem types, data type definitions, etc. 7 5

System administration commands 8 1m

Maintenance commands 8 8

Device drivers 4 7 or 9

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Devices | 73

/usr/src
Source code for locally built software packages (FreeBSD and Linux). FreeBSD
also uses the /usr/ports directory tree for retrieving and building additional soft-
ware packages.

/usr/ucb
A directory that contains standard Unix commands originally developed under
BSD. Recent System V–based systems also provide BSD versions of commands
so that users may use the form that they prefer. Some BSD-based versions have
similar directories for System V versions of commands, conventionally /usr/5bin.
/usr/opt/s5/bin and /usr/opt/s5/sbin perform a similar function under Tru64.

The /var Directory
As we noted, the /var directory tree holds data that changes over time. These are its
most important subdirectories:

/var/adm
Administrative directory (home directory of the special adm user). This direc-
tory traditionally contains the Unix accounting files although many Unix ver-
sions have moved them.

/var/cron, /var/news
/var contains subdirectories used by many system facilities. These examples are
used by the cron and Usenet news facilities, respectively.

/var/log
Location for log files maintained by many system facilities.

/var/mail
User mailbox location.

/var/run
Contains files holding the current process IDs of various system daemons and
other server and/or execution instance-specific data.

/var/spool
Contains subdirectories for Unix subsystems that provide different kinds of
spooling services. Some of the tools using /var/spool subdirectories are the print
spooling system, the mail system, and the cron facility.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74

Chapter 3CHAPTER 3

Essential Administrative
Tools and Techniques

The right tools make any job easier, and the lack of them can make some tasks
almost impossible. When you need an Allen wrench, nothing but an Allen wrench
will do. On the other hand, if you need a Phillips head screwdriver, you might be
able to make do with a pocket knife, and occasionally it will even work better.

The first section of this chapter will consider ways the commands and utilities that
Unix provides can make system administration easier. Sometimes that means apply-
ing common user commands to administrative tasks, sometimes it means putting
commands together in unexpected ways, and sometimes it means making smarter
and more efficient use of familiar tools. And, once in a while, what will make your
life easier is creating tools for users to use, so that they can handle some things for
themselves. We’ll look at this last topic in Chapter 14.

The second section of this chapter will consider some essential administrative facili-
ties and techniques, including the cron subsystem, the syslog facility, strategies for
handling the many system log files, and management software packages. We’ll close
the chapter with a list of Internet software sources.

Getting the Most from Common Commands
In this section, we consider advanced and administrative uses of familiar Unix
commands.

Getting Help
The manual page facility is the quintessentially Unix approach to online help: super-
ficially minimalist, often obscure, but mostly complete. It’s also easy to use, once you
know your way around it.

Undoubtedly, the basics of the man command are familiar: getting help for a com-
mand, specifying a specific section, using -k (or apropos) to search for entries for a
specific topic, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 75

There are a couple of man features that I didn’t discover until I’d been working on
Unix systems for years (I’d obviously never bothered to run man man). The first is that
you can request multiple manual pages within a single man command:

$ man umount fsck newfs

man presents the pages as separate files to the display program, and you can move
among them using its normal method (for example, with :n in more).

On FreeBSD, Linux, and Solaris systems, man also has a -a option, which retrieves the
specified manual page(s) from every section of the manual. For example, the first
command below displays the introductory manual page for every section for which
one is available, and the second command displays the manual pages for both the
chown command and system call:

$ man -a intro
$ man -a chown

Manual pages are generally located in a predictable location within the filesystem,
often /usr/share/man. You can configure the man command to search multiple man
directory trees by setting the MANPATH environment variable to the colon-sepa-
rated list of desired directories.

Changing the search order

The man command searches the various manual page sections in a predefined order:
commands first, followed by system calls and library functions, and then the other
sections (i.e., 1, 6, 8, 2, 3, 4, 5, and 7 for BSD-based schemes). The first manual page
matching the one specified on the command line is displayed. In some cases, a differ-
ent order might make more sense. Many operating systems allow this ordering
scheme to be customized via the MANSECTS entry within a configuration file. For
example, Solaris allows the search order to be customized via the MANSECTS entry
in the /usr/share/man/man.cf configuration file. You specify a list of sections in the
order in which you want them to be searched:

MANSECTS=8,1,2,3,4,5,6,7

This ordering brings administrative command sections to the beginning of the list.

Here are the available ordering customization locations for the versions we are con-
sidering that offer this feature:

FreeBSD
MANSECT environment variable (colon-separated)

Linux (Red Hat)
MANSECT in /etc/man.config (colon-separated)

Linux (SuSE)
SECTION in /etc/manpath.config (space-separated)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Essential Administrative Tools and Techniques

Solaris
MANSECTS in /usr/share/man/man.cf and/or the top level directory of any man-
ual page tree (comma-separated)

Setting up man –k

It’s probably worth mentioning how to get man -k to work if your system claims to
support it, but nothing comes back when you use it. This command (and its alias
apropos) uses a data file indexing all available manual pages. The file often must be
initially created by the system administrator, and it may also need to be updated
from time to time.

On most systems, the command to create the index file is makewhatis, and it must be
run by root. The command does not require any arguments except on Solaris sys-
tems, where the top-level manual page subdirectory is given:

makewhatis Most systems
makewhat /usr/share/man Solaris

On AIX, HP-UX, and Tru64, the older catman -w command is used instead.

Piping into grep and awk
As you undoubtedly already know, the grep command searches its input for lines
containing a given pattern. Users commonly use grep to search files. What might be
new is some of the ways grep is useful in pipes with many administrative com-
mands. For example, if you want to find out about all of a certain user’s current pro-
cesses, pipe the output of the ps command to grep and search for her username:

% ps aux | grep chavez
chavez 8684 89.5 9.627680 5280 ? R N 85:26 /home/j90/l988
root 10008 10.0 0.8 1408 352 p2 S 0:00 grep chavez
chavez 8679 0.0 1.4 2048 704 ? I N 0:00 -csh (csh)
chavez 8681 0.0 1.3 2016 672 ? I N 0:00 /usr/nqs/sc1
chavez 8683 0.0 1.3 2016 672 ? I N 0:00 csh -cb rj90
chavez 8682 0.0 2.6 1984 1376 ? I N 0:00 j90

This example uses the BSD version of ps, using the options that list every single pro-
cess on the system,* and then uses grep to pick out the ones belonging to user chavez.
If you’d like the header line from ps included as well, use a command like:

% ps -aux | egrep 'chavez|PID'

Now that’s a lot to type every time, but you could define an alias if your shell sup-
ports them. For example, in the C shell you could use this one:

% alias pu "ps -aux | egrep '\!:1|PID'"
% pu chavez

* Under HP-UX and for Solaris’ /usr/bin/ps, the corresponding command is ps -ef.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 77

USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
chavez 8684 89.5 9.6 27680 5280 ? R N 85:26 /home/j90/l988
...

Another useful place for grep is with man -k. For instance, I once needed to figure out
where the error log file was on a new system—the machine kept displaying annoy-
ing messages from the error log indicating that disk 3 had a hardware failure. Now, I
already knew that, and it had even been fixed. I tried man -k error: 64 matches; man
-k log was even worse: 122 manual pages. But man -k log | grep error produced
only 9 matches, including a nifty command to blast error log entries older than a
given number of days.

The awk command is also a useful component in pipes. It can be used to selectively
manipulate the output of other commands in a more general way than grep. A com-
plete discussion of awk is beyond the scope of this book, but a few examples will
show you some of its capabilities and enable you to investigate others on your own.

One thing awk is good for is picking out and possibly rearranging columns within
command output. For example, the following command produces a list of all users
running the quake game:

$ ps -ef | grep "[q]uake" | awk '{print $1}'

This awk command prints only the first field from each line of ps output passed to it
by grep. The search string for grep may strike you as odd, since the brackets enclose
only a single character. The command is constructed that way so that the ps line for
the grep command itself will not be selected (since the string “quake” does not
appear in it). It’s basically a trick to avoid having to add grep -v grep to the pipe
between the grep and awk commands.

Once you’ve generated the list of usernames, you can do what you need to with it.
One possibility is simply to record the information in a file:

$ (date ; ps -ef | grep "[q]uake" | awk '{print $1 " [" $7 "]"}' \
 | sort | uniq) >> quaked.users

This command sends the list of users currently playing quake, along with the CPU
time used so far enclosed in square brackets, to the file quaked.users, preceding the
list with the current date and time. We’ll see a couple of other ways to use such a list
in the course of this chapter.

awk can also be used to sum up a column of numbers. For example, this command
searches the entire local filesystem for files owned by user chavez and adds up all of
their sizes:

find / -user chavez -fstype 4.2 ! -name /dev/* -ls | \
 awk '{sum+=$7}; END {print "User chavez total disk use = " sum}'
User chavez total disk use = 41987453

The awk component of this command accumulates a running total of the seventh col-
umn from the find command that holds the number of bytes in each file, and it

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Essential Administrative Tools and Techniques

prints out the final value after the last line of its input has been processed. awk can
also compute averages; in this case, the average number of bytes per file would be
given by the expression sum/NR placed into the command’s END clause. The
denominator NR is an awk internal variable. It holds the line number of the current
input line and accordingly indicates the total number of lines read once all of them
have been processed.

awk can be used in a similar way with the date command to generate a filename based
upon the current date. For example, the following command places the output of the
sys_doc script into a file named for the current date and host:

$ sys_doc > `date | awk '{print $3 $2 $6}'`.`hostname`.sysdoc

If this command were run on October 24, 2001, on host ophelia, the filename gener-
ated by the command would be 24Oct2001.ophelia.sysdoc.

Recent implementations of date allow it to generate such strings on its own, elimi-
nating the need for awk. The following command illustrates these features. It con-
structs a unique filename for a scratch file by telling date to display the literal string
junk_ followed by the day of the month, short form month name, 2-digit year, and
hour, minutes and seconds of the current time, ending with the literal string .junk:

$ date +junk_%d%b%y%H%M%S.junk
junk_08Dec01204256.junk

We’ll see more examples of grep and awk later in this chapter.

Finding Files
Another common command of great use to a system administrator is find. find is
one of those commands that you wonder how you ever lived without—once you
learn it. It has one of the most obscure manual pages in the Unix canon, so I’ll spend
a bit of time explaining it (skip ahead if it’s already familiar).

Is All of This Really Necessary?
If all of this fancy pipe fitting seems excessive to you, be assured that I’m not telling
you about it for its own sake. The more you know the ins and outs of Unix com-
mands—both basic and obscure—the better prepared you’ll be for the inevitable unex-
pected events that you will face. For example, you’ll be able to come up with an answer
quickly when the division director (or department chair or whoever) wants to know
what percentage of the aggregate disk space in a local area network is used by the chem
group. Virtuosity and wizardry needn’t be goals in themselves, but they will help you
develop two of the seven cardinal virtues of system administration: flexibility and inge-
nuity. (I’ll tell you what the others are in future chapters.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 79

find locates files with common, specified characteristics, searching anywhere on the
system you tell it to look. Conceptually, find has the following syntax:*

find starting-dir(s) matching-criteria-and-actions

Starting-dir(s) is the set of directories where find should start looking for files. By
default, find searches all directories underneath the listed directories. Thus, specify-
ing / as the starting directory would search the entire filesystem.

The matching-criteria tell find what sorts of files you want to look for. Some of the
most useful are shown in Table 3-1.

These may not seem all that useful—why would you want a file accessed exactly
three days ago, for instance? However, you may precede time periods, sizes, and
other numeric quantities with a plus sign (meaning “more than”) or a minus sign
(meaning “less than”) to get more useful criteria. Here are some examples:

-mtime +7 Last modified more than 7 days ago
-atime -2 Last accessed less than 2 days ago
-size +100 Larger than 50K

You can also include wildcards with the -name option, provided that you quote them.
For example, the criteria -name '*.dat' specifies all filenames ending in .dat.

Multiple conditions are joined with AND by default. Thus, to look for files last
accessed more than two months ago and last modified more than four months ago,
you would use these options:

-atime +60 -mtime +120

* Syntactically, find does not distinguish between file-selection options and action-related options, but it is
often helpful to think of them as separate types as you learn to use find.

Table 3-1. find command matching criteria options

Option Meaning

-atime n File was last accessed exactly n days ago.

-mtime n File was last modified exactly n days ago.

-newer file File was modified more recently than file was.

-size n File is n 512-byte blocks long (rounded up to next block).

-type c Specifies the file type: f=plain file, d=directory, etc.

-fstype typ Specifies filesystem type.

-name nam The filename is nam.

-perm p The file’s access mode is p.

-user usr The file’s owner is usr.

-group grp The file’s group owner is grp.

-nouser The file’s owner is not listed in the password file.

-nogroup The file’s group owner is not listed in the group file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Essential Administrative Tools and Techniques

Options may also be joined with -o for OR combination, and grouping is allowed
using escaped parentheses. For example, the matching criteria below specifies files
last accessed more than seven days ago or last modified more than 30 days ago:

\(-atime +7 -o -mtime +30 \)

An exclamation point may be used for NOT (be sure to quote it if you’re using the C
shell). For example, the matching criteria below specify all .dat files except gold.dat:

! -name gold.dat -name *.dat

The -perm option allows you to search for files with a specific access mode (numeric
form). Using an unsigned value specifies files with exactly that permission setting,
and preceding the value with a minus sign searches for files with at least the speci-
fied access. (In other words, the specified permission mode is XORed with the file’s
permission setting.) Here are some examples:

-perm 755 Permission = rwxr-xr-x
-perm -002 World-writeable files
-perm -4000 Setuid access is set
-perm -2000 Setgid access is set

The actions options tell find what to do with each file it locates that matches all the
specified criteria. Some available actions are shown in Table 3-2.

The default on many newer systems is -print, although forgetting to include it on
older systems like SunOS will result in a successful command with no output. Com-
mands for -exec and -ok must end with an escaped semicolon (\;). The form {} may
be used in commands as a placeholder for the pathname of each found file. For
example, to delete each matching file as it is found, specify the following option to
the find command:

-exec rm -f {} \;

Note that there are no spaces between the opening and closing curly braces. The
curly braces may only appear once within the command.

Table 3-2. find actions

Option Meaning

-print Display pathname of matching file.

-lsa

a Not available under HP-UX.

Display long directory listing for matching file.

-exec cmd Execute command on file.

-ok cmd Prompt before executing command on file.

-xdev Restrict the search to the filesystem of the starting directory (typically used to bypass mounted remote
filesystems).

-prune Don’t descend into directories encountered.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 81

Now let’s put the parts together. The command below lists the pathname of all C
source files under the current directory:

$ find . -name *.c -print

The starting directory is “.” (the current directory), the matching criteria specify file-
names ending in .c, and the action to be performed is to display the pathname of
each matching file. This is a typical user use for find. Other common uses include
searching for misplaced files and feeding file lists to cpio.

find has many administrative uses, including:

• Monitoring disk use

• Locating files that pose potential security problems

• Performing recursive file operations

For example, find may be used to locate large disk files. The command below dis-
plays a long directory listing for all files under /chem larger than 1 MB (2048 512-
byte blocks) that haven’t been modified in a month:

$ find /chem -size +2048 -mtime +30 -exec ls -l {} \;

Of course, we could also use -ls rather than the -exec clause. In fact, it is more effi-
cient because the directory listing is handled by find internally (rather than having to
spawn a subshell for every file). To search for files not modified in a month or not
accessed in three months, use this command:

$ find /chem -size +2048 \(-mtime +30 -o -atime +120 \) -ls

Such old, large files might be candidates for tape backup and deletion if disk space is
short.

find can also delete files automatically as it finds them. The following is a typical
administrative use of find, designed to automatically delete old junk files on the sys-
tem:

find / \(-name a.out -o -name core -o -name '*~'\
 -o -name '.*~' -o -name '#*#' \) -type f -atime +14 \
 -exec rm -f {} \; -o -fstype nfs -prune

This command searches the entire filesystem and removes various editor backup
files, core dump files, and random executables (a.out) that haven’t been accessed in
two weeks and that don’t reside on a remotely mounted filesystem. The logic is
messy: the final -o option ORs all the options that preceded it with those that fol-
lowed it, each of which is computed separately. Thus, the final operation finds files
that match either of two criteria:

• The filename matches, it’s a plain file, and it hasn’t been accessed for 14 days.

• The filesystem type is nfs (meaning a remote disk).

If the first criteria set is true, the file gets removed; if the second set is true, a “prune”
action takes place, which says “don’t descend any lower into the directory tree.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Essential Administrative Tools and Techniques

Thus, every time find comes across an NFS-mounted filesystem, it will move on,
rather than searching its entire contents as well.

Matching criteria and actions may be placed in any order, and they are evaluated
from left to right. For example, the following find command lists all regular files
under the directories /home and /aux1 that are larger than 500K and were last
accessed over 30 days ago (done by the options through -print); additionally, it
removes those named core:

find /home /aux1 -type f -atime +30 -size +1000 -print \
 -name core -exec rm {} \;

find also has security uses. For example, the following find command lists all files
that have setuid or setgid access set (see Chapter 7).

find / -type f \(-perm -2000 -o -perm -4000 \) -print

The output from this command could be compared to a saved list of setuid and set-
gid files, in order to locate any newly created files requiring investigation:

find / \(-perm -2000 -o -perm -4000 \) -print | \
 diff - files.secure

find may also be used to perform the same operation on a selected group of files. For
example, the command below changes the ownership of all the files under user
chavez’s home directory to user chavez and group physics:

find /home/chavez -exec chown chavez {} \; \
 -exec chgrp physics {} \;

The following command gathers all C source files anywhere under /chem into the
directory /chem1/src:

find /chem -name '*.c' -exec mv {} /chem1/src \;

Similarly, this command runs the script prettify on every C source file under /chem:

find /chem -name '*.c' -exec /usr/local/bin/prettify {} \;

Note that the full pathname for the script is included in the -exec clause.

Finally, you can use the find command as a simple method for tracking changes that
have been made to a system in the course of a certain time period or as the result of a
certain action. Consider these commands:

touch /tmp/starting_time
perform some operation
find / -newer /tmp/starting_time

The output of the final find command displays all files modified or added as a result
of whatever action was performed. It does not directly tell you about deleted files,
but it lists modified directories (which can be an indirect indication).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 83

Repeating Commands
find is one solution when you need to perform the same operation on a group of
files. The xargs command is another way of automating similar commands on a
group of objects; xargs is more flexible than find because it can operate on any set of
objects, regardless of what kind they are, while find is limited to files and directories.

xargs is most often used as the final component of a pipe. It appends the items it
reads from standard input to the Unix command given as its argument. For exam-
ple, the following command increases the nice number of all quake processes by 10,
thereby lowering each process’s priority:

ps -ef | grep "[q]uake" | awk '{print $2}' | xargs renice +10

The pipe preceding the xargs command extracts the process ID from the second col-
umn of the ps output for each instance of quake, and then xargs runs renice using all
of them. The renice command takes multiple process IDs as its arguments, so there
is no problem sending all the PIDs to a single renice command as long as there are
not a truly inordinate number of quake processes.

You can also tell xargs to send its incoming arguments to the specified command in
groups by using its -n option, which takes the number of items to use at a time as its
argument. If you wanted to run a script for each user who is currently running quake,
for example, you could use this command:

ps -ef | grep "[q]uake" | awk '{print $1}' | xargs -n1 warn_user

The xargs command will take each username in turn and use it as the argument to
warn_user.

So far, all of the xargs commands we’ve look at have placed the incoming items at
the end of the specified command. However, xargs also allows you to place each
incoming line of input at a specified position within the command to be executed.
To do so, you include its -i option and use the form {} as placeholder for each
incoming line within the command. For example, this command runs the System V
chargefee utility for each user running quake, assessing them 10000 units:

ps -ef | grep "[q]uake" | awk '{print $1}' | \
 xargs -i chargefee {} 10000

If curly braces are needed elsewhere within the command, you can specify a differ-
ent pair of placeholder characters as the argument to -i.

Substitutions like this can get rather complicated. xargs’s -t option displays each
constructed command before executing, and the -p option allows you to selectively
execute commands by prompting you before each one. Using both options together
provides the safest execution mode and also enables you to nondestructively debug a
command or script by answering no for every offered command.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 3: Essential Administrative Tools and Techniques

-i and -n don’t interact the way you might think they would. Consider this command:

$ echo a b c d e f | xargs -n3 -i echo before {} after
before a b c d e f after
$ echo a b c d e f | xargs -i -n3 echo before {} after
before {} after a b c
before {} after d e f

You might expect that these two commands would be equivalent and that they
would both produce two lines of output:

before a b c after
before d e f after

However, neither command produces this output, and the two commands do not
operate identically. What is happening is that -i and -n conflict with one another,
and the one appearing last wins. So, in the first command, -i is what is operative,
and each line of input is inserted into the echo command. In the second command,
the -n3 option is used, three arguments are placed at the end of each echo command,
and the curly braces are treated as literal characters.

Our first use of -i worked properly because the usernames are coming from separate
lines in the ps command output, and these lines are retained as they flow through the
pipe to xargs.

If you want xargs to execute commands containing pipes, I/O redirection, com-
pound commands joined with semicolons, and so on, there’s a bit of a trick: use the
-c option to a shell to execute the desired command. I occasionally want to look at
the final lines of a group of files and then view all of them a screen at a time. In other
words, I’d like to run a command like this and have it “work”:

$ tail test00* | more

On most systems, this command displays lines only from the last file. However, I can
use xargs to get what I want:

$ ls -1 test00* | xargs -i /usr/bin/sh -c \
 'echo "****** {}:"; tail -15 {}; echo ""' | more

This displays the last 15 lines of each file, preceded by a header line containing the
filename and followed by a blank line for readability.

You can use a similar method for lots of other kinds of repetitive operations. For
example, this command sorts and de-dups all of the .dat files in the current directory:

$ ls *.dat | xargs -i /usr/bin/sh -c "sort -u -o {} {}"

Creating Several Directory Levels at Once
Many people are unaware of the options offered by the mkdir command. These
options allow you to set the file mode at the same time as you create a new directory
and to create multiple levels of subdirectories with a single command, both of which
can make your use of mkdir much more efficient.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 85

For example, each of the following two commands sets the mode on the new direc-
tory to rwxr-xr-x, using mkdir’s -m option:

$ mkdir -m 755 ./people
$ mkdir -m u=rwx,go=rx ./places

You can use either a numeric mode or a symbolic mode as the argument to the -m
option. You can also use a relative symbolic mode, as in this example:

$ mkdir -m g+w ./things

In this case, the mode changes are applied to the default mode as set with the umask
command.

mkdir’s -p option tells it to create any missing parents required for the subdirectories
specified as its arguments. For example, the following command will create the sub-
directories ./a and ./a/b if they do not already exist and then create ./a/b/c:

$ mkdir -p ./a/b/c

The same command without -p will give an error if all of the parent subdirectories
are not already present.

Duplicating an Entire Directory Tree
It is fairly common to need to move or duplicate an entire directory tree, preserving
not only the directory structure and file contents but also the ownership and mode
settings for every file. There are several ways to accomplish this, using tar, cpio, and
sometimes even cp. I’ll focus on tar and then look briefly at the others at the end of
this section.

Let’s make this task more concrete and assume we want to copy the directory /chem/
olddir as /chem1/newdir (in other words, we want to change the name of the olddir
subdirectory as part of duplicating its entire contents). We can take advantage of
tar’s -p option, which restores ownership and access modes along with the files from
an archive (it must be run as root to set file ownership), and use these commands to
create the new directory tree:

cd /chem1
tar -cf - -C /chem olddir | tar -xvpf -
mv olddir newdir

The first tar command creates an archive consisting of /chem/olddir and all of the
files and directories underneath it and writes it to standard output (indicated by the -
argument to the -f option). The -C option sets the current directory for the first tar
command to /chem. The second tar command extracts files from standard input
(again indicated by -f -), retaining their previous ownership and protection. The sec-
ond tar command gives detailed output (requested with the -v option). The final mv
command changes the name of the newly created subdirectory of /chem1 to newdir.

If you want only a subset of the files and directories under olddir to be copied to
newdir, you would vary the previous commands slightly. For example, these

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 3: Essential Administrative Tools and Techniques

commands copy the src, bin, and data subdirectories and the logfile and .profile files
from olddir to newdir, duplicating their ownership and protection:

mkdir /chem1/newdir
set ownership and protection for newdir if necessary
cd /chem1/olddir
tar -cvf - src bin data logfile.* .profile |\
 tar -xvpf - -C /chem/newdir

The first two commands are necessary only if /chem1/newdir does not already exist.

This command performs a similar operation, copying only a single branch of the sub-
tree under olddir:

mkdir /chem1/newdir
set ownership and protection for newdir if necessary
cd /chem1/newdir
tar -cvf - -C /chem/olddir src/viewers/rasmol | tar -xvpf -

These commands create /chem1/newdir/src and its viewers subdirectory but place
nothing in them but rasmol.

If you prefer cpio to tar, cpio can perform similar functions. For example, this com-
mand copies the entire olddir tree to /chem1 (again as newdir):

mkdir /chem1/newdir
set ownership and protection for newdir if necessary
cd /chem1/olddir
find . -print | cpio -pdvm /chem1/newdir

On all of the systems we are considering, the cp command has a -p option as well,
and these commands create newdir:

cp -pr /chem/olddir /chem1
mv /chem1/olddir /chem1/newdir

The -r option stands for recursive and causes cp to duplicate the source directory
structure in the new location.

Be aware that tar works differently than cp does in the case of symbolic links. tar
recreates links in the new location, while cp converts symbolic links to regular files.

Comparing Directories
Over time, the two directories we considered in the last section will undoubtedly
both change. At some future point, you might need to determine the differences
between them. dircmp is a special-purpose utility designed to perform this very oper-
ation.* dircmp takes the directories to be compared as its arguments:

$ dircmp /chem/olddir /chem1/newdir

* On FreeBSD and Linux systems, diff -r provides the equivalent functionality.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 87

dircmp produces voluminous output even when the directories you’re comparing are
small. There are two main sections to the output. The first one lists files that are
present in only one of the two directory trees:

Mon Jan 4 1995 /chem/olddir only and /chem1/newdir only Page 1
./water.dat ./hf.dat
./src/viewers/rasmol/init.c ./h2f.dat
...

All pathnames in the report are relative to the directory locations specified on the
command line. In this case, the files in the left column are present only under /chem/
olddir, and those in the right column are present only at the new location.

The second part of the report indicates whether the files present in both directory trees
are the same or different. Here are some typical lines from this section of the report:

same ./h2o.dat
different ./hcl.dat

The default output from dircmp indicates only whether the corresponding files are
the same or not, and sometimes this is all you need to know. If you want to know
exactly what the differences are, you can include the -d to dircmp, which tells it to
run diff for each pair of differing files (since it uses diff, this works only for text
files). On the other hand, if you want to decrease the amount of output by limiting
the second section of the report to files that differ, include the -s option on the
dircmp command.

Deleting Pesky Files
When I teach courses for new Unix users, one of the early exercises consists of figur-
ing out how to delete the files –delete_me and delete me (with the embedded space in
the second case).* Occasionally, however, a user winds up with a file that he just
can’t get rid of, no matter how creative he is in using rm. At that point, he will come
to you. If there is a way to get rm to do the job, show it to him, but there are some
files that rm just can’t handle. For example, it is possible for some buggy application
program to put a file into a bizarre, inconclusive state. Users can also create such files
if they experiment with certain filesystem manipulation tools (which they probably
shouldn’t be using in the first place).

One tool that can take care of such intransigent files is the directory editor feature of
the GNU emacs text editor. It is also useful to show this feature to users who just
can’t get the hang of how to quote strange filenames.

This is the procedure for deleting a file with emacs:

1. Invoke emacs on the directory in question, either by including its path on the
command line or by entering its name at the prompt produced by Ctrl-X Ctrl-F.

* There are lots of solutions. One of the simplest is rm delete\ me ./-delete_me.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 3: Essential Administrative Tools and Techniques

2. Opening the directory causes emacs to automatically enter its directory editing
mode. Move the cursor to the file in question using the usual emacs commands.

3. Enter a d, which is the directory editing mode subcommand to mark a file for
deletion. You can also use u to unmark a file, # to mark all auto-save files, and ~
to mark all backup files.

4. Enter the x subcommand, which says to delete all marked files, and answer the
confirmation prompt in the affirmative.

5. At this point the file will be gone, and you can exit from emacs, continue other
editing, or do whatever you need to do next.

emacs can also be useful for viewing directory contents when they include files with
bizarre characters embedded within them. The most amusing example of this that I
can cite is a user who complained to me that the ls command beeped at him every
time he ran it. It turned out that this only happened in his home directory, and it was
due to a file with a Ctrl-G in the middle of the name. The filename looked fine in ls
listings because the Ctrl-G character was being interpreted, causing the beep. Con-
trol characters become visible when you look at the directory in emacs, and so the
problem was easily diagnosed and remedied (using the r subcommand to emacs’s
directory editing mode that renames a file).

Putting a Command in a Cage
As we’ll discuss in detail later, system security inevitably involves tradeoffs between
convenience and risk. One way to mitigate the risks arising from certain inherently
dangerous commands and subsystems is to isolate them from the rest of the system.
This is accomplished with the chroot command.

The chroot command runs another command from an alternate location within the
filesystem, making the command think that that the location is actually the root
directory of the filesystem. chroot takes one argument, which is the alternate top-
level directory. For example, the following command runs the sendmail daemon,
using the directory /jail as the new root directory:

chroot /jail sendmail -bd -q10m

The sendmail process will treat /jail as its root directory. For example, when sendmail
looks for the mail aliases database, which it expects to be located in /etc/aliases, it
will actually access the file /jail/etc/aliases. In order for sendmail to work properly in
this mode, a minimal filesystem needs to be set up under /jail containing all the files
and directories that sendmail needs.

Running a daemon or subsystem as a user created specifically for that purpose
(rather than root) is sometimes called sandboxing. This security technique is recom-
mended wherever feasible, and it is often used in conjunction with chrooting for
added security. See “Managing DNS Servers” in Chapter 8 for a detailed example of
this technique.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Most from Common Commands | 89

FreeBSD also has a facility called jail, which is a stronger versions of
chroot that allows you to specify access restrictions for the isolated
command.

Starting at the End
Perhaps it’s appropriate that we consider the tail command near the end of this sec-
tion on administrative uses of common commands. tail’s principal function is to
display the last 10 lines of a file (or standard input). tail also has a -f option that
displays new lines as they are added to the end of a file; this mode can be useful for
monitoring the progress of a command that writes periodic status information to a
file. For example, these commands start a background backup with tar, saving its
output to a file, and monitor the operation using tail -f:

$ tar -cvf /dev/rmt1 /chem /chem1 > 24oct94_tar.toc &
$ tail -f 24oct94_tar.toc

The information that tar displays about each file as it is written to tape is eventually
written to the table of contents file and displayed by tail. The advantage that this
method has over the tee command is that the tail command may be killed and
restarted as many times as you like without affecting the tar command.

Some versions of tail also include a -r option, which will display the lines in a file in
reverse order, which is occasionally useful. HP-UX does not support this option, and
Linux provides this feature in the tac command.

Be Creative
As a final example of the creative use of ordinary commands, consider the following
dilemma. A user tells you his workstation won’t reboot. He says he was changing his
system’s boot script but may have deleted some files in /etc accidentally. You go over
to it, type ls, and get a message about some missing shared libraries. How do you
poke around and find out what files are there?

The answer is to use the simplest Unix command there is, echo, along with the wild-
card mechanism, both of which are built into every shell, including the statically
linked one available in single user mode.

To see all the files in the current directory, just type:

$ echo *

This command tells the shell to display the value of “*”, which of course expands to
all files not beginning with a period in the current directory.

By using echo together with cd (also a built-in shell command), I was able to get a
pretty good idea of what had happened. I’ll tell you the rest of this story at the end of
Chapter 4.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 3: Essential Administrative Tools and Techniques

Essential Administrative Techniques
In this section, we consider several system facilities with which system administra-
tors need to be intimately familiar.

Periodic Program Execution: The cron Facility
cron is a Unix facility that allows you to schedule programs for periodic execution.
For example, you can use cron to call a particular remote site every hour to exchange
email, to clean up editor backup files every night, to back up and then truncate sys-
tem log files once a month, or to perform any number of other tasks. Using cron,
administrative functions are performed without any explicit action by the system
administrator (or any other user).*

For administrative purposes, cron is useful for running commands and scripts
according to a preset schedule. cron can send the resulting output to a log file, as a
mail or terminal message, or to a different host for centralized logging. The cron
command starts the crond daemon, which has no options. It is normally started
automatically by one of the system initialization scripts.

Table 3-3 lists the components of the cron facility on the various Unix systems we are
considering. We will cover each of them in the course of this section.

* Note that cron is not a general facility for scheduling program execution off-hours; for the latter, use a batch
processing command (discussed in “Managing CPU Resources” in Chapter 15).

Table 3-3. Variations on the cron facility

Component Location and information

crontab files Usual: /var/spool/cron/crontabs
FreeBSD: /var/cron/tabs, /etc/crontab
Linux: /var/spool/cron (Red Hat) /var/spool/cron/tabs (SuSE), /etc/crontab (both)

crontab format Usual: System V (no username field)
BSD: /etc/crontab (requires username as sixth field)

cron.allow and cron.deny files Usual: /var/adm/cron
FreeBSD: /var/cron
Linux: /etc (Red Hat), /var/spool/cron (SuSE)
Solaris: /etc/cron.d

Related facilities Usual: none
FreeBSD: periodic utility
Linux: /etc/cron.* (hourly,daily,weekly,monthly)
Red Hat: anacron utilitya

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 91

crontab files

What to run and when to run it are specified by crontab entries, which comprise the
system’s cron schedule. The name comes from the traditional cron configuration file
named crontab, for “cron table.”

By default, any user may add entries to the cron schedule. Crontab entries are stored
in separate files for each user, usually in the directory called /var/spool/cron/crontabs
(see Table 3-3 for exceptions). Users’ crontab files are named after their username:
for example, /var/spool/cron/crontabs/root.

The preceding is the System V convention for crontab files. BSD sys-
tems traditionally use a single file, /etc/crontab. FreeBSD and Linux
systems still use this file, in addition to those just mentioned.

Crontab files are not ordinarily edited directly but are created and modified with the
crontab command (described later in this section).

Crontab entries direct cron to run commands at regular intervals. Each one-line entry
in the crontab file has the following format:

minutes hours day-of-month month weekday command

cron log file Usual: /var/adm/cron/log
FreeBSD: /var/log/cron
Linux: /var/log/cron (Red Hat), not configured (SuSE)
Solaris: /var/cron/log

File containing PID of crond Usual: not provided
FreeBSD: /var/run/cron.pid
Linux: /var/run/crond.pid (Red Hat), /var/run/cron.pid (SuSE)

Boot script that starts cron AIX: /etc/inittab
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/cron
Linux: /etc/init.d/cron
Solaris: /etc/init.d/cron
Tru64: /sbin/init.d/cron

Boot script configuration file:
cron-related entries

AIX: none used
FreeBSD: /etc/rc.conf: cron_enable="YES” and cron_flags="args-to-cron”
HP-UX: /etc/rc.config.d/cron: CRON=1
Linux: none used (Red Hat, SuSE 8), /etc/rc.config: CRON="YES” (SuSE 7)
Solaris: /etc/default/cron: CRONLOG=yes
Tru64: none used

a The Red Hat Linux anacron utility is very similar to cron, but it also runs jobs missed due to the system being down when it reboots.

Table 3-3. Variations on the cron facility (continued)

Component Location and information

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 3: Essential Administrative Tools and Techniques

Whitespace separates the fields. However, the final field, command, can contain
spaces within it (i.e., the command field consists of everything after the space follow-
ing weekday); the other fields must not contain embedded spaces.

The first five fields specify the times at which cron should execute command. Their
meanings are described in Table 3-4.

Note that hours are numbered from midnight (0), and weekdays are numbered
beginning with Sunday (also 0).

An entry in any of these fields can be a single number, a pair of numbers separated
by a dash (indicating a range of numbers), a comma-separated list of numbers and/or
ranges, or an asterisk (a wildcard that represents all valid values for that field).

If the first character in an entry is a number sign (#), cron treats the entry as a com-
ment and ignores it. This is also an easy way to temporarily disable an entry without
permanently deleting it.

Here are some example crontab entries:

0,15,30,45 * * * * (echo ""; date; echo "") >/dev/console
0,10,20,30,40,50 7-18 * * * /usr/sbin/atrun
0 0 * * * find / -name "*.bak" -type f -atime +7 -exec rm {} \;
0 4 * * * /bin/sh /var/adm/mon_disk 2>&1 >/var/adm/disk.log
0 2 * * * /bin/sh /usr/local/sbin/sec_check 2>&1 | mail root
30 3 1 * * /bin/csh /usr/local/etc/monthly 2>&1 >/dev/null
#30 2 * * 0,6 /usr/local/newsbin/news.weekend

The first entry displays the date on the console terminal every fifteen minutes (on the
quarter hour); notice that the multiple commands are enclosed in parentheses in
order to redirect their output as a group. (Technically, this says to run the com-
mands together in a single subshell.) The second entry runs /usr/sbin/atrun every 10
minutes from 7 A.M. to 6 P.M. daily. The third entry runs a find command to
remove all .bak files not accessed in seven days.

The fourth and fifth lines run a shell script every day, at 4 A.M. and 2 A.M., respec-
tively. The shell to execute the script is specified explicitly on the command line in
both cases; the system default shell, usually the Bourne shell, is used if none is
explicitly specified. Both lines’ entries redirect standard output and standard error,
sending both of them to a file in one case and as electronic mail to root in the other.

Table 3-4. Crontab file fields

Field Meaning Range

minutes Minutes after the hour 0-59

hours Hour of the day 0-23 (0=midnight)

day-of-month Numeric day within a month 1-31

month The month of the year 1-12

weekday The day of the week 0-6 (0=Sunday)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 93

The sixth entry executes the C shell script /usr/local/etc/monthly at 3:30 A.M. on the
first day of each month. Notice that the command format—specifically the output
redirection—uses Bourne shell syntax even though the script itself will be run under
the C shell.

Were it not disabled, the final entry would run the command /usr/local/newsbin/
news.weekend at 2:30 A.M. on Saturday and Sunday mornings.

The final three active entries illustrate three output-handling alternatives: redirecting
it to a file, piping it through mail, and discarding it to /dev/null. If no output redirec-
tion is performed, the output is sent via mail to the user who ran the command.

The command field can be any Unix command or group of commands (properly sep-
arated with semicolons). The entire crontab entry can be arbitrarily long, but it must
be a single physical line in the file.

If the command contains a percent sign (%), cron will use any text following this sign
as standard input for command. Additional percent signs can be used to subdivide
this text into lines. For example, the following crontab entry:

30 11 31 12 * /usr/bin/wall%Happy New Year!%Let's make it great!

runs the wall command at 11:30 A.M. on December 31, using the text “Happy New
Year! Let’s make it great!” as standard input.

Note that the day of the week and day of the month fields are effectively ORed: if
both are filled in, the entry is run on that day of the month and on matching days of
the week. Thus, the following entry would run on January 1 and every Monday:

* * 1 1 1 /usr/local/bin/test55

In most implementations, the cron daemon reads the crontab files when it starts up
and whenever there have been changes to any of the crontab files. In some, generally
older versions, cron reads the crontab files once every minute.

The BSD crontab file, /etc/crontab, uses a slightly different entry for-
mat, inserting an additional field between the weekday and command
fields: the user account that should be used to run the specified com-
mand. Here is a sample entry that runs a script at 3:00 A.M. on every
weekend day:

0 3 * * 6-7 root /var/adm/weekend.sh

As this example illustratess, this entry format also encodes the days of
the week slightly differently, running from 1=Monday through 7=Sun-
day.

FreeBSD and Linux crontab entry format enhancements. FreeBSD and Linux systems use
the cron package written by Paul Vixie. It supports all standard cron features and
includes enhancements to the standard crontab entry format, including the following:

• Months and days of the week may be specified as names, abbreviated to their
first three letters: sun, mon, jan, feb, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 3: Essential Administrative Tools and Techniques

• Sunday can be specified as either 0 or 7.

• Ranges and lists can be combined: e.g., 2,4,6–7 is a legal entry. HP-UX also sup-
ports this enhancement.

• Step values can be specified with a /n suffix. For example, the hours entry 8-18/2
means “every two hours from 8 A.M. to 6 P.M.” Similarly, the minutes entry */5
means “every five minutes.”

• Environment variables can be defined within the crontab file, using the usual
Bourne shell syntax. The environment variable MAILTO may be used to specify
a user to receive any mail messages that cron thinks are necessary. For example,
the first definition below sends mail to user chavez (regardless of which crontab
the line appears in), and the second definition suppresses all mail from cron:

MAILTO=chavez
MAILTO=

Additional environment variables include SHELL, PATH, and HOME.

• On FreeBSD systems, special strings may be used to replace the scheduling fields
entirely:

Adding crontab entries

The normal way to create crontab entries is with the crontab command.* In its default
mode, the crontab command installs the text file specified as its argument into the
cron spool area, as the crontab file for the user who ran crontab. For example, if user
chavez executes the following command, the file mycron will be installed as /var/
spool/cron/crontabs/chavez:

$ crontab mycron

If chavez had previously installed crontab entries, they will be replaced by those in
mycron; thus, any current entries that chavez wishes to keep must also be present in
mycron.

The -l option to crontab lists the current crontab entries, and redirecting the com-
mand’s output to a file will allow them to be captured and edited:

$ crontab -l >mycron
$ vi mycron
$ crontab mycron

@reboot Run at system reboots
@yearly Midnight on January 1
@monthly Midnight on the first of the month
@weekly Midnight each Sunday
@daily Midnight
@hourly On the hour

* Except for the BSD-style /etc/crontab file, which must be edited manually.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 95

The -r option removes all current crontab entries.

The most convenient way to edit the crontab file is to use the -e option, which lets
you directly modify and reinstall your current crontab entries in a single step. For
example, the following command creates an editor session on the current crontab file
(using the text editor specified in the EDITOR environment variable) and automati-
cally installs the modified file when the editor exits:

$ crontab -e

Most crontab commands also accept a username as their final argument. This allows
root to list or install a crontab file for a different user. For example, this command
edits the crontab file for user adm:

crontab -e adm

The FreeBSD and Linux versions of this command provide the same functionality
with the -u option:

crontab -e -u adm

When you decide to place a new task under cron’s control, you’ll need to carefully
consider which user should execute each command run by cron, and then add the
appropriate crontab entry to the correct crontab file. The following list describes
common system users and the sorts of crontab entries they conventionally control:

root
General system functions, security monitoring, and filesystem cleanup

lp
Cleanup and accounting activities related to print spooling

sys
Performance monitoring

uucp
Running tasks in the UUCP file exchange facility

cron log files

Almost all versions of cron provide some mechanism for recording its activities to a
log file. On some systems, this occurs automatically, and on others, messages are
routed through the syslog facility. This is usually set up at installation time, but occa-
sionally you’ll need to configure syslog yourself. For example, on SuSE Linux sys-
tems, you’ll need to add an entry for cron to the syslog configuration file /etc/syslog.
conf (discussed later in this chapter).

Solaris systems use a different mechanism. cron will keep a log of its activities if the
CRONLOG entry in /etc/default/cron is set to YES.

If logging is enabled, the log file should be monitored closely and truncated periodi-
cally, as it grows extremely quickly under even moderate cron use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 3: Essential Administrative Tools and Techniques

Using cron to automate system administration

The sample crontab entries we looked at previously provide some simple examples
of using cron to automate various system tasks. cron provides the ideal way to run
scripts according to a fixed schedule.

Another common way to use cron for regular administrative tasks is through the use of
a series of scripts designed to run every night, once a week, and once a month; these
scripts are often named daily, weekly, and monthly, respectively. The commands in
daily would need to be performed every night (more specialized scripts could be run
from it), and the other two would handle tasks to be performed less frequently.

daily might include these tasks:

• Remove junk files more than three days old from /tmp and other scratch directo-
ries. More ambitious versions could search the entire system for old unneeded
files.

• Run accounting summary commands.

• Run calendar.

• Rotate log files that are cycled daily.

• Take snapshots of the system with df, ps, and other appropriate commands in
order to compile baseline system performance data (what is normal for that sys-
tem). See Chapter 15 for more details.

• Perform daily security monitoring.

weekly might perform tasks like these:

• Remove very old junk files from the system (somewhat more aggressively than
daily).

• Rotate log files that are cycled weekly.

• Run fsck -n to list any disk problems.

• Monitor user account security features.

monthly might do these jobs:

• List large disk files not accessed that month.

• Produce monthly accounting reports.

• Rotate log files that are cycled monthly.

• Use makewhatis to rebuild the database for use by man -k.

Additional or different activities might make more sense on your system. Such scripts
are usually run late at night:

0 1 * * * /bin/sh /var/adm/daily 2>&1 | mail root
0 2 * * 1 /bin/sh /var/adm/weekly 2>&1 | mail root
0 3 1 * * /bin/sh /var/adm/monthly 2>&1 | mail root

In this example, the daily script runs every morning at 1 A.M., weekly runs every
Monday at 2 A.M., and monthly runs on the first day of every month at 3 A.M.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 97

cron need not be used only for tasks to be performed periodically forever, year after
year. It can also be used to run a command repeatedly over a limited period of time,
after which the crontab entry would be disabled or removed. For example, if you
were trying to track certain kinds of security problems, you might want to use cron
to run a script repeatedly to gather data. As a concrete example, consider this short
script to check for large numbers of unsuccessful login attempts under AIX (although
the script applies only to AIX, the general principles are useful on all systems):

#!/bin/sh
chk_badlogin - Check unsuccessful login counts

date >> /var/adm/bl
egrep '^[^*].*:$|gin_coun' /etc/security/user | \
 awk 'BEGIN {n=0}
 {if (NF>1 && $3>3) {print s,$0; n=1}}
 {s=$0}
 END {if (n==0) {print "Everything ok."}}' \
>> /var/adm/bl

This script writes the date and time to the file /var/adm/bl and then checks /etc/
security/user for any user with more than three unsuccessful login attempts. If you sus-
pected someone was trying to break in to your system, you could run this script via
cron every 10 minutes, in the hopes of isolating that accounts that were being targeted:

0,10,20,30,40,50 * * * * /bin/sh /var/adm/chk_badlogin

Similarly, if you are having a performance problem, you could use cron to automati-
cally run various system performance monitoring commands or scripts at regular
intervals to track performance problems over time.

The remainder of this section will consider two built-in facilities for accomplishing
the same purpose under FreeBSD and Linux.

FreeBSD: The periodic command. FreeBSD provides the periodic command for the pur-
poses we’ve just considered. This command is used in conjunction with the cron
facility and serves as a method of organizing recurring administrative tasks. It is used
by the following three entries from /etc/crontab:

1 3 * * * root periodic daily
15 4 * * 6 root periodic weekly
30 5 1 * * root periodic monthly

The command is run with the argument daily each day at 3:01 A.M., with weekly on
Saturdays at 4:15 A.M., and with monthly at 5:30 A.M. on the first of each month.

The facility is controlled by the /etc/defaults/periodic.conf file, which specifies its
default behavior. Here are the first few lines of a sample file:

#!/bin/sh
#
What files override these defaults ?
periodic_conf_files="/etc/periodic.conf /etc/periodic.conf.local"

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 3: Essential Administrative Tools and Techniques

This entry specifies the files that can be used to customize the facility’s operation.
Typically, changes to the default settings are all that appear in these files. The sys-
tem administrator must create a local configuration file if desired, because none is
installed by default.

The command form periodic name causes the command to run all of the scripts that
it finds in the specified directory. If the latter is an absolute pathname, there is no
doubt as to which directory is intended. If simply a name—such as daily—is given,
the directory is assumed to be a subdirectory of /etc/periodic or of one of the alter-
nate directories specified in the configuration file’s local_periodic entry:

periodic script dirs
local_periodic="/usr/local/etc/periodic /usr/X11R6/etc/periodic"

/etc/periodic is always searched first, followed by the list in this entry.

The configuration file contains several entries for valid command arguments that
control the location and content of the reports that periodic generates. Here are the
entries related to daily:

daily general settings
daily_output="root" Email report to root.
daily_show_success="YES" Include success messages.
daily_show_info="YES" Include informational messages.
daily_show_badconfig="NO" Exclude configuration error messages.

These entries produce rather verbose output, which is sent via email to root. In con-
trast, the following entries produce a minimal report (just error messages), which is
appended to the specified log file:

daily_output="/var/adm/day.log" Append report to a file.
daily_show_success="NO"
daily_show_info="NO"
daily_show_badconfig="NO"

The bulk of the configuration file defines variables used in the scripts themselves, as
in these examples:

100.clean-disks
daily_clean_disks_enable="NO"# Delete files daily
daily_clean_disks_files="[#,]* .#* a.out *.core .emacs_[0-9]*"
daily_clean_disks_days=3# If older than this
daily_clean_disks_verbose="YES"# Mention files deleted
340.noid
weekly_noid_enable="YES# Find unowned files
weekly_noid_dirs="/"# Start here

The first group of settings are used by the /etc/periodic/daily/100.clean-disks script,
which deletes junk files from the filesystem. The first one indicates whether the script
should perform its actions or not (in this case, it is disabled). The next two entries
specify specific characteristics of the files to be deleted, and the final entry deter-
mines whether each deletion will be logged or not.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 99

The second section of entries apply to /etc/periodic/weekly/340.noid, a script that
searches the filesystem for files owned by an unknown user or group. This excerpt
from the script itself will illustrate how the configuration file entries are actually used:

case "$weekly_noid_enable" in
 [Yy][Ee][Ss]) Value is yes.
 echo "Check for files with unknown user or group:"
 rc=$(find -H ${weekly_noid_dirs:-/} -fstype local \
 \(-nogroup -o -nouser \) -print | sed 's/^/ /' |
 tee /dev/stderr | wc -l)
 [$rc -gt 1] && rc=1;;

 *) rc=0;; Any other value.
esac
exit $rc

If weekly_noid_enable is set to “yes,” then a message is printed with echo, and a pipe
comprised of find, sed, tee and wc runs (which lists the files and then the total num-
ber of files), producing a report like this one:

Check for files with unknown user or group:
 /tmp/junk
 /home/jack
 2

The script goes on to define the variable rc as the appropriate script exit value
depending on the circumstances.

You should become familiar with the current periodic configuration and compo-
nent scripts on your system. If you want to make additions to the facility, there are
several options:

• Add a crontab entry running periodic /dir, where periodic’s argument is a full
pathname. Add scripts to this directory and entries to the configuration file as
appropriate.

• Add an entry of the form periodic name and create a subdirectory of that name
under /etc/periodic or one of the directories listed in the configuration file’s local_
periodic entry. Add scripts to the subdirectory and entries to the configuration
file as appropriate.

• Use the directory specified in the daily_local setting (or weekly or monthly, as
desired) in /etc/defaults/periodic.conf (by default, this is /etc/{daily,weekly,monthly}.
local). Add scripts to this directory and entries to the configuration file as
appropriate.

I think the first option is the simplest and most straightforward. If you do decide to
use configuration file entries to control the functioning of a script that you create, be
sure to read in its contents with commands like these:

if [-r /etc/defaults/periodic.conf]
then
 . /etc/defaults/periodic.conf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 3: Essential Administrative Tools and Techniques

 source_periodic_confs
fi

You can use elements of the existing scripts as models for your own.

Linux: The /etc/cron.* directories. Linux systems provide a similar mechanism for orga-
nizing regular activities, via the /etc/cron.* subdirectories. On Red Hat systems, these
scripts are run via these crontab entries:

01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

On SuSE systems, the script /usr/lib/cron/run-crons runs them; the script itself is exe-
cuted by cron every 15 minutes. The scripts in the corresponding subdirectories are
run slightly off the hour for /etc/cron.hourly and around midnight (SuSE) or 4 A.M.
(Red Hat). Customization consists of adding scripts to any of these subdirectories.

Under SuSE 8, the /etc/sysconfig/cron configuration file contains settings that control
the actions of some of these scripts.

cron security issues

cron’s security issues are of two main types: making sure the system crontab files are
secure and making sure unauthorized users don’t run commands using cron. The
first problem may be addressed by setting (if necessary) and checking the ownership
and protection on the crontab files appropriately. (In particular, the files should not
be world-writeable.) Naturally, they should be included in any filesystem security
monitoring that you do.

The second problem, ensuring that unauthorized users don’t run commands via
cron, is addressed by the files cron.allow and cron.deny. These files control access to
the crontab command. Both files contain lists of usernames, one per line. Access to
crontab is controlled in the following way:

• If cron.allow exists, a username must be listed within it in order to run crontab.

• If cron.allow does not exist but cron.deny does exist, any user not listed in cron.
deny may use the crontab command. cron.deny may be empty to allow unlim-
ited access to cron.

• If neither file exists, only root can use crontab, except under Linux and FreeBSD,
where the default build configuration of cron allows everyone to use it.

These files control only whether a user can use the crontab command
or not. In particular, they do not affect whether any existing crontab
entries will be executed. Existing entries will be executed until they are
removed.

The locations of the cron access files on various Unix systems are listed in Table 3-3.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 101

System Messages
The various normal system facilities all generate status messages in the course of
their normal operations. In addition, error messages are generated whenever there
are hardware or software problems. Monitoring such messages—and acting upon
important ones—is one of the system administrator’s most important ongoing
activities.

In this section, we first consider the syslog subsystem, which provides a centralized
system message collection facility. We go on to consider the hardware-error logging
facilities provided by some Unix systems, as well as tools for managing and process-
ing the large amount of system message data that can accumulate.

The syslog facility

The syslog message-logging facility provides a more general way to specify where and
how some types of system messages are saved. Table 3-5 lists the components of the
syslog facility.

Table 3-5. Variations on the syslog facility

Component Location and information

syslogd option to reject
nonlocal messages

AIX: -r
FreeBSD: -s
HP-UX: -N
Linux: -r to allow remote messages
Solaris: -t
Tru64: List allowed hosts in /etc/syslog.auth (if if doesn’t exist, all hosts are allowed)

File containing PID of syslogd Usual: /var/run/syslog.pid
AIX: /etc/syslog.pid

Current general message log file Usual: /var/log/messages
HP-UX: /var/adm/syslog/syslog.log
Solaris: /var/adm/messages
Tru64: /var/adm/syslog.dated/current/*.log

Boot script that starts syslogd AIX: /etc/rc.tcpip
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/syslogd
Linux: /etc/init.d/syslog
Solaris: /etc/init.d/syslog
Tru64: /sbin/init.d/syslog

Boot script configuration file:
syslog-related entries

Usual: none used
FreeBSD: /etc/rc.conf: syslogd_enable="YES” and syslogd_flags="opts”
SuSE Linux: /etc/rc.config (SuSE 7), /etc/sysconfig/syslog (SuSE 8); SYSLOGD_

PARAMS="opts” and KERNEL_LOGLEVEL=n

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 3: Essential Administrative Tools and Techniques

Configuring syslog

Messages are written to locations you specify by syslogd, the system message log-
ging daemon. syslogd collects messages sent by various system processes and routes
them to their final destination based on instructions given in its configuration file /
etc/syslog.conf. Syslog organizes system messages in two ways: by the part of the sys-
tem that generated them and by their importance.

Entries in syslog.conf have the following format, reflecting these divisions:

facility.level destination

where facility is the name of the subsystem sending the message, level is the severity
level of the message, and destination is the file, device, computer or username to send
the message to. On most systems, the two fields must be separated by tab characters
(spaces are allowed under Linux and FreeBSD).

There are a multitude of defined facilities. The most important are:

kern
The kernel.

user
User processes.

mail
The mail subsystem.

lpr
The printing subsystem.

daemon
System server processes.

auth
The user authentication system (nonsensitive information).

authpriv
The user authentication system (security sensitive information). Some systems
have only one of auth and authpriv.

ftp
The FTP facility.

cron
The cron facility.

syslog
Syslog facility internal messages.

mark
Timestamps produced at regular intervals (e.g., every 15 minutes).

local*
Eight local message facilities (0-7). Some operating systems use one or more of
them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 103

Note that an asterisk for the facility corresponds to all facilities except mark.

The severity levels are, in order of decreasing seriousness:

emerg
System panic.

alert
Serious error requiring immediate attention.

crit
Critical errors like hard device errors.

err
Other errors.

warning
Warnings.

notice
Noncritical messages.

info
Informative messages.

debug
Extra information helpful for tracking down problems.

none
Ignore messages from this facility.

mark
Selects timestamp messages (generated every 20 minutes by default). This facility
is not included by the asterisk wildcard (and you wouldn’t really want it to be).

Multiple facility-level pairs may be included on one line by separating them with semi-
colons; multiple facilities may be specified with the same severity level by separating
them with commas. An asterisk may be used as a wildcard throughout an entry.

Here are some sample destinations:

/var/log/messages Send to a file (specify full pathname).
@scribe.ahania.com Send to syslog facility on a different host.
root Send message to a user...
root,chavez,ng . . .or list of users.
* Send message via wall to all logged-in users.

All of this will be much clearer once we look at a sample syslog.conf file:

*.err;auth.notice /dev/console
*.err;daemon,auth.notice;mail.crit /var/log/messages
lpr.debug /var/adm/lpd-errs
mail.debug /var/spool/mqueue/syslog
*.alert root
*.emerg *
auth.info;*.warning @hamlet
*.debug /dev/tty01

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 3: Essential Administrative Tools and Techniques

The first line prints all errors, as well as notices from the authentication system (indi-
cating successful and unsuccessful su commands) on the console. The second line
sends all errors, daemon and authentication system notices, and all critical errors
from the mail system to the file /var/log/messages.

The third and fourth lines send printer and mail system debug messages to their
respective error files. The fifth line sends all alert messages to user root, and the sixth
line sends all emergency messages to all users.

The final two lines send all authentication system nondebugging messages and the
warnings and errors from all other facilities to the syslogd process on host hamlet,
and it displays all generated messages on tty01.

You may modify this file to suit the needs of your system. For example, to create a
separate sulog file, add a line like the following to syslog.conf:

auth.notice /var/adm/sulog

All messages are appended to log files; thus, you’ll need to keep an eye on their size
and truncate them periodically when they get too big. This topic is discussed in
detail in “Administering Log Files,” later in this chapter.

On some systems, a log file must already exist when the syslogd pro-
cess reads the configuration file entry referring to it in order for it to be
recognized. In other words, on these systems, you’ll need to create an
empty log file, add a new entry to syslog.conf, and signal (kill -HUP)
or restart the daemon in order to add a new log file.

Don’t make the mistake of using commas when you want semicolons. For example,
the following entry sends all cron messages at the level of warn and above to the indi-
cated file (as well as the same levels for the printing subsystem):

cron.err,lpr.warning /var/log/warns.log

Why are warnings included for cron? Each successive severity applies in order,
replacing previous ones, so warning replaces err for cron. Entries can include lists of
facility-severity pairs and lists of facilities at the same severity level, but not lists
including both multiple facilities and severity levels. For these reasons, the following
entry will log all error level and higher messages for all facilities:

*.warning,cron.err /var/log/errs.log

Enhancements to syslog.conf

Several operating systems offer enhanced versions of the syslog configuration file,
which we will discuss by example.

AIX. On AIX systems, there are some additional optional fields beyond the destination:

facility-level destination rotate size s files n time t compress archive path

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 105

For example:

*.warn @scribe rotate size 2m files 4 time 7d compress

The additional parameters specify how to handle log files as they grow over time.
When they reach a certain size and/or age, the current log file will be renamed to
something like name.0, existing old files will have their extensions incremented and
the oldest file(s) may be deleted.

The rotate keyword introduces these parameters, and the others have the following
meanings:

size s
Size threshold: rotate the log when it is larger than this. s is followed by k or m
for KB and MB, respectively.

time t
Time threshold: rotate the log when it is older than this. t is followed by h, d, w,
m, or y for hours, days, weeks, months, or years, respectively.

files n
Keep at most n files.

compress
Compress old files.

archive path
Move older files to the specified location.

FreeBSD and Linux. Both FreeBSD and Linux systems extend the facility.severity syn-
tax:

.=severity
Severity level is exactly the one specified.

.!=severity
Severity level is anything other than the one specified (Linux only).

.<=severity
Severity level is lower than or equal to the one specified (FreeBSD only). The .<
and .> comparison operators are also provided (as well as .>= equivalent to the
standard syntax).

Both operating systems also allow pipes to programs as message destinations, as in
this example, which sends all error-severity messages to the specified program:

*.=err|/usr/local/sbin/save_errs

FreeBSD also adds another unusual feature to the syslog.conf file: sections of the file
which are specific to a host or a specific program.* Here is an example:

* Naturally, this feature will probably not work outside of the BSD environment.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 3: Essential Administrative Tools and Techniques

handle messages from host europa
+europa
mail.>debug/var/log/mailsrv.log

kernel messages from every host but callisto
-callisto
kern.*/var/log/kern_all.log

messages from ppp
!ppp
./var/log/ppp.log

These entries handle non-debug mail messages from europa, kernel messages from
every host except callisto, and all messages from ppp from every host but callisto. As
this example illustrates, host and program settings accumulate. If you wanted the ppp
entry to apply only to the local system, you’d need to insert the following lines before
its entries to restore the host context to the local system:

reset host to local system
+@

A program context may be similarly cleared with !*. In general, it’s a good idea to
place such sections at the end of the configuration file to avoid unintended interac-
tions with existing entries.

Solaris. Solaris systems use the m4 macro preprocessing facility to process the syslog.
conf file before it is used (this facility is discussed in Chapter 9). Here is a sample file
containing m4 macros:

Send mail.debug messages to network log host if there is one.
mail.debug ifdef(`LOGHOST', /var/log/syslog, @loghost)

On non-loghost machines, log "user" messages locally.
ifdef(`LOGHOST', ,
user.err/var/adm/messages
user.emerg*
)

Both of these entries differ depending on whether macro LOGHOST is defined. In
the first case, the destination differs, and in the second section, entries are included
in or excluded from the file based on its status:

Resulting file when LOGHOST is defined (i.e., this host is the central logging host):
Send mail.debug messages to network log host if there is one.
mail.debug/var/log/syslog

Resulting file when LOGHOST is undefined:
Send mail.debug messages to network log host if there is one.
mail.debug@loghost

user.err/var/adm/messages
user.emerg*

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 107

On the central logging host, you would need to add a definition macro to the config-
uration file:

define(`LOGHOST',`localhost')

The Tru64 syslog log file hierarchy. On Tru64 systems, the syslog facility is set up to log
all system messages to a series of log files named for the various syslog facilities. The
syslog.conf configuration file specifies their location as, for example, /var/adm/syslog.
dated/*/auth.log. When the syslogd daemon encounters such a destination, it auto-
matically inserts a final subdirectory named for the current date into the pathname.
Only a week’s worth of log files are kept; older ones are deleted via an entry in root’s
crontab file (the entry is wrapped to fit):

40 4 * * * find /var/adm/syslog.dated/* -depth -type d
 -ctime +7 -exec rm -rf {} \;

The logger utility

The logger utility can be used to send messages to the syslog facility from a shell
script. For example, the following command sends an alert-level message via the auth
facility:

logger -p auth.alert -t DOT_FILE_CHK \
"$user's $file is world-writeable"

This command would generate a syslog message like this one:

Feb 17 17:05:05 DOT_FILE_CHK: chavez's .cshrc is world-writable.

The logger command also offers a -i option, which includes the process ID within
the syslog log message.

Hardware Error Messages
Often, error messages related to hardware problems appear within system log files.
However, some Unix versions also provide a separate facility for hardware-related
error messages. After considering a common utility (dmesg), we will look in detail at
those used under AIX, HP-UX, and Tru64.

The dmesg command is found on FreeBSD, HP-UX, Linux, and Solaris systems. It is
primarily used to examine or save messages from the most recent system boot, but
some hardware informational and error messages also go to this facility, and examin-
ing its data may be a quick way to view them.

Here is an example from a Solaris system (output is wrapped):

$ dmesg | egrep 'down|up'
Sep 30 13:48:05 astarte eri: [ID 517527 kern.info] SUNW,eri0 :
No response from Ethernet network : Link down -- cable problem?
Sep 30 13:49:17 astarte last message repeated 3 times
Sep 30 13:49:38 astarte eri: [ID 517527 kern.info] SUNW,eri0 :

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 3: Essential Administrative Tools and Techniques

No response from Ethernet network : Link down -- cable problem?
Sep 30 13:50:40 astarte last message repeated 3 times
Sep 30 13:52:02 astarte eri: [ID 517527 kern.info] SUNW,eri0 :
100 Mbps full duplex link up

In this case, there was a brief network problem due to a slightly loose cable.

The AIX error log

AIX maintains a separate error log, /var/adm/ras/errlog, supported by the errdemon
daemon. This file is binary, and it must be accessed using the appropriate utilities:
errpt to view reports from it and errclear to remove old messages.

Here is an example of errpt’s output:

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
C60BB505 0807122301 P S SYSPROC SOFTWARE PROGRAM ABNORMALLY TERMINATED
369D049B 0806104301 I O SYSPFS UNABLE TO ALLOCATE SPACE IN FILE SYSTEM
112FBB44 0802171901 T H ent0 ETHERNET NETWORK RECOVERY MODE

This command produces a report containing one line per error. You can produce
more detailed information using options:

LABEL: JFS_FS_FRAGMENTED
IDENTIFIER: 5DFED6F1

Date/Time: Fri Oct 5 12:46:45
Sequence Number: 430
Machine Id: 000C2CAD4C00
Node Id: arrakis
Class: O
Type: INFO
Resource Name: SYSPFS

Description
UNABLE TO ALLOCATE SPACE IN FILE SYSTEM

Probable Causes
FILE SYSTEM FREE SPACE FRAGMENTED

 Recommended Actions
 CONSOLIDATE FREE SPACE USING DEFRAGFS UTILITY

Detail Data
MAJOR/MINOR DEVICE NUMBER
000A 0006
FILE SYSTEM DEVICE AND MOUNT POINT
/dev/hd9var, /var

This error corresponds to an instance where the operating system was unable to sat-
isfy an I/O request because the /var filesystem was too fragmented. In this case, the
recommended actions provide a solution to the problem.

A report containing all of the errors would be very lengthy. However, I use the fol-
lowing script to summarize the data:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 109

#!/bin/csh

errpt | awk '{print $1}' | sort | uniq -c | \
 grep -v IDENT > /tmp/err_junk
printf "Error \t# \tDescription: Cause (Solution)\n\n"
foreach f (`cat /tmp/err_junk | awk '{print $2}'`)
 set count = `grep $f /tmp/err_junk | awk '{print $1}'`
 set desc = `grep $f /var/adm/errs.txt | awk -F: '{print $2}'`
 set cause = `grep $f /var/adm/errs.txt | awk -F: '{print $3}'`
 set solve = `grep $f /var/adm/errs.txt | awk -F: '{print $4}'`
 printf "%s\t%s\t%s: %s (%s)\n" $f $count \
 "$desc" "$cause" "$solve"
end
rm -f /tmp/err_junk

The script is a quick-and-dirty approach to the problem; a more elegant Perl version
would be easy to write, but this script gets the job done. It relies on an error type
summary file I’ve created from the detailed errpt output, /var/adm/errs.txt. Here are
a few lines from that file (shortened):

071F4755:ENVIRONMENTAL PROBLEM:POWER OR FAN COMPONENT:RUN DIAGS.
0D1F562A:ADAPTER ERROR:ADAPTER HARDWARE:IF PROBLEM PERSISTS, ...
112FBB44:ETHERNET NETWORK RECOVERY MODE:ADAPTER:VERIFY ADAPTER ...

The advantage of using a summary file is that the script can produce its reports from
the simpler and faster default errpt output.

Here is an example report (wrapped):

Error # Description: Cause (Solution)

071F4755 2 ENVIRONMENTAL PROBLEM: POWER OR FAN
 COMPONENT (RUN SYSTEM DIAGNOSTICS.)
0D1F562A 2 ADAPTER ERROR: ADAPTER HARDWARE (IF
 PROBLEM PERSISTS, CONTACT APPROPRIATE
 SERVICE REPRESENTATIVE)
112FBB44 2 ETHERNET NETWORK RECOVERY MODE: ADAPTER
 HARDWARE (VERIFY ADAPTER IS INSTALLED
 PROPERLY)
369D049B 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:
 FILE SYSTEM FULL (INCREASE THE SIZE OF THE
 ASSOCIATED FILE SYSTEM)
476B351D 2 TAPE DRIVE FAILURE: TAPE DRIVE (PERFORM
 PROBLEM DETERMINATION PROCEDURES)
499B30CC 3 ETHERNET DOWN: CABLE (CHECK CABLE AND
 ITS CONNECTIONS)
5DFED6F1 1 UNABLE TO ALLOCATE SPACE IN FILE SYSTEM:
 FREE SPACE FRAGMENTED (USE DEFRAGFS UTIL)
C60BB505 268 SOFTWARE PROGRAM ABNORMALLY TERMINATED:
 SOFTWARE PROGRAM (CORRECT THEN RETRY)

The errclear command may be used to remove old messages from the error log. For
example, the following command removes all error messages over two weeks old:

errclear 14

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 3: Essential Administrative Tools and Techniques

The error log is a fixed-size file, used as a circular buffer. You can determine the size
of the file with the following command:

/usr/lib/errdemon -l
Error Log Attributes
--
Log File /var/adm/ras/errlog
Log Size 1048576 bytes
Memory Buffer Size 8192 bytes

The daemon is started by the file /sbin/rc.boot. You can modify its startup line to
change the size of the log file by adding the -s option. For example, the following
addition would set the size of the log file to 1.5 MB:

/usr/lib/errdemon -i /var/adm/ras/errlog -s 1572864

The default size of 1 MB is usually sufficient for most systems.

Viewing errors under HP-UX . The HP-UX xstm command may be used to view errors on
these systems (stored in the files /var/stm/logs/os/log*.raw*). It is illustrated in
Figure 3-1.

The main window appears in the upper left corner of the illustration. It shows a hier-
archy of icons corresponding to the various peripheral devices present on the sys-
tem. You can use various menu items to determine information about the devices
and their current status.

Selecting the Tools ➝ Utility ➝ Run menu path and then choosing logtool from the
list of tools initiates the error reporting utility (see the middle window of the left col-
umn in the illustration). Select the File ➝ Raw menu path and then the current log
file to view a summary report of system hardware status, given in the bottom win-
dow in the left column of the figure. In this example, we can see that there have been
417 errors recorded during the lifetime of the log file.

Next, we select File ➝ Formatted Log to view the detailed entries in the log file (the
process is illustrated in the right column of the figure). In the example, we are look-
ing at an entry corresponding to a SCSI tape drive. This entry corresponds to a
power-off of the device.

Command-line and menu-oriented versions of xstm can be started with cstm and
mstm, respectively.

The Tru64 binary error logger. Tru64 provides the binlogd binary error logging server in
addition to syslogd. It is configured via the /etc/binlog.conf file:

. /usr/adm/binary.errlog
dumpfile /usr/adm/crash/binlogdumpfile

The first entry sends all error messages that binlogd generates to the indicated file.
The second entry specifies the location for a crash dump.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 111

Messages may also be sent to another host. The /etc/binlog.auth file controls access to
the local facility. If it exists, it lists the hosts that are allowed to forward messages to
the local system.

You can view reports using the uerf and dia commands. I prefer the latter, although
uerf is the newer command.

dia’s default mode displays details about each error, and the -o brief option pro-
duces a short description of each error.

I use the following pipe to get a smaller amount of output:*

dia | egrep '^(Event seq)|(Entry typ)|(ASCII Mes.*[a-z])'
Event sequence number 10.
Entry type 300. Start-Up ASCII Message Type
Event sequence number 11.

Figure 3-1. View hardware errors under HP-UX

* The corresponding uerf command is uerf | egrep '^SEQU|MESS'.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 3: Essential Administrative Tools and Techniques

Entry type 250. Generic ASCII Info Message Type
ASCII Message Test for EVM connection of binlogd
Event sequence number 12.
Entry type 310. Time Stamp
Event sequence number 13.
Entry type 301. Shutdown ASCII Message Type
ASCII Message System halted by root:
Event sequence number 14.
Entry type 300. Start-Up ASCII Message Type

This command displays the sequence number, type, and human-readable descrip-
tion (if present) for each message. In this case, we have a system startup message, an
event manager status test of the binlogd daemon, a timestamp record, and finally a
system shutdown followed by another system boot. Any messages of interest could
be investigated by viewing their full record. For example, the following command
displays event number 13:

dia -e s:13 e:13

 You can send a message to the facility with the logger -b command.

Administering Log Files
There are two more items to consider with respect to managing the many system log
files: limiting the amount of disk space they consume while simultaneously retaining
sufficient data for projected future requirements, and monitoring the contents of
these log files in order to identify and act upon important entries.

Managing log file disk requirements

Unchecked, log files grow without bounds and can quickly consume quite a lot of
disk space. A common solution to this situation is to keep only a fraction of the his-
torical data on disk. One approach involves periodically renaming the current log file
and keeping only a few recent versions on the system. This is done by periodically
deleting the oldest one, renaming the current one, and then recreating it.

For example, here is a script that keeps the last three versions of the su.log file in
addition to the current one:

#!/bin/sh
cd /var/adm
if [-r su.log.1]; then
 mv -f su.log.1 su.log.2
fi
if [-r su.log.0]; then
 mv -f su.log.0 su.log.1
fi
if [-r su.log]; then

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 113

 cp su.log su.log.0 Copy the current log file.
fi
cat /dev/null > su.log Then truncate it.

There are three old su.log files at any given time: su.log.0 (the previous one), su.log.1,
and su.log.2, in addition to the current su.log file. When this script is executed, the
su.log.n files are renamed to move them back: 1 becomes 2, 0 becomes 1, and the
current su.log file becomes su.log.0. Finally, a new, empty file for current su mes-
sages is created. This script could be run automatically each week via cron, and the
last month’s worth of su.log files will always be on the system (and no more).

Make sure that all the log files get backed up on a regular basis so that
older ones can be retrieved from backup media in the event that their
information is needed.

Note that if you remove active log files, the disk space won’t actually be released
until you send a HUP signal to the associated daemon process holding the file open
(usually syslogd). In addition, you’ll then need to recreate the file for the facility to
function properly. For these reasons, removing active log files is not recommended.

As we’ve seen, some systems provide automatic mechanisms for accomplishing the
same thing. For example, AIX has built this feature into its version of syslog.

FreeBSD provides the newsyslog facility for performing this task (which is run hourly
from cron by default). It rotates log files based on the directions in its configuration
file, /etc/newsyslog.conf:

file [own:grp] mode # sz when [ZB] [/pid_file] [sig]
/var/log/cron 600 3 100 * Z
/var/log/amd.log 644 7 100 * Z
/var/log/lpd-errs 644 7 100 * Z
/var/log/maillog 644 7 * $D0 Z

The fields hold the following information:

• the pathname to the log file

• the user and group ownership it should be assigned (optional)

• the file mode

• the number of old files that should be retained

• the size at which the file should be rotated

• the time when the file should be rotated

• a flag field (Z says to compress the file; B specifies that it is a binary log file and
should be treated accordingly)

• the path to the file holding the process ID of the daemon that controls the file

• the numeric signal to send to that daemon to reinitialize it

The last three fields are optional.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 3: Essential Administrative Tools and Techniques

Thus, the first entry in the previous example configuration file processes the cron log
file, protecting it against all non-root access, rotating it when it is larger than 100 KB,
and keeping three compressed old versions on the system. The next two entries
rotate the corresponding log file at the same point, using a seven-old-files cycle. The
final entry rotates the mail log file every day at midnight, again retaining seven old
files. The “when” field is specified via a complex set of codes (see the manual page
for details).

If both an explicit size and time period are specified (i.e., not an asterisk), rotation
occurs when either condition is met.

Red Hat Linux systems provide a similar facility via logrotate, written by Erik
Troan. It is run daily by default via a script in /etc/cron.daily, and its operations are
controlled by the configuration file, /etc/logrotate.conf.

Here is an annotated example of the logrotate configuration file:

global settings
errors root Mail errors to root.
compress Compress old files.
create Create new empty log files after rotation.
weekly Default cycle is 7 days.

include /etc/logrotate.d Import the instructions in the files here.

/var/log/messages { Instructions for a specific file.
 rotate 5 Keep 5 files.
 weekly Rotate weekly.
 postrotate Run this command after rotating,
 /sbin/killall -HUP syslogd to activate the new log file.
 endscript
 }

This file sets some general defaults and then defines the method for handling the /var/
log/messages file. The include directive also imports the contents of all files in the /etc/
logrotate.d directory. Many software packages place in this location files containing
instructions for how their own log files should be handled.

logrotate is open source and can be built on other Linux and Unix
systems as well.

Monitoring log file contents

It is very easy to generate huge amounts of logging information very quickly. You’ll
soon find that you’ll want some tool to help you sift through it all, finding the few
entries of any real interest or importance. We’ll look at two of them in this subsection.

The swatch facility, written by E. Todd Atkins, is designed to do just that. It runs in a
variety of modes: examining new entries as they are added to a system log file, moni-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 115

toring an output stream in real time, checking through a file on a one-time basis, and
so on. When it recognizes a pattern you have specified in its input, it can perform a
variety of actions. Its home page (at the moment) is http://oit.ucsb.edu/~eta/swatch/.

Swatch’s configuration file specifies what information the facility should look for and
what it should do when it finds that information. Here is an example:

Syntax:
event action
#
network events
/refused/ echo,bell,mail=root
/connect from iago/ mail=chavez
#
other syslog events
/(uk|usa).*file system full/exec="wall /etc/fs.full"
/panic|halt/exec="/usr/sbin/bigtrouble"

The first two entries search for specific syslog messages related to network access
control. The first one matches any message containing the string “refused”. Patterns
are specified between forward slashes using regular expressions, as in sed. When
such an entry is found, swatch copies it to standard output (echo), rings the terminal
bell (bell), and sends mail to root (mail). The second entry watches for connections
from the host iago and sends mail to user chavez whenever one occurs.

The third entry matches the error messages generated when a filesystem fills up on
host usa or host uk; in this case, it runs the command wall /etc/fs.full (this form
of wall displays the contents of the specified file to all logged-in users). The fourth
entry runs the bigtrouble command when the system is in severe distress.

This file focuses on syslog events, presumably sent to a central logging host, but
swatch can be used to monitor any output. For example, it could watch the system
error log for memory parity errors.

The following swatch command could be used to monitor the contents of the /var/
adm/messages file, using the configuration file specified with the -c option:

swatch -c /etc/swatch.config -t /var/adm/messages

The -t option says to continuously examine the tail of the file (in a manner analo-
gous to tail -f). This command might be used to start a swatch process in a win-
dow that could be periodically monitored throughout the day. Other useful swatch
options are -f, which scans a file once for matching entries (useful when running
swatch via cron), and -p, which monitors the output from a running program.

Another great, free tool for this purpose is logcheck from Psionic Software (http://
www.psionic.com/abacus/logcheck/). We’ll consider its use in Chapter 7.

Managing Software Packages
Most Unix versions provide utilities for managing software packages: bundled collec-
tions of programs that provide a particular feature or functionality, delivered via a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 3: Essential Administrative Tools and Techniques

single archive. Packaging software is designed to make adding and removing pack-
ages easier. Each operating system we are considering provides a different set of
tools.* The various offerings are summarized in Table 3-6.

* The freely available epm utility can generate native format packages for many Unix versions including AIX,
BSD and Linux. It is very useful for distributing locally developed packages in a heterogeneous environment.
See http://www.easysw.com/epm/ for more information.

Table 3-6. Software package management commands

Function Commanda

List installed packages AIX: lslpp -l all

FreeBSD: pkg_info -a -Ib

HP-UX: swlist

Linux: rpm -q -a

Solaris: pkginfo

Tru64: setld -i

Describe package FreeBSD: pkg_info

HP-UX: swlist -v

Linux: rpm -q -i

Solaris: pkginfo -l

List package contents AIX: lslpp -f

FreeBSD: pkg_info -L

HP-UX: swlist -l file

Linux: rpm -q -l

Solaris: pkgchk -l

Tru64: setld -i

List prerequisites AIX: lslpp -p

Linux: rpm -q ---requires

Show file’s original package AIX: lslpp -w

Linux: rpm -q ---whatprovides
Solaris: pkgchk -l -p

List available packages on media AIX: installp -l -d device

FreeBSD: sysinstall
Configure ➝ Packages

HP-UX: swlist -s path [-l type]

Linux: ls /path-to-RPMs
yast2 Install/Remove software (SuSE)

Solaris: ls /path-to-packages

Tru64: setld -i -D path

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 117

These utilities all work in a very similar manner, so we will consider only one of them
in detail, focusing on the Solaris commands and a few HP-UX commands as examples.

We’ll begin by considering the method to list currently installed packages. Gener-
ally, this is done by running the general listing command, possibly piping its output
to grep to locate packages of interest. For example, this command searches a Solaris
system for installed packages related to file compression:

pkginfo | grep -i compres
system SUNWbzip The bzip compression utility
system SUNWbzipx The bzip compression library (64-bit)
system SUNWgzip The GNU Zip (gzip) compression utility
system SUNWzip The Info-Zip (zip) compression utility
system SUNWzlib The Zip compression library
system SUNWzlibx The Info-Zip compression lib (64-bit)

Install package AIX: installp -acX

FreeBSD: pkg_add

HP-UX: swinstall

Linux: rpm -i

Solaris: pkgadd

Tru64: setld -l

Preview installation AIX: installp -p

FreeBSD: pkg_add -n

HP-UX: swinstall -p

Linux: rpm -i --test

Verify package AIX: installp -a -v

Linux: rpm -V

Solaris: pkgchk

Tru64: fverify

Remove package AIX: installp -u

FreeBSD: pkg_delete

HP-UX: swremove

Linux: rpm -e

Solaris: pkgrm

Tru64: setld -d

Menu/GUI interface for package management AIX: smit

HP-UX: sam swlist -i swinstall

Linux: xrpm, gnorpm yast2 (SuSE)

Solaris: admintool

Tru64: sysman

a On Linux systems, add the -p pkg option to examine an uninstalled RPM package.
b Note that this option is an uppercase I (“eye”). All similar-looking option letters in this table are lowercase l’s (“ells”).

Table 3-6. Software package management commands (continued)

Function Commanda

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 3: Essential Administrative Tools and Techniques

To find out more information about a package, we add an option and package name
to the listing command. In this case, we display information about the bzip package:

pkginfo -l SUNWbzip
PKGINST: SUNWbzip
 NAME: The bzip compression utility
 CATEGORY: system
 ARCH: sparc
 VERSION: 11.8.0,REV=2000.01.08.18.12
 BASEDIR: /
 VENDOR: Sun Microsystems, Inc.
 DESC: The bzip compression utility
 STATUS: completely installed
 FILES: 21 installed pathnames
 9 shared pathnames
 2 linked files
 9 directories
 4 executables
 382 blocks used (approx)

Other options allow you to list the files and subdirectories in the package. On Solaris
systems, this produces a lot of output, so we use grep to reduce it to a simple list (a
step that is unnecessary on most systems):

pkgchk -l SUNWbzip | grep ^Pathname: | awk '{print $2}'
/usr Subdirectories in the package are created on
/usr/bin install if they do not already exist.
/usr/bin/bunzip2
/usr/bin/bzcat
/usr/bin/bzip2
...

It is also often possible to find out the name of the package to which a given file
belongs, as in this example:

pkgchk -l -p /etc/syslog.conf
Pathname: /etc/syslog.conf
Type: editted file
Expected mode: 0644
Expected owner: root
Expected group: sys
Referenced by the following packages:
 SUNWcsr
Current status: installed

This configuration file is part of the package containing the basic system utilities.

When you want to install a new package, you use a command like this one, which
installs the GNU C compiler from the CD-ROM mounted under /cdrom (s8-
software-companion is the Companion Software CD provided with Solaris 8):

pkgadd -d /cdrom/s8-software-companion/components/sparc/Packages SFWgcc

Removing an installed package is also very simple:

pkgrm SFWbzip

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 119

You can use the pkgchk command to verify that a software package is installed cor-
rectly and that none of its components has been modified since then.

Sometimes you want to list all of the available packages on a CD or tape. On
FreeBSD, Linux, and Solaris systems, you accomplish this by changing to the appro-
priate directory and running the ls command. On others, an option to the normal
installation or listing command performs this function. For example, the following
command lists the available packages on the tape in the first drive:

swlist -s /dev/rmt/0m

HP-UX: Bundles, products, and subproducts

HP-UX organizes software packages into various units. The smallest unit is the fileset
which contains a set of related file that can be managed as a unit. Subproducts con-
tain one or more filesets, and products are usually made up of one or more subprod-
ucts (although a few contain the filesets themselves). For example, the fileset
MSDOS-Utils.Manuals.DOSU-ENG-A_MAN consists of the English language man-
ual pages for the Utils subproduct of the MSDOC-Utils product. Finally, bundles are
groups of related filesets from one or more products, gathered together for a specific
purpose. They can, but do not have to, be comprised of multiple complete products.

The swlist command can be used to view installed software at these various levels
by specifying the corresponding keyword to its -l option. For example, this com-
mand lists all installed products:

swlist -l product

The following command lists the subproducts that make up the MS-DOS utilities
product:

swlist -l subproduct MSDOS-Utils

MSDOS-Utils B.11.00 MSDOS-Utils
 MSDOS-Utils.Manuals Manuals
 MSDOS-Utils.ManualsByLang ManualsByLang
 MSDOS-Utils.Runtime Runtime

You could further explore the contents of this product by running the swlist -l
fileset command for each subproduct to list the component filesets. The results
would show a single fileset per subproduct and would indicate that the MSDOS-
Utils product is made up of runtime and manual page filesets.

AIX: Apply versus commit

On AIX systems, software installation is a two-step process. First, software packages
are applied: new files are installed, but the previous system state is also saved in case
you change your mind and want to roll back the package. In order to make an instal-
lation permanent, applied software must be committed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 3: Essential Administrative Tools and Techniques

You can view the installation state of software packages with the lslpp command.
For example, this command displays information about software compilers:

lslpp -l all | grep -i compil
 vacpp.cmp.C 5.0.2.0 COMMITTED VisualAge C++ C Compiler
 xlfcmp 7.1.0.2 COMMITTED XL Fortran Compiler
 vac.C 5.0.2.0 COMMITTED C for AIX Compiler
 ...

Alternatively, you can display applied but not yet committed packages with the
installp -s all command.

The installp command has a number of options controlling how and to what degree
software is installed. For example, use a command like this one to apply and commit
software:

installp -ac -d device [items | all]

Other useful options to installp are listed in Table 3-7.

Using apply without commit is a good tactic for cautious administra-
tors and delicate production systems.

FreeBSD ports

FreeBSD includes an easy-to-use method for acquiring and building additional soft-
ware packages. This scheme is known as the Ports Collection. If you choose to install
it, its infrastructure is located at /usr/ports.

Table 3-7. Options to the AIX installp command

Option Meaning

-a Apply software.

-c Commit applied software.

-r Reject uncommitted software.

-t dir Use alternate location for saved rollback files.

-u Remove software

-C Clean up after a failed installation.

-N Don’t save files necessary for recovery.

-X Expand filesystems as necessary.

-d dev Specify installation source location.

-p Preview operation.

-v Verbose output.

-l List media contents.

-M arch Limit listing to items for the specified architecture type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 121

The Ports Collection provides all the information necessary for downloading,
unpacking, and building software packages within its directory tree. Installing such
pre-setup packages is then very simple. For example, the following commands are all
that is needed to install the Tripwire security monitoring package:

cd /usr/ports/security/tripwire
make && make install

The make commands automatically take all steps necessary to install the package.

Building Software Packages from Source Code
There are a large number of useful open source software tools. Sometimes, thought-
ful people will have made precompiled binaries available on the Internet, but there
will be times when you will have to build them yourself. In this section, we look
briefly at building three packages in order to illustrate some of the problems and
challenges you might encounter. We use will HP-UX as our example system.

mtools: Using configure and accepting imperfections

We begin with mtools, a set of utilities for directly accessing DOS-format floppy
disks on Unix systems. After downloading the package, the first steps are to uncom-
press the software archive and extract its files:

$ gunzip mtools-3.9.7.tar.gz
$ tar xvf mtools-3.9.7.tar
x mtools-3.9.7/INSTALL, 737 bytes, 2 tape blocks
x mtools-3.9.7/buffer.c, 8492 bytes, 17 tape blocks
x mtools-3.9.7/Release.notes, 8933 bytes, 18 tape blocks
x mtools-3.9.7/devices.c, 25161 bytes, 50 tape blocks
...

Note that we are not running these commands as root.

Next, we change to the new directory and look around:

$ cd mtools-3.9.7; ls
COPYING floppyd_io.c mmount.c
Changelog floppyd_io.h mmove.1
INSTALL force_io.c mmove.c
Makefile fs.h mpartition.1
Makefile.Be fsP.h mpartition.c
Makefile.in getopt.h mrd.1
Makefile.os2 hash.c mread.1
NEWPARAMS htable.h mren.1
README init.c msdos.h
...

We are looking for files named README, INSTALL, or something similar, which
will tell us how to proceed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 3: Essential Administrative Tools and Techniques

Here is the relevant section in this example:

Compilation

To compile mtools on Unix, first type ./configure, then make.

This is a typical pattern in a well-crafted software package. The configure utility
checks the system for all the items needed to build the package, often selecting among
various alternatives, and creates a make file based on the specific configuration.

We follow the directions and run it:

$./configure
checking for gcc... cc
checking whether the C compiler works... yes
checking whether cc accepts -g... yes
checking how to run the C preprocessor... cc -E
checking for a BSD compatible install... /opt/imake/bin/install -c
checking for sys/wait.h that is POSIX.1 compatible... yes
checking for getopt.h... no
...
creating ./config.status
creating Makefile
creating config.h
config.h is unchanged

At this point, we could just run make, but I always like to look at the make file first.
Here is the first part of it:

$ more Makefile
Generated automatically from Makefile.in by configure.
Makefile for Mtools

MAKEINFO = makeinfo
TEXI2DVI = texi2dvi
TEXI2HTML = texi2html

do not edit below this line
===
SHELL = /bin/sh

prefix = /usr/local
exec_prefix = ${prefix}
bindir = ${exec_prefix}/bin
mandir = ${prefix}/man

The prefix item could be a problem if I wanted to install the software somewhere
else, but I am satisfied with this location, so I run make. The process is mostly fine,
but there are a few error messages:

cc -Ae -DHAVE_CONFIG_H -DSYSCONFDIR=\"/usr/local/etc\" -DCPU_hppa1_0 -DVENDOR_hp -
DOS_hpux11_00 -DOS_hpux11 -DOS_hpux -g -I. -I. -c floppyd.c
cc: "floppyd.c", line 464: warning 604: Pointers are not assignment-compatible.

cc -z -o floppyd -lSM -lICE -lXau -lX11 -lnsl

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 123

/usr/ccs/bin/ld: (Warning) At least one PA 2.0 object file (buffer.o) was detected.
The linked output may not run on a PA 1.x system.

It is important to try to understand what the messages mean. In this case, we get a
compiler warning, which is not an uncommon occurrence. We ignore it for the
moment. The second warning simply tells us that we are building architecture-
dependant executables. This is not important as we don’t plan to use them any-
where but the local system.

Now, we install the package, using the usual command to do so:

$ su
Password:
make -n install Preview first!
./mkinstalldirs /usr/local/bin
/opt/imake/bin/install -c mtools /usr/local/bin/mtools
 ...
make install Proceed if it looks ok.
./mkinstalldirs /usr/local/bin
/opt/imake/bin/install -c mtools /usr/local/bin/mtools
 ...
/opt/imake/bin/install -c floppyd /usr/local/bin/floppyd
cp: cannot access floppyd: No such file or directory
...
Make: Don't know how to make mtools.info. Stop.

We encounter two problems here. The first is a missing executable: floppyd, a dae-
mon to provide floppy access to remote users. The second problem is a make error
that occurs when make tries to create the info file for mtools (a documentation for-
mat common on Linux systems). The latter is unimportant since the info system is
not available under HP-UX. The first problem is more serious, and further efforts do
not resolve what turns out to be an obscure problem. For example, modifying the
source code to correct the compiler error message does not fix the problem. The fail-
ure actually occurs during the link phase, which simply fails without comment. I’m
always disappointed when errors prevent a package from working, but it does hap-
pen occasionally.

Since I can live without this component, I ultimately decide to just ignore its absence.
If it were an essential element, it would be necessary to resolve the problem to use the
package. At that point, I would either try harder to fix the problem, check news groups
and other Internet information sources, or just decide to live without the package.

Don’t let a recalcitrant package become a time sink. Give up and move
on.

bzip2: Converting Linux-based make procedures

Next, we will look at the bzip2 compression utility by Julian Seward. The initial steps
are the same. Here is the relevant section of the README file:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 3: Essential Administrative Tools and Techniques

HOW TO BUILD -- UNIX

Type `make'. This builds the library libbz2.a and then the
programs bzip2 and bzip2recover. Six self-tests are run.
If the self-tests complete ok, carry on to installation:

To install in /usr/bin, /usr/lib, /usr/man and /usr/include, type
 make install
To install somewhere else, eg, /xxx/yyy/{bin,lib,man,include}, type
 make install PREFIX=/xxx/yyy

We also read the README.COMPILATION.PROBLEMS file, but it contains noth-
ing relevant to our situation.

This package does not self-configure, but simply provides a make file designed to
work on a variety of systems. We start the build process on faith:

$ make
gcc -Wall -Winline -O2 -fomit-frame-pointer -fno-strength-reduce
-D_FILE_OFFSET_BITS=64 -c blocksort.c
sh: gcc: not found.
*** Error exit code 127

The problem here is that our C compiler is cc, not gcc (this make file was probably
created under Linux). We can edit the make file to reflect this. As we do so, we look
for other potential problems. Ultimately, the following lines:

SHELL=/bin/sh
CC=gcc
BIGFILES=-D_FILE_OFFSET_BITS=64
CFLAGS=-Wall -Winline -O2 -fomit-frame-pointer ... $(BIGFILES)

are changed to:

SHELL=/bin/sh
CC=cc
BIGFILES=-D_FILE_OFFSET_BITS=64
CFLAGS=-Wall +w2 -O $(BIGFILES)

The CFLAGS entry specifies options sent to the compiler command, and the original
value contains many gcc-specific ones. We replace those with their HP-UX
equivalents.

The next make attempt is successful:

cc -Wall +w2 -O -D_FILE_OFFSET_BITS=64 -c blocksort.c
cc -Wall +w2 -O -D_FILE_OFFSET_BITS=64 -c huffman.c
cc -Wall +w2 -O -D_FILE_OFFSET_BITS=64 -c crctable.c
...

Doing 6 tests (3 compress, 3 uncompress) ...
 ./bzip2 -1 < sample1.ref > sample1.rb2
 ./bzip2 -2 < sample2.ref > sample2.rb2
 ...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Essential Administrative Techniques | 125

If you got this far, it looks like you're in business.

To install in /usr/bin, /usr/lib, /usr/man and /usr/include,
 type: make install
To install somewhere else, eg, /xxx/yyy/{bin,lib,man,include},
 type: make install PREFIX=/xxx/yyy

We want to install into /usr/local, so we use this make install command (after pre-
viewing the process with -n first):

make install PREFIX=/usr/local

If the facility had not provided the capability to specify the install directory, we
would have had to edit the make file to use our desired location.

jove: Configuration via make file settings

Lastly, we look at the jove editor by Jonathan Payne, my personal favorite editor.
Here is the relevant section from the INSTALL file:

Installation on a UNIX System.

To make JOVE, edit Makefile to set the right directories for the binaries, on line
documentation, the man pages, and the TMP files, and select the appropriate load
command (see LDFLAGS in Makefile). (IMPORTANT! read the Makefile carefully.)
"paths.h" will be created by MAKE automatically, and it will use the directories you
specified in the Makefile. (NOTE: You should never edit paths.h directly because
your changes will be undone by the next make.)

You need to set "SYSDEFS" to the symbol that identifies your system, using the
notation for a macro-setting flag to the C compiler. If yours isn't mentioned, use
"grep System: sysdep.h" to find all currently supported system configurations.

This package is the least preconfigured of those we are considering. Here is the part
of the make file I needed to think about and modify (from the original). Our changes
are highlighted in boldface:

JOVEHOME = <userinput>/usr/local</userinput>
SHAREDIR = $(JOVEHOME)/lib/jove
BINDIR = $(JOVEHOME)/bin
...
Select the right libraries for your system.
LIBS = -ltermcap We uncommented the correct one.
#LIBS = -lcurses
...
define a symbol for your OS if it hasn’t got one. See sysdep.h.
SYSDEFS = -DHPUX -Ac –Ac says to use the K&R Edition 1 version of C.

Once this configuration of the make file is completed, running make and make install
built and installed the software successfully.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 3: Essential Administrative Tools and Techniques

Internet software archives

I’ll close this chapter with this short list of the most useful of the currently available
general and operating system-specific software archives (in my opinion). Unless oth-
erwise noted, all of them provide freely-available software.

General http://sourceforge.net
http://www.gnu.org
http://freshmeat.net
http://www.xfree86.org
http://rtfm.mit.edu

AIX http://freeware.bull.net
http://aixpdslib.seas.ucla.edu/aixpdslib.html

FreeBSD http://www.freebsd.org/ports/
http://www.freshports.org

HP-UX http://hpux.cs.utah.edu
http://www.software.hp.com (drivers and commercial packages)

Linux http://www.redhat.com
http://www.suse.com
http://www.ibiblio.org/Linux
http://linux.davecentral.com

Solaris http://www.sun.com/bigadmin/downloads/
http://www.sun.com/download/
ftp://ftp.sunfreeware.com/pub/freeware/
http://www.ibiblio.org/pub/packages/solaris/

Tru64 http://www.unix.digital.com/tools.html
ftp://ftp.digital.com
http://gatekeeper.dec.com
http://www.tru64.compaq.com (demos and commercial software)
(Compaq also offers a low-cost freeware CD for Tru64.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

127

Chapter 4 CHAPTER 4

Startup and Shutdown

Most of the time, bringing up or shutting down a Unix system is actually very sim-
ple. Nevertheless, every system administrator needs to have at least a conceptual
understanding of the startup and shutdown processes in order to, at a minimum, rec-
ognize situations where something is going awry—and potentially intervene. Provid-
ing you with this knowledge is the goal of this chapter. We will begin by examining
generic boot and shutdown procedures that illustrate the concepts and features com-
mon to virtually every Unix system. This will be followed by sections devoted to the
specifics of the various operating systems we are discussing, including a careful con-
sideration of the myriad of system configuration files that perform and control these
processes.

About the Unix Boot Process
Bootstrapping is the full name for the process of bringing a computer system to life
and making it ready for use. The name comes from the fact that a computer needs its
operating system to be able to do anything, but it must also get the operating system
started all on its own, without having any of the services normally provided by the
operating system to do so. Hence, it must “pull itself up by its own bootstraps.”
Booting is short for bootstrapping, and this is the term I’ll use.*

The basic boot process is very similar for all Unix systems, although the mechanisms
used to accomplish it vary quite a bit from system to system. These mechanisms
depend on both the physical hardware and the operating system type (System V or
BSD). The boot process can be initiated automatically or manually, and it can begin
when the computer is powered on (a cold boot) or as a result of a reboot command
from a running system (a warm boot or restart).

* IBM has traditionally referred to the bootstrapping process as the IPL (initial program load). This term still
shows up occasionally in AIX documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 4: Startup and Shutdown

The normal Unix boot process has these main phases:

• Basic hardware detection (memory, disk, keyboard, mouse, and the like).

• Executing the firmware system initialization program (happens automatically).

• Locating and running the initial boot program (by the firmware boot program),
usually from a predetermined location on disk. This program may perform addi-
tional hardware checks prior to loading the kernel.

• Locating and starting the Unix kernel (by the first-stage boot program). The ker-
nel image file to execute may be determined automatically or via input to the
boot program.

• The kernel initializes itself and then performs final, high-level hardware checks,
loading device drivers and/or kernel modules as required.

• The kernel starts the init process, which in turn starts system processes (dae-
mons) and initializes all active subsystems. When everything is ready, the sys-
tem begins accepting user logins.

We will consider each of these items in subsequent sections of this chapter.

From Power On to Loading the Kernel
As we’ve noted, the boot process begins when the instructions stored in the com-
puter’s permanent, nonvolatile memory (referred to colloquially as the BIOS, ROM,
NVRAM, and so on) are executed. This storage location for the initial boot instruc-
tions is generically referred to as firmware (in contrast to “software,” but reflecting
the fact that the instructions constitute a program*).

These instructions are executed automatically when the power is turned on or the
system is reset, although the exact sequence of events may vary according to the val-
ues of stored parameters.† The firmware instructions may also begin executing in
response to a command entered on the system console (as we’ll see in a bit). How-
ever they are initiated, these instructions are used to locate and start up the system’s
boot program, which in turn starts the Unix operating system.

The boot program is stored in a standard location on a bootable device. For a nor-
mal boot from disk, for example, the boot program might be located in block 0 of the
root disk or, less commonly, in a special partition on the root disk. In the same way,
the boot program may be the second file on a bootable tape or in a designated loca-
tion on a remote file server in the case of a network boot of a diskless workstation.

* At least that’s my interpretation of the name. Other explanations abound.

† Or the current position of the computer’s key switch. On systems using a physical key switch, one of its posi-
tions usually initiates an automatic boot process when power is applied (often labeled “Normal” or “On”),
and another position (e.g., “Service”) prevents autobooting and puts the system into a completely manual
mode suitable for system maintenance and repair.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 129

There is usually more than one bootable device on a system. The firmware program
may include logic for selecting the device to boot from, often in the form of a list of
potential devices to examine. In the absence of other instructions, the first bootable
device that is found is usually the one that is used. Some systems allow for several
variations on this theme. For example, the RS/6000 NVRAM contains separate
default device search lists for normal and service boots; it also allows the system
administrator to add customized search lists for either or both boot types using the
bootlist command.

The boot program is responsible for loading the Unix kernel into memory and pass-
ing control of the system to it. Some systems have two or more levels of intermediate
boot programs between the firmware instructions and the independently-executing
Unix kernel. Other systems use different boot programs depending on the type of
boot.

Even PC systems follow this same basic procedure. When the power comes on or the
system is reset, the BIOS starts the master boot program, located in the first 512
bytes of the system disk. This program then typically loads the boot program located
in the first 512 bytes of the active partition on that disk, which then loads the kernel.
Sometimes, the master boot program loads the kernel itself. The boot process from
other media is similar.

The firmware program is basically just smart enough to figure out if the hardware
devices it needs are accessible (e.g., can it find the system disk or the network) and to
load and initiate the boot program. This first-stage boot program often performs
additional hardware status verification, checking for the presence of expected sys-
tem memory and major peripheral devices. Some systems do much more elaborate
hardware checks, verifying the status of virtually every device and detecting new ones
added since the last boot.

The kernel is the part of the Unix operating system that remains running at all times
when the system is up. The kernel executable image itself, conventionally named
unix (System V–based systems), vmunix (BSD-based system), or something similar. It
is traditionally stored in or linked to the root directory. Here are typical kernel names
and directory locations for the various operating systems we are considering:

Once control passes to the kernel, it prepares itself to run the system by initializing
its internal tables, creating the in-memory data structures at sizes appropriate to cur-
rent system resources and kernel parameter values. The kernel may also complete the
hardware diagnostics that are part of the boot process, as well as installing loadable
drivers for the various hardware devices present on the system.

AIX /unix (actually a link to a file in /usr/lib/boot)
FreeBSD /kernel
HP-UX /stand/vmunix
Linux /boot/vmlinuz
Tru64 /vmunix
Solaris /kernel/genunix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 4: Startup and Shutdown

When these preparatory activities have been completed, the kernel creates another
process that will run the init program as the process with PID 1.*

Booting to Multiuser Mode
As we’ve seen, init is the ancestor of all subsequent Unix processes and the direct
parent of user login shells. During the remainder of the boot process, init does the
work needed to prepare the system for users.

One of init’s first activities is to verify the integrity of the local filesystems, begin-
ning with the root filesystem and other essential filesystems, such as /usr. Since the
kernel and the init program itself reside in the root filesystem (or sometimes the /usr
filesystem in the case of init), you might wonder how either one can be running
before the corresponding filesystem has been checked. There are several ways around
this chicken-and-egg problem. Sometimes, there is a copy of the kernel in the boot
partition of the root disk as well as in the root filesystem. Alternatively, if the execut-
able from the root filesystem successfully begins executing, it is probably safe to
assume that the file is OK.

In the case of init, there are several possibilities. Under System V, the root filesys-
tem is mounted read-only until after it has been checked, and init remounts it read-
write. Alternatively, in the traditional BSD approach, the kernel handles checking
and mounting the root filesystem itself.

Still another method, used when booting from tape or CD-ROM (for example, dur-
ing an operating system installation or upgrade), and on some systems for normal
boots, involves the use of an in-memory (RAM) filesystem containing just the lim-
ited set of commands needed to access the system and its disks, including a version
of init. Once control passes from the RAM filesystem to the disk-based filesystem,
the init process exits and restarts, this time from the “real” executable on disk, a
result that somewhat resembles a magician’s sleight-of-hand trick.

Other activities performed by init include the following:

• Checking the integrity of the filesystems, traditionally using the fsck utility

• Mounting local disks

• Designating and initializing paging areas

• Performing filesystem cleanup activities: checking disk quotas, preserving editor
recovery files, and deleting temporary files in /tmp and elsewhere

• Starting system server processes (daemons) for subsystems like printing, elec-
tronic mail, accounting, error logging, and cron

* Process 0, if it exists, is really part of the kernel itself. Process 0 is often the scheduler (controls which pro-
cesses execute at what time under BSD) or the swapper (moves process memory pages to and from swap
space under System V). However, some systems assign PID 0 to a different process, and others do not have
a process 0 at all.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 131

• Starting networking daemons and mounting remote disks

• Enabling user logins, usually by starting getty processes and/or the graphical
login interface on the system console (e.g., xdm), and removing the file /etc/
nologin, if present

These activities are specified and carried out by means of the system initialization
scripts, shell programs traditionally stored in /etc or /sbin or their subdirectories and
executed by init at boot time. These files are organized very differently under Sys-
tem V and BSD, but they accomplish the same purposes. They are described in detail
later in this chapter.

Once these activities are complete, users may log in to the system. At this point, the
boot process is complete, and the system is said to be in multiuser mode.

Booting to Single-User Mode
Once init takes control of the booting process, it can place the system in single-user
mode instead of completing all the initialization tasks required for multiuser mode.
Single-user mode is a system state designed for administrative and maintenance
activities, which require complete and unshared control of the system. This system
state is selected by a special boot command parameter or option; on some systems,
the administrator may select it by pressing a designated key at a specific point in the
boot process.

To initiate single-user mode, init forks to create a new process, which then executes
the default shell (usually /bin/sh) as user root. The prompt in single-user mode is the
number sign (#), the same as for the superuser account, reflecting the root privileges
inherent in it. Single-user mode is occasionally called maintenance mode.

Another situation in which the system might enter single-user mode automatically
occurs if there are any problems in the boot process that the system cannot handle
on its own. Examples of such circumstances include filesystem problems that fsck
cannot fix in its default mode and errors in one of the system initialization files. The
system administrator must then take whatever steps are necessary to resolve the
problem. Once this is done, booting may continue to multiuser mode by entering
CTRL-D, terminating the single-user mode shell:

^D Continue boot process to multiuser mode.
Tue Jul 14 14:47:14 EDT 1987 Boot messages from the initialization files.
. . .

Alternatively, rather than picking up the boot process where it left off, the system
may be rebooted from the beginning by entering a command such as reboot (AIX
and FreeBSD) or telinit 6. HP-UX supports both commands.

Single-user mode represents a minimal system startup. Although you have root
access to the system, many of the normal system services are not available at all or
are not set up. On a mundane level, the search path and terminal type are often not

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 4: Startup and Shutdown

set correctly. Less trivially, no daemons are running, so many Unix facilities are shut
down (e.g., printing). In general, the system is not connected to the network. The
available filesystems may be mounted read-only, so modifying files is initially dis-
abled (we’ll see how to overcome this in a bit). Finally, since only some of the filesys-
tems are mounted, only commands that physically reside on these filesystems are
available initially.

This limitation is especially noticeable if /usr was created on a separate disk partition
from the root filesystem and is not mounted automatically under single-user mode.
In this case, even commands stored in the root filesystem (in /bin, for example) will
not work if they use shared libraries stored under /usr. Thus, if there is some prob-
lem with the /usr filesystem, you will have to make do with the tools that are avail-
able. For such situations, however rare and unlikely, you should know how to use
the ed editor if vi is not available in single-user mode; you should know which tools
are available to you in that situation before you have to use them.

On a few systems, vendors have exacerbated this problem by making /bin a symbolic
link to /usr/bin, thereby rendering the system virtually unusable if there is a problem
with a separate /usr filesystem.

Password protection for single-user mode

On older Unix systems, single-user mode does not require a password be entered to
gain access. Obviously, this can be a significant security problem. If someone gained
physical access to the system console, he could crash it (by hitting the reset button,
for example) and then boot to single-user mode via the console and be automatically
logged in as root without having to know the root password.

Modern systems provide various safeguards. Most systems now require that the root
password be entered before granting system access in single-user mode. On some
System V–based systems, this is accomplished via the sulogin program that is
invoked automatically by init once the system reaches single-user mode. On these
systems, if the correct root password is not entered within some specified time
period, the system is automatically rebooted.*

Here is a summary of single-user mode password protection by operating system:

* The front panel key position also influences the boot process, and the various settings provide for some types
of security protection. There is usually a setting that disables booting to single-user mode; it is often labeled
“Secure” (versus “Normal”) or “Standard” (versus “Maintenance” or “Service”). Such security features are
usually described on the init or boot manual pages and in the vendor’s hardware or system operations man-
uals.

AIX Automatic
FreeBSD Required if the console is listed in /etc/ttys with the insecure

option:
console none unknown off insecure

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 133

Current Linux distributions include the sulogin utility but do not
always activate it (this is true of Red Hat Linux as of this writing),
leaving single-user mode unprotected by default.

Firmware passwords

Some systems also allow you to assign a separate password to the firmware initializa-
tion program, preventing unauthorized persons from starting a manual boot. For
example, on SPARC systems, the eeprom command may be used to require a pass-
word and set its value (via the security-mode and security-password parameters,
respectively).

On some systems (e.g., Compaq Alphas), you must use commands within the firm-
ware program itself to perform this operation (set password and set secure in the
case of the Alpha SRM). Similarly, on PC-based systems, the BIOS monitor program
must generally be used to set such a password. It is accessed by pressing a desig-
nated key (often F1 or F8) shortly after the system powers on or is reset.

On Linux systems, commonly used boot-loader programs have configuration set-
tings that accomplish the same purpose. Here are some configuration file entries for
lilo and grub:

password = something /etc/lilo.conf
password -md5 xxxxxxxxxxxx /boot/grub/grub.conf

The grub package provides the grub-md5-crypt utility for generating the MD5 encod-
ing for a password. Linux boot loaders are discussed in detail in Chapter 16.

Starting a Manual Boot
Virtually all modern computers can be configured to boot automatically when power
comes on or after a crash. When autobooting is not enabled, booting is initiated by
entering a simple command in response to a prompt: sometimes just a carriage
return, sometimes a b, sometimes the word boot. When a command is required, you
often can tell the system to boot to single-user mode by adding a -s or similar option
to the boot command, as in these examples from a Solaris and a Linux system:

ok boot -s Solaris
boot: linux single Linux

HP-UX Automatic
Linux Required if /etc/inittab (discussed later in this chapter) contains

a sulogin entry for single-user mode. For example:
sp:S:respawn:/sbin/sulogin

Tru64 Required if the SECURE_CONSOLE entry in /etc/rc.config is set
to ON.

Solaris Required if the PASSREQ setting in /etc/default/sulogin is set to
YES.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 4: Startup and Shutdown

In the remainder of this section, we will look briefly at the low-level boot commands
for our supported operating systems. We will look at some more complex manual-
boot examples in Chapter 16 and also consider boot menu configuration in detail.

AIX

AIX provides little in the way of administrator intervention options during the boot
process.* However, the administrator does have the ability to preconfigure the boot
process in two ways.

The first is to use the bootlist command to specify the list and ordering of boot
devices for either normal boot mode or service mode. For example, this command
makes the CD-ROM drive the first boot device for the normal boot mode:

bootlist -m normal cd1 hdisk0 hdisk1 rmt0

If there is no bootable CD in the drive, the system next checks the first two hard
disks and finally the first tape drive.

The second configuration option is to use the diag utility to specify various boot pro-
cess options, including whether or not the system should boot automatically in vari-
ous circumstances. These items are accessed via the Task Selection submenu.

FreeBSD

FreeBSD (on Intel systems) presents a minimal boot menu:

F1 FreeBSD
F2 FreeBSD
F5 Drive 1 Appears if there is a second disk with a bootable partition.

This menu is produced by the FreeBSD boot loader (installed automatically if
selected during the operating system installation, or installed manually later with the
boot0cfg command). It simply identifies the partitions on the disk and lets you select
the one from which to boot. Be aware, however, that it does not check whether each
partition has a valid operating system on it (see Chapter 16 for ways of customizing
what is listed).

The final option in the boot menu allows you to specify a different disk (the second
IDE hard drive in this example). If you choose that option, you get a second, similar
menu allowing you to select a partition on that disk:

F1 FreeBSD
F5 Drive 0

In this case, the second disk has only one partition.

* Some AIX systems respond to a specific keystroke at a precise moment during the boot process and place
you in the System Management Services facility, where the boot device list can also be specified.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 135

Shortly after selecting a boot option, the following message appears:*

Hit [Enter] to boot immediately, or any other key for the command prompt

If you strike a key, a command prompt appears, from which you can manually boot,
as in these examples:

disk1s1a:> boot -s Boot to single-user mode

disk1s1a:> unload Boot an alternate kernel
disk1s1a:> load kernel-new
disk1s1a:> boot

If you do not specify a full pathname, the alternate kernel must be located in the root
directory on the disk partition corresponding to your boot menu selection.

FreeBSD can also be booted by the grub open source boot loader, which is dis-
cussed—along with a few other boot loaders—in the Linux section below.

HP-UX

HP-UX boot commands vary by hardware type. These examples are from an HP
9000/800 system. When power comes on initially, the greater-than-sign prompt (>)†

is given when any key is pressed before the autoboot timeout period expires. You can
enter a variety of commands here. For our present discussion, the most useful are
search (to search for bootable devices) and co (to enter the configuration menu). The
latter command takes you to a menu where you can specify the standard and alter-
nate boot paths and options. When you have finished with configuration tasks,
return to the main menu (ma) and give the reset command.

Alternatively, you can boot immediately by using the bo command, specifying one of
the devices that search found by its two-character path number (given in the first col-
umn of the output). For example, the following command might be used to boot
from CD-ROM:

> bo P1

The next boot phase involves loading and running the initial system loader (ISL).
When it starts, it asks whether you want to enter commands with this prompt:

Interact with ISL? y

If you answer yes, you will receive the ISL> prompt, at which you can enter various
commands to modify the usual boot process, as in these examples:

ISL> hpux -is Boot to single user mode
ISL> hpux /stand/vmunix-new Boot an alternate kernel
ISL> hpux ll /stand List available kernels

* We’re ignoring the second-stage boot loader here.

† Preceded by various verbiage.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 4: Startup and Shutdown

Linux

When using lilo, the traditional Linux boot loader, the kernels available for booting
are predefined. When you get lilo’s prompt, you can press the TAB key to list the
available choices. If you want to boot one of them into single-user mode, simply add
the option single (or -s) to its name. For example:

boot: linux single

You can specify kernel parameters generally by appending them to the boot selec-
tion command.

If you are using the newer grub boot loader, you can enter boot commands manually
instead of selecting one of the predefined menu choices, by pressing the c key. Here
is an example sequence of commands:

grub> root (hd0,0) Location of /boot
grub> kernel /vmlinuz=new ro root=/dev/hda2
grub> initrd /initrd.img
grub> boot

The root option on the kernel command locates the partition where the root direc-
tory is located (we are using separate / and /boot partitions here).

If you wanted to boot to single-user mode, you would add single to the end of the
kernel command.

In a similar way, you can boot one of the existing grub menu selections in single-user
mode by doing the following:

1. Selecting it from the menu

2. Pressing the e key to edit it

3. Selecting and editing the kernel command, placing single at the end of the line

4. Moving the cursor to the first command and then pressing b for boot

The grub facility is discussed in detail in Chapter 16.

On non-Intel hardware, the boot commands are very different. For example, some
Alpha Linux systems use a boot loader named aboot.* The initial power-on prompt is
a greater-than sign (>). Enter the b command to reach aboot’s prompt.

Here are the commands to boot a Compaq Alpha Linux system preconfigured with
appropriate boot parameters:

aboot> p 2 Select the second partition to boot from.
aboot> 0 Boot predefined configuration 0.

The following command can be used to boot Linux from the second hard disk
partition:

aboot> 2/vmlinux.gz root=/dev/hda2

* This description will also apply to Alpha hardware running other operating systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 137

You could add single to the end of this line to boot to single-user mode.

Other Alpha-based systems use quite different boot mechanisms. Consult the manu-
facturer’s documentation for your hardware to determine the proper commands for
your system.

Tru64

When power is applied, a Tru64 system generally displays a console prompt that is a
triple greater-than sign (>>>). You can enter commands to control the boot process,
as in these examples:

>>> boot -fl s Boot to single-user mode

>>> boot dkb0.0.0.6.1 Boot an alternate device or kernel
>>> boot -file vmunix-new

The -fl option specifies boot flags; here, we select single-user mode. The second set
of commands illustrate the method for booting from an alternate device or kernel
(the two commands may be combined).

Note that there are several other ways to perform these same tasks, but these meth-
ods seem the most intuitive.

Solaris

At power-on, Solaris systems may display the ok console prompt. If not, it is because
the system is set to boot automatically, but you can generate one with the Stop-a or
L1-a key sequence. From there, the boot command may be used to initiate a boot, as
in this example:

ok boot -s Boot to single user mode
ok boot cdrom Boot from installation media

The second command boots an alternate kernel by giving its full drive and directory
path. You can determine the available devices and how to refer to them by running
the devalias command at the ok prompt.

Booting from alternate media

Booting from alternate media, such as CD-ROM or tape, is no different from boot-
ing any other non-default kernel. On systems where this is possible, you can specify
the device and directory path to the kernel to select it. Otherwise, you must change
the device boot order to place the desired alternate device before the standard disk
location in the list.

Boot Activities in Detail
We now turn to a detailed consideration of the boot process from the point of ker-
nel initialization onward.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 4: Startup and Shutdown

Boot messages

The following example illustrates a generic Unix startup sequence. The messages
included here are a composite of those from several systems, although the output is
labeled as for a mythical computer named the Urizen, a late-1990s system running a
vaguely BSD-style operating system. While this message sequence does not corre-
spond exactly to any existing system, it does illustrate the usual elements of booting
on Unix systems, under both System V and BSD.

We’ve annotated the boot process output throughout:

> b Initiate boot to multiuser mode.
Urizen Ur-Unix boot in progress...
testing memory Output from boot program.
checking devices Preliminary hardware tests.
loading vmunix Read in the kernel executable.

Urizen Ur-Unix Version 17.4.2: Fri Apr 24 23 20:32:54 GMT 1998
Copyright (c) 1998 Blakewill Computer, Ltd. Copyright for OS.
Copyright (c) 1986 Sun Microsystems, Inc. Subsystem copyrights.
Copyright (c) 1989-1998 Open Software Foundation, Inc.
...
Copyright (c) 1991 Massachusetts Institute of Technology
All rights reserved. Unix kernel is running now.

physical memory = 2.00 GB Amount of real memory.

Searching SCSI bus for devices: Peripherals are checked next.
rdisk0 bus 0 target 0 lun 0
rdisk1 bus 0 target 1 lun 0
rdisk2 bus 0 target 2 lun 0
rmt0 bus 0 target 4 lun 0
cdrom0 bus0 target 6 lun 0
Ethernet address=8:0:20:7:58:jk Ethernet address of network adapter.

Root on /dev/disk0a Indicates disk partitions used as /, . . .
Activating all paging spaces . . .as paging spaces and...
swapon: swap device /dev/disk0b activated.
Using /dev/disk0b as dump device . . .as the crash dump location.

Single-user mode could be entered here,.. .
INIT: New run level: 3 . . .but this system is booting to run level 3.

Messages produced by startup scripts follow.
The system is coming up. Please wait. Means “Be patient.”
Tue Jul 14 14:45:28 EDT 1998

Checking TCB databases Verify integrity of the security databases.
Checking file systems: Check and mount remaining local filesystems.
fsstat: /dev/rdisk1c (/home) umounted cleanly; Skipping check.
fsstat: /dev/rdisk2c (/chem) dirty This filesystem needs checking.
Running fsck:
/dev/rdisk2c: 1764 files, 290620 used, 110315 free
Mounting local file systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 139

Checking disk quotas: done. Daemons for major subsystems start first,. . .
cron subsystem started, pid = 3387
System message logger started.
Accounting services started.

. . .followed by network servers,. . .
Network daemons started: portmap inetd routed named rhwod timed.
NFS started: biod(4) nfsd(6) rpc.mountd rpc.statd rpc.lockd.
Mounting remote file systems.
Print subsystem started. . . .and network-dependent local daemons.
sendmail started.

Preserving editor files. Save interrupted editor sessions.
Clearing /tmp. Remove files from /tmp.
Enabling user logins. Remove the /etc/nologin file.
Tue Jul 14 14:47:45 EDT 1998 Display the date again.

Urizen Ur-Unix 9.1 on hamlet The hostname is hamlet.

login: Unix is running in multiuser mode.

There are some things that are deliberately anachronistic about this example boot
sequence—running fsck and clearing /tmp, for instance—but we’ve retained them
for nostalgia’s sake. We’ll consider the scripts and commands that make all of these
actions happen in the course of this section.

Saved boot log files

Most Unix versions automatically save some or all of the boot messages from the
kernel initialization phase to a log file. The system message facility, controlled by the
syslogd daemon, and the related System V dmesg utility are often used to capture
messages from the kernel during a boot (syslog is discussed in detail Chapter 3). In
the latter case, you must execute the dmesg command to view the messages from the
most recent boot. On FreeBSD systems, you can also view them in the /var/run/
dmesg.boot file.

It is common for syslogd to maintain only a single message log file, so boot mes-
sages may be interspersed with system messages of other sorts. The conventional
message file is /var/log/messages.

The syslog facility under HP-UX may also be configured to produce a messages file,
but it is not always set up at installation to do so automatically. HP-UX also pro-
vides the /etc/rc.log file, which stores boot output from the multiuser phase.

Under AIX, /var/adm/ras/bootlog is maintained by the alog facility. Like the kernel
buffers that are its source, this file is a circular log that is maintained at a predefined
fixed size; new information is written at the beginning of the file once the file is full,
replacing the older data. You can use a command like this one to view the contents
of this file:

alog -f /var/adm/ras/bootlog -o

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 4: Startup and Shutdown

General considerations

In general, init controls the multiuser mode boot process. init runs whatever initial-
ization scripts it has been designed to run, and the structure of the init program
determines the fundamental design of the set of initialization scripts for that Unix
version: what the scripts are named, where they are located in the filesystem, the
sequence in which they are run, the constraints placed upon the scripts’ program-
mers, the assumptions under which they operate, and so on. Ultimately, it is the dif-
ferences in the System V and BSD versions of init that determines the differences in
the boot process for the two types of systems.

Although we’ll consider those differences in detail later, in this section, we’ll begin
by looking at the activities that are part of every normal Unix boot process, regard-
less of the type of system. In the process, we’ll examine sections of initialization
scripts from a variety of different computer systems.

Preliminaries

System initialization scripts usually perform a few preliminary actions before getting
down to the work of booting the system. These include defining any functions and
local variables that may be used in the script and setting up the script’s execution
environment, often beginning by defining HOME and PATH environment variables:

HOME=/; export HOME
PATH=/bin:/usr/bin:/sbin:/usr/sbin; export PATH

The path is deliberately set to be as short as possible; generally, only system directo-
ries appear in it to ensure that only authorized, unmodified versions of commands
get executed (we’ll consider this issue in more detail in “Protecting Files and the File-
system” in Chapter 7).

Alternatively, other scripts are careful always to use full pathnames for every com-
mand that they use. However, since this may make commands excessively long and
scripts correspondingly harder to read, some scripts take a third approach and define
a local variable for each command that will be needed at the beginning of the script:

mount=/sbin/mount
fsck=/sbin/fsck
rm=/usr/bin/rm
...

The commands would then be invoked in this way:

${rm} -f /tmp/*

This practice ensures that the proper version of the command is run while still leav-
ing the individual command lines very readable.

Whenever full pathnames are not used, we will assume that the appropriate PATH
has previously been set up in the script excerpts we’ll consider.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 141

Preparing filesystems

Preparing the filesystem for use is the first and most important aspect of the mul-
tiuser boot process. It naturally separates into two phases: mounting the root filesys-
tem and other vital system filesystems (such as /usr), and handling the remainder of
the local filesystems.

Filesystem checking is one of the key parts of preparing the filesystem. This task is
the responsibility of the fsck* utility.

Most of the following discussion applies only to traditional, non-jour-
naled Unix filesystems. Modern filesystem types use journaling tech-
niques adapted from transaction processing to record and, if
necessary, replay filesystem changes. In this way, they avoid the need
for a traditional fsck command and its agonizingly slow verification
and repair procedures (although a command of this name is usually
still provided).

For traditional Unix filesystem types (such as ufs under FreeBSD and ext2 under
Linux), fsck’s job is to ensure that the data structures in the disk partition’s super-
block and inode tables are consistent with the filesystem’s directory entries and
actual disk block consumption. It is designed to detect and correct inconsistencies
between them, such as disk blocks marked as in use that are not claimed by any file,
and files existing on disk that are not contained in any directory. fsck deals with file-
system structure, but not with the internal structure or contents of any particular file.
In this way, it ensures filesystem-level integrity, not data-level integrity.

In most cases, the inconsistencies that arise are minor and completely benign, and
fsck can repair them automatically at boot time. Occasionally, however, fsck finds
more serious problems, requiring administrator intervention.

System V and BSD have very different philosophies of filesystem verification. Under
traditional BSD, the normal practice is to check all filesystems on every boot. In con-
trast, System V–style filesystems are not checked if they were unmounted normally
when the system last went down. The BSD approach is more conservative, taking
into account the fact that filesystem inconsistencies do on occasion crop up at times
other than system crashes. On the other hand, the System V approach results in
much faster boots.†

If the system is rebooting after a crash, it is quite normal to see many messages indi-
cating minor filesystem discrepancies that have been repaired. By default, fsck fixes
problems only if the repair cannot possibly result in data loss. If fsck discovers a

* Variously pronounced as “fisk” (like the baseball player Carlton, rhyming with “disk”), “ef-es-see-kay,” “ef-
es-check,” and in less genteel ways.

† FreeBSD Version 4.4 and higher also checks only dirty filesystems at boot time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 4: Startup and Shutdown

more serious problem with the filesystem, it prints a message describing the problem
and leaves the system in single-user mode; you must then run fsck manually to
repair the damaged filesystem. For example (from a BSD-style system):

/dev/disk2e: UNEXPECTED INCONSISTENCY;
RUN fsck MANUALLY Message from fsck.
Automatic reboot failed . . . help! Message from /etc/rc script.
Enter root password: Single-user mode.
/sbin/fsck -p /dev/disk2e Run fsck manually with –p.
... Many messages from fsck.
BAD/DUP FILE=2216 OWNER=190 M=120777 Mode=> file is a symbolic link, so deleting it is safe.
S=16 MTIME=Sep 16 14:27 1997
CLEAR? y
*** FILE SYSTEM WAS MODIFIED ***
^D Resume booting.
Mounting local file systems. Normal boot messages
...

In this example, fsck found a file whose inode address list contained duplicate
entries or addresses of known bad spots on the disk. In this case, the troublesome file
was a symbolic link (indicated by the mode), so it could be safely removed (although
the user who owned it will need to be informed). This example is intended merely to
introduce you to fsck; the mechanics of running fsck are described in detail in
“Managing Filesystems” in Chapter 10.

Checking and mounting the root filesystem

The root filesystem is the first filesystem that the boot process accesses as it prepares
the system for use. On a System V system, commands like these might be used to
check the root filesystem, if necessary:

/sbin/fsstat ${rootfs} >/dev/null 2>&1
if [$? -eq 1] ; then
 echo "Running fsck on the root file system."
 /sbin/fsck -p ${rootfs}
fi

The shell variable rootfs has been defined previously as the appropriate special file
for the root filesystem. The fsstat command determines whether a filesystem is
clean (under HP-UX, fsclean does the same job). If it returns an exit value of 1, the
filesystem needs checking, and fsck is run with its -p option, which says to correct
automatically all benign errors that are found.

On many systems, the root filesystem is mounted read-only until after it is known to
be in a viable state as a result of running fsstat and fsck as needed. At that point, it
is remounted read-write by the following command:

mount -o rw,remount /

On FreeBSD systems, the corresponding command is:

mount -u -o rw /

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 143

Preparing other local filesystems

The traditional BSD approach to checking the filesystems is to check all of them via a
single invocation of fsck (although the separate filesystems are not all checked simul-
taneously), and some System V systems have adopted this method as well. The ini-
tialization scripts on such systems include a fairly lengthy case statement, which
handles the various possible outcomes of the fsck command:

/sbin/fsck -p
retval=$?
case $retval in Check fsck exit code.
0) No remaining problems,
 ;; so just continue the boot process
4) fsck fixed problems on root disk.
 echo "Root file system was modified."
 echo "Rebooting system automatically."
 exec /sbin/reboot -n
 ;;
8) fsck failed to fix filesystem.
 echo "fsck -p could not fix file system."
 echo "Run fsck manually."
 ${single} Single-user mode.
 ;;
12) fsck exited before finishing.
 echo "fsck interrupted ... run manually."
 ${single}
 ;;
*) All other fsck errors.
 echo "Unknown error in fsck."
 ${single}
 ;;
esac

This script executes the command fsck -p to check the filesystem’s consistency. The
-p option stands for preen and says that any needed repairs that will cause no loss of
data should be made automatically. Since virtually all repairs are of this type, this is a
very efficient way to invoke fsck. However, if a more serious error is found, fsck asks
whether to fix it. Note that the options given to fsck may be different on your sys-
tem.

Next, the case statement checks the status code returned by fsck (stored in the local
variable retval) and performs the appropriate action based on its value.

If fsck cannot fix a disk on its own, you need to run it manually when it dumps you
into single-user mode. Fortunately, this is rare. That’s not just talk, either. I’ve had to
run fsck manually only a handful of times over the many hundreds of times I’ve
rebooted Unix systems, and those times occurred almost exclusively after crashes
due to electrical storms or other power loss problems. Generally, the most vulnera-
ble disks are those with continuous disk activity. For such systems, a UPS device is
often a good protection strategy.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 4: Startup and Shutdown

Once all the local filesystems have been checked (or it has been determined that they
don’t need to be), they can be mounted with the mount command, as in this example
from a BSD system:

mount -a -t ufs

mount’s -a option says to mount all filesystems listed in the system’s filesystem con-
figuration file, and the -t option restricts the command to filesystems of the type
specified as its argument. In the preceding example, all ufs filesystems will be
mounted. Some versions of mount also support a nonfs type, which specifies all file-
systems other than those accessed over the network with NFS.

Saving a crash dump

When a system crashes due to an operating system–level problem, most Unix ver-
sions automatically write the current contents of kernel memory—known as a crash
dump—to a designated location, usually the primary swap partition. AIX lets you
specify the dump location with the sysdumpdev command, and FreeBSD sets it via the
dumpdev parameter in /etc/rc.conf. Basically, a crash dump is just a core dump of the
Unix kernel, and like any core dump, it can be analyzed to figure out what caused
the kernel program—and therefore the system—to crash.

Since the swap partition will be overwritten when the system is booted and paging is
restarted, some provision needs to be made to save its contents after a crash. The
savecore command copies the contents of the crash dump location to a file within
the filesystem. savecore exits without doing anything if there is no crash dump
present. The HP-UX version of this command is called savecrash.

savecore is usually executed automatically as part of the boot process, prior to the
point at which paging is initiated:

savecore /var/adm/crash

savecore’s argument is the directory location to which the crash dump should be
written; /var/adm/crash is a traditional location. On Solaris systems, you can specify
the default directory location with the dumpadm command.

The crash dumps themselves are conventionally a pair of files named something like
vmcore.n (the memory dump) and kernel.n, unix.n, or vmunix.n (the running ker-
nel), where the extension is an integer that is increased each time a crash dump is
made (so that multiple files may exist in the directory simultaneously). Sometimes,
additional files holding other system status information are created as well.

HP-UX creates a separate subdirectory of /var/adm/crash for each successive crash
dump, using names of the form crash.n. Each subdirectory holds the corresponding
crash data and several related files.

The savecore command is often disabled in the delivered versions of system initial-
ization files since crash dumps are not needed by most sites. You should check the
files on your system if you decide to use savecore to save crash dumps.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 145

Starting paging

Once the filesystem is ready and any crash dump has been saved, paging can be
started. This normally happens before the major subsystems are initialized since they
might need to page, but the ordering of the remaining multiuser mode boot activi-
ties varies tremendously.

Paging is started by the swapon -a command, which activates all the paging areas
listed in the filesystem configuration file.

Security-related activities

Another important aspect of preparing the system for users is ensuring that available
security measures are in place and operational. Systems offering enhanced security
levels over the defaults provided by vanilla Unix generally include utilities to verify
the integrity of system files and executables themselves. Like their filesystem-check-
ing counterpart fsck, these utilities are run at boot time and must complete success-
fully before users are allowed access to the system.

In a related activity, initialization scripts on many systems often try to ensure that
there is a valid password file (containing the system’s user accounts). These Unix ver-
sions provide the vipw utility for editing the password file. vipw makes sure that only
one person edits the password file at a time. It works by editing a copy of the pass-
word file; vipw installs it as the real file after editing is finished. If the system crashes
while someone is running vipw, however, there is a slight possibility that the system
will be left with an empty or nonexistent password file, which significantly compro-
mises system security by allowing anyone access without a password.

Commands such as these are designed to detect and correct such situations:

if [-s /etc/ptmp]; then Someone was editing /etc/passwd.
 if [-s /etc/passwd]; then If passwd is non-empty, use it. . .
 ls -l /etc/passwd /etc/ptmp >/dev/console
 rm -f /etc/ptmp . . .and remove the temporary file.
 else Otherwise, install the temporary file.
 echo 'passwd file recovered from /etc/ptmp'
 mv /etc/ptmp /etc/passwd
 fi
elif [-r /etc/ptmp]; then Delete any empty temporary file.
 echo 'removing passwd lock file'
 rm -f /etc/ptmp
fi

The password temporary editing file, /etc/ptmp in this example, also functions as a
lock file. If it exists and is not empty (-s checks for a file of greater than zero length),
someone was editing /etc/passwd when the system crashed or was shut down. If /etc/
passwd exists and is not empty, the script assumes that it hasn’t been damaged,
prints a long directory listing of both files on the system console, and removes the
password lock file. If /etc/passwd is empty or does not exist, the script restores /etc/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 4: Startup and Shutdown

ptmp as a backup version of /etc/passwd and prints the message “passwd file recov-
ered from /etc/ptmp” on the console.

The elif clause handles the case where /etc/ptmp exists but is empty. The script
deletes it (because its presence would otherwise prevent you from using vipw) and
prints the message “removing passwd lock file” on the console. Note that if no /etc/
ptmp exists at all, this entire block of commands is skipped.

Checking disk quotas

Most Unix systems offer an optional disk quota facility, which allows the available
disk space to be apportioned among users as desired. It, too, depends on database
files that need to be checked and possibly updated at boot time, via commands like
these:

echo "Checking quotas: \c"
quotacheck -a
echo "done."
quotaon -a

The script uses the quotacheck utility to check the internal structure of all disk quota
databases, and then it enables disk quotas with quotaon. The script displays the
string “Checking quotas:” on the console when the quotacheck utility begins (sup-
pressing the customary carriage return at the end of the displayed line) and com-
pletes the line with “done.” after it has finished (although many current systems use
fancier, more aesthetically pleasing status messages). Disk quotas are discussed in
“Monitoring and Managing Disk Space Usage” in Chapter 15.

Starting servers and initializing local subsystems

Once all the prerequisite system devices are ready, important subsystems such as
electronic mail, printing, and accounting can be started. Most of them rely on dae-
mons (server processes). These processes are started automatically by one of the boot
scripts. On most systems, purely local subsystems that do not depend on the net-
work are usually started before networking is initialized, and subsystems that do
need network facilities are started afterwards.

For example, a script like this one (from a Solaris system) could be used to initialize
the cron subsystem, a facility to execute commands according to a preset schedule
(cron is discussed in Chapter 3):

if [-p /etc/cron.d/FIFO]; then
 if /usr/bin/pgrep -x -u 0 -P 1 cron >/dev/null 2>&1; then
 echo "$0: cron is already running"
 exit 0
 fi
elif [-x /usr/sbin/cron]; then
 /usr/bin/rm -f /etc/cron.d/FIFO
 /usr/sbin/cron &
fi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 147

The script first checks for the existence of the cron lock file (a named pipe called FIFO
whose location varies). If it is present, the script next checks for a current cron process
(via the pgrep command). It the latter is found, the script exits because cron is already
running. Otherwise, the script checks for the existence of the cron executable file. If it
finds the file, the script removes the cron lock file and then starts the cron server.

The precautionary check to see whether cron is already running isn’t made on all sys-
tems. Lots of system initialization files simply (foolishly) assume that they will be run
only at boot time, when cron obviously won’t already be running. Others use a dif-
ferent, more general mechanism to determine the conditions under which they were
run. We’ll examine that shortly.

Other local subsystems started in a similar manner include:

update
A process that periodically forces all filesystem buffers (accumulated changes to
inodes and data blocks) to disk. It does so by running the sync command, ensur-
ing that the disks are fairly up-to-date should the system crash. The name of this
daemon varies somewhat: bdflush is a common variant, AIX calls its version
syncd, the HP-UX version is syncer, and it is named fsflush on Solaris systems.
Linux runs both update and bdflush. Whatever its name, don’t disable this dae-
mon or you will seriously compromise filesystem integrity.

syslogd
The system message handling facility that routes informational and error mes-
sages to log files, specific users, electronic mail, and other destinations accord-
ing to the specifications in its configuration file (see Chapter 3).

Accounting
this subsystem is started using the accton command. If accounting is not
enabled, the relevant commands may be commented out.

System status monitor daemons
some systems provide daemons that monitor the system’s physical conditions (e.
g., power level, temperature, and humidity) and trigger the appropriate action
when a problem occurs. For example, the HP-UX ups_mond daemon watches for
a power failure, switching to an uninterruptible power supply (UPS) to allow an
orderly system shutdown, if necessary.

Subsystems that are typically started after networking (discussed in the next section)
include:

• Electronic mail: the most popular electronic mail server is sendmail, which can
route mail locally and via the network as needed. Postfix is a common alterna-
tive (its server process is also called sendmail).

• Printing: the spooling subsystem also may be entirely local or used for printing
to remote systems in addition to (or instead of) locally connected ones. BSD-type
printing subsystems rely on the lpd daemon, and System V systems use lpsched.
The AIX printing server is qdaemon.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 4: Startup and Shutdown

There may be other subsystems on your system with their own associated daemon
processes; some may be vendor enhancements to standard Unix. We’ll consider
some of these when we look at the specific initialization files used by the various
Unix versions later in this chapter.

The AIX System Resource Controller. On AIX systems, system daemons are controlled by
the System Resource Controller (SRC). This facility starts daemons associated with
the various subsystems and monitors their status on an ongoing basis. If a system
daemon dies, the SRC automatically restarts it.

The srcmstr command is the executable corresponding to the SRC. The lssrc and
chssys commands may be used to list services controlled by the SRC and change
their configuration settings, respectively. We’ll see examples of these commands at
various points in this book.

Connecting to the network

Network initialization begins by setting the system’s network hostname, if neces-
sary, and configuring the network interfaces (adapter devices), enabling it to commu-
nicate on the network. The script that starts networking at boot time contains
commands like these:

ifconfig lo0 127.0.0.1
ifconfig ent0 inet 192.168.29.22 netmask 255.255.255.0

The specific ifconfig commands vary quite a bit. The first parameter to ifconfig,
which designates the network interface, may be different on your system. In this case,
lo0 is the loopback interface, and ent0 is the Ethernet interface. Other common
names for Ethernet interfaces include eri0, dnet0, and hme0 (Solaris); eth0 (Linux);
tu0 (Tru64); xl0 (FreeBSD); lan0 (HP-UX); en0 (AIX); and ef0 and et0 (some System
V). Interfaces for other network media will have different names altogether. Static
routes may also be defined at this point using the route command. Networking is
discussed in detail in Chapter 5.

Networking services also rely on a number of daemon processes. They are usually
started with commands of this general form:

if [-x server-pathname]; then
preparatory commands
server-start-cmd

 echo Starting server-name
fi

When the server program file exists and is executable, the script performs any neces-
sary preparatory activities and then starts the server process. Note that some servers
go into background execution automatically, while others must be explicitly started
in the background. The most important network daemons are listed in Table 4-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About the Unix Boot Process | 149

Once basic networking is running, other services and subsystems that depend on it
can be started. In particular, remote filesystems can be mounted with a command
like this one, which mounts all remote filesystems listed in the system’s filesystem
configuration file:

mount -a -t nfs On some systems, –F replaces –t.

Housekeeping activities

Traditionally, multiuser-mode boots also include a number of cleanup activities such
as the following:

• Preserving editor files from vi and other ex-based editors, which enable users to
recover some unsaved edits in the event of a crash. These editors automatically
place checkpoint files in /tmp or /var/tmp during editing sessions. The expreserve
utility is normally run at boot time to recover such files. On Linux systems, the
elvis vi-clone is commonly available, and elvprsv performs the same function
as expreserve for its files.

• Clearing the /tmp directory and possibly other temporary directories. The com-
mands to accomplish this can be minimalist:

rm -f /tmp/*

Table 4-1. Common network daemons

Daemon(s) Purpose

inetd Networking master server responsible for responding to many types of network
requests via a large number of subordinate daemons, which it controls and to
which it delegates tasks.

named, routed, gated The name server and routing daemons, which provide dynamic remote host-
name and routing data for TCP/IP. At most, one of routed or gated is used.

ntpd, xntpd, timed Time-synchronization daemons. The timed daemon has been mostly replaced
by the newer ntpd and the latest xntpd.

portmap, rpc.statd, rpc.lockd Remote Procedure Call (RPC) daemons. RPC is the primary network interprocess
communication mechanism used on Unix systems. portmap connects RPC pro-
gram numbers to TCP/IP port numbers, and many network services depend on it.
rpc.lockd provides locking services to NFS in conjunction with rpc.statd,
the status monitor. The names of the latter two daemons may vary.

nfsd, biod, mountd NFS daemons, which service file access and filesystem mounting requests from
remote systems. The first two take an integer parameter indicating how many
copies of the daemon are created. The system boot scripts also typically execute
the exportfs -a command, which makes local filesystems available to
remote systems via NFS.

automount NFS automounter, responsible for mounting remote filesystems on demand. This
daemon has other names on some systems.

smbd, nmbd SAMBA daemons that handle SMB/CIFS-based remote file access requests from
Windows (and other) systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 4: Startup and Shutdown

utilitarian:
cd /tmp; find . ! -name . ! -name .. ! -name lost+found \
 ! -name quota* -exec rm -fr {} \;

or rococo:
If no /tmp exists, create one (we assume /tmp is not
a separate file system).
if [! -d /tmp -a ! -l /tmp]; then
 rm -f /tmp
 mkdir /tmp
fi
for dir in /tmp /var/tmp /usr/local/tmp ; do
 if [-d $dir] ; then
 cd $dir
 find . \(\(-type f \(-name a.out -o \
 -name *.bak -o -name core -o -name *~ -o \
 -name .*~ -o -name #*# -o -name #.*# -o \
 -name *.o -o \(-atime +1 -mtime +3 \) \) \) \
 -exec rm -f {} \; -o -type d -name * \
 -prune -exec rm -fr {} \; \)
 fi
cd /
done

The first form simply removes from /tmp all files other than those whose names
begin with a period. The second form might be used when /tmp is located on a
separate filesystem from the root filesystem to avoid removing important files
and subdirectories. The third script excerpt makes sure that the /tmp directory
exists and then removes a variety of junk files and any subdirectory trees (with
names not beginning with a period) from a series of temporary directories.

On some systems, these activities are not part of the boot process but are handled in
other ways (see Chapter 15 for details).

Allowing users onto the system

The final boot-time activities complete the process of making the system available to
users. Doing so involves both preparing resources users need to log in and removing
barriers that prevent them from doing so. The former consists of creating the getty
processes that handle each terminal line and starting a graphical login manager like
xdm—or a vendor-customized equivalent facility—for X stations and the system con-
sole, if appropriate. On Solaris systems, it also includes initializing the Service Access
Facility daemons sac and ttymon. These topics are discussed in detail in Chapter 12.

On most systems, the file /etc/nologin may be created automatically when the system
is shut down normally. Removing it is often one of the very last tasks of the boot
scripts. FreeBSD uses /var/run/nologin.

/etc/nologin may also be created as needed by the system administrator. If this file is
not empty, its contents are displayed to users when they attempt to log in. Creating
the file has no effect on users who are already logged in, and the root user can always
log in. HP-UX versions prior to 11i do not use this file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 151

Initialization Files and Boot Scripts
This section discusses the Unix initialization files: command scripts that perform
most of the work associated with taking the system to multiuser mode. Although
similar activities take place under System V and BSD, the mechanisms by which they
are initiated are quite different. Of the systems we are considering, FreeBSD follows
the traditional BSD style, AIX is a hybrid of the two, and all the other versions use
the System V scheme.

Understanding the initialization scripts on your system is a vital part of system
administration. You should have a pretty good sense of where they are located and
what they do. That way, you’ll be able to recognize any problems at boot time right
away, and you’ll know what corrective action to take. Also, from time to time, you’ll
probably need to modify them to add new services (or to disable ones you’ve decided
you don’t need). We’ll discuss customizing initialization scripts later in this chapter.

Although the names, directory locations, and actual shell program code for system
initialization scripts varies widely between BSD-based versions of Unix and those
derived from System V, the activities accomplished by each set of scripts as a whole
differs in only minor ways. In high-level terms, the BSD boot process is controlled by
a relatively small number of scripts in the /etc directory, with names beginning with
rc, which are executed sequentially. In contrast, System V executes a large number of
scripts (as high as 50 or more), organized in a three-tiered hierarchy.

Unix initialization scripts are written using the Bourne shell (/bin/sh).
As a convenience, Bourne shell programming features are summarized
in Appendix A.

Aspects of the boot process are also controlled by configuration files that modify the
operations of the boot scripts. Such files consist of a series of variable definitions that
are read in at the beginning of a boot script and whose values determine which com-
mands in the script are executed. These variables can specify things like whether a
subsystem is started at all, the command-line options to use when starting a dae-
mon, and the like. Generally, these files are edited manually, but some systems pro-
vide graphical tools for this purpose. The dialog on the left in Figure 4-1 shows the
utility provided by SuSE Linux 7 as part of its YaST2 administration tool.

The dialog on the right shows the new run-level editor provided by YaST2 on SuSE 8
systems. In this example, we are enabling inetd in run levels 2, 3, and 5.

Initialization Files Under FreeBSD
The organization of system initialization scripts on traditional BSD systems such as
FreeBSD is the essence of simplicity. In the past, boot-time activities occurred via a
series of only three or four shell scripts, usually residing in /etc, with names beginning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 4: Startup and Shutdown

with rc. Under FreeBSD, this number has risen to about 20 (although not all of them
apply to every system).

Multiuser-mode system initialization under BSD-based operating systems is con-
trolled by the file /etc/rc. During a boot to multiuser mode, init executes the rc
script, which in turn calls other rc.* scripts. If the system is booted to single-user
mode, rc begins executing when the single-user shell is exited.

The boot script configuration files /etc/default/rc.conf, /etc/rc.conf, and /etc/rc.conf.
local control the functioning of the rc script. The first of these files is installed by the
operating system and should not be modified. The other two files contain overrides
to settings in the first file (although the latter is seldom used).

Here are some example entries from /etc/rc.conf:

accounting_enable="YES"
check_quotas="YES"
defaultrouter="192.168.29.204"
hostname="ada.ahania.com"
ifconfig_xl0="inet 192.168.29.216 netmask 255.255.255.0"
inetd_enable="YES"
nfs_client_enable="YES"
nfs_server_enable="YES"
portmap_enable="YES"
sendmail_enable="NO"
sshd_enable="YES"

This file enables the accounting, inetd, NFS, portmapper, and ssh subsystems and
disables sendmail. It causes disk quotas to be checked at boot time, and specifies var-
ious network settings, including the Ethernet interface.

Initialization Files on System V Systems
The system initialization scripts on a System V–style system are much more numer-
ous and complexly interrelated than those under BSD. They all revolve around the
notion of the current system run level, a concept to which we now turn.

Figure 4-1. Editing the boot script configuration file on a SuSE Linux system

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 153

System V run levels

At any given time, a computer system can be in one of three conditions: off (not run-
ning, whether or not it has power), single-user mode, or multiuser mode (normal
operating conditions). These three conditions may be thought of as three implicitly
defined system states.

System V–based systems take this idea to its logical extreme and explicitly define a
series of system states, called run levels, each of which is designated by a one-charac-
ter name that is usually a number. At any given time, the system is at one of these
states, and it can be sent to another one using various administrative commands. The
defined run levels are listed in Table 4-2.

In most implementations, states 1 and s/S are not distinguished in practice, and not
all states are predefined by all implementations. State 3 is the defined normal operat-
ing mode for networked systems. In practice, some systems collapse run levels 2 and
3, supporting all networking functions at run level 2 and ignoring run level 3, or
making them identical so that 2 and 3 become alternate names for the same system
state. We will use separate run levels 2 and 3 in our examples, making run level 3 the
system default level.

Note that the pseudo–run levels (a, b, c, and q/Q) do not represent distinct system
states, but rather function as ways of getting init to perform certain tasks on demand.

Table 4-3 lists the run levels defined by the various operating systems we are consid-
ering. Note that FreeBSD does not use run levels.

Table 4-2. System V–style run levels

Run Level Name and customary purpose

0 Halted state: conditions under which it is safe to turn off the power.

1 System administration/maintenance state.

S and s Single-user mode.

2 Multiuser mode: the normal operating state for isolated, non-networked systems or networked, non-server
systems, depending on the version of Unix.

3 Remote file sharing state: the normal operating state for server systems on networks that share their local
resources with other systems (irrespective of whether networking and resource sharing occurs via TCP/IP and
NFS or some other protocol).

4, 7, 8, 9 Administrator-definable system states: a generally unused run level, which can be set up and defined locally.

5 Same as run level 3 but running a graphical login program on the system console (e.g., xdm).

6 Shutdown and reboot state: used to reboot the system from some running state (s, 2, 3, or 4). Moving to this
state causes the system to be taken down (to run level 0) and then immediately rebooted back to its normal
operating state.

Q and q A pseudo-state that tells init to reread its configuration file /etc/inittab.

a, b, c Pseudo–run levels that can be defined locally. When invoked, they cause init to run the commands in /etc/
inittab corresponding to them without changing the current (numeric) run level.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 4: Startup and Shutdown

The command who -r may be used to display the current run level and the time it
was initiated:

$ who -r
. run level 3 Mar 14 11:14 3 0 S Previous run level was S.

The output indicates that this system was taken to run level 3 from run level S on
March 14. The 0 value between the 3 and the S indicates the number of times the
system had been at the current run level immediately prior to entering it this time. If
the value is nonzero, it often indicates previous unsuccessful boots.

On Linux systems, the runlevel command lists the previous and current run levels.

Now for some concrete examples. Let’s assume a system whose normal, everyday sys-
tem state is state 3 (networked multiuser mode). When you boot this system after the
power has been off, it moves from state 0 to state 3. If you shut the system down to
single-user mode, it moves from state 3 through state 0 to state s. When you reboot
the system, it moves from state 3 through state 6 and state 0, and then back to state 3.*

Using the telinit command to change run levels

The telinit utility may be used to change the current system run level. Its name
comes from the fact that it tells the init process what to do next. It takes the new run
level as its argument. The following command tells the system to reboot:

telinit 6

Tru64 does not include the telinit command. However, because telinit is just a
link to init that has been given a different name to highlight what it does, you can
easily create it if desired:

cd /sbin
ln init telinit

You can also just use init itself: init 6.

AIX also omits the telinit command, since it does not implement run levels in the
usual manner.

Table 4-3. Run levels defined by various operating systems

AIX HP-UX Linux Tru64 Solaris

Default run level 2 3 3 or 5 3 3

Q yes yes yes yes yes

7, 8, 9 yes no yes yes no

a, b, c yes yes yes no yes

* In practice, booting to state 3 often involves implicitly moving through state 2, given the way that inittab con-
figuration files employing both states are usually set up.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 155

Initialization files overview

System V–style systems organize the initialization process in a much more complex
way, using three levels of initialization files:

• /etc/inittab, which is init’s configuration file.

• A series of primary scripts named rcn (where n is the run level), typically stored
in /etc or /sbin.

• A collection of auxiliary, subsystem-specific scripts for each run level, typically
located in subdirectories named rcn.d under /etc or /sbin.

• In addition, some systems also provide configuration files that define variables
specifying or modifying the functioning of some of these scripts.

On a boot, when init takes control from the kernel, it scans its configuration file, /
etc/inittab, to determine what to do next. This file defines init’s actions whenever
the system enters a new run level; it contains instructions to carry out when the sys-
tem goes down (run level 0), when it boots to single-user mode (run level S), when
booting to multiuser mode (run level 2 or 3), when rebooting (run level 6), and so
on.

Each entry in the inittab configuration file implicitly defines a process to be run at
one or more run levels. Sometimes, this process is an actual daemon that continues
executing as long as the system remains in a given run level. More often, the process
is a shell script that is executed when the system enters one of the run levels speci-
fied in its inittab entry.

When the system changes run levels, init consults the inittab file to determine the
processes that should be running at the new run level. It then kills all currently run-
ning processes that should not be running at the new level and starts all processes
specified for the new run level that are not already running.

Typically, the commands to execute at the start of each run level are contained in a
script named rcn, where n is the run level number (these scripts are usually stored in
the /etc directory). For example, when the system moves to run level 2, init reads the
/etc/inittab file, which tells it to execute rc2. rc2 then executes the scripts stored in
the directory /etc/rc2.d. Similarly, when a running system is rebooted, it moves first
from run level 2 to run level 6, a special run level that tells the system to shut down
and immediately reboot, where it usually executes rc0 and the scripts in /etc/rc0.d,
and then changes to run level 2, again executing rc2 and the files in /etc/rc2.d. A few
systems use a single rc script and pass the run level as its argument: rc 2.

A simple version of the System V rebooting process is illustrated in Figure 4-2
(assuming run level 2 as the normal operating state). We will explain all of the com-
plexities and eccentricities in it as this section progresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 4: Startup and Shutdown

The init configuration file

As we’ve seen, top-level control of changing system states is handled by the file /etc/
inittab, read by init. This file contains entries that tell the system what to do when it
enters the various defined system states.

Figure 4-2. Executing System V–style boot scripts

/etc

init.d

inittab

rc0.d

rc0

rc2.d

rc2

cron

MOUNTfsys

ANNOUNCE

nfs

lp

tcp

K75cron

K85lp

K40nfs

S01MOUNTfsys

K30tcp

S40nfs

S30tcp

S75cron

S85lp

KOOANNOUNCE

symbolic links

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 157

Entries in the inittab have the following form:

cc:levels:action:process

where cc is a unique, case-sensitive label identifying each entry (subsequent entries
with duplicate labels are ignored).* levels is a list of run levels to which the entry
applies; if it is blank, the entry applies to all of them. When the system enters a new
state, init processes all entries specified for that run level in the inittab file, in the
order they are listed in the file.

process is the command to execute, and action indicates how init is to treat the pro-
cess started by the entry. The most important action keywords are the following:

wait
Start the process and wait for it to finish before going on to the next entry for
this run state.

respawn
Start the process and automatically restart it when it dies (commonly used for
getty terminal line server processes).

once
Start the process if it’s not already running. Don’t wait for it.

boot
Execute entry only at boot time; start the process but don’t wait for it.

bootwait
Execute entry only at boot time and wait for it to finish.

initdefault
Specify the default run level (the one to reboot to).

sysinit
Used for activities that need to be performed before init tries to access the sys-
tem console (for example, initializing the appropriate device).

off
If the process associated with this entry is running, kill it. Also used to comment
out unused terminal lines.

Comments may be included on separate lines or at the end of any entry by preceding
the comment with a number sign (#).

Here is a sample inittab file:

set default init level -- multiuser mode with networking
is:3:initdefault:

initial boot scripts

* Conventionally, labels are 2 characters long, but the actual limit is usually four characters, and some systems
allow labels of up to 14 characters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 4: Startup and Shutdown

fs::bootwait:/etc/bcheckrc </dev/console >/dev/console 2>&1
br::bootwait:/etc/brc </dev/console >/dev/console 2>&1

shutdown script
r0:06:wait:/etc/rc0 >/dev/console 2>&1 </dev/console

run level changes
r1:1:wait:/sbin/shutdown -y -iS -g0 >/dev/console 2>&1
r2:23:wait:/etc/rc2 >/dev/console 2>&1 </dev/console
r3:3:wait:/etc/rc3 >/dev/console 2>&1 </dev/console
pkg:23:once:/usr/sfpkg/sfpkgd # start daemon directly

off and reboot states
off:0:wait:/sbin/uadmin 2 0 >/dev/console 2>&1 </dev/console
rb:6:wait:/sbin/uadmin 2 1 >/dev/console 2>&1 </dev/console

terminal initiation
co:12345:respawn:/sbin/getty console console
t0:234:respawn:/sbin/getty tty0 9600
t1:234:respawn:/sbin/getty tty1 9600
t2:234:off:/sbin/getty tty2 9600

special run level
acct:a:once:/etc/start_acct # start accounting

This file logically consists of seven major sections, which we’ve separated with blank
lines. The first section, consisting of a single entry, sets the default run level, which in
this case is networked multiuser mode (level 3).

The second section contains processes started when the system is booted. In the
sample file, this consists of running the /etc/bcheckrc and /etc/brc preliminary boot
scripts commonly used on System V systems in addition to the rcn structure. The
bcheckrc script’s main function is to prepare the root filesystem and other critical
filesystems like /usr and /var. Both scripts are allowed to complete before init goes
on to the next inittab entry.

The third section of the sample inittab file specifies the commands to execute when-
ever the system is brought down, either during a system shutdown and halt (to run
level 0) or during a reboot (run level 6). In both cases, the script /etc/rc0 is executed,
and init waits for it to finish before proceeding.

The fourth section, headed “run level changes,” specifies the commands to run when
system states 1, 2, and 3 begin. For state 1, the shutdown command listed in the sam-
ple file takes the system to single-user mode. Some systems execute the rc1 initializa-
tion file when the system enters state 1 instead of a shutdown command like the one
above.

For state 2, init executes the rc2 initialization script; for state 3, init executes rc2
followed by rc3. In all three states, each process is allowed to finish before init goes
on to the next entry. The final entry in this section starts a process directly instead of
calling a script. The sfpkgd daemon is started only once per run level, when the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 159

system first enters run level 2 or 3. Of course, if the daemon is already running, it will
not be restarted.

The fifth section specifies commands to run (after rc0) when the system enters run
levels 0 and 6. In both cases, init runs the uadmin command, which initiates system
shutdown. The arguments to uadmin specify how the shutdown is to be handled.
Many modern systems have replaced this legacy command, folding its functionality
into the shutdown command (as we’ll see shortly). Of the System V systems we are
considering, only Solaris still uses uadmin.

The sixth section initializes the system’s terminal lines via getty processes (which are
discussed in Chapter 12).

The final section of the inittab file illustrates the use of special run level a. This entry
is used only when a telinit a command is executed by the system administrator, at
which point the start_acct script is run. The run levels a, b, and c are available to be
defined as needed.

The rcn initialization scripts

As we’ve seen, init typically executes a script named rcn when entering run level n
(rc2 for state 2, for example). Although the boot (or shutdown) process to each sys-
tem state is controlled by the associated rcn script, the actual commands to be exe-
cuted are stored in a series of files in the subdirectory rcn.d. Thus, when the system
enters state 0, init runs rc0 (as directed in the inittab file), which in turn runs the
scripts in rc0.d.

The contents of an atypically small rc2.d directory (on a system that doesn’t use a
separate run level 3) are listed below:

$ ls -C /etc/rc2.d
K30tcp S15preserve S30tcp S50RMTMPFILES
K40nfs S20sysetup S35bsd S75cron
S01MOUNTFSYS S21perf S40nfs S85lp

All filenames begin with one of two initial filename characters (S and K), followed by
a two-digit number, and they all end with a descriptive name. The rcn scripts exe-
cute the K-files (as I’ll call them) in their associated directory in alphabetical order,
followed by the S-files, also in alphabetical order (this scheme is easiest to under-
stand if all numbers are the same length; hence the leading zeros on numbers under
10). Numbers do not need to be unique.

In this directory, files would be executed in the order K30tcp, K40nfs,
S01MOUNTFSYS, S15preserve, and so on, ending with S75cron and S85lp. K-files
are generally used to kill processes (and perform related functions) when transition-
ing to a different state; S-files are used to start processes and perform other initializa-
tion functions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 4: Startup and Shutdown

The files in the rc*.d subdirectories are usually links to those files in the subdirectory
init.d, where the real files live. For example, the file rc2.d/S30tcp is actually a link to
init.d/tcp. You see how the naming conventions work: the final portion of the name
in the rcn.d directory is the same as the filename in the init.d directory.

The file K30tcp is also a link to init.d/tcp. The same file in init.d is used for both the
kill and start scripts for each subsystem. The K and S links can be in the same rcn.d
subdirectory, as is the case for the TCP/IP initialization file, or in different subdirec-
tories. For example, in the case of the print spooling subsystem, the S-file might be in
rc2.d while the K-file is in rc0.d.

The same file in init.d can be put to both uses because it is passed a parameter indi-
cating whether it was run as a K-file or an S-file. Here is an example invocation, from
an rc2 script:

If the directory /etc/rc2.d exists,
run the K-files in it ...
if [-d /etc/rc2.d]; then
 for f in /etc/rc2.d/K*
 {
 if [-s ${f}]; then
pass the parameter "stop" to the file
 /bin/sh ${f} stop
 fi
 }
and then the S-files:
 for f in /etc/rc2.d/S*
 {
 if [-s ${f}]; then
pass the parameter "start" to the file
 /bin/sh ${f} start
 fi
 }
fi

When a K-file is executed, it is passed the parameter stop; when an S-file is executed,
it is passed start. The script file will use this parameter to figure out whether it is
being run as a K-file or an S-file.

Here is a simple example of the script file, init.d/cron, which controls the cron facil-
ity. By examining it, you’ll be able to see the basic structure of a System V initializa-
tion file:

#!/bin/sh
case $1 in
 # commands to execute if run as "Snncron"
 'start')
 # remove lock file from previous cron
 rm -f /usr/lib/cron/FIFO
 # start cron if executable exists
 if [-x /sbin/cron]; then
 /sbin/cron

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 161

 echo "starting cron."
 fi
 ;;

 # commands to execute if run as "Knncron"
 'stop')
 pid=`/bin/ps -e | grep ' cron$' | \
 sed -e 's/^ *//' -e 's/ .*//'`
 if ["${pid}" != ""]; then
 kill ${pid}
 fi
 ;;

 # handle other arguments
 *)
 echo "Usage: /etc/init.d/cron {start|stop}"
 exit 1
 ;;
esac

The first section in the case statement is executed when the script is passed start as
its first argument (when it’s an S-file); the second section is used when it is passed
stop, as a K-file. The start commands remove any old lock file and then start the cron
daemon if its executable is present on the system. The stop commands figure out the
process ID of the cron process and kill it if it’s running. Some scripts/operating sys-
tems define additional valid parameters, including restart (equivalent to stop then
start) and status.

The file /etc/init.d/cron might be linked to both /etc/rc2.d/S75cron and /etc/rc0.d/
K75cron. The cron facility is then started by rc2 during multiuser boots and stopped
by rc0 during system shutdowns and reboots.

Sometimes scripts are even more general, explicitly testing for the conditions under
which they were invoked:

set `who -r` Determine previous run level.
if [$8 != "0"] The return code of the previous state change.
then
 exit
fi
case $arg1 in 'start')
 if [$9 = "S"] Check the previous run level.
 then
 echo "Starting process accounting"
 /usr/lib/acct/startup
 fi
 ;;
...

This file uses various parts of the output from who -r:

$ who -r
. run level 2 Mar 14 11:14 2 0 S

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 4: Startup and Shutdown

The set command assigns successive words in the output from the who command to
the shell script arguments $1 through $9. The script uses them to test whether the
current system state was entered without errors, exiting if it wasn’t. It also checks
whether the immediately previous state was single-user mode, as would be the case
on this system on a boot or reboot. These tests ensure that accounting is started only
during a successful boot and not when single-user mode has been entered due to
boot errors or when moving from one multiuser state to another.

Boot script configuration files

On many systems, the functioning of the various boot scripts can be controlled and
modified by settings in one or more related configuration files. These settings may
enable or disable subsystems, specify command-line arguments for starting dae-
mons, and the like. Generally, such settings are stored in separate files named for the
corresponding subsystem, but sometimes they are all stored in a single file (as on
SuSE Linux systems, in /etc/rc.config).

Here are two configuration files from a Solaris system; the first is /etc/default/
sendmail:

DAEMON=yes Enable the daemon.
QUEUE=1h Set the poll interval to 1 hour.

The next file is /etc/default/samba:

Options to smbd
SMBDOPTIONS="-D"
Options to nmbd
NMBDOPTIONS="-D"

The first example specifies whether the associated daemon should be started, as well
as one of its arguments, and the second file specifies the arguments to be used when
starting the two Samba daemons.

File location summary

Table 4-4 summarizes the boot scripts and configuration files used by the various
System V–style operating systems we are considering. A few notes about some of
them will follow.

Table 4-4. Boot scripts for System V–style operating systems

Component Location

inittab file Usual: /etc

rc* files Usual: /sbin/rcn
AIX: /etc/rc.*
HP-UX: /sbin/rc na

Linux: /etc/rc.d/rc na

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 163

Solaris initialization scripts

Solaris uses a standard System V boot script scheme. The script rcS (in /sbin) replaces
bcheckrc, but it performs the same functions. Solaris uses separate rcn scripts for
each run level from 0 through 6 (excluding rc4, which a site must create on its own),
but the scripts for run levels 0, 5, and 6 are just links to a single script, called with
different arguments for each run level. There are separate rcn.d directories for run
levels 0 through 3 and S.

Unlike on some other systems, run level 5 is a “firmware” (maintenance) mode,
defined as follows:

s5:5:wait:/sbin/rc5 >/dev/msglog 2>&1 </dev/console
of:5:wait:/sbin/uadmin 2 6 >/dev/msglog 2>&1 </dev/console

These entries illustrate the Solaris msglog device, which sends output to one or more
console devices via a single redirection operation.

Solaris inittab files also usually contain entries for the Service Access Facility dae-
mons, such as the following:

sc:234:respawn:/usr/lib/saf/sac -t 300 ...
co:234:respawn:/usr/lib/saf/ttymon ...

Run level 3 on Solaris systems is set up as the remote file-sharing state. When TCP/IP
is the networking protocol in use, this means that general networking and NFS client
activities—such as mounting remote disks—occur as part of run level 2, but NFS
server activities do not occur until the system enters run level 3, when local filesys-
tems become available to other systems. The rc2 script, and thus the scripts in rc2.d,
are executed for both run levels by an inittab entry like this one:

s2:23:wait:/sbin/rc2 ...

rcn.d and init.d subdirectories Usual: /sbin/rcn.d and /sbin/init.d
AIX: /etc/rc.d/rcn.d (but they are empty)
Linux: /etc/rc.d/rcn.d and /etc/rc.d/init.d (Red Hat); /etc/init.d/rcn.d and /etc/init.d (SuSE)
Solaris: /etc/rcn.d and /etc/init.d

Boot script configuration files AIX: none used
FreeBSD: /etc/rc.conf, and/or /etc/rc.conf.local
HP-UX: /etc/rc.config.d/*
Linux: /etc/sysconfig/* (Red Hat, SuSE 8); /etc/rc.config and /etc/rc.config.d/* (SuSE 7)
Solaris: /etc/default/*
Tru64: /etc/rc.config

a n is the parameter to rc.

Table 4-4. Boot scripts for System V–style operating systems (continued)

Component Location

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 4: Startup and Shutdown

Tru64 initialization scripts

Tru64 feels generally like a BSD-style operating system. Its initialization scripts are
one of the few places where its true, System V–style origins are revealed. It uses
bcheckrc to check (if necessary) and mount the local filesystems.

Tru64 defines only four run levels: 0, S, 2, and 3. The latter two differ in that run
level 3 is the normal, fully networked state and is usually init’s default run level.
Run level 2 is a nonnetworked state. It is designed so that it can be invoked easily
from a system at run level 3. The /sbin/rc2.d directory contains a multitude of K-files
designed to terminate all of the various network servers and network-dependent sub-
systems. Most of the K-files operate by running the ps command, searching its out-
put for the PID of a specific server process, and then killing it if it is running. The
majority of the S-files in the subdirectory exit immediately if they are run at any time
other than a boot from single-user mode. Taken together, the files in rc2.d ensure a
functional but isolated system, whether run level 2 is reached as part of a boot or
reboot, or via a transition from run level 3.

Linux initialization scripts

Most Linux systems use a vanilla, System V–style boot script hierarchy. The Linux
init package supports the special action keyword ctrlaltdel that allows you to trap
CTRL-ALT-DELETE sequences (the standard method of rebooting a PC), as in this
example, which calls the shutdown command and reboots the system:

ca::ctrlaltdel:/sbin/shutdown -r now

Linux distributions also provide custom initial boot scripts (run prior to rc). For
example, Red Hat Linux uses /etc/rc.d/rc.sysinit for this purpose, and SuSE Linux sys-
tems use /etc/init.d/boot. These scripts focus on the earliest boot tasks such as check-
ing and mounting filesystems, setting the time zone, and initializing and activating
swap space.

AIX: Making System V work like BSD

It’s possible to eliminate most of the layers of initialization scripts that are standard
under System V. Consider this AIX inittab file:

init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1
rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console srcmstr:2:respawn:/usr/sbin/srcmstr
tcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1
nfs:2:wait:/etc/rc.nfs > /dev/console 2>&1
ihshttpd:2:wait:/usr/HTTPServer/bin/httpd > /dev/console 2>&1
cron:2:respawn:/usr/sbin/cron
qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
cons::respawn:/etc/getty /dev/console
tty0:2:respawn:/etc/getty /dev/tty0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 165

Other than starting a server process for the system console and executing the file /etc/
bcheckrc at boot time, nothing is defined for any run level other than state 2 (mul-
tiuser mode).

This is the approach taken by AIX. When the system enters state 2, a series of initial-
ization files are run in sequence: in this case, /etc/rc, /etc/rc.tcpip, and /etc/rc.nfs (with
the System Resource Controller starting up in the midst of them). Then several dae-
mons are started via their own inittab entries. After the scripts complete, getty pro-
cesses are started. Since /etc/rcn.d subdirectories are not used at all, this setup is a
little different from that used on BSD systems.

More recent AIX operating system revisions do include hooks for other run levels,
modifying the preceding inittab entries in this way:

Note that even run level 6 is included!
tcpip:23456789:wait:/etc/rc.tcpip > /dev/console 2>&1

The /etc/rc.d/rcn.d subdirectories are provided, but they are all empty.

Customizing the Boot Process
Sooner or later, you will want to make additions or modifications to the standard
boot process. Making additions is less risky than changing existing scripts. We’ll
consider the two types of modifications separately.

Before adding to or modifying system boot scripts, you should be very
familiar with their contents and understand what every line within
them does. You should also save a copy of the original script so you
can easily restore the previous version should problems occur.

Adding to the boot scripts

When you want to add commands to the boot process, the first thing you need to
determine is whether there is already support for what you want to do. See if there is
an easy way to get what you want: changing a configuration file variable, for exam-
ple, or adding a link to an existing file in init.d.

If the operating system has made no provisions for the tasks you want to accom-
plish, you must next figure out where in the process the new commands should be
run. It is easiest to add items at the end of the standard boot process, but occasion-
ally this is not possible.

It is best to isolate your changes from the standard system initialization files as much
as possible. Doing so makes them easier to test and debug and also makes them less
vulnerable to being lost when the operating system is upgraded and the previous
boot scripts are replaced by new versions. Under the BSD scheme, the best way to
accomplish this is to add a line to rc (or any other script that you need to change)
that calls a separate script that you provide:

. /etc/rc.site_specific >/dev/console 2>&1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 4: Startup and Shutdown

Ideally, you would place this at the end of rc, and the additional commands needed
on that system would be placed into the new script. Note that the script is sourced
with the dot command so that it inherits the current environment from the calling
script. This does constrain it to being a Bourne shell script.

Some systems contain hooks for an rc.local script specifically designed
for this purpose (stored in /etc like rc). FreeBSD does—it is called near
the end of rc—but you will have to create the file yourself.

On System V systems, there are more options. One approach is to add one or more
additional entries to the inittab file (placing them as late in the file as possible):

site:23:wait:/etc/rc.site_specific >/dev/console 2>&1
h96:23:once:/usr/local/bin/h96d

The first entry runs the same shell script we added before, and the second entry
starts a daemon process. Starting a daemon directly from inittab (rather than from
some other initialization file) is useful in two circumstances: when you want the dae-
mon started only at boot time and when you want it to be restarted automatically if
it terminates. You would use the inittab actions once and respawn, respectively, to
produce these two ways of handling the inittab entry.

Alternatively, if your additions need to take place at a very specific point in the boot
process, you will need to add a file to the appropriate rcn.d subdirectories. Follow-
ing the System V practice is best in this case: place the new file in the init.d directory,
giving it a descriptive name, and then create links to other directories as needed.
Choose the filenames for the links carefully, so that your new files are executed at the
proper point in the sequence. If you are in doubt, executing the ls -1 command in
the appropriate directory provides you with an unambiguous list of the current
ordering of the scripts within it, and you will be able to determine what number to
use for your new one.

Eliminating certain boot-time activities

Disabling parts of the boot process is also relatively easy. The method for doing so
depends on the initialization scripts used by your operating system. The various pos-
sibilities are (in decreasing order of preference):

• Disable a subsystem by setting the corresponding control variable to no or 0 in
one of the boot script configuration files. For example:

sendmail_enable="no"

• Remove the link in the rcn.d directory to the init.d directory in the case of Sys-
tem V–style boot scripts. Alternatively, you can rename the link, for example, by
adding another character to the beginning (I add an underscore: _K20nfs). That
way, it is easy to reinstate the file later.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initialization Files and Boot Scripts | 167

• In some cases, you will need to comment out an entry in /etc/inittab (when a dae-
mon that you don’t want is started directly).

• Comment out the relevant lines of initialization scripts that you don’t want to
use. This is the only option under FreeBSD when no rc.conf parameter has been
defined for a command or subsystem.

Linux systems often provide graphical utilities for adding and removing links to files
in init.d. Figure 4-3 illustrates the ksysv utility running on a Red Hat Linux system.

The main window lists the scripts assigned as S-files (upper lists) and K-files for each
run level. The Available Services list shows all of the files in init.d. You can add a
script by dragging it from that list box to the appropriate run level pane, and you can
remove one by dragging it to the trash can (we are in the process of deleting the
annoying Kudzu hardware detection utility in the example).

Clicking on any entry brings up the smaller dialog at the bottom of the figure (both
of whose panels are shown as separate windows). You can specify the location
within the sequence of scripts using the Entry panel. The Service panel displays a
brief description of the daemon’s purpose and contains buttons with which you can
start, stop, and restart it. If appropriate, you can use the Edit button to view and
potentially modify the startup script for this facility.

Figure 4-3. Modifying boot script links

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 4: Startup and Shutdown

Modifying standard scripts

While it is usually best to avoid it, sometimes you have no choice but to modify the
commands in standard boot scripts. For example, certain networking functions
stopped working on several systems I take care of immediately after an operating sys-
tem upgrade. The reason was a bug in an initialization script, illustrated by the
following:

Check the mount of /. If remote, skip rest of setup.
mount | grep ' / ' | grep ' nfs ' 2>&1 > /dev/null
if ["$?" -eq 0]
then
 exit
fi

The second line of the script is trying to figure out whether the root filesystem is
local or remote—in other words, whether the system is a diskless workstation or not.
It assumes that if it finds a root filesystem that is mounted via NFS, it must be a disk-
less system. However, on my systems, lots of root filesystems from other hosts are
mounted via NFS, and this condition produced a false positive for this script, caus-
ing it to exit prematurely. The only solution in a case like this is to fix the script so
that your system works properly.

Whenever you change a system script, keep these recommendations in mind:

• As a precaution, before modifying them in any way, copy the files you intend to
change, and write-protect the copies. Use the -p option of the cp command, if it
is supported, to duplicate the modification times of the original files as well as
their contents; this data can be invaluable should you need to roll back to a pre-
vious, working configuration. For example:

cp -p /etc/rc /etc/rc.orig
cp -p /etc/rc.local /etc/rc.local.orig
chmod a-w /etc/rc*.orig

If your version of cp doesn’t have a -p option, use a process like this one:
cd /etc
mv rc rc.orig; cp rc.orig rc
mv rc.local rc.local.orig; cp rc.local.orig rc.local
chmod a-w rc.orig rc.local.orig

Similarly, when you make further modifications to an already customized script,
save a copy before doing so, giving it a different extension, such as .save. This
makes the modification process reversible; in the worst case, when the system
won’t boot because of bugs in your new versions—and this happens to every-
one—you can just boot to single-user mode and copy the saved, working ver-
sions over the new ones.

• Make some provision for backing up modified scripts regularly so that they can
be restored easily in an emergency. This topic is discussed in detail in Chapter 11.

• For security reasons, the system initialization scripts (including any old or saved
copies of them) should be owned by root and not be writable by anyone but the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Shutting Down a Unix System | 169

owner. In some contexts, protecting them against any non-root access is
appropriate.

Guidelines for writing initialization scripts

System boot scripts often provide both good and bad shell programming examples. If
you write boot scripts or add commands to existing ones, keep these recommended
programming practices in mind:

• Use full pathnames for all commands (or use one of the other methods for ensur-
ing that the proper command executable is run).

• Explicitly test for the conditions under which the script is run if it is relying on
the system being in some known state. Don’t assume, for example, that there are
no users on the system or that a daemon the script will be starting isn’t already
running; have the script check to make sure. Initialization scripts often get run in
other contexts and at times other than those for which their writers originally
designed them.

• Handle all cases that might arise from any given action, not just the ones that
you expect to result. This includes handling invalid arguments to the script and
providing a usage message.

• Provide lots of informational and error messages for the administrators who will
see the results of the script.

• Include plenty of comments within the script itself.

Shutting Down a Unix System
From time to time, you will need to shut the system down. This is necessary for
scheduled maintenance, running diagnostics, hardware changes or additions, and
other administrative tasks.

During a clean system shutdown, the following actions take place:

• All users are notified that the system will be going down, preferably giving them
some reasonable advance warning.

• All running processes are sent a signal telling them to terminate, allowing them
time to exit gracefully, provided the program has made provisions to do so.

• All subsystems are shut down gracefully, via the commands they provide for
doing so.

• All remaining users are logged off, and remaining processes are killed.

• Filesystem integrity is maintained by completing all pending disk updates.

• Depending on the type of shutdown, the system moves to single-user mode, the
processor is halted, or the system is rebooted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 4: Startup and Shutdown

After taking these steps, the administrator can turn the power off, execute diagnos-
tics, or perform other maintenance activities as appropriate.

Unix provides the shutdown command to accomplish all of this. Generally, shutdown
sends a series of timed messages to all users who are logged on, warning them that
the system is going down; after sending the last of these messages, it logs all users off
the system and places the system in single-user mode.

All Unix systems—even those running on PC hardware—should be
shut down using the commands described in this section. This is nec-
essary to ensure filesystem integrity and the clean termination of the
various system services. If you care about what’s on your disks, never
just turn the power off.

There are two main variations of the shutdown command. The System V version is
used by Solaris and HP-UX (the latter slightly modified from the standard), and the
BSD version is used under AIX, FreeBSD, Linux, Solaris (in /usr/ucb), and Tru64.

On systems that provide it, the telinit command also provides a fast
way to shut down (telinit S), halt (telinit 0) or reboot the system
(telinit 6).

The System V shutdown Command
The standard System V shutdown command has the following form:

shutdown [-y] [-g grace] [-i new-level] message

where -y says to answer all shutdown prompts with yes automatically, grace speci-
fies the number of seconds to wait before starting the process (the default is 60),
new-level is the new run level in which to place the system (the default is single-user
mode) and message is a text message sent to all users. This is the form used on
Solaris systems.

Under HP-UX, the shutdown command has the following modified form:

shutdown [-y] grace

where -y again says to answer prompts automatically with yes, and grace is the num-
ber of seconds to wait before shutting down. The keyword now may be substituted
for grace. The shutdown command takes the system to single-user mode.

Here are some example commands that take the system to single-user mode in 15
seconds (automatically answering all prompts):

shutdown -y -g 15 -i s "system going down" Solaris
shutdown -y 15 HP-UX

The HP-UX shutdown also accepts two other options, -r and -h, which can be used
to reboot the system immediately or to halt the processor once the shutdown is com-
plete (respectively).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Shutting Down a Unix System | 171

For example, these commands could be used to reboot the system immediately:

shutdown -y -g 0 -i 6 "system reboot" Solaris
shutdown -y -r now HP-UX

HP-UX shutdown security

HP-UX also provides the file /etc/shutdown.allow. If this file exists, a user must be
listed in it in order to use the shutdown command (and root must be included). If the
file does not exist, only root can run shutdown. Entries in the file consist of a host-
name followed by a username, as in these examples:

hamlet chavez Chavez can shut down hamlet.
+ root Root can shut down any system.
dalton + Anyone can shut down dalton.

As these examples illustrate, the plus sign serves as a wildcard. The shutdown.allow
file also supports the percent sign as an additional wildcard character denoting all
systems within a cluster; this wildcard is not valid on systems that are not part of a
cluster.

The BSD-Style shutdown Command
BSD defines the shutdown command with the following syntax:

shutdown [options] time message

where time can have three forms:

+m Shut down in m minutes.
h:m Shut down at the specified time (24-hour clock).
now Begin the shutdown at once.

now should be used with discretion on multiuser systems.

message is the announcement that shutdown sends to all users; it may be any text
string. For example, the following command will shut the system down in one hour:

shutdown +60 "System going down for regular maintenance"

It warns users by printing the message “System going down for regular mainte-
nance” on their screens. shutdown sends the first message immediately; as the shut-
down time approaches, it repeats the warning with increasing frequency. These
messages are also sent to users on the other systems on the local network who may
be using the system’s files via NFS.

By default, the BSD-style shutdown command also takes the system to single-user
mode, except on AIX systems, where the processor is halted by default. Under AIX,
the -m option must be used to specify shutting down to single-user mode.

Other options provide additional variations to the system shutdown process:

• shutdown -r says to reboot the system immediately after it shuts down. The
reboot command performs the same function.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 4: Startup and Shutdown

• shutdown -h says to halt the processor instead of shutting down to single-user
mode. Once this process completes, the power may be safely turned off. You can
also use the halt command to explicitly halt the processor once single-user mode
is reached.

• shutdown -k inaugurates a fake system shutdown: the shutdown messages are
sent out normally, but no shutdown actually occurs. I suppose the theory is that
you can scare users off the system this way, but some users can be pretty persis-
tent, preferring to be killed by shutdown rather than log out.

The Linux shutdown Command
The version of shutdown found on most Linux systems also has a -t option which
may be used to specify the delay period between when the kernel sends the TERM
signal to all remaining processes on the system and when it sends the KILL signal.
The default is 30 seconds. The following command shuts down the system more rap-
idly, allowing only 5 seconds between the two signals:

shutdown -h -t 5 now

The command version also provides a -a option, which provides a limited security
mechanism for the shutdown command. When it is invoked with this option, the
command determines whether any of the users listed in the file /etc/shutdown.allow
are currently logged in on the console (or any virtual console attached to it). If not,
the shutdown command fails.

The purpose of this option is to prevent casual passers-by from typing Ctrl-Alt-
Delete on the console and causing an (unwanted) system reboot. Accordingly, it is
most often used in the inittab entry corresponding to this event.

Ensuring Disk Accuracy with the sync Command
As we’ve noted previously, one of the important parts of the shutdown process is
syncing the disks. The sync command finishes all disk transactions and writes out all
data to disk, guaranteeing that the system can be turned off without corrupting the
files. You can execute this command manually if necessary:

sync
sync

Why is sync executed two or three times (or even more*)? I think this is a bit of Unix
superstition. The sync command schedules but does not necessarily immediately per-
form the required disk writes, even though the Unix prompt returns immediately.
Multiple sync commands raise the probability that the write will take place before

* Solaris administrators swear that you need to do it five times to be safe; otherwise, the password file will
become corrupted. I have not been able to reproduce this.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting: Handling Crashes and Boot Failures | 173

you enter another command (or turn off the power) by taking up the time needed to
complete the operation. However, the same effect can be obtained by waiting a few
seconds for disk activity to cease before doing anything else. Typing “sync” several
times gives you something to do while you’re waiting.

There is one situation in which you do not want sync to be executed, either manu-
ally or automatically: when you have run fsck manually on the root filesystem. If you
sync the disks at this point, you will rewrite the bad superblocks stored in the kernel
buffers and undo the fixing fsck just did. In such cases, on BSD-based systems and
under HP-UX, you must use the -n option to reboot or shutdown to suppress the
usual automatic sync operation.

FreeBSD and System V are smarter about this issue. The fsck command generally
will automatically remount the root filesystem when it has modified the root filesys-
tem. Thus, no special actions are required to avoid syncing the disks.

Aborting a Shutdown
On most systems, the only way to abort a pending system shutdown is to kill the
shutdown process. Determine the shutdown process’ process ID by using a command
like the following:

ps -ax | grep shutdown BSD-style
ps -ef | grep shutdown System V–style

Then use the kill command to terminate it:

ps -ef | grep shutdown
25723 co S 0:01 /etc/shutdown -g300 -i6 -y
25800 co S 0:00 grep shutdown
kill -9 25723

It’s only safe to kill a shutdown command during its grace period; once it has actually
started closing down the system, you’re better off letting it finish and then rebooting.

The Linux version of shutdown includes a -c option that cancels a pending system
shutdown. Every version should be so helpful.

Troubleshooting: Handling Crashes and
Boot Failures
Even the best-maintained systems crash from time to time. A crash occurs when the
system suddenly stops functioning. The extent of system failure can vary quite a bit,
from a failure affecting every subsystem to one limited to a particular device or to the
kernel itself. System hang-ups are a related phenomenon in which the system stops
responding to input from any user or device or stops producing output, but the oper-
ating system nominally remains loaded. Such a system also may be described as
frozen.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 4: Startup and Shutdown

There are many causes of system crashes and hangups. These are among the most
common:

• Hardware failures: failing disk controllers, CPU boards, memory boards, power
supplies, disk head crashes, and so on.

• Unrecoverable hardware errors, such as double-bit memory errors. These sorts
of problems may indicate hardware that is about to fail, but they also just hap-
pen from time to time.

• Power failures or surges due to internal power supply problems, external power
outages, electrical storms, and other causes.

• Other environmental problems: roof leaks, air conditioning failure, etc.

• I/O problems involving a fatal error condition rather than a device malfunction.

• Software problems, ranging from fatal kernel errors caused by operating system
bugs to (much less frequently) problems caused by users or third-party programs.

• Resource overcommitment (for example, running out of swap space). These situ-
ations can interact with bugs in the operating system to cause a crash or hang-up.

Some of these causes are easier to identify than others. Rebooting the system may
seem like the most pressing concern when the system crashes, but it’s just as impor-
tant to gather the available information about why the system crashed while the data
is still accessible.

Sometimes it’s obvious why the system crashed, as when the power goes out. If the
cause isn’t immediately clear, the first source of information is any messages appear-
ing on the system console. They are usually still visible if you check immediately,
even if the system is set to reboot automatically. After they are no longer on the
screen, you may still be able to find them by checking the system error log file, usu-
ally stored in /var/log/messages (see Chapter 3 for more details), as well as any addi-
tional, vendor-supplied error facilities.

Beyond console messages lie crash dumps. Most systems automatically write a dump
of kernel memory when the system crashes (if possible). These memory images can
be examined using a debugging tool to see what the kernel was doing when it
crashed. Obviously, these dumps are of use only for certain types of crashes in which
the system state at the time of the crash is relevant. Analyzing crash dumps is beyond
the scope of this book, but you should know where crash dumps go on your system
and how to access them, if only to be able to save them for your field service engi-
neers or vendor technical support personnel.

Crash dumps are usually written to the system disk swap partition. Since this area
may be overwritten when the system is booted, some provisions need to be made to
save its contents. The savecore command solves this problem, as we have seen (the
command is called savecrash under HP-UX).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting: Handling Crashes and Boot Failures | 175

If you want to be able to save crash dumps, you need to ensure that
the primary swap partition is large enough. Unless your system has the
ability to compress crash dumps as they are created (e.g., Tru64) or
selectively dump only the relevant parts of memory, the swap parti-
tion needs to be at least as large as physical memory.

If your system crashes and you are not collecting crash dumps by default, but you
want to get one, boot the system to single-user mode and execute savecore by hand.
Don’t let the system boot to multiuser mode before saving the crash dump; once the
system reaches multiuser mode, it’s too late.

AIX also provides the snap command for collecting crash dump and other system
data for later analysis.

Power-Failure Scripts
There are two other action keywords available for inittab that we’ve not yet consid-
ered: powerfail and powerwait. They define entries that are invoked if a SIGPWR sig-
nal is sent to the init process, which indicates an imminent power failure. This
signal is generated only for detectable power failures: those caused by faulty power
supplies, fans, and the like, or via a signal from an uninterruptable power supply
(UPS). powerwait differs from powerfail in that it requires init to wait for its process
to complete before going on to the next applicable inittab entry.

The scripts invoked by these entries are often given the name rc.powerfail. Their
purpose is to do whatever can be done to protect the system in the limited time avail-
able. Accordingly, they focus on syncing the disks to prevent data loss that might
occur if disk operations are still pending when the power does go off.

Linux provides a third action, powerokwait, that is invoked when power is restored
and tells init to wait for the corresponding process to complete before going on to
any additional entries.

When the System Won’t Boot
As with system crashes, there can be many reasons why a system won’t boot. To
solve such problems, you first must figure out what the specific problem is. You’ll
need to have a detailed understanding of what a normal boot process looks like so
that you can pinpoint exactly where the failure is occurring. Having a hard copy of
normal boot messages is often very helpful. One thing to keep in mind is that boot
problems always result from some sort of change to the system; systems don’t just
stop working. You need to figure out what has changed. Of course, if you’ve just
made modifications to the system, they will be the prime suspects.

This section lists some of the most common causes of booting problems, along with
suggestions for what to do in each case.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 4: Startup and Shutdown

Bad or flaky hardware

Check the obvious first. The first thing to do when there is a device failure is to see if
there is a simple problem that is easily fixed. Is the device plugged in and turned on?
Have any cables connecting it to the system come loose? Does it have the correct
SCSI ID (if applicable)? Is the SCSI chain terminated? You get the idea.

Try humoring the device. Sometimes devices are just cranky and can be coaxed back
to life. For example, if a disk won’t come on line, try power-cycling it. If that doesn’t
work, try shutting off the power to the entire system. Then power up the devices one
by one, beginning with peripherals and ending with the CPU if possible, waiting for
each one to settle down before going on to the next device. Sometimes this approach
works on the second or third try even after failing on the first. When you decide
you’ve had enough, call field service. When you use this approach, once you’ve

Keeping the Trains on Time
 If you can keep your head when all about you

Are losing theirs and blaming it on you...
—Kipling

System administration is often metaphorically described as keeping the trains on time,
referring to the pervasive attitude that its effects should basically be invisible—no one
ever pays any attention to the trains except when they’re late. To an even greater
extent, no one notices computer systems except when they’re down. And a few days of
moderate system instability (in English, frequent crashes) can make even the most
good-natured users frustrated and hostile.

The system administrator is the natural target when that happens. People like to
believe that there was always something that could have been done to prevent what-
ever problem has surfaced. Sometimes, that’s true, but not always or even usually. Sys-
tems sometimes develop problems despite your best preventative maintenance.

The best way to handle such situations involves two strategies. First, during the period
of panic and hysteria, do your job as well as you can and leave the sorting out of who
did or didn’t do what when for after things are stable again. The second part gets car-
ried out in periods of calm between crises. It involves keeping fairly detailed records of
system performance and status over a significant period of time; they are invaluable for
figuring out just how much significance to attach to any particular period of trouble
after the fact. When the system has been down for two days, no one will care that it has
been up 98% of the time it was supposed to be over the last six months, but it will mat-
ter once things have stabilized again.

It’s also a good idea to document how you spend your time caring for the system, divid-
ing the time into broad categories (system maintenance, user support, routine activi-
ties, system enhancement), as well as how much time you spend doing so, especially
during crises. You’ll be amazed by the bottom line.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting: Handling Crashes and Boot Failures | 177

turned the power off, leave it off for a minute or so to allow the device’s internal
capacitors to discharge fully.

Device failures. If a critical hardware device fails, there is not much you can do
except call field service. Failures can occur suddenly, and the first reboot after the
system power has been off often stresses marginal devices to the point that they
finally fail.

Unreadable filesystems on working disks

You can distinguish this case from the previous one by the kind of error you get. Bad
hardware usually generates error messages about the hardware device itself, as a
whole. A bad filesystem tends to generate error messages later in the boot process,
when the operating system tries to access it.

Bad root filesystem. How you handle this problem depends on which filesystem is
damaged. If it is the root filesystem, then you may be able to recreate it from a boota-
ble backup/recovery tape (or image on the network) or by booting from alternate
media (such as the distribution tape, CD-ROM, or diskette from which the operat-
ing system was installed), remaking the filesystem and restoring its files from backup.
In the worst case, you’ll have to reinstall the operating system and then restore files
that you have changed from backup.

Restoring other filesystems. On the other hand, if the system can still boot to single-
user mode, things are not nearly so dire. Then you will definitely be able to remake
the filesystem and restore its files from backup.

Damage to non-filesystem areas of a disk

Damaged boot areas. Sometimes, it is the boot partition or even the boot blocks of
the root disk that are damaged. Some Unix versions provide utilities for restoring
these areas without having to reinitialize the entire disk. You’ll probably have to boot
from a bootable backup tape or other distribution media to use them if you discover
the problem only at boot time. Again, the worst-case scenario is having to reinstall
the operating system.

Corrupted partition tables. On PCs, it is possible to wipe out a disk’s partition tables
if a problem occurs while you are editing them with the fdisk disk partitioning util-
ity. If the power goes off or fdisk hangs, the disk’s partition information can be
incorrect or wiped out entirely. This problem can also happen on larger systems as
well, although its far less common to edit the partition information except at installa-
tion (and often not even then).

The most important thing to do in this case is not to panic. This happened to me on
a disk where I had three operating systems installed, and I really didn’t want to have
to reinstall all of them. The fix is actually quite easy: simply rerun fdisk and recreate
the partitions as they were before, and all will be well again. However, this does

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 4: Startup and Shutdown

mean that you need to have complete, detailed, and accessible (e.g., hardcopy)
records of how the partitions were set up.

Incompatible hardware

Problems with a new device. Sometimes, a system hangs when you try to reboot it
after adding new hardware. This can happen when the system does not support the
type of device that you’ve just added, either because the system needs to be reconfig-
ured to do so or because it simply does not support the device.

In the first case, you can reconfigure the system to accept the new hardware by build-
ing a new kernel or doing whatever else is appropriate on your system. However, if
you find out that the device is not supported by your operating system, you will
probably have to remove it to get the system to boot, after which you can contact the
relevant vendors for instructions and assistance. It usually saves time in the long run
to check compatibility before purchasing or installing new hardware.

Problems after an upgrade. Hardware incompatibility problems also crop up occa-
sionally after operating system upgrades on systems whose hardware has not
changed, due to withdrawn support for previously supported hardware or because of
undetected bugs in the new release. You can confirm that the new operating system
is the problem if the system still boots correctly from bootable backup tapes or
installation media from the previous release. If you encounter sudden device-related
problems after an OS upgrade, contacting the operating system vendor is usually the
best recourse.

Device conflicts. On PCs, devices communicate with the CPU using a variety of meth-
ods: interrupt signals, DMA channels, I/O addresses/ports, and memory addresses
(listed in decreasing order of conflict likelihood). All devices that operate at the same
time must have unique values for the items relevant to it (values are set via jumpers
or other mechanisms on the device or its controller or via a software utility provided
by the manufacturer for this purpose). Keeping detailed and accurate records of the
settings used by all of the devices on the system will make it easy to select appropri-
ate ones when adding a new device and to track down conflicts should they occur.

System configuration errors

Errors in configuration files. This type of problem is usually easy to recognize. More
than likely, you’ve just recently changed something, and the boot process dies at a
clearly identifiable point in the process. The solution is to boot to single-user mode
and then correct the erroneous configuration file or reinstall a saved, working ver-
sions of it.

Unbootable kernels. Sometimes, when you build a new kernel, it won’t boot. There
are at least two ways that this can occur: you may have made a mistake building or
configuring the kernel, or there may be bugs in the kernel that manifest themselves

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting: Handling Crashes and Boot Failures | 179

on your system. The latter happens occasionally when updating the kernel to the lat-
est release level on Linux systems and when you forget to run lilo after building a
new kernel.

In either case, the first thing to do is to reboot the system using a working, saved ker-
nel that you’ve kept for just this contingency. Once the system is up, you can track
down the problem with the new kernel. In the case of Linux kernels, if you’re con-
vinced that you haven’t made any mistakes, you can check the relevant newsgroups
to see if anyone else has seen the same problem. If no information is available, the
best thing to do is wait for the next patch level to become available (it doesn’t take
very long) and then try rebuilding the kernel again. Frequently, the problem will dis-
appear.

Errors in initialization files are a very common cause of boot problems. Usually, once
an error is encountered, the boot stops and leaves the system in single-user mode.
The incident described in Chapter 3 about the workstation that wouldn’t boot ended
up being a problem of this type. The user had been editing the initialization files on
his workstation, and he had an error in the first line of /etc/rc (I found out later). So
only the root disk got mounted. On this system, /usr was on a separate disk parti-
tion, and the commands stored in /bin used shared libraries stored under /usr. There
was no ls, no cat, not even ed.

As I told you before, I remembered that echo could list filenames using the shell’s
internal wildcard expansion mechanism (and it didn’t need the shared library). I
typed:

echo /etc/rc*

and found out there was an rc.dist file there. Although it was probably out of date, it
could get things going. I executed it manually:

. /etc/rc.dist

The moral of this story is, of course, test, test, test. Note once more that obsessive
prudence is your best hope every time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180

Chapter 5CHAPTER 5

TCP/IP Networking

Since very few computers exist in isolation, managing networks is an inextricable
part of system administration. In fact, in some circles, the designations “system
administrator” and “network administrator” are more or less synonymous.

This chapter provides an overview of TCP/IP networking on Unix systems. It begins
with a general discussion of TCP/IP concepts and procedures and then covers basic
network configuration for client systems, including the variations and quirks of each
of our reference operating systems. There are other discussions of network-related
topics throughout the remainder of the book, including in-depth treatments of net-
work security issues in Chapter 7 and coverage of administering and configuring net-
work facilities and services in Chapter 8.

For a book-length discussion of TCP/IP networking, consult Craig Hunt’s excellent
book, TCP/IP Network Administration (O’Reilly & Associates).

Understanding TCP/IP Networking
The term “TCP/IP” is shorthand for a large collection of protocols and services that
are used for internetworking computer systems. In any given implementation, TCP/IP
encompasses operating system components, user and administrative commands and
utilities, configuration files, and device drivers, as well as the kernel and library sup-
port upon which they all depend. Many of the basic TCP/IP networking concepts are
not operating system–specific, so we’ll begin this chapter by considering TCP/IP net-
working in a general way.

Figure 5-1 depicts an example TCP/IP network including several kinds of network
connections. Assuming that these computers are in reasonably close physical prox-
imity to one another, this network would be classed as a local area network (LAN).*

* You may wonder whether this is one LAN or two LANs. In fact, the term LAN is not precisely defined, and
usage varies.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 181

In contrast, a wide area network (WAN) consists of multiple LANs, often widely sep-
arated geographically (see Figure 5-5, later in this chapter). Different physical net-
work types are also characteristic of the LAN/WAN distinction (e.g., Ethernet versus
frame relay).

Each computer system on the network is known as a host* and is identified by both a
name and an IP address (more on these later). Most of the hosts in this example have
a permanent name and IP address. However, two of them, italy and chile, have their
IP address dynamically assigned when they first connect to the network (typically, at
boot time), using the DHCP facility (indicated by the highlighted final element in the
IP address).

If I am logged in to, say, spain (either by direct connection or via a modem), spain is
said to be the local system, and brazil is a remote system with respect to processes
running on spain. A system that performs a task for a remote host is called a server;
the host for whom the task is performed is called the client. Thus, if I request a file
from brazil, that system is a server for the client spain during that transfer.

* The term node is sometimes used as a synonym for host in non-Unix networking lexicons.

Figure 5-1. TCP/IP local area network

10.1.1.2
spain

10.1.1.3
usa

10.1.1.5
england

10.1.1.4
canada

10.1.1.1
brazil

duncan
10.1.2.1

hamlet
10.1.2.6

10.1.1.7
romeo
10.1.2.2

hal
10.1.2.5

iago
10.1.2.3

puck
10.1.2.4

Dialup

ET
HE

RN
ET

FDDI

10.1.1.8
russia

10.1.1.6
greece

10.1.1.100
chile

Wireless
bridge

PPP

10.1.1.101
italy

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 5: TCP/IP Networking

In our example, the network is divided into two subnets that communicate via the
host romeo. The systems named for countries are all connected to an Ethernet back-
bone, and those named for Shakespearean characters are connected via FDDI.

The host romeo serves as a gateway between the two subnets. It is part of both sub-
nets and passes data from one to the other. In this case, the gateway is a computer
with two network interfaces (adapters). However, it is probably more common to
use a special-purpose computer known as a router for this purpose.

The host named italy connects to the network using a wireless connection. The wire-
less bridge (colored black in the illustration) accepts wireless connections and con-
nects their originating computers to the hosts in the LAN by serving as the conduit
to the Ethernet.

Host chile connects to the network by dialing up a modem connected to brazil, using
the PPP facility. Unlike a regular dialup session, which simply starts a normal login
session on the server, dialup networking connections like this one allow full network
participation by the dialing-in host, as if that computer were directly connected to
the network. Once the initial connection is made, the fact that the connection actu-
ally goes through brazil will be transparent to users on chile.

Finally, the illustration shows Unix disk sharing via the Network File System (NFS)
facility. NFS allows TCP/IP hosts to share disks, with remote filesystems merged into
the local directory tree. Users on canada and greece potentially have access to four disk
drives, even though both systems only have three disks physically connected to them.

Media and Topologies
TCP/IP networks can run over a variety of physical media. Traditionally, most net-
works have used some sort of coaxial cable (thick or thin), twisted pair cable, or fiber
optic cable. Network adapters provide the interface between a computer and the
physical medium comprising the network connection. In hardware terms, they usu-
ally consist of a single board. Network adapters support one or more communica-
tion protocols, which specify how the computers use the physical medium to
exchange data. Most protocols are not media-specific.

For example, Ethernet communications can be carried over all four of the media
types mentioned previously, and FDDI networks can run over either fiber optic or
twisted pair cable. Such protocols specify networking characteristics, such as the
structure of the lowest level data unit, the way that data moves from host to host
across the physical medium, how multiple simultaneous network accesses are han-
dled, and the like. Currently, Ethernet accounts for more than 80% of all networks.

Figure 5-2 illustrates the various types of connectors you may see on Ethernet net-
work cables. These days, the one at the bottom is the most prevalent: unshielded
twisted pair (UTP) cable with an RJ-45 connector. The type of cable required for
100 Mb/sec communication is known as Category 5. Category 5E cable is used for
1000 Mb/sec (Gigabit) Ethernet.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 183

The other items in Figure 5-2 illustrate older cable types, which you may still run
into. The top item is the most common connector for RG-11 coax. The middle two
items are connectors used for RG-58 coax (Thinnet). The upper item in the pair is a
simple connector. The lower item illustrates the tap design used for a computer con-
nector. The connector is part of a T junction attached to the coaxial cable. In the
illustration, there is a terminator on the right side of the tap, but a continuation of
the cable could also be placed there.

Table 5-1 summarizes some useful characteristics of the various Ethernet media. Note
that the maximum cable length for UTP at any speed is 100 meters. Longer distances
require fiber optic cable, of which there are two main varieties. Single-mode fiber
equipment is technically more complex than multimode fiber because it uses a laser
to force the light traveling within the cable to a single frequency (“mode”), making
the optical system and the connectors much more expensive to produce. However,

Figure 5-2. Ethernet connectors

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 5: TCP/IP Networking

single-mode fiber also works reliably for cable lengths measured in kilometers instead
of just meters.

All of the hosts within a given network segment—a portion of the network separated
from the rest by switches or routers—use the same type of Ethernet. Connecting seg-
ments with different characteristics requires special hardware that can use both types
and translate between them.

Identifying network adapters

All network adapters have a Media Access Control (MAC) address, which is a numeri-
cal identifier that is globally unique to that individual adapter. For Ethernet devices,
MAC addresses are 48-bit values expressed as twelve hexadecimal digits, usually
divided into colon-separated pairs: for example, 00:00:f8:23:31:a1. There are thus
over 280 trillion distinct MAC addresses (which ought to be enough, even for us).

MAC addresses were formerly referred to as Ethernet addresses and are occasionally
called hardware addresses. The first 24 bits of the MAC address is a hardware ven-
dor–specific prefix called an Organizationally Unique Identifiier (OUI). Knowing the
OUI can be helpful if you ever have to figure out which device corresponds to a spe-
cific MAC address. OUIs are assigned by the IEEE, which maintains the master data-
base of OUI-to-vendor mappings.

You can find the MAC address for an adapter on a Unix system using these
commands:*

Table 5-1. Popular media characteristics

Media Ethernet type Speed Maximum length

RG-11 coax Thicknet (10Base5) 10 Mb/sec 500 m

RG-58 coax Thinnet (10Base2) 10 Mb/sec 180 m

Category 3 UTP 10BaseT 10 Mb/sec 100 m

Category 5 UTP 100BaseTX 100 Mb/sec 100 m

Single-mode fiber 100BaseFX 100 Mb/sec 20 km

Category 5E UTP Gigabit (1000BaseT) 1 Gb/sec 100 m

Single-mode fiber 1000BaseLX 1 Gb/sec 3 km

Multimode fiber 1000BaseSX 1 Gb/sec 440 m

Wireless 802.11ba

a Not an Ethernet medium.

11 Mb/sec 100 m

* The term network interface is commonly used as a synonym for network adapter (as in NIC). In the Unix
world, an interface is really a logical entity consisting of an adapter plus its operating system level configu-
ration. On AIX systems, adapters and interfaces have different names (e.g., ent0 and en0, respectively).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 185

There is also a special network interface present on every computer, known as the
loopback interface. There is no physical network adapter corresponding to the loop-
back interface, but even so, it is sometimes called the loopback device. The loopback
interface allows a computer to send network packets to itself: implemented in soft-
ware, it intercepts the packets and redirects them back to the local host, as if they
had arrived from an external source.

Hosts within a local area network can be connected in a variety of arrangements
known as topologies. For example, the 10.1.1 subnet in Figure 5-1 uses a bus topol-
ogy in which each host taps into a backbone, which is standard for coax Ethernet
networks. Often, the backbone is not a cable at all but merely a junction point where
connections from the various hosts on the network converge, commonly known as a
hub or a switch, depending on its capabilities. The 10.1.2 subnet uses a ring topology.

One of the fundamental characteristics of Ethernet is also illustrated in the diagram.
Each host on an Ethernet is logically connected to every other host: to communicate
with any other host, a system sends a message out on the Ethernet, where it arrives at
the target host directly. By contrast, for the other network, messages between dun-
can and puck must be handled by two other hosts first. At typical network speeds,
however, this difference is not significant.

Networking protocols may include a required topology as part of their specification,
as in the 10.1.2 subnet in Figure 5-1. For example, full FDDI networks are com-
posed of two counter-rotating rings (two duplicate rings through which data flows in
opposite directions), an arrangement designed to enable a network to easily bypass
breaks in one ring and to scale well as network load increases.

Although I’ve used FDDI quite a bit here for illustration purposes,
general-purpose FDDI networks are pretty rare. FDDI is currently
used in storage area networks (SANs) to interconnect the storage
media (disks) and the one or two hosts to which they are attached.

The Ethernet protocol is based on a communication strategy known as Carrier Sense
Multiple Access/Collision Detection (CSMA/CD). On an Ethernet, a device that
wants to transmit a message is able to determine if any other device is already using
the medium (carrier sense). In other words, a device waits until there is a lull in activ-
ity before trying to “talk.” If two or more devices both start to talk at the same time,
both of them stop (collision detection), and they each wait a semi-random amount of

AIX entstat adapter (for Ethernet adapters)
FreeBSD ifconfig interface
HP-UX lanscan
Linux ifconfig interface
Solaris ifconfig interface (must be run as root)
Tru64 ifconfig -v interface

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 5: TCP/IP Networking

time before trying again in the hopes of avoiding a second collision. “Multiple
access” refers to the fact that any host is able to use the communication medium.

This is a lightweight protocol that works very well for most common networking
uses. Its one disadvantage is that it does not perform as well under heavy loads as do
some other topologies (e.g., token rings). In fact, under heavy network loads, the
overhead caused by frequent collisions and the resulting wait times can become a sig-
nificant factor in actual network throughput (although this is less true of current
UTP-based 100 Mb networks than it is of older, coax-based 10 Mb networks).

Protocols and Layers
Network communication is organized as a series of layers. With the exception of the
layer referring to the physical transmission medium, these layers are logical or con-
ceptual rather than literal or physical, and they are implemented in the networking
software running on computers and other network devices. Every network message
moves down through the layers on its originating system, travels across the physical
medium, and then moves up through the same stack of layers on the destination sys-
tem. In addition, as it passes through various network devices, it may travel partway
up and down the stack (as we’ll see).

No discussion of any network architecture is complete without at least a brief men-
tion of the Open Systems Interconnection (OSI) Reference Model. This description
of networking has seldom been the basis of actual network implementations, but it
can be quite helpful in clearly identifying the distinct functions necessary for net-
work communications to occur. Things are not really divided up according to its
specification in real networks, because many of the distinct communication phases
and functions that it identifies are handled equally well or more efficiently by a sin-
gle network layer (with correspondingly lower overhead). The OSI Reference Model
is probably best thought of as an after-the-fact, generalized, logical description of
network communications.

Figure 5-3 lists the layers in the OSI Reference Model and those actually used in
TCP/IP implementations, including the most important protocols defined for each
layer.

When a network operation is initiated by a user command or program, it travels
down the protocol stack on the local host (via software), across the physical medium
to the destination host, and then back up the protocol stack on the remote host to
the proper recipient process. For example, a network transmission originating from a
user program like rcp moves down the stack on the local system from the Applica-
tion layer to Network Access layer, travels across the wire to the destination system,
and then moves up the stack from the Network Access layer to the Application layer,
finally communicating with a daemon process in the latter. Replies to this message
travel the same route in reverse.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 187

Each network layer is equipped to handle data in particular predefined units. The
traditional names of these units for the two main transport protocols are listed in
Table 5-2.

The term packet is also used generically to refer to any network transmission (includ-
ing in this book).

Figure 5-3. Idealized and real network protocol stacks

Table 5-2. Traditionala network data unit names

a To complicate things even further, current usage seems to be moving
toward calling the UDP transport layer unit a “datagram” and the IP layer
data unit a “packet.”

Layer TCP Protocol UDP Protocol

Application stream message

Transport segment packet

Internet datagram

Network Access frame

Application layer
Specifies how application programs interface to
the network and provides services to them.

Presentation layer
Specifies data representation to applications.

Session layer
Creates, manages and terminates
network connections.

Transport layer
Handles error control and sequence checking
for data moving across the network.

Network layer
Responsible for data addressing, routing and
communications flow control.

Data link layer
Defines access methods for the physical medium
via network adapters and their associated
device drivers.

Physical layer
Specifies the physical medium’s operating
characteristics.

Application layer
Handles everything else. TCP/IP network services
(generally implemented as daemons) and end
user applications have to perform the jobs of the
OSI Presentation Layer and part of its
Session Layer.

The many protocols include NFS, DNS, FTP, Telnet,
SSH, HTTP, and so on.

Transport layer
Manages all aspects of data delivery, including
session initiation, error control and sequence
checking.

TCP and UDP protocols.

Internet layer
Responsible for data addressing, transmission,
routing, and packet fragmentation
and reassembly.

IP and ICMP protocols.

Network access layer
Specifies procedures for transmitting data across
the network, including how to access the
physical medium.

Ethernet and ARP protocols (although not
actually part of TCP/IP).

OSI TCP/IP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 5: TCP/IP Networking

On the originating end, each layer adds a header to the data it receives from the layer
above it until the data reaches the bottom layer for transmission; this process is
called encapsulation. Similarly, on the receiving end, each layer strips off its own
header before passing the data to the next higher layer (combining multiple units
together if appropriate), so that what is finally received is the same as what was origi-
nally sent.

In addition, network data may in some cases be divided into parts that are transmit-
ted separately, a process known as fragmentation. For example, different network
hardware and media types have somewhat different characteristics that can give rise
to different values of the maximum transmission unit (MTU) network parameter: the
largest data unit that can be transmitted across a network segment. As it travels, if a
packet encounters a network segment that has a lower MTU than the one in use
where it originated, it is fragmented for transmission and reassembled at the other
end. A typical MTU for an Ethernet segment is 1500 bytes.

A more typical example occurs when a higher-level protocol passes more data than
will fit into a lower-level protocol packet. The data in a UDP packet can easily be
larger than the largest IP datagram, so the data would need to be divided into multi-
ple datagrams for transmission.

These are some of the most important lower-level protocols in the TCP/IP family:

ARP
The Address Resolution Protocol specifies how to determine the corresponding
MAC address for an IP address. It operates at the Network Access layer. While
this protocol is required by TCP/IP networking, it is not actually part of the
TCP/IP suite.

IP
The Internet Protocol manages low-level data transmission, routing, and frag-
mentation/reassembly. It operates at the Internet layer.

TCP
The Transmission Control Protocol provides reliable network communication
sessions between applications, including flow control and error detection and
correction. It operates at the Transport layer.

UDP
The User Datagram Protocol provides “connectionless” communication between
applications. In contrast to TCP, data transmitted using UDP is not delivery-ver-
ified; if expected data fails to arrive, the application simply requests it again.
UDP operates at the Transport layer.

We’ll consider other protocols when we look at network services in Chapter 8.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 189

Ports, Services, and Daemons
Network operations are performed by a variety of network services, consisting of the
software and other facilities needed to perform a specific type of network task. For
example, the ftp service performs file transfer operations using the FTP protocol; the
software program that does the actual work is the FTP daemon (whose actual name
varies).

A service is defined by the combination of a transport protocol—TCP or UDP—and
a port: a logical network connection endpoint identified by a number. The TCP and
UDP port numbering schemes are part of the definition of these protocols.

Port numbers need be unique only within a given transport protocol.
TCP and UDP each define a unique set of ports, even though they use
the same port numbers. However, recent practice is to assign both the
UDP and TCP ports to standard services.

Various configuration files in the /etc directory indicate the standard mappings
between port numbers and TCP/IP services:

• /etc/protocols lists the protocol numbers assigned to the various transport proto-
cols in the TCP/IP family. Although this list is large, most systems need to use
only the TCP, UDP, and ICMP protocols.

• /etc/services lists the port numbers assigned to the various TCP and UDP services.

Individual TCP/IP connections are defined by a pair of host-port combinations, each
known as a socket, which is unique during the connection’s lifetime: source IP
address, source port, destination IP address, destination port (as seen from the cli-
ent’s point of view). For example, when a user first connects to a remote host using
ssh, it contacts that computer on the standard port 22 (such ports are commonly
referred to as well-known ports). The process is assigned a random (dynamically
allocated or ephemeral) port which is used as the source (outgoing) port by the cli-
ent. Multiple simultaneous ssh sessions on the destination system are possible using
this scheme since each one will have a different source port/source IP address combi-
nation and thus a unique socket.

For example, the first ssh connection might use port 2222 as the source port. The
next ssh connection might use port 3333. In this way, the messages intended for the
two sessions can be easily distinguished, even if they came from the same user on the
same remote system.

Most standard services usually use ports below 1024, and such ports are restricted to
root (at least on Unix systems). Table 5-3 lists some common services and their asso-
ciated ports. In most cases, both the TCP and UDP ports are assigned to the service;
for the few exceptions, the protocol follows the port number (as in /etc/services
entries). The shaded portion of the table contains port numbers for commonly used
services from non-Unix operating systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 5: TCP/IP Networking

Administrative Commands
Unix operating systems include a number of generic TCP/IP user commands that
may be used to display various network-related information, including the following:

hostname
Display the name of the local system

ifconfig
Display information about network interfaces (also configure them)

ping
Perform a simple network connectivity test

arp
Display or modify the IP-to-MAC address-translation tables

netstat
Display various network usage statistics

route
Display or modify the static routing tables

Table 5-3. Important services and their associated ports

Service Port(s) Service Port(s)

FTP 21 (also 20),
990 (secure; also 989)

NetBIOS
SAMBA

137-139

SSH 22 SRC (AIX) 200/udp

TELNET 23, 992 (secure) Remote Exec 512/tcp

SMTP 25, 465 (secure) Remote Login 513/tcp

DNS 53 Remote Shell 514/tcp

DHCP (BOOTP) 67 (server), 68 (client) SYSLOG 514/udp, 601 (reliable)

TFTP 69 LPD 515

FINGER 79 ROUTE 520

HTTP 80, 443 (secure) NFS 2049, 4045/udp (Solaris)

Kerberos 88, 749-50 RSYNC 873

POP-2 109 X11 6000-19, 6063, 7100 (fonts)

POP-3 110, 995 (secure) AppleTalk 201-208

RPC 111 IPX 213

NTP 123 SMB 445

IMAP 143 (v2), 220 (v3),
 993 (v4 secure)

QuickTime 458

SNMP 161, 162 (traps) Active Directory
Global Catalog

3268, 3269 (secure)

LDAP 389, 636 (secure) America Online 5190-5193

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 191

traceroute
Determine the route to a specified target host

nslookup
Determine IP address-to-hostname and other translations produced by the
Domain Name Service

We’ll see examples of many of these commands later in this chapter.

A Sample TCP/IP Conversation
All of these concepts will come together when we look at a sample TCP/IP conversa-
tion. We’ll consider what must happen in order for the following command to be
successfully executed:

hamlet> finger chavez@greece
Login name: chavez In real life: Rachel Chavez
Directory: /home/chem/new/chavez Shell: /bin/csh
On since Apr 28 08:35:42 on pts/3 from puck
No Plan.

This finger command causes a network connection to be formed between the hosts
hamlet and greece, and more specifically between the finger client process running
on hamlet and the fingerd daemon on greece (which will be started by greece’s inetd
process).

The finger service uses the TCP transport protocol (number 6) and port 79. TCP
connections are always created via a three-step handshaking process. Here is a dump
of the packet corresponding to Step 1, in which the most important fields have been
highlighted:*

ETH: ====(60 bytes recd on en0)====Sun Apr 28 13:38:27 1996
ETH: [32:21:a6:e1:7f:c1 18:33:e4:2a:43:2d] type 800 (IP)
IP: < SRC = 192.168.2.6 (hamlet)
IP: < DST = 192.168.1.6 (greece)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=56107, ip_off=0
IP: ip_ttl=60, ip_sum=f84, ip_p = 6 (TCP)
TCP: <source port=1031, destination port=79(finger)>
TCP: th_seq=d83ab201, th_ack=0
TCP: th_off=6, flags<SYN>
TCP: th_win=16384, th_sum=3577, th_urp=0 data in ASCII
data: 00000000 020405b4 |.... |

Each line of this packet display is labeled with the protocol that created it: ETH lines
were created at the Ethernet level (Network Access layer), IP lines by the IP protocol
(Internet layer), and TCP lines by the TCP protocol (Transport layer).

Lines labeled as data are used by whatever layer is sending data in the packet. The
data is dumped in hex and ASCII (the latter at the extreme right between the two

* Slightly modified from that created with AIX’s iptrace and ipreport utilities.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 5: TCP/IP Networking

vertical bars). In this case, the data consists of TCP options (negotiating a maximum
segment length of 1460 bytes) and not finger-related data.

The initial ETH line is actually created by the packet dumping software, and it lists
the date and time of the message. The actual data from the packet begins with the
second ETH line, which lists the MAC addresses of the two hosts.

The IP lines indicate that the packet comes from the TCP transport protocol (ip_p),
as well as its source and destination hosts. The TCP header indicates the destination
port, allowing the network service to be identified. The th_seq field in this header
indicates the sequence number for this packet. The TCP protocol requires that all
packets be acknowledged by the receiving host (although not necessarily individu-
ally). The SYN flag (for synchronize) by itself indicates an attempt to create a new
network connection, and in this case, the sequence number is an initial sequence
number for the conversation. It will be incremented by one for each byte of data
transmitted.

Here are the next two packets in the sequence, which complete the handshake:

ETH: ====(60 bytes trans on en0)====Sun Apr 28 13:38:27 1996
ETH: [18:33:e4:2a:43:2d -> 32:21:a6:e1:7f:c1] type 800 (IP)
IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=44, ip_id=54298, ip_off=0
IP: ip_ttl=60, ip_sum=1695, ip_p = 6 (TCP)
TCP: <source port=79(finger), destination port=1031 >
TCP: th_seq=d71b9601, th_ack=d83ab202
TCP: th_off=6, flags<SYN | ACK>
TCP: th_win=16060, th_sum=c98c, th_urp=0
data: 00000000 020405b4 |.... |

ETH: ====(60 bytes recd on en0)====Sun Apr 28 13:38:27 1996
ETH: [32:21:a6:e1:7f:c1 -> 18:33:e4:2a:43:2d] type 800 (IP)
IP: < SRC = 192.168.2.6 > (hamlet)
IP: < DST = 192.168.1.6 > (greece)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=56108, ip_off=0
IP: ip_ttl=60, ip_sum=f87, ip_p = 6 (TCP)
TCP: <source port=1031, destination port=79(finger) >
TCP: th_seq=d83ab202, th_ack=d71b9602
TCP: th_off=5, flags<ACK>
TCP: th_win=16060, th_sum=e149, th_urp=0

In the packet with sequence number d71b9601, sent from greece back to hamlet, both
the SYN and ACK (acknowledge) flags are set. The ACK is the acknowledgement of
the previous packet, and the SYN establishes communication from greece to hamlet.
The contents of the th_ack field indicate the last byte of data that has been received
(one byte so far). The th_seq field indicates greece’s starting sequence number. The
next packet simply acknowledges greece’s SYN, and the connection is complete.

Now we are ready to get some work done (packets are abbreviated from here on):

IP: < SRC = 192.168.2.6 > (hamlet)
IP: < DST = 192.168.1.6 > (greece)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 193

TCP: <source port=1031, destination port=79(finger) >
TCP: th_seq=d83ab202, th_ack=d71b9602
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=16060, th_sum=4c86, th_urp=0
data: 00000000 61656C65 656E3A29 |chavez |

This packet sends the data “chavez” to fingerd on greece (the final characters don’t
print); user data is indicated by the presence of the PUSH flag. In this case, the data
is from the Application layer. The packet also acknowledges the previous packet
from greece. This data is passed up the various network layers, to be delivered ulti-
mately to fingerd.

greece acknowledges this packet and eventually sends fingerd’s response:

IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)
TCP: <source port=79(finger), destination port=1031 >
TCP: th_seq=d71b9602, th_ack=d83ab20c
TCP: th_off=5, flags<PUSH | ACK>
TCP: th_win=16060, th_sum=e29b, th_urp=0
data: |Login name: chavez ..In real life: Rachel Chavez..Director|
data: |y: /home/chem/new/chavez ..Shell:/bin/csh. On since Apr 28|
data: | 08:35:42 on pts/3 from puck..No Plan... |

The output from the finger command constitutes the data in this packet (the hex
version is omitted). The packet also acknowledges data received from hamlet (10
bytes since the previous packet).

All that remains is to close down the connection:

IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)
TCP: th_off=5, flags<FIN | ACK>

IP: < SRC = 192.168.2.6 > (hamlet)
IP: < DST = 192.168.1.6 > (greece)
TCP: th_off=5, flags<FIN | ACK>

IP: < SRC = 192.168.1.6 > (greece)
IP: < DST = 192.168.2.6 > (hamlet)
TCP: th_off=5, flags<ACK>

The FIN flag indicates that a connection is to be terminated. greece indicates that it is
finished first. hamlet sends its own FIN (also acknowledging that packet), which
greece acknowledges.

Names and Addresses
Every system on a network has a hostname. When fully qualified, this name must be
unique within the relevant naming space. Hostnames let users refer to any computer
on the network by using a short, easily remembered name rather than the host’s net-
work address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 5: TCP/IP Networking

Each system on a TCP/IP network also has an IP address that is unique for all hosts
on the network. Systems with multiple network adapters usually have a separate IP
address for each adapter.

When an actual network operation occurs, the hostnames of the systems involved
are used to determine their numerical IP addresses, either by looking them up in a
table or requesting translation from a server designated for this task.

A traditional Internet network address is a sequence of 4 bytes* (32 bits). Network
addresses are usually written in the form a.b.c.d, where a, b, c, and d are all decimal
integers: e.g. 192.168.10.23. Each component is 8 bits long and thus runs from 0 to
255. The address is split into two parts: the first part—highest-order bits—identifies
the local network, specifically those hosts that may be connected directly (without
the need for any routing information. The second part of the IP address (i.e., all
remaining bits) identifies the host within the network.

The size of the two parts vary. The first byte of the address (a) determines the
address type (called its class), and hence the number of bytes allocated to each part.
Table 5-4 gives more specific details about how this scheme traditionally works.

Class A addresses provide millions of hosts per network, since 24 bits can be used for
host addresses: 1 through 224-1 (0 is not allowed as a host address). There are, how-
ever, only a total of 126 of them (these network numbers were typically assigned to
major national networks and very large organizations). At the other extreme, Class C
addresses traditionally support only 254 hosts per network (since only 8 bits are used
for the host address), but there are over two million of them. Class B addresses fall in
between these two types.

Multicast addresses are part of the reserved range of addresses (a=224–254). They
are used to address a group of hosts as a single entity and are designed for applica-
tions such as video conferencing. They are assigned on a temporary basis. Normal IP
addresses are sometimes referred to as unicast addresses in contrast to multicast
addresses.

* More precisely, octets (since standardized bytes are more recent than IP addresses).

Table 5-4. Traditional Internet address types

Initial Bits Range of a Address class Network part Host part
Maximum
networks

Maximum
hosts/net

0… 1–126 Class A a b.c.d 126 16,777,214

10… 128–191 Class B a.b c.d 16,384 65,534

110… 192–223 Class C a.b.c d 2,097,152 254

1110 . . . 224-239 Class D Multicast addresses

Reserved for research1111 . . . 240-254 Class E

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 195

Some values of the various network address bytes have special meanings:

• The address with a host part of 0 refers to the network itself, as in 192.168.10.0.
The 0.0.0.0 network is sometimes used to refer to the local network.

• The 127.0.0.1 address is always assigned to the loopback interface. The remain-
der of the 127.0 network is reserved.

• A host part of all ones defines the broadcast address for the network: the destina-
tion address used when a computer wants to send a query to every host on the
local network. For example, the broadcast address for the network containing
the Class C address 192.168.10.23 is 192.168.10.255, and the broadcast address
for the network containing the Class A address 10.1.12.43 is 10.255.255.255.

Network addresses for networks connected to the Internet must be obtained from
some official source. These days, network addresses for new sites are obtained from
one of the ISPs that is authorized to assign them. Every host that will communicate
directly with a host on the Internet must have an officially assigned IP address.

Networks that are not directly connected to the Internet also use network addresses
that obey the Internet numbering conventions. The following IP address blocks are
reserved for private networks:*

• 10.0.0.0 through 10.255.255.255

• 172.16.0.0 through 172.31.255.255

• 192.168.0.0 through 192.168.255.255

Sites that connect to the Internet via an ISP or other dedicated gateway frequently
use Network Address Translation (NAT) to map internal IP addresses to their exter-
nal (“real”) IP address space. NAT can be performed by a computer and many rout-
ers. It is often used to map a large number of private addresses to a small number of
real IP addresses, often just one.

NAT processes all Internet-bound packets, transforming their original source
addresses into the address appropriate for use on the Internet. This may be done to
translate private addresses to the organization’s actual assigned IP address space or
to conflate/hide the internal network structure from the outside world. It also keeps
track of this mapping data so that it can perform the reverse translation process for
incoming packets (responses).

So far, we’ve assumed that IP addresses are permanently assigned to
each host within a network, but this need not be true for all hosts
within a network. The Dynamic Host Configuration Protocol (DHCP)
is a facility that allows IP addresses to be assigned to systems dynami-
cally when they require network access. It is discussed later in this
chapter.

* Traditionally, many sites that were not on the Internet used IP addresses of the form 192.0.x.y or 193.0.x.y.
Some probably still do.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 5: TCP/IP Networking

Subnets and Supernets
A site can divide its block of addresses—also known as its address space—in any way
that makes sense. For example, consider the block of addresses that begin with 192.
168. Traditionally, this is a Class B address and so would be interpreted as 256 net-
works of 254 hosts each: the networks are 192.168.0.0, 192.168.1.0, 192.168.2.0, ...,
192.168.255.0, and the hosts are numbered 1 through 254 for each network. How-
ever, this is not the only way of dividing the 16 site-specific bits. In this case, the the-
oretical possibilities range from one network with over two million hosts (all 16 bits
are used for the host part) to 16,384 networks of 2 hosts each (only the lowest two
bits are used for the host part, and the remaining 14 bits are used for the subnet).

The number of hosts per subnet is always 2n–2 where n is the number
of bits in the host part of the IP address. Why –2? We must exclude
the invalid host addresses consisting of all zeros and all ones.

A subnet mask specifies how the 32-bit IP address is divided between the network
part (including the subnet) and the host part, and all computers participating in a
TCP/IP network have one assigned to them. Computers and other devices on the
same subnet always use the same subnet mask.

The subnet mask is a 32-bit value constructed by placing 1 in each bit location for
the network portion of the IP address and 0 in all the bit locations for the host part of
the address. This results in a string of ones followed by a string of zeros. For exam-
ple, a traditional Class A IP address would use a subnet mask of
11111111000000000000000000000000, conventionally written as 4 period-sepa-
rated decimal integers: 255.0.0.0. Similarly, traditional Class B and Class C addresses
would use a subnet mask of 255.255.0.0 and 255.255.255.0, respectively.

The subnet mask can also be used to further subdivide one network ID among sev-
eral local networks. For example, if you use a subnet mask of 255.255.255.192 for
the network 192.168.10.0, you are making the highest 2 bits of the final address byte
part of the network address (the final byte is 11000000), thereby subdividing the
192.168.10 network into 4 subnets, each of which can have up to 62 hosts on it
(since the host ID is coded into the remaining 6 bits). Contrast this with the normal
interpretation, which yields 256 networks of 254 hosts each.

In contrast to host addresses, subnet addresses of all ones or all zeros
are legal.

You can also use fewer than the standard number of bits for the network part of the
address (this strategy is known as supernetting). For example, for the network
address 192.168.0.0, you could use only 4 bits for the subnet part rather than the
usual 8, yielding 16 subnets of up to 1022 hosts each.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 197

Memorizing all the powers of 2 from 20 to 216 makes all of this much
easier.

Classless Inter-Domain Routing (CIDR, usually pronounced like apple cider) address-
ing is the more common way of expressing the subnet mask these days.* CIDR
appends a suffix indicating the number of bits in the host part to the IP address. For
example, 192.168.10.212/24 designates a subnet mask of 255.255.255.0, and the /27
suffix specifies a subnet mask of 255.255.255.224.

Table 5-5 shows how this works in detail. In the first example, we divide the 192.
168.10 network into 8 subnets of 30 hosts each. In the second example, we organize
a block of 256 traditional Class C addresses into 64 subnets of 1022 hosts each with
supernetting by assigning the upper 6 bits of the third IP address byte to the network
address, thereby leaving 10 bits for the host part.

* CIDR’s primary purpose is not to make notation more compact but to decrease the number of entries in the
routing tables at major Internet hubs. CIDR minimizes the number of routing table entries required per site
(often to just one) by allowing sites to be assigned a block of contiguous IP addresses that can be addresses
via a single CIDR address. While CIDR was developed to address this specific problem arising from the
uncontrolled growth of the Internet, it has also helped to stave off feared address shortages (for example, the
entire traditional Class C address space supports only around 530 million hosts). For more information on
the current status of available Internet address space consumption, consult the report at http://www.caida.
org/outreach/resources/learn/ipv4space/.

Table 5-5. Subnetting and supernetting examples

Subnet Bits Subnet Addressa Broadcast Addressb Host Addresses

Subnetting: subnets of 192.168.10.0/27 (subnet mask: 255.255.255.224)

000 192.168.10.0 192.168.10.31 192.168.10.1-30

001 192.168.10.32 192.168.10.63 192.168.10.33-62

010 192.168.10.64 192.168.10.95 192.168.10.65-94

011 192.168.10.96 192.168.10.127 192.168.10.97-126

100 192.168.10.128 192.168.10.159 192.168.10.129-158

101 192.168.10.160 192.168.10.191 192.168.10.161-190

110 192.168.10.192 192.168.10.223 192.168.10.193-222

111 192.168.10.224 192.168.10.255 192.168.10.225-254

Supernetting: subnets of 192.168.0.0/22 (subnet mask: 255.255.248.0)

000000 192.168.0.0 192.168.3.255 192.168.0.1-3.254

000001 192.168.4.0 192.168.7.255 192.168.4.1-7.254

000010 192.168.8.0 192.168.11.255 192.168.8.1-11.254

. . .

111101 192.168.244.0 192.168.247.255 192.168.244.1-247.254

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 5: TCP/IP Networking

Note that some of the host addresses in the second part of Table 5-5 have 255 as
their last byte. These are legal host addresses with the specified subnet mask since
the entire host part is not all ones (write one of these addresses, say 192.168.0.255/
22, out in binary if you’re not sure). With CIDR addresses, there is nothing special
about the byte boundaries, and classes really are irrelevant.

Table 5-6 lists commonly used CIDR suffixes and their associated subnet masks.

If you’d rather avoid the math, there are tools that can help with these calculations.
Figure 5-4 illustrates the output from a Perl script named ipcalc.pl (this one is from
http://jodies.de/ipcalc/, written by krischan@jodies.de; there are several versions of the
script by different authors*). It takes a CIDR address as its input and prints a variety
of useful information about the local network that can be derived from it. The Wild-
card field displays the inverted netmask (used by Cisco).

Introducing IPv6 host addresses

At some point in the future, Internet addresses may switch over to the next-genera-
tion design, IPv6 (the current one is IPv4). IPv6 was designed in the 1990s to address
the perceived future shortage of Internet addresses (which fortunately has not yet
arrived). In this brief subsection, we’ll take a look at the major features of IPv6
addresses. All the vendors we are considering support IPv6 addresses.

111110 192.168.248.0 192.168.251.255 192.168.248.1-251.254

111111 192.168.252.0 192.168.255.255 192.168-252.1-255.254

a Host part=all 0’s
b Host part=all 1’s

Table 5-6. CIDR suffixes and subnet masks

Suffix Subnet mask Maximum hosts

/22 255.255.252.0 1022

/23 255.255.254.0 510

/24 255.255.255.0 254

/25 255.255.255.128 126

/26 255.255.255.192 62

/27 255.255.255.224 30

/28 255.255.255.240 14

/29 255.255.255.248 6

/30 255.255.255.252 2

* For a Palm Pilot version, see http://www.ajw.com (written by Alan Weiner).

Table 5-5. Subnetting and supernetting examples (continued)

Subnet Bits Subnet Addressa Broadcast Addressb Host Addresses

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 199

IPv6 addresses are 128 bits long, expressed as a series of 8 colon-separated 16-bit val-
ues written in hexadecimal, e.g., 1111:2222:3333:4444:5555:6666:7777:8888. Each
value runs from 0x0 to 0xFFFF (from 0 to 65535 in decimal). The network host
boundary is fixed at 64 bits, and there is some additional internal structure defined,
described in Table 5-7.

As the table indicates, sites get 16 bits for subnetting. The entire initial prefix of 48
bits is provided by the ISP. One advantage of IPv6 is that host addresses may be
automatically derived from the device’s MAC address, so that aspect of host configu-
ration can be eliminated (optionally).

IPv6 allows for backward compatibility with IPv4 by assigning addresses of the form
0:0:0:FFFF:a.b.c.d to IPv4-only devices, where a.b.c.d is the IPv4 address. This is
generally written as ::FFFF:a.b.c.d, where :: replaces a contiguous block of zeros (any
length) in the IPv6 address (but the double colon may be used only once). Finally,
the loopback address is always defined as ::1, and the broadcast address is FF02::1.

Figure 5-4. Output from the ipcalc.pl Script

Table 5-7. IPv6 host address interpretation

Bits Name Purpose (Example use)

1-3 Format Prefix (FP) Address type (unicast, multicast)

4-16 Top-level aggregation ID (TLA ID) Highest-level organization (major upstream ISP)

17-24 Reserved

25-48 Next-level aggregation ID (NLA ID) Regional organization (local ISP)

49-64 Site-level aggregation ID (SLA ID) Site-specific subdivision (subnet)

65-128 Interface ID Specific device address: a transformation of the MAC address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 5: TCP/IP Networking

Connecting Network Segments
At the physical level, individual networks can be organized, subdivided and joined in
a variety of ways, as illustrated in Figure 5-5 (constructed to include many different
connectivity examples and not as a general model for network design).

The Chicago office LAN in the figure is geographically separated from the organiza-
tion’s main site in San Francisco—the Building 1 and Building 2 LANs—and it is
connected to it via relatively slow links. The two LANs at the main site are con-
nected via high-speed fiber optic cable, so that site’s entire network runs at the same
speed, despite the separation of the two buildings. Collectively, these three LANs
comprise the WAN for this organization.

The Building 1 LAN illustrates several hardware networking devices. All the hosts in
Subnet A are connected to devices called hubs. Traditional hubs serve as an Ethernet
backbone, linking all of the connected hosts together. In this case, there are two hubs

Figure 5-5. A wide area network and its component LANs

Hub Repeater Hub

Router

Subnet A

Subnet B

Subnet C Switch

Building 1 LAN

Building 2 LAN

Chicago office LAN

Slow, expensive
linksRouter Router

Router

Router

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding TCP/IP Networking | 201

in this network segment, as well as a repeater. The latter device connects hosts that
are farther apart than the maximum cable length, passing all signals from one wire to
the other. Actually, a repeater is also a hub; in this case, it has only two ports. Ether-
net imposes a maximum number of four hubs between the most distant hosts. Sub-
net A follows this rule.

Subnet B is another network segment, connected to the other two subnets by rout-
ers. Although its internal structure is not shown, the various hosts in this subnet are
all connected to hubs or switches. The same is true for the two parts of subnet C.

The two branches of subnet C are connected by a switch, a somewhat more intelli-
gent device than a hub, which selectively passes only the data destined for the other
segment between the two. A hub is just a point where connections come together,
while a switch includes some ability to decide which “side” a given packet is des-
tined for. Two-port switches like the one in the figure are sometimes called bridges.

These days, plain hubs/repeaters are seldom used. Switches are gener-
ally used as the central connector to which individual hosts are
attached. (I’ve used hubs in the diagram for illustrative purposes.)
Occasionally, devices that are really switches are labeled as hubs, pre-
sumably for marketing purposes.

More complex switches can handle more than one media type or have the ability to
filter the traffic in a variety of ways, and some are capable of connecting networks of
different types—say, TCP/IP and SNA—by translating or encapsulating the data
from one protocol family to/within the other as it is passed across. These tasks, per-
formed by such devices, overlap those traditionally assigned to routers.

The various subnets and the three local LANs in Figure 5-5 are connected to one
another via routers, a still more sophisticated network linking device that is essentially
a small computer. In addition to selectively handling data based on its destination,
routers also have the ability to determine the current best path to that destination;
finding a path to a destination is known as routing.* The best routers are highly pro-
grammable and can also perform very complex filtering of the data they receive,
accepting or rejecting it based upon criteria specified by the network administrator.

The routers that connect our three locations are arranged so that there are multiple
paths to every destination; losing any one of them will cause no harm to communica-
tions between the two unaffected networks.

Hubs/repeaters, switches/bridges, and routers can be distinguished by where their
operations fall within the TCP/IP protocol stack. Repeaters operate at the Network

* Both common pronunciations of this word are technically correct. However, I still believe that rooting is
something humans do at baseball games and pigs do when looking for truffles. Routing is what partisans do
to occupying armies, and its homonym is what enables packets to travel across a network.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 5: TCP/IP Networking

Access layer, bridges use the Internet layer,* and routers operate within the Trans-
port layer. A full network host, which obviously supports all four TCP/IP layers, can
thus perform the functions of any of these types of devices. Note that many devices
labeled with one name may actually function like lower-end versions of the next
higher device (e.g., high end switches are simple routers).

Although inexpensive dual-speed (e.g., 10BaseT and 100BaseT)
switches exist, I don’t recommend using them. The network will pro-
vide better performance if you segregate devices by speed and don’t
mix speeds on the same (low-end) switch.† The low-speed switch will
thus be the only low-speed device on the high speed switch.

Adding a New Network Host
To add a new host to the network, you must:

• Install networking software and build a kernel capable of supporting network-
ing and the installed networking hardware (if necessary). These days, basic net-
working is almost always installed by default with the operating system, but you
may have to add some features manually.

• Physically connect the system to the network and enable the hardware network
interface. Occasionally, on older PC systems, the latter may involve setting
jumpers or switches on the network adapter board or setting low-level system
parameters (usually via the pre-boot monitor program).

• Assign a hostname and network address to the system (or find out what has
been assigned by the network administrator). When you add a new host to an
existing network, the unique network address you assign it must fit in with
whatever addressing scheme is already in use at your site. You can also decide to
use DHCP to assign the IP address and other networking parameters dynami-
cally instead of specifying a static address.

• Ensure that necessary configuration tasks occur at boot time, including starting
all required networking-related daemons.

• Configure name resolution (hostname-to-IP address translation).

• Set up any static routes and configure any other routing facilities in use. This
includes defining a default gateway for packets destined beyond the local subnet.

* The smartest switches intrude a tiny bit into the Transport layer.

† One of the book’s technical reviewers notes that this problem occurs only with inexpensive switches and is
not a problem on high quality (higher priced) ones.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 203

• Test the network connection.

• Enable and configure any additional network services that you plan to use on
that computer.

Configuring the Network Interface with ifconfig
The ifconfig command (“if” for interface) is used to set the basic characteristics of
the network adapter, the most important of which is associating an IP address with
the interface. Here are some typical commands:

ifconfig lo0 localhost up
ifconfig eth0 inet 192.168.1.9 netmask 255.255.255.0

The first command configures the loopback interface, designating it as up (active). In
many versions of ifconfig, up is the default when the first IP address is assigned to an
interface, and thus it is usually omitted.

The second command configures the Ethernet interface on this system, named en0,
assigning it the specified Internet address and netmask.

The second parameter in the second ifconfig command designates the address fam-
ily. Here, inet refers to IPv4; inet6 is used to refer to IPv6. This parameter is optional
and defaults to IPv4.

The first example command above also illustrates the use of a hostname to specify
the IP address. If you do so, the IP address corresponding to the hostname must be
available when the ifconfig command is run, generally because it is in /etc/hosts.

FreeBSD, Solaris, and Tru64 systems allow you to replace the IP address and net-
mask parameters with a CIDR address:

ifconfig tu0 192.168.9.6/24

Ethernet interface names

The loopback interface is almost always named lo0 (but Linux calls it simply lo).
Ethernet interface names vary tremendously among systems. Here are some com-
mon names for the first Ethernet interface on the various systems:*

AIX en0
FreeBSD xl0, de0, and others (depends on hardware)
HP-UX lan0
Linux eth0
Solaris hme0, dnet0, eri0, le0
Tru64 tu0, ln0

* AIX uses different interface names for other networking types: et0 for so-called 803.2 (a related but slightly
different protocol), tr0 for Token Ring etc.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 5: TCP/IP Networking

Other uses of ifconfig

Without any other options, ifconfig displays the configuration of the specified net-
work interface, as in this example:

$ ifconfig eth0
en0: flags=c63<UP,BROADCAST,NOTRAILERS,RUNNING,FILTMULTI,MULTICAST>
inet 192.168.1.9 netmask 0xffffff00 broadcast 192.168.1.255

You can display the status of all configured network interfaces with ifconfig -a
except under HP-UX. On AIX, FreeBSD, and Tru64 systems, the -l option can be
used to list all network interfaces:

$ ifconfig -l
en0 en1 lo0

This system has two Ethernet interfaces installed, as well as the loopback interface.

The HP-UX lanscan command provides similar functionality.

ifconfig on Solaris systems

Solaris systems provide two versions of ifconfig, one in /sbin and another in /usr/
sbin. Their syntax is identical. They differ only in the way in which they attempt to
resolve hostnames specified as arguments. The /sbin version always checks /etc/hosts
before consulting DNS, while the other version uses whatever name resolution order
is specified in the network switch file (discussed below). The former is used at boot
time, when DNS may not be available.

Solaris also requires that an interface be “plumbed” before it is configured, via com-
mands like the following:

ifconfig hme0 plumb
ifconfig hme0 inet 192.168.9.2 netmask + up

The first command sets up the kernel data structures needed for the device to be
used with IP. Other operating systems also perform this setup function, but they do
so automatically when the first IP address is assigned to an interface. The plus sign
parameter to the netmask keyword is shorthand that tells the command to look up
the default netmask for the specified subnet in the file /etc/inet/netmasks. The file has
entries like the following:

#subnet netmask
192.168.9.0 255.255.255.0

Interface configuration at boot time

Table 5-8 lists the configuration files that store the parameters for ifconfig for each
Unix version we are considering and also provides some example entries from the
file, using the first interface of a common type. The third column in the table indi-
cates which boot script actually performs the interface configuration operation and
where in the boot process it occurs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 205

Table 5-8. Boot-time network interface configuration

Unix version Configuration file Boot script (Invoked by)

AIX Data is stored in the ODM; use smit mktcpip or the
mktcpip command to modify it (not ifconfig com-
mands).

/sbin/rc.boot (first /etc/inittab entry)

FreeBSD /etc/rc.conf:

hostname="clarissa"
ifconfig_xl0="192.168.9.2 netmask
 255.255.255.0"

/etc/rc.network (called from /etc/rc)

HP-UX /etc/rc.config.d/netconf:

HOSTNAME="acrasia"
INTERFACE_NAME[0]=lan0
IP_ADDRESS[0]=192.168.9.55
SUBNET_MASK[0]=255.255.255.0
INTERFACE_STATE[0]="up"

/sbin/init.d/net (link in /sbin/rc2.d)

Linux (Red Hat) /etc/sysconfig/network-scripts/ifcfg_eth0:

DEVICE=eth0
BOOTPROTO=static
IPADDR=192.168.9.220
NETMASK=255.255.255.0
ONBOOT=yes

/etc/sysconfig/network:

HOSTNAME="selene"

/etc/init.d/network (link in /etc/rc2.d)

Linux (SuSE 7) /etc/rc.config:

NETCONFIG="_0" Number of interfaces
IPADDR_0="192.168.9.220"
NETDEV_0="eth0"
IFCONFIG_0="192.168.9.220 broadcast
 192.0.9.255 netmask 255.255.255.0"

/etc/HOSTNAME:

sabina

/etc/init.d/network (link in /etc/rc2.d)

Linux (SuSE 8) /etc/sysconfig/network/ifcfg_eth0

BOOTPROTO=static
IPADDR=192.168.9.220
NETMASK=255.255.255.0
STARTMODE=yes

/etc/HOSTNAME:

sabina

/etc/init.d/network (link in /etc/rc2.d)

Solaris /etc/hostname.hme0:

ishtar

/etc/init.d/network (link in /sbin/rcS.d)

Tru64 /etc/rc.config:

HOSTNAME="ludwig"
NETDEV_0="tu0"
IFCONFIG_0="192.168.9.73 netmask
 255.255.255.0"
NUM_NETCONFIG="1" Number of interfaces
export HOSTNAME NETDEV_0 ...

/sbin/init.d/inet (link in /sbin/rc3.d)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 5: TCP/IP Networking

These files and their entries are quite straightforward and self-explanatory. Multiple
interfaces are configured in the same manner. Parameters for additional interfaces are
defined in the same way as the first one, typically using the next element in the array
(e.g., IP_ADDRESS[1] (HP-UX), NETDEV_1 (Tru64), and the like), corresponding syntax
(e.g., ifconfig_xl1 for FreeBSD), or an analogous filename (e.g., hostname.hme1 for
Solaris or ifcfg_eth1 for Linux).

The Solaris /etc/hostname.interface (where interface is the interface name, e.g., hme0)
file merits additional comment. In general, this file requires only a hostname as its
contents, but you can also place specific parameters to ifconfig on additional lines if
desired, as in this example:

kali
192.168.24.37 netmask 255.255.248.192 broadcast 192.168.191.255

Generally, Solaris attempts to locate the system’s IP address automatically by con-
sulting all the available name services, but you can specify specific parameters in this
way if you choose. The /etc/init.d/network script will append each additional line in
turn to ifconfig interface inet to form a complete command, which is then executed
immediately. The hostname still needs to be the first line in the file or other parts of
the script will break.

The file /etc/nodename also contains the hostname of the local host; it
is used when the system is in standalone mode and in other circum-
stances within the boot scripts. If you decide to change a system’s
hostname, you’ll need to change it in both /etc/nodename and the /etc/
hostname.* file (as well as in /etc/hosts, DNS and any other directory
service you may be running).

Dynamic IP Address Assignment with DHCP
The Dynamic Host Configuration Protocol (DHCP) facility is used to dynamically
assign IP addresses and configuration settings to network hosts.* This facility is
designed to decrease the amount of individual workstation configuration necessary
for a system to be successfully connected to the network. It is especially suited to
computer systems that change network locations frequently (e.g., laptops).

Never use dynamic addressing for any system that shares any of its
resources—filesystems (via NFS or SAMBA), printers, or other
devices—or provides any network resources (DNS, DHCP, electronic
mail services, and so on). It is OK to use DHCP to assign static
addresses to servers (see “Configuring a DHCP Server” in Chapter 8).

* DHCP is a follow-on to the BOOTP remote booting facility.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 207

The DHCP facility assigns an IP address to a requesting host for a specified period of
time known as a lease, via a process like the following:

• The requesting (client) system broadcasts a DHCP Discover* message to UDP
port 67. At this point, the system does not need to know anything about the
local network, not even the subnet mask (the source address for this message is
0.0.0.0, and the destination is 255.255.255.255).

• One or more DHCP servers reply with a DHCP Offer message (to UDP port 68),
containing an IP address, subnet mask, server IP address, and lease duration
(and possibly other parameters). The server reserves the offered address until it is
accepted or rejected by the requesting client or a timeout period expires.

• The client selects an offered IP address and broadcasts a DHCP Request mes-
sage. All servers other than the successful one release the pending reservation.

• The selected server sends a DHCP Acknowledge message to the client.†

• When the lease is 50% expired, the client attempts to renew it (via another
DHCP Request). If it cannot do so at that time, it will try when it reaches 87.5%
of the lease period; if the second renewal attempt also fails, the client looks for a
new server. During the lease period, DHCP-assigned parameters persist across
boots on most systems. On some systems, the client tries to extend its lease each
time it boots.

As this description indicates, the DHCP facility depends heavily on broadcast mes-
sages, but it does not generate an inordinate amount of network traffic if it is config-
ured properly. Typical default lease periods are a few hours, but the time period can
be shortened or lengthened as appropriate (see “Configuring a DHCP Server” in
Chapter 8).

DHCP can also be used to assign other parameters related to networking to the cli-
ent, including the default gateway (router), the hostname, and which server(s) to use
for a variety of functions, including DNS, syslog message destination, X fonts, NTP,
and so on. In addition, DHCP clients can request that specific parameters be sup-
plied by the server and optionally reject offers that do not fulfill them. Some clients
can also specify terms for the lease, such as the time period. DHCP additional
parameters are known as options, and they are identified via standard identifying
numbers.

In the remainder of this section, we’ll look at configuring DHCP clients. We’ll dis-
cuss DHCP servers in Chapter 8.

* More precisely, it is a DHCPDISCOVER message, but I’ve tried to make the text more readable by adding a
space and changing letter case.

† Occasionally, things don’t work out after an offer has been selected. The server also has the option of sending
a Negative Acknowledgement if there is some problem with the request. Also, the client can send a Decline
message to the server if its initial test of the IP address fails. In either case, the client restarts the discovery
process from the beginning.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 5: TCP/IP Networking

Table 5-9 summarizes the various files and settings involved in DHCP client configu-
ration on the various systems we are considering, using the first Ethernet interface of
a common type as an example in each case. The table is followed by discussions of
the specifics for each Unix version.

Table 5-9. DHCP client configuration summary

Item Location and/or configuration

Enable DHCP AIX: ODM; interface stanza (/etc/dhcpcd.ini)
FreeBSD: ifconfig_xl0="DHCP" (/etc/rc.conf)
HP-UX: DHCP_ENABLE=1 (/etc/rc.config.d/netconf)
Linux: IFCONFIG_0="dhcpclient" in /etc/rc.config (SuSE 7); BOOTPROTO='dhcp'

(ifcfg_eth0 in /etc/sysconfig/network-scripts in Red Hat, /etc/sysconfig/network in SuSE
8)

Solaris: Create /etc/dhcp.hme0
Tru64: IFCONFIG_0="DYNAMIC“ (/etc/rc.config)

Additional Configuration Files FreeBSD: /etc/dhclient.conf
Solaris: /etc/default/dhcpagent
Tru64: /etc/join/client.pcy

Primary Command or Daemon AIX: dhcpcd daemon
FreeBSD: dhclient command
HP-UX: dhcpclient daemon
Linux: dhcpcd daemon
Solaris: dhcpagent daemon
Tru64: joinc daemon

Boot Script where DHCP Config-
uration Occurs

AIX: /etc/rc.tcpip
FreeBSD: /etc/rc.network
HP-UX: /sbin/rc
Linux: /etc/init.d/network
Solaris: /etc/init.d/network
Tru64: /sbin/init.d/inet

Automated/ Graphical Configu-
ration Tool

AIX: smit usedhcp
FreeBSD: sysinstall
HP-UX: SAM
Linux: Linuxconf (Red Hat), YAST2 (SuSE)
Solaris: Solaris Management Console
Tru64: netconfig

Current Lease Information AIX: /usr/tmp/dhcpcd.log
FreeBSD: /var/db/dhclient.leases
HP-UX: /etc/auto_parms.log
Linux: /etc/dhcp/dhcpcd-eth0.info (Red Hat); /var/lib/dhcpcd/dhcpcd-eth0.info (SuSE)
Solaris: /etc/dhcp/hme0.dhc
Tru64: /etc/join/leases

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 209

AIX

The easiest way to enable DHCP on an AIX system is to use SMIT, specifically the
smit usedhcp command. The resulting dialog is illustrated in Figure 5-6.

As the figure illustrates, SMIT allows you not only to enable DHCP but also to spec-
ify a desired lease length and other DHCP parameters. In this example, we request a
lease length of 30,000 seconds (5 hours), and we also specify a specific DHCP server
to contact (giving its IP address and subnet mask). This second item is not necessary
and in fact is usually omitted; it is included here only for illustrative purposes.

AIX DHCP client configuration consists of three parts:

• Configuring and starting the dhcpcd daemon, which requests configuration infor-
mation and keeps track of the lease status. In particular, the relevant lines in /etc/
rc.tcpip must be activated by removing the initial comment marker:

Start up dhcpcd daemon
start /usr/sbin/dhcpcd "$src_running"

• Adding a stanza for the network interface and other settings to dhcpcd’s config
file /etc/dhcpcd.ini. Here is an example of this file:

Use 4 log files of 500KB each and log lots of info
numLogFiles 4
logFileSize 500
logFileName /usr/tmp/dhcpcd.log
logItem SYSERR
logItem OBJERR
logItem WARNING
logItem EVENT
logItem ACTION

Figure 5-6. Enabling DHCP with SMIT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 5: TCP/IP Networking

updateDNS "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' A NONIM
 >> /tmp/updns.out 2> &1 " Command is wrapped.
clientid MAC Identify client via its MAC address.

interface en0
{
option 12 "lovelace" Hostname.
option 51 30000 Requested lease period in seconds.
...
}

The first section of the file specifies desired logging options. Here we request
substantial detail by selecting five types of events to log. The next section
includes a command to be used for updating DNS with the IP address assigned
to this host (changing this command is not recommended). The final section
specifies the configuration for the en0 interface. The items between the curly
braces set values for various DHCP options. (The file /etc/options.file defines
DHCP option numbers.)

• Setting parameters within the interface’s record in the ODM. This step can be
accomplished via SMIT or manually, using the mktcpip command.

FreeBSD

FreeBSD uses the DHCP implementation created by the Internet Software Consor-
tium (ISC). The dhclient command requests DHCP services when they are needed.
At boot time, it is called from rc.network. It uses the configuration file, /etc/dhclient.
conf. Here is a simple example:

interface "xl0" {
 request subnet-mask, broadcast-address, host-name,
 time-offset, routers, domain-name, domain-name-servers;
 require subnet-mask;
 send requested-lease-time 360000;
 media "media 10baseT/UTP", "media 10base2/BNC";
 }

This file configures DHCP for the interface xl0, for which DHCP is enabled in /etc/rc.
conf (ifconfig_xl0='DHCP'). This example specifies a list of options for which to
request values from the DHCP server. Leases without most of these options will still
be acceptable, but the subnet mask parameter is required. The client also requests a
lease time of 360,000 seconds (100 hours).

All the items within the braces apply only to this particular interface. However, these
same commands can appear independently within the configuration file, in which
case they apply to all specified interfaces. Many other options are provided, includ-
ing the ability to specify a specific DHCP server.

The default version of /etc/dhclient.conf usually works fine unmodified.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 211

HP-UX

Once DHCP has been enabled for an interface in /etc/rc.config.d/netconf, it will be
started at boot time automatically. The auto_parms script is called from /etc/rc, and it
performs the actual DHCP operations, with help from set_parms. The script also
calls dhcpdb2conf, which merges the configuration data provided by DHCP into the
network configuration file mentioned above, and the ifconfig process proceeds in
the same way it does for hosts with static IP addresses. In addition, auto_parms starts
the dhcpclient daemon, which oversees the lease and its renewal.

Other than enabling DHCP for the network interface, HP-UX provides nothing in
terms of DHCP client configuration. When you enable DHCP, you will also need to
set the corresponding IP_ADDRESS and SUBNET_MASK variables to an empty
string.

Linux

DHCP configuration differs slightly among different Linux distributions. However,
both Red Hat and SuSE use the file ifcfg.eth0 to hold configuration information for
the first Ethernet interface (see Table 5-8 for the directory locations), and DHCP is
enabled in this file as well, via the BOOTPROTO parameter. The actual interface
configuration happens in the /etc/init.d/network boot script, which is called during a
boot, during the transition to run level 2.

On both systems, the network script calls additional scripts and commands to help it
perform its tasks. The most important of these is /sbin/ifup which is responsible for
network interface activation both for systems with static IP addresses and for DHCP
clients.

On Red Hat Linux systems, ifup starts the dhcpcd daemon, which monitors and
renews the DHCP lease as necessary. On SuSE Linux systems, it calls another com-
mand, ifup-dhcp (also in /sbin) to perform the core configuration tasks, including
starting the daemon.

On SuSE systems, there is also another option for DHCP clients: the dhclient com-
mand, part of the same Internet Software Consortium (ISC) DHCP implementation
used by FreeBSD. It uses a similar /etc/dhclient.conf configuration file to the one
described above for FreeBSD. The default on SuSE systems is to use dhcpcd, but
dhclient can be selected using the following entry in the /etc/sysconfig/network/dhcp
configuration file:

DHCLIENT_BIN="dhclient"

On older Red Hat systems, the default DHCP client is pump. This facility is still avail-
able as an option if you want to use it (currently, it is not included in an installation
unless you specifically request it).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 5: TCP/IP Networking

Solaris

On a Solaris system, you can specify that a network interface be configured using
DHCP by issuing a command like the following:

ifconfig hme0 dhcp

(You can change back to a static configuration by adding drop to this command.)

Initiating DHCP in this way automatically invokes the dhcpagent daemon. It will ini-
tiate and manage the DHCP lease.

For an interface to be configured with DHCP at boot time, a file of the form /etc/
dhcp.interface must exist. Such files can be empty. If one of these files contains the
word “primary” as its contents, the corresponding interface will be configured first
(if more than one includes the word “primary,” the first one listed in the file will be
used as the primary interface).

The dhcpagent daemon uses the configuration file /etc/default/dhcpagent. The follow-
ing is the most important entry within it:

PARAM_REQUEST_LIST=1,3,12,43

This entry specifies the list of parameters that the client will request from the DHCP
server. The standard DHCP parameter numbers are translated to descriptive strings
in the /etc/dhcp/inittab file.

Tru64

Tru64 also uses a daemon to manage DHCP client leases. Its name is joinc, and it is
started at boot time by the dhcpconf command; the latter is invoked by /sbin/init.d/
inet when moving to run level 3.

The DHCP client configuration file is /etc/join/client.pcy Here is a simple example of
this file:

use_saved_config Use existing lease if still valid.
lease_desired 604800 One week lease.

options to request from server
request broadcast_address
request dns_servers
request dns_domain_name
request routers
request host_name
request lease_time

The bulk of this file consists of a list of options to be requested from the server. The
full list of supported options is given in the client.pcy manual page.

Name Resolution Options
The term name resolution refers to the process of translating a hostname to its corre-
sponding IP address. Hostnames are much more convenient for users and adminis-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 213

trators within commands and configuration files, but actual network operations
require IP addresses.* Thus, when a user enters a command like finger
chavez@hamlet, one of the first things that must happen is that the hostname hamlet
gets translated to its IP address (say, 192.168.2.6). There are several ways that this
can happen, but the two most prevalent are:

• The IP address can be looked up in a file. The list of translations is traditionally
stored in /etc/hosts. When a directory service is in use, the contents of the local
hosts file may be integrated into it, and a common master file can be automati-
cally propagated throughout a network (e.g., NIS).

• The client can contact a Domain Name System (DNS) server and ask it to per-
form the translation.

In the first case, the hostnames and IP addresses of all hosts with which the local
host will need to communicate must be entered into /etc/hosts (or another central
location). In the second case, a host trying to translate a name will contact a local or
remote named server process to determine the corresponding IP address.

For a relatively small network not on the Internet, using just /etc/hosts may not be a
problem. For even a medium-sized network, however, this strategy may result in a
lot of work every time a new host is added, because the master hosts file must be
propagated to every system in the network. For networks on the Internet, using DNS
is the only practical way to translate hostnames for systems located beyond the local
domain.

The /etc/hosts file

The file /etc/hosts traditionally contains a list of the hosts in the local network
(including the local host itself). If you use this file for name resolution, whenever you
add a new system to the network, you will have to edit it on (or copy a master ver-
sion to) every system on the Unix local network (and take whatever action is equiva-
lent for hosts running other operating systems).

Even systems that use DNS for name resolution typically have a small
hosts file for use during booting.

Here is a sample /etc/hosts file for a small LAN:

Loopback address for localhost
127.0.0.1 localhost

Local hostname and address
192.168.1.2 spain

* And, ultimately, MAC addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 5: TCP/IP Networking

Other hosts
192.168.1.3 usa
192.168.1.4 canada england uk
192.168.1.6 greece olympus
10.154.231.42 paradise

Lines beginning with # are comments and are ignored. Aside from the comments,
each line has three fields: the IP address of a host in the network, its hostname, and
any aliases (synonyms) for the host.

Every /etc/hosts file should contain at least two entries: the loopback address and the
address by which the local system is known to the rest of the network. The remain-
ing lines describe the other hosts in your local network. This file may also include
entries for hosts that are not on your immediate local network.

On Solaris systems, the hosts file has moved to the /etc/inet directory (as have several
other standard network configuration files), but a link to the standard location is
provided.

Configuring a DNS client

On the client side, DNS configuration is very simple and centers around the /etc/
resolv.conf configuration file. This file lists the local domain name and the locations
of one or more name servers to be used by the local system.

Here is a simple resolver configuration file:

search ahania.com DNS domains to search for names.
nameserver 192.168.9.44
nameserver 192.168.10.200

The first entry specifies the DNS domain(s) in which to search for name translations.
Up to six domains can be specified (separated by spaces), although listing only one is
quite common. In general, they should be ordered from most to least specific (e.g.,
subdomains before their parent domain). On some systems, domain will replace the
search keyword in the installed configuration file version; this is an older resolver
configuration convention, and such entries are used to specify only the name of the
local domain (i.e., a list is not accepted).

Name servers are identified by IP address, and up to three may be listed. When a
name server needs to be located, they are contacted in the order in which they are
listed in the file. However, once a server has successfully replied to a query, it will
continue to be used. Thus, the best practice is to place servers in preferential order
within this file. Usually, this means from closest to most distant, but when there are
multiple local name servers, clients are generally configured so that each server is
preferred by the appropriate fraction of clients (e.g., half of the clients in the case of
two local name servers).

There are two other configuration file entries which are useful in some special cir-
cumstances:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 215

sortlist network-list
This entry specifies how to select among multiple responses that may be
returned by a DNS query when the target has multiple network interfaces.

options ndots:n
This entry determines when the domain name will be automatically added to a
hostname. The domain name will be added only when the target name has less
than n periods within it. The default for n is 1, causing the domain name to be
added only to bare hostnames.

On most systems, removing (or renaming) /etc/resolv.conf will disable DNS lookups
from the system.

The name service switch file

Some operating systems, including Linux, HP-UX, and Solaris, provide an addi-
tional configuration file relevant to DNS clients, /etc/nsswitch.conf. This name ser-
vice switch file enables the system administrator to specify which of the various
name resolution services are to be consulted when a hostname needs to be trans-
lated, as well as the order in which they are called. Here is an example:

hosts: files dns

This entry says to consult /etc/hosts first when attempting to resolve a hostname, and
to use DNS if the name is not present in the file.

In fact, the file contains similar entries for many networking functions, as these
entries illustrate:

passwd: files nis
services: files

The first entry says to consult the traditional password file when looking for user
account information and then to consult the Network Information Service (NIS) if
the account is not found in /etc/passwd. The second entry says to use only the tradi-
tional file for definitions of network services.

This sort of construct is also frequently used in nsswitch.conf:

passwd: nis [NOTFOUND=return] files

This entry says to contact NIS for user account information. If the required informa-
tion is not found there, the search will stop (the meaning of return), and cause the
originating command to fail with an error. The traditional password file is used only
when the NIS service is unavailable (e.g., at boot time).

The other operating systems we are considering offer similar facilities. Currently,
FreeBSD provides the /etc/host.conf file, which looks like this:

hosts FreeBSD 4 resolver order configuration
bind

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 5: TCP/IP Networking

This file says to look in the hosts file first and then to consult DNS. Older versions of
Linux also used this file, with a slightly different syntax:

order hosts,bind Linux host.conf syntax

AIX uses the /etc/netsvc.conf file for the same purpose. Here is an example which sets
the same order as the preceding:

hosts = local, bind AIX resolver order configuration

Finally, Tru64 uses the /etc/svc.conf file, as in this example:

hosts=local,bind Tru64 resolver order configuration

The AIX and Tru64 file also contain entries for other system and network configura-
tion files.

Routing Options
As with hostname resolution, there are a number of options for configuring routing
within a network:

• If the LAN consists of a single Ethernet network not connected to any other net-
works, no explicit routing is usually needed (since all hosts are visible and adja-
cent to all others). The ifconfig commands used to configure the network
interfaces will usually provide them with enough information for them to route
packets to their destination.

• Static routing may be used for small- to medium-sized networks not character-
ized by many redundant paths to most destinations. This is set up by explicit
route commands that are executed at boot time.

• Dynamic routing, in which optimal paths to destinations are determined at
packet transmission time, may be used via the routed or gated daemon. They are
discussed in “Routing Daemons” in Chapter 8.

Static routing relies on the route command. Here are some examples of its use:

route add 192.168.1.12 192.168.3.100
route add -net 192.168.2.0 netmask 255.255.255.0 192.168.3.100

The first command adds a static route to the host 192.168.1.12, specifying host 192.
168.3.100 as the intermediate point (gateway). The second command adds a route to
the subnet 192.168.2 (recall that host 0 refers to a network itself), via the same gate-
way.

The command form is slightly different under FreeBSD, Solaris, and AIX (note the
hyphen used with the netmask keyword):

route add -net 192.168.2.0 -netmask 255.255.255.0 192.168.3.100

Linux uses a slightly different form for the route command:

route add -net 10.1.2.0 netmask 255.255.240.0 gw 10.1.3.100

The gw keyword is required.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Network Host | 217

The command form route add default is used to define a default gateway. All non-
local packets for which there is not an explicit route in the routing table are sent to
this host for forwarding.

For many client systems, defining the default gateway will be all the
routing configuration that is necessary.

The command netstat -r may be used to display the routing tables. Here is the out-
put from a Solaris system named kali:

netstat -r
Routing Table: IPv4
 Destination Gateway Flags Ref Use Interface
------------- -------------- ----- ----- ------ ---------
192.168.9.0 kali U 1 4 hme0
default suzanne UG 1 0
localhost localhost UH 3 398 lo0

The first line in the output’s table of routes specifies the route to the local network,
through the local host itself. The second line specifies the default route for all traffic
destined beyond the local subnet; here, it is the host named suzanne. The final line
specifies the route used by the loopback interface to redirect packets to the local
host.

Use the -n option to view IP addresses rather than hostnames. This can be useful
when there are DNS problems.

To remove a route, replace the add keyword with delete:

route delete -net 192.168.1.0 netmask 255.255.255.0 192.168.2.100

The Linux version of the route command will also display the current routing tables
when executed without arguments.

The AIX, FreeBSD, Solaris, and Tru64 versions of route also provide a change key-
word for modifying existing routes (e.g., to change the gateway). These versions also
provide a flush keyword for removing all routes to remote subnets from the routing
table in a single operation; HP-UX provides the same functionality with route’s -f
option.

All the operating systems provide mechanisms for specifying a list of static routes to
be set up each time the system boots. The various configuration files are summa-
rized in the sections that follow.

AIX

On AIX systems, static routes are stored in the ODM. You can use the smit mkroute
command to add one or simply issue a route command. The results of the latter per-
sist across boots.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 5: TCP/IP Networking

FreeBSD

FreeBSD stores static routes in the /etc/rc.conf and/or /etc/rc.conf.local configuration
files. Here are some examples of its syntax for these entries:

defaultrouter="192.168.1.200"
static_routes="r1 r2"
route_r1="-net 192.168.13.0 192.168.1.49"
route_r2="192.168.99.1 192.168.1.22"

The first entry specifies the default gateway for the local system. The second line
specifies labels of the static routes that should be created at boot time. Each label
refers to a route_ entry later in the file. The latter hold the arguments and options to
be passed to the route command.

HP-UX

Static routes are defined in /etc/rc.config.d/netconf on HP-UX systems, via entries like
these, which define the default gateway for this system:

ROUTE_DESTINATION[0]=default
ROUTE_MASK[0]="255.255.255.0"
ROUTE_GATEWAY[0]=192.168.9.200
ROUTE_COUNT[0]=1 Total number of static routes.
ROUTE_ARGS[0]="" Additional arguments to the route command.

Additional static routes can be defined by increasing the value of the route count
parameter and adding additional entries to the array (i.e., [1] would indicate the sec-
ond static route).

Linux

Linux systems generally list the static routes to be created at boot time in a configu-
ration file in or under /etc/sysconfig. On Red Hat systems, this file is named static-
routes. Here is an example:

#interface type destination gw ip-address
eth0 net 192.168.13.0 gw 192.168.9.49
any host 192.168.15.99 gw 192.168.9.100

The first line specifies a route to the 192.168.13 network via the gateway 192.168.9.
49, limiting it to the eth0 interface. The second line specifies a route to the host 192.
168.15.99 via 192.168.9.100 (valid for any network interface).

On Red Hat systems, the default gateway is defined in the network configuration file
in the same directory:

GATEWAY=192.168.9.150

SuSE Linux uses the file /etc/sysconfig/network/routes to define both the default gate-
way and static routes. It contains the same information as the Red Hat version, but it
uses a slightly different syntax:

Destination Gateway Netmask Device
127.0.0.0 0.0.0.0 255.255.255.0 lo

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Testing and Troubleshooting | 219

192.168.9.0 0.0.0.0 255.255.255.0 eth0
default 192.168.9.150 0.0.0.0 eth0
192.168.13.0 192.168.9.42 255.255.255.0 eth0

The first two entries specify the routes for the loopback interface and for the local
network (the latter is required on Linux systems, in contrast to most other Unix ver-
sions). The third entry specifies the default gateway, and the final entry defines a
static route to the 192.168.13 subnet via the gateway 192.168.9.42.

Solaris

Specifying the default gateway under Solaris is very easy. The file /etc/defaultrouter
contains a list of one or more IP addresses (on separate lines) corresponding to sys-
tems/devices that serve as default gateways for the local system.

Be aware that you need to create this file yourself. It is not created as
part of the installation process.

There is no built-in mechanism for specifying additional static routes to be added at
boot time. However, you can create a script containing the desired commands and
place it in (or link it to) the /etc/rc2.d directory (or rc3.d if you prefer).

Tru64

Tru64 lists static routes in the file /etc/routes. Here is an example:

default 192.168.9.150
-net 192.168.13.0 192.168.10.200

Each line of the file is passed as the arguments to the route command. The first entry
in the example file illustrates the method for specifying the default gateway for the
local system.

Network Testing and Troubleshooting
Once network configuration is complete, you will need to test network connectivity
and address any problems that may arise. Here is an example testing scheme:

• Verify that the network hardware is working by examining any status lights on
the adapter and switch or hub.

• Check basic network connectivity using the ping command. Be sure to use IP
addresses instead of hostnames so you are not dependent on DNS.

• Test name resolution using ping with hostnames or nslookup (see “Managing
DNS Servers” in Chapter 8).

• Check routing by pinging hosts beyond the local subnet (but inside the firewall).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 5: TCP/IP Networking

• Test higher-level protocol connectivity by using telnet to a remote host. If this
fails, be sure that inetd is running, that the telnet daemon is enabled, and that
the remote host from which you are attempting to connect is allowed to do so
(inetd is discussed in Chapter 8).

• If appropriate, verify that other protocols are working. For example, use a
browser to test the web server and/or proxy setup. If there are problems, verify
that the browser itself is configured properly by attempting to view a local page.

• Test any network servers that are present on the local system (see Chapter 8).

The first step is to test the network setup and connection with the ping command.
ping is a simple utility that will tell you whether the connection is working and the
basic setup is correct. It takes a remote hostname or IP address as its argument:*

$ ping hamlet
PING hamlet: 56 data bytes
64 bytes from 192.0.9.3: icmp_seq=0. time=0. ms
64 bytes from 192.0.9.3: icmp_seq=1. time=0. ms
64 bytes from 192.0.9.3: icmp_seq=4. time=0. ms
...
^C
----hamlet PING Statistics----
8 packets transmitted, 8 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/0/0

From this output, it is obvious that hamlet is receiving the data sent by the local sys-
tem, and the local system is receiving the data hamlet sends. On Solaris systems,
ping’s output is much simpler, but still answers the same central question: “Is the
network working?”:

$ ping duncan
duncan is alive

Use the -s option if you want more detailed output.

Begin by pinging a system in the local subnet. If this succeeds, try testing the net-
work routes by pinging systems that should be reachable via defined gateways.

If pinging any remote system inside the firewall fails,† try pinging localhost and then
the system’s own IP address. If these fail also, check the output of ifconfig again to
see if the interface has been configured correctly. If so, there may be a problem with
the network adapter.

On the other hand, if pinging the local system succeeds, the problem lies either with
the route to the remote host or in hardware beyond the local system. Check the rout-
ing tables for the former (make sure there is a route to the local subnet), and check

* Control-C terminates the command. Entering Control-T while it is running displays intermediate status
information.

† If you need to check connectivity beyond the firewall, you need to use the ssh facility or some other higher-
level protocol that is not blocked (e.g., http).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Testing and Troubleshooting | 221

the status lights at the hub or switch for the latter. If hardware appears to be the
problem, try swapping the network cable. This will either fix the problem or suggest
that it lies with the connecting device or port within that device.

Once basic connectivity has been verified, continue testing by moving up the proto-
col stack, as outlined above.

Another utility that is occasionally useful for network troubleshooting is arp. This
command displays and modifies IP-to-MAC address translation tables. Here is an
example using its -a option, which displays all entries within the table:

arp -a
mozart (192.168.9.99) at 00:00:F8:71:70:0C [ether] on eth0
bagel (192.168.9.75) at 00:40:95:9A:11:18 [ether] on eth0
lovelace (192.168.9.143) at 00:01:02:ED:FC:91 [ether] on eth0
sharon (192.168.9.4) at 00:50:04:0A:38:00 [ether] on eth0
acrasia (192.168.9.27) at 00:03:BA:0D:A7:EC [ether] on eth0
venus (192.168.9.35) at 00:D0:B7:88:53:8D [ether] on eth0

I found arp very useful for diagnosing a duplicate IP address that had been inadvert-
ently assigned. The symptom of the problem was that a new printer worked only
intermittently and often experienced long delays when jobs attempted to connect to
it. After checking the printer and its configuration several times, it finally occurred to
me to check arp. The output revealed another host with the IP address the printer
was using. Once the printer’s IP address was changed to a unique value, everything
was fine.

arp also supports an -n option which bypasses name resolution and displays only IP
addresses in the output. This can again be useful when there are DNS problems.

Once networking is configured and working, your next task is to monitor its activity
and performance on an ongoing basis. These topics are covered in detail in “Moni-
toring the Network” in Chapter 8 and “Network Performance” in Chapter 15,
respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222

Chapter 6CHAPTER 6

Managing Users and Groups

User accounts and authentication are two of the most important areas for which a
system administrator is responsible. User accounts are the means by which users
present themselves to the system, prove that they are who they claim to be, and are
granted or denied access to the information and resources on a system. Accordingly,
properly setting up and managing user accounts is one of the administrator’s chief
tasks.

In this chapter we consider Unix user accounts, groups, and user authentication (the
means by which the system verifies a user’s identity). We will begin by spending a
fair amount of time looking at the process of adding a new user. Later sections of the
chapter will consider passwords and other aspects of user authentication in detail.

Unix Users and Groups
From the system’s point of view, a user isn’t necessarily an individual person. Tech-
nically, to the operating system, a user is an entity that can execute programs or own
files. For example, some user accounts exist only to execute the processes required
by a specific subsystem or service (and own the files associated with it); such users
are sometimes referred to as pseudo users. In most cases, however, a user means a
particular individual who can log in, edit files, run programs, and otherwise make
use of the system.

Each user has a username that identifies him. When adding a new user account to
the system, the administrator assigns the username a user identification number
(UID). Internally, the UID is the system’s way of identifying a user. The username is
just mapped to the UID. The administrator also assigns each new user to one or
more groups: a named collection of users who generally share a similar function (for
example, being members of the same department or working on the same project).
Each group has a group identification number (GID) that is analogous to the UID: it is
the system’s internal way of defining and identifying a group. Every user is a mem-
ber of one or more groups. Taken together, a user’s UID and group memberships
determine what access rights he has to files and other system resources.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Users and Groups | 223

User account information is stored in several ASCII configuration files:

/etc/passwd
User accounts.

/etc/shadow
Encoded passwords and password settings. As we’ll see, the name and location
of this file varies.

/etc/group
Group definitions and memberships.

/etc/gshadow
Group passwords and administrators (Linux only).

We’ll consider each of these files in turn.

The Password File, /etc/passwd
The file /etc/passwd is the system’s master list of information about users, and every
user account has an entry within it. Each entry in the password file is a single line
having the following form:

username:x:UID:GID:user information:home-directory:login-shell

The fields are separated by colons, and blank spaces are legal only within the user
information field.

The meanings of the fields are as follows:

username
The username assigned to the user. Since usernames are the basis for communi-
cations between users, they are not private or secure information. Most sites gen-
erate the usernames for all of their users in the same way: for example, by last
name or first initial plus last name. Usernames are generally limited to 8 charac-
ters on Unix systems, although some Unix versions support longer ones.

x
Traditionally, the second field in each password file entry holds the user’s
encoded password. When a shadow password file is in use (discussed below)—
as is the case on most Unix systems—this field is conventionally set to the single
character “x”. AIX uses an exclamation point (!), and FreeBSD and trusted HP-
UX use an asterisk (*).

UID
The user identification number. Each distinct human user should have a unique
UID. Conventionally, UIDs below 100 are used for system accounts (Linux now
uses 500 as the cutoff, and FreeBSD uses 1000). Some sites choose to assign UID
values according to some coding scheme where ranges of UIDs correspond to
projects or departments (for example, 200–299 is used for chemistry depart-
ment users, 300–399 is used for physics, and so on).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 6: Managing Users and Groups

Multiple user accounts with the same UID are the same account from the sys-
tem’s point of view, even when the usernames differ. If you can, it’s best to keep
UIDs unique across your entire site and to use the same UID for a given user on
every system to which he is given access.

GID
The user’s primary group membership. This number is usually the identification
number assigned to a group in the file /etc/group (discussed later in this chap-
ter), although technically the GID need not be listed there.* This field deter-
mines the group ownership of files the user creates. In addition, it gives the user
access to files that are available to that group. Conventionally, GIDs below 100
are used for system groups.

user information
Conventionally contains the user’s full name and, possibly, other job-related
information. This field is also called the GECOS† field, after the name of the
operating system whose remote login information was originally stored in the
field. Additional information, such as office locations and office and home
phone numbers, may also be stored here. Up to five distinct items may be placed
within it, separated by commas. The interpretations of these five subfields vary
substantially from system to system.

home directory
The user’s home directory. When the user logs in, this is her initial working
directory, and it is also the location where she will store her personal files.

login shell
The program used as the command interpreter for this user. Whenever the user
logs in, this program is automatically started. This is usually one of /bin/sh
(Bourne shell), /bin/csh (C shell), or /bin/ksh (Korn shell).‡ There are also alterna-
tive shells in wide use, including bash, the Bourne-Again shell (a Bourne shell–
compatible replacement with many C shell– and Korn shell–like enhance-
ments), and tcsh, an enhanced C shell–compatible shell.

On most systems, the /etc/shells file lists the full pathnames of the programs that
may be used as user shells (accounts with an invalid shell are refused login). On
AIX systems, the valid shells are listed in the shells field in the usw stanza of /etc/
security/login.cfg:

usw:
 shells = /bin/sh,/bin/csh,/bin/ksh,/usr/bin/tcsh,...

* Except under AIX. No one will be able to log in to an AIX system without a group file; similarly, any user
whose password file entry lists a GID not present in /etc/group will not be able to log in.

† Sometimes spelled “GCOS.”

‡ The actual shell programs are seldom, if ever, really stored in /bin—in fact, many systems don’t even have a
real /bin directory—but there are usually links from the real path to this location.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Users and Groups | 225

Here is a typical entry in /etc/passwd:

chavez:x:190:100:Rachel Chavez:/home/chavez:/bin/tcsh

This entry defines a user whose username is chavez. Her UID is 190, her primary
group is group 100, her full name is Rachel Chavez, her home directory is /home/
chavez, and she runs the enhanced C shell as her command interpreter.

Since /etc/passwd is an ordinary ASCII text file, you can edit the file with any text edi-
tor. If you edit the password file manually, it’s a good idea to save a copy of the
unedited version so you can recover from errors:

cd /etc
cp passwd passwd.sav Save a copy of the current file
chmod go= passwd.sav Protect the copy (or use a umask that does this)
emacs passwd

If you want to be even more careful, you can copy the password file again, to some-
thing like passwd.new, and edit the new copy, renaming it /etc/passwd only when
you’ve successfully exited the editor. This will save you from having to recopy it
from passwd.sav on those rare occasions when you totally munge the file in the edi-
tor.

However, a better tactic is to use the vipw command to facilitate the process, allow-
ing it to be careful for you. vipw invokes an editor on a copy of the password file (tra-
ditionally /etc/ptmp or /etc/opasswd, but the name varies). The presence of this copy
serves as a locking mechanism to prevent simultaneous password-file editing by two
different users. The text editor used is selected via the EDITOR environment vari-
able (the default is vi).

When you save the file and exit the editor, vipw performs some simple consistency
checking. If this is successful, it renames the temporary file to /etc/passwd. On Linux
systems, it also stores a copy of the previous password file as /etc/passwd.OLD (Red
Hat) or /etc/passwd– (SuSE).

The vipw command also has the advantage that it automatically performs—or reminds
you about—other related activities that are required to activate the changes you just
made. For example, on Solaris systems, it offers you the chance to edit the shadow
password file as well. More importantly, on FreeBSD and Tru64 systems, it automati-
cally runs the binary password database creation command, which turns the text file
into the binary format used on those systems (pwd_mkdb and mkpasswd, respectively).

AIX does not provide vipw.

The Shadow Password File, /etc/shadow
Most Unix operating systems support a shadow password file: an additional user-
account database file designed to store the encrypted passwords. On most systems,
the password file must be world-readable in order for any command or service that
translates usernames to/from UIDs to function properly. However, a world-readable

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 6: Managing Users and Groups

password file means that it’s very easy for the bad guys to get a copy of it. If the
encrypted passwords are included there, a password cracking program could be run
against them, and potentially discover some poorly chosen ones. A shadow pass-
word file has the advantage that it can be protected against anyone accessing it
except the superuser, making it harder for anyone to acquire encoded passwords
(you can’t crack what you can’t get).*

Here are the locations of the shadow password file on the various systems we are
considering:

HP-UX and Tru64 store encoded passwords in the protected password database
when enhanced security is installed (as we will see). Tru64 also has the option of
using a traditional shadow password file with the enhanced security package.

At present, entries in the shadow password file typically have the following syntax:

username:encoded password:changed:minlife:maxlife:warn:inactive:expires:unused

username is the name of the user account, and encoded password is the encoded user
password (often somewhat erroneously referred to as the “encrypted password”).
The remaining fields within each entry are password aging settings. These items con-
trol the conditions under which a user is allowed to and is forced to change his pass-
word, as well as an optional account expiration date. We will discuss these items in
detail later in this chapter.

The SuSE Linux version of the vipw command accepts a -s option with which to edit
the shadow password file instead of the normal password file. On other systems,
however, editing the shadow password file by hand is not recommended. The passwd
command and related commands are provided to add and modify entries within the
file (as we shall see), a task which can also be accomplished via the various graphical
user account management tools (discussed later in this chapter).

The FreeBSD /etc/ master.passwd file

FreeBSD uses a different password file, /etc/master.passwd, which also functions as a
shadow password file in that it stores the encoded passwords and is protected from
all non-root access. FreeBSD also maintains /etc/passwd.

* Don’t be too sanguine about this fact or let it make you complacent about user account security. Shadow
password files provide another barrier against the bad guys, nothing more, and they are not invulnerable.
For example, some network clients and services have had bugs in the past that made them vulnerable to
buffer overrun attacks that could cause them to crash during their authentication phase. Encoded passwords
from a shadow password file may be present in the resulting core dumps.

AIX /etc/security/passwd
FreeBSD /etc/master.passwd
Linux /etc/shadow
Solaris /etc/shadow

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Users and Groups | 227

Here is a sample entry from master.passwd:

ng:encoded-pwd:194:100:staff:0:1136005200:J. Ng:/home/ng:/bin/tcsh

Entries in this file include three additional fields sandwiched between the GID and
user’s full name (highlighted in the example entry): a user class (see “FreeBSD user
account controls,” later in this chapter), the password expiration date, and the
account expiration date (the latter are expressed as seconds since midnight on Janu-
ary 1, 1970 GMT). In this case, user ng is assigned to the staff user class, has no pass-
word expiration date, and has an account expiration date of June 1, 2002. We’ll
consider these fields in more detail later in this chapter.

The protected password database under HP-UX and Tru64

Systems that must conform to the C2 security level (a U.S. government–defined sys-
tem security specification) have additional user account requirements. C2 security
requires many system features, including per-user password requirements, aging
specifications, and nonaccessible encoded passwords. When the optional enhanced
security features are installed and enabled on HP-UX and Tru64 systems, a protected
password database is used in addition to /etc/passwd. (It is part of the Trusted Com-
puting Base on these systems.)

Under HP-UX, the protected password database consists of a series of files, one per
user, stored in the /tcb/files/auth/x directory hierarchy, where x is a lowercase letter.
Each user’s file is placed in a file named the same as his username, in the subdirec-
tory corresponding to its initial letter: chavez’s protected password database entry is /
tcb/files/auth/c/chavez. On Tru64 systems, the data is stored in the binary database /
tcb/files/auth.db.

The HP-UX files are structured as authcap entries (just as terminal capabilities are
specified via termcap entries on some systems), consisting of a series of colon-sepa-
rated keywords, each of which specifies one particular account attribute (see the
authcap manual page for details).

All of this is best explained by an excerpt from chavez’s file:

chavez:u_name=chavez:u_id#190:\
 :u_pwd=*dkIkf,/Jd.:u_lock@:u_pickpw:chkent:

The entry begins with the username to which it applies. The u_name field again indi-
cates the username and illustrates the format for attributes that take a character
string value. The u_id field sets the UID and illustrates an attribute with a numerical
value; u_pwd holds the encoded password. The u_lock and u_pickpw fields are Bool-
ean attributes, for which true is the default when the name appears alone; a value of
false is indicated by a trailing at-sign (@). In this case, the settings indicate that the
account is not currently locked and that user chavez is allowed to select her pass-
word. The chkent keyword completes the entry.

Table 6-1 lists the fields in the protected password database. Note that all time peri-
ods are stored as seconds, and dates are stored as seconds since the beginning of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 6: Managing Users and Groups

Unix time (although the tools for modifying these entries will prompt for days or
weeks and actual dates).

All of the available fields are documented on the prpwd manual page.

System default values for protected password database fields are stored in /etc/auth/
system/default under Tru64 and /tcb/files/auth/system/default under HP-UX. The val-
ues in users’ records hold changes with respect to these settings. In addition, these
system-wide defaults may be set in the default file:

• Tru64: d_pw_expire_warning, the default warning period for about-to-expire
passwords.

• HP-UX: d_boot_authenticate, which indicates whether the boot command is
password-protected or not.

Table 6-1. Protected password database fields

Field Meaning

u_name Username.

u_id UID.

u_pwd Encrypted password.

u_succhg Date of last successful password change.

u_lock Whether the account is locked.

u_nullpw Whether a null password is allowed.

u_minlen Minimum password length in characters (Tru64 only).

u_maxlen Maximum password length.

u_minchg Minimum time between password changes.

u_exp Time period between forced password changes.

u_life Amount of time after which account will be locked if password remains unchanged.

u_maxtries Number of consecutive invalid password attempts after which account will be locked.

u_unlock Amount of time after which an account locked because of u_maxtries will be unlocked
(Tru64 only).

u_expdate Date account expires (Tru64 only).

u_acct_expire Account lifetime (HP-UX only).

u_pickpw Whether user is allowed to select a password.

u_genpw Whether user is allowed to use the system password generator.

u_restrict Whether quality of proposed new passwords is checked.

u_policy Site-specific program used to check proposed password (Tru64 only).

u_retired Account is retired: no longer in use and locked (Tru64 only).

u_booauth If > 0, user can boot the system when d_boot_authenticate is true in the system default file
(HP-UX only).

u_pw_admin_num Random number that functions as an initial account password.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Users and Groups | 229

It is not necessary to edit the protected password database files directly. Indeed, the
relevant manual pages discourage you from doing so. Instead, you are encouraged to
use the graphical utilities that are provided. Doing so is often helpful because these
tools describe the various settings in a more understandable form than the corre-
sponding field name alone provides. Nevertheless, there will be times when examin-
ing the entry for a particular user is the best way to diagnose a problem with an
account, so you’ll need to be able to make some sense of these files. We’ll consider the
most important of them when we discuss password management later in this chapter.

The Group File, /etc/group
Unix groups are a mechanism provided to enable arbitrary collections of users to
share files and other system resources. As such, they provide one of the cornerstones
of system security.

Groups may be defined in two ways:

• Implicitly, by GID; whenever a new GID appears in the fourth field of the pass-
word file, a new group is defined.

• Explicitly, by name and GID, via an entry in the file /etc/group.

The best administrative practice is to define all groups explicitly in the
/etc/group file, although this is not required except under AIX.

Each entry in /etc/group consists of a single line with the following form:

name:*:GID:additional-users

The meanings of these fields are as follows:

name
A name identifying the group. For example, a development group working on
new simulation software might have the name simulate. Names are often
restricted to eight characters.

 * or !
The second field is the traditional group password field, but it now holds some
sort of placeholder character. Group passwords are no longer stored in the group
file (and, in fact, they are used only by Linux systems).

GID
This is the group’s identification number. User groups generally start number-
ing at 100.*

* Usernames and group names are independent of one another, even when the same name is both a username
and a group name. Similarly, UIDs and GIDs sharing the same numerical value have no intrinsic relation to
one another.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 6: Managing Users and Groups

additional-users
This field holds a list of users (and, on some systems, groups) who are members
of the group, in addition to those users belonging to the group by virtue of /etc/
passwd (who need not be listed). Names must be separated by commas (but no
spaces may appear within the list).

Here are some typical entries from an /etc/group file:

chem:!:200:root,williams,wong,jones
bio:!:300:root,chavez,harvey
genome:!:360:root

The first line defines the chem group. It assigns the group identification number (GID)
200 to this group. Unix will allow all users in the password file with GID 200 plus the
additional users williams, wong, jones, and root to access this group’s files. The bio and
genome groups are also defined, with GIDs of 300 and 360, respectively. Users chavez
and harvey are members of the bio group, and root is a member of both groups.

The various administrative tools for managing user accounts generally have facilities
for manipulating groups and group memberships. In addition, the group file may be
edited directly.

On Linux systems, the vigr command may be used to edit the group file while ensur-
ing proper locking during the process. It works in an analogous way to vipw, creat-
ing a temporary copy of the group file for actual editing, and saving a copy of the
previous group file when modifications are complete.

If your Linux system has vipw but not vigr, chances are that the latter
is supported anyway. Create a symbolic link to vipw named vigr in the
same directory location as the former to enable the variant version of
the command: ln -s /usr/sbin/vipw /usr/sbin/vigr.

Most Unix systems impose a limit of 16 (or sometimes 32) group memberships per
user. Tru64 also limits each line in /etc/group to 225 characters. However, group defi-
nitions can be continued onto multiple lines by repeating the initial three fields.

User-private groups

Red Hat Linux uses a different method, known as user-private groups (UPGs), for
assigning user primary group membership. In this scheme, every user is the sole
member of a group with the same name as his username, whose GID is the same as
his UID. Users can then be added as additional members to other groups as needed.

This approach is designed to make project file sharing easier. The goal is to allow a
group of users, say chem, to share files in a directory, with every group member being
able to modify any file. To accomplish this, you change the group ownership of the
directory and its files to chem, and you turn on the setgid permission mode for the
directory (chmod g+s), which causes new files created there to take their group owner-
ship from the directory rather than the user’s primary group.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Users and Groups | 231

The dilemma for this line of reasoning comes when deciding how group write access
should be enabled for files in the shared directory. UPG proponents argue that this
needs to be accomplished automatically by using a umask of 002. However, the side-
effect of this convenience—users not having to explicitly assign write permission to
files they want to share—means that other files the user creates (e.g., ones in his
home directory) will also be group-writeable, a very undesirable outcome for security
reasons. The “solution” is to make the user’s primary group a private group, to which
granting write access is benign or irrelevant, since the group is equivalent to the user.

In the end, however, UPGs are deeply embedded within the Red Hat Linux way of
doing things, so administrators of Red Hat systems must learn to live with them.

UPGs are also created by the FreeBSD adduser command.

Dynamic Group Memberships
In most cases, Unix does not distinguish between the two ways of establishing group
membership; exceptions are the group ownership of new files and accounting data
records, both of which generally reflect/record the current primary group member-
ship. In other contexts—for example, file access—a user is simultaneously a mem-
ber of all of her groups: her primary group and all of the groups for which she is
listed as an additional member in /etc/group.

The groups command displays a user’s current group memberships:

$ groups
chem bio phys wheel

The groups command will also take a username as an argument. In this case, it lists
the groups to which the specified user belongs. For example, the following com-
mands lists the groups of which user chavez is a member:

$ groups chavez
users bio

In a few circumstances, the group that is the user’s primary group is important. The
most common example is accounting systems where resource usage is tracked by
project or department in addition to user. In such contexts, the primary group is typ-
ically the one that is charged for a user’s resource use.*

For such cases, a user can temporarily change the group designated as her primary
group by using the newgrp command:

$ newgrp chem

* Solaris provides project-based accounting in another way. See “System V–Style Accounting: AIX, HP-UX,
and Solaris” in Chapter 17 for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 6: Managing Users and Groups

The newgrp command creates a new shell for this user, setting the primary group to
be chem. Without an argument, newgrp resets the primary group to the one specified
in the password file. The user must be a member of the group specified as the argu-
ment to this command.

FreeBSD does not support changing the primary group and so does not provide
newgrp.

The id command can be used to display the currently active primary and secondary
group memberships:

$ id
uid=190(chavez) gid=200(chem) groups=100(users),300(bio)

Current primary group membership is indicated by the “gid=” field in the command
output. On Solaris systems, you must include the -a option to view the equivalent
information.

The Linux group shadow file, /etc/gshadow

On Linux systems, an additional group configuration file is used. The file /etc/
gshadow is the group shadow password file. It contains entries of the form:

group-name:encoded password:group-admins:additional-users

where group-name is the name of the group, and encoded password is the encoded
version of the group password. group-admins is a list of users who are allowed to
administer the group by changing its password and modifying memberships within
the group (note that being so designated does not make them members of the speci-
fied group). additional-users is almost always a copy of the additional group mem-
bers list from /etc/group; it is used by the newgrp command to determine which users
can designate this group as their primary group (see below). Both lists are comma-
separated and may not contain spaces.

Here are some sample entries from a group shadow file:

drama:xxxxxxxxxx:foster:langtree,siddons
bio:*:root:root,chavez,harvey

The group drama has a group password, and users langtree and siddons are members
of it (as are any users who have it as their primary group, as defined in /etc/passwd).
Its group administrator is user foster (who may or may not be a member of this
group). In contrast, group bio has a disabled group password (since an asterisk is not
a valid encoding for any password character), root is its group administrator, and
users root, chavez, and harvey are additional members of the group.

The SuSE version of the vigr command accepts a -s option in order to edit the
shadow group file instead of the normal group file.

On Linux systems, the newgrp command works slightly differently, depending on the
group’s entry in the group password file:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Users and Groups | 233

• If the group has no password, newgrp fails unless the user is a member of the
specified new group, either because it is her primary group or because her user-
name is present in the additional members list in the group shadow password
file, /etc/gshadow.

Because secondary group memberships for file access purposes are taken from
the /etc/group file, it makes no sense for a user to appear in the group shadow file
but not in the main group file. Omitting a secondary user defined in /etc/group
from the shadow group list prevents him from using newgrp with that group,
which might be desirable in some unusual circumstances.

• If the group has a password defined, any user who knows the password can
change to this group with newgrp (the command prompts for the group
password).

• If the group has a disabled password (indicated by an asterisk in the password
field of /etc/gshadow), no user may change her primary group to that group with
newgrp.

The HP-UX /etc/logingroup file

If the file /etc/logingroup exists on an HP-UX system, its contents are used to deter-
mine the initial group memberships when a user logs in. In this case, the additional
members list in the group file is used to determine which users may change their pri-
mary group to a given group with newgrp. Common sense dictates that the addi-
tional members list in the logingroup file be a superset of the list in the corresponding
entry in /etc/group.

AIX group sets

AIX extends the basic Unix groups mechanism to allow a distinction to be made
between the groups a user belongs to, which are defined by the password and group
files, and those that are currently active. The latter are referred to as the concurrent
group set; we’ll refer to them as the “group set.” The current real group and group set
are used for a variety of accounting and security functions. The real group at login is
the user’s primary group, as defined in the password file. When a user logs in, the
group set is set to the entire list of groups to which the user belongs.

The setgroups command is used to change the active group set and designated real
group. The desired action is specified via the command’s options, which are listed in
Table 6-2.

Table 6-2. Options to the AIX setgroups command

Option Meaning

-a glist Add the listed groups to the group set.

-d glist Delete the listed groups from the group set.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 6: Managing Users and Groups

For example, the following command adds the groups phys and bio to the user’s cur-
rent group set:

$ setgroups -a phys,bio

The following command adds phys to the current group set (if necessary) and desig-
nates it as the real group ID:

$ setgroups -r phys

The following command deletes the phys group from the current group set:

$ setgroups -d phys

If the phys group was also the current real group, the next group in the list (in this
case system) becomes the real group when phys is removed from the current group
set. Note that each time a setgroups command is executed, a new shell is created.

Without arguments, setgroups lists the user’s defined groups and current group set:

$ setgroups
chavez:
user groups = chem,bio,phys,genome,staff
process groups = phys,bio,chem

The groups labeled “user groups” are the entire set of groups to which user chavez
belongs, and the groups labeled “process groups” form the current group set.

User Account Database File Protections
Proper file ownership and protection on the user accounts database files are
extremely important to maintaining system security. All of these files must be owned
by root and a system group such as GID 0. The two shadow files should also prevent
access by anyone but their owner. root may have write access to any of these files.

Apply the same ownership and protection to any copies of these files you make. For
example, here is a long directory listing of the various files from one of our systems:

ls -l /etc/pass* /etc/group* /etc/*shad*
-rw-r--r-- 1 root root 681 Mar 20 16:15 /etc/group
-rw-r--r-- 1 root root 752 Mar 20 16:11 /etc/group-
-r--r--r-- 1 root root 631 Mar 6 12:46 /etc/group.orig
-rw-r--r-- 1 root root 2679 Mar 19 13:15 /etc/passwd
-rw-r--r-- 1 root root 2674 Mar 19 13:15 /etc/passwd-
-rw------- 1 root shadow 1285 Mar 19 13:11 /etc/shadow
-rw------- 1 root shadow 1285 Mar 15 08:37 /etc/shadow-

We made a copy of the group file (group.orig) which we protected against all write
access. The files with the hyphens appended to their name are backup files created

-s glist Set the group set to the specified list of groups.

-r group Set the real group (group owner of new files and processes, etc.).

Table 6-2. Options to the AIX setgroups command (continued)

Option Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Users and Groups | 235

by the vipw and vigr utilities. Whatever the specific files present on your system,
ensure that all of them are protected properly, and make doubly sure that no shadow
file is readable by anyone but the superuser.

Standard Unix Users and Groups
All Unix systems typically predefine many user accounts. With the exception of root,
these accounts are seldom used for logins. The password file as shipped usually has
these accounts disabled. Be sure to check the shadow password file on your system,
however. System accounts without passwords are significant security holes that
should be plugged right away.

The most common system user accounts are listed in Table 6-3.

Unix systems are similarly shipped with a /etc/group file containing entries for stan-
dard groups. The most important of these are:

• root, system, wheel, or sys: The group with GID 0. Like the superuser, this group
is very powerful and is the group owner of most system files.

• Most systems define a number of system groups, analogous to the similarly
named system user accounts: bin, daemon, sys, adm, tty, disk, lp, and so on. Tra-
ditionally, these groups own various system files (e.g., tty often owns all the spe-
cial files connected to serial lines); however, not all of them are actually used on
every Unix system.

• FreeBSD and other BSD-based systems use the kmem group as the owner of pro-
grams required to read kernel memory.

Table 6-3. Standard Unix user accounts

Usernames Description

root User 0, the superuser. The defining feature of the superuser account is UID 0, not the username root; any
account with UID 0 is a superuser account.

bin, daemon,
adm, lp, sync,
shutdown, sys

System accounts traditionally used to own system files and/or execute the associated system server pro-
cesses. However, many Unix versions define these users but never actually use them for file ownership or
process execution.

mail, news, ppp Accounts associated with various subsystems and facilities. Again, these accounts serve to own the corre-
sponding files and to execute the component processes.

postgres,
mysql, xfs

Accounts created by optional facilities installed on the system to administer and execute their services.
These three examples are accounts associated with Postgres, MySQL, and the X font server, respectively.

tcb Administrative account that owns the C2-style security-related files and databases on some systems with
enhanced security (tcb=trusted computing base).

nobody Account used by NFS and some other facilities. As defined on BSD systems, nobody traditionally has the
UID –2, which usually appears in the password file as 65534=216–2 (UIDs are of the unsigned data type:
on 64-bit systems, this number may be much larger). System V’s nobody UID is 60001. Some systems
define usernames for both of them. Inexplicably, Red Hat uses 99 as nobody’s UID, although it defines
other usernames for the traditional values.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 6: Managing Users and Groups

• mail, news, cron, uucp: groups associated with various system facilities.

• users or staff (often GID 100): Many Unix systems provide a group as the default
primary group for ordinary user accounts.

Using Groups Effectively
Effective file permissions are intimately connected to the structure of your system’s
groups. On many systems, groups are the only method the operating system pro-
vides to refer to and operate on arbitrary sets of users. Some sites define the groups
on their systems to reflect the organizational divisions of their institution or com-
pany: one department becomes one group, for example (assuming a department is a
relatively small organizational unit). However, this isn’t necessarily what makes the
most sense in terms of system security.

Groups should be defined on the basis of the need to share files and, correlatively,
the need to protect files from unwanted access. This may involve combining several
organizational units into one group or splitting a single organizational unit into sev-
eral distinct groups. Groups need not mirror “reality” at all if that’s not what secu-
rity considerations call for.

Group divisions are often structured around projects; people who need to work
together, using some set of common files and programs, become a group. Users own
the files they use most exclusively (or sometimes a group administrator owns all the
group’s files), common files are protected to allow group access, and all of the
group’s files can exclude non–group member access without affecting anyone in the
group. When someone works on more than one project, then he is made a member
of both relevant groups.

When a new project begins, you can create a new group for it and set up some com-
mon directories to hold its shared files, protecting them to allow group access (read-
execute if members won’t need to add or delete files and read-write-execute if they
will). Similarly, files will be given appropriate group permissions when they are cre-
ated based on the access group members will need. New users added to the system
for this project can have the new group as their primary group; relevant existing
users can be added to it as secondary group members in the group file.

The Unix group mechanism is not a perfect security solution, however. For example,
suppose that a user needs access to just one or two files that are owned by a group to
which she doesn’t belong, and you don’t want to make her a member of the second
group because it will give her other privileges that you don’t want her to have. One
solution is to provide a setgid program that allows her to access the needed files; the
setuid and setgid access modes are the subject of the next subsection. However, to
properly address such a dilemma, you have to go beyond what is offered by the stan-
dard Unix group scheme. Access control lists, a mechanism that allows file permis-
sions to be specified on a per-user basis, are the best solution to such problems, and
we will consider them in “Protecting Files and the Filesystem” in Chapter 7.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 237

Managing User Accounts
In this section, we will consider the processes of adding, configuring, and removing
user accounts on Unix systems.

Adding a New User Account
Adding a new user to the system involves the following tasks:

• Assign the user a username, a user ID number, and a primary group, and decide
which other groups she should be a member of (if any). Enter this data into the
system user account configuration files.

• Assign a password to the new account.

• Create a home directory for the user.

• Place initialization files in the user’s home directory.

• Use chown and/or chgrp to give the new user ownership of his home directory
and initialization files.

• Set other user account parameters appropriate for your system (possibly includ-
ing password aging, account expiration date, resource limits, and system privi-
leges).

• Add the user to any other facilities in use as appropriate (e.g., the disk quota sys-
tem, mail system, and printing system).

• Grant or deny access to additional system resources as appropriate, using file
protections or the resources’ own internal mechanisms (e.g., the /etc/ftpusers file
controls access to the ftp facility).

• Perform any other site-specific initialization tasks.

• Test the new account.

We will consider each of these steps in detail in this section. This discussion assumes
that you’ll be adding a user by hand. Few people actually do this anymore, but it is
important to understand the whole process even if you use a tool that automates a
lot of it for you. The available tools are discussed later in this chapter.

Defining a New User Account
The process of creating a new user account begins by deciding on its basic settings:
the username, UID, primary group, home directory location, login shell, and so on. If
you assign UIDs by hand, it is usually easiest to do so according to some scheme. For
example, you could choose the next available UID, assign UIDs from each range of
100 by department, or do whatever makes sense at your site. In any case, once these
parameters have been chosen, the new account may be entered into the password
file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 6: Managing Users and Groups

If you decide to edit the password file directly, keep the entries within
it ordered according to user ID. New entries will be easier to add, and
you’ll be less likely to create unwanted duplicates.

Assigning a Shell
As we’ve seen, the final field in the password file specifies the login shell for each
user. If this field is empty, it usually defaults to /bin/sh, the Bourne shell.* On Linux
systems, this is a link to the Bourne-Again shell bash (usually /usr/bin/bash).

Users can change their login shell using the chsh command (or a similar command;
see Table 6-4), and the system administrator may also use chsh to set or modify this
password file field. For example, the following command will change user chavez’s
login shell to the enhanced C shell:

chsh -s /bin/tcsh chavez

For this purpose, the legal shells are defined in the file /etc/shells; only programs
whose pathnames are listed here may be selected as login shells by users other than
root.† Here is a sample /etc/shells file:

/bin/sh
/bin/csh
/bin/false
/usr/bin/bash
/usr/bin/csh
/usr/bin/ksh
/usr/bin/tcsh

Most of these shells are probably familiar to you. The unusual one, /bin/false, is a
shell used to disable access to an account;‡ it results in an immediate logout to any
account using it as a login shell.

You may add additional entries to this file, if necessary. Be sure to specify a full path-
name (in which no directory component is world-writable).

* Or the superficially similar POSIX shell (which more closely resembles the Korn shell).

† This is actually a configuration option of the chsh command, so this restriction may or may not be enforced
on your system.

‡ More accurately, the false command always exits immediately, with a return value signifying failure (the
value 1). When this command is used as a login shell, the described behavior results.

Table 6-4. Shell and full-name modification commands

Task Command

Change login shell Usual: chsh
Solaris: passwd -e (root use only)

Change full name (GECOS field) Usual: chfn
Solaris: passwd -g (root use only)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 239

Captive accounts

Sometimes it is desirable to limit what users can do on the system. For example,
when users spend all their time running a single application program, you can make
sure that’s all they do by making that program their login shell (as defined in the
password file). After the user successfully logs in, the program begins executing, and
when the user exits from it, they are automatically logged out.

Not all programs can be used this way, however. If interactive input is required, for
example, and there is no single correct way to invoke the program, then simply using
it as a login shell won’t work. Unix provides a restricted shell to address such
problems.

A restricted shell is a modified version of the Bourne or Korn shell. The name and
location of the restricted Bourne shell within the filesystem vary, but it is usually /bin/
Rsh (often a link to /usr/bin/Rsh). rksh is the restricted Korn shell, and rbash is the
restricted Bourne Again shell. These files are hard links to the same disk file as the
regular shell, but they operate differently when invoked under the alternate names.
AIX and Tru64 provide Rsh, HP-UX and Solaris provide rksh, and Linux systems pro-
vide rbash. Some shells let you specify restricted mode with a command-line flag (e.g.,
bash -restricted).

Restricted shells are suitable for creating captive accounts: user accounts that run
only an administrator-specified set of actions and that are logged off automatically
when they are finished. For example, a captive account might be used for an opera-
tor who runs backups via a menu set up by the administrator. Or a captive account
might be used to place users directly into an application program at login. A captive
account is set up by specifying the restricted shell as the user’s login shell and creat-
ing a .profile file to perform the desired actions.

The restricted shell takes away some of the functionality of the normal shell. Specifi-
cally, users of a restricted shell may not:

• Use the cd command.

• Set or change the value of the PATH, ENV, or SHELL variables.

• Specify a command or filename containing a slash (/). In other words, only files
in the current directory can be used.

• Use output redirection (> or >>).

Given these restrictions, a user running from a captive account must stay in what-
ever directory the .profile file places him. This directory should not be his home
directory, to which he probably has write access; if he ended up there, he could
replace the .profile file that controls his actions. The PATH variable should be set as
minimally as possible.

A captive account must not be able to write to any of the directories in the defined
path. Otherwise, a clever user could substitute his own executable for one of the
commands he is allowed to run, allowing him to break free from captivity. What this

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 6: Managing Users and Groups

means in practice is that the user should not be placed in any directory in the path as
his final destination, and the current directory should not be in the search path if the
current directory is writable.

Taking this idea to its logical conclusion, some administrators set up a separate rbin
directory—often located as a subdirectory of the captive account’s home directory—
containing hard links to the set of commands the captive user is allowed to run.
Then the administrator sets the user’s search path to point only there. If you use this
approach, however, you need to be careful in choosing the set of commands you give
to the user. Many Unix commands have shell escape commands: ways of running
another Unix command from within the command. For example, in vi you can run a
shell command by preceding it with an exclamation point and entering it at the colon
prompt (when available, the restricted version, rvi, removes this feature). If a com-
mand supports shell escapes, the user can generally run any command, including a
unrestricted shell. While the path you set will still be in effect for commands run in
this way, the user is not prevented from specifying a full pathname in a shell escape
command. Thus, even a command as seemingly innocuous as more can allow a user
to break free from a captive account, because a shell command may be run from more
(and man) by preceding it with an exclamation point.

Be sure to check the manual pages carefully before deciding to include a command
among the restricted set. Unfortunately, shell escapes are occasionally undocu-
mented, although this is most true of game programs. In many cases, shell escapes
are performed via an initial exclamation point or tilde-exclamation point (~!).

In general, you should be wary of commands that allow any other pro-
grams to be run within them, even if they do not include explicit shell
escapes. For example, a mail program might let a user invoke an edi-
tor, and most editors allow shell escapes.

Assigning a Password
Since passwords play a key role in overall system security, every user account should
have a password. The passwd command may be used to assign an initial password for
a user account. When used for this purpose, it takes the relevant username as its
argument. For example, the following command assigns a password for the user
chavez:

passwd chavez

You are prompted for the password twice, and it does not appear on the screen. The
same command may also be used to change a user’s password, should this ever be
necessary (for example, if she forgets it).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 241

Criteria for selecting good passwords and techniques for checking password strength
and specifying password lifetimes are discussed later in this chapter, after we have
finished our consideration of creating user accounts.

Under AIX, whenever the superuser assigns a password to an account with passwd
(either manually or indirectly via SMIT), that password is pre-expired, and the user
will be required to change it at the next login.

Traditionally, Unix passwords were limited to a maximum length of 8 characters.
Recent systems, including FreeBSD and Linux when using the MD5 encoding mechan-
ims, and HP-UX and Tru64 in enhanced security mode, allow much longer ones (at
least 128 characters). AIX and Solaris still currently limit passwords to 8 characters.

Creating a Home Directory
After adding a user to the /etc/passwd file, you must create a home directory for the
user. Use the mkdir command to create the directory in the appropriate location, and
then set the permissions and ownership of the new directory appropriately. For
example:

mkdir /home/chavez
chown chavez.chem /home/chavez
chmod 755 /home/chavez

On Unix systems, user home directories conventionally are located in the /home
directory, but you may place them in any location you like.

User Environment Initialization Files
Next, you should give the user copies of the appropriate initialization files for the
shell and graphical environment the account will run (as well as any additional files
needed by commonly used facilities on your system).

The various shell initialization files are:

These files must be located in the user’s home directory. They are all shell scripts
(each for its respective shell) that are executed in the standard input stream of the
login shell, as if they had been invoked with source (C shells) or . (sh, bash, or ksh).
The .profile, .bash_profile, .bash_login, and .login initialization files are executed at

Bourne shell .profile
C shell .login, .logout, and .cshrc
Bourne-Again shell .profile, .bash_profile, .bash_login, .bash_logout,

and .bashrc
Enhanced C shell .login, .logout, and .tcshrc (or .cshrc)
Korn shell .profile and any file specified in the ENV environment

variable (conventionally .kshrc)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 6: Managing Users and Groups

login.* .cshrc, .tcshrc, .bashrc, and .kshrc are executed every time a new shell is
spawned. .logout and .bash_logout are executed when the user logs out.

As administrator, you should create standard initialization files for your system and
store them in a standard location. Conventionally, the directory used for this
purpose is /etc/skel, and most Unix versions provide a variety of starter initialization
files in this location. These standard initialization files and the entire directory tree in
which they are kept should be writable only by root.

Here are the locations of the skeleton initialization file directories on the various
systems:

In any case, you should copy the relevant file(s) to the user’s home directory after
you create it. For example:

cp /etc/skel/.bash* /home/chavez
cp /etc/skel/.log{in,out} /home/chavez
cp /etc/skel/.tcshrc /home/chavez
chown chavez.chem /home/chavez/.[a-z]*

There are, of course, more clever ways to do this. I tend to copy all the standard ini-
tialization files to a new account in case the user wants to use a different shell at
some later point. It is up to the user to modify these files to customize her own user
environment appropriately.

Depending on how you use your system, several other initialization files may be of
interest. For example, many editors have configuration files (e.g., .emacs), as do user
mail programs. In addition, the Unix graphical environments use various configura-
tion files.

Sample login initialization files

The .*login or .*profile files are used to perform tasks that only need to be executed
upon login, such as:

• Setting the search path

• Setting the default file protection (with umask)

• Setting the terminal type and initializing the terminal

* The bash shell executes as many of .bash_profile, .bash_login, and .profile as exist in a user’s home directory
(in that order).

AIX /etc/security (contains .profile only)
FreeBSD /usr/share/skel
HP-UX /etc/skel
Linux /etc/skel
Solaris /etc/skel
Tru64 /usr/skel

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 243

• Setting other environment variables

• Performing other customization functions necessary at your site

The contents of a simple .login file are listed below; it will serve to illustrate some of
its potential uses (which we have indicated with comments):

sample .login file
limit coredumpsize 0k # suppress core files
umask 022 # set default umask
mesg y # enable messages via write
biff y # enable new mail messages
add items to the system path
setenv PATH "$PATH:/usr/local/bin:~/bin:."
setenv PRINTER ps # default printer
setenv EDITOR emacs # preferred editor
setenv MORE -c # make more always clear screen
set an application-specific environment variable
setenv ARCH_DIR /home/pubg95/archdir/
set command prompt to hostname plus current command number
set prompt = '`hostname`-\!> '
very simple terminal handling
echo -n "Enter terminal type: "; set tt=$<
if ("$tt" == "") then
 set tt="vt100"
endif
setenv TERM $tt

We can create a very similar .profile file:

sample .profile file
ulimit -c 0
umask 022
mesg y
biff y
PATH=$PATH:usr/local/bin:$HOME/bin:.
PRINTER=ps
EDITOR=emacs
MORE=-c
ARCH_DIR=/home/pubg95/archdir/
PS1="`hostname`-\!> "
export PATH PRINTER EDITOR MORE ARCH_DIR PS1
echo -n "Enter terminal type: "; read tt
if ["$tt" = ""]; then
 tt="vt100"
fi
export TERM=$tt

The main differences are in the ulimit command, the different syntax for environ-
ment variables (including the export commands), and the different mechanism for
obtaining and testing user input.

Sample shell initialization files

Shell initialization files are designed to perform tasks that need to be executed when-
ever a new shell is created. These tasks include setting shell variables (some of which

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 6: Managing Users and Groups

have important functions; others are useful abbreviations) and defining aliases (alter-
nate names for commands). Unlike environment variables such as TERM, shell vari-
ables and aliases are not automatically passed to new shells; therefore, they need to
be established whenever the operating system starts a new shell.

The contents of a simple .cshrc file are illustrated by this example:

sample .cshrc file
alias j jobs # define some aliases
alias h history
alias l ls -aFx
alias ll ls -aFxl
alias psa "ps aux | head"
the next alias shows the method for including a replaceable
command line parameter within an alias definition: \!:1 => $1
alias psg "ps aux | egrep 'PID|\!:1' | more -c"
set shell variables to specified various features
set history = 100 # remember 100 commands
set savehist = 100 # save 100 commands across logins
set nobeep # never beep!
set autologout 60 # logout after 1 hour idle time
set noclobber # warn about overwriting files
set ignoreeof # don't interpret ^D as logout
set prompt = "`hostname-\!>> " # set prompt

If you are using the enhanced C shell, tcsh, you might modify the last two com-
mands and add a couple of others:

set correct cmd # try to correct mistyped commands
set ignoreeof 2 # 2 ^D's => logout
set rmstar # confirm rm * commands
set prompt="%m:%~-%h>> " # prompt is: hostname:dir-cmd_num>>

The Bourne-Again shell similarly uses .bashrc as its shell initialization file. In the
Korn shell, a shell initialization file may be defined via the ENV environment vari-
able (usually in .profile):

export ENV=$HOME/.kshrc

An alternate shell initialization file can be specified for bash via the BASH_ENV envi-
ronment variable.

Both of these shells define aliases using a slightly variant syntax; an equal sign is
included between the alias and its definition:

alias l="ls -lxF"

Consult the documentation for any of the shells to determine all of the available
options and features and the shell variables used enable them.

Be aware that the Bourne-Again shell (bash) behaves differently
depending on whether it is invoked as /bin/sh or not (if so, it emulates
the behavior of the traditional Bourne shell in some areas).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 245

The AIX /etc/security/environ file

AIX provides an additional configuration file where you may set environment vari-
ables that are applied to the user’s process at login. Here is a sample stanza from that
file:

chavez:
 userenv = "MAIL=/var/spool/mail/chavez,MAILCHECK=1800"
 sysenv = "NAME=chavez@dalton"

This entry specifies three environment variables for user chavez, specifying her mail
spool folder, how often to check for new mail (every 30 minutes), and the value of
the NAME environment variable, respectively. The userenv and sysenv entries differ
in that the latter may not be modified.

If you include an entry named default in this file, its settings will be applied to all
users who do not have an explicit stanza of their own.

Desktop environment initialization files

System administrators are frequently asked to provide configuration files that initial-
ize a user’s graphical environment. These environments are all based on the X win-
dow system, and its most commonly used initialization files are named .xinitrc, .
xsession, and .Xauthority. Specific window managers and desktop environments also
generally support one or more separate configuration files. For example, the Com-
mon Desktop Environment (CDE) uses the .dtprofile initialization file, as well as
many files below the ~/.dt subdirectory.

Commercial Unix versions generally install CDE as the default windowing system.
Unix versions available for free allow users to choose from several offerings, usually
at installation time (FreeBSD works this way). On Linux systems, the systemwide X
initialization files dynamically choose a desktop environment when X is started.

For example, on Red Hat Linux systems, in the absence of any other configuration,
desktop initialization occurs via the file /etc/X11/xinit/xinitrc, which then runs /etc/
X11/xinit/Xclients. The latter file uses the following process to determine which envi-
ronment to start:

• If the file /etc/sysconfig/desktop exists, its contents are compared to the keywords
GNOME, KDE, and AnotherLevel (in this order). If a keyword is found within
the file, the corresponding environment is started if it is available. If not, the sys-
tem attempts to start the GNOME desktop environment, falling back to KDE in
the event of failure (for example, if GNOME is not installed).

• Next, the file .wm_style is searched for in the user’s home directory. If it is found
and it contains any of the keywords AfterStep, WindowMaker, fvwm95, Mwm
or Lesstif (searching in that order and taking only the first match), the corre-
sponding window manager is started if it is available.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 6: Managing Users and Groups

• If nothing else has been selected or is present at this point, the fvwm (tried first)
or twm simple window manager is started (the latter is available on virtually every
Unix system because it is part of the X11 distribution).

As you can see, the default process tries to start a fancy graphical environment first,
falling back to various simpler ones if necessary.

What happens on SuSE Linux systems depends on the specifics of how the user
account was created:

• In the absence of any .xinitrc file in the user’s home directory, the default X ini-
tialization file (/usr/lib/X11/xinit/xinitrc) attempts to start the fvwm2, fvwm, and
twm window managers (in that order).

• If the default .xinitrc file (contained in /etc/skel) has been copied to the user’s
home directory, a different procedure is used. First, the script checks to see
whether the environment variable WINDOWMANAGER is set. If so, it uses the
path specified as its value as the location of the desired window manager.

If this environment variable is not set, the initialization file attempts to locate the
KDE environment files on the system. If these files cannot be located, those for
fvwm2 are tried next, followed by all window managers listed in the file /usr/X11/
bin/wmlist.

The first window manager that is located is set as the value of the
WINDOWMANAGER environment variable. As the file concludes, this variable
is used to initiate the selected graphical environment. In this way, the SuSE
scheme differs from that of Red Hat in that it attempts to start only a single win-
dow manager.

Systemwide initialization files

For Bourne, Bourne-Again, and Korn shell users, the file /etc/profile serves as a sys-
temwide initialization file that is executed before the user’s personal login initializa-
tion file. The PATH variable is almost always defined in it; it therefore applies to
users without explicit PATH variables set in their .profile. Sometimes a default umask
is also specified here. Here is a simple /etc/profile file designed for the bash shell,
adapted from a Red Hat Linux system; we have annotated it with comments:

PATH="$PATH:/usr/X11R6/bin"
PS1="[\u@\h \w]\\$ " # prompt: [user@host dir]$
ulimit -c 0 # suppress core files
set umask, depending on whether UPGs are used or not
alias id=/usr/bin/id # shorthand to save space
if [`id -gn` = `id -un` -a `id -u` -gt 99]; then
 umask 002 # UID=GID>99 so it's a UPG
else
 umask 022
fi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 247

USER=`id -un`
unalias id # remove id alias
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
HOSTNAME=`/bin/hostname`
HISTSIZE=100
HISTFILESIZE=100
export PATH PS1 USER LOGNAME MAIL HOSTNAME HISTSIZE HISTFILESIZE
execute all executable shell scripts in /etc/profile.d
for i in /etc/profile.d/*.sh ; do
 if [-x $i]; then
 . $i
 fi
done
unset i # clean up

Under Red Hat Linux, the files in the installed /etc/profile.d directory initialize the
user’s language environment and also set up various optional facilities. The system
administrator may, of course, add scripts to this directory, as desired.

All systemwide initialization files should be writable only by the
superuser.

The tcsh shell also has systemwide initialization files: /etc/csh.cshrc, /etc/csh.login and
/etc/csh.logout.

AIX supports an additional systemwide initialization file, /etc/environment (in addi-
tion to /etc/security/environ, mentioned earlier). This file is executed by init and
affects all login shells via the environment they inherit from init. It is used to set the
initial path and a variety of environment variables.

The best way to customize systemwide initialization files is to create
your own scripts that are designed to run after the standard scripts
complete. Hooks are sometimes provided for you. For example, on
SuSE Linux systems, /etc/profile automatically calls a script named /etc/
profile.local, if it exists, as its final action. Even if your version of the
initialization file does not have such a hook, it is easy enough to add
one (via the source or . command, depending on the shell).

This approach is preferable to modifying the vendor-supplied file itself
since future operating system upgrades will often replace these files
without warning. If all you’ve added to them is a simple call to your
own local, systemwide initialization script, it will be easy to insert the
same thing into the new version of the vendor’s file. On the other
hand, if you do decide to modify the original files, be sure to keep a
copy of your modified version in a safe location so that you can restore
it or merge it into the new vendor file after the upgrade.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 6: Managing Users and Groups

Setting File Ownership
After you copy the appropriate initialization files to the user’s home directory, you
must make the new user the owner of the home directory and all its files and subdi-
rectories. To do this, execute a command like this one:

chown -R chavez:chem /home/chavez

The -R (“recursive”) option changes the ownership on the directory and all the files
and subdirectories it contains, all the way down. Note that the second component of
chown’s first parameter should be the user’s primary group.

Adding the User to Other System Facilities
The user should also be added to the other facilities in use at your site. Doing so may
involve the following activities:

• Adding the user to various security facilities, which may include assigning sys-
tem privileges. Some of these are discussed later in this chapter.

• Assigning disk quotas (see “Monitoring and Managing Disk Space Usage” in
Chapter 15).

• Defining a mail alias and fulfilling any other requirements for the mail system
that is in use (see Chapter 9).

• Setting print-queue access (see Chapter 13).

Any other site-specific user account tasks, for local or third-party applications,
should ideally be performed as part of the account creation process.

Specifying Other User Account Controls
Many systems provide additional methods for specifying various characteristics of
user accounts. The sorts of controls include password change and content, valid
login times and locations, and resource limits. Table 6-5 lists the general sorts of
account attributes provided by the various Unix flavors.

Table 6-5. Available user account attribute types

Password lifetimes Password strength Login times Login locations Resource limits

AIX yes yes yes yes yes

FreeBSD yes no yes yes yes

HP-UX yes yes yes no no

Linux yes yes PAMa

a Functionality is provided by the PAM facility (discussed later in this chapter).

PAMa PAMa

Solaris yes yes no no no

Tru64 yes yes yes no yes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 249

We will defer consideration of password-related account controls until later in this
chapter. In this section, we’ll consider available controls on when and where logins
can occur and how to set user account resource limits in other context of each oper-
ating system. We’ll also consider other settings related to the login process as
appropriate.

AIX user account controls

AIX provides several classes of user account attributes, which are stored in a series of
files in /etc/security:

/etc/security/environ
Environment variable settings (discussed previously)

/etc/security/group
Group administrators

/etc/security/limits
Per-account resource limits

/etc/security/login.cfg
Per-tty valid login time and system-wide valid login shells

/etc/security/passwd
User passwords and password change data and flags

/etc/security/user
Per-user account login controls and attributes

The contents of all of these files may be modified with the chuser command and
from SMIT. We’ll look at several of these file in this subsection and at /etc/security/
passwd and the password-related controls in /etc/security/user later in this chapter.

Here are two sample stanzas from /etc/security/user:

default:
 admin = false Is an administrative user.
 login = true Can login locally.
 daemon = true Can run cron/SRC processes.
 rlogin = true Can connect with rlogin.
 su = true Users can su to this account.
 sugroups = ALL Groups that can su to this user.
 logintimes = ALL Valid login times.
 ttys = ALL Valid terminal locations.
 umask = 022 Default umask.
 expires = 0 Expiration date (0=never).
 account_locked = false Account is not locked.
 loginretries = 0 Unlimited tries before account is locked.
chavez:
 admin = true
 admingroups = chem,bio Groups she administers.
 expires = 1231013004 Account expires 1:30 A.M. 12/31/04
 loginretries = 5 Lock account after 5 login failures.
 logintimes = 1-5:0800-2000 User can log in M–F, 8 A.M.–6 P.M.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 6: Managing Users and Groups

The first stanza specifies default values for various settings. These values are used
when a user has no specific stanza for her account and when her stanza omits one of
these settings. The second stanza sets some characteristics of user chavez’s account,
including an expiration date and allowed login times.

Here is a sample stanza from /etc/security/limits, which sets resource limits for user
processes:

chavez:
 fsize = 2097151
 core = 0
 cpu = -1
 data = 262144
 rss = 65536
 stack = 65536
 nofiles = 2000

The default stanza specifies default values. Resource limits are discussed in detail in
“Monitoring and Controlling Processes” in Chapter 15.

The /etc/security/login.cfg file contains login-related settings on a per-tty basis. Here
is a sample default stanza:

default:
 logintimes = Valid login times (blank=all).
 logindisable = 10 Disable terminal after 10 unsuccessful tries.
 logindelay = 5 Wait 5*#tries seconds between login attempts.
 logininterval = 60 Reset failure count after 60 seconds.
 loginreenable = 30 Unlock a locked port after 30 minutes (0=never).

This file also contains the list of valid shells in its usw stanza (as noted previously).

FreeBSD user account controls

FreeBSD uses two additional configuration files to control user access to the system
and to set other user account attributes. The first of these, /etc/login.access, controls
system access by user and/or system and/or tty port. Here are some sample entries:

+:chavez:dalton.ahania.com Chavez can login from dalton.
+:users:.ahania.com The users group can log in from this domain.
-:ALL EXCEPT wheel:console Only administrators on the console.

The three fields hold + or – (for allow and deny), a list of users and/or groups, and a
login origination location, respectively.

The order of entries within this file is important: the first matching entry is used.
Thus, the example file would not work properly, because users who are not mem-
bers of the wheel group would still be able to log in on the console due to the second
rule. We would need to move the third entry to the beginning of the file to correct
this. In general, entries should move from the most specific to the most general.

The /etc/login.conf is used to specify a wide variety of user account attributes. It does
so by defining user classes, consisting of named groups of settings. User accounts are
assigned to a class via the fifth field in the /etc/master.passwd file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 251

The following example file defines three classes, the default class, used for users not
assigned to a specific class, and the classes standard and gauss:

default:\
Initial environment settings
 :copyright=/etc/COPYRIGHT:\
 :welcome=/etc/motd:\
 :nologin=/etc/nologin:\
 :requirehome:\
 :setenv=PRINTER=picasso,EDITOR=emacs:
 :path=/bin /usr/bin /usr/X11R6/bin ...:\
 :umask=022:\
Login time and origin settings
 :times.allow=MoTuWeThFr0700-1800,Sa0900-1700:\
 :ttys.deny=console:\
 :hosts.allow=*.ahania.com:\
System resource settings
 :cputime=3600:\
 :maxproc=20:\
 :priority=0:\
Password settings
 :passwd_format=md5:\
 :minpasswordlen=8:
standard:\
 :tc=default:
gauss:\
 :cputime=unlimited:\
 :coredumpsize=0:\
 :priority=1:\
 :times.allow=:times.deny=:
 :tc=default:

The default class contains settings related to the initial user environment (login mes-
sages file, the location for the nologin file, settings for environment variables, and the
umask), allowed and/or denied login times, originating ttys and/or hosts (denials
take precedence over allows if there are conflicts), system resource settings (see
“Monitoring and Controlling Processes” in Chapter 15 for more information) and
settings related to password encoding, selection and lifetimes (discussed later in this
chapter).

The standard class is equivalent to the default class since its only attribute is the tc
capability include directive (used to include the settings from one entry within
another). The gauss class defines a more generous maximum CPU-usage setting, dis-
ables core file creation, sets the default process priority to 1 (one step lower than nor-
mal), and allows logins all of the time. Its final attribute also includes the settings
from the default class. The preceding attributes act as overrides to the default set-
tings since the first instance of an attribute within an entry is the one that is used.

After editing the login.conf file, you need to run the cap_mkdb command:

cap_mkdb -v /etc/login.conf
cap_mkdb: 9 capability records

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 6: Managing Users and Groups

Linux user account controls

On Linux systems, the file /etc/login.defs contains settings related to the general login
process and user account creation and modification. The most important entries in
this file are described in the following annotated example file:

ENV_PATH path Search paths for users and root.
ENV_ROOTPATH path
FAIL_DELAY 10 Wait 10 seconds between login tries.
LOGIN_RETRIES 5 Maximum number of login attempts.
LOGIN_TIMEOUT 30 Seconds to wait for a password.
FAILLOG_ENAB yes Record login failures in /var/log/faillog.
LOG_UNKFAIL_ENAB yes Include usernames in the failure log.
LASTLOG_ENAB yes Record all logins to /var/log/lastlog.
MOTD_FILE /etc/motd;/etc/motd.1 List of message-of-the-day files.
HUSHLOGIN_FILE .hushlogin Name of hushlogin file (see below).
DEFAULT_HOME yes Allow logins when user's home is inaccessible.
UID_MIN 100 Minimum/maximum values for UIDs/GIDs
UID_MAX 20000 (used by the standard user account
GID_MIN 100 creation tools).
GID_MAX 2000
CHFN_AUTH no Don't require a password to use chfn.
CHFN_RESTRICT frw Allow changes to full name and office and work phones.

The HUSHLOGIN_FILE setting controls whether any message-of-the-day display
can be suppressed on a per-user basis. If this parameter is set to a filename without a
path (traditionally .hushlogin), these messages will not be displayed if a file of that
name is present in the user’s home directory (the file’s contents are irrelevant).

This parameter may also be set to a full pathname, for example, /etc/hushlogin. In
this case, its contents are a list of usernames and/or login shells; when a user logs in,
if either the user’s login name or shell is listed within this file, the messages will not
be displayed.

In addition to the settings listed in the sample file, /etc/login.defs includes several
other settings related to user passwords; we will consider them later in this chapter.
See the manual page for login.defs for additional information about the contents of
this configuration file.

Solaris login process settings

Solaris supports a systemwide login process configuration file, /etc/default/login. Here
are some of the most useful login-related settings within it:

CONSOLE=/dev/console If defined, limits logins on this tty to root.
TIMEOUT=300 Abandon login attempt after 5 minutes.
SYSLOG=YES Log root logins and login failures to syslog.
SLEEPTIME=4 Wait 4 seconds between failed logins.
SYSLOG_FAILED_LOGINS=1 Generate syslog record at second failure.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 253

Specifying login time restrictions under HP-UX and Tru64

HP-UX and Tru64 allow the system administrator to specify when during a day,
week, or other time period a user’s account may be used. This is done with the u_tod
attribute in the protected password database. For example, the following entry from
an HP-UX system generally allows access on weekdays and during the day (6 A.M. to
6 A.M.) on the weekend but forbids access on any day between 2 A.M. and 5 A.M.:

u_tod=Wk0500-2359,Sa0600-1800,Su0600-1800

Here is the equivalent setting under Tru64:

u_tod=Wk,Sa-Su0600-1800,Never0200-0500

The Never keyword supported by Tru64 allows for a more compact description of
the same restrictions.

Testing the New Account
Minimally, you should try logging in as the new user. A successful login will confirm
that the username and password are valid and that the home directory exists and is
accessible. Next, verify that the initialization files have executed: for example, look at
the environment variables, or try an alias that you expect to be defined. This will
determine if the ownership of the initialization files is correct; they won’t execute if it
isn’t. (You should test the initialization files separately before installing them into the
skeleton directory.) Try clearing the terminal screen. This will test the terminal type
setup section of the initialization file.

Using su to re-create a user’s environment

The su command is ideal for some types of testing of newly created accounts. When
given a username as an argument, su allows a user to temporarily become another
user (root is simply the default username to change to when none is specified). Under
the default mode of operation, most of the user environment is unchanged by the su
command: the current directory does not change, values of most environment vari-
ables don’t change (including USER), and so on. However, the option – (a minus
sign alone) may be used to simulate a full login by another user without actually log-
ging out yourself. This option is useful for testing new user accounts and also when
you are trying to reproduce a user’s problem.

For example, the following command simulates a login session for user harvey:

su - harvey

** Regular Maintenance from 20:00 - 23:00 today **

harvey@phoenix /home/harvey>> clear

In addition to its usefulness for new-account testing, such a technique is very handy
when users complain about “broken” commands and the like.

Once testing is complete, the new user account is ready to use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 6: Managing Users and Groups

Disabling and Removing User Accounts
Users come and users go, but it isn’t always completely clear what to do with their
accounts when they leave. For one thing, they sometimes come back. Even when
they don’t, someone else will probably take their place and may need files related to
projects that were in progress when they left.

When someone stops using a particular computer or leaves the organization, it is a
good idea to disable their account(s) as soon as you are notified. If the person was
dismissed or otherwise left under less than ideal circumstances, it is imperative that
you do so. Disabling an account is one task that you can do very quickly: simply add
an asterisk to the beginning of the encoded password* in the shadow password file,
and they will no longer be able to log in. You can then do whatever else needs to be
done to retire or remove their account in whatever haste or leisure is appropriate.

On many systems, you can also lock an account from the command line using the
passwd command’s -l option. Locking an account via an administrative command
generally uses the same strategy of prepending a character to the encoded password.

For example, the following command locks user chavez’s account:

passwd -l chavez

Disabling or locking an account rather than immediately removing its password file
entry prevents file ownership problems that can crop up when a username is deleted.
On some systems, the passwd command’s -u option may be used to unlock a locked
user account; changing the user’s password also has the side effect of unlocking the
account.

Here are the specifics for the systems we are considering (all commands take the
username as their final argument):

On FreeBSD systems, you can disable an account by setting the account expiration
date to a date in the past with chpass -e, or you can edit the shadow password file
manually.

* By adding an asterisk to the beginning of the password field, you can even restore the account at a later time
with its password intact, should that be appropriate. This is an example of the recommended practice of
making an action reversible whenever possible and practical.

System Lock account Unlock account

AIX chuser account_locked=true chuser account_locked=false

FreeBSD chpass -e chpass -e

HP-UX passwd -l edit /etc/passwd manually

Linux passwd -l passwd -u

Solaris passwd -l edit /etc/shadow manually

Tru64 usermod -x administrative_lock_
applied=1

usermod -x administrative_lock_
applied=0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing User Accounts | 255

On HP-UX and Tru64 systems running enhanced security, a user account is locked via
the u_lock protected password database attribute (where u_lock means locked, and u_
lock@ means unlocked), rather than via the password modification mechanism.

When it is clear that the user account is no longer needed, the account can either be
retired or completely removed from the system (by deleting the user’s home direc-
tory and changing ownerships of all other files he owned). A retired account contin-
ues to exist as a UID within the user account databases,* but no access is allowed
through it; its password is set to asterisks and its expiration date is often set to the
date the user departed. You will also want to change the login shell to /bin/false to
prevent access via Kerberos or ssh.

Removing a user account

When removing or retiring a user from the system, there are several other things that
you might need to do, including the following:

• Change other passwords that the user knew.

• Terminate any running processes belonging to the user (possibly after investigat-
ing any that appear strange or suspicious).

• Remove the user from any secondary groups.

• Remove the user’s mail spool file (possibly archiving it first).

• Define/redefine a mail alias for the user account in the mail aliases file (/etc/
aliases) and any include files referenced in it, sending mail to someone else or to
the user’s new email address, as appropriate. Don’t forget to remove the user
from any mailing lists.

• Make sure the user hasn’t left any cron or at jobs around. If there is any other
batch system in use, check those queues too. See if the user has any pending
print jobs, and delete them if she does. (I found an enormous, gratuitous one on
one occasion.)

• Make a backup of the user’s home directory and then delete it, change its owner-
ship, move all or part of it, or leave it alone, as appropriate.

• Search the system for other files owned by the user and handle them as appropri-
ate (find will be helpful here).

• Remove the user from the quota system or set the account’s quota to 0.

• Remove the user from any other system facilities where her username may be
specified (e.g., printer permissions, /etc/hosts.equiv and .rhosts files if they are in
use).

• Perform any other site-specific termination activities that may be necessary.

* C2 and higher U.S. government security levels require that accounts be retired rather than removed so that
UIDs don’t get reused, and system audit, accounting, and other records remain unambiguous.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 6: Managing Users and Groups

In most cases, writing a script to perform all of these activities is very helpful and
time-saving in the long run.

Administrative Tools for Managing
User Accounts
Shell scripts to automate the user account creation process have been common for a
long time on Unix systems, and most Unix vendors/environments also provide
graphical utilities for the same purpose. The latter tools allow you to make selec-
tions from pick lists and radio buttons and type information into blank fields to spec-
ify the various user account settings.

The advantage of these tools is that they take care of remembering a lot of the steps
in the process for you. They usually add entries to all relevant account configuration
files (including ones related to enhanced security, if appropriate), and they make sure
that the entries are formatted correctly. They also typically create the user’s home
directory, copy initialization files to it, and set the correct ownerships and protec-
tion. Most of the tools are extremely easy to use, if somewhat tedious and occasion-
ally time-consuming.

All of these tools also suffer from the same disadvantage: their abilities usually end
after completing the activities I’ve already listed. A few of them perform one or two
additional activities—adding the user to the mail system is among the most com-
mon—but that still leaves a lot to do. The best of these tools allow you to customize
the activities that are performed, as well as the default values for available account
settings; unfortunately, many of the currently available Unix user account manage-
ment facilities lack any serious customization capabilities.

The best way to use any of these tools is first to set up defaults that reflect how
things are done on your system, to the extent that the tool you’ve chosen allows you
to do so. Doing so will minimize the time it takes to add a new user account to the
configuration files. Then write a script that you can run by hand after the tool com-
pletes its work to automate the rest of the steps required to fully set up a new
account.

In this section, we’ll consider the most important and useful command-line utilities
and graphical facilities for managing user accounts that are available on the Unix sys-
tems we are considering.

Command-Line Utilities
Most systems provide something in the way of command-line utilities for manipulat-
ing user accounts and sometimes groups. Note that in most cases, user passwords
still need to be set separately using the passwd command.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 257

The useradd command: HP-UX, Linux, Solaris, and Tru64

Three commands for managing user accounts are provided on many Unix systems:
useradd, for adding new accounts; usermod, for changing the settings of existing
accounts; and userdel, for deleting user accounts. HP-UX, Linux, Solaris, and Tru64
support these commands.

The useradd command has two modes: defining a new user and setting systemwide
defaults. By default, useradd adds a new user to the system, with the desired user-
name specified as its final argument. Other attributes of the user account are speci-
fied using useradd’s many options, described in the Table 6-6.

Here is the useradd command to create user chavez:

useradd -g chem -G bio,phys -s /bin/tcsh -c "Rachel Chavez" -m chavez

This command creates user chavez, creates the directory /home/chavez if it doesn’t
already exist (the home directory’s pathname is the concatenation of the base direc-
tory and the username), and copies initialization files from /etc/skel to the new direc-
tory. It also places chavez in the groups chem, bio, and phys (the first one is her
primary group). Her UID will be the next available number on the system.

Table 6-6. useradd command options

Option Meaning

-u uid UID (defaults to next highest unused UID).

-g group Primary group.

-G groups Comma-separated list of secondary groups.

-d dir Home directory full pathname (defaults to current-base-dir/username; the current base directory is
itself specified with useradd’s -D option, and is usually set to /home). Tru64 also provides the -H
option for specifying the home directory base when creating a new user account.

-s shell Full path to login shell.

-c name Full name (GECOS field text).

-m Create user’s home directory and copy the standard initialization files to it.

-k dir Skeleton directory containing initialization files (defaults to /etc/skel); only valid with -m. Not provided
by Tru64.

-e date Account expiration date (default is none); format: yyyy-mm-dd.

-f n Number of days the account can be inactive before being disabled automatically.

-p On Tru64 systems, requests a prompt for the user’s initial password. On Linux systems, the option
requires the encoded password as its parameter, making it useful in scripts where you are importing
user accounts from another Unix system’s password file, but it is of little use otherwise. Solaris and
HP-UX do not provide this option.

-D Set option defaults using the -f, -e, -g, and -b options (the last option is -d on Tru64 systems). The
-s option may also be used on Linux systems, and the -x skel_dir=path option provides the
same functionality under Tru64.

-b dir Default base directory for user home directories (for example /home); only valid with -D. Tru64 uses -d
for this function (as well as for its normal role when creating a user account).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 6: Managing Users and Groups

The Tru64 version of useradd also supports setting some extended attributes using
the -x option. For example, the following command sets the valid login hours for
user chavez to weekdays during normal U.S. business hours:

useradd normal options -x logon_hours=Wk0900-1700 chavez

Setting useradd’s defaults. The -D option tells useradd to set systemwide default values
for various account attributes to be used when creating new users. For example, the
following command sets the default group to chem, sets the base directory to /abode,
and disables the account inactivity feature.

useradd -D -g chem -b /abode -f -1

You can display the current options by executing useradd -D alone or by examining
the command’s configuration file, /etc/default/useradd; here is an example file:

GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=2005-01-01
SHELL=/bin/bash
SKEL=/etc/skel

Although there is no command option to do so, you can change the default skeleton
directory location by editing the SKEL line in the file.

Modifying accounts with usermod. A user’s current attributes may be changed with the
usermod command, which accepts all useradd options except -k. The -d and -m now
refer to the new home directory for the user (and -m now requires -d). In addition,
usermod supports a -l option, used to change the username of an existing user. For
example, the following command changes chavez’s username to vasquez, moving her
home directory appropriately:

usermod -m -l vasquez chavez

In addition to these commands, the normal chsh and chfn commands available to all
users may be used by the superuser to quickly change the login shell and user infor-
mation fields for a user account, respectively (passwd -e and -g under Solaris).

For example, on a Linux system, the following commands change user harvey’s login
shell to the Korn shell and specify a variety of information to be stored in the user
information field of his password file entry:

chsh -s /bin/ksh harvey
chfn -f "Harvey Thomas" -o 220 -p 555-9876 -h 555-1234 harvey

User harvey’s password file entry now looks like this:

harvey:x:500:502:Harvey Thomas,220,555-9876,555-1234:/home/harvey:/bin/ksh

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 259

The various items of information stored within the user information field are sepa-
rated by commas.

There is no hard-and-fast convention for what the various subfields of
the password file user information field should be used for, and differ-
ent tools use them to hold different information. Accordingly, the for-
mat of the chfn command varies somewhat in different Unix versions
and even within individual versions. The preceding example was from
a Red Hat Linux system; the SuSE Linux version of the command
would be:

chfn -f "Harvey Thomas" -r 220 -w 555-9876 \
 -h 555-1234 harvey

In the same way, the GUI tools for managing user accounts also divide
this field using different schemes.

Removing accounts with userdel. The userdel command is used to remove a user
account. For example, the following command removes user chavez from the pass-
word and shadow password file:

userdel chavez

The -r option may be added to remove her home directory and all files within it as
well as the account itself.

On Tru64 systems, userdel retires user accounts by default. You must use the -D
option to actually delete them.

Commands for managing groups

Similarly, the groupadd and groupmod commands may be used to set up and modify
new groups (although not their memberships). For example, the following com-
mand adds a new group named socio:

groupadd socio

The new group is assigned the next available user group GID number (greater than
99); alternatively, a specific GID may be specified by adding the -g option to the
command.

The following command renames the bio group to biochem:

groupmod -n biochem bio

A group’s GID may also be changed with the -g option to groupmod.

Finally, you can remove unwanted groups in a way analogous to userdel with the
groupdel command, which takes the name of the group to be deleted as its argu-
ment. Note that this command does not let you remove a group that is serving as the
primary group for any user account.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 6: Managing Users and Groups

The Linux gpasswd command

Linux systems provide the gpasswd command for adding and removing members of
groups and for specifying group administrators. For example, the following com-
mand adds user chavez to the drama group:

gpasswd -a chavez drama

In a similar way, the -d option may be used to remove the user from a group.

The -A and -M options are used to specify the list of group administrators and addi-
tional group members (allowed to use newgrp) in the group shadow file. For exam-
ple, the following command designates users root and nielsen as group
administrators for the bio group:

gpasswd -A root,nielsen bio

The list of users specified as the argument to either option is comma-separated and
must not contain any internal spaces. Note that these options replace the current set-
tings in /etc/gshadow; they do not add additional users to the existing list.

The FreeBSD user account utilities

FreeBSD provides the adduser command for creating new user accounts. It does so
by prompting you for all of the required information, as in this example, which cre-
ates an account for user zelda:

adduser -s
Enter username [a-z0-9_-]: zelda
Enter full name []: Zelda Zelinski
Enter shell csh ... ksh [tcsh]: return
Enter home directory (full path) [/home/zelda]: return
Uid [1021]: return
Enter login class: default []: staff
Login group zelda [zelda]: return
Login group is ``zelda''.
Invite zelda into other groups: chem phys bio no
[no]: chem
Enter password []: not echoed
Enter password again []: not echoed
Name: zelda
Password: ****
Fullname: Zelda Zelinski
Uid: 1021
Gid: 1021 (zelda)
Class: staff
Groups: zelda chem
HOME: /home/zelda
Shell: /bin/tcsh
OK? (y/n) [y]: y
Add another user? (y/n) [y]: n

The command’s -s (silent) option provides a less verbose prompt sequence. The
opposite is -v, which prompts for default settings for this session before adding
users:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 261

adduser -v
Enter your default shell: csh ... ksh no [sh]: tcsh
Your default shell is: tcsh -> /bin/tcsh
Enter your default HOME partition: [/home]: return
Copy dotfiles from: /usr/share/skel no [/usr/share/skel]: return
Send message from file: /etc/adduser.message no
[/etc/adduser.message]: return
Use passwords (y/n) [y]: return
...

Verbose mode also inserts additional prompts for an alternate message file and addi-
tional message recipient, and it allows you to add to the generated message before it
is sent. The verbose/silent setting for the command is sticky: when neither option is
included, it defaults to the last value to which it was set.

Normally, the adduser command generates a mail message for the new user as it cre-
ates the account. The default message template is stored in /etc/adduser.message.
Here is the default new user welcome message for our new user zelda:

To: zelda
Subject: Welcome
Zelda Zelinski,
your account ``zelda'' was created.
Have fun!
See also chpass(1), finger(1), passwd(1)

I always modify the standard message file to fix the capitalization error and hideous
quoting. This is one case where I don’t bother keeping a copy of the original!

adduser’s defaults are stored in the /etc/adduser.conf configuration file. Here is an
example:

defaultpasswd = yes Require passwords.
dotdir = "/usr/share/skel"
send_message = "/etc/adduser.message"
logfile = "/var/log/adduser"
home = "/home"
path = ('/bin', '/usr/bin', '/usr/local/bin')
shellpref = ('csh', 'sh', 'bash', 'tcsh', 'ksh', 'no')
defaultshell = "tcsh"
defaultgroup = USER This setting enables user-private groups.
defaultclass = "users" Default user class (initially empty).
uid_start = "1000" Lowest UID assigned.

As is noted in the comment, the defaultclass variable is initially unassigned. If you
want to have a specific login class assigned to new accounts, you’ll need to modify
this entry in the configuration file (as we have done above). User classes are
described in detail later in this chapter.

You can also specify some of these items via adduser options, as in this example:

adduser -dotdir /etc/skel -group chem -home /homes2 \
 -shell /usr/bin/tcsh -class users

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 6: Managing Users and Groups

The chpass command may be used to modify existing user accounts. When invoked,
it places you into a form within an editor (selected with the EDITOR environment
variable), where you may modify the account settings. Here is the form you will edit:

#Changing user database information for zelda.
Login: zelda
Password: 1dGoBvscW$kE7rMy8xCPnrBuxkw//QH0
Uid [#]: 1021
Gid [# or name]: 1021
Change [month day year]: January 1, 2002 Most recent pwd change.
Expire [month day year]: December 31, 2005 Account expiration date.
Class: staff
Home directory: /home/zelda
Shell: /bin/tcsh
Full Name: Zelda Zelinski
Office Location: Additional (optional) GECOS subfields.
Office Phone:
Home Phone:
Other information:

Be sure to modify only the settings data, leaving the general structure of the form
intact.

The rmuser command may be used to remove a user account, as in this example:

rmuser zelda
Matching password entry:
zelda:*:1021:1021:staff:0:0:Zelda Zelinski:/home/zelda:/bin/tcsh
Is this the entry you wish to remove? y
Remove user's home directory (/home/zelda)? y

The command also removes files belonging to the specified users from the various
system temporary directories.

The AIX user account utilities

AIX provides the mkuser, chuser, and rmuser commands for creating, modifying, and
deleting user accounts, respectively. Their syntax is so verbose, however, that it is
usually much easier to use the SMIT tool when adding users interactively.

The mkuser command requires a series of attribute=value pairs specifying the account
characteristics, followed at last by the username. Here is an example of using mkuser
to add a new user account:

mkuser home=/home/chavez gecos="Rachel Chavez" pgrp=chem chavez

Of the standard password file fields, we allow mkuser to select the UID and assign the
default shell. mkuser uses the settings in /usr/lib/security/mkuser.default for basic
account attribute defaults, as in this example file:

user:
 pgrp = staff
 groups = staff
 shell = /usr/bin/ksh
 home = /home/$USER

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 263

admin:
 pgrp = system
 groups = system
 shell = /usr/bin/ksh
 home = /home/$USER

The two stanzas specify defaults for normal and administrative users, respectively.
You create an administrative user by specifying the -a option on the mkuser com-
mand or by specifying the attribute admin=true to either mkuser or chuser.

Table 6-7 lists the most useful account attributes which can be specified to mkuser
and chuser. Password-related attributed are omitted; they are discussed later in this
chapter.

The mkuser command runs the mkuser.sys script in /usr/lib/security as part of its
account creation process. The script is passed four arguments: the home directory,
username, group, and shell for the new user account.

Table 6-7. AIX user account attributes

Attribute Meaning

id=UID UID

prgp=group Primary group

groups=list Group memberships (should include the primary group)

gecos="full name" GECOS field entry

shell=path Login shell

home=path Home directory

login=true/false Whether local logins are allowed

rlogin=true/false Whether remote logins are allowed

daemon=true/false Whether user can use cron or the SRC

logintimes=list Valid login times

ttys=list Valid tty locations

loginretries=n Number of login failures after which to lock account

expire=date Account expiration date

su=true/false Whether other users can su to this account

sugroups=list Groups allowed to su to this account

admin=true/false Whether account is an administrative account

admgroups=list Groups this account administers

umask=mask Initial umask value

usrenv=list List of initial environment variable assignments (normal user context)

sysenv=list List of initial environment variable assignments (administrative user context)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 6: Managing Users and Groups

This script serves to create the user’s home directory and copy one or both of /etc/
security/.profile and an internally generated .login file to it. Here is the .login file that
the script generates:

#!/bin/csh
set path = (/usr/bin /etc /usr/sbin /usr/ucb $HOME/bin ...)
setenv MAIL "/var/spool/mail/$LOGNAME"
setenv MAILMSG "[YOU HAVE NEW MAIL]"
if (-f "$MAIL" && ! -z "$MAIL") then
 echo "$MAILMSG"
endif

It is equivalent to the standard .profile file.

You can modify or replace this script to perform more and/or different activities, if
desired. For example, you might want to replace the exiting if statement that copies
initialization files with commands like these (which use a standard skeleton file
directory):

if [-d /etc/skel]; then
 for f in .profile .login .logout .cshrc .kshrc; do
 if [-f /etc/skel/$f] && [! -f $1/$f]; then
 cp /etc/skel/$f $1
 chmod u+rwx,go-w $1/$f
 chown $2 $1/$f
 chgrp $3 $1/$f
 fi
 done
fi

These commands ensure that the skeleton directory and the files within it exist
before attempting the copy. They also are careful to avoid overwriting any existing
files.

Because /usr/lib/security may be overwritten during an operating system upgrade,
you’ll need to save a copy of the new version of mkuser.sys if you modify it.

Removing user accounts. The rmuser command removes a user account. Include the -p
option to remove the corresponding stanzas from all account configuration files
rather than just the password file. For example, the following command removes all
settings for user chavez:

rmuser -p chavez

Utilities for managing groups. The mkgroup, chgroup, and rmgroup commands may be
used to add, modify, and remove groups under AIX. Once again, the SMIT interface
is at least as useful as the raw commands, although these come in handy once in a
while. For example, the following command creates a new group named webart and
assigns users to it (via secondary memberships):

mkgroup users=lasala,yale,cox,dubail webart

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 265

Graphical User Account Managers
With the exception of FreeBSD, all of the Unix variations we are considering provide
some sort of graphical tool for managing user accounts. Some of them, most notably
Linux, offer several tools. We’ll consider the most useful of these for each operating
system.

Managing users with SMIT under AIX

Figure 6-1 illustrates the SMIT user management facilities. The dialog on the left
(and behind) displays the Security and Users submenu, and the dialog on the right
displays the user account attributes dialog. In this case, we are adding a new user,
but the dialog is the same for modifying a user account. The various fields in the dia-
log correspond to fields within the password file and the various secondary account
configuration files within /etc/security.

The SMIT facility functions as an interface to the mkuser and related commands we
considered earlier, and it is quite obvious which attributes the various dialog fields
correspond to. SMIT also uses the same default values as mkuser.

Figure 6-1. User account management with SMIT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 6: Managing Users and Groups

Managing users with SAM under HP-UX

Figure 6-2 illustrates the SAM user management facilities on HP-UX systems. The
dialog on the left shows the items available by selecting the Accounts for Users and
Groups item in SAM’s main window. The dialog at the upper left is used to access
user account attributes when adding or modifying a user (we are doing the latter
here). Its fields correspond to the traditional password file entries.

The dialog at the bottom of the figure appears as a result of clicking the Modify Pass-
word Options button in the main user account window. We’ll consider its contents
later in this chapter.

You can customize the user account creation and removal processes via the Actions ➝

Task Customization menu path from the main user accounts window. This brings up
a dialog in which you can enter the paths to scripts to be run before and after creat-
ing or removing a user account. The full pathname for the program name must be
given to SAM, root must own it, it must have a mode of either 500 or 700—in other
words, no group or other access and no write access for root—and every directory in
its pathname must be writable only by root. (All of these are excellent security pre-
cautions to take for system programs and scripts that you create in general.)

Figure 6-2. User account management with SAM

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 267

The programs will be invoked as follows:

prog_name -l login -u uid -h home_dir -g group -s shell -p password \
-R real_name -L office -H home_phone -O office_phone

SAM also allows you to define user templates: named sets of user account settings
that can customize and speed up the account creation process. The Actions ➝ User
Templates submenu allows templates to be created, manipulated and activated.
When defining or modifying a template, you use dialogs that are essentially identical
to the ones used for normal user accounts.

Choose the Actions ➝ User Templates ➝ Select menu item to activate a template
(selecting the desired template from the dialog that follows). Once this is done, the
template’s defaults are used for all new user accounts created in that SAM session
until the template is changed or deselected.

Defaults for user accounts created without a template come from the file /usr/sam/lib/
C/ug.ui. Search the file for the string “default”; it should be apparent which ones set
account attribute defaults. You can change them with a text editor, and the new val-
ues will be in effect the next time you run SAM. Note that some defaults (e.g., the
home directory base) appear in more than one place within the file. Obviously, you’ll
need to be careful when editing this file. Copy the original before you edit so that
you’ll have a recovery path should something break.

HP-UX account and file exclusion. On HP-UX systems, SAM allows you to specify user
accounts and files that it should never remove. The file /etc/sam/rmuser.excl lists
usernames that will not be removable from within SAM (although they may be
retired). Similarly, the file rmfiles.excl in the same directory lists files that should
never be removed from the system, even if the account of the user who owns them is
removed. Naturally, these restrictions have no meaning except within SAM.

Linux graphical user managers

There are a plethora of choices for administering user accounts on Linux systems,
including these:

• The Linuxconf facility, a distribution-independent system administration tool

• The Ximian Setup Tools’ user accounts module

• The KDE User Manager

• The Red Hat User Manager on Red Hat Linux systems

• The YaST menu-based utility and the YaST2 graphical user account editor on
SuSE Linux systems

We’ll look at three of these here: Linuxconf and the KDE and Red Hat user managers.

Managing users with Linuxconf. The Linuxconf package is a graphical system adminis-
tration tool designed specifically for Linux and available by default on some Red Hat
systems. It includes a module for managing user accounts, which may be accessed

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 6: Managing Users and Groups

from its main navigation tree or executed separately and directly by entering the
userconf command. Once you select a user (or choose to add a new account), the
User information dialog is displayed (see Figure 6-3).

The Base info panel allows you to enter information in the traditional password file
fields; you may select from predefined lists of groups and login shells to specify those
fields. The User ID field is optional; if it is left blank, Linuxconf assigns the next
available UID number to a new user account. A user account may also be disabled by
deselecting the click box at the top of the form.

On Red Hat systems, this tool automatically creates a user-private group when add-
ing a new user account. It also automatically creates the user’s home directory and
populates it with the files from /etc/skel. We will discuss the method for modifying
the tool’s default behavior later in this section.

The Params panel contains settings related to password aging, and we will consider it
later in this chapter. The Mail settings panel sets up the user’s email account. The
final, rightmost panel, Privileges, contains settings related to this user’s ability to use
the Linuxconf tool for system administration tasks (discussed in “Role-Based Access
Control” in Chapter 7).

Once you have finished entering or modifying a user account, use the buttons at the
bottom of the dialog to complete the operation. The Accept button confirms the
addition or change, and the Cancel button discards it. The Passwd button may be
used to set or change the user’s password, and the Del button deletes the current
user account.

Figure 6-3. Managing user accounts with Linuxconf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 269

Deleting a user account is done via the dialog in Figure 6-4. It asks you to confirm
the operation and also allows you to specify how to deal with the user’s home direc-
tory. The first option (Archive the account’s data) copies the home directory to a
compressed tar file in, e.g., /home/oldaccounts,with a name like gomez-2002-04-02-
12061.tar.gz, with the first five components filled in with the username, year, month,
day and time; the oldaccounts subdirectory is placed under Linuxconf’s current
default home directory location. After completing this backup operation, the home
directory and all of its contents are deleted. The second option simply deletes the
home directory and contents without saving them, and the third option leaves the
directory and all of its files unchanged.

Linuxconf provides similar facilities for managing groups.

The defaults for various aspects of Linuxconf user account management may be
specified via the Config ➝ Users accounts ➝ Policies ➝ Password & account policies
menu path. The resulting dialog is illustrated in Figure 6-5.

The lone click box in the dialog specifies whether user-private groups are in use. The
next two fields specify the base directory and default permissions mode for user
home directories. The next four fields specify scripts to be run when various actions
are performed. By default, the first two of these fields are filled in and hold the paths
to the scripts that Linuxconf uses when deleting a user account: the first (Delete
account command) specifies the script used when a user account and the home
directory are simply deleted, and the second (Archive account command) specifies
the script used to archive a user home directory and then delete the user account.

I don’t recommend modifying or replacing either of these scripts—although examin-
ing them can be instructive. Instead, use the next two fields to specify additional
scripts to be run when accounts are created and deleted. Note that the account cre-
ation script runs after Linuxconf has completed its normal operations, and the
account deletion script runs before Linuxconf performs its account deletion
operations.

Figure 6-4. Deleting a user with Linuxconf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 6: Managing Users and Groups

The remaining settings in this dialog relate to password aging, and we will consider
them later in this chapter.

The KDE User Manager. The KDE User Manager (written by Denis Perchine) is included
as part of the KDE desktop environment. You start this facility by selecting the Sys-
tem ➝ User Manager menu path on the KDE main menu or by running the kuser
command. Figure 6-6 illustrates the facility’s user account properties window.

Figure 6-5. Specifying Linuxconf account defaults

Figure 6-6. The KDE User Manager

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 271

The User Info panel (on the left in the figure) is used to set traditional password file
fields as well as the password itself. The highlighted portion appears only when add-
ing a new user account, and it allows you optionally to create the user home direc-
tory under /home, copy files from the skeleton directory (/etc/skel), and create a user-
private group for the user account. As you can see, the tool also provides an interpre-
tation of the various optional fields of the GECOS field.

The Groups panel displays the user’s primary and secondary group memberships.

The third panel in this dialog, labeled Password Management, deals with password
aging settings. We will look at it later in this chapter.

The KDE User Manager also provides similar dialog boxes for adding, modifying and
deleting groups.

The KDE User Manager has a Preferences panel (reached via the Settings ➝ Prefer-
ences menu path) that allows you to specify a different default home directory base
and login shell, as well as whether to automatically create the home directory and/or
copy files from /etc/skel. It also specifies whether the user-private groups scheme
should be used.

The Red Hat User Manager. Red Hat Linux provides its own user management utility
(pictured in Figure 6-7). You can invoke it from the menus of the KDE and Gnome
desktops as well as with the redhat-config-users command.

The User Properties dialog of this tool contains four panels. The User Data panel
(displayed on the left in the figure) holds the traditional password file entry fields.
The Groups panel lists groups of which the user is a member (display on the right).
Note that the primary group is not shown because user-private groups are always
used and so the primary group name is always the same as the user account name.

Figure 6-7. The Red Hat User Manager

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 6: Managing Users and Groups

The Account Info panel displays information about whether the user account is
locked and any account expiration data which has been assigned. The Password Info
panel displays password lifetime data (as we’ll see).

Solaris GUI tools for managing user accounts

On Solaris systems, the Sun Management Console may be used to administer user
accounts. The relevant module is accessed via the Infrastructure ➝ AdminSuite menu
path (and not via the seemingly more obviously named final main menu option). It is
illustrated in Figure 6-8.

The bottom dialog in the figure illustrates the interface for modifying an individual
user account. The General panel (pictured) holds some of the traditional password
file information as well as account locking and expiration settings. The other panels
are Group (group memberships), Home Directory (specifies the home directory
server and directory, whether it should be automounted, and its sharing protec-
tions), Password (allows you to set a password and force a password change), Pass-
word Options (password aging settings, discussed later in this chapter), Mail (email

Figure 6-8. The Solaris AdminSuite user manager

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 273

account information), and Rights (assigned roles, discussed in “Role-Based Access
Control” in Chapter 7).

Managing user accounts with dxaccounts under Tru64

The Tru64 dxaccounts command starts the user account management facility. It may
also be reached via sysman. It is pictured in Figure 6-9.

The window at the top of the figure displays icons for the user accounts. The but-
tons under the menu bar may be used to perform various operations on the selected
account.

The window at the bottom of the figure displays the main user account dialog (in
this case, we are modifying a user account). It holds the usual password file fields, as

Figure 6-9. The Tru64 Account Manager

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 6: Managing Users and Groups

well as buttons that may be used to assign secondary group memberships and a pass-
word. The check boxes in the bottom section of the dialog allow you to change the
location of the user’s home directory and to lock and unlock the account.

The Security button is present only when enhanced security is activated on the sys-
tem. We will discuss its use later.

The Options ➝ General menu path from the user icon window allows you to specify
default settings for new user accounts. Selecting it results in the dialog shown in
Figure 6-10. It allows you to specify minimum and maximum user and group IDs,
default primary group, home base directory, shell and skeleton directory locations,
and several other settings.

These default settings are actually stored in the file $HOME/.sysman/Account_
defaults. Editing this file often presents a quicker method for setting them.

The Tru64 Account Manager also allows you to define templates for user accounts:
named groups of account settings, which can be used as defaults when creating new
accounts and which may also be applied to existing accounts as a group. You can

Figure 6-10. Setting user account default values

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Tools for Managing User Accounts | 275

view the existing templates via the View ➝ Local Templates menu path from the
main window (illustrated in Figure 6-11).

When you create or edit a template, you use dialogs that are essentially identical to
those used in the Secuirty section for individual user accounts.

Templates are selected and applied via the Template pull-down menu at the upper
left of the main user account dialog (see Figure 6-9). For a new account, selecting a
template fills in the various fields in the dialog with the value from the template.
When you change the template for an existing account or simply reselect the same
template, you apply its current settings to the current account.

Automation You Have to Do Yourself
As we’ve noted, currently even the most full-featured automated account creation
tools don’t do everything that needs to be done to fully prepare an account for a new
user. However, you can create a script yourself to do whatever the account creation
tool you choose omits, and the time you spend on it will undoubtedly be more than
made up for in the increased efficiency and decreased frustration with which you
thereafter add new users.

The following is one approach to such a script (designed for a Linux system but eas-
ily adapted to others). It expects a username as its first argument and then takes any
of several options, processing each one in turn and ignoring any it doesn’t recognize.
For space reasons, this approach contains only minimal error checking (but it
doesn’t do anything very risky, either):

#!/bin/sh
local_add_user - finish account creation process

Figure 6-11. Tru64 user account templates

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 6: Managing Users and Groups

if [$# -eq 0]; then # no username
 exit
fi
do_mail=1 # send mail unless told not to
user=$1; shift # save username
/usr/bin/chage -d 0 $user # force password change
while [$# -gt 0]; do # loop over options
case $1 in # process each option
 "-m") # don't send mail
 do_mail=0
 ;;
 "-q") # turn on disk quotas
 (cd /chem; /usr/sbin/edquota -p proto $user)
 ;;
 "-p") # enable LPRng printer use
 # make sure there is a valid local printer group name
 if [$# -gt 1]; then
 val=`/usr/bin/grep -c "ACCEPT .* GROUP=$2" /etc/lpd.perms`
 if [$val -gt 0]; then
 # Add user to that printer group
 /usr/bin/gpasswd -a $user $2
 else
 /bin/echo "Invalid printer group name: $2"
 fi
 shift # gobble printer name
 else
 /bin/echo "You must specify a printer group name with -p"
 fi
 ;;
 "-g") # set up application program
 /bin/cat /chem/bin/g2k+/login >> /home/$user/.login
 /bin/cat /chem/bin/g2k+/profile >> /home/$user/.profile
 /chem/bin/g2k+/setup $user
 ;;
 *) # anything else
 /bin/echo "Garbage in, nothing out: $1"
 ;;
esac
shift # drop completed option off list
done
if [$do_mail -eq 1]; then
 /usr/bin/mail -s Welcome $user < /chem/sys/welcome.txt
fi

At the discretion of the system administrator, this script can add the user to the disk
quota facility (see “Monitoring and Managing Disk Space Usage” in Chapter 15), the
LPRng printing subsystem (see “LPRng” in Chapter 13), send a welcoming mail mes-
sage, and configure the account to use an application program. It also forces the user
to change his password at his next login. We will consider user passwords and their
administration in detail in the next section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 277

Administering User Passwords
Because passwords play a central role in overall system security, all user accounts
should have passwords.* However, simply having a password is only the first step in
making a user account secure. If the password is easy to figure out or guess, it will pro-
vide little real protection. In this section, we’ll look at characteristics of good and bad
passwords. The considerations discussed here apply both to choosing the root pass-
word (which the system administrator chooses) and to user passwords. In the latter
case, your input usually takes the form of educating users about good and bad choices.

Selecting Effective Passwords
The purpose of passwords is to prevent unauthorized people from accessing user
accounts and the system in general. The basic selection principle is this: Passwords
should be easy to remember but hard to figure out, guess, or crack.

The first part of this principle argues against imposing automatically-generated ran-
dom passwords (except when government or other mandated security policies
require it). Many users have a very hard time remembering them, and in my experi-
ence, most users will keep a written record of their password for some period of time
after they first receive it, even when this is explicitly prohibited.

If users are educated about easier ways to create good passwords, and you take
advantage of features that Unix systems provide requiring passwords to be a reason-
able length, users can select passwords that are just as good as system-generated
ones. Allowing users to select their own passwords will make it much more likely
that they will choose one that they can remember easily.

In practical terms, the second part of the principle means that passwords should be
hard to guess even if someone is willing to go to a fair amount of effort—and there
are plenty of people who are. This means that the following items should be avoided
as passwords or even as components of passwords:

• Any part of your name or the name of any member of the your extended family
(including significant others and pets) and circle of friends. Your maternal
grandmother’s maiden name is a lot easier to find out than you might think.

• Significant numbers to you or someone close to you: social security numbers, car
license plate, phone number, birth dates, etc.

• The name of something that is or was important to you, like your favorite food,
recording artist, movie, TV character, place, sports team, hobby, etc. Similarly, if

* The only possible exception I see is an isolated, non-networked system with no dial-in modems at a personal
residence, but even then you might want to think about the potential risks from repair people, houseguests,
neighborhood kids, and so on, before deciding not to use passwords. Every system in a commercial environ-
ment, even single-user systems in locked offices, should use passwords.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 6: Managing Users and Groups

your thesis was on benzene, don’t pick benzene as a password. The same goes
for people, places, and things you especially dislike.

• Any names, numbers, people, places, or other items associated with your com-
pany or institution or its products.

We could obviously list more such items, but this should illustrate the basic idea.

Passwords should also be as immune as possible to attack by password-cracking pro-
grams, which means that the following items should not be selected as passwords:

• English words spelled correctly (because lists of them are so readily available in
online dictionaries). You can use the spell or similar command to see if a word
appears in the standard dictionary:

$ echo cerise xyzzy | spell -l
xyzzy

In this case, spell knows the word cerise (a color) but not xyzzy (although xyzzy
is a bad password on other grounds). Note that the standard dictionary is quite
limited (although larger ones are available on the web), and with the widespread
availability of dictionaries on CD-ROM, virtually all English words ought to be
avoided.

• Given the wide and easy accessibility of online dictionaries, this restriction is a
good idea even at non-English-speaking sites. If two or more languages are in
common use at your site, or in the area in which it’s located, words in all of
them should be avoided. Words in other kinds of published lists should also be
avoided (for example, Klingon words).

• Truncated words spelled correctly should similarly be avoided: “conseque” is
just as bad as “consequence.” Such strings are just as vulnerable to dictionary-
based attacks as is the entire word, and most existing password-cracking pro-
grams look specifically for them.

• The names of famous people, places, things, fictional characters, movies, TV
shows, songs, slogans, and the like.

• Published password examples.

Avoiding passwords like the items in the first list makes it harder for someone to fig-
ure out your password. Avoiding the items in the second list makes it harder for
someone to successfully break into an account using a brute-force, trial-and-error
method, like a computer program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 279

If it seems farfetched that someone would go to the trouble of finding
out a lot about you just to break into your computer account, keep in
mind that hackers roaming around on the Internet looking for a sys-
tem to break into represent only one kind of security threat. Internal
security threats are at least as important for many sites, and insiders
have an easier time locating personal information about other users.

In any case, getting on a specific system via any account is often just
the first step toward some ultimate destination (or in a random stroll
across the Internet); the account that opens the door need not neces-
sarily have any obvious connection to the true goal, which might be
elsewhere on the same system or on a completely different computer
or site.

Simple modifications of any of these bad passwords, created by adding a single addi-
tional character, spelling it backwards, or permuting the letters, are still bad pass-
words and ought to be avoided. For example, avoid not only “john” but also “nhoj”
and “ohnj” and “john2.” It doesn’t take a password-guessing program very long to
try all combinations of adding one character, reversing, and permuting.

Although they are risky themselves, items from the second list can serve as the base
for creating a better password (I don’t recommend using any personal items in pass-
words at all). Passwords that use two or more of the following modifications to ordi-
nary words are much more likely to be good choices:

• Embedding one or more extra characters, especially symbol and control
characters.

• Misspelling it.

• Using unusual capitalization. All lowercase is not unusual; capitalization or
inverse capitalization by word is not unusual (e.g., “StarTrek,” “sTARtREK”);
always capitalizing vowels is not unusual.

• Concatenating two or more words or parts of words.

• Embedding one word in the middle of another word (“kitdogten” embeds “dog”
within “kitten”).

• Interleaving two or more words: for example, “cdaotg” interleaves “dog” and
“cat.” With a little practice, some people can do this easily in their heads; others
can’t. If you need any significant delay between characters as you type in such a
password, don’t use them.

Table 6-8 illustrates some of these recommendations, using “StarTrek” as a base
(although I’d recommend avoiding altogether anything having to do with Star Trek
in passwords).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 6: Managing Users and Groups

Of course, these would all be poor choices now. When selecting passwords and
advising users about how to do so, keep in mind that the overall goal is that pass-
words be hard to guess, for humans and programs, but easy to remember and fast to
type.

There are other ways of selecting passwords other than using real words as the base.
Here are two popular examples:

• Form a password from the initial letters of each word in a memorable phrase,
often a song lyric. Such passwords are easy to remember despite being nonsense
strings. Transforming the resulting string results in an even better password.
Two examples are given in Table 6-9.

As the final example illustrates, Unix passwords can be longer than eight charac-
ters if you have so configured the system (discussed later in this chapter).

• Form a password by keyboard shifting: select a word or phrase that you can type
easily, and then shift your hands on the keyboard in some way before typing it
(e.g., up one and over one).* You have to be fairly coordinated for this method to
be practical for you, but it does generate hard-to-crack passwords since they are
essentially random.

Table 6-8. Creating good passwords from bad ones

Bad Better Better Still

StarTrek
(predictable capitalization)

sTartRek
(unusual capitalization)

sTarkErT
(unusual capitalization and reversal)

startrak
(misspelling)

starTraK
(misspelling and unusual capitalization)

$taRTra#
(misspelling, symbols and unusual capitalization)

StarDrek
(slang)

jetrekdi
(embedding)

jetr@kdi
(embedding and symbols)

trekstar
(word swapping)

sttraerk
(interleaving)

sttr@erK
(interleaving, unusual capitalization and symbols)

Table 6-9. Forming passwords from memorable phrases

Phrasea

a The lines are from the songs “Copacabana” by Barry Manilow and “Old Admirals” by Al Stewart. Naturally, you wouldn’t want to use either
of these passwords now.

Password Better Password

“Now it’s a disco, but not for Lola” niadbnfl Ni1db!4L

“I can well recall the first time I ever went to sea” icwrtftiepts @cWr1t@eP2c

* Some current password-cracking programs can crack words shifted by one position to the left or right, so a
more complex shift is required.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 281

Even using these techniques, passwords containing any part of your
user account name, your full name, or any other item appearing in
your password file entry are fundamentally insecure. Password-crack-
ing programs perform a truly staggering amount of transformations on
this information in order to attempt to crack passwords (including
simple keyboard shifting!).

Here are some additional general recommendations about passwords and system
security:

• There should be no unprotected accounts on the system. This includes accounts
without passwords and accounts whose users have left the system but whose
passwords remain unchanged. When a user leaves, always disable her account.

• Specify a minimum password length. We recommend setting it to at least eight
characters, the traditional Unix maximum password length, which isn’t really
long enough anyway. Most Unix systems have the ability to use very long pass-
words; see the section on the PAM facility later in this chapter for details.

• Passwords must be changed under any of these (and similar) conditions:

— Whenever someone other than the user it belongs to learns it, the password
needs to be changed.

— When a user leaves, all passwords that he knew must be changed.

— When a system administrator leaves, the root password and all other site-
wide passwords (e.g., dialup passwords) must be changed. Whether to force
users to change their passwords is a matter of discretion, but keep in mind
that the system administrator had full access to the shadow password file.

— When a system administrator is fired, every password on the system should
be changed since he had access to the list of encrypted passwords.

— If you have even a suspicion that the shadow password file has been read via
the network, the prudent thing is, again, to change every password on the
system.

• The root password should be changed periodically in any case. Not every site
needs to change it religiously once a month, but changing it once in a while
when you don’t think anyone has learned it errs on the side of caution, just in
case you’re wrong. Users can be sneaky; if you think someone was paying a bit
too much attention to your fingers when you typed in the root password, change
it.

• Equally important considerations apply to formulating password guidelines for
users who have accounts at multiple sites. When we give an account to a new
user, we always stress the importance of choosing a brand-new password for our
site and not falling back on one of his old favorites, and he is similarly instructed
not to use any password in effect at our site in any other context, either concur-
rently or in the future. Such regulations strike some users as excessively para-
noid, but they are really just common sense.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 6: Managing Users and Groups

Unix offers options for enforcing password-selection policies; they are discussed later
in this section. If you’d like to use a carrot as well as a stick in this regard, see the sec-
tion on educating users about passwords later in this chapter.

Forcing a password change

Most Unix systems provide commands that allow you to force a user to change her
password at the next login. You can use such commands in a script on those (hope-
fully rare) occasions when everyone must change their password right away.

These are the commands provided by the versions we are considering (they all take a
username as their final argument):

The Linux command works by setting the date of the last password change to Janu-
ary 1, 1970, and the maximum password lifetime to 999 days. This is a bit of a
kludge, but it gets the job done when password aging is not in effect (you can go
back and later remove the maximum password lifetime if desired). However, if you
are using password aging, you can omit the -M option and allow the normal setting to
perform the same function.

On FreeBSD systems, the user account modification utility is interactive and places
you into an editor session by default. However, you can use the following script to
automate the process of forcing a password change (accomplished by placing a date
in the past into the Change field of the form):

#!/bin/tcsh
setenv EDITOR ed
/usr/bin/chpass $1 <<END
/Change/
s/:.*$/: 12 31 1999/
w
q
END

You can choose any past date that you like.

Managing dozens of passwords

When choosing successive passwords—and especially root passwords—try to avoid
falling into a simple recognizable pattern. For example, if you always capitalize all the
vowels, and someone knows this, you effectively lose the value of the unusual capitali-
zation. Similarly, successive passwords are often chosen in the same way; don’t
always choose names of planets for your passwords. It is especially important to break

AIX pwdadm -f ADMCHG
FreeBSD chpass (interactive, but see below)
HP-UX passwd -f
Linux chage -d 0 -M 999 (if not using aging)
Solaris passwd -f
Tru64 usermod -x password_must_change=1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 283

such patterns when someone with longtime access to the root account—and hence
well aware of past patterns in passwords—leaves the system or loses root access.

That said, it is impossible for most people—even system administrators—to remem-
ber all of the root passwords that they may need to know across a large enterprise
without some scheme for generating/predicting the password for each system.

One approach is to use the same root password on all the systems administered by
the same person or group of people. This may be effective for some sites, but it has
the disadvantage that if the root password is compromised on any system, the entire
group of systems is then wide open to unauthorized root-level access. Sites that have
experienced such a break-in tend to give up the convenience of a single root pass-
word in favor of enhanced security and the ability to contain an intruder should the
worst happen.

The solution in this case is to have some scheme (algorithm) for generating root pass-
words based on some characteristics of the computer system in question. Here is a
simple example that indicates how to generate each character of the password in turn:

• First letter of the computer manufacturer

• Number of characters in the hostname

• Last letter of the hostname in uppercase

• First letter of the operating system name

• Operating system version number (first digit)

• The symbol character that is on the same diagonal of the keyboard as the first
letter of the hostname (moving up and to the right)

For a Sun system running Solaris 7 named dalton, this would yield a password of
“s6Ns8r%”; similarly, for an IBM RS/6000 running AIX 4.3 named venus, the pass-
word would be “i5Sa4&”. Although they are too short at only six characters, these
are decent passwords in terms of character variety and capitalization, and they are
easy to generate mentally as needed with just a little practice.

Another problem that occurs with root passwords that are changed on a regular
schedule is coordination of changes and getting the new value to everyone involved.
Again, this is a case where an algorithm can be of great use. Let’s suppose the root
password must be changed monthly. Successive passwords can be generated from a
base component that everyone knows and a varying portion generated from the cur-
rent month and year. We’ll use “xxxx”—a lousy choice, of course—for our base
component in a simple example. Each month, we append the month and year to it,
adding an additional “x” for months less than 10. In 2000, this would yield the pass-
words: xxxxx100, xxxxx200, ..., xxxx1200.

A real scheme would need to be more complex, of course. This could be done by
choosing a more obscure base component and generating the varying portion
according to a more complex algorithm: something involving a simple mathematical
computation using the month and year as variables, for example.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 6: Managing Users and Groups

The advantage of such a system is that any administrator can change the monthly
root password without inconveniencing other administrators. If someone attempts to
use the old root password and is unsuccessful, she will realize that the monthly
change has occurred and will already know the new password.

In fact, these two separate approaches could be combined. The remaining two (or
more) characters of the system information-based password could be used for the
varying portion based on the time period.

Educating Users About Selecting Effective Passwords
Helping users use the system more effectively is part of a system administrator’s job.
Sometimes, this means providing them with the information they need to do some-
thing, in this case, choose a good password. There are a variety of ways you might
convey information and suggestions about password selection to the users on your
systems or at your site:

• A one-page handout (one- or two-sided as appropriate)

• A mail message sent to all new users and, on occasion, to everyone with an
account

• A manual page that you create—call it something like goodpass—and put into
the local manual-page directory

• A script named passwd that (perhaps optionally) offers brief advice for selecting
good passwords and then calls the real passwd command.

One or more of these suggestions may make sense at your site.

Password advice in the age of the Internet

The Internet and its myriad web sites, many of which now request or require user
names and passwords for access, has made advising users on good password usage
practices significantly more complicated. As we noted above, users should be prohib-
ited from using their password(s) for the local site in any other context, and espe-
cially not on the Internet. But beyond that, users often need to have the risks
associated with Internet access and transactions explicitly pointed out from time to
time, accompanied by a reminder that the passwords they choose to protect such
activities are their only defense against the bad guys.

It is not uncommon for a user to visit several to dozens of such web sites on a regu-
lar basis. In theory, the best practice is to use a different password for every one of
them. Realistically, however, very few users are capable of remembering that many
passwords, especially when some of the sites involved are visited rather infrequently
(say, less than once a month). Clearly, we need to modify our usual password
selection and usage advice to deal with the realities of the Internet and to be of more
genuine help to users.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 285

Treating equally every web site requesting an account name and password merely
exacerbates the problem and its inherent combinatorics. Instead, we can divide such
Web sites into classes based on the potential losses that might occur if the username
and password associated with them was discovered by an unscrupulous person: in
other words, by what we have to lose (if anything). There are several general types of
such sites:

Information-only sites
These sites merely make information available to their users. They require a
password to gain access to that information, but a username and password are
available for the asking and have no associated cost. An example of a site would
be the technical support area of vendor’s web site. Such sites seem to collect user
information strictly for marketing purposes and still provide their informational
content free of charge. From the user’s point of view, the password used at such
a site is unimportant, because no loss or other negative consequences would
occur even if someone were to discover it.

Fee-based informational sites
These sites make information available to their users upon payment of a fee
(usually on a subscription basis, but sometimes on per-visit basis). An example
of this kind of site is a magazine’s online subscription site, which makes addi-
tional information available to its subscribers beyond what it places on its gen-
eral public web site. The discovery of this kind of password would allow an
unauthorized person to gain access to this information, but it would not usually
bring any harm to the user himself, provided that the site exercised normal secu-
rity precautions and did not reveal sensitive information (such as credit card
numbers) even to the account holder.

Password-protected purchases, auction bids and other financial transactions
At these sites, a username and password is required to purchase something, but
account information related to purchases is not stored. These kinds of sites will
allow only registered users to make purchases, but they do not require a full
account including billing and shipping addresses, credit card numbers, and so
on to be set up and maintained. Rather, they force the user to enter this informa-
tion for every order (or give the user the option of doing so), without perma-
nently storing the results. Auction sites are similar (from the buyer’s point of
view): they require bidders to have a registered account, but the actual sale and
the corresponding exchange of sensitive information takes place privately
between the buyer and seller. The security implications associated with this type
of password are more serious than those for information-based sites, but the
potential loss from a discovered password is still fairly limited. The bad guy still
needs additional information to actually make a purchase (in the case of an auc-
tion, he could make a bogus bid while masquerading as the legitimate account
holder, but he could not force an actual purchase).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 6: Managing Users and Groups

Sites with ongoing purchasing accounts
These sites assign a username and password to registered users and store their
complete account information in order to facilitate future purchases, including
their billing address, shipping addresses, and multiple credit card numbers. Most
online merchants offer such facilities, and in fact you often do not have a choice
as to whether an account is set up for you or not if you want to make even one
purchase. The unauthorized discovery of the password for such a site can have
significant financial consequences, because the bad guy can make purchases
using the legitimate user’s information and redirect their shipment to any desired
location. The choice on the part of such sites to allow such complete access on
the basis of a single password clearly favors convenience over security.

Note that sites that store important information about the user or something the
user owns or administers also fall into this class. If, for example, the password
associated with an account at a site where the official information associated
with an Internet domain is stored were to be compromised, the bad guy could
modify that information, and the consequences could range from significant
inconvenience to all-out havoc.

Sites associated with user finances
These web sites allow account holders to access their bank accounts, stock port-
folios, and similar financial instruments, and they obviously pose the greatest
risk of immediate financial loss to the user. Some of these are protected only by a
username and password; the passwords for such sites must be chosen very care-
fully indeed.

Note that even the most innocuous sites can change their character over time. For
example, a site that now merely provides access to information might at some point
in the future add other services; at such time, the password in use there would need
to be rethought.

Obviously, the different security needs of the different kinds of sites make different
demands on the rigor of password selection. Given that it is seldom practical to have a
unique password for every Internet site, we can make the following recommendations:

• Don’t use any password from any of your regular computer accounts for any
Internet sites, and vice versa. (I can’t repeat this often enough).

• Select all passwords for Internet sites using the same good password selection
principles as for any other password.

• There is no harm in using the same password for all of the unimportant sites,
especially those requiring a (nuisance) password for access to otherwise free
information.

• You may also choose to use the same password for fee-based information sites
(depending upon the extent to which you wish to protect against unauthorized
access to such sites), or you may choose to use a different one, but again there is
probably no harm in using the same one for more than one site.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 287

• Consider using a different password at each site where there is anything to lose.
Doing so may still result in a large number of passwords to be remembered, and
there are many strategies for dealing with this. The most obvious is to write
them down. I tend not to prefer this approach; it may be that too many years of
system administration have made the mere idea of writing down any password
anathema to me, but keeping such a list in a secure location at home is probably
an acceptable risk (I wouldn’t keep such a list in my wallet or on my PDA).

Another approach is to have a different password at each site but to use a consis-
tent scheme for selecting them. As a simple example, one might generate each
password by taking one’s favorite woman’s name that begins with the same let-
ter as the most important word in the site name, transforming the spelling
according to some rule, and appending a favorite number. By constructing pass-
words in the same way for each site, you can always reconstruct the password
for a given site if it is forgotten. Ideally, you would devise a password scheme
that generates a deterministic password for a given site and prevents frequent
duplicates (the latter is probably not true of this simple example).

Setting Password Restrictions
Users don’t like to change their passwords. However, Unix provides mechanisms by
which you can force them to do so anyway. You can specify how long a user can
keep the same password before being forced to change it (the maximum password
lifetime), how long he must keep a new password before being allowed to change it
again (the minimum password lifetime), the minimum password length, and some
other related parameters. Setting the minimum and maximum password lifetimes is
referred to as specifying password aging information.

Before you decide to turn on password aging on your system, you should consider
carefully how much password fascism you really need. Forcing users to change their
password when they don’t want to is one of the least effective system security tac-
tics. Certainly, there are times when passwords must be changed whether users like
it or not, such as when an employee with high-level system access is terminated.
However, random forced password changes don’t ensure that good passwords will
be chosen (in fact, the opposite effect is at least as likely). And using a minimum
password lifetime to prevent a user from changing her new password right back to
what it was before (a password she liked and could remember without writing it
down) can also have some unexpected side effects.

One potential problem with a minimum password lifetime comes when a password
really needs to be changed—when someone who shouldn’t know it does, for exam-
ple. At such times, a user might be unable to change his password even though he
needs to. Of course, the superuser can always change passwords, but then the user
will have to hunt down the system administrator, admit what happened, and get it
changed. Depending on the security policies and general atmosphere at your site, the
user may decide just to wait until the minimum lifetime expires and change it

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 6: Managing Users and Groups

himself, and live with the risk until then. You’ll need to decide which is more likely
on your system: users attempting to circumvent necessary password aging or users
needing to be able to change their passwords at will; either one could be more
important for system security in your particular situation.

Many Unix versions also offer other controls related to password selection and
related items:

• Minimum password length

• Password selection controls, such as using more than one character class (lower-
case letters, uppercase letters, numbers, and symbols) and avoiding personal
information and dictionary words

• Password history lists, preventing users from reselecting recent passwords

• Automatic account locking after too many failed login attempts (discussed previ-
ously

• Account expiration dates

Password aging

On most systems, password aging settings for user accounts are stored with the
entries in the shadow password file. As we noted earlier, entries in the shadow pass-
word file have the following syntax:

username:coded password:last_change:minlife:maxlife:warn:inactive:expires:unused

where username is the name of the user account, and coded password is the encoded
user password. The remaining fields within each entry control the conditions under
which a user is allowed to and is forced to change his password, as well as an
optional account expiration date:

last_change
Stores the date of the last password change, expressed as the number of days
since January 1, 1970. Set to 0 to force a password change at the next login
(works only when max_days is greater than 0 and less than the number of days
since 1/1/1970).

maxlife
Specifies maximum number of days that a user is allowed to keep the same pass-
word (traditionally set to a high value such as 9999 to disable this feature).

minlife
Specifies how long a user must keep a new password before he is allowed to
change it again; it is designed to prevent a user from circumventing a forced
password change by changing his password and then changing it right back
again to the old value (set to zero to disable this feature).

warn
Indicates how many days in advance the user will be notified of an upcoming
password expiration (leave blank to disable this feature).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 289

inactive
Specifies the number of days after the password expires that the account will be
automatically disabled if the password has not changed (set to –1 to disable this
feature).

expires
Specifies the date on which the account expires and will be automatically dis-
abled (leave blank to disable this feature).

The settings provide a system administrator with considerable control over user pass-
word updating practices.

You can edit these fields directly in the shadow password file, or you may use the
command provided by the system, usually passwd (Linux systems use the chage com-
mand). The options corresponding to each setting are listed in Table 6-9.

HP-UX and Tru64 systems running enhanced security and AIX provide the same
functionality via different mechanisms: the protected password database and the set-
tings in the /etc/security/user configuration file, respectively. FreeBSD provides an
account expiration date via a field in the master.passwd file. Table 6-10 also lists the
commands for modifying this data.

Table 6-10. Specifying user account password aging settings

Setting Command

Minimum lifetime AIX: chuser minage=weeks
HP-UX: passwd -n days

Linux: chage -m days

Solaris: passwd -n days

Tru64: usermod -x password_min_change_time=days

Maximum lifetime AIX: chuser maxage=weeks
HP-UX: passwd -x days

Linux: chage -M days

Solaris: passwd -x days

Tru64: usermod -x password_expire_time=days

Warning period AIX: chuser pwdwarntime=days
HP-UX: passwd -w days

Linux: chage -W days

Solaris: passwd -w days

Inactivity period AIX: chuser maxexpired=weeks
Linux: chage -I days

Tru64: usermod -x account_inactive=days

Expiration date AIX: chuser expires=MMDDhhmmyy
FreeBSD: chpass -e date

Linux: chage -E days

Tru64: usermod -x account_expiration=date

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 6: Managing Users and Groups

For example, the following commands set the minimum password age to seven days
and the maximum password age to one year for user chavez:

passwd -n 7 -x 365 chavez HP-UX and Solaris
chage -m 7 -M 365 chavez Linux
chuser maxage=52 minage=1 chavez AIX
usermod -x password_min_change_time=7 \ Tru64
 password_expire_time=365 chavez

Here is the display produced by passwd -s for listing a user’s password aging settings:

passwd -s chavez
chavez PS 05/12/2000 0 183 7 -1

The second item in the display is the password status, one of PS or P (password
defined), NP (no password), or LK or L (account is locked via a password modifica-
tion). The third item is the date chavez last changed her password. The fourth and
fifth items indicate the minimum and maximum password lifetimes (in days), and
the sixth item shows the number of days prior to password expiration that chavez
will begin to receive messages to that effect. The final column indicates the inactivity
period. In our example, chavez must change her password about twice a year, and
she will be warned seven days before her password expires; the minimum password
age and inactivity periods are not used.

Here is the corresponding display produced by chage under Linux, which is much
more informative and self-explanatory:

chage -l harvey
Minimum: 0
Maximum: 99999
Warning: 0
Inactive: -1
Last Change: Sep 05, 2002
Password Expires: Never
Password Inactive: Never
Account Expires: Never

These settings provide user harvey with complete freedom about when (or if) to
change his password.

You can also set user account password aging settings with most of the graphical
administrative tools we considered earlier. Figure 6-12 illustrates these features.

Last change date FreeBSD: chpass (interactive)
Linux: chage -d yyyy-mm-dd (or days-since-1/1/1970)

View settings AIX: lsuser -f
HP-UX: passwd -s
Linux: chage -l
Solaris: passwd -s
Tru64: edauth -g

Table 6-10. Specifying user account password aging settings (continued)

Setting Command

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 291

Starting from the upper left and moving clockwise, the figure shows the forms pro-
vided by HP-UX’s SAM, Solaris’ SMC, AIX’s SMIT, the Red Hat User Manager, and
YaST2. The latter provides a convenient way of setting the system default password
aging and length settings (it is reached via the Security ➝ Local security configuration
➝ Predefined security level ➝ Custom settings path from the main panel). Note that
three of the four dialogs also include other password-related controls in addition to
aging settings. We’ll consider them in the next few subsections of this chapter.

Password triviality checks

Security weaknesses arising from user passwords are of two main sorts: poorly cho-
sen passwords are easy to guess or crack, and passwords of any quality may be dis-
covered or inadvertently revealed in a variety of ways. Imposing password aging
restrictions represents an attempt to deal with the second sort of risk by admitting up
front that sometimes passwords are discovered and by reasoning that changing them
periodically will deal with these exigencies.

Figure 6-12. Specifying password aging settings

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 6: Managing Users and Groups

Helping users to choose better, more secure passwords in the first place is the goal of
password triviality checking systems (the process is also known as obscurity check-
ing and checking for obviousness). This approach involves checking a new password
proposed by a user for various characteristics that will make it easy to crack and
rejecting the password if these characteristics are found. Obscurity-checking capabil-
ities are usually integrated into the passwd command and may reject passwords of a
variety of types, including the following:

• Passwords shorter than some minimum length

• All lowercase or all alphabetic passwords

• Passwords that are the same as the account’s username or any of the informa-
tion in the GECOS field of its password file entry

• Simple transformations of GECOS items: reversals, rotations, doubling

• Passwords or partial passwords that appear in online dictionaries

• Passwords that are simple keyboard patterns—e.g., qwerty or 123456—and thus
easily discerned by an observer

Many Unix systems check for the second and third items on the list automatically.
Unfortunately, these tests still accept many poor passwords. Some versions allow
you to optionally impose additional checks.

Fascist or Slave?
Sometimes, that would seem to be the choice that system administrators have. If you
don’t rule your system with an iron hand and keep users in their place, those same
hordes of users will take advantage of you and bury you with their continuous
demands. The Local Guru/Unix Wizard role isn’t really an alternative to these two
extremes; it is just a more benign version of the fascist—the system administrator is
still somehow fundamentally different than users and just as inflexible and unap-
proachable as the overt despot.

Of course, there are alternatives, but I’m not thinking of some sort of stereotypical,
happy-medium type solution, as if it really were possible. The solution in this case isn’t
some shade of gray, but a different color altogether. It is time to think about what other
metaphors might be used to describe the relationship of a system administrator to his
user community. There are many possibilities—resource, service provider, mentor,
technical attache, regent, conductor (as in orchestra, not train or electricity), catalyst—
and obviously there’s not just one right answer. What all of these suggested alterna-
tives attempt to capture is some sense of the interdependence of system administrators
and the users with whom they are connected.

Not that defining the system administrator/users role in some other way will be easy.
Users, as least as much as system administrators, are comfortable with the familiar, ste-
reotypical ways of thinking about the job, even if they are seldom entirely satisfied with
what they yield in practice.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 293

Tru64. Tru64 automatically checks that new passwords are not the same as any local
username or group name, are not palindromes, and are not recognized by the spell
utility (the final test means that the password may not appear in the online dictio-
nary /usr/share/dict/words, nor be a simple transformation, such as a plural form, of a
word within it). Triviality checks are imposed if the user’s protected password data-
base file contains the u_restrict field, which corresponds to the Triviality checks
check box on the Modify Account form.

AIX. AIX provides a different subset of triviality-checking capabilities via these
account attributes (stored in /etc/security/user), which may also be specified using the
chuser command:

minalpha
Minimum number of alphabetic characters in the password.

minother
Minimum number of nonalphabetic characters in the new password.

mindiff
Minimum number of characters in the new password that are not present in the
old password.

maxrepeats
Maximum number of times any single character can appear in the password.

minlen
Minimum password length. However, if the sum of minalpha and minother is
less than minlen, the former is the minimum length that is actually imposed, up
to the systemwide maximum of 8.

dictionlist
Comma-separated list of dictionary files containing unacceptable passwords

pwdchecks
List of site-specific loadable program modules for performing additional pass-
word preselection checking (see the pwdrestrict_method subroutine manual page).

By default, password triviality checking is not imposed. The dictionlist attribute
allows site-specific word lists to be added to the standard online dictionary, and the
pwdchecks attribute provides a hook for whatever checking a site deems appropriate,
although developing such a module will take time.

Here are some sample settings that impose a reasonable set of password content
restrictions:

minalpha=6
minother=2
maxrepeats=2
mindiff=2

Linux. Linux systems provide a very simple password obscurity checking facility. It is
enabled via the OBSCURE_CHECK_ENAB entry in the /etc/login.defs configuration

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 6: Managing Users and Groups

file. The facility performs some simple checks on its own and then calls the library
provided with the Crack password-cracking package (described later in this chap-
ter). The path to the associated dictionary files can be specified with the
CRACKLIB_DICTPATH entry in the same file.

Note that the obscurity checks do not apply when the superuser changes any pass-
word, but you can specify whether root is warned when a specified password would
not pass via the PASS_ALWAYS_WARN setting.

FreeBSD. FreeBSD provides password content controls via user classes; the settings
are accordingly specified in /etc/login.conf. These are the most useful:

minpasswordlen
Minimum password length.

passwd_format
Password encoding scheme. The md5 setting enables passwords longer than 8
characters.

mixpasswordcase
If set to true, all lowercase passwords are disallowed.

The freely available npasswd command

If you’d like to precheck user passwords but your version of Unix doesn’t provide
this feature, or if you want to impose more rigorous restrictions on password selec-
tion than your system supports, there are freely available programs that you can use
for this purpose. For example, the npasswd package (written by Clyde Hoover) is
widely available (including all of our systems). It provides a replacement for the nor-
mal passwd command that can be configured to check proposed passwords accord-
ing to a variety of criteria.

Looking at npasswd’s configuration file, which is /usr/lib/passwd/passwd.conf by
default, provides a good sense of the kind of checking it does:

npasswd configuration file
Dictionaries
passwd.dictionaries /usr/dict/words
passwd.dictionaries /usr/dict/new_words
passwd.dictionaries /etc/local_words
Content controls
passwd.singlecase no Disallow single-case passwords.
passwd.alphaonly no Disallow all alphabetic passwords.
passwd.charclasses 2 Minimum number of character types in password.
passwd.whitespace yes Allow whitespace characters in passwords.
passwd.printableonly no Allow nonprinting characters in passwords.
passwd.maxrepeat 2 Only two adjacent characters can be the same.
Minimum password length
passwd.minpassword 8

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 295

npasswd performs some simple length and character-type tests on a proposed pass-
word and then checks it against the words in the dictionaries specified in the config-
uration file.

Checking a proposed password against every login name, group name, and so on, on
the system—rather than merely against the user’s own—seems an unambiguous
improvement. It is fairly easy to generate a list of such words. The following script
performs a basic version of this task:

#!/bin/sh
mk_local_words - generate local word list file
PATH=/bin:/usr/bin:/usr/ucb; export PATH
umask 077# protect against prying eyes
rm -f /etc/local_words
set `hostname | awk -F. '{print $1,$2,$3,$4,$5,$6,$7}'`
while [$# -gt 0]; do
 echo $1 >> /etc/local_tmp; shift
done
set `domainname | awk -F. '{print $1,$2,$3,$4,$5,$6,$7}'`
while [$# -gt 0]; do
 echo $1 >> /etc/local_tmp; shift
done
usernames, then GECOS names
cat /etc/passwd | awk -F: '{print $1}' >> /etc/local_tmp
cat /etc/passwd | awk -F: '{print $5}' | \
 awk -F, '{print $1}' | \
 awk '{print tolower($1)};{print tolower($2)}' | \
 grep -v '^$' >> /etc/local_tmp
cat /etc/group | awk -F: '{print $1}' >> /etc/local_tmp
cat /etc/hosts.equiv >> /etc/local_tmp
add other local stuff to this file (e.g. org name)
if [-f /etc/local_names]; then
 chmod 400 /etc/local_names
 cat /etc/local_names >> /etc/local_tmp
fi
sort /etc/local_tmp | uniq > /etc/local_words
rm -f /etc/local_tmp

This version can be easily modified or extended to capture the important words on
your system. Note that standard awk does not contain the tolower function, although
both nawk and gawk (GNU awk) do.

Password history lists

Users tend to dislike creating new passwords almost as much as they dislike having
to change them in the first place, so it is a common practice for users to oscillate
between the same two passwords. Password history records are designed to prevent
this. Some number of previous passwords for each user are remembered by the sys-
tem and cannot be reselected. The HP-UX, Tru64, and AIX password facilities offer
this feature. Note that the password history feature is only effective when it is com-
bined with a minimum password lifetime (otherwise, a user can just keep changing
his password until the one he wants falls off the list).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 6: Managing Users and Groups

Under AIX, the following attributes in /etc/security/user control how and when previ-
ous passwords can be reused:

histexpire
Number of weeks until a user can reuse an old password (maximum is 260,
which is 5 years).

histsize
The number of old passwords to remember and reject if reselected too soon
(maximum is 50).

On Tru64 systems, this feature is enabled when the u_pwdepth in a user’s protected
password database file is nonzero. Its maximum value is 9. It corresponds to the
Password History Limit slider on the user account modification screen. The list of
old passwords is stored in the u_pwdict field, and items cannot be reselected as long
as they remain in the history list.

On HP-UX systems, password history settings can be specified on a system-wide
basis in the /etc/default/security file, as in this example:

PASSWORD_HISTORY_DEPTH=5 Remember 5 passwords.

The maximum setting is 10.

Password settings default values

Default values for password aging settings can be specified on systems using them.
These are the default value locations on the systems we are considering:

We’ve seen examples of most of these already.

Here is an example of the Linux defaults file, /etc/login.defs:

PASS_MAX_DAYS 90 Must change every 3 months.
PASS_MIN_DAYS 3 Keep new password 3 days.
PASS_WARN_AGE 7 Warn 7 days before expiration.
PASS_MIN_LEN 8 Passwords must be at least 8 chars long.
OBSCURE_CHECKS_ENABLE yes Reject very poor passwords.
PASS_CHANGE_TRIES 3 Users get 3 tries to pick a valid password.
PASS_ALWAYS_WARN yes Warn root of bad passwords (but allow).
PASS_MAX_LEN 8 Encode this many password characters.
CRACKLIB_DICTPATH /usr/lib/cracklib_dict Path to dictionary files.

AIX The default stanza in /etc/security/user
FreeBSD The default user class in /etc/login.conf (although this serves as a

default only for users not assigned to a specific class)
HP-UX /etc/default/security and /tcb/auth/files/system/default
Linux /etc/login.defs
Solaris /etc/default/passwd and /etc/default/login
Tru64 /etc/auth/system/default

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 297

Note that some of these settings can interact with the PAM facility used on most
Linux systems, so they may not operate exactly as described in this section. PAM is
discussed later in this chapter.

The Solaris /etc/default/passwd file is very similar (although the attribute names are
spelled differently):

MAXWEEKS=1 Keep new passwords for one week.
MINWEEKS=26 Password expires after 6 months.
PASSLENGTH=6 Minimum password length.
WARNWEEKS=1 Warn user 7 days before expiration.

Testing User Passwords for Weaknesses
As we’ve noted, having users select effective passwords is one of the best ways to
protect system security, and educating them about good selection principles can go a
long way in this direction. Sometimes, however, you want to be able to assess how
well users are doing at this task. Attempting to discern user passwords using a pass-
word-cracking program is one way to go about finding out. In this section, we will
consider two such programs, crack and john, beginning with the latter, somewhat
simpler facility.

It is usually reasonable to test the security of passwords on systems
you administer (depending on site policies). However, cautious
administrators obtain written permission to run password cracking
programs against their own systems.

In contrast, attempting to crack passwords on computers you don’t
administer is both unethical and (in most cases) illegal. Avoid this
temptation and the complications it can bring.

John the Ripper

The John package—its full name is John the Ripper—is an easy-to-use and effective
password cracking facility. It is available for all of the Unix systems we are considering.

Once installed, the john command is used to test the passwords contained in the
password file given as its argument. The package includes the unshadow command,
which can be used to create a traditional Unix password file from passwd and shadow
files.

Here is a simple example of running john:

unshadow /etc/passwd /etc/shadow > /secure/pwdtest
chmod go= /secure/pwdtest
john -rules -wordfile:/usr/dict/many_words /secure/pwdtest

The first command creates a password file for testing, and the second command pro-
tects it from unauthorized access. The final command initiates a john session (which
it starts in the background), in this case checking the passwords against the words in
the specified dictionary file and many transformations of these words.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 6: Managing Users and Groups

As john runs, it periodically writes status information to files in its installation direc-
tory (usually /usr/lib/john); the file john.pot holds information about the passwords
cracked so far, and the file restore contains information necessary for restarting the
current session if it is interrupted (the command to do so is simply john -restore).
You can specify an alternate restart filename by including the -session:name option
on the john command line, which takes the desired session name as its argument and
names the file accordingly.

The john facility can operate in several distinct password-cracking modes (requested
via distinct options to the john command):

Single crack mode (-single)
Passwords are checked against GECOS field information and a multitude of
transformations of it.

Wordlist mode (-rules)
Passwords are checked against the words in a dictionary file—a text file contain-
ing one word per line—whose location can be specified as an argument to the -
wordfile option. The default file is /var/lib/john/password.lst. The transforma-
tions are defined in the facility’s configuration file and can be extended and/or
customized by the system administrator.

Incremental mode (-incremental[:modename])
Tries all combinations of characters or a subset of characters in a brute-force
attempt to crack passwords. The optional modename specifies the character sub-
set to use, as defined in john’s configuration file (discussed below). This mode
can take an arbitrarily long amount of time to complete.

External mode (-external:modename)
Attempt to crack passwords using an administrator-defined procedure specified
in the configuration file (written in a C-like language). The modename specifies
which procedure to use.

As we noted, John records its progress periodically to its restart file. You can force
this information to be written and displayed using commands like these:

kill -HUP pid
john -status
guesses: 3 time: 0:00:21:52 68% c/s: 46329

Similarly, the following command reports the last recorded status information for the
session named urgent:

john -status:urgent

Some aspects of john’s functioning are controlled by the facility’s configuration file,
typically /var/lib/john/john.ini. Here are some sample entries from that file:

John settings
[Options]
Wordlist file name, to be used in batch mode
Wordfile = /var/lib/john/password.lst

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 299

If Y, use idle cycles only
Idle = N
Crash recovery file saving delay in seconds
Save = 600
Beep when a password is found (who needs this anyway?)
Beep = N

Later sections of this file contain rules/specifications of the procedures for each of
the cracking modes.

Using Crack to find poorly chosen passwords

Crack is a freely available package that attempts to determine Unix passwords using
the words in an online dictionary as starting points for generating guesses. The pack-
age includes a lot of files and may seem somewhat daunting at first, but it generally
builds without problems and is actually quite easy to use. These are the most impor-
tant parts of its directory structure (all relative to its top-level directory, created when
the package is unpacked):

Crack
Crack driver script; edit the first section of the script to configure Crack for your
system, and then build the package with the Crack -makeonly command. This
same script is used to run the program itself.

Dict
Subdirectory tree containing dictionary source files (in addition to the standard
online dictionary, usually /usr/dict/words). Dictionary source files are text files
containing one word per line, and they are given the extension .dwg. You may
add files here as desired; placing them into one of the existing subdirectories is
the easiest way.

src
Location of Crack source code.

scripts/mkgecosd
Rules for generating guesses from GECOS field entries.

conf/rules.*
Rules for generating guesses from dictionary words.

run/F-merged
Text file containing clear text form of all cracked passwords. We don’t advise
keeping this file online except when you are actually running Crack. During a
Crack run, several other temporary files are also kept here.

run/Dhost.pid
Results files for a particular Crack run, including passwords cracked during that
run (the hostname and PID filename components are filled in as appropriate).

run/dict
The compressed Crack dictionaries used during a run are built as needed and
stored here.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 6: Managing Users and Groups

The entire Crack directory tree should be owned by root and should allow no access
by anyone but root.

Crack also provides a utility to convert the password and shadow password files into
a single conventional-style file suitable for use by the program; it is named
shadowmrg.sv and is stored in the scripts subdirectory. It takes the two filenames as
its arguments and writes the merged file to standard output.

Here is an example invocation of Crack:

Crack -nice 5 /secure/pwdtest

The script builds the compressed dictionary files, if necessary, and then starts the
password cracker program in the background. While Crack is running, you can use
the Reporter script to check on its progress (located in the same directory as the
Crack script). In this case, Crack runs at lower priority than normal jobs due to the
inclusion of -nice.

If you want to stop a Crack run in progress, run the plaster script in the scripts
subdirectory.

Eventually—or quickly, depending on the speed of your CPU and the length of the
dictionary files—Crack produces output like the following (in the file Dhost.pid
where host is the hostname and pid is the process ID of the main Crack process):

I:968296152:OpenDictStream: status: /ok/ stat=1 look=679 find=679
genset='conf/rules.basic' rule='!?Xc' dgrp='1'
 prog='smartcat run/dict/1.*'
O:968296152:679
I:968296155:LoadDictionary: loaded 130614 words into memory
G:968296209:KHcqrOsvoY80o:Arcana

The general procedure Crack uses is illustrated by this output. It opens each dictio-
nary file in turn and then applies each rule from the various collection of rules files in
the run subdirectory to the words in it, using each transformed word as a guess for
every remaining uncracked user password. When it finds a match, it displays the
cracked and encoded versions of the password in the output; in this example, the
password “Arcana” has just been cracked. Once a rule has been applied to every dic-
tionary word and every password, Crack continues on to the next rule, and
eventually on to the next dictionary, until all possibilities have been exhausted or all
passwords have been cracked.

Rules specify transformations to apply to a dictionary word and are written using a
metalanguage unique to Crack. Here are some example entries illustrating some of
its features:

!?Al Choose only all-alphabetic-character words and convert to
lowercase before using as a guess.

!?Ac Choose only all-alphabetic-character words and capitalize.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administering User Passwords | 301

The installed rules files contain several important types of transformations, and they
can be extended and customized as desired.

Once a Crack run has completed, it is important to remove any remaining scratch
files, because they may contain clear-text passwords. Running the command make
tidy is one way to do so. You will also want to copy the D* results files and run/F-
merged file to offline storage and then delete the online copies (restoring the latter
the next time you want to run Crack).

There are several large dictionary files available on the Internet (for
example, see ftp://ftp.ox.ac.uk/pub/wordlists). Using them to augment
the standard Unix dictionary (and any package-provided ones) will
make any password cracking program more successful (but it will also
take longer to complete).

How well do they do?

We ran Crack and John on a password file containing several poorly chosen pass-
words. Table 6-11 shows the results we obtained with the standard program options
and configurations, using only the standard Unix dictionary with the words “arcana”
and “vermillion” added.

>4r Select words longer than four characters and reverse them.
Other transformations are reflection (f) and doubling (d).

>2<8!?A$0 Choose all alphabetic words having 3–7 characters and add
a final “0”.

>2<8!?A$1 Same as previous but adds a final “1”.
>2<7!?A$2$2 Choose all-alphabetic words of 3–6 characters and append

“22”.
>7!?Alx05$9$9 Choose all-alphabetic words of 8 or more characters, convert

to lowercase, extract the first 6 characters, and append “99”
(note that character numbering within a word begins at 0).

Table 6-11. Password-cracking results

Test Password Crack John

vermilli yes yes

marymary yes yes

maryyram yes yes

arcana yes yes

Arcana yes yes

arcana1 yes yes

arca^Na no no

arcana# no no

arcana24 no no

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 6: Managing Users and Groups

Both of them cracked passwords with simple transformations, but not with special
characters or the addition of two numerals. However, adding rules to either facility
to handle these cases is very easy.

User Authentication with PAM
Traditionally, with very few exceptions, user authentication on Unix systems occurs
at login time. In recent years, however, a new scheme has emerged that allows the
authentication process to be performed and customized for a variety of system con-
texts. This functionality is provided by the PAM facility.

PAM stands for Pluggable Authentication Modules. PAM is a general user authenti-
cation facility available under and provided by current versions of FreeBSD, HP-UX,
Linux, and Solaris. PAM’s goal is to provide a flexible and administrator-config-
urable mechanism for authenticating users, independent of the various programs and
facilities which require authentication services. In this way, programs can be devel-
oped independently of any specific user-authentication scheme instead of having one
explicitly or implicitly embedded within them. When using this approach, utilities
call various authentication modules at runtime to perform the actual user-validation
process, and the utilities then act appropriately depending on the results the mod-
ules return to them.

There are several components to the PAM facility:

• PAM-aware versions of traditional Unix authentication programs (for example,
login and passwd). Such programs are referred to as services.

• Modules to perform various specific authentication tasks. These are imple-
mented as shared libraries (.so files), stored in /lib/security under Linux, /usr/lib/
security under Solaris and HP-UX, and in /usr/lib under FreeBSD. Each module is
responsible for just one small aspect of authentication. After executing, a mod-
ule returns its result value to the PAM facility, indicating whether it will grant
access or deny access to the user in question. A module may also return a neu-
tral value, corresponding to no specific decision (essentially abstaining from the
final decision).*

• Configuration data indicating what authentication process should be performed
for each supported service, specified via one or more PAM configuration files.
On Linux systems, each service has its own configuration file—with the same
name as the service itself—in the directory /etc/pam.d (thus, the configuration
file for the login service would be /etc/pam.d/login). Alternatively, the entire facil-
ity may use a single configuration file, conventionally /etc/pam.conf; this is how
the other three systems are set up by default. If both sorts of configuration

* For information about available PAM modules, see http://www.kernel.org/pub/linux/libs/pam/modules.html.
Although this location is part of a Linux site, most PAM modules can be built for other systems, as well.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication with PAM | 303

information are present (and the PAM facility has been compiled to allow multi-
ple configuration sources), the files in /etc/pam.d take precedence over the con-
tents of /etc/pam.conf.

• Additional configuration settings required by some of the PAM modules. These
configuration files are stored in /etc/security, and they have the same name as the
corresponding service with the extension .conf appended.

The best way to understand how PAM works is with an example. Here is a simple
PAM configuration file from a Linux system; this file is used by the su service:*

auth sufficient /lib/security/pam_rootok.so
auth required /lib/security/pam_wheel.so
auth required /lib/security/pam_unix.so shadow nullok
account required /lib/security/pam_unix.so
password required /lib/security/pam_unix.so
session required /lib/security/pam_unix.so

As you can see, there are four types of entries that may appear within a PAM configu-
ration file. Auth entries specify procedures for user authentication. Account entries
are used to set user account attributes and apply account controls. Password entries
are used when a password changes within the context of the current service. Session
entries are generally used at present for login purposes to the syslog facility. The
group of entries of a particular type are processed in turn and form a stack. In the
example file, there is a stack of three auth entries and a single entry of each of the
other three types.

The second field in each entry is a keyword that specifies how the results of that par-
ticular module affect the outcome of the entire authentication process. In its sim-
plest form,† this field consists of one of four keywords:

sufficient
If this module grants access to the user, skip any remaining modules in the stack
and return an authentication success value to the service).

requisite
If this module denies access, return an authentication failure value to the service
and skip any remaining modules in the stack.

required
This module must grant access in order for the entire authentication process to
succeed.

optional
The result of this module will be used to determine access only if no other mod-
ule is deterministic.

* The format for the corresponding /etc/pam.conf file entries differs only slightly; the service name becomes
the first field, with the remaining fields following, as in this example: su auth sufficient /usr/lib/
security/pam_unix.so.

† There is a newer, more complex syntax for the severity field, which we will consider later in this section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 6: Managing Users and Groups

The first two keywords are easy to understand, because they immediately either
allow or deny access and terminate the authentication process at that point. The sec-
ond two indicate whether the module is an essential, integral part of the authentica-
tion process. If no module denies or grants access before all of the modules in the
stack have executed, authentication success or failure is determined by combining
the results of all the required modules. If at least one of them grants access and none
of them denies it, authentication is successful. Optional modules are used only when
no definitive decision is reached by the required modules.

The third field in each configuration file entry is the path to the desired module
(sometimes, only a filename is given, in which case the default library location is
assumed). Any required and/or optional arguments used by the module follow its
path.

Looking again at the su PAM configuration file, we can now decode the authentica-
tion process that it prescribes. When a user enters an su command, three modules
are used to determine whether she is allowed to execute it. First, the pam_rootok
module runs. This module checks whether or not the user is root (via the real UID).
If so, success is returned, and authentication ends here because of the sufficient key-
word (root does not need to enter any sort of password in order to use su); if the user
is not root, authentication continues on to the next module. The pam_wheel module
checks whether the user is a member of the system group allowed to su to root,
returning success or failure accordingly (emulating a feature of BSD Unix systems),
thereby limiting access to the command to that group. The authentication process
then continues with the pam_unix module, which requests and verifies the appropri-
ate password for the command being attempted (which depends on the specific user
who is the target of su); it returns success or failure depending on whether the cor-
rect password is entered. This module is given two arguments in this instance:
shadow indicates that a shadow password file is in use, and nullok says that a null
password for the target account is acceptable (omitting this keyword effectively dis-
ables accounts without passwords).

The other three entries in the configuration file all call the same module, pam_unix.
In the account context, this module establishes the status of the target user’s account
and password, generating an automatic password change if appropriate; the pass-
word entry is invoked when such a password change is necessary, and it handles the
mechanics of that process. Finally, this session entry generates a syslog entry for this
invocation of su.

Many PAM modules allow for quite a bit of configuration. The pam_wheel module,
for example, allows you to specify which group su access is limited to (via its group
option). It also allows you to grant access to everyone except members of a specific
group (via the deny option). Consult the PAM documentation, usually found within
the /usr/doc tree, for full details on the activities and options for available modules.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication with PAM | 305

Here is a more complex configuration file, for the rlogin service, again taken from a
Linux system:

auth requisite /lib/security/pam_securetty.so
auth requisite /lib/security/pam_nologin.so
auth sufficient /lib/security/pam_rhosts_auth.so
auth required /lib/security/pam_unix.so
account required /lib/security/pam_unix.so
account required /lib/security/pam_time.so
password required /lib/security/pam_cracklib.so retry=3 \
 type=UNIX minlen=10 ocredit=2 \
 dcredit=2
password required /lib/security/pam_unix.so \
 use_authtok shadow md5
session required /lib/security/pam_unix.so
session optional /lib/security/pam_motd.so motd=/etc/pmotd

When a user attempts to connect to the system via the rlogin service, authentication
proceeds as follows: the pam_securetty module presents connections to the root
account via rlogin (if someone attempts to rlogin as root, the module returns fail-
ure, and authentication ends due to the requisite keyword).

Next, the pam_nologin module determines whether the file /etc/nologin exists; if so,
its contents are displayed to the user, and authentication fails immediately. When /
etc/nologin is not present, the pam_rhosts_auth module determines whether the tradi-
tional Unix /etc/hosts.equiv mechanisms allow access to the system or not; if so,
authentication succeeds immediately. In all cases, the pam_unix module prompts for
a user password (the module uses the same arguments here as in the preceding
example).

If authentication succeeds, the account stack comes into play. First, user account and
password controls are checked via the pam_unix module (which makes sure that the
account is not expired and determines whether the password needs to be changed at
this time). Next, the pam_time module consults its configuration file to determine
whether this user is allowed to log in at the current time (discussed below). In order
for system access to be granted, neither of these modules must deny access, and at
least one of them must explicitly grant it.

When a password change is required, the password stack is used. The first module,
pam_cracklib, performs several different triviality checks on the new password before
allowing it to be chosen. This module is discussed in more detail later in this section.

Finally, the first session entry generates a syslog entry each time the rlogin service is
used. The second session entry displays a message-of-the-day at the end of the login
process, displaying the contents of the file specified with the pam_motd’s motd option.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 6: Managing Users and Groups

PAM Defaults
The PAM facility also defines an additional service called other, which serves as a
default authentication scheme for commands and facilities not specifically defined as
PAM services. The settings for the other service are used whenever an application
requests authentication but has no individual configuration data defined. Here is a
typical other configuration file:

auth required pam_warn.so
auth required pam_deny.so

These entries display a warning to the user that PAM has not been configured for the
requested service, and then deny access in all cases.

PAM Modules Under Linux
As these examples have indicated, Linux systems provide a rich variety of PAM mod-
ules. Unfortunately, the other systems we are considering are not as well provided for
by default, and you will have to build additional modules if you want them.

We will now briefly list the most important Linux PAM modules. Two of the most
important are discussed in more detail in subsequent subsections of this chapter. For
each module, the stacks in which it may be called are given in parentheses.

pam_deny (account, auth, passwd, session)
pam_permit (account, auth, passwd, session)

Deny/allow all access by always returning failure/success (respectively). These
modules do not log, so stack them with pam_warn to log the events.

pam_warn (account, auth, passwd, session)
Log information about the calling user and host to syslog.

pam_access (account)
Specify system access based on user account and originating host/domain as in
the widely used logdaemon facility. Its configuration file is /etc/security/access.conf.

pam_unix (account, auth, passwd, session)
pam_pwdb (account, auth, passwd, session)

Two modules for verifying and changing user passwords. When used in the auth
stack, the modules check the entered user password.

When used as an account module, they determine whether a password change is
required (based on password aging settings in the shadow password file); if so,
they delay access to the system until the password has been changed.

When used as a password component, the modules update the user password.
In this context, the shadow (use the shadow password file) and try_first_pass
options are useful; the latter forces the modules to use the password given to a
previous module in the stack (rather than generating another, redundant pass-
word prompt).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication with PAM | 307

In any of these modes, the nullok option is required if you want to allow users to
have blank passwords, even as initial passwords to be changed at the first login;
otherwise, the modules will return an authorization failure.

pam_cracklib (passwd)
Password triviality checking. Needs to be stacked with pam_pwdb or pam_unix.
See the separate discussion below.

pam_pwcheck (passwd)
Another password-checking module, checking that the proposed password con-
forms to the settings specified in /etc/login.defs (discussed previously in this
chapter).

pam_env (auth)
Set or unset environment variables with a PAM stack. It uses the configuration
file /etc/security/pam_env.conf.

pam_issue (auth)
pam_motd (session)

Display an issue or message-of-the-day file at login. The issue file (which defaults
to /etc/issue) is displayed before the username prompt, and the message of the
day file (defaults to /etc/motd) is displayed at the end of a successful login pro-
cess. The location of the displayed file can be changed via an argument to each
module.

pam_krb4 (auth, passwd, session)
pam_krb5 (auth, passwd, session)

Interface to Kerberos user authentication.

pam_lastlog (auth)
Adds an entry to the /var/log/lastlog file, which contains data about each user
login session.

pam_limits (session)
Sets user process resource limits (root is not affected), as specified in its configu-
ration file, /etc/security/limits.conf (the file must be readable only by the super-
user). This file contains entries of the form:

name hard/soft resource limit-value

where name is a user or group name or an asterisk (indicating the default entry).
The second field indicates whether it is a soft limit, which the user can increase if
desired, or a hard limit, the upper bound that the user cannot exceed. The final
two fields specify the resource in question and the limit assigned to it. The
defined resources are:

as
Maximum address space

core
Maximum core file size

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 6: Managing Users and Groups

cpu
CPU time, in minutes

data
Maximum size of data portion of process memory

fsize
Maximum file size

maxlogins
Maximum simultaneous login sessions

memlock
Maximum locked-in memory

nofile
Maximum number of open files

rss
Maximum resident set

stack
Maximum stack portion of address space

All sizes are expressed in kilobytes.

pam_listfile (auth)
Deny/allow access based on a list of usernames in an external file. This module
is best explained by example (assume this is found in the PAM configuration file
for the ftp facility):

auth required pam_listfile.so onerr=fail sense=deny \
 file=/etc/ftpusers item=user

This entry says that the file /etc/ftpusers (file argument) contains a list of user-
names (item=user) who should be denied access to ftp (sense=allow). If any error
occurs, access will be denied (onerr=fail). If you want to grant access to a list of
users, use the option sense=allow. The item option indicates the kind of data
present in the specified file, one of user, group, rhost, ruser, tty, and shell.

pam_mail (auth, session)
Displays a message indicating whether the user has mail. The default mail file
location (/var/spool/mail) can be changed with the dir argument.

pam_mkhomedir (session)
Creates the user’s home directory if it does not already exist, copying files from
the /etc/skel directory to the new directory (use the skel option to specify a differ-
ent location). You can use the umask option specify a umask to use when the
directory is created (e.g., umask=022).

pam_nologin (auth)
Prevents non-root logins if the file /etc/nologin exists, the contents of which are
displayed to the user.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication with PAM | 309

pam_rhosts_auth (auth)
Performs traditional /etc/rhosts and ~/.rhosts password-free authentication for
remote sessions between networked hosts (see “Network Security” in
Chapter 7).

pam_rootok (auth)
Allows root access without a password.

pam_securetty (auth)
Prevents root access unless the current terminal line is listed in the file /etc/
securetty.

pam_time(account)
Restricts access by time of day, based on user, group, tty, and/or shell. Dis-
cussed in more detail later in this chapter.

pam_wheel (auth)
Designed for the su facility, this module prevents root access by any user who is
not a member of a specified group (group=name option), which defaults to GID
0. You can reverse the logic of the test to deny root access to members of a spe-
cific group by using the deny option along with group.

Checking passwords at selection time

As we’ve seen, the pam_cracklib module can be used to check a proposed user pass-
word for strength. By default, the module checks the entered new password against
each word in its dictionary, /usr/lib/cracklib_dict. It also checks that the new pass-
word is not a trivial transformation of the current one: not a reversal, palindrome,
character case modification, or rotation. The module also checks the password
against the module’s list of previous passwords for the user, stored in /etc/security/
opasswd.

The arguments to this module specify additional criteria to be used for some of these
checks. These are the most important:

retry=n
Number of tries allowed to successfully choose a new password. The default is 1.

type=string
Operating system name to use in prompts (defaults to Linux).

minlen=n
Minimum “length” value for the new password (defaults to 10). This is com-
puted on the basis of the number of characters in the password, along with some
weighting for different types of characters (specified by the various credit argu-
ments). Due to the character-type credit scheme, this value should be equal to or
greater than the desired password length plus one.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 6: Managing Users and Groups

ucredit=u
lcredit=l
dcredit=d
ocredit=o

Maximum “length” credits for having uppercase letters, lowercase letters, digits,
and other characters (respectively) in proposed passwords (all of them default to
1). If set, characters of each type will add 1 to the “length” value, up to the speci-
fied maximum number. For example, dcredit=2 means that having two or more
digits in the new password will add 2 to the number of characters in the pass-
word when comparing its “length” to minlen (one or zero digits will similarly
add 1 or 0 to the “length”).

difok=n
The number of characters in the new password that must not be present in the
old password (old passwords are stored in /etc/security/opasswd). The default is
10. Decrease this value when you are using long MD5 passwords.

As an example, consider our previous invocation of pam_cracklib:

passwordrequiredpam_cracklib.so retry=3 type=Linux \
 minlen=12 ocredit=2 dcredit=2 difok=3

In this case, the user is allowed three tries to select an appropriate password
(retry=3), and the word “Linux” will be used in the new password prompt rather
than Unix (type=Linux). Also, the password must have a minimum length-value of
12, where each character in the password counts as 1, and up to two numbers
(dcredit=2) and two nonalphanumeric characters (ocredit=2) can each add an addi-
tional 1 to the “length.” This effectively forces passwords to be at least seven charac-
ters long, and in that case, they must contain two digits and two non-alphanumeric
characters (7 characters + 1 alpha + 2 digits + 2 other). Passwords containing only
upper- and lowercase letters will have to be at least 10 characters long. The final
option specifies that three characters in the new password must not be present in the
old password.

Specifying allowed times and locations for system access

The pam_time module uses a configuration file, /etc/security/time.conf, that specifies
hours when users may access defined PAM services. Here’s an example:

#services; ttys; users; times (Mo Tu We Th Fr Sa Su Wk Wd Al)
login;tty*;!root & !harvey & !chavez;Wd0000-2400|Wk0800-2000
games;*;smith|jones|williams|wong|sanchez|ng;!Al0700-2000

The first line is a comment indicating the contents of the various fields (note that
entries are separated by semicolons). Each entry within this configuration file speci-
fies when access to the indicated services are allowed; the entry applies when all of
the first three fields match the current situation, and the fourth entry indicates the
times when access is allowed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication with PAM | 311

In our example, the first line specifies that access to the login and rlogin services will
be granted to any user except root, harvey, and chavez (the logical NOT is indicated
by the initial !) all the time on weekends (Wd keyword in the fourth field) and on
weekdays between 8:00 A.M. and 6:00 P.M., on any serial-line connected terminal.
The second line prohibits access to any PAM-aware game by the listed users between
7:00 A.M. and 8:00 P.M. (again, regardless of tty); it does so by granting access at
any time except those noted (again indicated by the initial exclamation point). Note
that & and | are used for logical AND and OR, respectively, and that an asterisk may
be used as a wildcard (although a bare wildcard is allowed only once within the first
three fields).

As you create entries for this configuration file, keep in mind that you
are creating matching rules: use the first three fields to define applica-
bility and the final field to specify allowed or denied access periods.
Note that ampersands/ANDs usually join negative (NOT-ed) items,
and vertical bars/ORs usually join positive items.

Be aware that this module can provide time-based controls only for initial system
access. It does nothing to enforce time limits after users have already logged in; they
can stay logged in as long as they like.

MD5 passwords

Linux and some other Unix systems support much longer passwords (up to at least
128 characters) using the MD5 encryption algorithm. Many PAM modules are also
compatible with such passwords, and they provide an md5 option that may be used
to indicate they are in use and to request their usage. These include pam_pwdb,
pam_unix, pam_cracklib, and pam_pwcheck.

If you decided to enable MD5 passwords, you will need to add the md5 option to all
relevant modules in the configuration files for login, rlogin, su, sshd, and passwd ser-
vices (and perhaps others as well).

Not all Unix facilities are compatible with MD5 passwords. For exam-
ple, some ftp client programs always truncate the entered password
and so will not send long passwords correctly, thereby preventing ftp
access by users with long passwords. Test your environment thor-
oughly before deciding to enable MD5 passwords.

PAM Modules Provided by Other Unix Systems
As we noted earlier, HP-UX, FreeBSD, and Solaris do not provide nearly as many
PAM modules as Linux does by default. Each provides from 8 to 12 modules. All
include a version of the basic password-based authentication module, pam_unix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 6: Managing Users and Groups

(named libpam_unix on HP-UX systems). There are also a few unique modules pro-
vided by these systems, including the following:

More Complex PAM Configuration
The latest versions of PAM introduce a new, more complex syntax for the final sever-
ity field:

return-val=action [, return-val=action [,...]]

where return-val is one of approximately fifteen defined values that a module may
return, and action is a keyword indicating what action should be taken if that return
value is received (in other words, if that condition occurs). The available actions are
ok (grant access), ignore (no opinion on access), bad (deny access), die (immediate
deny access), done (immediate grant access), and reset (ignore the results of all mod-
ules processed so far and force the remaining ones in the stack to make the deci-
sion). In addition, a positive integer (n) may also be specified as the action, which
says to skip next n modules in the stack, allowing simple conditional authentication
schemes to be created.

Here is an example severity field using the new syntax and features:

success=ok,open_err=ignore,cred_insufficient=die,\
 acct_expired=die,authtok_expired=die,default=bad

This entry says that a success return value from the module grants access; it will still
need to be combined with the results of the other modules in order to determine
overall authentication success or failure (as usual). A file open error causes the mod-
ule to be ignored. If the module indicates that the user’s credentials are insufficient
for access or that his account or authentication token is expired, the entire authenti-
cation process fails immediately. The final item in the list specifies a default action to
be taken when any other value is returned by the module; in this case, it is set to
deny access.

These examples have shown some of the features and flexibility of the PAM facility.
Now it is time for you to experiment and explore it further on your own, in the
context of the needs of your particular system or site. As always, be careful as you do

System Module Description

HP-UX libpam_updbe This module provides a method for defining user-specific PAM stacks (stored in
the /etc/pam_user.conf configuration file).

Solaris pam_projects This module succeeds as long as the user belongs to a valid project, and fails
otherwise. Solaris projects are discussed in “System V–Style Accounting: AIX,
HP-UX, and Solaris” in Chapter 17.

pam_dial_auth Perform dialup user authentication using the traditional /etc/dialup and /etc/
d_passwd files (see “User Authentication Revisited” in Chapter 7).

pam_roles Performs authentication when a user tries to assume a new role (see “Role-
Based Access Control” in Chapter 7).

FreeBSD pam_cleartext_pass_ok Accepts authentication performed via cleartext passwords.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 313

so, and do some preliminary testing on a noncritical system before making any
changes in a production system. Using PAM effectively requires experience, and
everyone locks themselves out in some context as they are learning to do so.

LDAP: Using a Directory Service
for User Authentication
For several years now, every time anyone put together a list of hot system administra-
tion topics, LDAP was sure to be near the top. Many sites are beginning to use LDAP
for storing employee information, including user account information, and as a
means for performing enterprise-wide user authentication. In this way, LDAP-based
account data and authentication can replace separate, per-system logins and net-
work-based authentication schemes like NIS.

In this closing section of the chapter, we’ll take a brief look at LDAP—and specifi-
cally, the OpenLDAP environment—and consider how it may be used for user
authentication.

About LDAP
LDAP, as its fully expanded name—Lightweight Directory Access Protocol—indi-
cates, is a protocol that supports a directory service. The best analogy for a directory
service is the phone company’s directory assistance. Directory assistance is a mecha-
nism for customers to find information that they need quickly. Traditionally, human
operators provided the (hopefully friendly) interface between the user (customer)
and the database (the list of phone numbers). Directory assistance is not a means for
customers to change their phone number, indicate whether their phone number
should be listed or unlisted, or to obtain new telephone service.

A computer-based directory service provides similar functionality. It is a database
and means of accessing information within it. Specifically, the directory service data-
base has several specific characteristics that are different from, say, databases used
for transaction processing:

• It is optimized for reading (writing may be expensive).

• It provides advanced searching features.

• Its fundamental data structures—collectively known as the schema—can be
extended according to local needs.

• It adheres to published standards to ensure interoperability among vendor
implementations (specifically, a boatload of RFCs).

• It takes advantage of distributed storage and data-replication techniques.

LDAP’s roots are in the X.500 directory service and its DAP protocol. LDAP was
designed to be a simpler and more efficient protocol for accessing an X.500

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 6: Managing Users and Groups

directory. It is “lightweight” in several ways: LDAP runs over the TCP/IP network
stack (instead of DAP’s full implementation of all seven OSI layers), it provides only
the most important small subset of X.500 operations, and data is formatted as sim-
ple strings rather than complex data structures. Like DAP itself, LDAP is an access
protocol. The actual database services are provided by some other facility, often
referred to as the back end. LDAP serves a means for efficiently accessing the infor-
mation stored within it.

In order to emphasize these differences with respect to standard relational data-
bases, different terminology is used for the data stored in a directory. Records are
referred to as entries, and fields with a record are called attributes.

LDAP was first implemented at the University of Michigan in the early 1990s. There
are many commercial LDAP servers available. In addition, OpenLDAP is an open
source implementation of LDAP based on the work at Michigan (http://www.
openldap.org). The OpenLDAP package includes daemons, configuration files, star-
tup scripts, libraries, and utilities.

These are the most important OpenLDAP components:

Daemons
slapd is the OpenLDAP daemon, and slurpd is the data replication daemon.

A database environment
OpenLDAP supports the Berkeley DB and the GNU GDBM database engines.

Directory entry-related utilities
These utilities are ldapadd and ldapmodify (add/modify directory entries),
ldapdelete (delete directory entries), ldapsearch (search directory for entries
matching specified criteria), and ldappasswd (change entry password).

Related utilities
Related utilities include, for example, slappasswd (generate encoded passwords).

Configuration files
Configuration files are stored in /etc/openldap.

Unix versions differ in their LDAP support. Some, like Linux and
FreeBSD, use OpenLDAP exclusively. Others, like Solaris, provide
only client support by default (although Solaris offers an LDAP server
as an add-on facility at extra cost). Be sure to check what your version
uses if you plan to use the provided facilities. Switching to OpenLDAP
is also an option for all of the systems we are considering.

LDAP Directories
LDAP directories are logically tree structures, and they are typically rooted at a con-
struct corresponding to the site’s domain name, expressed in a format like this one:

dc=ahania,dc=com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 315

Each component of the domain name becomes the value for a dc (domain compo-
nent) attribute, and all of them are collected into a comma-separated list. This is
known as the directory’s base, corresponding in this case to ahania.com. Domain
names with more than two components would have additional dc attributes in the
list (e.g., dc=research,dc=ahania,dc=com).

Such a list of attribute=value pairs is the method for referring to any location (entry)
with the directory. Spaces are not significant between items.

Let’s now turn to a sample record from a directory service database:

dn: cn=Jerry Carter, ou=MyList, dc=ahania, dc=com
objectClass: person
cn: Jerry Carter
sn: Carter
description: Samba and LDAP expert
telephoneNumber: 22

This data format is known as LDIF (LDAP Data Interchange Format). It is organized
as a series of attribute and value pairs (colon-separated). For example, the attribute
telephoneNumber has the value 22.

The first line is special. It specifies the entry’s distinguished name (dn), which func-
tions as its unique key within the database (I like to think of it as a Borg “designa-
tion”). As expected, it is constructed as a comma-separated list of attribute-value
pairs. In this case, the entry is for common name “Jerry Carter,” organizational unit
“MyList” in the example directory for ahania.com.

The objectClass attribute specifies the type of record: in this case, a person. Every
entry needs at least one objectClass attribute. Valid record types are defined in the
directory’s schema, and there are a variety of standard record types that have been
defined (more on this later). The other attributes in the entry specify the person’s sur-
name, description and phone number.

The first component of the dn is known as the entry’s relative distinguished name
(rdn). In our example, that would be cn=Jerry Carter. It corresponds to the location
within the ou=MyList,dc=ahania,dc=com subtree where this entry resides. An rdn
must be unique within its subtree just as the dn is unique within the entire directory.

Here is a simple representation of the directory tree in which successive (deeper) lev-
els are indicated by indentation:

dc=ahania,dc=com
 ou=MyList,dc=ahania,dc=com
 cn=Jerry Carter,ou=MyList,dc=ahania,dc=com
 cn=Rachel Chavez,ou=MyList,dc=ahania,dc=com

more people ...
 ou=HisList,dc=ahania,dc=com

different people ...

The directory is divided into two organization units, each of which has a number of
entries under it (corresponding to people).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 6: Managing Users and Groups

About schemas

The schema is the name given to the collection of object and attribute definitions
which define the structure of the entries (records) in an LDAP database. LDAP
objects are standardized in order to provide interoperability with a variety of direc-
tory-services servers. Schema definitions are stored in files located in the /etc/
openldap/schema subdirectory. The OpenLDAP package provides all of the most
common standard schema, and you can add additional definitions, if necessary. You
specify the files that are in use via entries in slapd.conf, as in these examples:

include /etc/openldap/schema/core.schema
include /etc/openldap/schema/misc.schema

Object definitions in the schema files are fairly easy to understand:*

objectclass (2.5.6.6 NAME 'person' SUP top STRUCTURAL
 MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso $ description))

This is the definition of the person object class. The first line specifies the class name.
It also indicates that it is a structural object (the other sort is an auxiliary object,
which adds supplemental attributes to its parent object) and that its parent class is
top (a pseudo-object indicating the top of the hierarchy). The remaining lines specify
required and optional attributes for the object.

Attributes are defined in separate stanzas having an even more obscure format. For
example, here is the definition of the sn (surname) attribute:

attributetype (2.5.4.4 NAME ('sn' 'surname') SUP name)
attributetype (2.5.4.41 NAME 'name'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})

The sn attribute draws its definition from its parent, the name attribute. Its defini-
tion specifies its syntax and how equality and substring comparisons are to be per-
formed (themselves defined via keywords and values defined elsewhere in the
schema).

In general, you can figure out what’s going on with most objects by examining the
relevant schema files. The website http://ldap.hklc.com provides a very convenient
interface for exploring standard LDAP schema objects.

Installing and Configuring OpenLDAP: An Overview
Installing OpenLDAP is not difficult, but it can be time-consuming. The first step is
to obtain all of the needed software. This includes not only OpenLDAP itself, but
also its prerequisites:

* For those of you familiar with SNMP, LDAP uses ASN.1 syntax for its schemas, and thus its object defini-
tions somewhat resemble SNMP MIB definitions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 317

• A database manager: GNU gdbm (http://www.fsf.org) or BerkeleyDB (http://
www.sleepycat.com)

• The Transport Layer Security (TLS/SSL) libraries (http://www.openssl.org)

• The Cyrus SASL libraries (http://asg.web.cmu.edu/sasl/)

Once the prerequisites are met, we can build and install OpenLDAP. The
OpenLDAP documentation for doing so is pretty good.

Once the software is installed, the next step is to create a configuration file for the
slapd daemon, /etc/openldap/slapd.conf:

/etc/openldap/slapd.conf
include /etc/openldap/schema/core.schema
pidfile /var/run/slapd.pid
argsfile /var/run/slapd.args
database ldbm
suffix "dc=ahania, dc=com"
rootdn "cn=Manager, dc=ahania, dc=com"
encode with slappasswd -h '{MD5}' -s <password> -v -u
rootpw {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==
directory /var/lib/ldap

Additional items may appear in your file. Change any paths that are not correct for
your system, and set the correct dc components in the suffix (directory base) and
rootdn (database owner) entries (Manager is the conventional common name to use
for this purpose). Set a password for the root dn in the rootpw entry. This may be in
plain text, or you can use the slappasswd utility to encode it.

Finally, make sure that the specified database directory exists, is owned by root, and
has mode 700. The configuration file itself should also be readable only by root.

Once the configuration file is prepared, you can start slapd manually. On some sys-
tems, you can use the provided boot script, as in this example:

/etc/init.d/ldap start

If you want the LDAP daemons to be started at boot time, you’ll need to ensure that
this file is run by the boot scripts.

Next, we create the first directory entries, via a text file in LDIF format (the default
LDAP text-based import and export format). For example:

Domain entry
dn: dc=ahania,dc=com
objectclass: dcObject
objectclass: organization
o: Ahania, LLC
dc: ahania.com
Manager entry
dn: cn=Manager,dc=ahania,dc=com
objectclass: organizationalRole
cn: Manager

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 6: Managing Users and Groups

Use a command like this one to add the entries from the file:

ldapadd -x -D "cn=Manager,dc=ahania,dc=com" -W -f /tmp/entry0
Enter LDAP Password: Not echoed
adding new entry "dc=ahania,dc=com"
adding new entry "cn=Manager,dc=ahania,dc=com"

The -f option to ldapadd specifies the location of the prepared LDIF file. -D specifies
the dn with which to connect to the server (this process is known as “binding”), and
-x and -W say to use simple authentication (more about this later) and to prompt for
the password, respectively.

You can verify that everything is working by running the following command to
query the directory:

ldapsearch -x -b 'dc=ahania,dc=com' -s base '(objectclass=*)'
version: 2
...
ahania,dc=com
dn: dc=ahania,dc=com
objectClass: dcObject
objectClass: organization
o: Ahania, LLC
dc: ahania.com
...

This command displays the directory’s base level (topmost) entry (we’ll discuss the
command’s general syntax in a bit).

At this point, the server is ready to go to work. For more information on installing
OpenLDAP, consult Section 2, “Quick Start,” of the OpenLDAP 2.0 Administrator’s
Guide.

More about LDAP searching

The full syntax of the ldapsearch command is:

ldapsearch options search-criteria [attribute-list]

where options specify aspects of command functioning, search-criteria specify which
entries to retrieve, and attribute-list specifies which attributes to display (the default
is all of them). Search criteria are specified according to the (arcane) LDAP rules,
whose simplest format is:

(attribute-name=pattern)

The pattern can include a literal value or a string containing wildcards. Thus, the cri-
teria (objectclass=*) returns entries having any value for the objectclass attribute (i.e.,
all entries).

The following command illustrates some useful options and a more complex search
criterion:

ldapsearch -x -b 'dc=ahania,dc=com' -S cn \
 '(&(objectclass=person)(cn=Mike*))' \
 telephoneNumber description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 319

dn: cn=Mike Frisch, ou=MyList, dc=ahania, dc=com
telephoneNumber: 18
description: Computational chemist
dn: cn=Mike Loukides, ou=MyList, dc=ahania, dc=com
telephoneNumber: 14
description: Editor and writer

The output is (considerably) shortened.

This query returned two entries. The options said to use the simple authentication
scheme (-x), to start the search at the entry dc=ahania,dc=com (-b), and to sort the
entries by the cn attribute (-S).

The search criteria specified that the objectclass should be person and the cn should
start with “Mike” (illustrating the syntax for an AND condition). The remaining
arguments selected the two attributes that should be displayed in addition to the dn.

The following command could be used to perform a similar query on a remote host:

ldapsearch -H ldap://bella.ahania.com -x -b 'dc=ahania,dc=com' \
 '(cn=Mike*)' telephoneNumber description

The -H option species the URI for the LDAP server: bella.

The search context for LDAP clients can be preset using the ldap.conf configuration
file (also in /etc/openldap). Here is an example:

/etc/openldap/ldap.conf
URI ldap://bella.ahania.com
BASE dc=ahania,dc=com

With this configuration file, the previous command could be simplified to:

ldapsearch -x '(cn=Mike*)' telephoneNumber description

There are a variety of LDAP clients available to make directory-entry viewing and
manipulation easier than using LDIF files and command-line utilities. Some com-
mon ones are kldap (written by Oliver Jaun, http://www.mountpoint.ch/oliver/kldap/),
gq (http://biot.com/gq/), and web2ldap (http://web2ldap.de). The gq utility is pictured
in Figures 6-13 and 6-14.

Using OpenLDAP for User Authentication
Enterprise-level user authentication is another appropriate and desirable application
for an OpenLDAP-based directory service. Setting up such functionality is not diffi-
cult, but the process does require several steps.

 Select an appropriate schema

You’ll need to incorporate user account and related configuration information con-
ventionally stored in files (or in the NIS facility) into the directory service. Fortu-
nately, there are standard objects for this purpose. In the case of user accounts, the
ones to use are posixAccount and shadowAccount (both defined in the nis.schema

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 6: Managing Users and Groups

file). In addition, if you wish to place users into an organizational unit (which is the
standard practice, as we’ll see), then the account object is also used (defined in
cosine.schema).

Accordingly, we’ll add these lines to slapd.conf:

include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/nis.schema
index cn,uid eq
index uidNumber eq
index gidNumber eq

The final three lines create indexes on the specified fields in order to speed up
searches.

While you are performing this process, you may also want to enable slapd logging
via this configuration file entry:

log connection setup, searches and various stats (8+32+256)
loglevel 296

The parameter specifies the desired items to be logged; it is a mask that ANDs bits
for the various available items (see the OpenLDAP Administrator’s Guide for a list).
Specify a log level of 0 to disable logging. Log messages are sent to the syslog local4.
debug facility.

Don’t forget to restart slapd after editing its configuration file.

Convert existing user account data

The next step is to transfer the user account data to the directory. The easiest way to
do so is to use the open source migration tools provided by PADL software (http://
www.padl.com). These are a series of Perl scripts that extract the required data from
its current location and create corresponding directory entries. Using them goes like
this:

• Install the scripts to a convenient location.

• Edit the migrate_common.ph file. You will have to modify at least these entries:
DEFAULT_BASE, DEFAULT_MAIL_DOMAIN, DEFAULT_MAIL_HOST, and
the various sendmail-related entries (if you plan to use OpenLDAP for this pur-
pose as well).

You should also set EXTENDED_SCHEMA to 1 if you want the scripts to cre-
ate user account entries such as person, organizationalPerson, and inetOrgPerson
objects in addition to the account-related objects.

There are two ways to proceed with the migration. First, you can run a script that
automatically transfers all of the information to the directory: migrate_all_online.pl is
used if slapd is running, and migrate_all_offline.pl is used otherwise.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 321

I am not brave enough to just go for it; I run the various component scripts by hand
so I can examine their work before importing the resulting LDIF files. For example,
this command converts the normal and shadow password files to LDIF format:

migrate_passwd.pl /etc/passwd passwd.ldif

The desired output file is specified as the second parameter.

Here is an example of the conversion process in action. The script takes the follow-
ing entries from /etc/passwd and /etc/shadow:

It uses those entries to create the following directory entry:

dn: uid=chavez,ou=People,dc=ahania,dc=com
uid: chavez
cn: Rachel Chavez
objectClass: top
objectClass: account
objectClass: posixAccount
objectClass: shadowAccount
uidNumber: 502
gidNumber: 100
gecos: Rachel Chavez
homeDirectory: /home/chavez
loginShell: /bin/tcsh
userPassword: {crypt}zcPv/oXSSS9hJg
shadowLastChange: 11457
shadowMax: 99999
shadowWarning: 7

If you choose this route, you will need also to run the migrate_base.pl script to cre-
ate the top-level directory entries corresponding to the ous (e.g., People above) in
which the scripts place the accounts (and other entities). Another advantage of this
method is that you can change the ou name if you don’t like it, subdivide it, or trans-
form it in other ways, before importing.

Specify the name service search order

Now we are ready to use the directory service for user account operations. In order
to do so, we will need two additional packages: nss_ldap and pam_ldap (both avail-
able from http://www.padl.com). The first of these provides an interface to the /etc/
nsswitch file. The relevant lines need to be edited to add LDAP as an information
source:

passwd: files ldap
shadow: files ldap
...

These lines tell the operating system to look in the conventional configuration file
first for user account information and then to consult the OpenLDAP server.

/etc/passwd chavez:x:502:100:Rachel Chavez:/home/chavez:/bin/tcsh
/etc/shadow chavez:zcPv/oXSSS9hJg:11457:0:99999:7:0::

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 6: Managing Users and Groups

This module also requires some entries in the ldap.conf client configuration file. For
example:

nss_base_passwd ou=People,dc=ahania,dc=com
nss_base_shadow ou=People,dc=ahania,dc=com
nss_base_group ou=Group,dc=ahania,dc=com

These entries specify the directory tree location of the ous holding the user account
and group information.

This configuration file is usually in /etc/openldap, but it is also possi-
ble to place it directly in /etc, and the latter location takes precedence.
If you install the nss_ldap package manually, it will probably place an
example copy in /etc. This can cause some trouble and be hard to
debug when you don’t know that it is there! The pam_ldap package
does the same thing.

Once things are configured, you can use the following command to view user
accounts:

getent passwd

In the testing phase, you will want to migrate a few test accounts and then run this
command. The migrated accounts will appear twice until you remove them from the
configuration files.

Configure PAM to use OpenLDAP. The PAM facility (discussed previously) provides the
means for interfacing the OpenLDAP directory data to the user authentication pro-
cess. Accordingly, you will need the pam_ldap package to interface to OpenLDAP.

Once the package is installed, you will need to modify the files in /etc/pam.d or /etc/
pam.conf to use the LDAP module (examples are provided with the package). For
example, here is the modified version of the PAM configuration file for rlogin
(shown in the format used by per-service PAM configuration files):

auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_nologin.so
auth sufficient /lib/security/pam_rhosts_auth.so
auth sufficient /lib/security/pam_ldap.so
auth required /lib/security/pam_unix.so
auth required /lib/security/pam_mail.so
account sufficient /lib/security/pam_ldap.so
account required /lib/security/pam_unix.so
password sufficient /lib/security/pam_ldap.so
password required /lib/security/pam_unix.so strict=false
session required /lib/security/pam_unix.so debug

Generally, the pam_ldap.so module is just inserted into the stack above pam_unix.so
(or equivalent module).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 323

There are also several optional PAM-related entries which may be included in ldap.
conf. For example, the following ldap.conf entries restrict user access by host, based
on the contents of the user’s directory entry:

Specify allowed hosts for each user
pam_check_host_attr yes

The following directory entry illustrates the method for granting user chavez access
to a list of hosts:

dn: uid=chavez,ou=People,dc=ahania,dc=com
objectClass: account Parent of hos.t
objectClass: posixAccount Unix user account.
...
List of allowed hosts
host: milton.ahania.com
host: shelley.ahania.com
host: yeats.ahania.com
...

Similarly, the following configuration file entries specify a list of allowed users for
each host computer:

Limit host access to the specified users
pam_groupdn cn=dalton.ahania.com,dc=ahania,dc=com
pam_member_attribute uniquemember

Here is the corresponding entry for a host:

List of allowed users on the local host
dn: cn=dalton.ahania.com,dc=ahania,dc=com
objectClass: device Parent of ipHost.
objectClass: ipHost Parent of groupOfUniqueNames.
objectClass: groupOfUniqueNames
cn: dalton
cn: dalton.ahania.com
uniqueMember: uid=chavez,ou=People,dc=ahania,dc=com
uniqueMember: uid=carter,ou=People,dc=ahania,dc=com
...

Configure directory access control

The final steps in setting things up involves directory access control. The database
files themselves are protected against all non-root access, so permissions are enforced
by the server. Access control information is specified in the server’s configuration
file, slapd.conf, via access control entries like these:

simple access control: read-only except passwords
access to dn=".*,dc=ahania,dc=com" attr=userPassword
 by self write
 by dn=root,ou=People,dc=ahania,dc=com write
 by * auth
access to dn=".*,dc=ahania,dc=com"
 by self write
 by * read

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 6: Managing Users and Groups

The access to entry specifies a pattern that the dn must match in order for the entry
to apply. In the case of multiple entries, the first matching entry is used, and all
remaining entries are ignored, so the ordering of multiple entries is very important.
The first access to entry applies to the userPassword attribute of any entry: any dn in
dc=ahania,dc=com. The owner can modify the entry, where the owner is defined as
someone binding to the server using that dn and its associated password. Everyone
else can access it only for authentication/binding purposes; they cannot view it, how-
ever. This effect is illustrated in Figure 6-13, which shows user a2’s search results for
the specified query.

The access control second entry serves as a default for the remainder of the data-
base. Again, the owner can modify an entry, and everyone else can read it, an access
level which allows both searching and display. These permissions are often appropri-
ate for a company directory, but they are too lax for user account data. We’ll need to
examine access control entries in more detail to design something more appropriate.

OpenLDAP access control

An access control entry has the following general form:

access to what-data
by what-users allowed-access

 [by ...]

where what-data is an expression for the entries and possibly attributes to which this
directive applies, what-users specifies who this directive applies to, and allowed-
access is the access level that they are granted. There can be multiple by clauses. All
variables can be literal values or include regular expressions.

The defined access levels are the following:

none
No access.

auth
Use for authentication only.

Figure 6-13. The OpenLDAP server prevents unauthorized access

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 325

compare
Values are accessible to comparison operations.

search
Values are accessible to search filters.

read
Data can be viewed.

write
Data can be viewed and modified.

The target of the by clause has many possibilities, including a dn (which may con-
tain wildcards) and the keywords self (the entry’s owner), domain (which takes an
expression for a domain as its argument), and anonymous (access by users who
haven’t been authenticated). A single asterisk can be used to signify access by any-
one.

Let’s look at some examples. The following configuration file directive allows every-
one to have read access to the entire specified directory and also allows each entry’s
owner to modify it:

access to dn=".*,dc=ahania,dc=com"
 by self write
 by * read

The following example directives allow each entry’s owner to read the entire entry
but modify only a few attributes:

access to dn=".*,dc=ahania,dc=com" attrs="cn,sn,description,gecos"
 by self write
access to dn=".*,dc=ahania,dc=com"
 by self read

The following example allows the uid of root (in any top-level organizational unit) to
modify any password attribute in the directory:

access to dn=".*,dc=ahania,dc=com" attrs="password"
 by dn="uid=root,ou=[A-Za-z]+,dc=ahania,dc=com" write

Note that we are assuming that ou names contain only letters.

Finally, this example controls access to the entries under the specified ou, limiting
read access to members of the local domain:

access to dn=".*,ou=People,dc=ahania,dc=com"
 by domain=.*\.ahania\.com read
 by anonymous auth

Nonauthenticated users can use the data in this subtree only for LDAP authentica-
tion purposes.

You can use constructs like these to implement whatever access control design
makes sense for your security objectives and needs. Consult the OpenLDAP
Administrator’s Guide for full details about access control directives.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 6: Managing Users and Groups

Securing OpenLDAP Authentication
In all of our examples to this point, we have considered only the simplest method of
presenting authentication credentials to the LDAP server: supplying a password asso-
ciated with a specific distinguished name’s password attribute. This is known as sim-
ple authentication, and it is the easiest way to bind to the LDAP server. However,
since the passwords are sent to the server in the clear, there are significant security
problems with this approach.

OpenLDAP supports the common authentication schemes: simple authentication
using passwords, Kerberos-based authentication, and using the authentication ser-
vices provided by the Simple Authentication and Security Layer (SASL). The first two
of these are selected by the -x and -k options to the various LDAP client commands,
respectively, and the absence of either of them implies SASL should be used. The
Kerberos authentication method is deprecated, however, since superior Kerberos
functionality is provided by SASL.

SASL was designed to add additional authentication mechanisms to connection-ori-
ented network protocols like LDAP. Unix systems generally use the Cyrus SASL
library, which provides the following authentication methods:

ANONYMOUS and PLAIN
Standard anonymous and simple, plain text password-based binds

DIGEST-MD5
MD5-encoded passwords

KERBEROS_V4 and GSSAPI
Kerberos-based authentication for Kerberos 4 and Kerberos 5, respectively

EXTERNAL
Site-specific authentication modules

Installing and configuring SASL is somewhat complex, and we don’t have space to
consider it here. Consult http://asg.web.cmu.edu/sasl/ for more information.

Fortunately, OpenLDAP also provides the means for securing the simple authentica-
tion scheme. It uses an interface to the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) networking functions. SSL provides encrypted authentication
and data transfer via port 636 (assigned to the ldaps service), while TLS provides this
via the standard LDAP port of 389. The advantage of the latter is that both encrypted
and unencrypted clients can use the same standard port. However, it is usually best
to enable both of them since client support is varied and unpredictable.

In order to use SSL and TLS, you will need to create a certificate for the LDAP server,
using a process like this one:

cd /usr/ssl/cert
openssl req -newkey rsa:1024 -x509 -days 365 \
 keyout slapd_key.pem -out slapd_cert.pem
Using configuration from /usr/ssl/openssl.cnf
Generating a 1024 bit RSA private key

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 327

writing new private key to 'newreq.pem'
Enter PEM pass phrase: Not echoed.
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that
will be incorporated into your certificate request.
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Connecticut
...

First, we change to the SSL certificates directory, and then we run the command that
creates the certificate and key files. This process requires you to enter a pass phrase
for the private key and to provide many items of information, which are used in cre-
ating the certificate. When this process completes, the certificate is located in the file
slapd_cert.pem, and the key is stored in slapd_key.pem.

The next steps consist of removing the pass phrase from the key file (otherwise,
you’ll need to enter it every time you start slapd), and then setting appropriate own-
ership and protections for the files:

openssl rsa -in slapd_key.pem -out slapd_key.pem
chown slapd-user.sldap-group sl*.pem
chmod 600 sl*.pem

Once the certificate files are created, we add entries to slapd.conf pointing to the cer-
tificate files:

SSL/TLS
TLSCertificateFile /usr/ssl/certs/slapd_cert.pem
TLSCertificateKeyFile /usr/ssl/certs/slapd_key.pem
Specify ciphers to use -- this is a reasonable default
TLSCipherSuite HIGH:MEDIUM:+SSLv2

Finally, we need to modify the boot script that controls slapd so that the startup
command lists both normal and secure LDAP as supported protocols. Here is the rel-
evant line:

slapd -h "ldap:/// ldaps:///"

After you restart the server, you can verify that things are working in several ways.
An easy way is to run a search command and watch the associated network traffic as
the command runs. For example, you can use the ngrep utility to watch the two
LDAP ports and look for unencrypted passwords. In this example, we look for the
string “bbb”, which is the password used for binding to the server:

ngrep 'bbb' port 636 or port 389

Then, in another window, we run an ldapsearch command, which binds to a test
entry in the directory (uid=a2), specifying the password first with -x and then with -w,
using the ldap and ldaps services, respectively. Here is the second command:

ldapsearch -H ldaps://10.0.49.212:636 -w bbb -x \
 -D 'uid=a2,ou=People,dc=ahania,dc=com' 'uid=a*'

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 6: Managing Users and Groups

The search command should return some entries both times, but the ngrep com-
mand will not find any matching packets for the second search since the password is
encrypted.

Alternatively, you can use a client that supports one or both of these facilities.
Figure 6-14 illustrates the gq utility’s server properties dialog. You can check the
appropriate box to use TLS and then run a similar test to the preceding, again
searching for the cleartext password (and not finding it when TLS is enabled).

If you have problems binding to the server, make sure that the password you are
using is the correct one for that entry and that the access level for your test entry is
sufficient for the operation to succeed. Finally, be sure that you have restarted the
slapd process and that it has not generated any error messages.

This introduction to OpenLDAP should be sufficient to get you
started experimenting with this facility. As with any change of this size
and complexity, it is important to test changes in a controlled and lim-
ited environment before attempting to apply them to production sys-
tems and/or on a large scale.

Wither NIS?
The Network Information Service (NIS) is another distributed database service that
allows a single set of system configuration files to be maintained for an entire local
network of computers. NIS was created by Sun Microsystems. With NIS, a single

Figure 6-14. Enabling TLS support in the gq client

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP: Using a Directory Service for User Authentication | 329

password file can be maintained for an entire network of computers almost automat-
ically (you still have to add or modify entries on one copy by hand). This section will
provide a brief description of NIS. Consult your system documentation for more
details (use man -k nis and man -k yp to get started). In addition, Managing NFS and
NIS, by Hal Stern, Mike Eisler, and Ricardo Labiaga (O’Reilly & Associates), con-
tains an excellent discussion of NIS.

NIS was designed for a very open environment in which significant trust among all
systems is desired (and assumed). As such, many considerations related to protect-
ing systems from the bad guys—outside or inside—were overlooked or ignored in its
design. Unfortunately, it isn’t an exaggeration to say that NIS is a security nightmare.

If your network has direct connections to other computers outside of your control,
or if there are any internal systems that need to be protected from others within the
local network, then I’d advise you not to use NIS or even NIS+ (which fixes only a
few of NIS’s most egregious security flaws). Use NIS only when you want an open,
mutually trusting security environment across an entire local network that has all its
entrances—from the outside world as well as untrusted parts of the same site—pro-
tected by very rigorous firewalls.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330

Chapter 7CHAPTER 7

Security

These days, the phrase “computer security” is most often associated with protecting
against break-ins: attempts by an unauthorized person to gain access to a computer
system (and the person will bear a strong resemblance to an actor in a movie like
War Games or Hackers). Such individuals do exist, and they may be motivated by
maliciousness or mere mischievousness. However, while external threats are impor-
tant, security encompasses much more than guarding against outsiders. For exam-
ple, there are almost as many security issues relating to authorized users as to
potential intruders.

This chapter will discuss fundamental Unix security issues and techniques, as well as
important additional security features offered by some Unix versions. See Practical
Internet and Unix Security by Simson Garfinkel and Gene Spafford (O’Reilly & Asso-
ciates) for an excellent, book-length discussion of Unix security.

This chapter will undoubtedly strike some readers as excessively paranoid. The gen-
eral approach I take to system security grows out of my experiences working with a
large manufacturing firm designing its new products entirely on CAD-CAM worksta-
tions and experiences working with a variety of fairly small software companies. In
all these environments, a significant part of the company’s future products and assets
existed solely online. Naturally, protecting them was a major focus of system admin-
istration and the choices that are appropriate for sites like these may be very differ-
ent from what makes sense in other contexts. This chapter presents some options for
securing a Unix system. It will be up to you and your site to determine what you
need.

Security considerations permeate most system administration activities, and security
procedures work best when they are integrated with other, normal system activities.
Given this reality, discussions of security issues can’t really be isolated to a single
chapter. Rather, they pop up again and again throughout the book.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Prelude: What’s Wrong with This Picture? | 331

Prelude: What’s Wrong with This Picture?
Before turning to the specifics of securing and monitoring Unix systems, let’s take a
brief look at three well-known historical Unix security problems (all of them were
fixed years ago):

• The Sendmail package used to include a debug mode designed to allow a system
administrator to type in raw commands by hand and observe the effects. Unfor-
tunately, because anyone can run the sendmail program, and because it runs as
setuid root, a nefarious user could use sendmail to execute commands as root.
This is an example of a security hole created by a back door in a program: an
execution mode that bypasses the program’s usual security mechanisms.

• Traditionally, the passwd –f command enabled users to change the information
in the GECOS field of their password-file entries. However, as originally imple-
mented, the command simply added the new information to the user’s GECOS
field without examining it first for characters such as, for example, colons and
new lines. This oversight meant that a treacherous user could use the command
to add an entry to the password file. This is an example of a program’s failure to
validate its input. The program simply assumes that the input it receives is valid
and harmless without checking that it is in the form and length that is expected.

Another variation of this problem is called a buffer overflow. A buffer overflow
occurs when a program receives more input than the maximum amount that it is
able to handle. When it later chokes on that input, there can be unexpected side
effects, including the ability to run arbitrary commands in the user context of the
program (often root). Modern programs are usually written to reject input that is
too large, but we are still finding and fixing such bugs in programs written in
previous years/decades.

• The finger command displays various information about the user you specify as
its argument: his full name and other password-file information, as well as the
contents of the .plan and .project files in his home directory. finger is designed
to make it easy to find out who is on the system and how to contact them. In the
past, however, the command failed to check whether the .plan file in a user’s
home directory was readable by the user running finger before displaying its
contents. This meant that an unscrupulous user could create a .plan in his own
home directory as a link to any file on the system, then run finger on his own
account and be able to view the contents of the target file, even when its file pro-
tection mode prevented his access. This is an example of a bug that arises from
unconscious assumptions about the circumstances and context in which the pro-
gram will be run.

What do these three items have in common? They all illustrate the fundamental Unix
view that the system exists in a trustworthy environment of reasonable people. In all
three cases, the programs failed to anticipate or check for unintended uses of their
features. Seeing these problems merely as ancient bugs that have been long fixed

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 7: Security

misses the important point that such a view is inherent in the Unix operating system
at a very deep level. This belief is evident even in the rhetoric of Unix commands as
simple tools performing one task in a general and optimal way. You can do a lot
more with a screwdriver than tightening and loosening screws.

Thinking About Security
Security discussions often begin by considering the kinds of threats facing a system.
I’d like to come at this issue from a slightly different angle by focusing first on what
needs to be protected. Before you can address any security-related issue on your sys-
tem, you need to be able to answer the following questions:

• What are you trying to protect?

• What valuable asset might be lost?

If you can answer these questions, you’ve gone a long way toward identifying and
solving potential security problems. One way to approach them is to imagine discov-
ering one morning that your entire computer system/network was stolen during the
previous night. Having this happen would upset nearly everyone, but for many dif-
ferent reasons:

• Because of the monetary cost: what is valuable is the computer as a physical
object (loss of equipment).

• Because of the loss of sensitive or private data, such as company secrets or infor-
mation about individuals (one type of loss of data).

• Because you can’t conduct business: the computer is essential to manufacturing
your product or providing services to your customers (loss of use). In this case,
the computer’s business or educational role is more important than the hard-
ware per se.

Of course, in addition to outright theft, there are many other causes of all three kinds
of losses. For example, data can also be stolen by copying it electronically or by
removing the medium on which it is stored, as well as by stealing the computer itself.
There is also both physical and electronic vandalism. Physical vandalism can mean
broken or damaged equipment (as when thieves break into your office, get annoyed
at not finding any money, and pour the cup of coffee left on a desk into the vents on
the computer and onto the keyboard). Electronic vandalism can consist of corrupted
or removed files or a system overwhelmed by so many garbage processes that it
becomes unusable; this sort of attack is called a denial of service attack.

Depending on which of these concerns are relevant to you, different kinds of threats
need to be forestalled and prepared for. Physical threats include not only theft but
also natural disasters (fires, burst pipes, power failures from electrical storms, and so
on). Data loss can be caused by malice or accident, ranging from deliberate theft and
destruction to user errors to buggy programs wreaking havoc. Thus, preventing data
loss means taking into account not only unauthorized users accessing the system and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thinking About Security | 333

authorized users on the system doing things they’re not supposed to do, but also
authorized users doing things they’re allowed to but didn’t really mean or want to
do. And occasionally it means cleaning up after yourself.

Once you’ve identified what needs to be protected and the potential acts and events
from which it needs to be protected, you’ll be in a much better position to determine
what concrete steps to take to secure your system or site.

For example, if theft of the computer itself is your biggest worry, you need to think
more about locks than about how often to make users change their passwords. Con-
versely, if physical security is no problem but data loss is, you need to think about
ways to prevent data loss from both accidental and deliberate acts and to recover
data quickly should loss occur despite all your precautions.

The final complication is that security inevitably corresponds inversely with conve-
nience: the more secure a system is, the less convenient it is to use, and vice versa. You
and your organization will need to find the right set of trade-offs for your situation.
For example, isolated systems are easier to make secure than those on networks, but
few people want to have to write a tape to transfer files between two local systems.

The key to a well-secured system is a combination of policies that:

• Prevent every possible relevant threat, to the extent that they can be prevented—
and they can’t always—and the extent that you, your users, and your organiza-
tion as a whole are willing to accept (or impose) the inconveniences that these
security measures entail.

• Plan and prepare for what to do when the worst happens anyway. For example,
the best backup plans are made by imagining that tomorrow morning you come
in and all your disks have had head crashes. It’s helpful to imagine that even the
impossible can happen. If it’s important that certain people not have access to
the root account, don’t leave root logged in on an unattended terminal, not even
on the console in the locked machine room where these users can never get in.
Never is almost always sooner than you think.

Threats can come from a variety of sources. External threats range from electronic
joy-riders who stumble into your system more or less at random to crackers who
have specifically targeted your system (or another system that can be reached by a
route including your system). Internal threats come from legitimate users attempting
to do things that they aren’t supposed to do, with motivations ranging from curios-
ity and mischievousness to malice and industrial espionage. You’ll need to take dif-
ferent steps depending on which threats are most applicable to your site.

In the end, good security, like successful system administration in general, is largely a
matter of planning and habit: designing responses to various scenarios in advance
and faithfully and scrupulously carrying out the routine, boring, daily actions
required to prevent and recover from the various disasters you’ve foreseen. Although
it may seem at times like pounds, rather than ounces, of prevention are needed, I
think you’ll find that they are far less burdensome than even grams of cure.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 7: Security

Security Policies and Plans
Many sites find written security policies and plans helpful. By “security policy,” I
mean a written statement for users of what constitutes appropriate and unaccept-
able uses of their accounts and the data associated with them. I’ll refer to a written
description of periodic security-related system administration activities as a “security
plan.” At some sites, the computer security policy is part of a more comprehensive
security policy; similarly, an administrative security plan is often part of a more gen-
eral disaster-recovery plan.

Security policies

Security policies are most effective when users read, understand, and agree to abide
by them at the time they receive their computer accounts, usually by signing some
sort of form (retaining a copy of the written policy for future reference). For employ-
ees, this usually occurs when they are hired, as part of the security briefing they
attend sometime during the first few days of employment. In an educational setting,
students can also be required to sign the written security policy when they receive
their accounts. During my brief stint in academia, one of my tasks was to create and
deliver a BITNET security presentation for students wanting network access; if I
were a system administrator at a university now, I’d recommend requiring a general
computer security awareness session before a student receives an account for the first
time.

A good computer security policy will cover these areas:

• Who is allowed to use the account (generally no one but the user herself). Don’t
forget to consider spouses, significant others, and children as you formulate this
item.

• Password requirements and prohibitions (don’t reveal it to anyone, don’t use a
password here that you have ever used anywhere else and vice versa, etc.). It may
also be worth pointing out that no one from the computing/system administra-
tion staff will ever ask for it by phone or in person, nor will anyone from a law
enforcement agency.

• Proper and improper use of local computers and those accessed via the Internet.
This can include not only prohibitions against hacking but also whether per-
sonal use of an account is allowed, whether commercial use of a university
account is permitted, policies about erotic/pornographic images being kept or
displayed online, and the like.

• Conditions under which the user can lose her account. This item can also be
somewhat broader and include, for example, when a job might be killed (when
the system needs to go down for maintenance, when a job is overwhelming the
system, and so on).

• Rules about what kinds of use are allowed on which computers (for example,
when and where game-playing is allowed, where large jobs should be run, etc.).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thinking About Security | 335

• Consent to monitoring of all aspects of account activity by system administra-
tion staff as needed for system/network security, performance optimization, gen-
eral configuration, and/or accounting purposes.

• Policies concerning how printed output is to be disposed of, whether it can leave
the building or site, and similar policies for tapes and other media.

Some sites will need more than one policy for different classes of users. When you
formulate or revise a written security policy, it may be appropriate to run it by your
organization’s legal department.

Security plans

Formulating or revising a security plan is often a good way to assess and review the
general state of security on a system or network. Such a plan will address some or all
of the following issues:

• General computer access policies: the general classes of users present on the sys-
tem, along with the access and privileges that they are allowed or denied. Describ-
ing this will include noting the purpose and scope of the various user groups.

• Optional system security features that are in effect (password aging and other
restrictions, user account retirement policies, and so on).

Security Begins and Ends with People
Getting users to care about security takes time and effort. In the end, a system is only
as secure as its most vulnerable part, and it is important not to forget or neglect the sys-
tem’s users. When users cause security problems, there are three main reasons: igno-
rance, laziness, and malice.

Ignorance is the easiest to address. Developing formal and informal training tactics and
procedures is something that happens over time. Users also need to be reminded of
things they already know from time to time.

Laziness is always a temptation—for system administrators as well as users—but
you’ll find it is less of a problem when users have bought in to the system security goals.
This requires both support from management—theirs as well as yours—and the orga-
nization as a whole and a formal commitment from individual users. In addition, an
atmosphere that focuses on solutions rather than on blame is generally more successful
than raw intimidation or coercion. When people are worried about getting in trouble,
they tend to cover up problems rather than fix them.

Consideration of the third cause, malice, will have to wait. Creating a corporate culture
that encourages and fosters employee loyalty and openness rather than deceit and
betrayal is the subject of another book, as is recognizing and neutralizing malefactors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 7: Security

• Preventative measures in effect (for example, the backup schedule, actions to be
performed in conjunction with operating system installations and upgrades, and
the like).

• What periodic (or continuous) system monitoring is performed and how it is
implemented.

• How often complete system security audits are performed and what items they
encompass.

• Policies and strategies for actively handling and recovering from security
breaches.

Like any policy or procedure, the security plan needs to be reviewed and updated
periodically.

Unix Lines of Defense
At an individual system level, Unix offers three basic ways of preventing security
problems:

• A variety of network security mechanisms designed to prevent unauthorized
connections from being accepted (where unauthorized can be defined based on
one or more characteristics: connection source, type of connection, service
requested, and the like).

• Passwords are designed to prevent unauthorized users from obtaining any access
to the system, even via allowed channels.

• File permissions are designed to allow only designated users access to the vari-
ous commands, files, programs, and system resources.

In theory, network protection filters out all unauthorized connections, passwords
prevent the bad guys from getting on the system in the allowed ways, and proper file
permissions prevent normal users from doing things they aren’t supposed to do. On
a system that is isolated both physically and electronically, theory pretty well
matches reality, but the picture becomes much more complicated once you take net-
working into account. And the various kinds of security mechanisms can interact.
For example, network access often bypasses the normal password authentication
procedures. For these reasons, in the end, your system is only as secure as the worst-
protected system on the network.

Permissions, passwords, and network barriers are useful only as part of an overall
security strategy for your system. I find it helpful to think of them in the context of
the various “lines of defense” that could potentially be set up to protect your system
from the various losses it might experience.

Physical security

The first line of defense is physical access to your computer. The most security-con-
scious installations protect their computers by eliminating all network and dialup

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thinking About Security | 337

access and strictly limiting who can get physically near the computers. At the far
extreme are systems in locked rooms (requiring a password be entered on a keypad
in addition to the key for the door lock), isolated in restricted access areas of installa-
tions with guarded entrances (usually military or defense-related). To get onto these
systems, you have to get into the site, into the right building, past another set of
guards in the secure part of that building, and finally into the computer room before
you even have to worry about having a valid password on the system. Such an
approach effectively keeps out outsiders and unauthorized users; thus, security
threats can come only from insiders.

Although this extreme level of physical security is not needed by most sites, all
administrators face some physical security issues. Some of the most common
include:

• Preventing theft and vandalism by locking the door or locking the equipment to
a table or desk. If these are significant threats for you, you might also need to
consider other aspects of the computer’s physical location. For example, the best
locks in the world can be basically worthless if the door has a glass window in it.

• Limiting access to the console and the CPU unit to prevent someone from crash-
ing the system and rebooting it to single-user mode. Even if your system allows
you to disable single-user–mode access without a password, there still may be
issues here for you. For example, if your system is secured by a key position on
its front panel, but you keep the key in the top middle drawer of your desk (right
next to your file-cabinet keys) or inserted in the front panel, this level of security
is effectively stripped away.

• Controlling environmental factors as much as realistically possible. This con-
cern can include special power systems (backup generators, line conditioners,
surge suppressors, and so on) to prevent downtime or loss of data, and fire
detection and extinguishing systems to prevent equipment damage. It also
includes simple, common-sense policies like not putting open cups of liquid next
to a keyboard or on top of a monitor.

• Restricting or monitoring access to other parts of the system, like terminals,
workstations, network cables (vulnerable to tapping and eavesdropping), and so
on.

• Limiting access to backup tapes. If the security of your data is important to your
system, backup tapes need to be protected from theft and damage as well (see
Chapter 11). Keep in mind also that backup tapes contain sensitive system con-
figuration data: the password and shadow password file, security key files, and
so on.

Firewalls and network filters

Packet filtering and dedicated firewall systems represent an attempt to mitigate the
risks associated with placing systems on a network. A firewall is placed between the
Internet and the site to be protected; firewalls may also be used within a site or orga-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 7: Security

nization to isolate some systems from others (remember that not all threats are exter-
nal). Packet filtering restricts the sort of network traffic that a system will accept.

We’ll look at both of these topics in more detail later in this chapter.

Passwords

When someone gains access to the system, passwords form the next line of defense
against unauthorized users and the risks associated with them. As I’ve said before, all
accounts should have passwords (or be disabled). The weakness with passwords is
that if someone breaks into an account by finding out its password, he has all the
rights and privileges granted to that account and can impersonate the legitimate user
in any way. File permissions form the next line of defense, against both bad guys
who succeeded in breaking into an account and legitimate users trying to do some-
thing they’re not supposed to. Properly set up file protection can prevent many
potential problems. The most vulnerable aspects of file protection are the setuid and
setgid access modes, which we’ll look at in detail later in this chapter.

Some Unix versions also provide other ways to limit non-root users’ access to vari-
ous system resources. Facilities such as disk quotas, system resource limits, and
printer and batch queue access restrictions protect computer subsystems from unau-
thorized use, including attacks by “bacteria” designed specifically to overwhelm sys-
tems by completely consuming their resources.*

If someone succeeds in logging in as root (or breaks into another account with access
to important files or other system resources), system security is irreparably compro-
mised in most cases. When this happens, the administrative focus must shift from
prevention to detection: finding out what has been done to the system (and repair-
ing it) and determining how the system was compromised—and plugging that gap.
We’ll look at both preventing and detecting security breaches in detail in the course
of this chapter.

* It seems that no new type of security threat is uncovered without acquiring a cute name. Bacteria, also
known as rabbits, are programs whose sole purpose is to reproduce and thereby overwhelm a system, bring-
ing it to a standstill. There are a few other creatures in the security jungle whose names you should know.
Viruses are programs that insert themselves into other programs, often legitimate ones, producing noxious
side effects when their host is later executed. Worms are programs that move from system to system over a
network, sometimes leaving behind bacteria, viruses, or other nasty programs. Trojan horses are programs
that pretend to do one thing while doing another. The most common type is a password-stealing program,
which mimics a normal login sequence but actually records the password the user types in and then exits.
The term is also applied to programs or commands embedded within certain types of files that get executed
automatically when the file is processed (PDF files, PostScript files, and attachments to electronic mail mes-
sages). Back doors, also called trap doors, are undocumented, alternative entrances to otherwise legitimate
programs which allow a knowledgeable user to bypass security features. Time bombs are programs designed
to perform particular—usually destructive—actions at a specific date and time. Programs with time bombs
may be benign or inactive until the designated moment. In practice, these creatures often work in concert
with one another.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication Revisited | 339

Encrypting data

There is one exception to the complete loss of security if the root account is compro-
mised. For some types of data files, encryption can form a fourth line of defense, pro-
viding protection against root and other privileged accounts.

Backups

Backups provide the final line of defense against some kinds of security problems
and system disasters. In these cases, a good backup scheme will almost always enable
you to restore the system to something near its previous state (or to recreate it on
new hardware if some part of the computer itself is damaged). However, if someone
steals the data from your system but doesn’t alter or destroy it, backups are irrele-
vant.

Backups provide protection against data loss and filesystem damage only in conjunc-
tion with frequent system monitoring, designed to detect security problems quickly.
Otherwise, a problem might not be uncovered for a long time. If this occurs, back-
ups would simply save the corrupted system state, making it necessary to go back
weeks or months to a known clean state when the problem finally is uncovered and
restore or re-create newer versions of files by hand.

Version-Specific Security Facilities
Every commercial Unix version we are considering offers an enhanced security facil-
ity of some sort, either as part of the normal operating system or as an optional lay-
ered product; we’ll consider many of their features in the course of this chapter. The
primary commands associated with these facilities are listed below as an aid to your
own explorations of what is available on your systems (in other words, check these
manual pages first). I’ve also listed some related facilities available on FreeBSD and
SuSE Linux systems:

man -k secur (to match “secure” and “security”) will also often yield information, as
will consulting any security manual or manual chapters in the system documentation.

User Authentication Revisited
We’ve already looked at the issues surrounding password selection and aging in
“Administering User Passwords” in Chapter 6. In this section, we will consider
optional user authentication methods and techniques that extend beyond standard

AIX chuser, audit, tcbck
FreeBSD /etc/periodic/security/*
HP-UX audsys, swverify
Linux harden_suse (SuSE)
Solaris bsmconv, aset, audit
Tru64 prpwd, secsetup

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 7: Security

password selection and aging. We will also consider another method of securing
remote access—the secure shell—later in this chapter.

Smart Cards
The purpose of all user authentication schemes, from passwords on, is to require a
prospective user to prove that she really is the person she is claiming to be. The stan-
dard Unix login procedure and most secondary authentication programs validate a
user’s identity based on something she knows, like a password, assuming that no one
else knows it.

There are other approaches to user authentication. A user can also be validated
based on something she is, that is, some unique and invariant physical characteristic
such a fingerprint* or retina image. Biometric devices validate a person’s identity in
this way. They are commonly used to protect entrances to secure installations or
areas, but they are seldom used just to authenticate users on a computer system.

A third approach is to validate the user based upon something she has. That some-
thing, known generically as a token, can be as simple as a photo ID badge. In the
context of login authentication, smart cards are used most often. Smart cards are
small, ranging in size from more or less credit card–size to about the same size as a
small calculator. Some of them operate as a simple token that must be placed into a
reader before computer access is granted.

Other smart cards look something like a calculator, with a keypad and a display in
which a number appears. Users are required to enter a number from the display in
addition to their normal password when they log in to a protected computer. This
type of card generally requires the user to enter a personal identification number
(PIN) before the card will operate (to provide some protection if the card is lost or
stolen). Smart cards are also often designed to stop working if anyone tries take them
apart or otherwise gain access to their protected memory.

Once the correct PIN is entered, smart cards can work in several different ways. In
the most common mode of operation, the user is presented with a number when he
tries to log in, known as a challenge. He types that number into his smart card and
then types the number the card displays—the response—into the computer. The
challenge and response values are generated cryptographically.

Under another scheme, the number to give the computer appears automatically after
the proper PIN is entered. In this case, the card is synchronized with software run-
ning on the target computer; the most elaborate cards of this type can be synchro-
nized with multiple hosts and can also operate in challenge/response mode to access
still other computers.

* Fingerprints have been recently demonstrated to be quite easy to counterfeit, so they cannot be recom-
mended.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication Revisited | 341

For me, the most convenient type of card is made by RSA Security (http://www.
rsasecurity.com). These cards automatically generate new numeric passwords every
60 seconds. The cards have an internal clock in addition to their cryptographic func-
tionality, ensuring that they remain synchronized with the server software running
on the target system. These cards are most often used as an additional authentica-
tion mechanism for dialup and other remote system access.

Smart cards provide an effective and relatively low-cost means of substantially
increasing login authentication effectiveness. While they do not replace well-chosen
user passwords, the combination of the two can go a long way toward securing a
computer system against user account–based attacks.

One-Time Passwords
One-time passwords (OTPs) are another mechanism designed primarily for addi-
tional authentication for remote users. As the name implies, such passwords can be
used only a single time, after which they become invalid. In addition, successive
passwords are not easily predictable. For these reasons, they are a good choice when
clear-text passwords are necessary for remote access.

The OPIE package—short for “One-time Passwords in Everything”—is an open
source facility for OTPs. It was written by Randall Atkinson, Dan McDonald, and
Craig Metz, and was derived from the earlier S/Key package. It is available from http:/
/www.inner.net/pub/opie/.

Once OPIE is built and installed, you must replace the login, ftp, su, and/or passwd
commands with the versions provided with the package. For example:

cd /bin
mv login login.save
ln -s opielogin login

Next, you must set up user accounts that you want to have use the OTPs. First, at
the system console, you add the user account to the OPIE system:

opiepasswd -c chavez Must be run on the system console.
Adding chavez:
Using MD5 to compute responses
Enter new secret pass phrase: not echoed
Again new secret pass phrase: not echoed
ID chavez OTP key is 123 ab4567
ASKS BARD DID LADY MARK EYES

As with any password, the secret pass phrase should be chosen with care.* Make it as
long as possible (an entire sentence is good). The opiepasswd command displays the
user identifying key and the first password.

* All OPIE keys and passwords in these examples are simulated.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 7: Security

OPIE stores its information in the file /etc/opiekeys. This file is thus extremely sensi-
tive and should be protected against all non-root access.

The opiekey command is used to generate OTPs:

$ opiekey 123 ab4567
Using the MD5 algorithm to compute response.
Enter secret pass phrase: not echoed

ASKS BARD DID LADY MARK EYES

$ opiekey -n 3 123 ab4567
Using the MD5 algorithm to compute response.
Enter secret pass phrase: not echoed

121: TELL BRAD HIDE HIS GREY HATS
122: SAYS BILL NOT HERO FROM MARS
123: ASKS BARD DID LADY MARK EYES

In the second example, three passwords are generated. They are used in inverse
numerical order (highest numbered to lowest numbered). Such a list can be printed
for use when traveling, provided that users are aware of the need to keep it secure.

The opiekey command must not be run over the network, because the
secret pass phrase would be transmitted in the clear, defeating the
entire OPIE security mechanism. It must be run on the local system.

This is how an OPIE login session looks:

login: chavez
otp-md5 123 ab4567 ext
Response: ASKS BARD DID LADY MARK EYES
$

The OPIE package includes a PAM module for systems that use PAM. For example,
it might be included in an rlogin authentication stack as follows:

auth required pam_securetty.so
auth required pam_nologin.so
auth required pam_opie.so
auth required pam_unix.so

This form of the stack uses both OPIE and normal Unix passwords. Alternatively,
you could designate the OPIE module as sufficient and remove the pam_unix mod-
ule to replace standard passwords with OTPs.

Note that only users added to the OPIE system with opiepasswd will be prompted for
OTPs. In general, it is usually best to incorporate all users within the OPIE system,
perhaps limiting the package’s use to the system that accepts dialup and other
remote connections.

When PAM is not in use, you can exempt users from using OPIE with the /etc/opie-
access configuration file. Entries in this file take the form:

action net-or-host/netmask

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication Revisited | 343

Here are some examples:

deny 192.168.20.24/255.255.255.0 Require passwords from this host.
permit 192.168.10.0/255.255.255.0 Exempt this subnet.

If this file does not exist, all access uses OPIE. This is the recommended configuration.

Solaris and HP-UX Dialup Passwords
Dialup passwords add another level of user authentication for systems allowing
dialup access via modems. When dialup passwords are in use, users are required to
provide a dialup password in addition to their username and password before being
allowed access to a system over a dialup line. Dialup passwords may also be used as
a way to restrict dialup access to certain users (by only giving the password to them).

Dialup passwords are supported by HP-UX and Solaris.

The dialup password facility uses two configuration files: /etc/d_passwd, the dialup
password file (described later in this section), and /etc/dialups (the file is occasionally
named dial-ups on a few older systems), which lists the terminal lines that are con-
nected to dial-in modems, one per line:

/dev/tty10
/dev/tty11

Users who log in through one of these terminal lines must supply a dialup password,
as specified in the file /etc/d_passwd, or they will not be allowed access to the sys-
tem. If you decide to use dialup passwords, enter all the terminal lines connected to
modems into this file; even a single unprotected dialup line is a significant security
risk.

The file /etc/d_passwd contains a set of encrypted dialup passwords. The dialup pass-
word required depends on the user’s login shell.

In the following line, the d_passwd file contains three colon-separated fields:

shell:encrypted-password: Final field is left empty

shell is the complete pathname of a shell that can be listed in the user’s passwd entry.
The second field is the encrypted password. The final field is always empty, but the
second colon is required.

In general, the dialup password file does not provide any support for generating the
encrypted password; you must generate it yourself.

On HP-UX systems, you can do this using the -F option to the passwd command. For
example:

passwd -F /etc/d_passwd /bin/sh

On Solaris systems, encrypted dialup passwords may be generated by changing your
own password and then copying the string that appears in the password or shadow
password file into /etc/d_passwd. Be sure to change your password back afterwards.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 7: Security

If you decide to use the same dialup password for all user shells, you should encrypt
them using different salts. Their encrypted representation will look different in the
file, so it will not be obvious that they are the same password. Changing your own
password to the same value a second time will also use a different salt and generate a
different encoded string.

Here is a sample dialup password file:

/bin/sh:10gw4c39EHIAM:
/bin/csh:p9k3tJ6RzSfKQ:
/bin/ksh:9pk36RksieQd3:
/bin/Rsh:*:

In this example, there are specific entries for the Bourne shell, Korn shell, and C
shell. Dialup access from the restricted Bourne shell (/bin/Rsh) is disabled by the
asterisk in the password field. Users who use other shells may log in from remote ter-
minals without giving an additional dialup password. However, I recommend that
you assign a dialup password to all shells in use at your site (if you need dialup pass-
words, you need them for everyone).*

Dialup passwords should be changed periodically, even if you don’t impose any
password-aging restrictions on user passwords. They must be changed whenever
anyone who knows the dialup password stops using the system (as part of the gen-
eral account deactivation procedure), or if there is any hint that an unauthorized user
has learned it.

AIX Secondary Authentication Programs
The software supporting smart card numeric passwords is one type of secondary
authentication program. In general, this term refers to any program that requires
additional information from the user before accepting that he is who he claims to be.
For example, a program might require the user to answer several questions about
their personal preferences (“Which of the following flowers do you prefer?”) and
compare the responses to those given when the user was initially added to the sys-
tem (the question may be multiple choice, with the four or five wrong responses cho-
sen randomly from a much larger list). The theory behind this sort of approach is
that even if someone discovers or guesses your password, they won’t be able to guess
your favorite flower, bird, color, and so on, and you won’t need to write the answers
down to remember them, either, since the questions are multiple choice. It also relies
on there being enough questions and choices per question to make blind guessing
extremely unlikely to succeed. To be effective, accounts must be automatically dis-
abled after quite a small number of unsuccessful authentications (two or three).

* If you decide to use dialup password for PPP access, you will have to modify the chat scripts accordingly to
take the additional prompt into account.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication Revisited | 345

AIX provides for an administrator-defined alternative login authentication method,
which may be used in addition to or instead of standard passwords. A program is
designated an authentication program in the file /etc/security/login.cfg, via a stanza
defining a name for the authentication method (uppercase by convention) and speci-
fying the pathname of the authentication program:

LOCALAUTH:
 program = /usr/local/admin/bin/local_auth_prog

This stanza defines an authentication method LOCALAUTH using the specified pro-
gram. Note that the standard AIX password authentication method is named SYS-
TEM.

Once a method is defined, it may be invoked for a user by including it in the list for
the auth1 user attribute. You can modify this attribute from SMIT, by using the
chuser command, or by editing /etc/security/user directly. For example, the first com-
mand below replaces the standard password authentication with the LOCALAUTH
method for user chavez:

chuser auth1=LOCALAUTH chavez
chuser auth1=SYSTEM,LOCALAUTH chavez

The second command adds LOCALAUTH as an additional authentication method,
run after the standard password check for user chavez. The program defined in the
LOCALAUTH method will be passed the argument “chavez” when user chavez tries
to log in. Of course, it would be wise to test an additional authentication method
thoroughly on a single account before installing it on the system as a whole.

User accounts also have an attribute named auth2. This attribute works in the same
way that auth1 does. However, the user does not have to pass the authentication
procedure to be allowed onto the system; more technically, the return value from any
program specified in the auth2 list is ignored. Thus, auth2 is a poor choice for a sec-
ondary authentication program, but it will allow a system administrator to specify a
program that all users must run at login time.

Better Network Authentication: Kerberos
So far, we’ve seen several attempts at strengthening user authentication in various
ways. The Kerberos system provides another mechanism for securing network
authentication operations. Its goal is to allow systems and services to be secure
within a network environment controlled by an adversary. Its strategy for accom-
plishing this is to make sure that no sensitive data is ever sent across the network.

This section provides a very brief introduction to Kerberos Version 5. Figure 7-1
illustrates the basic Kerberos authentication scheme, which relies on tickets to
authenticate users and authorize access to services. A ticket is just an encrypted net-
work message containing request and/or authentication data and credential expira-
tion data (as we’ll see).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 7: Security

In the figure, the data passed between the user workstation (Kerberos client) and the
various servers is depicted in the middle column of the drawing, passing between the
two relevant computers. The legend describes the layout of this data. Included data
is a darker shade, and the key used to encrypt it (if any) is indicated to its left, in the
lighter shaded column. The sequence of events follows the circled numbers.

When a user logs in to a Kerberos-enabled workstation and enters his password, a
one-way hash is computed from the password (1). This value is used as an encryp-
tion key within the Kerberos authentication request (2). The request consists of the
unencrypted username and the current time; the time is encrypted using the hash
created from the entered password (designated as KP in the diagram). This is then
sent to the Kerberos server, where its authentication function is invoked (3).

The Kerberos server knows the user’s correct encoded password (which is not, in
fact, stored on the workstation), so it can decrypt the time. If this operation is suc-
cessful, the time is checked (to avoid replay attacks based on intercepted earlier com-
munications). The server then creates a session key: an encryption key to be used for

Social Engineering
Social engineering is the colorful term used to describe crackers’ attempts to get users
to tell them their passwords and other information about the system, and no discus-
sion of account security is complete without some consideration of it. Most descrip-
tions of such attempts seem laughably obvious, but unfortunately, P. T. Barnum was
right. Experience shows that it is essential to include seemingly obvious points such as
these in user security education:

• No member of the system administration staff, other computing center staff,
field service team, and so on, will ever ask you to reveal your password or any
other information about the system. (This is to protect against the computer
equivalent of the bank examiner scam.)

• No law enforcement or local security officer will ever ask for such information,
either.

• Don’t reveal such information to someone you don’t know if they call asking for
help with the system (i.e., pretending to be a new user).

• Report any suspicious questions that anyone asks you to the system administra-
tor (or other designated person) right away.

Social-engineering techniques are generally an indication that someone has targeted
your particular installation, which is why suspicious questions from outsiders need to
be taken seriously.

You may also want to warn users against other unwise practices, such as sending local
proprietary information or personal credit card numbers over the Internet (or generally
including in email any information that they want to remain private), even though
these practices do not impact system security as such.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

User Authentication Revisited | 347

communicating with this client during the current session (which typically expires
after about 8 hours). This is labeled as KS1 in the diagram.

The Kerberos server also knows all the keys corresponding to its own services and
services under its control. One of the former is the Kerberos Ticket Granting Service
(TGS). Upon successful user authentication, the Kerberos server builds a response
for the user (4). This transmission has two sets of data: the session key encrypted
with the user password hash KP, and a ticket-granting ticket (TGT) encrypted with
the TGS’s own key (designated KTGS). The TGT contains another copy of the ses-
sion key as well as user authentication data and time-stamps. The TGT will be used

Figure 7-1. Basic Kerberos 5 authentication

1

2

5 4

6

7

10 9

11

3

8

12

User workstation
Kp= hash (password)

username

Kp

Authentication request
Kerberos server

Auth

TGS

• Knows hashed user passwords
• Checks time to avoid relay attacks
• Creates session key KS1
• Knows ticket granting services key KTGS

User workstation
Kp

KS1

{TGT} KTGS

K1 session key

Kp

Kp

K1 session key
Authentication data

Ticket granting
ticket (TGT)

User workstation
Kp

KS1

{TGT} KTGS

Service

KS1

Service-specific ticket
request

Kerberos server

Auth

TGS

• Knows session key
• Knows service-specific key Kv
• TGS knows its on key KTGS
• Creates server-specific session KS2

User workstation
Kp

KS1

KBR

{TGT} KTGS

{ST} KV

KS2 service session key

Kp

KS1

Authentication data
KS2: service session key Service ticket 1 (ST)

User
Time

KTGS TGT

STKv

Server

Service
• Knows own key
• Decrypts KS2

Services are provided using KS2

Initial authentication

Using a service

time

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 7: Security

to request tickets for the actual services that the client wants to use. It can be thought
of as a sort of meta-ticket: an authorization to request and receive actual tickets.

When the workstation receives this response (5), it decrypts the session key and
stores it. It also saves the TGT in encrypted form (because it does not know the
TGS’s key).

The process of requesting access to a specific network service—for example, a file
access service—begins at (6). The client builds a request for a ticket for the desired
service to be sent to the Kerberos server’s TGS. The request (7) contains the name of
the desired service (unencrypted), the user information and current time encrypted
with the session key, and the TGT.

The TGS can decrypt both parts of the message (8) because it knows both the ses-
sion key and its own key (KTGS). If the authentication is successful and the ticket’s
time is within the allowed window, the TGS creates a ticket for the client to use with
the actual service (9). As part of this process, it generates another session key for use
between the client and the target service (KS2). The second service-specific session
key is encrypted using the client’s Kerberos server session key, KS1, and the ticket to
be supplied to the service is encrypted using the service’s own key (designated KV),
which the Kerberos server also knows. The latter ticket consists of another copy of
the new session key and user authentication and time-stamp data.

When the client receives this response (10), it decrypts the new session key using
KS1, and it stores the service ticket in encrypted form (because it does not know KV).
It presents the latter (11) to the desired server (12). The service decrypts it using its
own key (KV) and in doing so learns the session key to be used for future communi-
cation with the client (KS2). Subsequent communications between the two rely solely
on the latter session key.

As this description indicates, the Kerberos method assumes an untrustworthy net-
work environment and encrypts all important data. Another nice feature is that it
requires no action on the part of the user. All of the requests and ticket presentation
happen automatically, triggered by the initial user login.

On the down side, Kerberos relies fundamentally on the security of the Kerberos
server. If it is compromised, the security of the entire Kerberos infrastructure is at risk.

Protecting Files and the Filesystem
In general, the goal of every security measure on a system is to prevent people from
doing things they shouldn’t. Given the all-or-nothing structure of Unix privileges, in
practical terms this means you are trying to prevent unauthorized access to the root
account—it also implies that the root account is what the bad guys are trying to gain
access to. When they cannot do so directly because the root password has been well
chosen, they may try other, indirect routes through the filesystem to gain superuser
status.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 349

So, how can you get root access from an ordinary, unprivileged user account? One
way is to get root to execute commands like these:

cp /bin/sh /tmp/.junk
chmod 4755 /tmp/.junk

These commands create a setuid root version of the Bourne shell: any user can start a
shell with this file, and every command that he runs within it will be executed as if he
were root. Of course, no reputable system administrator will run these commands on
demand, so a cracker will have to trick her into doing it anyway by hiding these com-
mands—or other commands just as deadly—within something that she will execute.
One large class of system attack revolves around substituting hacked, pernicious
copies of normally benign system entities: Unix command executables, login or other
initialization files, and so on. Making sure that the filesystem is protected will pre-
vent many of them from succeeding.

In this section, we’ll consider the types of vulnerabilities that come from poorly-cho-
sen filesystem protections and general system disorganization. In the next section,
we’ll look at ways of finding potential problems and fixing them.

Search Path Issues
It is important to place the current directory and the bin subdirectory of the user’s
home directory at the end of the path list, after the standard locations for Unix com-
mands:

$ echo $PATH
/usr/ucb:/bin:/usr/bin:/usr/bin/X11:/usr/local/bin:$HOME/bin:.

This placement closes a potential security hole associated with search paths. If, for
example, the current directory is searched before the standard command locations, it
is possible for someone to sneak a file named, say, ls into a seemingly innocuous
directory (like /tmp), which then performs some nefarious action instead of or in
addition to giving a directory listing. Similar effects are possible with a user’s bin sub-
directory if it or any of its components is writable.

Most importantly, the current directory should not even appear in root’s search path,
nor should any relative pathname appear there. In addition, none of the directories
in root’s search path, nor any of their higher-level components, should be writable by
anyone but root; otherwise someone could again substitute something else for a stan-
dard command, which would be unintentionally run by and as root.

Scripts should always set the search path as their first action (which
includes only system directories protected from unauthorized write
access). Alternatively, a script can use the full pathname for every
command, but it’s easy to slip up using the latter approach.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 7: Security

Small Mistakes Compound into Large Holes
It is possible, and probably even common, for large security problems to arise from
small mistakes, an effect tangentially related to the one described in the science fic-
tion story “Spell My Name with an S” by Isaac Asimov. Consider these two small file
protection errors:

• User chavez’s .login file is writable by its group owner (chem).

• The directory /etc is writable by its user and group owners (root and system,
respectively).

Suppose user chavez is also a member of group system: now you have a situation
where anyone in the chem group has a very good chance of replacing the password
file.

How does that work? Since ~chavez/.login is writable by group chem, anyone in that
group can edit it, adding commands like:

rm -f /etc/passwd
cp /tmp/data526 /etc/passwd

Since chavez is a member of the system group and /etc is writable by group system,
both commands will succeed the next time chavez logs in (unless she notices that the
file has been altered—would you?). Keep in mind how powerful write access to a
directory is.

More subtle variations on this theme are what usually happen in practice; /etc being
writable is not really a small mistake. Suppose instead that the system administrator
had been careless and had the wrong umask in effect when she installed a new pro-
gram, xpostit (which creates memo pad windows under X), into /usr/local/bin, and
that file was writable by group system. Now the bad guy is able to replace only the
xpostit executable. Exploiting this weakness will take more work than in the previ-
ous case but is ultimately just as successful: writing a program that merely starts the
real xpostit when most users run it but does something else first when root runs it.
(A smart version would replace itself with the real xpostit after root has used it to
cover its tracks.)

It usually isn’t hard to get root to run the doctored xpostit. The system administra-
tor may already use it anyway. If not, and if the bad guy is bold enough, he will walk
over to the system administrator’s desk and say he’s having trouble with it and hope
she tries it herself to see if it works. I’m sure you can imagine other ways.

In addition to once again pointing out the importance of the appropriate ownership
and protection for all important files and directories on the system, the preceding
story highlights several other points:

• Because it is always world-writable, don’t use /tmp as any user’s home directory,
not even a pseudo-user who should never actually log in.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 351

• Think carefully about which users are supplementary members of group 0 and
any other system groups, and make sure that they understand the implications.

• root’s umask should be 077 or a more restrictive setting. System administrators
should turn on additional access by hand when necessary.

The setuid and setgid Access Modes
The set user ID (setuid) and set group ID (setgid) file access modes provide a way to
grant users increased system access for a particular command. However, setuid
access especially is a double-edged sword. Used properly, it allows users access to
certain system files and resources under controlled circumstances, but if it is mis-
used, there can be serious negative security consequences.

setuid and setgid access are added with chmod’s s access code (and they can similarly
be recognized in long directory listings):

chmod u+s files setuid access
chmod g+s files setgid access

When a file with setuid access is executed, the process’ effective UID (EUID) is
changed to that of the user owner of the file, and it uses that UID’s access rights for
subsequent file and resource access. In the same way, when a file with setgid access is
executed, the process’ effective GID is changed to the group owner of the file, acquir-
ing that group’s access rights.

The passwd command is a good example of a command that uses setuid access. The
command’s executable image, /bin/passwd, typically has the following permissions:

$ ls -lo /bin/passwd
-rwsr-xr-x 3 root 55552 Jan 29 2002 /bin/passwd

The file is owned by root and has the setuid access mode set, so when someone exe-
cutes this command, his EUID is changed to root while that command is running.
setuid access is necessary for passwd, because the command must write the user’s
new password to the password file, and only root has write access to the password
file (or the shadow password file).

The various commands to access line printer queues are also usually setuid files. On
systems with BSD-style printing subsystems, the printer commands are usually set-
uid to user root because they need to access the printer port /dev/printer (which is
owned by root). In the System V scheme, the printing-related commands are some-
times setuid to the special user lp. In general, setuid access to a special user is prefer-
able to setuid root because it grants fewer unnecessary privileges to the process.

Other common uses of the setuid access mode are the at, batch, and mailer facilities,
all of which must write to central spooling directories to which users are normally
denied access.

setgid works the same way, but it applies to the group owner of the command file
rather than to the user owner. For example, the wall command is setgid to group tty,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 7: Security

the group owner of the special files used to access user terminals. When a user runs
wall, the process’ EGID is set to the group owner of /usr/bin/wall, allowing him to
write to all TTY devices.

As the examples we’ve considered have illustrated, setuid and setgid
access for system files varies quite a bit from system to system (as does
file ownership and even directory location). You should familiarize
yourself with the setuid and setgid files on your system (finding all of
them is discussed later in this chapter).

To be secure, a setuid or setgid command or program must not allow the user to per-
form any action other than what it was designed to do, including retaining the set-
uid or setgid status after it completes. The threat is obviously greatest with programs
that are setuid to root.

Aside from commands that are part of Unix, other setuid and setgid programs
should be added to the system with care. If at all possible, get the source code for any
new setuid or setgid program being considered and examine it carefully before
installing the program. It’s not always possible to do so for programs from third-
party application vendors, but such programs are usually less risky than free pro-
grams. Ideally, the part requiring privileged access will be isolated to a small portion
of the package (if it isn’t, I’d ask a lot of questions before buying it). Methods to
ensure security when creating your own setuid and setgid programs are discussed in
the next section.

Writing setuid/setgid programs

Two principles should guide you in those rare instances where you need to write a
setuid or setgid program:

Use the minimum privilege required for the job.

Whenever possible, make the program setgid instead of setuid. 99 percent of all
problems can be solved by creating a special group (or using an existing one) and
making the program setgid. Almost all of the remaining 1 percent can be solved
by creating a special user and using setuid to that special user ID. Using setuid to
root is a bad idea because of the difficulty in foreseeing and preventing every pos-
sible complication, system call interaction, or other obscure situation that will
turn your nice program into a security hole. Also, if the program doesn’t need
setuid or setgid access for its entire lifetime, reset its effective UID or GID back
to the process’ real UID or GID at the appropriate point.

Avoid extra program entrances and exits.

In addition to writing in an explicit back door, this principle rules out many dif-
ferent features and programming practices. For example, the program should not

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 353

support shell escapes,* which allow a shell command to be executed inside
another program. If a setuid program has a shell escape, any shell command
executed from within it will be run using the process’ effective UID (in other
words, as root if the program is setuid to root). To be completely secure, the pro-
gram should not call any other programs (if it does so, it inherits the security
holes of the secondary program). Thus, if a setuid program lets you call an editor
and the editor has shell escapes, it’s just as if the first program had shell escapes.

This principle also means that you should avoid system calls that invoke a shell
(popen, system, exec{vp,lp,ve}, and so on). These calls are susceptible to attacks
by clever users.

Access Control Lists
Access control lists (ACLs) offer a further refinement to the standard Unix file per-
missions capabilities. ACLs enable you to specify file access for completely arbitrary
subsets of users and/or groups. All of our reference operating systems provide ACLs,
with the exception of FreeBSD.†

The first part of this section covers AIX ACLs. It also serves as a general introduc-
tion to ACLs and should be read by all administrators encountering this topic for the
first time. Table 7-1 lists features of the ACL implementations on the systems we are
considering.

Note that the NFS support listed in the table refers to whether NFS file operations
respect ACLs for other systems running the same operating system (homogeneous

* Strictly speaking, as long as the program ensured that any created child processes did not inherit the parent’s
setuid or setgid status (by resetting it between the fork and the exec), shell escapes would be OK.

† Actually, POSIX ACL functionality is partially present in current releases of FreeBSD, but the facility is still
considered experimental.

Table 7-1. ACL features by operating system

Feature AIX FreeBSDa

a ACL support in FreeBSD is preliminary.

HP-UX Linux Solaris Tru64

Follows POSIX standard? no yes no yes yes yes

chmod deletes extended ACEs? numeric
mode only

no variesb

b The most recent versions of chmod support the -A option, which retains ACL settings

no no no

ACL inheritance from parent
directory’s default ACL?

no yes no yes yes yes

NFS support? yes no no yes yes yes

ACL backup/restore support backup
(by inode)

no fbackup starc

c See http://www.fokus.gmd.de/research/cc/glone/employees/joerg.schilling/private/star.html.

ufsdump dump

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 7: Security

NFS, if you will). Heterogeneous NFS support is seldom offered. Even when NFS is
supported, there can still be privilege glitches arising from NFS’s practice of caching
files and their permissions for read purposes in a user-independent manner. Consult
the documentation for your systems to determine how such situations are handled.

Introducing access control lists

On an AIX system, an access control list looks like this:

attributes: Special modes like setuid.
base permissions Normal Unix file modes:
 owner(chavez): rw- User access.
 group(chem): rw- Group access
 others: r-- Other access.
extended permissions More specific permission entries:
 enabled Whether they're used or not.
 specify r-- u:harvey Permissions for user harvey.
 deny -w- g:organic Permissions for group organic.
 permit rw- u:hill, g:bio Permissions for hill when group bio is active.

The first line specifies any special attributes on the file (or directory). The possible
attribute keywords are SETUID, SETGID, and SVTX (the sticky bit is set on a direc-
tory). Multiple attributes are all placed on one line, separated by commas.

The next section of the ACL lists the base permissions for the file or directory. These
correspond exactly to the Unix file modes. Thus, for the file we’re looking at, the
owner (who is chavez) has read and write access, members of the group chem (which
is the group owner of the file) also have read and write access, and all others have
read access.

The final section specifies extended permissions for the file: access information speci-
fied by user and group name. The first line in this section is the word enabled or dis-
abled, indicating whether the extended permissions that follow are actually used to
determine file access. In our example, extended permissions are in use.

The rest of the lines in the ACL are access control entries (ACEs), which have the fol-
lowing format:

operation access-types user-and-group-info

The operation is one of the keywords permit, deny, and specify, which correspond to
chmod’s +, –, and = operators, respectively. permit says to add the specified permis-
sions to the ones the user already has, based on the base permissions; deny says to
take away the specified access; and specify sets the access for the user to the listed
value. The access-types are the same as those for normal Unix file modes. The user-
and-group-info consists of a user name (preceded by u:) or one or more group names
(each preceded by g:) or both. Multiple items are separated by commas.

Let’s look again at the ACEs in our sample ACL:

specify r-- u:harvey Permissions for user harvey.
deny -w- g:organic Permissions for group organic.
permit rw- u:hill, g:bio Permissions for hill when group bio is active.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 355

The first line grants read-only access to user harvey on this file. The second line
removes write access for the organic group from whatever permissions a user in that
group already has. The final line adds read and write access to user hill while group
bio is part of the current group set (see “Unix Users and Groups” in Chapter 6). By
default, the current group set is all of the groups to which the user belongs.

ACLs that specify a username and group are useful mostly for accounting purposes;
the previous ACL ensures that user hill has group bio active when working with this
file. They are also useful if you add a user to a group on a temporary basis, ensuring
that the added file access goes away if the user is later removed from the group. In
the previous example, user hill would no longer have access to the file if she were
removed from the bio group (unless, of course, the file’s base permissions grant it to
her).

If more than one item is included in the user-and-group-info, all of the items must be
true for the entry to be applied to a process (Boolean AND logic). For example, the
first ACE below is applied only to users who have both bio and chem in their group
sets (which is often equivalent to “are members of both the chem and bio groups”):

permit r-- g:chem, g:bio
permit rw- u:hill, g:chem, g:bio

The second ACE applies to user hill only when both groups are in the current group
set. If you wanted to grant write access to anyone who was a member of either group
chem or group bio, you would specify two separate entries:

permit rw- g:bio
permit rw- g:chem

At this point, it is natural to wonder what happens when more than one entry
applies. When a process requests access to a file with extended permissions, the per-
mitted accesses from the base permissions and all applicable ACEs—all ACEs that
match the user and group identity of the process—are combined with a union opera-
tion. The denied accesses from the base permissions and all applicable ACEs are also
combined. If the requested access is permitted and it is not explicitly denied, then it
is granted. Thus, contradictions among ACEs are resolved in the most conservative
way: access is denied unless it is both permitted and not denied.

This conservative, least-privilege approach is true for all the ACL
implementations we are considering.

For example, consider the ACL below:

attributes:
base permissions
 owner(chavez): rw-
 group(chem): r—
 others: ---

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 7: Security

extended permissions
 enabled
 specify r-- u:stein
 permit rw- g:organic, g:bio
 deny rwx g:physics

Now suppose that the user stein, who is a member of both the organic and bio
groups (and not a member of the chem group), wants write access to this file. The
base permissions clearly grant stein no access at all to the file. The ACEs in lines one
and two of the extended permissions apply to stein. These ACEs grant him read
access (lines one and two) and write access (line two). They also deny him write and
execute access (implicit in line one). Thus, stein will not be given write access,
because while the combined ACEs do grant it to him, they also deny write access,
and so the request will fail.

Manipulating AIX ACLs

ACLs may be applied and modified with the acledit command. acledit retrieves the
current ACL for the file specified as its argument and opens the ACL for editing,
using the text editor specified by the EDITOR environment variable. The use of this
variable under AIX is different than in other systems. For one thing, there is no
default (most Unix implementations use vi when EDITOR is unset). Second, AIX
requires that the full pathname to the editor be supplied, /usr/bin/vi, not just its
name. Once in the editor, make any changes to the ACL that you wish. If you are
adding extended permissions ACEs, be sure to change disabled to enabled in the first
line of that section. When you are finished, exit from the editor normally. AIX will
then print the message:

Should the modified ACL be applied? (y)

If you wish to discard your changes to the ACL, enter “n”; otherwise, you should
press Return. AIX then checks the new ACL and, if it has no errors, applies it to the
file. If there are errors in the ACL (misspelled keywords or usernames are the most
common), you are placed back in the editor, where you can correct them and try
again. AIX puts error messages like this one at the bottom of the file, describing the
errors it found:

* line number 9: unknown keyword: spceify
* line number 10: unknown user: chavze

You don’t have to delete the error messages themselves from the ACL.

But this is the slow way of applying an ACL. The aclget and aclput commands offer
alternative ways to display and apply ACLs to files. aclget takes a filename as its
argument and displays the corresponding ACL on standard output (or to the file
specified to its –o option). The aclput command is used to read an ACL in from a
text file. By default, it takes its input from standard input or from an input file speci-
fied with the –i option. Thus, to set the ACL for the file gold to the ACL stored in the
file metal.acl, you could use this command:

$ aclput -i metal.acl gold

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 357

This form of aclput is useful if you use only a few different ACLs, all of which are
saved as separate files to be applied as needed.

To copy an ACL from one file to another, put aclget and aclput together in a pipe.
For example, the command below copies the ACL from the file silver to the file emer-
ald:

$ aclget silver | aclput emerald

To copy an ACL from one file to a group of files, use xargs:

$ ls *.dat *.old | xargs -i /bin/sh -c "aclget silver | aclput {}"

These commands copy the ACL in silver to all the files ending in .dat and .old in the
current directory.

You can use the ls –le command to quickly determine whether a file has an
extended permissions set or not:

-rw-r-----+ 1 chavez chem 51 Mar 20 13:27 has_acl
-rwxrws---- 2 chavez chem 512 Feb 08 17:58 no_acl

The plus sign appended to the normal mode string indicates the presence of
extended permissions; a minus sign indicates that there are no extended permissions.

Additional AIX ACL notes:

• The base permissions on a file with an extended access control list may be
changed with chmod’s symbolic mode, and any changes made in this way will be
reflected in the base permissions section of the ACL. However, chmod’s numeric
mode must not be used for files with extended permissions, because using it
automatically removes any existing ACEs.

• Only the backup command in backup-by-inode mode will backup and restore the
ACLs along with the files.

Unlike other ACL implementations, files do not inherit their initial ACL from their
parent directory. Needless to say, this is a very poor design.

HP-UX ACLs

The lsacl command may be used to view the ACL for a file. For a file with only nor-
mal Unix file modes set, the output looks like this:

(chavez.%,rw-)(%.chem,r--)(%.%,---) bronze

This shows the format an ACL takes under HP-UX. Each parenthesized item is
known as an access control list entry, although I’m just going to call them “entries.”
The percent sign is a wildcard within an entry, and the three entries in the previous
listing specify the access for user chavez as a member of any group, for any user in
group chem, and for all other users and groups, respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 7: Security

A file can have up to 16 ACL entries: three base entries corresponding to normal file
modes and up to 13 optional entries. Here is the ACL for another file (generated this
time by lsacl –l):

silver:
rwx chavez.%
r-x %.chem
r-x %.phys
r-x hill.bio
rwx harvey.%
--- %.%

This ACL grants all access to user chavez with any current group membership (she is
the file’s owner). It grants read and execute access to members of the chem and phys
groups and to user hill when a member of group bio, and it grants user harvey read,
write and execute access regardless of his group membership and no access to any
other user or group.

Entries within an HP-UX access control list are examined in order of decreasing spec-
ificity: entries with a specific user and group are considered first, followed by those
with only a specific user, those with only a specific group, and the other entry last of
all. Within a class, entries are examined in order. When determining whether to per-
mit file access, the first applicable entry is used. Thus, user harvey will be given write
access to the file silver even if he is a member of the chem or phys group.

The chacl command is used to modify the ACL for a file. ACLs can be specified to
chacl in two distinct forms: as a list of entries or with a chmod-like syntax. By default,
chacl adds entries to the current ACL. For example, these two commands both add
read access for the bio group and read and execute access for user hill to the ACL on
the file silver:

$ chacl "(%.bio,r--) (hill.%,r-x)" silver
$ chacl "%.bio = r, hill.% = rx" silver

In either format, the ACL must be passed to chacl as a single argument. The second
format also includes + and – operators, as in chmod. For example, this command adds
read access for group chem and user harvey and removes write access for group
chem, adding or modifying ACL entries as needed:

$ chacl "%.chem -w+r, harvey.% +r" silver

chacl’s –r option may be used to replace the current ACL:

$ chacl -r "@.% = 7, %.@ = rx, %.bio = r, %.% = " *.dat

The @ sign is a shorthand for the current user or group owner, as appropriate, and it
also enables user-independent ACLs to be constructed. chacl’s –f option may be
used to copy an ACL from one file to another file or group of files. This command
applies the ACL from the file silver to all files with the extension .dat in the current
directory:

$ chacl -f silver *.dat

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 359

Be careful with this option: it changes the ownership of target files if necessary so
that the ACL exactly matches that of the specified file. If you merely want to apply a
standard ACL to a set of files, you’re better off creating a file containing the desired
ACL, using @ characters as appropriate, and then applying it to files in this way:

$ chacl -r "`cat acl.metal`" *.dat

You can create the initial template file by using lsacl on an existing file and captur-
ing the output.

You can still use chmod to change the base entries of a file with an ACL if you include
the -A option. Files with optional entries are marked with a plus sign appended to
the mode string in long directory listings:

-rw-------+ 1 chavez chem 8684 Jun 20 16:08 has_one
-rw-r--r-- 1 chavez chem 648205 Jun 20 11:12 none_here

Some HP-UX ACL notes:

• ACLs for new files are not inherited from the parent directory.

• NFS support for ACLs is not included in the implementation.

• Using any form of the chmod command on a file will remove all ACEs except
those for the user owner, group owner, and other access.

POSIX access control lists: Linux, Solaris, and Tru64

Solaris, Linux, and Tru64 all provide a version of POSIX ACLs, and a stable FreeBSD
implementation is forthcoming. On Linux systems, ACL support must be added
manually (see http://acl.bestbits.ac); the same is true for the preliminary FreeBSD ver-
sion, part of the TrustedBSD project (e.g., see http://www.freebsd.org/news/status/
report-dec-2001-jan-2002.html, as well as the project’s home page at http://www.
trustedbsd.org). Linux systems also require that the filesystem be mounted with the
option -o acl.

Here is what a simple POSIX access control list looks like:

u::rwx Owner access.
g::rwx Group owner access.
o:--- Other access.
u:chavez:rw- Access for user chavez.
g:chem:r-x Access for group chem.
g:bio:rw- Access for group bio.
g:phys:-w- Access for group phys.
m:r-x Access mask: sets maximum allowed access.

The first three items correspond to the usual Unix file modes. The next four entries
illustrate the ACEs for specific users and groups; note that only one name can be
included in each entry. The final entry specifies a protection mask. This item sets the
maximum allowed access level for all but user owner and other access.

In general, if a required permission is not granted within the ACL, the correspond-
ing access will be denied. Let’s consider some examples using the preceding ACL.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 7: Security

Suppose that harvey is the owner of the file and the group owner is prog. The ACL
will be applied as follows:

• The user owner, harvey in this case, always uses the u:: entry, so harvey has rwx
access to the file. All group entries are ignored for the user owner.

• Any user with a specific u: entry always uses that entry (and all group entries are
ignored for her). Thus, user chavez uses the corresponding entry. However, it is
subject to the mask entry, so her actual access will be read-only (the assigned
write mode is masked out).

• Users without specific entries use any applying group entry. Thus, members of
the prog group have r-x access, and members of the bio group have r-- access
(the mask applies in both cases). Under Solaris and Tru64, all applicable group
entries are combined (and then the mask is applied). However, on Linux sys-
tems, group entries do not accumulate (more on this in a minute).

• Everyone else uses the specified other access. In this case, that means no access
to the file is allowed.

On Linux systems, users without specific entries who belong to more than one group
specified in the ACL can use all of the entries, but the group entries are not com-
bined prior to application. Consider this partial ACL:

g:chem:r--
g:phys:--x
m:rwx

The mask is now set to rwx, so the permissions in the ACEs are what will be granted.
In this case, the access for users who are members of group chem and group phys can
use either ACE. If this file is a script, they will not be able to execute it because they
do not have rx access. If they try to read the file, they will be successful, because the
ACE for chem gives them read access. However, when they try to execute the file,
neither ACE gives them both r and x. The separate permissions in the two ACEs are
not combined.

New files are given ACLs derived from the directory in which they reside. However,
the directory’s own access permission set is not used. Rather, separate ACEs are
defined for use with new items. Here are some examples of these default ACEs:

d:u::rwx Default user owner ACE.
d:g::r-x Default group owner ACE.
d:o:r-- Default other ACE.
d:m:rwx Default mask.
d:u:chavez:rwx Default ACE for user chavez.
d:g:chem:r-x Default ACE for group chem.

Each entry begins with d:, indicating that it is a default entry. The desired ACE fol-
lows this prefix.

We’ll now turn to some examples of ACL-related commands. The following com-
mands apply two access control entries to the file gold:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 361

Solaris and Linux
setfacl -m user:harvey:r-x,group:geo:r-- gold
Tru64
setacl -u user:harvey:r-x,group:geo:r-- gold

The following commands apply the ACL from gold to silver:

Solaris
getfacl gold > acl; setfacl -f acl silver
Linux
getfacl gold > acl; setfacl -S acl silver
Tru64
getacl gold > acl; setacl -b -U acl silver

As the preceding commands indicate, the getfacl command is used to display an
ACL under Solaris and Linux, and getacl is used on Tru64 systems.

The following commands specify the default other ACE for the directory /metals:

Solaris
setfacl -m d:o:r-x /metals
Linux
setfacl -d -m o:r-x /metals
Tru64
setacl -d -u o:r-x /metals

Table 7-2 lists other useful options for these commands.

On Linux systems, you can also backup and restore ACLs using commands like
these:

getfacl -R --skip-base / > backup.acl
setfacl --restore=backup.acl

The first command backs up the ACLs from all files into the file backup.acl, and the
second command restores the ACLs saved in that file.

Table 7-2. Useful ACL manipulation commands

Operation Linux Solaris Tru64

Add/modify ACEs setfacl -m entries
setfacl -M acl-file

setfacl -m entries
setfacl -m -f acl-file

setacl -u entries
setacl -U acl-file

Replace ACL setfacl -s entries
setfacl -S acl-file

setfacl -s entries
setfacl -s -f acl-file

setacl -b -u entries
setacl -b -U acl-file

Remove ACEs setfacl -x entries
setfacl -X acl-file

setfacl -d entries setacl -x entries
setacl -X acl-file

Remove entire
ACL

setfacl -b setacl -b

Operate on direc-
tory default ACL

setfacl -d setfacl -m d:entry setacl -d

Remove default
ACL

setfacl -k setacl -k

Edit ACL in editor setacl -E

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 7: Security

On Tru64 systems, the acl_mode setting must be enabled in the ker-
nel for ACL support.

Encryption
Encryption provides another method of protection for some types of files. Encryp-
tion involves transforming the original file (the plain or clear text) using a mathemati-
cal function or technique. Encryption can potentially protect the data stored in files
in several circumstances, including:

• Someone breaking into the root account on your system and copying the files (or
tampering with them), or an authorized root user doing similar things

• Someone stealing your disk or backup tapes (or floppies) or the computer itself
in an effort to get the data

• Someone acquiring the files via a network

The common theme here is that encryption can protect the security of your data even
if the files themselves somehow fall into the wrong hands. (It can’t prevent all mis-
haps, however, such as an unauthorized root user deleting the files, but backups will
cover that scenario.

Most encryption algorithms use some sort of key as part of the transformation, and
the same key is needed to decrypt the file later. The simplest kinds of encryption
algorithms use external keys that function much like passwords; more sophisticated
encryption methods use part of the input data as the part of the key.

The crypt command

Most Unix systems provide a simple encryption program, crypt.* The crypt com-
mand takes the encryption key as its argument and encrypts standard input to stan-
dard output using that key. When decrypting a file, crypt is again used with the
same key. It’s important to remove the original file after encryption, because having
both the clear and encrypted versions makes it very easy for someone to discover the
keys used to encrypt the original file.

crypt is a very poor encryption program (it uses the same basic encryption scheme as
the World War II Enigma machine, which tells you that, at the very least, it is 50
years out of date). crypt can be made a little more secure by running it multiple
times on the same file, for example:

$ crypt key1 < clear-file | crypt key2 | crypt key3 > encr-file
$ rm clear-file

* U.S. government regulations forbid the inclusion of encryption software on systems shipped to foreign sites
in many circumstances.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 363

Each successive invocation of crypt is equivalent to adding an additional rotor to an
Enigma machine (the real machines had three or four rotors). When the file is
decrypted, the keys are specified in the reverse order. Another way to make crypt
more secure is to compress the text file before encrypting it (encrypted binary data is
somewhat harder to decrypt than encrypted ASCII characters).

In any case, crypt is no match for anyone with any encryption-breaking skills—or
access to the cbw package.* Nevertheless, it is still useful in some circumstances. I use
crypt to encrypt files that I don’t want anyone to see accidentally or as a result of
snooping around on the system as root. My assumption here is that the people I’m
protecting the files against might try to look at protected files as root but won’t
bother trying to decrypt them. It’s the same philosophy behind many simple auto-
mobile protection systems; the sticker on the window or the device on the steering
wheel is meant to discourage prospective thieves and to encourage them to spend
their energy elsewhere, but it doesn’t really place more than a trivial barrier in their
way. For cases like these, crypt is fine. If you anticipate any sort of attempt to decode
the encrypted files, as would be the case if someone is specifically targeting your sys-
tem, don’t rely on crypt.

Public key encryption: PGP and GnuPG

Another encryption option is to use the free public key encryption packages. The
first and best known of these is Pretty Good Privacy (PGP) written by Phil Zimmer-
man (http://www.pgpi.com). More recently, the Gnu Privacy Guard (GnuPG) has
been developed to fulfill the same function while avoiding some of the legal and
commercial entanglements that affect PGP (see http://www.gnupg.org).

In contrast to the simple encoding schemes that use only a single key for both
encryption and decryption, public key encryption systems use two mathematically-
related keys. One key—typically the public key, which is available to anyone—is
used to encrypt the file or message, but this key cannot be used to decrypt it. Rather,
the message can be decrypted only with the other key in the pair: the private key that
is kept secret from everyone but its owner. For example, someone who wants to send
you an encrypted file encrypts it with your public key. When you receive the mes-
sage, you decrypt it with your private key.

Public keys can be sent to people with whom you want to communicate securely, but
the private key remains secret, available only to the user to whom it belongs. The
advantage of a two-key system is that public keys can be published and dissemi-
nated without any compromise in security, because these keys can be used only to
encode messages but not to decode them. There are various public key repositories
on the Internet; two of the best known public key servers are http://pgp.mit.edu and
http://www.keyserver.net. The former is illustrated in Figure 7-2.

* See, for example, http://www.jjtc.com/Security/cryptanalysis.htm for information about various tools and
web sites of this general sort.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 7: Security

Both PGP and GnuPG have the following uses:

Encryption

They can be used to secure data against prying eyes.

Validation

Messages and files can be digitally signed to ensure that they actually came from
the source that they claim to.

These programs can be used as standalone utilities, and either package can also be
integrated with popular mail programs to protect and sign electronic mail messages
in an automated way.

Using either package begins with a user creating his key pair:

Each of these commands is followed by a lot of informational messages and several
prompts. The most important prompts are the identification string to be associated
with the key and the passphrase. The identifier generally has the form:

Harvey Thomas <harvey@ahania.com>

Figure 7-2. Accessing a public key server

PGP
$ pgp -kg

GnuPG
$ gpg --gen-key

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting Files and the Filesystem | 365

Sometimes an additional, parenthesized comment item is inserted between the full
name and the email address. Pay attention to the prompts when you are asked for
this item, because both programs are quite particular about how and when the vari-
ous parts of it are entered.

The passphrase is a password that identifies the user to the encryption system. Thus,
the passphrase functions like a password, and you will need to enter it when per-
forming most PGP or GnuPG functions. The security of your encrypted messages
and files relies on selecting a phrase that cannot be broken. Choose something that is
at least several words long.

Once your keys have been created, several files will be created in your $HOME/.pgp
or $HOME/.gnupg subdirectory. The most important of these files are pubring.pgp
(or .gpg), which is the user’s public key ring, and secring.pgp (or .gpg), which holds
the private key. The public key ring stores the user’s public key as well as any other
public keys that he acquires.

All files in this key subdirectory should have the protection mode 600.

When a key has been acquired, either from a public key server or directly from another
user, the following commands can be used to add it to a user’s public key ring:

The following commands extract a user’s own public key into a file for transmission
to a key server or to another person:

Both packages are easy to use for encryption and digital signatures. For example,
user harvey could use the following commands to encrypt (-e) and digitally sign (-s)
a file destined for user chavez:

Simply encrypting a file for privacy purposes is much simpler; you just use the -c
option with either command:

These commands result in the file being encrypted with a key that you specify, using
a conventional symmetric encryption algorithm (i.e., the same key will be used for
decryption). Should you decide to use this encryption method, be sure to remove the
clear-text file after encrypting. You can have the pgp command do it automatically by
adding the -w (“wipe”) option.

PGP
$ pgp -ka key-file

GnuPG
$ gpg --import key-file

PGP
$ pgp -kxa key-file

GnuPG
$ gpg -a --export -o key-file username

PGP
$ pgp -e -s file chavez@ahania.com

GnuPG
$ gpg -e -s -r chavez@ahania.com file

PGP
$ pgp -c file

GnuPG
$ gpg -c file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 7: Security

I don’t recommend using your normal passphrase to encrypt files
using conventional cryptography. It is all too easy to inadvertently
have both the clear text and encrypted versions of a file on the system
at the same time. Should such a mistake cause the passphrase to be
discovered, using a passphrase that is different from that used for the
public key encryption functions will at least contain the damage.

These commands can be used to decrypt a file:

If the file was encrypted with your public key, it is automatically decrypted, and both
commands also automatically verify the file’s digital signature as well, provided that
the sender’s public key is in your public key ring. If the file was encrypted using the
conventional algorithm, you will be prompted for the appropriate passphrase.

Selecting passphrases

For all encryption schemes, the choice of good keys or passphrases is imperative. In
general, the same guidelines that apply to passwords apply to encryption keys. As
always, longer keys are generally better than shorter ones. Finally, don’t use any of
your passwords as an encryption key; that’s the first thing that someone who breaks
into your account will try.

It’s also important to make sure that your key is not inadvertently discovered by being
displayed to other users on the system. In particular, be careful about the following:

• Clear your terminal screen as soon as possible if a passphrase appears on it.

• Don’t use a key as a parameter to a command, script, or program, or it may
show up in ps displays (or in lastcomm output).

• Although the crypt command ensures that the key doesn’t appear in ps displays,
it does nothing about shell command history records. If you use crypt in a shell
that has a command history feature, turn history off before using crypt, or run
crypt via a script that prompts for it (and accepts input only from /dev/tty).

Role-Based Access Control
So far, we have considered stronger user authentication and better file protection
schemes. The topic we turn to next is a complement to both of these. Role-based
access control (RBAC) is a technique for controlling the actions that are permitted to
individual users, irrespective of the target of those actions and independent of the
permissions on a specific target.

For example, suppose you want to delegate the single task of assigning and resetting
user account passwords to user chavez. On traditional Unix systems, there are three
approaches to granting privileges:

PGP
$ pgp encrypted-file

GnuPG
$ gpg -d encrypted-file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Role-Based Access Control | 367

• Tell chavez the root password. This will give her the ability to perform the task,
but it will also allow here to do many other things as well. Adding her to a sys-
tem group that can perform administrative functions usually has the same draw-
back.

• Give chavez write access to the appropriate user account database file (perhaps
via an ACL to extend this access only to her). Unfortunately, doing so will give
her access to many other account attributes, which again is more than you want
her to have.

• Give her superuser access to just the passwd command via the sudo facility. Once
again, however, this is more privilege than she needs: she’ll now have the ability
to also change the user’s shell and GECOS information on many systems.

RBAC can be a means for allowing a user to perform an activity that must tradition-
ally be handled by the superuser. The scheme is based on the concept of roles: a
definable and bounded subset of administrative privileges that can be assigned to
users. Roles allow a user to perform actions that the system security settings would
not otherwise permit. In doing so, roles adhere to the principle of least privilege,
granting only the exact access that is required to perform the task. As such, roles can
be thought of as a way of partitioning the all powerful root privilege into discrete
components.

Ideally, roles are implemented in the Unix kernel and not just pieced together from
the usual file protection facilities, including the setuid and setgid modes. They differ
from setuid commands in that their privileges are granted only to users to whom the
role has been assigned (rather than to anyone who happens to run the command). In
addition, traditional administrative tools need to be made roles-aware so that they
perform tasks only when appropriate. Naturally, the design details, implementation
specifics, and even terminology vary greatly among the systems that offer RBAC or
similar facilities.

We’ve seen somewhat similar, if more limited, facilities earlier in this
book: the sudo command and its sudoers configuration file (see
“Becoming Superuser” in Chapter 1) and the Linux pam_listfile mod-
ule (see “User Authentication with PAM” in Chapter 6).

Currently, AIX and Solaris offer role-based privilege facilities. There are also projects
for Linux* and FreeBSD.† The open source projects refer to roles and role based
access using the term capabilities.

* The Linux project may or may not be active. The best information is currently at http://www.kernel.org/pub/
linux/libs/security/linux-privs/kernel-2.4/capfaq-0.2.txt.

† See http://www.trustedbsd.org/components.html.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 7: Security

AIX Roles
AIX provides a fairly simple roles facility. It is based on a series of predefined authori-
zations, which provide the ability to perform a specific sort of task. Table 7-3 lists the
defined authorizations.

These authorizations are combined into a series of predefined roles; definitions are
stored in the file /etc/security/roles. Here are two stanzas from this file:

ManageBasicUsers: Role name
 authorizations=UserAudit,ListAuditClasses List of authorizations
 rolelist=
 groups=security Users should be a member of this group.
 screens=* Corresponding SMIT screens.
ManageAllUsers:
 authorizations=UserAdmin,RoleAdmin,PasswdAdmin,GroupAdmin
 rolelist=ManageBasicUsers Include another role within this one.

The ManageBasicUsers role consists of two authorizations related to auditing user
account activity. The groups attribute lists a group that the user should be a member
of in order to take advantage of the role. In this case, the user should be a member of
the security group. By itself, this group membership allows a user to manage audit-
ing for nonadministrative user accounts (as well as their other attributes). This role
supplements those abilities, extending them to all user accounts, normal and admin-
istrative alike.

The ManageAllUsers role consists of four additional authorizations. It also includes
the ManageBasicUsers role as part of its capabilities. When a user in group security is
given ManageAllUsers, he can function as root with respect to all user accounts and
account attributes.

Table 7-4 summarizes the defined roles under AIX.

Table 7-3. AIX authorizations

Authorization Meaning

UserAdmin Add/remove all users, modify any account attributes.

UserAudit Modify any user account’s auditing settings.

GroupAdmin Manage administrative groups.

PasswdManage Change passwords for nonadministrative users.

PasswdAdmin Change passwords for administrative users.

Backup Perform system backups.

Restore Restore system backups.

RoleAdmin Manage role definitions.

ListAuditClasses Display audit classes.

Diagnostics Run system diagnostics.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Role-Based Access Control | 369

Roles are assigned to user accounts in the file /etc/security/user.roles. Here is a sam-
ple stanza:

chavez:
 roles = ManageAllPasswds

This stanza assigns user chavez the ability to change any user account password.

You can also use SMIT to assign roles (use the chuser fast path), or the chuser com-
mand:

chuser roles=ManageAllUsers aefrisch

In some cases, the AIX documentation advises additional activities in conjunction
with assigning roles. For example, when assigning the ManageBackup or Manage-
BackupResore roles, it suggests the following additional steps:

• Create a group called backup.

• Assign the ownership of the system backup and restore device to root user and
group backup with mode 660.

• Place users holding either of the backup related roles to group backup.

Check the current AIX documentation for advice related to other roles.

Table 7-4. AIX pre-defined roles

Role Group Authorizations Abilities

ManageBasicUsers security UserAudit

ListAuditClasses

Modify audit settings for any user account.

ManageAllUsers security UserAudit

ListAuditClasses

UserAdmin

RoleAdmin

PasswdAdmin

GroupAdmin

Add/remove user accounts; modify attributes of any user
account.

ManageBasicPasswds secu-
ritya

a Membership in group security is actually equivalent to ManageBasicPasswd with respect to changing passwords.

PasswdManage Change passwords of all nonadministrative users.

ManageAllPasswds security PasswdManage

PasswdAdmin

Change passwords of all users.

ManageRoles RoleAdmin Administer role definitions.

ManageBackup Backup Backup any files.

ManageBackupRestore Backup

Restore

Backup or restore any files.

RunDiagnostics Diagnostics Run diagnostic utilities; shutdown or reboot the system.

ManageShutdownb

b This is actually a pseudo-role in that it is defined solely via group membership and does not use any authorizations.

shut-
down

Shutdown or reboot the system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 7: Security

You can administer roles themselves with SMIT or using the mkrole, rmrole, lsrole,
and chrole commands. You can add new roles to the system as desired, but you are
limited to the predefined set of authorizations.

Solaris Role-Based Access Control
The Solaris RBAC facility is also based upon a set of fundamental authorizations.
They are listed in the file /etc/security/auth_attr. Here are some example entries from
this file:

authorization name :::description ::attributes
solaris.admin.usermgr.:::User Accounts::help=AuthUsermgrHeader.html
solaris.admin.usermgr.pswd:::Change Password::help=AuthUserMgrPswd.html
solaris.admin.usermgr.read:::View Users and Roles::help=AuthUsermgrRead.html
solaris.admin.usermgr.write:::Manage Users::help=AuthUsermgrWrite.html

The first field in each entry is the name of the attribute; the naming convention uses
a hierarchical format for grouping related authorizations. Many of the fields within
the entries are reserved or unused. In general, only the name (first), short description
(fourth), and attributes (seventh) fields are used, and the latter field generally holds
only the name of the help file corresponding to the authorization (the HTML files are
located in the /usr/lib/help/auths/locale/C directory).

The first entry after the comment introduces a group of authorizations related to user
account management. The following three entries list authorizations that allow their
holder to change passwords, view user account attributes, and modify user accounts
(including creating new ones and deleting them), respectively. Note that this file is
merely a list of implement authorizations. You should not alter it.

Authorizations can be assigned to user accounts in three separate ways:

• Directly, as plain authorizations.

• As part of a profile, a named group of authorizations.

• Via a role, a pseudo-account that users can assume (via the su command) to
acquire additional privilege. Roles can be assigned authorizations directly or via
profiles.

Profiles are named collections of authorizations, defined in /etc/security/prof_attr.
Here are some sample entries (wrapped to fit here):

User Management:::Manage users, groups, home directory:
 auths=solaris.profmgr.read,solaris.admin.usermgr.write,
 solaris.admin.usermgr.read;help=RtUserMngmnt.html
User Security:::Manage passwords,clearances:
 auths=solaris.role.*,solaris.profmgr.*,
 solaris.admin.usermgr.*;help=RtUserSecurity.html

The entries in this file also have empty fields that are reserved for future use. Those
in use hold the profile name (first field), description (field four), and attributes (field
five). The final field consists of one or more keyword=value-list items, where items in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Role-Based Access Control | 371

the value list are separated by commas and multiple keyword items are separated by
semicolons.

For example, the first entry defines the User Management profile as a set of three
authorizations (specified in the auths attribute) and also specifies a help file for the
profile (via the help attribute). The profile will allow a user to read profile and user
account information and to modify user account attributes (but not passwords,
because solaris.admin.usermgr.pswd is not granted).

The second entry specifies a more powerful profile containing all of the user account,
profile management, and role management authorizations (indicated by the wild-
cards). This profile allows a user to make any user modifications whatsoever.

Solaris defines quite a large number of profiles, and you can create ones of your own
as well to implement the local security policy. Table 7-5 lists the most important
Solaris profiles. The first four profiles are generic and represent increasing levels of
system privilege. The remainder are specific to a single subsystem.

Table 7-5. Solaris RBAC profiles

Profile Abilities

Basic Solaris User Default authorizations.

Operator Perform simple, nonrisky administrative tasks

System Administrator Perform nonsecurity-related administrative tasks

Primary Administrator Perform all administrative tasks.

Audit Control Configure auditing.

Audit Review Review auditing logs.

Cron Management Manage at and cron jobs.

Device Management Manage removable media.

Device Security Manage devices and the LVM.

DHCP Management Manage the DHCP service.

Filesystem Management Mount and share filesystems.

Filesystem Security Manage filesystem security attributes.

FTP Management Manage the FTP server.

Mail Management Manage sendmail and mail queues.

Media Backup Backup files and filesystems.

Media Restore Restore files from backups.

Name Service Management Run nonsecurity-related name service commands.

Name Service Security Run security-related name service commands.

Network Management Manage the host and network configuration.

Network Security Manage network and host security.

Object Access Management Change file ownership/permissions.

Printer Management Manage printers, daemons, spooling.

Process Management Manage processes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 7: Security

The /etc/security/exec_attr configuration file elaborates on profiles definitions by
specifying the UID and GID execution context for relevant commands. Here are the
entries for the two profiles we are considering in detail:

User Management:suser:cmd:::/etc/init.d/utmpd:uid=0;gid=sys
User Management:suser:cmd:::/usr/sbin/grpck:euid=0
User Management:suser:cmd:::/usr/sbin/pwck:euid=0
User Security:suser:cmd:::/usr/bin/passwd:euid=0
User Security:suser:cmd:::/usr/sbin/pwck:euid=0
User Security:suser:cmd:::/usr/sbin/pwconv:euid=0

The /etc/user_attr configuration is where user accounts and profiles and/or authori-
zations are associated. Here are some sample entries (lines are wrapped to fit):

#acct ::::attributes (can include auths;profiles;roles;type;project)
chavez::::type=normal;profiles=System Adminstrator
harvey::::type=normal;profiles=Operator,Printer Management;
 auths=solaris.admin.usermgr.pswd
sofficer::::type=role;profiles=Device Security,File System Security,
 Name Service Security,Network Security,User Security,
 Object Access Management;auths=solaris.admin.usermgr.read
sharon::::type=normal;roles=sofficer

The first entry assigns user chavez the System Administrator profile. The second
entry assigns user harvey two profiles and an additional authorization.

The third entry defines a role named sofficer (Security Officer), assigning it the listed
profiles and authorization. An entry in the password file must exist for sofficer, but
no one will be allowed to log in using it. Instead, authorized users must use the su
command to assume the role. The final entry grants user sharon the right to do so.

The final configuration file affecting user roles and profiles is /etc/security/policy.conf.
Here is an example of this file:

AUTHS_GRANTED=solaris.device.cdrw
PROFS_GRANTED=Basic Solaris User

The two entries specify the authorizations and profiles to be granted to all users.

Users can list their roles, profiles, and authorizations using the roles, profiles, and
auths commands, respectively. Here is an example using profiles:

$ profiles
Operator
Printer Management
Media Backup
Basic Solaris User

Software Installation Add application software to the system

User Management Manage users and groups (except passwords).

User Security Manage all aspects of users and groups.

Table 7-5. Solaris RBAC profiles (continued)

Profile Abilities

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Security | 373

Here is an example using the auths command, sent to a pipe designed to make its
output readable:

$ auths | sed 's/,/ /g' | fold -s -w 30 | sort
solaris.admin.printer.delete
solaris.admin.printer.modify
solaris.admin.printer.read
solaris.admin.usermgr.pswd
solaris.admin.usermgr.read
solaris.device.cdrw
solaris.jobs.user
solaris.jobs.users
...

Solaris also includes a PAM module, pam_roles.so, which determines whether the
user has the right to assume a role he is trying take on.

Network Security
We’ll now turn our attention beyond the single system and consider security in a net-
work context. As with all types of system security, TCP/IP network security inevita-
bly involves tradeoffs between ease-of-use issues and protection against (usually
external) threats. And, as is true all too often with Unix systems, in many cases your
options are all or nothing.

Successful network-based attacks result from a variety of problems. These are the
most common types:

• Poorly designed services that perform insufficient authentication (or even none
at all) or otherwise operate in an inherently insecure way (NFS and X11 are
examples of facilities having such weaknesses that have been widely and fre-
quently exploited).

• Software bugs, usually in a network-based facility (for example, sendmail) and
sometimes in the Unix kernel, but occasionally, bugs in local facilities can be
exploited by crackers via the network.

• Abuses of allowed facilities and mechanisms. For example, a user can create a
.rhosts file in her home directory that will very efficiently and thoroughly com-
promise system security (these files are discussed later in this section).

• Exploiting existing mechanisms of trust by generating forged network packets
impersonating trusted systems (known as IP spoofing).

• User errors of many kinds, ranging from innocent mistakes to deliberately cir-
cumventing security mechanisms and policies.

• Problems in the underlying protocol design, usually a failure to anticipate mali-
cious uses. This sort of problem is often what allows a denial-of-service attack to
succeed.

Attacks often use several vulnerabilities in combination.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 7: Security

Maintaining a secure system is an ongoing process, requiring a lot of initial effort and
a significant amount of work on a permanent basis. One of the most important
things you can do with respect to system and network security is to educate yourself
about existing threats and what can be done to protect against them. I recommend
the following classic papers as good places to start:

• Steven M. Bellovin, “Security Problems in the TCP/IP Protocol Suite.” The clas-
sic TCP/IP security paper, available at http://www.research.att.com/~smb/papers/.
Many of his other papers are also useful and interesting.

• Dan Farmer and Wietse Venema, “Improving the Security of Your Site by Break-
ing Into It,” available at ftp://ftp.porcupine.org/pub/security/index.html. Another
excellent discussion of the risks inherent in Internet connectivity.

We’ll discuss TCP/IP network security by looking at how systems on a network were
traditionally configured to trust one another and allow each other’s users easy access.
Then we’ll go on to look at some of the ways that you can back off from that posi-
tion of openness by considering methods and tools for restricting access and assess-
ing the vulnerabilities of your system and network.

Establishing Trust
Unless special steps are taken, users must enter a password each time they want
access to the other hosts on the network. However, users have traditionally found
this requirement unacceptably inconvenient, and so a mechanism exists to establish
trust between computer systems which then allows remote access without pass-
words. This trust is also known as equivalence.

Security Alert Mailing Lists
One of the most important ongoing security activities is keeping up with the latest bugs
and threats. One way to do so is to read the CERT or CIAC advisories and then act on
them. Doing so will often be inconvenient—closing a security hole often requires some
sort of software update from your vendor—but it is the only sensible course of action.

One of the activities of the Computer Emergency Response Team (CERT) is adminis-
tering an electronic mailing list to which its security advisories are posted as necessary.
These advisories contain a general description of the vulnerability, detailed informa-
tion about the systems to which it applies, and available fixes. You can add yourself to
the CERT mailing list by sending email to majordomo@cert.org with “subscribe cert-
advisory” in the body of the message. Past advisories and other information are avail-
able from the CERT web site, http://www.cert.org.

The Computer Incident Advisory Capability (CIAC) performs a similar function, orig-
inally for Department of Energy sites. Their excellent web site is at http://www.ciac.org/
ciac/.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Security | 375

The first level of equivalence is the host level. The /etc/hosts.equiv configuration file
establishes it. This file is simply a list of hostnames, each on a separate line.* For
example, the file for the system france might read:

spain.ahania.com
italy.ahania.com
france.ahania.com

None, any, or all of the hosts in the network may be put in an /etc/hosts.equiv file. It
is convenient to include the host’s own name in /etc/hosts.equiv, thus declaring a host
equivalent to itself. When a user from a remote host attempts an access (with rlogin,
rsh, or rcp), the local host checks the file /etc/hosts.equiv. If the host requesting
access is listed in /etc/hosts.equiv and an account with the same username as the
remote user exists, remote access is permitted without requiring a password.

If the user is trying to log in under a different username (by using the -l option to rsh
or rlogin), the /etc/hosts.equiv file is not used. The /etc/hosts.equiv file is also not
enough to allow a superuser on one host to log in remotely as root on another host.

The second type of equivalence is account-level equivalence, defined in a file named
.rhosts in a user’s home directory. There are various reasons for using account-level
instead of host-level equivalence. The most common cases for doing so are when
users have different account names on the different hosts or when you want to limit
use of the .rhosts mechanism to only a few users.

Each line of .rhosts consists of a hostname and, optionally, a list of usernames:

hostname [usernames]

If username is not present, only the same username as the owner of the .rhosts file
can log in from hostname. For example, consider the following .rhosts file in the
home directory of a user named wang:

england.ahania.com guy donald kim
russia.ahania.com felix
usa.ahania.com felix

The .rhosts allows the user felix to log in from the host russia or usa, and users
named guy, donald, or kim to log in from the host england.

If remote access is attempted and the access does not pass the host-level equivalence
test, the remote host then checks the .rhosts file in the home directory of the target
account. If it finds the hostname and username of the person making the attempted
access, the remote host allows the access to take place without requiring the user to
enter a password.

* The file may also contain NIS netgroup names in the form: +@name. However, the hosts.equiv file should
never contain an entry consisting of a single plus sign, because this will match any remote user having the
same login name as one in the local password file (except root).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 7: Security

Host-level equivalence is susceptible to spoofing attacks, so it is rarely
acceptable anymore. However, it can be used safely in an isolated net-
working environment if it is set up carefully and in accord with the
site’s security policy.

Account-level equivalence is a bad idea all the time because the user is
free to open up his account to anyone he wants, and it is a disaster
when applied to the root account. I don’t allow it on any of my sys-
tems.

The implications of trust

Setting up any sort of trust relationship between computer systems always carries a
risk with it. However, the risks go beyond the interaction between those two sys-
tems alone. For one thing, trusts operates in a transitive manner (transitive trust). If
hamlet trusts laertes, and laertes trusts ophelia, then hamlet trusts ophelia, just as
effectively as if ophelia were listed in hamlet’s /etc/hosts.equiv file (although not as
conveniently). This level of transitivity is easy to see for a user who has accounts on
all three systems; it also exists for all users on ophelia with access to any account on
laertes that has access to any account on hamlet.

There is also no reason that such a chain need stop at three systems. The point here
is that hamlet trusts ophelia despite the fact that hamlet’s system administrator has
chosen not to set up a trusting relationship between the two systems (by not includ-
ing ophelia in /etc/hosts.equiv). hamlet’s system administrator may have no control
over ophelia at all, yet his system’s security is intimately dependent on ophelia
remaining secure.

In fact, Dan Farmer and Wietse Venema argue convincingly that an implicit trust
exists between any two systems that allow users to log in from one to the other. Sup-
pose system yorick allows remote logins from hamlet, requiring passwords in all cases.
If hamlet is compromised, yorick is at risk as well; for example, some of hamlet’s users
undoubtedly use the same passwords on both systems—which constitutes users’ own
form of account-level equivalence—and a root account intruder on hamlet will have
access to the encrypted passwords and most likely be able to crack some of them.

Taken to its logical conclusion, this line of reasoning suggests that any time two sys-
tems are connected via a network, their security to some extent becomes inter-
twined. In the end, your system’s security will be no better than that of the least
protected system on the network.

The Secure Shell
The secure shell is becoming the accepted mechanism for remote system access. The
most widely used version is OpenSSH (see http://www.openssh.org). OpenSSH is
based on the version originally written by Tatu Ylönen. It is now handled by the
OpenBSD team. The secure shell provides an alternative to the traditional clear-text
remote sessions using telnet or rlogin since the entire session is encrypted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Security | 377

From an administrative point of view, OpenSSH is wonderfully easy to set up, and
the default configuration is often quite acceptable in most contexts. The package
consists primarily of a daemon, sshd; several user tools (ssh, the remote shell; sftp,
an ftp replacement; and scp, an rcp replacement); and some related administrative
utilities and servers (e.g., sftp-server).

Be sure you using a recent version of OpenSSH: some older versions
have significant security holes. Also, I recommend using SSH protocol
2 over the earlier protocol 1 as it closes several security holes.

The OpenSSH configuration file are stored in /etc/ssh. The most important of these is
/etc/ssh/sshd_config. Here is a simple, annotated example of this file:

Protocol 2 Only use SSH protocol 2.
Port 22 Use the standard port.
ListenAddress 0.0.0.0 Only accept IPv4 addresses.
AllowTcpForwarding no Don't allow port forwarding.
SyslogFacility auth Logging settings.
LogLevel info
Banner /etc/issue Display this file before the prompts.

PermitEmptyPasswords no Don't accept connections for accounts w/o passwords.
PermitRootLogin no No root logins allowed.
LoginGraceTime 600 Disconnect after 5 minutes if no login occurs.
KeepAlive yes Send keep alive message to the client.
X11Forwarding no No X11 support.
X11DisplayOffset 10

sftp subsystem Enable the sftp subsystem.
Subsystem sftp /usr/lib/ssh/sftp-server

This file is designed for a server using SSH in its simplest mode: user authentication
occurs via normal user passwords (encrypted for transmission). The package also
offers stricter authentication, which involves using public key cryptography to ensure
that the remote session is originating from a known host. See the documentation for
details on these features.

Securing Network Daemons
TCP/IP-related network daemons are started in two distinct ways. Major daemons
like named are started at boot time by one of the boot scripts. The second class of dae-
mons are invoked on demand, when a client requests their services. These are han-
dled by the TCP/IP “super daemon,” inetd. inetd itself is started at boot time, and it
is responsible for starting the other daemons that it controls as needed. Daemons
controlled by inetd provide the most common TCP/IP user-oriented services: telnet,
ftp, remote login and shells, mail retrieval, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 7: Security

inetd is configured via the file /etc/inetd.conf. Here are some sample entries in their
conventional form:

#service socket prot wait? user program arguments
telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd
tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot

As indicated in the comment line, the fields hold the service name (as defined in /etc/
services), the socket type, protocol, whether or not to wait for the command to
return when it is started, the user who should run the command, and the command
to run along with its arguments.

Generally, most common services will already have entries in /etc/inetd.conf. How-
ever, you may need to add entries for some new services that you add (e.g., Samba
servers).

TCP Wrappers: Better inetd access control and logging

The free TCP Wrappers facility provides for finer control over which hosts are
allowed to access what local network services than that provided by the standard
TCP/IP mechanisms (hosts.equiv and .rhosts files). It also provides for enhanced log-
ging of inetd-based network operations to the syslog facility. The package was writ-
ten by Wietse Venema, and it is included automatically on most current Unix
systems. It is also available from ftp://ftp.porcupine.org/pub/security/tcp_wrapper_7.6-
ipv61.tar.gz (although the filename will undoubtedly change over time).

The package is centered around tcpd, an additional daemon positioned between
inetd and the subdaemons that it manages. It requires that you modify inetd’s con-
figuration file, /etc/inetd.conf, replacing the standard daemons you want the facility
to control with tcpd, as in these examples:

Before:
#service socket protocol wait? user program arguments
shell stream tcp nowait root /usr/sbin/rshd rshd
login stream tcp nowait root /usr/sbin/rlogind rlogind

After:
#service socket protocol wait? user program arguments
shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/rlogind

(Note that daemon names and locations vary from system to system). The tcpd pro-
gram replaces the native program for each service that you want to place under its
control. As usual, after modifying inetd.conf, you would send a HUP signal to the
inetd process.

Once inetd is set up, the next step is to create the files /etc/hosts.allow and /etc/hosts.
deny, which control what hosts may use which services. When a request for a net-
work service comes in from a remote host, access is determined as follows:

• If /etc/hosts.allow authorizes that service for that host, the request is accepted
and the real daemon is started. The first matching line in /etc/hosts.allow is used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Security | 379

• When no line in hosts.allow applies, hosts.deny is checked next. If that file denies
the service to the remote host, the request is denied. Again, the first applicable
entry is used.

• In all other cases, the request is granted.

Here are some sample entries from hosts.allow:

fingerd : ophelia hamlet laertes yorick lear duncan
rshd, rlogind : LOCAL EXCEPT hamlet
ftpd : LOCAL, .ahania.com, 192.168.4

The first entry grants access to the remote finger service to users on any of the listed
hosts (hostnames may be separated by commas and or spaces). The second entry
allows rsh and rlogin access by users from any local host—defined as one whose
hostname does not contain a period—except the host hamlet. The third entry allows
ftp access to all local hosts, all hosts in the domain ahania.com, and all hosts on the
subnet 192.168.4.

Here is the /etc/hosts.deny file:

tftpd : ALL : (/usr/sbin/safe_finger -l @%h | /usr/bin/mail -s %d-%h root) &
ALL : ALL :

The first entry denies access to the Trivial FTP facility to all hosts. It illustrates the
optional third field in these files: a command to be run whenever a request matches
that entry.* In this case, the safe_finger command is executed (it is provided as part
of the package) in an attempt to determine who initiated the tftp command, and the
results are mailed to root (%h expands to the remote hostname from which the
request emanated, and %d expands to the name of the daemon for that service). This
entry has the effect of intercepting requests to undesirable services (the package’s
author, Wietse Venema, refers to it as “bugging” that service and as “an early warning
system” for possible intruder trouble). Note that the daemon must be active within /
etc/inetd.conf for this to be effective; if you don’t need or want such logging, it is bet-
ter to comment out the corresponding line in /etc/inetd.conf to disable the service.

The second entry in the example hosts.deny file serves as a final stopgap, preventing
all access that has not been explicitly permitted.

tcpd uses the syslog daemon facility, using the warning (for denials of service) and
info (for configuration file syntax errors) severity levels. You will probably want to
use the swatch facility or a similar tool to sift thought the huge amounts of logging
information it will generate (see “Essential Administrative Techniques” in Chapter 3).

* If you try to place a command into either of these files, you may get errors similar to this one from syslog:
error: /etc/hosts.deny, line 3: bad option name or syntax

Comment out the following line in the Makefile and rebuild tcpd:
#STYLE = -DPROCESS_OPTIONS # Enable language extensions.

Alternatively, you can convert the file to the extended version of the access language described on the hosts_
options manual page.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 7: Security

This section describes basic TCP Wrappers functionality. There is also
an extended configuration language available for more fine-grained
access control. See the hosts_options manual page for details.

xinetd

Red Hat Linux systems provide an alternate version of inetd named xinetd, written
by Panos Tsirigotis and Rob Braun. The package is also available for most Unix ver-
sions. xinetd provides many more features for access control and logging than the
traditional daemon does. Some of its functionality overlaps with TCP Wrappers,
although you can also use the two packages in concert. The package’s home page is
http://www.xinetd.org.

xinetd uses the configuration file /etc/xinetd. Here is an example from a Red Hat
system:

defaults
{
 log_type = SYSLOG authpriv
 log_on_success = HOST PID
 log_on_failure = HOST
 instances = 20
}
includedir /etc/xinetd.d

The defaults section lists default settings that will apply to all subdaemons con-
trolled by xinetd unless they are specifically overridden. In this case, the file specifies
that logging should go to the syslog authpriv facility, and it selects the items to be
included in log messages for successful and failing connection attempts. In addition,
no server can have more than 20 processes running; this limit affects services that
start additional server processes to handle increased request loads.

The final line specifies a directory location where additional configuration files are
stored. Each file in the indicated directory will be used by xinetd. This feature allows
you to store the settings for individual subdaemons in their own files.

Here is the configuration file for rlogin, which defines the same settings as a tradi-
tional /etc/inetd.conf entry:

service rlogin
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/sbin/in.rlogind
 server-args = -l
 log_on_success += USERID
 log_on_failure += USERID
 disable = no
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Security | 381

The entry specifies items to include in log messages in addition to the defaults (the
meaning of +=), and the final item enables the subdaemon.

If you want to use TCP Wrappers with xinetd, you specify tcpd as the server and the
subdaemon as a server argument. For example, these configuration entries will cause
TCP Wrappers to control the telnetd daemon:*

 flags = NAMEINARGS
 server = /usr/sbin/tcpd
 server_args = /usr/sbin/in.telnetd

Here is a sample entry for the imapd daemon that illustrates the use of access control:

service imap
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/sbin/imapd
 only_from = 192.168.10.0 localhost
 no_access = dalton.ahania.com
 access_times = 07:00-20:00
 banner_fail = /usr/etc/deny_banner
}

The only_from entry specifies the hosts that are allowed to use this service; requests
from any remote host not on the specified subnet will be refused. The no_access
entry performs the opposite function and denies access to the specified host(s).

The access_times entry specifies when the service is available to users who are
allowed to use it.

The final entry specifies a file to be displayed whenever a connection is refused (or
fails for some other reason).

See the xinetd.conf manual page for details on all of the available configuration
options.

Disable what you don’t need

A better solution to securing some services is to remove then altogether. You can
decide to disable some of the TCP/IP daemons in the interest of system security or
performance (each places a small but measurable load on the system). There are,

* Most inetd-controlled daemons take the daemon name as their first argument. xinetd knows this and so
automatically passes the command name from the server entry as the first argument when the daemon is
started. This is a convenience feature which makes it unnecessary to include the server name in the server_
args entry. However, when TCP Wrappers is involved, this process would be incorrect, as the daemon is now
specified in server_args rather than server. This flag is designed to handle this case, and it causes the com-
mand name from server_args to be inserted into the resulting daemon-starting command in the appropriate
location.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 7: Security

naturally, consequences for eliminating certain daemons. If you disable rwhod, then
the rwho and ruptime commands won’t work.

To disable a daemon like rwhod, comment out the lines that start it in your system
initialization files. For example, the following lines are typical of those used to start
rwhod:

#if [-f /etc/rwhod]; then
/etc/rwhod; echo -n ' rwhod' > /dev/console
#fi

Disabling services managed by the inetd daemon is accomplished by commenting
out the corresponding line from /etc/inetd.conf. For example, these lines disable the
tftp and rexd services (both notorious security holes):

#service socket protocol wait? user program arguments
#
#tftp dgram udp nowait nobody /usr/sbin/tftpdtftpd -n
#rexd sunrpc_tcp tcp wait root /usr/sbin/rpc.rexd rexd 100017 1

When inetd is running, send it a HUP signal to get it to reread its configuration file.

In general, you should disable inetd services that you are not using. Make it one of
your short-term goals to figure out what every entry in its configuration file does and
to get rid of the ones you don’t need. Some likely candidates for commenting out:
tftp and bootps (except for boot servers for diskless workstations), rexd, uucp (sel-
dom has any effect on the real uucp facility), pop-2 and pop-3 (if you are not using
these mail-related services), and netstat, systat, and finger (the latter three give
away too much gratuitous information that is helpful to crackers—run the com-
mand telnet localhost for the first two to see why).

On AIX systems, use SMIT to remove services that are controlled by
the system resource controller.

Port Scanning
Port scanning is the process of searching a network for available network services.
The technique is used by potential intruders to find possible points of attack on a
system. For this reason, you need to have at least a basic understanding of port-scan-
ning tools.

The nmap utility is one of the most widely used port scanners. Its home page is http://
www.insecure.org/nmap/.

Here is a sample nmap run that scans ports on host kali:

nmap kali
Starting nmap (www.insecure.org/nmap/)
Interesting ports on kali.ahania.com (192.168.19.84):
(The 1529 ports scanned but not shown below are in state: closed)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Security | 383

Port State Service
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
80/tcp open http
512/tcp open exec
513/tcp open login
514/tcp open shell
515/tcp open printer
4559/tcp open hylafax
6000/tcp open X11
Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

This information is quite useful to a system administrator. It reveals that at least one
questionable service is running (the finger service). In addition, this one told me that
I have forgotten to remove the web server from this system (why anyone would think
it is a good idea to enable a web server as part of the operating system installation
process is beyond me).

As this example illustrates, running nmap on your own hosts can be a useful security
diagnostic tools. Be aware that running it on hosts that you do not control is a seri-
ous ethical breach.

There are many utilities that watch for and report port-scanning
attempts. I don’t have any recent experience with any of them and so
can’t recommend any particular package. However, a web search for
“detect port scan” and similar phrases will yield a wealth of candidates.

Defending the Border: Firewalls and Packet Filtering
Firewall systems represent an attempt to hold on to some of the advantages of a
direct Internet connection while mitigating as many of the risks associated with it as
possible. A firewall is placed between the greater Internet and the site to be pro-
tected; firewalls may also be used within a site or organization to isolate some sys-
tems from others (remember that not all threats are external).

The definitive work on firewalls is Firewalls and Internet Security: Repelling the Wily
Hacker by William R. Cheswick and Steven M. Bellovin (Addison-Wesley). Another
excellent work is Building Internet Firewalls by Elizabeth D. Zwicky, Simon Cooper,
and D. Brent Chapman (O’Reilly & Associates).

Don’t underestimate the amount of work it takes to set up and main-
tain an effective firewall system. The learning curve is substantial, and
only careful, continuous monitoring can ensure continuing protec-
tion. Don’t let your management, colleagues, or users underestimate it
either. And contrary to what the many companies in the firewall busi-
ness will tell you, it’s not something you can buy off the shelf.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 7: Security

By being placed between the systems to be protected and those they need to be pro-
tected from, a firewall is in a position to stop attacks and intruders before they ever
reach their target. Firewalls can use a variety of mechanisms for doing so. Cheswick
and Bellovin identify three main types of protection:

Packet filtering
Network packets are examined before being processed, and those requesting
access that is not allowed or are suspicious in any way are discarded (or other-
wise handled). For example, filtering out packets coming from the external net-
work that claim to be from a host on the internal network will catch and
eliminate attempts at IP spoofing.

Packet filtering can be done on a variety of criteria, and it may be performed by a
router, a PC with special software, or a Unix system with this capability. The
most effective packet filters, whether hardware or software based, will have these
characteristics:

• The ability to filter on source system, destination system, protocol, port,
flags, and/or message type.

• The ability to filter both when a packet is first received by the device (on
input) and when it leaves the device (on output).

• The ability to filter both incoming and outgoing packets.

• The ability to filter based on both the source and destination ports. In gen-
eral, the more flexibly combinable the filtering criteria are, the better.

• The ability to filter routes learned from external sources.

• The ability to disable source routing.

• The ability to disable reprogramming from the network (or any location
other than the console).

Even if a server is not functioning as a firewall or a router, you may
still want to perform packet filtering on it as doing so will circumvent
many sorts of attacks. Minimal filtering includes ensuring that outgo-
ing packets have a source address that belongs in your network (this is
good-citizen filtering, which detects IP spoofing from within your net-
work), and checking that incoming packets don’t claim to have come
from inside your network (this thwarts most incoming IP spoofing).

Application-level protection
Firewalls typically offer very little in the way of network services; indeed, one
way to set one up initially is remove or disable every network-related applica-
tion, and then slowly, carefully add a very few of them back in. All nonessential
services are removed from a firewall, and the ones that are offered are often
replacements for the standard versions, with enhanced authentication, security
checking, and logging capabilities.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Security | 385

Substituting an alternate—and most often, much simpler, more straightforward,
and less feature-rich—versions of the usual applications has the additional
advantage that most cracker attacks will be simply irrelevant, since they are typi-
cally aimed at standard network components. The vulnerabilities of, say,
sendmail, are not as important if you are using something else to move elec-
tronic mail messages across the firewall.

Connection relaying for outgoing traffic
Users inside the firewall perimeter can still access the outside world without
introducing additional risk if the firewall completes the connection between the
inside and outside itself (rather than relying on the standard mechanisms). For
example, TCP/IP connections can be relayed by a simple program that passes
data between the two discrete networks independently of any TCP/IP protocols.

Most firewalls employ a combination of strategies. (Note that Cheswick and Bell-
ovin discourage the use of packet filtering alone in creating a firewall design.)

The firewall system itself must be secured against attack. Typically, all nonessential
operating system commands and features are removed (not just networking-related
ones). Extensive logging is conducted at every level of the system, usually with auto-
mated monitoring as well (firewall systems need lots of disk space), and probably
with some redundancy to a write-only logging host and/or a hardcopy device. The
root account is usually protected with a smart card or another additional authentica-
tion system, and there are few or no other user accounts on the firewall system.

Figure 7-3 illustrates some possible firewall configurations.

Configuration 1 uses a single host connected via separate network adapters to the
internal and external network. A router may also be placed in front of the computer
in this scheme. Packets are not forwarded between the two network interfaces by
TCP/IP; rather, they are handled at the application or circuit level. This type of con-
figuration is very tricky to make secure, because the firewall host is physically present
on both networks.

Configuration 2, an arrangement referred to as belt-and-suspenders from how their
interconnections look in diagrams like this one, physically separates the connections
to the internal and external networks across two distinct hosts. In a variation of this
arrangement, the router between the two hosts is replaced by a direct network con-
nection, using separate network adapters; this firewall mini-network need not even
run TCP/IP.

Configuration 3 is a still more paranoid modification of number 2, in which the con-
nection between the two firewall systems is not permanent but is created only on
demand, again using a separate mechanism from the network interfaces to the inter-
nal and external networks.

Configuration 4 represents the only way you can be absolutely sure that your net-
work is completely protected from external threats (at least those coming in over a
network wire).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 7: Security

Most Unix systems are suitable for adaptation as firewalls, although using routers for
this purpose is more common and generally more secure. However, free operating
systems like Linux and FreeBSD systems make decent, low-cost choices when config-
ured with the proper software, and they have the advantage that all the source code
for the operating system is readily available.

At its heart, an effective firewall design depends on formulating a very thorough and
detailed security policy (including how you plan to deal with potential intruders).
You need to be able to state very precisely what sorts of activities and accesses you
will and will not permit. Only then will you be in a position to translate these restric-
tions into actual hardware and software implementations.

Figure 7-3. Some firewall configuration options

The World

1

The World

2

The World

3

The World

4

Internal
Network

Internal
Network

Internal
Network

Internal
Network

Host

Single Gateway

Host

Belt and Suspenders

Intermittent Unidirectional Connection

Host

99% Safe from External Threats (except via email . . .)

Host

Host Bastion
Host

Router

“Choke”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Hardening Unix Systems | 387

Hardening Unix Systems
Throughout this chapter, I’ve been suggesting that systems ought to provide only the
minimum amount of services and access that are needed. This is especially true for
important server systems, especially—but not limited to—ones at site boundaries.
The process of making a system more secure than the level the default installed oper-
ating system provides is known as hardening the system.

In this section, we’ll look at the general principles of system hardening. Naturally,
the actual process is very operating system–specific. Some vendors provide informa-
tion and/or tools for automating some of the process. There are also some open
source and commercial tools related to this topic. Here is a list of helpful websites
related to system hardening that are available at this writing (July 2002):

Many operating systems are available in an enhanced security or
“trusted” version. This is true of AIX, HP-UX, Solaris, and Tru64.
There are several heightened-security Linux distributions and BSD
projects with the same goal.

What follows is a discussion of the most important concepts and tasks related to sys-
tem hardening. Be aware that the order of activities in this discussion is not rigorous,
and actual task ordering would need to considered carefully prior to making any
changes to a system.

Hardening activities must be completed before the system is placed on
the network for the first time.

Plan Before Acting
Before you begin the hardening process, it’s only common sense to plan the steps
you plan to take. In addition, it’s a good idea to perform the process on a practice

AIX http://biss.beckman.uiuc.edu/security/workshops/1999-10/
FreeBSD http://www.trustedbsd.org

http://draenor.org/securebsd/
HP-UX http://www.interex.org/conference/iworks2001/proceedings/5103/

5103.pdf
http://www.bastille-linux.org (This tool works under HP-UX as well.)

Linux http://www.linux-sec.net/Distro/distro.gwif.html
http://www.bastille-linux.org

Solaris http://wwws.sun.com/software/security/blueprints/
http://www.yassp.org

Tru64 http://www.maths.usyd.edu.au/u/psz/securedu.html

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 7: Security

system before doing so on a production system. Other important preliminary activi-
ties include:

• Plan the filesystem and disk partition layout with security in mind (see below).

• Familiarize yourself with recent security bulletins.

• Sign up for security mailing lists if you have not already done so.

• Download any software packages you will need.

Finally, as you go through the hardening process, take notes to document what you
did.

Secure the Physical System
One of the first decisions to make is where to physically locate the server. Important
servers should not be in public areas. In addition, consider these other items:

• Secure the physical location with locks and the like.

• Assign a BIOS/RAM/EEPROM password to prevent unauthorized users from
modifying setup settings or perform unauthorized boots.

• Attach any equipment identification tags/stickers used by your organization to
the computer and its components.

Install the Operating System
It is much easier to harden a system whose operating system you’ve installed your-
self, because you know what it includes. You might want to install only the mini-
mum bootable configuration and then add the additional packages that you need in
a separate step. Once you’ve done the latter, there are some additional tasks:

• Set up disk partitioning (or logical volumes), taking into account any security
considerations (see below).

• Apply any operating system patches that have been released since the installa-
tion media was created.

• Enable the high-security/trusted operating system version if appropriate.

• Build a custom kernel that supports only the features you need. Remove support
for ones you don’t need. For systems that are not operating as routers, you
should remove the IP forwarding capabilities. Intruders can’t exploit features
that aren’t there.

• Configure automatic so that administrator intervention is not allowed (if
appropriate).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Hardening Unix Systems | 389

Secure Local Filesystems
You’ll also need to secure the filesystem. This task includes:

• Looking for inappropriate file and directory permissions and correcting any
problems that are found. To review, the most important of these are:

• Group and/or world writable system executables and directories

• Setuid and setgid commands

• Decide on mount options for local filesystems. Take advantage of any security
features provided by the operating system. For example, Solaris allows you to
mount a filesystem with the option nosuid, which disables the setuid bit on
every file within it. Isolating nonsystem files into a separate filesystem allows you
to apply this option to those files.

• On some systems under some conditions, if /usr is a separate filesystem, it can be
mounted read-only.

• Encrypt sensitive data present on the system.

Securing Services
Securing the system’s services represents a large part of the hardening task. In this
area, the guiding principle should be to install or enable only the ones the system
actually needs.

• Disable all unneeded services. Keep in mind that services are started in several
different ways: within /etc/inittab, from system boot scripts, by inetd. Alterna-
tively, when possible, the software for an unneeded service can be removed from
the system completely.

• Use secure versions of daemons when they are available.

• If at all possible, run server processes as a special user created for that purpose
and not as root.

• Specify the maximum number of instances to run, for each server that lets you
specify a maximum, or use xinetd. Doing so can help prevent some denial-of-
service attacks.

• Specify access control and logging for all services. Install TCP Wrappers if neces-
sary. Allow only the minimum access necessary. Include an entry in /etc/hosts.
deny that denies access to everyone (so only access allowed in /etc/hosts.allow
will be permitted).

• Use any per-service user level access control that is provided. For example, the
cron and at subsystems allow you to restrict which users can use them at all.
Some people recommend limiting at and cron to administrators.

• Secure all services, whether they seem security-related or not (e.g., printing).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 7: Security

Restrict root Access
Make sure that only authorized people can use root privileges:

• Select a secure root password, and plan a schedule for changing it regularly.

• Use sudo or system roles to grant ordinary users limited root privilege.

• Prevent root logins except on the system console.

Configure User Authentication and Account Defaults
Decide on and implement user account controls, setting up the default before add-
ing users if possible. Related activities include:

• Set up the shadow password file if necessary.

• Configure PAM as appropriate for the relevant commands.

• Define user account password selection and aging settings.

• Set up other default user account restrictions as appropriate (e.g., resource lim-
its).

• Plan the system’s group structure if necessary, as well as other similar items,
such as projects.

• Set up default user initialization files in /etc/skel or elsewhere.

• Ensure that administrative and other accounts to which no one should ever log
in have a disabled password and /bin/false or another nonlogin shell.

• Remove unneeded predefined accounts.

Set up Remote Authentication
• Disable hosts.equiv and .rhosts passwordless authentication.

• Use ssh for remote user access.

• Configure PAM as appropriate for the relevant commands.

Install and Configure Ongoing Monitoring
Set up ongoing monitoring and auditing, including procedures for checking their
results over time.

• Configure the syslog facility. Send/copy syslog messages to a central syslog
server for redundancy.

• Enable process accounting.

• Install and configure any necessary software (e.g., swatch) and write any neces-
sary scripts.

• Install Tripwire, configure it, and record system baseline data. Write the data to
removable media and then remove it from the system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 391

Backup
Creating and implementing a backup schedule is an important part of securing a sys-
tem. In addition, performing a full backup of the system once it is set up is essential:

• Perform the backup and verify the data.

• Creating two copies of the media is a good idea.

Other Activities
Add the new host to the security configuration on other system, in router access con-
trol lists, and so on, as necessary.

Detecting Problems
So far, we’ve looked at lots of ways to prevent security problems. The remainder of
this chapter will look at ways to detect and investigate security breaches. We’ll con-
sider all of the various monitoring activities that you might want to use as they
would be performed manually and in isolation from one another. There are both
vendor-supplied and free tools to simplify and automate the process, and you may
very well choose to use one of them. However, knowing what to look for and how to
find it will help you to evaluate these tools and use them more effectively. The most
sophisticated system watchdog package is ultimately only as good as the person
reading, interpreting, and acting on the information it produces.

The fundamental prerequisite for effective system monitoring is knowing what nor-
mal is, that is, knowing how things ought to be in terms of:

• General system activity levels and how they change over the course of a day and
a week.

• Normal activities for all the various users on the system.

• The structure, attributes, and contents of the filesystem itself, key system direc-
tories, and important files.

• The proper formats and settings within important system configuration files.

Some of these things can be determined from the current system configuration (and
possibly by comparing it to a newly installed system). Others are a matter of familiar-
ity and experience and must be acquired over time.

Password File Issues
It is important to examine the password file regularly for potential account-level
security problems, as well as the shadow password file when applicable. In particu-
lar, it should be examined for:

• Accounts without passwords.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 7: Security

• UIDs of 0 for accounts other than root (which are also superuser accounts).

• GIDs of 0 for accounts other than root. Generally, users don’t have group 0 as
their primary group.

• Accounts added or deleted without your knowledge.

• Other types of invalid or improperly formatted entries.

• The password and shadow files’ own ownership and permissions.

On some systems, the pwck command performs some simple syntax checking on the
password file and can identify some security problems with it (AIX provides the very
similar pwdck command to check its several user account database files). pwck reports
on invalid usernames (including null ones), UIDs, and GIDs, null or nonexistent
home directories, invalid shells, and entries with the wrong number of fields (often
indicating extra or missing colons and other typos). However, it won’t find a lot of
other, more serious security problems. You’ll need to check for those periodically in
some other manner. (The grpck command performs similar simple syntax checking
for the /etc/group file.)

You can find accounts without passwords with a simple grep command:

grep '^[^:]*::' /etc/passwd
root::NqI27UZyZoq3.:0:0:SuperUser:/:/bin/csh
demo::7:17:Demo User:/home/demo:/bin/sh
::0:0:::

The grep command looks for two consecutive colons that are the first colon charac-
ters in the line. This command found three such entries. At first glance, the entry for
root appears to have a password, but the extra colon creates a user root with a non-
sense UID and no password; this mistake is probably a typo. The second line is the
entry for a predefined account used for demonstration purposes, probably present in
the password file as delivered with the system. The third line is one I’ve found more
than once and is a significant security breach. It creates an account with a null user-
name and no password with UID and GID 0: a superuser account. While the login
prompt will not accept a null username, some versions of su will:

$ su ""
No password prompt!

In the password file examined with grep, the extra colon should be removed from the
root entry, the demo account should be assigned a password (or disabled with an
asterisk in the password field in /etc/passwd or perhaps just deleted), and the null
username entry should be removed.

Accounts with UID or GID 0 can also be located with grep:

grep ':00*:' /etc/passwd
root:NqI27UZyZoq3.:0:0:SuperUser:/:/bin/csh
harvey:xyNjgMPtdlx*Q:145:0:Thomas G. Harvey:/home/harvey:/bin/ksh
badguy:mksU/.m7hwkOa:0:203:Bad Guy:/home/bg:/bin/sh
larooti:lso9/.7sJUhhs:000:203:George Larooti:/home/harvey:/bin/csh

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 393

The final line of output indicates why you should resist using a command like this:

grep ':0:' /etc/passwd | grep -v root This won't catch everything.

Whoever added user larooti has been tricky enough to add multiple zeros as the UID
and the word “root” in the GECOS field. That person has also attempted to throw
suspicion on user harvey by including his home directory in this entry. That is one of
its two functions; the other is to enable the entry to pass some password file check-
ing programs (including pwck). It seems unlikely, although not impossible, that user
harvey is actually responsible for the entry; harvey could be very devious (or monu-
mentally stupid, which can look very similar). I wouldn’t consider the home direc-
tory clear evidence either way.

You can find new accounts by scanning the password file manually or by comparing
it to a saved version you’ve squirreled away in an obscure location. The latter is the
best way to find missing accounts, because it’s easier to notice something new than
that something is missing. Here is a sample command:

diff /etc/passwd /usr/local/bin/old/opg
36c36,37
< chavez:9Sl.sd/i7snso:190:20:Rachel Chavez:/home/chavez:/bin/csh

> claire:dgJ6GLVsmOtmI:507:302:Theresa Claire:/home/claire:/bin/csh
> chavez:9So9sd/i7snso:190:20:Rachel Chavez:/home/chavez:/bin/csh
38d38
< wang:l9jsTHn7Hg./a:308:302:Rich Wang:/home/wang:/bin/sh

The copy of the password file is stored in the directory /usr/local/bin/old and is named
opg. It’s a good idea to choose a relatively unconventional location and misleading
names for security-related data files. For example, if you store the copy of the pass-
word file in /etc* or /var/adm (the standard administrative directory) and name it
passwd.copy, it won’t be hard for an enterprising user to find and alter it when chang-
ing the real file. If your copy isn’t secure, comparing against it is pointless. The exam-
ple location given above is also a terrible choice, but it’s merely a placeholder. You’ll
know what good choices are on your system. You might also want to consider keep-
ing the comparison copy encrypted (assuming you have access to an effective encryp-
tion program) or storing it on removable media (which are not available in general).

The sample output displayed previously indicates that user wang has been added,
user claire has been deleted, and the entry for user chavez has changed since the last
time the copy was updated (in this case, her password changed). This command rep-
resents the simplest way of comparing the two files (we’ll look at more complex ones
soon).

Finally, you should regularly check the ownership and permissions of the password
file (and any shadow password file in use). In most cases, the password file should be
owned by root and a system administrative group and be readable by everyone but

* There may be copies of the password file in /etc, but these are for backup rather than security purposes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 7: Security

writable only by the owner; the shadow password file should not be readable by any-
one but root. Any backup copies of either file should have the same ownership and
permissions:

$ cd /etc; ls -l *passwd* *shadow*
-rw-r—r-- 1 root system 2732 Jun 23 12:43 /etc/passwd.sav
-rw-r—r-- 1 root system 2971 Jul 12 09:52 /etc/passwd
-rw------- 1 root system 1314 Jul 12 09:55 /etc/shadow
-rw------- 1 root system 1056 Apr 29 18:39 /etc/shadow.old
-rw------- 1 root system 1276 Jun 23 12:54 /etc/shadow.sav

Monitoring the Filesystem
Checking the contents of important configuration files such as /etc/passwd is one
important monitoring activity. However, it is equally important to check the
attributes of the file itself and those of the directory where it is stored. Making sure
that system file and directory ownerships and protections remain correct over time is
vital to ensuring continuing security. This includes:

• Checking the ownership and protection of important system configuration files.

• Checking the ownership and protection on important directories.

• Verifying the integrity of important system binary files.

• Checking for the presence or absence of certain files (for example, /etc/ftpusers
and /.rhosts, respectively).

Possible ways to approach these tasks are discussed in the following subsections of
this chapter. Each one introduces an increased level of cautiousness; you’ll need to
decide how much monitoring is necessary on your system.

Checking file ownership and protection

Minimally, you should periodically check the ownership and permissions of impor-
tant system files and directories. The latter are important because if a directory is
writable, a user could substitute a new version of an important file for the real one,
even if the file itself is protected (as we’ve seen).

Important system files that need monitoring are listed in Table 7-6 (note that file-
names and locations vary somewhat between Unix versions). In general, these files
are owned by root or another system user; none of them should be world-writable.
You should become familiar with all of them and learn their correct ownerships and
protections.

Table 7-6. Important files and directories to protect and monitor

File(s) Purpose

/.cshrc, /.login, /.logout, /.kshrc,

/.profile, and so on

root account’s initialization files (traditional location)

/.forward, /.mailrc root’s mail initialization files

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 395

You should be familiar with the correct ownership and protection for these files (as
well as any others of importance to your system). You can facilitate the task of
checking them with a script that runs a command like ls -l on each one, saves the
output, and compares it to a stored list of the proper ownerships and permissions.
Such a script can be very simple:

#!/bin/csh
sys_check - perform basic filesystem security check
umask 077

Make sure output file is empty.
/usr/bin/cp /dev/null perm.ck
alias ck "/usr/bin/ls -l \!:* >> perm.ck"
ck /.[a-z]*
ck /dev/{,r}disk*
. . .
ck /usr/lib/lib*

/usr/bin/diff /usr/local/bin/old/pm perm.ck > perm.diff

This script is a C shell script so that it can define an alias to do the work; you could
do the same thing with a Bourne shell function. The script runs the ls -l command
on the desired files, saving the output in the file perm.ck. Finally, it compares the cur-
rent output against a saved data file. If the files on your system change a lot, this

/.emacs, /.exrc root’s editor initialization files

/.rhosts Should not exist

~, ~/.cshrc, ~/.login, ~/.profile, User home directories and initialization files

~/.rhosts Probably should not exist

~/bin User binary directory (conventional location)

/dev/* Special files (the disk and memory devices are the most critical)

/etc/* Configuration files in /etc and its subdirectories (usefind /etc -type f to
find them all)

/sbin/init.d Boot script location on some systems

/tcb Enhanced security directory (HP-UX and Tru64)

/var/adm/* Administrative databases and scripts

/var/spool/*, /usr/spool/* Spooling directories

/bin, /usr/bin, /usr/ucb, /sbin, /usr/sbin System (and local) binaries directories

/usr/local/bin, ... Local binaries directory (as well as any other such locations in use)

/lib/*, /usr/lib/* System libraries directories; shared libraries (common code that is called at
runtime by standard commands) are the most vulnerable

/usr/include System header (.h) files (replacing one of these can introduce altered code the
next time a program is built locally)

All setuid and setgid files Wherever they may be

Table 7-6. Important files and directories to protect and monitor (continued)

File(s) Purpose

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 7: Security

script will produce a lot of false positives: files that look suspicious because their
modification time changed but whose ownership and protection are correct. You can
avoid this by making the ls command a bit more complex:*

ls -l files | awk '{print $1,$3,$4,$NF}' >> perm.ck

This command compares only the file modes, user owner, group owner, and file-
name fields of the ls command.

In addition to checking individual files, it is important to check the protection on all
directories that store important files, making sure that they are owned by the proper
user and are not world-writable. This includes both directories where Unix com-
mands are stored, administrative directories like /var/adm and /etc’s subdirectories,
and the spooling directories under /var/spool. Any other directory containing a set-
uid or setgid file should also be checked.

Looking for setuid and setgid files

The number of setuid commands on the system should be kept to a minimum.
Checking the filesystem for new ones should be part of general system security moni-
toring. The following command will list all files that have the setuid or setgid access
mode set:

find / \(-perm -2000 -o -perm -4000 \) -type f -print

You can compare the command’s output against a saved list of setuid and setgid files
and thereby easily locate any changes to the system. Again, you can do a more com-
prehensive comparison by running ls -l on each file and comparing that output to a
saved list:

find / -type f \(-perm -2000 -o -perm -4000 \) \
 -exec ls -l {} \; | diff - /usr/local/bin/old/fs
2d1
< -rwsr-xr-x 1 root bin 41792 Jun 7 1995 /usr/local/bin/xpostit

Any differences uncovered should be investigated right away. The file storing the
expected setuid and setgid files’ data can be generated initially using the same find
command after you have checked all of the setuid and setgid files on the system and
know them to be secure. As before, the file itself must be kept secure, and offline
copies should exist. The data file and any scripts which use it should be owned by
root and be protected against all group and other access. Even with these precau-
tions, it’s important that you be familiar with the files on your system, in addition to
any security monitoring you perform via scripts, rather than relying solely on data
files you set up a long time ago.

* The corresponding alias command is:
alias ck “ls -l \!:* | awk ’{print “’$1,$3,$4,$NF’“}’ >> perm.ck”

The trick is that the quotes in the awk command are needed to insert the argument placeholder characters
themselves, rather than their current values, into the alias.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 397

Checking modification dates and inode numbers

If you want to perform more careful monitoring of the system files, you should com-
pare not only file ownership and protection, but also modification dates, inode num-
bers, and checksums (see the next section). For the first two items, you can use the
ls command with the options -lsid for the applicable files and directories. These
options display the file’s inode number, size (in both blocks and bytes), owners, pro-
tection modes, modification date, and name. For example:

$ ls -lsid /etc/rc*
690 3 -rwxr-xr-x 1 root root 1325 Mar 20 12:58 /etc/rc0
691 4 -rwxr-xr-x 1 root root 1655 Mar 20 12:58 /etc/rc2
692 1 drwxr-xr-x 2 root root 272 Jul 22 07:33 /etc/rc2.d
704 2 -rwxr-xr-x 1 root root 874 Mar 20 12:58 /etc/rc3
705 1 drwxr-xr-x 2 root root 32 Mar 13 16:14 /etc/rc3.d

The -d option allows the information on directories themselves to be displayed,
rather than listing their contents.

If you check this data regularly, comparing it against a previously saved file of the
expected output, you will catch any changes very quickly, and it will be more diffi-
cult for someone to modify any file without detection (although, unfortunately, far
from impossible—rigging file modification times is not really very hard). This
method inevitably requires that you update the saved data file every time you make a
change yourself, or you will have to wade through lots of false positives when exam-
ining the output. As always, it is important that the data file be kept in a secure loca-
tion to prevent it from being modified.

Computing checksums

Checksums are a more sophisticated method for determining whether a file’s con-
tents have changed. A checksum is a number computed from the binary bytes of the
file; the number can then be used to determine whether a file’s contents are correct.
Checksums are most often used to check files written to disk from tape to be sure
there have been no I/O errors, but they may also be used for security purposes to see
whether a file’s contents change over time.

For example, you can generate checksums for the system commands’ executable files
and save this data. Then, at a later date, you can recompute the checksums for the
same files and compare the results. If they are not identical for a file, that file has
changed, and it is possible that someone has substituted something else for the real
command.

The cksum command computes checksums; it takes one or more filenames as its argu-
ments and displays the checksum and size in blocks for each file:

$ cksum /bin/*
09962 4 /bin/[
05519 69 /bin/adb
...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 7: Security

This method is far from foolproof. For example, crackers have been known to pad a
smaller file with junk characters to make its checksum match the old value. Unfortu-
nately, cksum computes a very easy-to-simulate file signature. There are even cases of
viruses remaining in memory, intercepting directory listing and checksum com-
mands, and returning the correct information (which the virus saved before making
alterations to the system).

The GNU md5sum utility is a better checksum choice. It is part of the
textutils package, and it is included with some Linux distributions. See
http://www.gnu.org/manual/textutils-2.0/html_node/textutils_21.html
for more information.

In any case. you’ll need to take the following precautions when computing and com-
paring checksums if you suspect the system has been compromised:

• Make sure that you have a copy of the checksum utility that you know to be
secure. This means restoring the utility from original operating system distribu-
tion media or a post-installation backup you made if there is any doubt about
system integrity.

• Compare the current system state with a data file that has been stored offline,
because the copy on the disk may have been altered.

• Make the comparisons after rebooting to single-user mode.

Run fsck occasionally

It is also possible for modifications to be made on a filesystem if someone succeeds
in breaking into a system, usually via the fsdb utility. Running fsck occasionally,
even when it is not necessary for filesystem integrity purposes, never hurts. You
should also run fsck after rebooting if you think someone has succeeded in breaking
into the system.

Paranoia Is Common Sense
Sooner or later, a recalcitrant user will accuse you of being overly paranoid because she
resents some restriction that reasonable security measures impose. There’s not really
much you can say in response except to explain again why security is important and
what you are trying to protect against. In general, cries of “paranoia” are really just a
sign that you are performing your job well. After all, it is your job to be at least one level
more paranoid than your users think you need to be—and than potential intruders
hope you will be.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 399

Automating Security Monitoring
There are a variety of tools available for automating many of the security monitoring
activities we have considered so far. We’ll look briefly at a few of them in this section.

Trusted computing base checking

A trusted computing base (TCB) is a system environment whose security is verifiably
trustworthy and that includes the capability of ensuring its continued integrity. The
TCB may be present on a computer along with other software, and users interact
with the system in a trusted mode via a trusted path, which eliminates any untrusted
applications and operating system components before allowing access to the TCB.
Communication with the TCB is usually initiated by a specific key sequence on such
systems; for example, on an AIX system, pressing the Secure Attention Key sequence
(CTRL-X CTRL-R by default) accesses the TCB. These facilities are used in systems
secured at B1 and higher levels, and the requirements specify that the operating sys-
tem must be reinstalled in the high security mode (a TCB cannot be added to an
existing system).

A full consideration of trusted computing is beyond the scope of this book. How-
ever, some of the utilities provided as part of TCB support can still be used for gen-
eral filesystem monitoring even when the TCB facility is not active. Typically, these
utilities compare all important system files and directories against a list of correct
attributes that was created at installation time, checking file ownerships, protection
modes, sizes, and checksums, and, in some cases, modification dates. TCB-checking
utilities and similar programs also usually have the ability to correct any problems
that they uncover.

These are the facilities provided by the Unix versions we are considering (their capa-
bilities vary somewhat):

System integrity checking with Tripwire

The Tripwire facility, originally produced by the COAST project of Purdue Univer-
sity, is unquestionably among the finest free software packages in existence. The cur-
rent home page is http://www.tripwire.org.

Tripwire compares the current state of important files and directories with their
stored correct attributes according to criteria selected by the system administrator. It
can compare all important file properties (more precisely, all inode characteristics),
and it includes the ability to compute file signatures in many different ways (nine are
included as of this writing). Comparing file checksums computed using two differ-
ent algorithms makes it extremely difficult for a file to be altered without detection.

AIX tcbck
HP-UX swverify
Solaris aset
Tru64 fverify

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 7: Security

Tripwire uses an ASCII database to store file attributes to be used for future compari-
sons. This database is created the first time you run the tripwire command (by
including the -init option). Ideally, you should use this option after reinstalling the
operating system from the original media to eliminate the possibility that the system
is already corrupt. tripwire creates database entries and makes comparisons to them
based on the instructions in its configuration file, tw.config by default.

Here is an excerpt from a configuration file:

Pathname Attributes to Check
/usr/bin +ugpinsm12-a
/usr/local/bin R
/usr/lib R-2
 ...
/usr/bin/at R+8-2

The first entry indicates that the user and group owners, protection, inode number,
number of links, inode creation time, and file modification times as well as file signa-
tures 1 and 2 (which correspond to the MD5 and Snefru algorithms) will be checked
for the files in /usr/bin, and that any changes in file access times will be ignored. The
second entry performs the same checks for the files in /usr/local/bin, because R is a
built-in synonym for the string specified for /usr/bin (it is also the default). For the
files in /usr/lib, all checks except file signature 2 are performed. The final entry refers
to a file rather than a directory, and it substitutes file signature 8 (Haval) for signa-
ture 2 for the at command executable (overriding the specification it would other-
wise have from the first sample entry).

Thus, it is very easy to perform different tests on different parts of the filesystem
depending upon their unique security features. The configuration file syntax also
includes C preprocessor-style directives to allow a single configuration file to be used
on multiple systems.

Once the Tripwire database is created, it is essential to protect it from tampering and
unauthorized viewing. As the Tripwire documentation repeatedly states, the best
way to do so is to store it on a removable, write-protectable medium like a floppy
disk; the locked disk with the database will be placed in the drive only when it is
time to run Tripwire. In fact, in most cases, both the database and the executable fit
easily onto a single floppy disk. In any case, you will want to make a secure backup
copy of both tripwire and its related siggen utility after building it, so that the online
copies can be easily restored in case of trouble.

When you create the initial database for a system, take the time to generate all of the
file signatures you might conceivably want. The set you select should include two
difficult-to-forge signatures; you may also want to include one quickly computed,
lower-quality signature. You don’t have to use as time-consuming a procedure on a
regular basis—for example, you might use one quick and one good signature for rou-
tine checks—but the data will be available should you ever need it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 401

Here is part of a report produced by running tripwire:

changed: -rwsrwsr-x root 40120 Apr 28 14:32:54 2002 /usr/bin/at
deleted: -rwsr-sr-x root 149848 Feb 17 12:09:22 2002
 /usr/local/bin/chost
added: -rwsr-xr-x root 10056 Apr 28 17:32:01 2002 /usr/local/bin/cnet2
changed: -rwsr-xr-x root 155160 Apr 28 15:56:37 2002
 /usr/local/bin/cpeople
...
Attr Observed (what it is) Expected (what it should be)
###=========== ============================= =================
/usr/bin/at
 st_mode: 104775 104755
 st_gid: 302 0
 st_ctime: Fri Feb 17 12:09:13 2002 Fri Apr 28 14:32:54 2002
/usr/local/bin/cpeople
 st_size: 155160 439400
 st_mtime: Fri Feb 17 12:10:47 2002 Fri Apr 28 15:56:37 2002
 md5 (sig1): 1Th46QB8YvkFTfiGzhhLsG 2MIGPzGWLxt6aEL.GXrbbM

On this system, the chost command executable has been deleted, and a file named
cnet2 has been added (both in /usr/local/bin). Two other files on the system have
been changed. The at command has had its group owner changed to group 302, and
/usr/bin/at is group-writable. The cpeople executable has been replaced: it is a differ-
ent size and has a different signature and modification time.

Vulnerability scanning

The next step up in monitoring intensity is to actively search for known problems
and vulnerabilities within the system or network. In this section, we’ll look at a cou-
ple of the packages designed to do this (as well as mentioning several more).

General system security monitoring via COPS. The free Computer Oracle and Password
System (COPS) can automate a variety of security monitoring activities with a single

More Administrative Virtues
Security monitoring primarily requires two of the seven administrative virtues: atten-
tion to detail and adherence to routine. They are related, of course, and mutually rein-
force one another. Both also depend on that metavirtue, foresight, to keep you on the
right path during those times when it seems like too much trouble.

• Attention to detail. Many large security problems display only tiny symptoms,
which the inattentive system administrator will miss, but you (and your tools
and scripts) will not.

• Adherence to routine. The night you decide to forego security monitoring so
that some other job can run overnight has a much better than average chance of
being the night the crackers find your system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 7: Security

system. Its capabilities overlap somewhat with Crack and Tripwire, but it offers
many unique ones as well. It was written by Dan Farmer, and its home page is http://
dan.drydog.com/cops/software/.

These are COPS’ most important capabilities:

• Checks root’s environment by examining the account’s initialization files in the
root directory for umask and path definition commands (and then checking path
components for writable directories and binaries), as well as ownership and pro-
tections of the files themselves. Also checks for non-root entries in any /.rhosts file.

COPS also performs similar checks of the user environment of each account
defined in the password file.

• Checks the permissions of the special files corresponding to entries in the filesys-
tem configuration file, /etc/fstab.

• Checks whether any commands or files referenced in the system boot scripts are
writable.

• Checks whether any commands or files mentioned in crontab entries are writ-
able.

• Checks password file entries for syntax errors, duplicate UID’s, non-root users
with UID 0, and the like. Performs a similar check of the group file.

• Checks the system’s anonymous FTP setup (if applicable), as well as the secu-
rity of the tftp facility and some other facilities.

• Checks the dates of applicable system command binaries against ones noted in
CERT advisories to determine whether known vulnerabilities still exist.

• Runs the Kuang program, an expert system that tries to determine if your sys-
tem can be compromised by its current file and directory ownerships and per-
missions (see the upcoming example output). It attempts to find indirect routes
to root access like those we considered earlier in this chapter.

• The COPS facility also has the (optional) ability to check the system for new set-
uid and setgid files and to compute checksums for files and compare them to
stored values. Both the C/shell-script version and the Perl version are initiated
via the cops script. You can configure the first version by editing this script as
well as the makefile before building the COPS binaries. You configure the Perl
version, which resides in the perl subdirectory of the main COPS directory, by
editing the cops script and its configuration file, cops.cf. The following output is
excerpted from a COPS report. The lines beginning with asterisks denote the
script or program within the COPS facility that produced the subsequent output
section (use -v to produce this verbose output):

**** dev.chk **** Checks device files for local file systems.
Warning! /dev/sonycd_31a is _World_ readable!
**** rc.chk **** Checks boot scripts' contents.
Warning! File /etc/mice (inside /etc/rc.local) is _World_writable (*)!
**** passwd.chk **** Checks password file.
Warning! Passwd file, line 2, user install has uid == 0 and is not root

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 403

install:x:0:0:Installation program:/:/INSTALL/install
Warning! Passwd file, line 8, invalid home directory:
admin:x:10:10:basic admin::
**** user.chk **** Checks user initialization files.
Warning! /home/chavez/.cshrc is _World_ writable!
**** kuang **** Searches for system vulnerabilities.
Success! grant uid -1 replace /home/chavez/.cshrc grant uid 190
 grant gid 0 replace /etc/passwd grant uid 0

The final section of output from Kuang requires a bit of explanation. The output
here describes chains of actions that will result in obtaining root access based on cur-
rent system permissions. The item here notes that user nobody—meaning in this
case, anybody at all who wants to—can replace the .cshrc file in user chavez’s home
directory (because it is world-writable), making user 190 (chavez) the user owner and
group 0 the group owner (possible because chavez is a member of the system group).
Commands in this file can replace the password file (because it is group writable),
which means that root access can be obtained.

The example output also illustrates that COPS can produce some false positives. For
example, the fact that /dev/sonycd_31a is world-readable is not a problem because
the device is used to access the system’s CD-ROM drive. The bottom line is that it
still takes a human to make sense of the results, however automated obtaining them
may be.

Scanning for network vulnerabilities

The are a variety of tools now available for scanning systems for network-based vul-
nerabilities that might offer opening to potential intruders. One of the best is the
Security Administrator’s Integrated Network Tool (Saint), also written by Dan
Farmer (see http://www.wwdsi.com/saint/). It is based on Dan’s earlier, now infa-
mous, Satan* tool. It is designed to probe a network for a set of known vulnerabili-
ties and security holes, including the following:

• NFS vulnerabilities: exporting filesystems read-write to the world, accepting
requests from user (unprivileged) programs, NFS-related portmapper security
holes.

• Whether the NIS password file can be retrieved.

• ftp and tftp problems, including whether the ftp home directory is writable and
whether tftp has access to parts of the filesystem that it should not.

• A + entry in /etc/hosts.equiv, granting access to any user with the same name as a
non-root local account on any accessible system.

• The presence of an unprotected modem on the system (which could be used by
an intruder for transport to other systems of interest).

• Whether X server access control is enabled.

* The Security Administrator Tool for Analyzing Networks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 7: Security

• Whether the rexd facility is enabled (it is so insecure that it should never be
used).

• Whether any versions of software with reported vulnerabilities are present. The
software is updated for new security vulnerabilities as they are discovered.

• Whether any of the SANS top 20 vulnerabilities is present. See http://www.sans.
org/top20.htm for the current list (scroll past the very long self-promotional sec-
tion and you’ll find the list).

Saint works by allowing you to select a system or subnetwork for scanning, probing
the systems you have designated at one of three levels of enthusiasm, and then
reporting its findings back to you. Saint is different from most other security moni-
toring facilities in that it looks for vulnerabilities on a system from the outside rather
than the inside. (This was one of the main sources of the considerable controversy
that surrounded Satan at its release, although it was not the first facility to operate in
this manner.)

One excellent feature of Saint is that its documentation tells you how to fix the vul-
nerabilities that it finds. The add-on interfaces also contain many helpful links to
articles and CERT advisories related to its probes as well as to software designed to
plug some of the holes that it finds.

Figure 7-4 illustrates one of the reports that can be produced from Saint runs using
the add-on reporting tool. This one shows a summary of the vulnerabilities that it
found categorized by type, and the detail view of the first category is also displayed.

[

Figure 7-4. Saint vulnerabilities overview report

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 405

Renaud Deraison’s Nessus package has similar goals to Saint. For more information
about it, see http://www.nessus.org.

What to Do if You Find a Problem
If one of the security monitoring tools you use finds a problem, there are two con-
cerns facing you: preventing further damage and correcting whatever the current
problem is. How strongly to react depends to a great extent on the security require-
ments of your site; everyone needs to investigate every unexpected change to the sys-
tem uncovered in a security check, but how quickly it has to be done and what to do
in the meantime will depend on what the problem is and how much of a risk you and
your site are willing to assume.

For example, suppose Tripwire finds a single change on the system: the group owner
of /usr/local/bin has been changed from bin to system. Assuming you’ve set up an
appropriate configuration file and are running Tripwire nightly, you can probably
just change the group owner back and find out which system administrator made

Security and the Media: An Unhelpful Combination
Many well-meaning persons suppose that the discussion respecting the means for baffling
the supposed safety of locks offers a premium for dishonesty, by showing others how to
be dishonest. This is a fallacy.... Rogues knew a good deal about lockpicking long before
locksmiths discussed it among themselves.

—Rudimentary Treatise on the Construction of Locks (1853)
[Quoted in Cheswick and Bellovin (1994)]

Intelligent people disagree about how much detail to include when discussing security
problems. Some say never to mention anything that an intruder could use; however,
it’s difficult for system administrators to evaluate how vulnerable their system is with-
out understanding how potential threats work. Given the sheer volume of security
alerts, people need enough details to be both technically and emotionally able to take
a problem seriously.

In my view, however, media coverage of emerging security problems is seldom helpful.
Any benefit obtained from the quick spread of information is more than offset by the
panic that sets in among nontechnical folks based on the incomplete, exaggerated, and
often inaccurate reports. Managers all too often overreact to such media reports, espe-
cially when open source operating systems are involved. Demands to immediately
remove services that are actually needed are all too common. Part of the administra-
tor’s job is to attempt to keep things in perspective, with both managers and users.

It is important to keep in mind the media’s motives in these instances: capturing view-
ers and selling newspapers. Security concerns are not the prime motivation behind
such stories, and better computer security is not among the benefits that they reap
from them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 7: Security

this silly mistake. At the other extreme, if the one change is a replacement of /etc/
passwd, and you are doing only minimal security monitoring—checking file owner-
ships, modes, sizes and modification dates—you’ve got a much bigger problem. You
can no longer really trust any file on the system, because the data you have isn’t good
enough to determine which files have been altered. In such an extreme case, this is
the right—if extremely painful—thing to do:

• Disconnect the system from any unsecured network (which is pretty much any
network).

• Reboot the system immediately to single-user mode to attempt to get rid of any
malignant users or processes. There are more complex strategies for handling an
intrusion in progress; however, they are not recommended for the uninitiated or
the fainthearted.

• Back up any files that you cannot afford to lose (but be aware that they may
already be tainted). Back up all log and accounting files to aid in future investiga-
tion of the problem.

• You may want to keep the system down while you investigate. When you are
ready to bring the system back online, reinstall the operating system from
scratch (including remaking all filesystems). Restore other files manually and
check them out carefully in a secure filesystem. Rebuild all executables for which
you have the source code.

If you anticipate ever taking an legal action with respect to the break-
in, you must save the original disks in the system unaltered. You will
have to replace the hard disks to reinstall the operating system and
bring the system back online.

The severity of this cure should emphasize once again the importance of formulating
and implementing an effective security monitoring process.

Investigating System Activity
Regularly monitoring the processes running on your system is another way to mini-
mize the likelihood of security breaches. You should do this periodically, perhaps as
often as several times during the day. Very shortly, you will have a good sense of
what “normal” system activity is: what programs run, how long they run, who runs
them, and so on. You’ll also be in a reasonably good position to notice any unusual
activity: users running different programs than they usually do, processes that
remain idle for long periods of time (potential Trojan horses), users logged in at
unusual times or from unusual locations, and the like.

As you know, the ps command lists characteristics of system processes. You should
be familiar with all of its options. Let’s look at some examples of how you might use
some of these options. Using the BSD command format, you can use ww to get the
entire command run by a user into the display (this output is wrapped):

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 407

$ ps ax | egrep 'PID|harvey'
241 co R 0:02 rm /home/harvey/newest/g04/l913.exe /home/mar

$ ps axww | egrep 'PID|harvey'
PID TT STAT TIME COMMAND
241 co R 0:02 rm /home/harvey/newest/g04/l913.exe
 /home/harvey/newest/g04-221.chk /home/harvey/newest/g04-271.int
 /home/harvey/newest/g04-231.rwf /home/harvey/newest/g04-291.d2e
 /home/harvey/newest/g04-251.scr /usr/local/src/local_g04

In this case, you can see all the files that were deleted by using two w’s.

The c option reveals the actual command executed, rather than the one typed in on
the command line. This is occasionally useful for discovering programs run via sym-
bolic links:

$ ps aux | egrep 'PID|smith'
USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
smith 25318 6.7 1.1 1824 544 p4 S 0:00 vi
smith 23888 0.0 1.4 2080 736 p2 I 0:02 -csh (csh)

$ ps -auxc | egrep 'PID|smith'
USER PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
smith 25318 6.7 1.1 1824 544 p4 S 0:00 backgammon
smith 23888 0.0 1.4 2080 736 p2 I 0:02 -csh (csh)

User smith evidently in his current directory has a file named vi, which is a symbolic
link to /usr/games/backgammon.

The -f option under System V can help you identify processes that have been idle for
a long time:

$ ps -ef
UID PID PPID C STIME TTY TIME COMMAND
chavez 2387 1123 0 Apr 22 ? 0:05 comp_h2o

This process has been around for a long time but has accumulated very little CPU
time. For instance, if today is May 5, it’s time to look into this process. Hopefully,
you’d actually notice it before May 5.

As these examples indicate, creative use of common commands is what’s needed in a
lot of cases. The more familiar you are with the commands’ capabilities, the easier it
will be to know what to use in the situations you encounter.

Monitoring unsuccessful login attempts

Repeated unsuccessful login attempts for any user account can indicate someone try-
ing to break into the system. Standard Unix does not keep track of this statistic, but
many Unix versions provide facilities that do so.

Under AIX, checking for lots of unsuccessful login attempts is relatively easy. The file
/etc/security/user includes the keyword unsuccessful_login_count in the stanza for
each user:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 7: Security

chavez:
 admin = false
 time_last_login = 679297672
 unsuccessful_login_count = 27
 tty_last_unsuccessful_login = pts/2
 time_last_unsuccessful_login = 680904983
 host_last_unsuccessful_login = hades

This is clearly a lot of unsuccessful login attempts. Anything above two or three is
probably worth some investigation. The following command displays the username
and number of unsuccessful logins when this value is greater than 3:

egrep '^[^*].*:$|gin_coun' /etc/security/user | \
awk '{if (NF>1 && $3>3) {print s,$0}} ; NF==1 {s=$0}'
chavez: unsuccessful_login_count = 27

The egrep command prints lines in /etc/security/user that don’t begin with an aster-
isk and end with a colon (the username lines) and that contain the string “gin_coun”
(the unsuccessful login count lines). For each line printed by egrep, the awk com-
mand checks whether the value of the third field is greater than 3 when there is more
than one field on the line (the username lines have just one field). If it is, it prints the
username (saved in the variable s) and the current line.

When the user logs in, she gets a message about the number of unsuccessful login
attempts, and the field in /etc/security/user is cleared. However, if you check this file
periodically using the cron facility, you can catch most strings of unsuccessful login
attempts before they are erased. Users should also be encouraged to report any unex-
pected unsuccessful login attempts that they are informed of at login time.

Tru64 also keeps track of unsuccessful login attempts in this way, storing the current
number in the u_numunsuclog field in each user’s protected password database file.

su log files

Virtually all Unix implementations provide some mechanism for logging all attempts
to become superuser. Such logs can be very useful when trying to track down who
did something untoward. Messages from su are typically written to the file /var/adm/
sulog, and they look something like this:

SU 07/20 07:27 - ttyp0 chavez-root
SU 07/20 14:00 + ttyp0 chavez-root
SU 07/21 18:36 + ttyp1 harvey-chavez
SU 07/21 18:39 + ttyp1 chavez-root

This display lists all uses of the su command, not just those used to su to root, as
when user harvey first su’ed to chavez and then to root. If you look only at su com-
mands to root, you might mistakenly suspect chavez of doing something that harvey
was actually responsible for. On some systems, su log messages are always entered
under the real username, ignoring any intermediate su commands.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 409

Here are the locations of the su log file on various systems:

History on the root account

A simple way of retaining some information about what’s been done as root is to give
root a shell that supports a history mechanism, and in root’s initialization file set the
number of commands saved across login sessions to a large number. For example,
the following commands cause the last 200 commands entered by root to be saved:

Under the C shell, commands are saved in the file /.history for root. Under the Korn
shell, commands are written to the file named in the HISTFILE environment vari-
able ($HOME/.sh_history by default). Of course, a clever user can turn off the his-
tory feature before misbehaving with the root account, but it can also often be
overlooked (especially if you don’t put the command number in the prompt string).
Alternatively, you can copy the history file to some secure location periodically via
the cron facility.

Tracking user activities

There are other utilities you can use to determine what users have been doing on the
system, sometimes enabling you to track down the cause of a security problem.
These commands are listed in Table 7-7.

These commands draw their information from the system accounting
files, the age of which determines the period of time that they cover.
Note that accounting must be running on the system for any of them
to be available (see Chapter 17).

AIX /var/adm/sulog
FreeBSD Within /var/log/messages
HP-UX /var/adm/sulog
Linux Within /var/log/messages
Tru64 /var/adm/sialog
Solaris Specified in the SULOG setting in /etc/default/su.
sudo facility /var/adm/sudo.log

C shell
set history = 200
set savehist = 200

Korn shell
export HISTSIZE=200
export HISTFILE=/var/adm/.rh

Table 7-7. Command summary utilities

Command Unix versions Displays information about

last All User login sessions

lastcomm All All commands executed (by user and TTY)

acctcom AIX, HP-UX, Solaris, Tru64 All commands executed (by user and TTY)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 7: Security

The last command displays data for each time a user logged into the system. last
optionally may be followed by a list of usernames and/or terminal names. If any
arguments are distinguished, the report is limited to records pertaining to at least one
of them (OR logic):

$ last
harvey ttyp1 iago Fri Sep 16 10:07 still logged in
ng ttyp6 Fri Sep 16 10:00 10:03 (00:02)
harvey ttyp1 iago Fri Sep 16 09:57 10:07 (00:09)
chavez ttyp5 Fri Sep 16 09:29 still logged in

$ last chavez
chavez ttyp5 Fri Sep 16 09:29 still logged in
chavez ttypc duncan Thu Sep 15 21:46 - 21:50 (00:04)
chavez ttyp9 Thu Sep 15 11:53 - 18:30 (07:23)

$ last dalton console
dump console Wed Sep 14 17:06 - 18:56 (01:49)
dalton ttyq4 newton Wed Sep 14 15:58 - 16:29 (00:31)
dalton ttypc newton Tue Sep 13 22:50 - 00:19 (01:28)
dalton console Tue Sep 13 17:30 - 17:49 (00:19)
ng console Tue Sep 13 08:50 - 08:53 (00:02)

last lists the username, tty, remote hostname (for remote logins), starting and end-
ing times, and total connect time in hours for each login session. The ending time is
replaced by the phrase “still logged in” for current sessions. At the end of each list-
ing, last notes the date of its data file, usually /var/adm/wtmp, indicating the period
covered by the report.

The username reboot may be used to list the times of system boots:

$ last reboot
reboot ~ Fri Sep 9 17:36
reboot ~ Mon Sep 5 20:04

lastcomm displays information on previously executed commands. Its default display
is the following:

$ lastcomm
lpd F root 0.08 secs Mon Sep 19 15:06
date harvey ttyp7 0.02 secs Mon Sep 19 15:06
sh smith ttyp3 0.05 secs Mon Sep 19 15:04
calculus D chavez ttyq8 0.95 secs Mon Sep 19 15:09
more X ng ttypf 0.17 secs Mon Sep 19 15:03
ruptime harvey console 0.14 secs Mon Sep 19 15:03
mail S root ttyp0 0.95 secs Fri Sep 16 10:46

The display lists the command name, flags associated with the process, the user-
name and tty associated with it, the amount of CPU time consumed by its execu-
tion, and the time the process exited. The flags may be one or more of:

S Command was run by the superuser.

F Command ran after a fork.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 411

D Command terminated with a core dump.

X Command was terminated by a signal (often CTRL-C).

The command optionally accepts one or more image or command names, user-
names, or terminal names to further limit the display. If more than one item is speci-
fied, only lines that contain all of them will be listed (Boolean AND logic). For
example, the following command lists entries for user chavez executing the image
calculus:

$ lastcomm chavez calculus
calculus D chavez ttyq8 0.95 secs Mon Sep 19 15:09
calculus chavez ttyp3 10.33 secs Mon Sep 19 22:32

Under System V, the acctcom command produces similar information (output is
shortened):

$ acctcom
COMMAND START END CPU
NAME USER TTYNAME TIME TIME (SECS)
calculus chavez ttyq8 15:52:49 16:12:23 0.95
grep harvey ttyq3 15:52:51 15:52:55 0.02
rm root tty02 15:52:55 15:55:56 0.01

acctcom’s most useful options are -u and -t, which limit the display to the user or
TTY specified as the option’s argument (respectively), and -n pattern, which limits
the display to lines containing pattern. The pattern can be a literal string or a regular
expression. This option is often used to limit the display by command name. If more
than one option is specified, records must match all of them to be included (AND
logic). For example, the following command displays vi commands run by root:

$ acctcom -u root -n vi
COMMAND START END CPU
NAME USER TTYNAME TIME TIME (SECS)
vi root tty01 10:33:12 10:37:44 0.04
vi root ttyp2 12:34:29 13:51:47 0.11
vi root ttyp5 11:43:28 11:45:38 0.08

Unfortunately, acctcom doesn’t display the date in each line as lastcomm does, but
you can figure it out by knowing when its data file (/var/adm/pacct) was created and
watching the dates turn over in the display (records are in chronological order). If
you’re trying to track down a recent event, use the -b option, which displays records
in reverse chronological order.

So what can you do with these commands? Suppose you find a new UID 0 account in
the password file and you know the file was all right yesterday. After checking its
modification time, you can use the su log file to see who became root about that time;
last will tell you if root was logged in directly at that time. Assuming root wasn’t
directly logged in, you can then use lastcomm or acctcom to find out who ran an editor
at about the right time. You may not get conclusive proof as to who made the change,
but it may help you to narrow the possibilities; you can then talk to those users in
person. Of course, there are trickier ways of changing the password file that will

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 7: Security

evade detection by this method; there’s no substitute for limiting access to the root
account to trustworthy people. This example also illustrates the importance of detect-
ing security problems right away; if you can’t accurately narrow down the time that
the password file was changed, it will surely be impossible to figure out who did it.

Event-auditing systems

Event-auditing systems are much more sophisticated tools for tracking system activi-
ties, and they are accordingly much more useful than the simple tools provided by
standard Unix. Auditing is a required part of the U.S. government C2 and higher
security levels. All of the commercial Unix versions we are considering have an audit-
ing facility as a standard or optional component.

Auditing systems all work in basically the same way, although the details of the
mechanics of setting up and administering auditing are different. Once you under-
stand how one auditing system works, you can work with another one very easily.
These are the main steps required to set up event auditing on a system:

• Choose which events you want to keep track of. In general, auditing events are
defined at the system call level. Thus, you can track file opens, closes, reads,
writes, unlinks (deletions), and so on, but you can’t track file edits with vi. Some
systems let you define new events, but this is rarely necessary.

• Choose which system objects—for the most part, this means individual files—
you want to monitor. Not all auditing systems let you narrow the scope to spe-
cific files.

• Group events and/or objects into classes of related items. Sometimes this step is
done for you, and you have no choice as to how classes are defined.

• Set the system default audit event (or class) list, and then indicate which events
or classes should be audited for the various users on the system. On some sys-
tems, you have to do both variations of this task: designate system defaults,
including a list of users to be audited, and then specify what to audit for each
applicable user.

• Decide where the audit trail data files should be located in the filesystem. Many
auditing systems allow or require you to specify a list of audit logging directories
(so that the next one is already waiting when one fills up).

• Set any other audit system parameters: how large audit files can get, how often
to switch to a new file, what file format to use, and so on.

• Change the system boot scripts so that auditing is started automatically at boot
time and terminated before a system shutdown.

Auditing is one case where a well-designed system administration tool is a tremen-
dous help, due to the number of tasks that it includes and the staggering amount of
data that an auditing system generates. However, it sometimes takes a bit of time to
figure out the mappings between the less than intuitive descriptions of the available
events and what you actually want to watch for.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Problems | 413

Once auditing is in effect, the next step is figuring out how to generate reports from
the data. This will take some time. The best way to learn how to do this is to simu-
late the kinds of events you want to be able to detect on an idle system: turn audit-
ing on for all events (ensuring that the records will go to a new audit file), do
something you want to be able to track (for example, make a trivial change in the
password file, delete a file in /tmp, change the ownership of a file, etc.), and then turn
auditing off.* Then look at the audit records you’ve just generated using the system’s
report facilities. This will enable you both to recognize what your target act looks
like in terms of audit events and to learn the correspondence between audit event
and classes and higher-level commands. In some cases, performing different com-
mands as different users will be helpful in sorting things out.

Intruders Can Read
At various points in this chapter, I’ve said that intruders will go to very great lengths
to cover their tracks. The most sophisticated intruders know all the ins and outs of
the available types of system protection and monitoring facilities—and all of their
vulnerabilities. That is why it is important to have system-checking tools and their
associated data files that are beyond the reach of any system intruder.

There are various ways to accomplish this:

• Have backup copies of important utilities, preferably made at the time of their
original installation. Depending on the media type, two backup copies might be
called for.

• Be cautious in keeping online data files describing the correct system configura-
tion. Storing them on a write-protected diskette, which is accessed only as
needed, is one approach (assuming that the database is small enough to fit).
Again, redundant copies are probably a good idea. Making a printed copy is
another way to protect such data (provided it is in ASCII form).

• System log files—from su, the syslog facility, the auditing subsystem, and so
on—also need restrictive permissions online and frequent backing up. Redun-
dant copies are also a possibility here. For example, you can log syslog mes-
sages locally and to a secure remote system, and both trails would need to be
altered for a cracker to hide an action. Important log files can also be printed out
on a regular basis or in real time; those ancient hardcopy system consoles had
their uses.

You’ll need to be careful about storing these backup copies. Remember that threats
don’t always come from outsiders.

* On some systems, you need to execute a few commands to force the auditing records out to disk; ls -l a few
times will usually do the trick.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

414

Chapter 8CHAPTER 8

Managing Network Services

Users have come to expect and rely on a variety of network services: logging in to a
remote system, accessing files stored on a remote system, seeing information from
various websites, and so on. High level network operations typically use a hostname
to specify a network location, an easy and convenient practice for users. Accord-
ingly, at the most basic level, network operations depend on two essential abilities:
translating a hostname to an IP address and determining the route to a desired
remote destination.

For this reason, configuring and managing services that handle name resolution and
routing will take up a large part of this chapter. After considering these topics in
detail, we will also consider other important network services, including DHCP,
which is responsible for assigning IP addresses, and the service that synchronizes the
current time on the various systems within a network. The final section of the chap-
ter will consider software and techniques for monitoring network status over time.

inetd is another important network service. It controls many applica-
tion-specific services (such as ftp and telnet). It is discussed in “Net-
work Security” in Chapter 7 in conjunction with the TCP Wrappers
package, because its configuration has a large potential effect on sys-
tem security.

Managing DNS Servers
The Domain Name System (DNS) is the facility that provides name resolution ser-
vices.* This service consists of two distinct activities: the actual hostname-to-IP address

* Actually, to be rigorously technically correct, DNS is the specification for name resolution services. On Unix
systems, the actual implementation is called the Berkeley Internet Name Domain (BIND). Other systems,
such as Windows NT and its successors, call the implementation DNS as well, conflating this distinction.
Unix parlance also frequently uses the designation “DNS” for both the specification and the implementa-
tion, as I’ve done in the text above.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 415

translation process and distribution mechanisms for the underlying translation data.
Structurally, DNS is a distributed database whose contents are spread across the entire
Internet, with individual DNS servers permanently storing only the subset of data for
which they are responsible. Queries into this massively distributed database work
because DNS has the ability to forward translation requests to the appropriate server
automatically, in a manner that scales extremely well. The total amount of DNS data
is also referred to as the DNS namespace.

The DNS organizational structure defines the domain name hierarchy familiar to
most Internet users (see Figure 8-1). Domain names are arranged within a tree struc-
ture rooted at the root domain, which is designated by a single dot: “.”. Underneath
the root domain are a series of top-level domains (TLDs) whose names take one of
two forms: generic suffixes loosely indicating organization type (gTLDs) or two-char-
acter country codes (ccTLDs). The currently defined generic TLDs are summarized
in Table 8-1 (see http://www.icann.org/tlds/ for up-to-the-minute information).

Figure 8-1. The DNS namespace

Table 8-1. Generic TLDs

gTLD Current use

.com Commercial entity (used by companies worldwide)

.edu Degree-granting U.S. higher education institutions (i.e., accredited colleges and universities)

.org Originally intended for noncommercial entities, but now used generically

.net Originally intended for Internet infrastructure related organizations (e.g., ISPs), but now used generically

.gov U.S. government entity

. . .ahania

.biz .com .edu .name .net

.

.au .ar .at .us .uk . . .

ccTLDs

. . .

gTLDs

.arpa

Reverse
lookup

domains

in-addr ip6

ns.ahania.com

. . .evil-ones

havoc.evil-ones.net

. . .ac co nhs
Generic
2nd level
domains

anglox scot wales . . .
asia usa

admin mktg

webhost.mktg.usa.ahania.com
www.ahania.com alias

. .
.

146.204.209.in-addr.arpa

. . .

. . .smoke-free

ns.smoke-free.scot.nhs.uk

Host

name

Legend
name Domain controlled by an Internet authority

Assigned domain name

Site-defined subdomainname

root domain

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 8: Managing Network Services

Examples of country code TLDs include .us (USA),* .uk (United Kingdom), .jp
(Japan), .fr (France), .it (Italy), .de (Germany), .at (Austria), .es (Spain), .ar (Argen-
tina), .mx (Mexico), .fi (Finland), .cn (China), .pl (Poland) and .au (Australia). As
these examples indicate, the country code can derive from either the English or
native-language country name (e.g., Japan/.jp versus España/.es). See http://www.
iana.org/cctld/cctld-whois.htm for a full list of country code TLDs.

Some of these TLDs are further subdivided before organization-specific domain
names are assigned, creating generic second-level domains.† For example, the .uk
ccTLD includes the co.uk, ac.uk and nhs.uk subdomains for commercial, academic,
and National Health Service organizations, respectively (as well as many others; http:
//www.ilrt.bris.ac.uk/people/cmdjb/projects/uksites/uk-domains.html has all the gory
details).

Consult http://www.alldomains.com/alltlds.html for a list of second-level domains by
country code. These domains are sometimes subdivided by the national authority. For
example, scot.nhs.uk is the domain for the National Health Service in Scotland, and
organizations within it are assigned fourth-level domain names (e.g., the Scotland
Anti-Smoking Council—a fictitious organization—might be smoke-free.scot.nhs.uk).

To obtain your own domain, you must register with the proper authority for the
TLD in which you want your domain to be located. See the following websites for
lists of accredited registrars:

.mil U.S. military

.int “International”: organizations established by treaties between nations (e.g., NATO)

.biz Businesses

.info “Informational”: generic

.name Individuals

.aero Air transport industry.

.coop Cooperative associations/organizations (see http://www.coop.org for definitions and more information)

.museum Museums

.pro “Professionals”: e.g., physicians, attorneys; not yet active as of this writing (early 2002)

.arpa TLD for reverse lookup domains (perform IP address-to-hostname translation); site-specific reverse lookup
domains are subdomains of in-addr.arpa

* Formerly reserved for state, regional, local, primary and secondary educational and other public entities, sec-
ond-level .us subdomains are now available to U.S. citizens and U.S.-based organizations.

† You can also say that co.uk and the others are subdomains of the TLD .uk. In fact, all domains are subdo-
mains, because even TLDs are subdomains of the root domain.

Table 8-1. Generic TLDs (continued)

gTLD Current use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 417

gTLDs
http://www.icann.org/registrars/accredited-list.html

ccTLDs
Follow the “URL for registration services” link on the appropriate http://www.
iana.org/root-whois/cc.htm page (where cc is the country code). Note that some
countries also have other registrars, but you’ll probably have to do a web search
to find them.

.us subdomains
http://www.nic.us

Once an organization has obtained a domain name, it can subdivide it further if that
makes sense. For example, as illustrated in Figure 8-1, ahania.com is divided into
two subdomains organized by geographical location, and the usa.ahania.com subdo-
main is subdivided based on organizational function. Each level of a domain can
contain both host records and subdomains.

If you follow a branch of the domain tree long enough, you will eventually reach
actual hosts. In Figure 8-1, the hosts ns.smoke-free.scot.nhs.uk and webhost.mktg.usa.
ahania.com both reside in fourth-level domains within the overall tree. However, the
former is located at the top level of its specific domain, smoke-free.scot.nhs.uk, while
the latter is within a third-level subdomain of ahania.com. Structurally, havoc.evil-
ones.net is similar to ns.smoke-free.scot.nhs.uk in that it also is located at the top of its
domain, evil-ones.com. We will consider other items within this illustration at vari-
ous points within this section.

About Domain Names

Domain names are not case-sensitive. Each subdomain component is
limited to 63 characters. A fully qualified hostname is limited to 255
characters. Second-level domain names are recommended to be 12
characters or less. Name characters are limited to letters, numbers,
and hyphens. The first and last characters cannot be hyphens. Every-
body prefers shorter names to longer ones (less typing).

DNS implementations, including the Unix Berkeley Internet Name Domain (BIND),
include the following components:

The resolver
A subroutine library used by commands and user programs (specifically, gethost-
byname and its relatives). We discussed resolver configuration in “Adding a New
Network Host” in Chapter 5.

The name server
On Unix systems, this is the daemon named. This server is configured via a collec-
tion of ASCII configuration files. (The daemon’s name is pronounced “name-D.”)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 8: Managing Network Services

Zones
Name servers provide name resolution services for a DNS zone. A zone is the name
given to the collection of hosts within a domain, excluding any subdomains. For
example, in Figure 8-1, the ahania.com zone consists of all the hosts within ahania.
com itself, but not those within any of its subdomains or their children. If each sub-
domain has its own authoritative name server (defined below), the ahania.com
domain would contain five (forward) zones: ahania.com, usa.ahania.com, asia.
ahania.com, admin.usa.ahania.com, and mktg.usa.ahania.com.

Some zone files hold records that map hostnames to IP address and are used for DNS
queries. Others define reverse lookup zones and are used to perform the opposite
query: mapping an IP address to a host name. Reverse lookup zones are assigned
names of the form c.b.a.in-addr.arpa where c, b, and a are the third, second, and first
components of local network address, respectively. For example, 10.168.192.in-addr.
arpa is the reverse lookup zone for the 192.168.10 subnet. The order of numbers
within the network address is reversed in the reverse lookup zone name. The first
component, c, is omitted when it is not used for the network part of IP addresses: e.g.,
1.10.in-addr.arpa is the reverse lookup zone for the 10.1 subnet.

Every forward zone has at least one corresponding reverse lookup zone. Thus, the
ahania.com domain in Figure 8-1 would also contain five reverse lookup zones
(although their names are not evident from the illustration). The figure does include
one reverse lookup zone for illustrative purposes.

Name Server Types
Name servers can operate in many different ways:

• They can perform recursive or nonrecursive searches in response to queries. Sup-
pose server tom has the answer to a query, but you ask server bill (who doesn’t
know the answer). In a recursive query, bill will ask tom for you and then return
the answer to you. In a nonrecursive query, bill will reply that he doesn’t know
and tell you to ask tom next. Most Unix clients expect name servers to perform
recursive queries, and this is their default mode.

• They can return authoritative or nonauthoritative answers to a query. Authorita-
tive answers are returned by servers that are designated as the holders of a spe-
cific set of data (see below). Nonauthoritative responses come from servers that
happen to know the required information as a result of a prior query. Name
servers generally retain information they have learned in their cache for a period
of time (after which it is discarded). The cache is also reinitialized every time the
server is restarted. In the BIND versions we are considering, negative query
responses are also cached, meaning the name server keeps track of names that it
could not resolve and does not try again until the data expires from the cache.
The cache timeout values are determined by the server that provided the origi-
nal information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 419

• Authoritative servers come in several varieties:

— Master name servers hold the official copy of the DNS data records for a
zone. This data is stored in configuration files. Previously, master name serv-
ers were called primary name servers, and you may also see the term pri-
mary master name server from time to time.

— Slave name servers, which are also authoritative with respect to the data for
their zone. These servers obtain the DNS data records from the zone’s mas-
ter servers. Slave name servers were formerly called secondary name servers.

— Stub name servers function like slave name servers, but limit their data to the
records corresponding systems that are to name servers.* In other words,
ordinary host records are excluded. These name servers are used to make it
easy to update the pointers in a parent zone when the name servers in one of
its subdomains change.

— Distribution name servers are name servers (usually slave or stub) whose
existence is not publicized beyond the local domain. For this reason, they
are sometimes called stealth name servers. These servers are not really invisi-
ble, however. Anyone who knows their IP address can send queries to them.

Stealth servers can also be created inadvertently when a subdomain’s parent
name server is not configured correctly. If the parent name server has the wrong
server listed as the subdomain’s name server, then the real name server for the
subdomain won’t be able to be found by anyone (since the parent zone’s name
server will give out the wrong address).

• Servers that hold no official DNS records for any zone are known as caching-only
name servers, referring to the fact that they retain all information that they learn
within their cache (at least for a time).

• Forwarders are name servers that have been designated as the target for queries
outside the local domain (i.e., off site queries). When a name server is config-
ured to use a forwarder, it always sends queries for hosts it doesn’t recognize to
the forwarder. If the forwarder cannot provide the answer, the name server will
then attempt to determine the answer itself by contacting other name servers
that it knows about.

If a name server is configured to rely completely on designated forwarders, it is
known as a forward-only name server. In this case, if the forwarder does not
return the answer, the query will simply fail.

The idea behind forwarders is two-fold: to channel most queries into a few des-
ignated servers and thereby reduce the load on the other DNS servers. Typically,
the requests that get forwarded are addresses beyond the local domain, so local
name resolution performance is never impacted by remote operations.

* Specifically, they hold only the SOA record, the NS records, and the A records corresponding to the hosts
listed in the NS records.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 8: Managing Network Services

The second advantage of forwarders is that over time they build up a cache with
a large amount of data from the remote queries. By having forwarders perform
all of these queries, all this data is in one place, and having all remote queries
check this server first allows them to take maximum advantage of the results of
previous queries (which increases the chances that a desired address will already
be known). Contrast this to the situation in which each DNS server performs
every query it receives; in this case, the results of previous queries for remote
sites will be scattered across the entire local network, and the chances that que-
ries will be unnecessarily repeated are much greater.

We will consider each of the various types of name servers in detail later in this
section.

About BIND
The first version of what was to become BIND was written in 1984, and many ver-
sions have been released in the years since then. Currently, BIND maintenance and
development is handled by the Internet Software Consortium, and you can obtain
the current source code from them (http://www.isc.org/products/BIND/). As of this
writing, the latest version is BIND 9.2.1 (released in May, 2002).

Unfortunately, at the moment, there are three major BIND versions in actual use:
BIND 4, BIND 8, and BIND 9 (which, despite the numbering, are consecutive major
releases). Vendors are very slow to upgrade their supplied versions of BIND, and
BIND security patches are released much more frequently than operating system
updates. Table 8-2 lists the versions of BIND shipped with our reference operating
systems. Shaded rows indicate releases with significant known security holes that
should be upgraded. Note that in some cases more recent versions are available for
download from the vendor web site.

Table 8-2. Recommended versus vendor-supplied BIND versions

Environment Version

ISC recommendations BIND 4: 4.9.8 (minimum level)

BIND 8: 8.2.5 (minimum level); 8.3.1 (current revision)

BIND 9: 9.2.1 (current revision)

AIX 5.1 4.9.3

FreeBSD 4.6 8.3.2

HP-UX 11 4.9.7

HP-UX 11i 9.2.0

Linux:Red Hat 7 9.1.3 or 9.2.0

SuSE 7 or 8 9.1.3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 421

You can determine the BIND version running on a system by checking the system
messages file produced by syslog (for the daemon facility) and also with the dig util-
ity (discussed later in this section). If no name server has been configured, you can
still find out what version your system includes by starting named manually; it gener-
ally starts, reports its version and other information, and then exits when it finds no
valid configuration files.

In many cases, the version of BIND shipped by a vendor was the latest available at
the time the operating system was released. Security problems with that version were
discovered after the release date. As the table indicates, several operating system ver-
sions of BIND should be updated from the delivered version (updates are sometimes
available at the vendor website).

In the case of AIX and HP-UX 11, the release is so old that I recommend replacing it
altogether, with BIND 9 if possible.*

Solaris 8 8.1.2

Solaris 9 8.2.4

Tru64 5.1 8.2.2-P5 plus security patches

Replacing Vendor-Supplied Software
Some system administrators are hesitant to make major substitutions to the software
provided with their systems. Vendors usually discourage you from replacing any part
of the operating system that they supply. In fact, they often will not support things if
you do so. This reason, along with simple common sense, means that replacing the
standard software with something else is not something that you should do lightly.

Nevertheless, there are times when doing so is the best choice, despite these consider-
ations: when the vendor-provided software has security problems, is missing impor-
tant features that your site needs, or fails to interoperate with related facilities on other
systems (it doesn’t “play nice”). In these cases, installing better software is the right
move. Even so, I install only fully released and tested software on production systems
(beta software goes only on my test systems).

Finally, prudence suggests that if you do decide to replace a package, be sure to save
all of the components of the original installed version in case you need to rollback.

* Some HP-UX versions are incompatible with vanilla BIND 9 and must use BIND 8; see the ISC web site for
details. However, you can download HP’s port of BIND 9 from http://www.software.hp.com/cgi-bin/
swdepot_parser.cgi/cgi/displayProductInfo.pl?productNumber=BIND9.2.

Table 8-2. Recommended versus vendor-supplied BIND versions (continued)

Environment Version

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 8: Managing Network Services

There are significant differences among BIND versions. Table 8-3 summarizes them;
most of the features themselves are discussed in the course of this section (although
DNS performance is covered in “Network Performance” in Chapter 15).

We will consider only BIND 8 and 9 in the remainder of our discussion, and the
appellation “BIND 8” will refer to BIND 8.2.0 and later versions. BIND 8–specific
items will be marked with a 8; BIND 9 with a 9.

Configuring named
The named server uses several configuration files. We’ll begin by looking at the full list
briefly and then go on to consider example configurations for several real-world sce-
narios. For more information about DNS and BIND, including full details about the
various configuration files, consult Paul Albitz and Cricket Liu’s excellent book,
DNS and BIND (O’Reilly & Associates).

DNS configuration files are prime examples of configuration files that
can benefit from a revision control system. These files are very impor-
tant and also have a somewhat obscure syntax. A revision control sys-
tem like CVS or RCS not only automatically tracks modifications to
these files but also makes it easy to revert to a working version should
one of the configuration files become messed up by typos or other
errors.

Table 8-4 lists the locations of BIND components on the various operating systems.

Table 8-3. Comparing important BIND versions

Feature BIND 4.9.3a

a Some features marked “no” were present in experimental form.

BIND 8.1.2
BIND 9.1.0
and later

Access control kludge yes yes

DNS Security Extensions no some yes

Dynamic updates no yes yes

Forwarding yes yes yes

Forward zones no nob

b Added in BIND 8.2.

yes

Incremental zone transfers no nob yes

IPv6 support no yes yes

Multiprocessing (threads) no no yes

Recursion can be disabled yes yes yes

Round robin load balancing yes yes yes

Update notifications no yes yes

Views no no yes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 423

The master configuration file: named.conf

The file /etc/named.conf is the main configuration file for named.* It specifies the type
of name server that will be run and all of its operating characteristics. Entries in this
file have the following general syntax:

keyword [argument] {
/* This is a comment */

item; // comment
item; # another comment
...

};

Table 8-4. BIND component locations

Component Locationa

a AIX and HP-UX are excluded from this table as they provide only BIND 4. In general, the current version of BIND 9 from the ISC is recom-
mended for these systems

named main configuration file Usual/ISC: /etc/named.conf
FreeBSD: /etc/namedb/named.conf

named executable Usual/ISC: /usr/sbin/named
Solaris: /usr/sbin/in.named
Tru64: /sbin/named

Directory provided for named files Usual/ISC: none
FreeBSD: /etc/namedb
Tru64: /etc/namedb

Default hints file name Usual/ISC: not specified
FreeBSD: named.root
Linux: root.hint

Boot script that starts named Usual/ISC: /etc/init.d/named
FreeBSD: /etc/rc.network
Solaris: /etc/init.d/inetsvc
Tru64: /sbin/init.d/named

Boot script configuration file:
named-related entries

ISC: none
FreeBSD: /etc/rc.conf and/or /etc/rc.conf.local: named_enable="YES”, named_

flags="named-args“
Red Hat: /etc/sysconfig/named: ROOTDIR=dir-for-chroot; OPTIONS="named-args“

(don’t use -t)
SuSE 7: /etc/rc.config: START_NAMED="yes“
Solaris: none used
Tru64: /etc/rc.config: BIND_CONF="YES”; BIND_SERVERARGS="named-args”; BIND_

SERVERTYPE="keyword“

* Under BIND 4, this file is /etc/named.boot and it is usually referred to as the boot file. The file also has a very
different syntax. Note in particular that semicolons no longer mark comments in the new version but instead
serve an essential syntactic role within entries.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 8: Managing Network Services

Note that the keyword section and each item within it must be terminated by a semi-
colon. As the example illustrates, there are three different valid comment styles. The
first, C-style format (/* comment */) can span multiple lines. In addition, statements
can continue onto multiple lines without any special demarcation because they are
always terminated by a semicolon.

Here is a simple version of the named.conf file which illustrates its basic features:

options { Set global options.
 directory "/var/named"; Directory for other configuration files.
 pid-file "/var/run/named"; Hold the PID of the named process.
};

zone "." { Defines zone for the root servers cache.
 type hint; Zone type.
 file "named.cache"; File that contains the data records.
};

zone "0.0.127.in-addr.arpa" { Reverse lookup zone for loopback address.
 type master; This is the master server for this zone.
 file "localhost.rev"; File that contains the data record.
 notify no; Don't notify slave servers of updates.
};

There are three statements within this file. The first one, options, sets global options
for this server. In this case, we specify the directory where the remaining configura-
tion files are located and a pathname for the file holding the PID of the named pro-
cess.

The remaining two statements define zones and their characteristics. The zone name
follows the keyword, and the type option in each statement indicates the sort of zone
it is. In this example, the first zone statement corresponds to the root domain, and its
type is the special type hint. Such zone entries are used to indicate the location of the
root hints file, which contains the addresses of the root zone name servers (dis-
cussed in the next subsection). Here, the file is specified as /var/named/named.cache.

The second zone statement defines a zone named 0.0.127.in-addr.arpa, for which
this host is the master name server. This zone is a reverse lookup zone. It is used to
map an IP address to a hostname. In this case, its data file will map 127.0.0.1 to
localhost. The data records for this zone are stored in the file /var/named/localhost.
rev. Zone files are discussed in detail later in this section.

Entries like these two will be present in every named.conf file. In fact, the version
shown is sufficient for configuring a caching-only name server.

Here are simple zone statements that define a master name server:

zone "ahania.com" {
 type master;
 file "ahania.com.db"; Zone file name.
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 425

zone "10.168.192.in-addr.arpa" {
 type master;
 file "192.168.10.rev"; Reverse zone file name.
};

These two statements are quite similar to the ones we’ve seen already. They desig-
nate this server as a master name server for the ahania.com and 10.168.192.in-addr.
arpa zones, the forward and reverse zones for the same set of hosts. The file option in
each statement specifies the location of the zone file holding the DNS data records
(relative to the default directory). Note that the full named.conf file will also contain
an options statement and zone statements for the root hints file and the loopback
reverse lookup zone like those we examined previously.

A slave server is equally easy to configure in its most basic form. It includes a zone
statement like these in addition to the options statement and root hints file and loop-
back reverse lookup zone definitions:

zone "ahania.com" {
 type slave;
 masters { 192.168.10.1; }; # maximum = 10 masters
 file "back/ahania.com.bak"; # make backup file easy to find
};
zone "10.168.192.in-addr.arpa" {
 type slave;
 masters { 192.168.10.1; };
 file "back/192.168.10.bak";
};

In these zone statements, the name server type is now slave. The masters statement
takes a list of master name server IP addresses from which this slave should obtain
the zone data. Multiple servers are contacted in the order in which they are listed,
until an answer is received.

If a file option is included, that file is used as a local backup file for the zone data. It
is updated every time the slave name server gets new data from a master name server
and is loaded when the server starts up. When this happens, the slave name server
simply checks to see whether the master name server has more recent data, down-
loading it only if necessary and thereby providing faster server startup.

A given name server can be a master server for more than one zone and can also be a
master server for some zones and a slave server for others.

Store up-to-date copies of the zone files on slave servers in a separate
directory. That way, it will be easy to promote a slave name server to a
master name server in a hurry.

Table 8-5 lists the most important statements and options that can appear in the
named configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 8: Managing Network Services

Table 8-5. Important named.conf statements and options

Statement and purpose

Basic syntax Meaning of option

options: define global options applying to all zones which do not override them.

options {
 [allow-query { list; };]
 [allow-transfer { list; };]
 [allow-notify { list; };]
 [also-notify { list; };]
 [blackhole { list; };]
 [directory "path";]
 [forward only|first;]
 [forwarders { list; };]
 [maintain-ixfr-base yes|no;]8
 [notify yes|no|explicit9;]
 [provide-ixfr yes|no;]9
 [pid-file "name";]
 [request-xfer yes|no;]
 [other-options]
};

Accept queries only from these servers.
Send zone transfers only to these servers.
Valid sources for update notifications.
Send update notices to all slaves plus these.
Completely ignore these hosts.
Default directory for relative pathnames.
Use forwarding exclusively/first.
Server to which to forward external queries.
Maintain data for incr. zone transfers.
Send update notices (explicit=only to list).
Send incremental zone transfers.
Path to file holding named process's PID.
Request incremental zone transfers.

zone: define a zone and its characteristics.

zone "name" {
 type keyword;
 [file "path";]
 [masters { list; };]
 [allow-query { list; };]
 [allow-transfer { list; };]
 [allow-update { list; };]
 [allow-update-forwarding { list; };]9
 [also-notify { list; };]
 [forward only|first;]
 [forwarders { list; };]
 [notify yes|no|explicit9;]
 [update-policy { rule-list; };]9
 [other-options]
};

Server type: master, slave, stub, forward, etc.
Pathname to zone file.
List of master name server.
Accept queries only from these servers.
Send zone transfers only to these servers.
Valid sources for dynamic updates.
Valid sources for updates to send to master.
Send update notices to all slaves plus these.
Use forwarding exclusively/first.
Server to which to forward external queries.
Send update notices (explicit=only to list).
Specify who can dynamically update what.
 Rules syntax:
 grant|deny who-key what where [types];

logging: specify logging behavior.

logging {
 channel name {
 syslog facility;
 [severity level;]
 | file "path";
 | null;
 };
 [channel ...]
 [category keywords { channel-list; };]
 [category default { channel-list; };]
};

Define log target.
Send messages to this syslog facility.
Specify syslog severity level.
Send messages to this file.
Discard messages.

Send specific types of log data to channel(s).
Send default message set to channel(s).

server: define how to communicate with a specific name server.

server ip-address {
 [provide-ixfr yes|no;]9
 [request-ixfr yes|no;]9
 [support-ixfr yes|no;]8
 [keys { key; };]
};

Provide IXFR to this server.
Request IXFR from this server.
This server supports incr. zone transfers.
Specify TSIG key to use with this server.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 427

We will see examples of most of these statements when we consider the various
BIND features. Before we do that, however, we will complete the BIND big picture
by looking at the other configuration files.

The root hints file

In addition to any data records for the zones they serve, all name servers also need to
have information about the DNS root domain to resolve hostnames beyond the local
domain (because a query for a remote site may need to be forwarded there). As we
saw, the named.conf file contains a zone definition for the root zone having zone type
hints. The file specified in this statement is known as the root hints file. It contains
the IP addresses of the name servers for the root domain. You can select any name
you like for this file. Commonly used names are named.root, db.cache and root.hint.

The root hints file has the same form and contents on every DNS name server (at
least it should). You can obtain the standard file by retrieving the file /domain/named.
root from ftp.rs.internic.net using anonymous FTP.

Here is part of the current version of the file, with additional annotations:

; Name server definitions
;Zone TTL Class Type Host
. 3600000 IN NS A.ROOT-SERVERS.NET.

acl: define an IP address match list.

acl "name" {
 [!] match-string; ... [!] match-string;
};

Each match string can be an IP or network
address or the name of another address list.
! = do not match.

key: defines a key (shared secret security).

key "name" {
 algorithm hmac-md5;
 secret "encoded-key";
};

This is the only supported algorithm.
Encode the key using dnskeygen8 or
 dnssec-keygen9.

view: defines a BIND 9 view.

view "name" {9
 match-clients { list; };
 zone "zone-name" { ... };
 [zone ...]
 [other-options]
};

Hosts that access zone through this view.
Zone(s) as defined in this view.
Other options to apply to this view.

controls: specifies ndc/rndc server access.

controls {9
inet addr allow { hosts; } keys { keys; };

};

Allow listed hosts to manage this name server with
 rndc via specified address (port is optional), using
 cryptographic keys.

include: inserts the contents of an external file.

include "path"; BIND's include file mechanism.

Table 8-5. Important named.conf statements and options (continued)

Statement and purpose

Basic syntax Meaning of option

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 8: Managing Network Services

. 3600000 IN NS B.ROOT-SERVERS.NET.
;
; Map the hostnames to IP addresses
;Host TTL Class Type IP Address
A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4
B.ROOT-SERVERS.NET. 3600000 IN A 128.9.0.107

This excerpt defines two name servers for the root zone in its first two entries on
lines 3 and 4, after the comments (which are indicated by semicolons). The fields in
these two entries hold the zone name, the cache lifetime (time-to-live, or TTL) for
this record on remote servers (in seconds), the class (virtually always set to IN for
Internet), the record type (here, NS for name server), and the name server hostname.

The final two lines of the file specify the IP addresses corresponding to these name
servers. These fields in these entries hold the hostname, the cache TTL, the class, the
record type (A for address), and finally the IP address assigned to this host.

The format of the records in this file are the same as those for any DNS zone file. We
will discuss their format in detail in the next section. The records in the root hints
file are loaded into the name server when it starts, and the file is not consulted there-
after. You will need to obtain the current version of this file from time to time (a few
times a year).

Zone files

Zone files hold the actual DNS data records for master name servers. This data is
loaded when the server starts up. Entries within a zone file are known as DNS
resource records, and they have the following general syntax:

entity-name [ttl] IN record-type data

entity-name is the item that is being defined or specified, ttl is an optional time-to-
live value (cache lifetime in seconds), IN is the class (Internet), record-type is a code
string indicating the kind of record this is, and data is the value, mapping, or other
data being associated with this entity.

Table 8-6 lists the most important types of DNS resource records, along with their
basic zone file syntax. We’ve omitted the optional TTL field in the table.

Table 8-6. Important DNS resource record types

Type and Purpose Basic Syntax

SOA: Start of authority record, specifying
basic parameters for this zone

time syntax: n[s|m|h|d|w]

@ IN SOA hostname admin (
s ; serial number (32-bit)
time ; slave update check interval
time ; failed update retry interval
time ; discard timeout if master is down
time ; TTL for negative replies9 or cached data8

)

NS: Name server definition zone IN NS server-hostname

A: Hostname-to-IP address mapping hostname IN A IP-address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 429

There are also a few directives which may be used in a zone file:

$TTL time Default TTL for cached address mappings.
$ORIGIN domain Specify/change default domain context.
$GENERATE range record-template Automatically generate resource records.
$INCLUDE path Insert external file's contents.

An initial $TTL directive is required by BIND 9. Its argument is a time period
expressed either as a plain number (interpreted as seconds) or as a number followed
by a units code letter: s (seconds), m (minutes), h (hours), d (days), or w (weeks).
These same code letters can be used in the TTL field of other resource records and
within the appropriate start of authority record fields.

We’ll now examine excerpts from a forward zone file, which illustrate many of these
resource types. Here is the beginning of the file:

$TTL 24h Lifetime for cached mappings.
@ SOA IN ns.ahania.com. chavez.dalton.ahania.com. (
 200204010 ; serial Indicates the zone file version.
 5h ; refresh (5 hrs) Slaves check for updates this often.
 1200 ; retry (20 mins) Retry a failed update after this long.
 4w ; expire (28 days) Discard zone data if master down this long.
 3600 ; minimum (1 hour) Cache lifetime for negative answers.
)

The zone file begins with a $TTL directive setting the default timeout period for
cached mappings to two hours.

Next comes the SOA record. This one continues over several lines, indicated by the
parentheses. The first line specifies the zone (the @ symbol is shorthand for the zone
specified in the corresponding zone statement in named.conf), record type and class
(SOA and IN), the zone’s master name server (usually the current host), and the
administrative contact’s email address. The zone statement referencing this file
defines the ahania.com zone.

Notice that the latter two fields use a variant of the normal syntax. First, both end
with a dot. In DNS resource records, absolute host and domain names end with a
dot (which represents the root domain). Names not ending with a dot are assumed
to be relative to the current zone. Leaving off a dot when it is needed is the most
common error made by beginners, and doing so will cause queries for these names to
fail. Secondly, the @ sign usually present in an email address is replaced by a period.

CNAME: Host alias definition alias IN CNAME hostname

MX: Designate a mail server for a host hostname IN MX priority mail-server

PTR: IP address-to-hostname mapping host-part-of-address IN PTR hostname

SRV: Advertise an available service _service._proto.domain IN SRV priority weight port host

AAAA: IPv6 hostname-to-address mapping hostname IN AAAA IPv6-address

Table 8-6. Important DNS resource record types (continued)

Type and Purpose Basic Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 8: Managing Network Services

The remaining fields in the SOA record specify various timeout periods. Most of
them apply to slave servers for this zone. Their meanings are described in the annota-
tions. However, a few additional points are in order:

• The serial number field should be incremented each time the zone file is modi-
fied. It is used by slave servers to determine whether their data is current. Serial
numbers need not be consecutive but must always increase. (This is an unsigned
32-bit value.)

A common practice is to use serial numbers of the form yyyymmddn (e.g.,
200210243). This allows for up to 10 changes per day, and you can use two n
digits if you need more than that (and you have my sympathy).

• The final field has different meanings in BIND 8 and BIND 9. In the former, it
sets the default record TTL value for both positive and negative query responses.
In version 8.2 and higher, it sets only the latter. The default TTL value is set with
$TTL in those versions.

• Timeout period recommendations:

— Refresh periods are generally a few hours, but a shorter or longer period may
be appropriate, depending on the volatility of your site (I decrease this value
to two hours if DHCP is also used).

— The data expiration period is typically set to one or two weeks.

— One to three hours is a good range for the negative query cache lifetime (the
latter is the maximum). Positive cache lifetimes tend to be longer; I use one
day on my systems.

— The best retry interval is highly dependent on what tends to cause server
outages and how long they tend to last. I chose the value of 20 minutes
because that’s a good value when a system has crashed due to a power out-
age caused by an electrical storm, my prime nemesis when it comes to sys-
tem uptime.

Here is the next section of the file:

; Define name servers for this zone.
ahania.com. IN NS ns.ahania.com.
ahania.com. IN NS lyta.ahania.com.

; Specify some name-to-IP address mappings.
ns.ahania.com. IN A 192.168.10.1
lyta.ahania.com. IN A 192.168.10.10
talia IN A 192.168.10.12

The first two records define authoritative name servers for the specified zone, ahania.
com. The records do not distinguish between master and slave servers; that is done in
named.conf. Generally, all authoritative name servers for the current zone and all of
its subdomains (child zones) are included in the zone file. We’ll see examples of the
latter further on in this section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 431

The second section in the preceding zone file excerpt defines three hostname-to-IP
address mappings for hosts in this zone. The third entry, for host talia, illustrates the
use of a relative hostname (without a final dot).

The following records illustrate some zone file shortcut features, as well as several
other record types:

; Some records for host susan.
susan.ahania.com. IN A 192.168.10.11
 IN MX 10 susan.ahania.com.
www.ahania.com IN CNAME susan.ahania.com.

; Advertise the FTP service.
_ftp._tcp.ahania.com. IN SRV 10 0 21 lyta.ahania.com.
_finger._tcp.ahania.com. IN SRV 0 0 79 . ; none available

The first three records all apply to host susan. Because the first field in each of the
first two lines is the same, it can be omitted from the second one. The first record is
an A record that specifies susan’s IP address.

The second record for host susan is an MX (“mail exchanger”) record. This type of
record specifies the host to which mail addressed to anyone@susan.ahania.com
should be delivered. In this case, it is host susan itself. MX records are discussed in
detail in “About Electronic Mail” in Chapter 9.

The third line holds a CNAME record that defines an alternate name for host susan
(more precisely, it maps an alias to the host’s canonical name). It defines www.
ahania.com as an alias for susan.ahania.com, and queries for the alias will return the
IP address that is associated with susan.

The final two records in the preceding example are SRV (“server selection”) records.
This record type is used to advertise the availability of a specific network service
within a specified domain.* These records are just beginning to be used in the Unix
world, but Windows 2000 and its successors make extensive use of them. The first
field in the record holds the encoded service specification (_service._tcp-or-udp.
domain), and the final four fields hold the server’s priority (used to select among
multiple available servers), weighting value (used to perform primitive load balanc-
ing among servers of equal priority), the port number, and the host offering the ser-
vice. SRV records are described in detail in DNS and BIND.

The first SRV record indicates that lyta offers the FTP service for the ahania.com
domain, using the standard FTP port (21/tcp). The second SRV record uses a dot as
the server host name, and it will result in negative responses to general DNS queries
attempting to locate a finger service in this domain. Service names are those defined
in /etc/services, and the protocol is always _tcp or _udp.

* Previously, advertising such services relied on defining generic hostnames like ftp.ahania.com.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 8: Managing Network Services

Common Mistakes

Beginning DNS administrators often make these two mistakes: forget-
ting to update the serial number after editing a zone file and forgetting
to include final periods when specifying absolute host names. The first
mistake results in secondary servers not being updated when they
should be, and the second mistake results in the definition of names
like something.ahania.com.ahania.com.

Reverse zone files and PTR records. Reverse zone files are very similar to the zone files
we’ve just looked at. For example, here is a file that can be used for the 0.0.127.in-
addr.arpa zone hosted by every name server:

$TTL 4w
@ IN SOA ns.ahania.com. chavez.dalton.ahania.com. (
 ...Usual items.
)

1 IN PTR localhost.

Following the SOA record, this file’s sole record maps the host address 1 to the host-
name localhost. The host address is added to the network address specified in the
zone name, so this PTR (“pointer”) record maps 127.0.0.1 to localhost.

Here are the PTR records corresponding to the hosts in the preceding forward zone
file for ahania.com:

1 IN PTR ns.ahania.com.
10 IN PTR lyta.ahania.com.
11 IN PTR susan.ahania.com.
12 IN PTR talia.ahania.com.

These records would be found in the zone file for the 10.168.192.in-addr.arpa
reverse lookup zone. All of the hostnames are specified in absolute form since the
default zone context is the reverse lookup zone (and not the corresponding forward
zone).

You can include multiple subnets in the same reverse zone file if appropriate. For
example, these records come from the file 168.192.in-addr.arpa:

1.10 IN PTR ns.ahania.com.
10.10 IN PTR lyta.ahania.com.
11.10 IN PTR susan.ahania.com.
12.10 IN PTR talia.ahania.com.
1.20 IN PTR moonlight.ahania.com.
2.20 IN PTR starlight.ahania.com.

This file contains PTR records for hosts on the 192.168.10 and 192.168.20 subnets.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 433

IPv6 zone file resource records. The normal A records do not support IPv6 addresses, so
an additional resource record type has been defined: AAAA.* Here is an example:

six.ahania.com. IN AAAA 4321:0:1:2:3:4:567:89ab

An additional reverse mapping space has been defined for these addresses: ip6.int,
and it is specified in PTR records for such hosts. Here is the pointer record for the
preceding example (wrapped):

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.ip6.int. IN PTR six.
ahania.com.

Note that all zeros must be included in the reverse address.

Common mistakes to avoid

Here are some mistakes that are commonly made by new DNS administrators that
you can avoid:

• Life, and administering DNS, is much easier if you limit hostnames to alphanu-
meric characters.

• Systems listed in NS records must always use the hosts’ actual, fully qualified
domain names. Never use a CNAME alias in this context.

• The same point applies to MX records: specify only real, fully qualified domain
names as the target hosts.

• Email delivery problems are often caused by improper or missing PTR records
for name servers or MX hosts. Be sure that these records exist and that they are
correct.

• Do not use wildcards in MX records.

Using subdomains

Defining subdomains is only a bit more complicated than the configuration for sin-
gle-level domains. Here are the steps for doing so:

• Decide on the subdomain strategy and divisions and assign responsibility to the
appropriate administrator(s).

• Create the named.conf file and the forward and reverse zone files for the master
name servers for the new subdomain.

• Delegate the authority for the new subdomain via NS statements within the par-
ent zone.

* Another scheme, using A6 and DNAME resource record types, is also implemented in BIND 9. For a long
time, the two schemes competed, and A6 seem likely to win. However, in mid-2002, the proposed standard
using them was reclassified to experimental status. As of this writing, the AAAA-based scheme remains a
proposed standard. See http://www.ietf.org/internet-drafts/draft-ietf-dnsext-ipv6-addresses-02.txt for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 8: Managing Network Services

For example, these resource records define the asia.ahania.com subdomain when
they appear in the zone file for ahania.com:

; asia subdomain
asia.ahania.com. IN NS ns.asia.ahania.com.
 IN NS test.asia.ahania.com.
 IN NS atlas.zoas.org.

; glue records
ns.asia.ahania.com. IN A 192.168.24.10
test.asia.ahania.com. IN A 192.168.24.24

The first three records define name servers for the asia.ahania.com subdomain,
thereby delegating authority for these zones to them. The other two records in the
file are normal A records defining the IP addresses of these name servers. These are
referred to as glue records since they provide the data necessary for the locating the
subdomain’s name server. Without them, the parent zone’s name server would have,
for example, no way to resolve the hostname ns.asia.ahania.com (it’s a chicken and
egg problem) and so would not be able to refer or follow queries into the subdo-
main. Nevertheless, the records are really foreign to the parent zone file. Note that
no glue record is needed for the third name server, atlas.zoas.org, since its IP address
can be determined with a normal DNS query.

Delegating the corresponding reverse lookup zone is simple if the new zone is a dis-
tinct subnet and the parent zone is situated one level above it in the hierarchy. In this
case, the new zone corresponds to the 192.168.24 subnet. If the ahania.com name
servers also handle the 168.192.in-addr.arpa zone, records like these delegate the 24.
168.192.in-addr.arpa zone to the same name servers as for asia.ahania.com:

; 24.168.192.in-addr.arpa subdomain
24 IN NS ns.asia.ahania.com.
24 IN NS test.asia.ahania.com.

Note that glue records are not needed here, since the name server IP addresses can be
determined with an ordinary DNS query.

Reverse zone files with arbitrary subnetting. Standard DNS reverse zone files and PTR
records assume that the network-host address separation falls on a byte boundary. If
this is not the case, there is a technique to work around this limitation known as the
“CNAME hack” (although it has since become official in RFC 2317). It involves cre-
ating a series of CNAME records for each numeric host ID along with NS records for
the name servers that hold the actual PTR records for each subnet.

For example, suppose our network is 192.168.88.0/27. We have 8 subnets of 30
hosts each. If we want to delegate the PTR records for each subnet to their own
name server, we use resource records like these:

Zone file for the 192.168.88 domain
$ORIGIN 88.168.192.in-addr.arpa. Set default domain: append to relative names.
1 IN CNAME 1.sub0 1.sub0 is an alias for 1.88.168.192.in-addr.arpa
2 IN CNAME 2.sub0
...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 435

30 IN CNAME 30.sub0
33 IN CNAME 33.sub1
...

sub0 IN NS ns.zoas.org. Name servers for the first two subnets.
sub1 IN NS ns2.essadm.com.

Reverse zone file for sub0.88.168.192.in-addr.arpa (on ns.zoas.org)
1 IN PTR spring.zoas.org.
2 IN PTR charles.zoas.org.
...
30 IN PTR helen.zoas.org.

Reverse zone file for sub1.88.168.192.in-addr.arpa (on ns2.essadm.com)
33 IN PTR monica.essadm.com.
...

What happens when the domain’s name server receives a translation request for 192.
168.88.2? This is a request for the PTR record corresponding to 2.88.168.192.in-
addr.arpa. The name server recognizes that name and returns the target of the
CNAME record, here 2.sub0.88.168.192.in-addr.arpa, as well as the address of the
name server for the corresponding reverse zone, ns.zoas.org (we’ve listed only one,
but real files would have at least two per subnet). In this way, a query for an IP
address translation is redirected by the CNAME records to the proper name server
for the corresponding subnet. When that server is contacted, it can reply with the
actual hostname from the PTR record for 192.168.88.2: spring.zoas.org.

The effect of this strategy is to insert an additional pseudo-component into the zone
structure that can vary by subnet. Here, we’ve used sub0, sub1, and so on. In this
case, each subnet is actually a different site (as might be common at an ISP).

In actual practice, the subnet component is named after the numeric range of the
host part of IP addresses within the subnet. In other words, sub0 would be 0–31,
sub1 would be 32–63, and so on. In the same way, the resource records applying to
host 2 would be:

$ORIGIN 88.168.192.in-addr.arpa.
2 IN CNAME 2.0-31
2.0-31.88.168.192.in-addr.arpa. IN NS ns.zoas.org.

As illustrated in the NS record, absolute names are often used in the resource records
as well. These sort of names are more descriptive for experienced administrators, but
I think the technique is harder to grasp when first presented with names that are this
hard to parse.

This technique can produce a very long and tedious zone file. The $GENERATE
directive can be used to create the required records quickly, in a single operation. For
example, these directives create all of the CNAME records required for the first two
subnets in the previous example:

$ORIGIN 88.168.192.in-addr.arpa.
$GENERATE 1-30 $ IN CNAME $.0-31

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 8: Managing Network Services

$GENERATE 33-62 $ IN CNAME $.33-63
0-31 IN NS ns.zoas.org.
32-63 IN NS ns2.essadm.com.

The dollar sign within the $GENERATE directive’s record template is replaced by
each number in the specified range in turn, causing each such directive to create 32
CNAME records.

See DNS and BIND for full details on this topic.

Forwarders

So far, we have ignored the nitty gritty details of how DNS queries are performed,
but we can do so no longer. When a hostname needs to be resolved to an IP address,
a local name server is consulted first. If the local name server does not know its
address or the address of a name server in the corresponding domain, the name
server consults one of the servers in the root zone. The name server asks the root
name server for the address of a name server in the appropriate TLD and then gradu-
ally works its way down the domain hierarchy until it arrives at the target domain
and obtains the desired IP address.

For example, when trying to resolve ns.asia.ahania.com from, say, four.zoas.org, the
latter host first contacts a local name server. That server may not recognize the tar-
get host or even any part of the domain list within the name, so it contacts one of the
root name servers. In this case, the local name server may not know asia.ahania.com
or ahania.com or even .com, so it has to ask a root name server for help. The root
name server provides the local name server with a referral to a name server for .com.
Things continue in this way, moving down to ahania.com and then finally to asia.
ahania.com, where the desired address is obtained.

When you consider a large, very active site with many connections to foreign sites, it
becomes clear that having every name server resolve such hostnames is not the most
efficient strategy. For example, clients in two separate subdomains attempting to
connect to the same foreign site would both cause their name server to do all the
work of resolving the hostname.

Forwarding provides a ways of channeling external name resolution queries through
a few designated servers. Doing so has several benefits:

• Identical queries are not repeated during the record’s cache lifetime.

• Information gained from one query can be used in others. For example, finding a
name server for .com needs to be done only once.

• All of the external hostname information can be collected into one or a few loca-
tions, making it easily accessible to everyone at the site.

• The load placed on local name servers by queries for remote sites is minimized.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 437

Forwarders are designated by having other name servers point to them rather than
via any configuration options on the server itself. For example, the following options
configure the server to use designated forwarders for all zones:

options
 forwarders { 192.168.10.50; 192.168.24.6; };
 forward first;
};

The forwarders option specifies a list of name servers to consult for all external que-
ries that cannot be resolved from its cached translation data. In this example, two
name servers are listed. The forward option takes a keyword as its argument. The
keyword first says that forwarders should be consulted for appropriate external que-
ries (in the order they are listed), but if none of them succeed in resolving the host-
name, then the server will attempt to resolve it itself (this is the default). The other
possible keyword, only, suppresses the server’s own name resolution attempt should
all of the forwarders fail.

These options may also be specified within a zone statement to limit forwarding to
that zone, to define a different forwarders list for that zone, or to specify different
forwarding behavior in that zone. In this case, the zone type is usually set to forward:

zone "forward.ahania.com" {
 type forward;
 forward only;
 forwarders { 192.168.10.50; 192.168.24.6; };
};

Not everyone agrees that using forwarders is always the way to go. One of the book’s
technical reviewers explains the alternate viewpoint:

While forwarders do have their place, I personally feel it is much better to limit the
number of name servers per physical site. We have two caching-only name servers that
service about 90% of our 45K host network. We get really good cache performance
because everyone uses them. Giving each network their own name server would just
be a waste of resources.

The one good reason to have forwarders or more caching-only servers is if you have
two different physical sites, each with their own ISP link. You don’t want to make the
usability of one site’s link dependent on the other.

Slave name server notifications

As I’ve already mentioned, slave servers check whether their data needs to be
updated whenever they start up. In addition, by default, masters also notify all slave
servers they know about whenever the zone data changes, either because the zone
file has been edited or due to dynamic updates to its data from DHCP (discussed
below). When they receive such DNS notification messages, slave servers compare
the master server’s serial number with the version they have, retrieving the updated
data when appropriate.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 8: Managing Network Services

Notification is enabled by default, but it can be disabled with the following option to
either the options or zone statement:

notify no; The default is yes.

BIND 9 adds a third keyword: explicit. This keyword allows you to limit update
notifications to the list of name servers specified in the options statement’s allow-
notify option. For example:

options {
 notify explicit;
 allow-notify { 192.168.10.1; 192.168.20.2; ...; };
};

Finally, you can specify additional slave name servers that should be notified of
changes with the also-notify substatement, which can be used with either the options
or zone statement. This option is needed when there is a slave name server that
needs updates but is not listed in an NS record in the zone file, e.g., a slave name
server that is only accessible from within the site but needs to receive updates from a
name server providing external name resolution of internal names.

Dynamic updates

Using DHCP for client address assignment greatly complicates the original DNS
scheme. Traditional servers do not expect hostname mappings to change very often,
so the static data files used by traditional DNS are a storage mechanism that works
fine. However, when IP addresses are changing on a frequent basis, manual mainte-
nance of DNS records becomes impractical.

BIND can be configured to accept dynamic updates: hostname and IP address pair-
ings from DHCP servers as they are assigned. Such updates can add, remove, and/or
modify DNS records. Dynamic updates must be sent to an authoritative name server
for the zone. Slave name servers that receive them forward them to the master name
server (which has the only modifiable copy of the zone data).

In practice, dynamic updates generally only work when the DHCP
server and DNS server are from the same implementation.

Dynamic updates are enabled on a per-zone basis, via the allow-update option to the
zone statement. For example, the following statement enables dynamic updates for
the dhcp.ahania.com zone:

zone "dhcp.ahania.com" {
 type master;
 file "dhcp.ahania.com.db";
 allow-update { 192.168.33.3; 192.168.33.5; };
};

In this case, dynamic updates will be accepted only from the two listed servers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 439

You should never add records to a zone that accepts dynamic updates
by editing the zone file. Manual and dynamic updates do not mix eas-
ily. For this reason, many sites isolate all of their DHCP clients into
one or more separate zones.

The allow-update-forwarding option in BIND 9 can be used to specify a list of serv-
ers from which a slave name server will forward dynamic updates to the master name
server:

zone "dhcp.ahania.com" {
 type slave;
 masters { 192.168.33.62; };
 file "back/ahania.com.bak";
 allow update-forwarding { 192.168.33.32/27; };
};

As you can see, its syntax is very similar to allow-update. In this case, updates from
any system on the specified subnet are allowed.

BIND 9 also provides the update-policy option as an alternative to allow-update. It
takes a much more complex dynamic access specification as its argument, consisting
of one or more access rules have this general form:

grant|deny who-key what where [record-types];

who specifies the source of the update via the key name for that entity (keys are dis-
cussed in a later subsection). This forces all dynamic updates to be cryptographically
signed.

What is a keyword indicating the subset of the next argument to which updates may
be made, where is the domain or subdomain to be updated, and record-type is a list
of resource record keyword for the kinds of records to which the rule applies.

The possible values of what are:

name
The update must be to the domain in the where field.

subdomain
The update must be to a subdomain of the domain in the where field (within the
same zone). In other words, the name to be updated must end in where.

wildcard
The domain to be updated must match the wildcard string in the where field.

self
The update must apply to the entity specified in the who field itself. In this case,
where must still be specified, but it is not used.

Here are some examples:

Allow ns.dhcp.ahania.com to modify domain records via signed updates
grant ns.dhcp.ahania.com. name ns.dhcp.ahania.com.;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 8: Managing Network Services

Allow subdomain clients to update only their own address records
grant *.dhcp.ahania.com. self dhcp.ahania.com. A;

Allow only ns.win2k.ahania.com to modify SRV records in its zone
grant ns.win2k.ahania.com. subdomain _udp.win2k.ahania.com. SRV;
grant ns.win2k.ahania.com. subdomain _tcp.win2k.ahania.com. SRV;
deny *.win2k.ahania.com. wildcard *.win2k.ahania.com. SRV;

The rule list is specified as the argument to update-policy:

zone "dhcp.ahania.com" {
 type master;
 file "dhcp.ahania.com.db";
 update-policy {
 grant *.dhcp.ahania.com. self dhcp.ahania.com. A;
 };
};

Note that ordering is important within rule lists, because the first matching rule is
used, even when a later rule would be a closer (more explicit) match. As usual, more
specific rules generally precede ones that apply more widely.

See DNS and BIND for more sophisticated examples of this option.

Incremental zone transfers

When a master name server sends the zone data to a slave name server, the process is
known as a zone transfer. By default, the entire zone contents are transmitted. How-
ever, in some circumstances, the master name server can send only those records that
have changed since the last update, via an incremental zone transfer. These two types
are also known as AXFR and IXFR, respectively (after the query type that is used).

Incremental zone transfers are incompatible with manual editing of
the zone file, so they should only be used for dynamically updated
zones.

Incremental zone transfers are enabled in the named.conf file, via the options and/or
server statements. The latter statement is used to specify how the local server should
communicate with specific other name servers. Here are example statements for
enabling incremental zone transfers:

BIND 8
options {
 maintain-ixfr-base yes;
 ...
};

server 192.168.33.62 {
 support-ixfr yes;
};

BIND 9

No global options required.

server 192.168.33.62 {
 provide-ixfr yes;
 request-ixfr yes;
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 441

Under BIND 8, the maintain-ixfr-base option tells the name server to maintain a
transaction log from which incremental transfer data can be drawn. The server state-
ment means that IXFR will be used when communicating with the specific server sys-
tem.

Under BIND 9, incremental zone transfers are enabled by default for all zones that
are configured for dynamic updates (and the transaction-based data is always main-
tained). The two options within the server statement indicate whether the local
server will provide or accept incremental zone transfers to the specific system, as
appropriate. The provide-ixfr option applies only when communicating with slave
name servers, and request-ixfr applies only when communicating with a master
name server.

In practice, these options are often used to disable IXFR (with an argument of no),
since the default is to use incremental zone transfers. They are also used to identify
servers that do and don’t support IXFR within a network with name servers using
different DNS versions and hence with differing capabilities.

Access control

As we’ve seen, many BIND statements take a list of addresses as their argument. So
far, we have provided only literal lists of IP addresses. There is another possibility,
however. The acl statement* is used to define an address match list. Here is an exam-
ple:

Define a list of our name servers.
acl "servers" { 10.1.10.50; 10.1.20.1; 10.1.30.200; };
Define another list.
acl "sample" { List name is "sample."
 10.1.10.1; IP address.
 ! 10.1.20.200; ! means NOT: exclude this IP address.
 10.1.20/24; Specifies a subnet.
 servers; Include another address match list.
};

As usual, ordering with an address match list is important, because the first match is
used (this matters when you are combining positive and negative matches). Note
that the exclamation point negation character applies only to the item that it pre-
cedes (i.e., it does not “stick”). Address match lists must be defined before they are
used. In general, address match lists may be used anywhere that a list of hosts is
expected.

BIND provides four predefined address match lists: none (matches nothing), all
(matches any IP address), localhost (matches any IP address assigned to the local sys-
tem), and localnets (matches all subnets to which the local system has an interface
attached).

* Despite its name, this statement does not define a true access control list, but merely a list of IP addresses
and patterns to match that can be used in other security-related statements.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 8: Managing Network Services

Here are some example uses of address match lists:

acl "extern" { 192.168.1.100; 192.168.20.200; };
acl "hidden" { 192.168.50.25; 192.168.50.26; };
acl "testers" { 10.20.30.100; 10.20.30.101; };

options {
 directory "/var/named";
 forwarders { extern; };
 also-notify { hidden; 192.168.51.77; };
 allow-query { localnets; };

...
};

zone "experiment.zoas.org." {
 type master;
 file "exper.zoas.org";
 allow-query { testers; };
};

Various items in the options statement use address match lists to specify the list of for-
warders, most of the list of additional servers that should be sent zone file data modifi-
cation notifications, and the list of hosts that are allowed to query this name server. In
addition, an address match list is used to limit the hosts allowed to query this name
server for the zone experiment.zoas.org to the two specified in the testers list.

The allow-query option is one of several that enable you to restrict various types of
access to the data on a name server. The complete list is given in Table 8-7. These
options may appear in either the options statement or a zone statement.

While address match lists provide ways to limit access to data records, they are not a
foolproof mechanism. For example, the source of queries or requests could be imper-
sonated by a bad guy. Cryptographic techniques for securing and authenticating
communications are needed for a truly secure DNS environment. The next section
will consider the various available options.

Table 8-7. DNS server access control options

Option Description

allow-query Meaning: Allow only these hosts to query this name server.

Result: Data is not revealed to unauthorized outsiders.

allow-transfer Meaning: Allow only these hosts to request zone transfers.

Result: Prevents unauthorized zone transfers.

allow-update Meaning: Accept dynamic updates only from these hosts.

Result: Prevents unauthorized modifications to zone data.

blackhole Meaning: List of hosts to ignore completely.

Result: Refuses interaction with unwanted partners.

bogus Meaning: List of hosts that should never be queried.

Result: Prevents invalid/malicious data within your cache.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 443

Securing DNS communications

Both BIND 8 and 9 can be configured to use transaction signatures for communicat-
ing between pairs of name servers. This mechanism, known as TSIG, uses a symmet-
ric encryption scheme (the same key is used to encrypt and decrypt a message) for
signing server-to-server queries and responses. In this way, messages purportedly
from a specific server can be verified as originating from that server. Note that this
scheme simply signs the messages; the transmitted data is not encrypted (because it
is not secret). See “Protecting Files and the Filesystem” in Chapter 7 for a detailed
discussion of signing and encryption.

You set up name servers to use TSIG via these steps:

• Create a key using a utility provided with BIND on one system.

• Send the key to the other system in some secure way (e.g., via a telephone call,
using an sshssh-based copy operation, etc.).

• Define the key with key statements and specify it for use in server and zone state-
ments within the two named.conf files. Note that the key must be given the same
name on both systems (as well as having the same value).

• Restart both name servers. Subsequent communications between them will then
be signed.

Here are the commands for creating a key:

dnskeygen -H 128 -h -n apricot-mango.ahania.com. BIND 8
dnssec-keygen -a HMAC-MD5 -b 128 -n HOST \ BIND 9
 apricot-mango.ahania.com.
Kapricot-mango.ahania.com.+157+52961

Each command creates the specified key as 128 bits long, type HOST, using the
HMAC-MD5 algorithm. Conventionally, key names resemble domain names, with
the pair of systems to which they apply specified as the first component (here, apri-
cot and mango).

The commands create two files beginning with the name displayed in the output,
one with the extension .key and the other with the extension .private. The filename is
of the form Kkey-name+algorithm+fingerprint, where algorithm is the algorithm
number, and fingerprint is a hash value computed from the key used to identify it
(functioning like an instance number).

The actual key is included in both files. For example:

cat Kapricot-mango.ahania.com.+157+52961.private
Private-key-format: v1.2
Algorithm: 157 (HMAC)
Key: QiL+oT+iV9EHxhbYRcdG8g== This is the string you want.

The key must now be transmitted to the other system in some secure way (i.e., other
than via a clear network transmission).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 8: Managing Network Services

Once the files are present on both systems, the servers can be configured to use TSIG
communications. Here are some example statements from named.conf on the slave
name server mango that make use of this key:

include "keys.list"; Keys are stored in a separate, non-readable file.

zone paranoia.ahania.com. {
 type slave;
 masters { 192.168.10.214; ... };
};

server 192.168.10.214 { # apricot
 keys { "apricot-mango.ahania.com." };
};

The first statement includes the contents of another file within this configuration file,
and the second statement defines a zone. The final statement specifies that zone
transfer requests to 192.168.10.214 will be signed with the specified key.

The actual key statement is within the included file (which is also protected from
non-owner access):

keys.list
key "apricot-mango.ahania.com." {
 algorithm hmac-md5;
 secret "encoded=string=goes=here";
};

On the master name server apricot, the key is used in the zone statement to require
that zone transfer requests be signed with that key in order to be honored:

include "keys.list"; Same file as on mango.

server 192.168.10.100 { # mango
 keys { apricot-mango.ahania.com.; };
};

zone paranoia.ahania.com. {
 type master;
 file "paranoia.ahania.com";
 allow-transfer { key apricot-mango.ahania.com.; };
};

The key name construct replaces the address list in the allow-transfer option. Keys
may also be specified in the same way within the allow-update and update-policy
options in the zone statement.

Although these strings are referred to as keys and as encoded, all they
really are is 128-bit strings of random bits, expressed in base 64. 24-
character ASCII character strings have the same structure, and any
such string can be used for this purpose (you don’t have to generate it
using cryptographic tools). In the end, there is nothing magical about
TSIG keys, and they function as simple shared secrets known only to
the two servers that use them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 445

BIND 9 security futures. While the TSIG mechanism works well for communication
between pairs of hosts, it does not scale well to large sites with many name servers,
due both to the significant amount of work required to configure name servers and
periodically generate keys (as with any shared secret, keys should be changed regu-
larly) within even a medium-sized site, and the logistical impossibility of setting up
TSIG between every pair of name servers worldwide that might ever want to commu-
nicate. The first of these issues can be addressed by automating key generation and
distribution.

BIND 9 extends the TSIG facility via the use of the TKEY mechanism. In this
scheme, known as the Diffie-Hellman algorithm, the two servers automatically
exchange data values that each one has computed from a random number and its
key. Using the data from the other server and their own key, they then compute the
same shared secret key. TKEY’s advantage is that the actual key itself does not need
to be sent from one server to the other. Although some of the infrastructure for the
TKEY mechanism is present in configuration file options, the named server does not
yet support TKEY as of this writing (Version 9.2.0 is latest to be released).

BIND 9 also includes the DNS Security Extensions (DNSSEC) facility, a far more
elaborate and sophisticated set of mechanisms and procedures for securing DNS
communications using public key cryptography. Asymmetric key pairs are used to
create the digital signatures, with the private key used to decrypt what the public key
has encrypted (or vice versa; see “Protecting Files and the Filesystem” in Chapter 7).
Once again, the data itself is not encrypted.

DNSSEC uses several new resource record types:

• KEY records are used to store the public key for a zone. The keys for a zone must
be signed by its parent zone to create a chain of trust for DNS communications.

• SIG records are used to store the digital signature produced by the zone’s pri-
vate key for each resource record set (the set of all records of a specific type: all A
records, all MX records, and so on). This signature is a secure hash performed
on the zone data using the private key.

• NXT records are used to specify the next record within the zone when it is
placed into its canonical order (a hierarchical and alphabetical ordering scheme
defined as part of DNSSEC). These records are returned whenever a negative
answer to a query—e.g., that host doesn’t exist—is required, and they too can
be signed (while a null response can’t).

At this time, DNSSEC is still considered experimental, and there are several out-
standing issues that stand between its present form and its production deployment.

• Vital parts of the infrastructure do not exist (e.g., the ability for zones to be
signed by the .com domain). DNSSEC can still be used locally, however.

• It takes a significant amount of CPU resources and elapsed time to generate the
SIG and NXT records for a zone, and not all current systems running DNS

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 8: Managing Network Services

servers would be up to the task. In addition, the time that would be required to
sign major TLDs seems to be unrealistic with respect to practical considerations.

• The amount of data within a zone is multiplied by a factor of three or more. This
increases DNS network bandwidth requirements significantly.

• Not all functions work when DNSSEC and non-DNSSEC implementations are
both used within the same network (e.g., queries from a DNSSEC-aware resolver
to a non-DNSSEC forwarder).

In conclusion, while it is probably time to start learning about and experimenting
with DNSSEC, it is still fairly far away from production use.

BIND 9 views

I’ve alluded to the practice of keeping internal DNS data private and inaccessible to
external queries while still allowing internal users to resolve external name servers as
needed. Such a separation is sometimes referred to as split DNS. BIND 9 offers a new
feature that makes implementing such a design very easy: views.

Views are a means of varying the properties of a zone depending on who is using it.
For example, the zone can appear one way to internal users and another way to
external users. Here are some example view statements that illustrate this feature:

acl "internal" { 10.1.1.0/24; }; acl statements must be outside views.
acl "external" { any; }; The any keyword matches any address.

view "inside" { Zone definition for internal clients.
 match-clients { "internal"; };
 zone "public.zoas.org." {
 type master;
 file "public.zoas.org.zone.internal";
 };
};

view "outside" { Zone definition for everyone else.
 match-clients { "external"; };
 recursion no;
 zone "public.zoas.org." {
 type master;
 file "public.zoas.org.zone.external";
 };
};

First, we define two address match lists, which are then used with the match-clients
options inside the two view statements. As usual, the first match-clients option that
applies is used, so view ordering is important (if these two views were reversed,
everyone would see only view outside).

The same zone, public.zoas.org, is defined in each view, but different zone files are
used in each case. In addition, recursive queries are disabled in the outside view; if
the name server cannot resolve a name, it does not contact any additional servers in
an attempt to do so.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 447

One ramification of using views is that there cannot be any indepen-
dent zone statements in named.conf. All zones must be part of a view.

See the excellent article “Supporting Screened Hosts with BIND 9.x Views” by Scott
DeJong (Sys Admin magazine 11:5, May 2002) for more complex view scenarios.

Securing the named process

Making server-to-server communications and zone data access secure is important,
but you also need to ensure that the BIND server itself is not a trouble spot. There
are three things you can do to protect it:

• Make sure that named has been patched with all available security fixes. Check
your vendor’s or the ISC web site regularly to determine if any new fixes have
been released, and install them right away. Monitor security news groups and/or
mailing lists to ensure that you’ll hear about detected problems right away.

• Don’t run named as root. Create a special user and group, often called named, to
run it. Use the named command’s -u username option to start the server running
as the specified user. Grant this user access to the various configuration files by
changing their ownership (e.g., for key files) or protection.

• Run named in a chrooted environment. The named command’s -t directory
option can be used to specify the new root directory. Of course, you’ll need to
set up the required directory structure under the selected root directory and copy
all required files there:

— /etc/named.conf

— The named executable, along with any required libraries (BIND 8 only).
Alternatively, you can link named statically when you build it to avoid any
dependencies.

— /dev/null and possibly /dev/random. Use mknod to create them. Here are
example commands from a Linux system:

mknod /named-root/dev/null c 1 3
mknod /named-root/dev/random c 1 8

— The major and minor device numbers vary among Unix versions; use ls -l
to determine the appropriate values to use.

— Under BIND 8, a version of the password and group files containing just the
named user and group. BIND 9 consults these files before chrooting, so copy-
ing them is not necessary. Note that the home directory for the named user
should be / in both cases, not the chosen root directory location (because the
specified home directory is interpreted from the named process’s perspective).

You will also need to modify the default directory location to be / in named.
conf’s options statement.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 8: Managing Network Services

Configuring logging

The destination for status and error messages as well as what sorts of messages to
save are both highly configurable in BIND. This is done via the logging statement.
This statement has two distinct parts: definitions of message channels (output desti-
nations) and associations of message categories with target channels.

Here is a simple logging statement illustrating these features:

logging {
 channel "xfers" {
 file "logs/named.xfers";
 };
 channel "to-syslog" {
 syslog local1; Syslog facility.
 severity warning; Minimum syslog severity level.
 };
 channel "to-file" { file "logs/named.log"; };

 category xfer-in { "xfers"; };
 category xfer-out { "xfers"; };
 category security { "to-file"; "to-syslog"; };
};

This statement defines three channels: the syslog local1 facility and two files in the
logs subdirectory of the named default directory.

The three category lines specify what messages actually go to each potential destina-
tion. The file logs/named.xfers will receive all messages about incoming and outgo-
ing zone transfers, the file logs/named.log will receive all security-related messages
(approvals and denials of requests), and the security-related messages of level warn-
ing and higher will also be logged to the syslog local1 facility (as specified by the
severity option in the corresponding channel definition).

There are a few predefined logging channels:

default_syslog Syslog's daemon facility.
default_debug The file named.run in the default directory.
default_stderr Send messages to named's standard error.
null Discard messages.

The default channels all use syslog severity level information (where applicable).

Table 8-8 lists the most important BIND logging categories. In BIND 9, the default
logging behavior sends logging category default to the default_syslog and default_
debug channels. BIND 8 also logs a few more messages types to each location as well
as panic messages to default_stderr.

Table 8-8. Useful BIND logging categories

Category Associated messages

default Refers to all messages for which no channel is explicitly specified.

general Miscellaneous unclassified messages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 449

Some of the BIND 8–only categories will probably eventually be implemented in a
future version of BIND 9. They are ignored (with a warning) in named.conf.

Name Server Maintenance and Troubleshooting
Configuring a DNS name server can be a fair amount of work, but even once that is
done, there are still additional tasks required to keep it running:

• Add additional name servers if the load on existing ones becomes too great or
the topology of your network changes significantly. How you’ll handle expected
future growth should be part of your name server deployment plan.

• Check for and apply software patches frequently.

• Update the root hints file a few times per year.

• Update zone files as appropriate. Update the reverse zones at the same time, and
don’t forget to increment the serial number in each file.

• Review DNS logging information on a regular basis.

• Monitor the reliability and performance of your name servers in the context of
overall network activity (see “Network Performance” in Chapter 15).

config Configuration file processing messages.

dnssec TSIG and DNSSEC-related messages.

lame-servers Misconfigured remote servers discovered by named when it tried to query them.

network9 Network operations.

notify Messages arising from notification messages.

queries Per-query log messages.

resolver DNS resolution operations (e.g., recursive lookups for clients).

security Request approvals and denials.

update Dynamic updates.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

cname8 CNAME mapping-related messages.

ncache8 Messages related to negative cache entries.

panic8 Server panics (fatal errors).

packet8 Dumps of all packets sent and received.

statistics8 Summary statistics about name server operations.

Table 8-8. Useful BIND logging categories (continued)

Category Associated messages

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 8: Managing Network Services

Controlling the named server process

The named process is typically started at boot time by one of the usual boot scripts
(often /etc/init.d/named). On systems with System V–style boot scripts, you can also
use the same script to stop or restart the daemon:

/etc/init.d/named restart

As we’ve seen, you can specify the location of the file that holds the daemon’s PID;
this file is typically /var/run/named.pid. You can use this information to signal the
named process manually, as in this example:

kill `cat /var/run/named.pid`

Note that killing the daemon is not recommended in general, and especially not if
you are using dynamic updates.

The BIND software distribution also provides a utility to manipulate the name server
process. This command is named ndc under BIND 8 and rndc under BIND 9. Both
support several subcommands: stop terminates the server process after any pending
updates are complete, halt stops the server immediately, reload causes the server to
reload its configuration and zone files (or just one zone if its name is specified as the
subcommand’s argument), and dumpdb and stats write the cache contents and server
statistics to a log file (by default, named_dump.db and named.stats, respectively). ndc
also supports a restart subcommand (which does the obvious).

Here are some examples:

rndc reload Reload configuration and zone file.
ndc reload
rndc -s apricot stop Terminate a remote name server process.

ndc also supports remote server management, but it is unsecured: any user who can
run ndc on an allowed remote system can perform any operation on the system’s
DNS servers. For this reason, I don’t recommend using this feature. Under BIND 9,
you can use the controls statement in named.conf to specify a key with which rndc
must sign its messages:

include "rncd.key";
controls {
 inet * allow { 192.168.10/24; } keys { "rndc-key";};
};

The included file contains a key statement defining the specified key in the same
manner as we considered earlier.

The rndc command also requires that the key be defined in its configuration file, /etc/
rndc.conf:

options {
 default-server localhost; Manage this server by default.
 default-key "rndc-key"; Sign messages with this key by default.
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing DNS Servers | 451

key "rndc-key" {
 algorithm hmac-md5;
 secret "a=whole=lotta=characters";
};

You can use command-line options to override both the default server (-s) and the
default key (-y).

Using the nslookup and dig utilities

The nslookup command is another utility provided as part of the BIND package. It is
used to perform ad hoc DNS queries and is very useful for troubleshooting purposes.

Here is an example of using nslookup in its default mode:

$ nslookup This command starts an interactive session.
> mango Look up this host name (local domain assumed).
Server: localhost
Address: 127.0.0.1#53

Name: mango.ahania.com
Address: 192.168.10.100
> set type=PTR Query PTR records (the default is A).
> server 10.18.114.44 Use this server for queries.
Default server: freya
Address: 10.18.14.44#53
> 192.168.10.214
Server: 10.18.114.44
Address: 10.18.114.44#53

214.10.168.192.in-addr.arpa name = apricot.ahania.com.
> exit

These commands illustrate using nslookup for forward and reverse queries, including
via a different name server.

Examining the SOA record for a zone can be useful at times. It shows the name serv-
ers for the zone and the email address for the zone’s administrator:

$ nslookup
> set type=SOA
> state.ct.us
Server: ns1.worldnet.att.net
Address: 204.127.129.1

Non-authoritative answer:
state.ct.us
 primary name server = info.das.state.ct.us
 responsible mail addr = hostmaster.po.state.ct.us
 serial = 2002041801
 refresh = 14400 (4 hours)
 retry = 600 (10 mins)
 expire = 604800 (7 days)
 default TTL = 604800 (7 days)
state.ct.us nameserver = info.das.state.ct.us

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 8: Managing Network Services

state.ct.us nameserver = dbru.br.ns.els-gms.att.net
info.das.state.ct.us internet address = 159.247.0.198
dbru.br.ns.els-gms.att.net internet address = 199.191.128.106

You can also use the serial number data in such records to compare the data ver-
sions on master and slave servers when you are trying to troubleshoot zone transfer
problems.

Setting the type to NS enables you to determine the authoritative name servers for a
zone or website. A type of ANY also returns all records associated with a name.

The newer dig utility performs the same functions as nslookup. It has the following
general syntax:

dig [@server] name [type] [options]

For example, this command determines the version of BIND that a server is running:

$ dig @bonita.ahania.com version.bind txt chaos
...
;; QUESTION SECTION:
;version.bind. CH TXT

;; ANSWER SECTION:
version.bind. 0 CH TXT "9.1.3"
...

The output tells us that this server is running BIND 9.1.3.*

Routing Daemons
Having covered the first step in any network operation—finding out the address for
the desired host—it is now time to turn to the second prerequisite: determining how
to get there. The routing needs of many sites can be handled by installing routers and
setting up default gateways and static routes on client systems (as we saw in “Add-
ing a New Network Host” in Chapter 5). However, some situations call for more
sophisticated routing services. This section provides an introduction to the daemons
that provide them. The processes and algorithms described here are also used by
dedicated routers.

Routing daemons dynamically select the best route from among the multiple paths to
a given packet’s destination. More precisely, what is determined is the best next step
along the path toward the destination, because the ultimate target may be far beyond
their field of vision.

Routers cache routing information that they learn in the course of their operation,
and the routers and daemons within a network use various schemes to exchange
routing information.

* Or at least that it claims to be. In fact, the system administrator can change this string to any value (although
most people don’t), so the information provided is not always available or reliable.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Routing Daemons | 453

There are two routing daemons provided by Unix systems: routed and gated. routed
(pronounced “route-D”) is the older and simpler of the two and is infrequently used
these days. gated (pronounced “gate-D”) is a general purpose routing daemon, and it
is the preferred choice for most sites.

For detailed information about the topics and daemons discussed in this section, see
TCP-IP Network Administration by Craig Hunt (O’Reilly & Associates).

Routing Concepts and Protocols
As we noted, many sites need only minimal routing (specifying a default gateway on
every system) or static routing (defining some static routes as needed). These
approaches work well for networks that are fairly simple (there are not many alter-
nate paths to destinations), are relatively stable (routers do not go down very often),
and have ample network bandwidth (routing efficiency is not a major factor in net-
work traffic).

However, complex networks require the use of dynamic routing, which includes the
following characteristics:

• Selecting the best route among multiple routes to a destination based on current
network conditions.

• Maintaining and updating the routing table based on information received via
routing protocols.

In other words, both the route selection and the data on which the selection is made
are updated continuously to reflect the current network state. The data about what
routes exist and are operational are known as reachability information.

Routing protocols specify the methods for determining the best route to a destination
and the means by which information is exchanged between and distributed among
distinct routing daemons. They are subdivided two different ways:

By usage context: interior versus exterior protocols
Interior protocols are used for internal routing inside an autonomous system: a
network under the control of a single administrative entity (typically correspond-
ing to a site). Exterior protocols are designed for routing between autonomous
systems.

By algorithm: distance-vector versus link-state protocols
Distance-vector protocols use a measure of the distance to a destination to deter-
mine the best route (for example, a route with fewer hops is preferred over one
requiring more hops). In contrast, link-state protocols compute each possible
route based on a current map of the network topology. These maps are continu-
ously maintained and updated by each router based on information it receives
from neighboring routers.

Distance-vector protocols are simple and minimize the amount of data that must
be exchanged between routers, but they can take an unacceptably long time to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 8: Managing Network Services

adapt to changes in the network (e.g., router availability). Link-state protocols
react to changes more quickly, but they require significantly more CPU and
memory resources on the router.

There are a variety of routing protocols in use. For interior routing, there are two
that predominate, RIP and OSPF.

The Routing Information Protocol (RIP) is a simple distance-vector protocol. Each
router periodically broadcasts the contents of its routing table, specifically, the
addresses of the destinations it knows about and the number of hops required to get
to them. Routing information is also broadcast in response to update requests from
other RIP routers and daemons in more recent versions of RIP. A given router or dae-
mon uses the information provided by its neighbors (adjacent routers, one hop away)
to determine the cost of each potential route, ultimately selecting the shortest one.

The maximum distance considered is 15 hops; destinations farther away are all con-
sidered to be infinitely distant. In addition to this limited range, RIP’s other main dis-
advantage is its slow convergence in the face of changing network conditions. Long
timeout periods and default update intervals in combination with the algorithm it
uses to recompute routes mean that routing information can remain out of date for
unacceptably long periods of time (many minutes). While routing information is out
of date, affected destination hosts are unreachable. There are extensions to RIP (and
the follow-on version, RIP-2) that ameliorate this behavior, but not all RIP imple-
mentations include them.

The Open Shortest Path First (OSPF) protocol is a link-state protocol. OSPF routers
build and maintain a link-state database, which is a directed-graph representation of
the entire network from the perspective of that router. This data is then shared with
its neighbor routers, and all of their maps are then updated accordingly. OSPF rout-
ers choose the best route to a destination by computing the shortest distance route
from its current information.

OSPF allows large networks to be subdivided into areas to reduce the computational
requirements of computing and storing the network topology data. Routing between
areas is handled by designated area border routers. When areas are in use, the back-
bone is a special area to which all other areas are attached (without areas, the entire
site is the backbone).

The routed daemon uses the RIP protocol, while the gated daemon can use several
different protocols, including both RIP and OSPF. Note that only one of these dae-
mons should be run at a time.

Configuring routed

Although it runs only RIP, routed is available on almost all Unix systems, and it is
extremely simple to administer. This daemon has two modes, server mode and quiet
mode, selected with the -s and -q command-line options (respectively). Quiet-mode
daemons listen for RIP updates but do not broadcast data themselves. Most systems

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Routing Daemons | 455

operate in this manner. Only routers and host systems functioning as routers (via
multiple network interfaces) should operate in server mode.

routed can optionally load a list of known gateways from the /etc/gateways configura-
tion file when it starts up, but this is seldom necessary because the RIP protocol
quickly discovers its neighbors. Otherwise, there is no other configuration necessary
for routed itself.

The daemon is generally started at boot time in one of the system boot scripts. Here
are the specifics for the various operating systems we are considering:

Note that Solaris names this daemon in.routed.

Configuring gated

gated is a more sophisticated routing daemon capable of supporting multiple rout-
ing protocols (both interior and exterior). It is provided by AIX, HP-UX, and Tru64.

The software was originally free, but it was later taken over by the Merit GateD Con-
sortium, and subsequent versions that it produced were available primarily to con-
sortium members. Current versions are available as commercial software from
NextHop Technologies (http://www.nexthop.com). The last free* version was 3.6, but
this is quite adequate for most sites’ needs. It is easy to find on the Internet: e.g.,
http://freshmeat.net/projects/gated/.

AIX Started by /etc/rc.tcpip.
Enabled by removing # from the commands in rc.tcpip.

FreeBSD Started in /etc/rc.network.
Enabled in /etc/rc.conf and/or /etc/rc.conf.local:

router_enable="YES", router="routed"
router_flags="named-args"

HP-UX Not supplied; use gated (see below).

Red Hat Linux Started in /etc/init.d/routed.
Configured in /etc/sysconfig/routed:

SILENT="true-or-false"

SuSE Linux Started in /etc/init.d/routed.
Enabled in /etc/rc.config (SuSE 7 only):

START_ROUTED="yes"

Solaris Started in /etc/init.d/inetinit.

Tru64 Started in /sbin/init.d/route.
Configured in /etc/rc.config:

ROUTED="yes";
ROUTED_FLAGS="args";

* Version 3.6 is free, but making and distributing changes may be technically prohibited (Freshmeat describes
the license as “free to use but restricted”). The last unrestricted version seems to be 3.5.10.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 8: Managing Network Services

gated’s configuration file is /etc/gated.conf. This file has a specified format that must
be followed, with this general layout: options, interface definitions, protocol selec-
tion and configuration, static route, and route importing and exporting. Here is an
example of the first two sections:

options syslog upto info ; Global options.
interfaces { Declare an interface for later use.
 interface 192.168.10.150 ;
} ;
router-id 192.168.10.150 ; Required for OSPF.

The options statement specifies that logging should go to the syslog facility and
include all messages of info severity and higher. This setting is actually the default
and is included only to illustrate the options statement (which is in fact not needed
at all in many cases).

The second statement defines a network interface for gated. This is required only if
the interface will be referred to later in the configuration file.

Next come the protocol selections and their configuration. For example, the follow-
ing statement enables the RIP protocol:

enable RIP
rip yes { Use RIP.
 nobroadcast ; Equivalent to routed -q.
 interface 191.168.10.150 {
 version 2 ; Use RIP-2.
 authentication simple "a-password" ;
 } ;
} ;

This statement says to use RIP-2 in quiet mode and specifies an authentication pass-
word included in and expected for all valid updates. It provides some minimal pro-
tection against malicious routing data. MD5 passwords are also supported.

If you wanted to disable RIP, you’d use this statement:

rip no ;

Here is a simple configuration statement for the OSPF protocol:

ospf yes {
 backbone {
 interface 192.168.10.150 {
 priority 5 ;
 authentication simple "another-pass" ;
 } ;
 } ;
} ;

This statement enables OSPF. It indicates that the system is part of the backbone
area and specifies the interface through which the system is attached, along with an
authentication mechanism to use with other routers in this area. The priority value is
used when various OSPF routers are trying to select a designated router for an area,
where higher values mean less likelihood of being selected (the default is 10).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring a DHCP Server | 457

This statement could contain additional area substatements if the system has multi-
ple interfaces connected to different areas, enabling it to function as an area border
router. These lines follow the same syntax as the backbone configuration except that
they are introduced by a line of the form:

 area name

As we’ve noted, additional sections of the configuration file define static routes and
what route information to advertise to external routers. We won’t consider them in
this brief introduction.

Vendor specifics. gated is provided by AIX, HP-UX, and Tru64 (presumably, IBM, HP
and DEC/Compaq were members of the consortium). Here are the specifics for these
systems:

You can obtain or build gated for any of the other systems discussed in this book.
For example, there is a FreeBSD version in the ports collection, and many Linux dis-
tributions include it as an optional component.

Configuring a DHCP Server
In “Adding a New Network Host” in Chapter 5, we considered the process of config-
uring a client system to obtain an IP address from a DHCP server. In this section, we
complete the picture by discussing DHCP server configuration and management.

DHCP servers vary quite a bit from system to system, but the basic concepts that
apply to all of them do not. We’ll consider these concepts before diving into the spe-
cifics of server configuration on the various Unix systems.

DHCP servers draw the IP addresses that they provide from lists of addresses that
they have been given to manage. These lists are known as scopes. Unix DHCP serv-
ers can manage one or more scopes. For example, suppose we have a network of two
subnets, 10.10.1.0/24 and 10.10.20.0/24, and we place a DHCP server on each one.
We want to use 101 IP addresses from each subnet for dynamic assignment, hosts
100 through 200. We might divide up the addresses this way:

AIX Started by /etc/rc.tcpip.
Enabled by removing # from the commands in rc.tcpip.

HP-UX Started by /sbin/init.d/gated.

Tru64 Started in /sbin/init.d/gateway.
Configured in /etc/rc.config:

GATED="yes";
GATED_FLAGS="args";

Subnet 1 DHCP Server
10.10.1.100–10.10.1.175
10.10.20.176–10.10.20.200

Subnet 2 DHCP Server
10.10.20.100–10.10.20.175
10.10.1.176–10.10.1.200

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 8: Managing Network Services

Each server is assigned part of the address range for each subnet. When a client
requests an IP address, the DHCP server always assigns one from the appropriate
subnet (if none is available, the request fails). Splitting the addresses this way pro-
vides for some fault tolerance. If either server goes down, a DHCP relay (see below)
can be set up temporarily on its subnet pointing to the other server, and IP address
assignment will still take place.

Within a scope, certain IP addresses can be excluded, meaning that they are perma-
nently unavailable for assignment (perhaps some server is using one as its static IP
address). In addition, certain addresses can be reserved for specific hosts, identified
by their MAC address (for example, for a laptop that you want to have the same IP
address whenever it is connected to a specific subnet but still changes IP addresses as
it moves around). When possible, we’ll be excluding the address 10.10.1.125 and
reserving the address 10.10.1.105 in our configuration examples (both in subnet 1).

Since DHCP operates by broadcasting (see “Adding a New Network Host” in
Chapter 5), requests generally only reach a DHCP server on the local subnet. I rec-
ommend placing a DHCP server on every subnet, but this is not always feasible.
When it is not, DHCP clients can still receive address assignment from a server on
another subnet via a DHCP relay server. This server forwards DHCP requests from
the local subnet to a designated DHCP server.

Some routers can be configured to forward DHCP-related broadcast
packets between subnets. In this case, a DHCP relay server would not
be necessary.

Table 8-9 summarizes the DHCP server facilities on the various operating systems we
are considering. The remaining parts of this section will discuss DHCP configura-
tion for each operating system.

Table 8-9. DHCP server component locations

Component DHCP server DHCP relay

Server executable AIX: /usr/sbin/dhcpsd
HP-UX: /usr/lbin/bootpd
ISC: /usr/sbin/dhcpd
Solaris: /usr/lib/inet/in.dhcpd
Tru64: /usr/sbin/joind

AIX: /usr/sbin/dhcprd
ISC: /usr/sbin/dhcrelay
Solaris: /usr/lib/inet/in.dhcpd
Tru64: /usr/sbin/bprelay

Configuration file ISC: /etc/dhcpd.conf
AIX: /etc/dhcpsd.cnf
HP-UX: /etc/dhcptab
Solaris: /var/dhcp/dhcptab and network

files in /var/dhcp
Tru64: /etc/join/server.pcy, /etc/join/nets,

/etc/join/dhcpcap

ISC: none
AIX: /etc/dhcprd.cnf
Solaris: none
Tru64: none

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring a DHCP Server | 459

AIX

The AIX DHCP server is dhcpsd. It is configured via the /etc/dhcpsd.cnf configuration
file. Here is a configuration file that I’ve annotated:

logFileName /var/log/dhcp/dhcpsd.log
logFileSize 1000 Use four 1000K log files in rotation.
numLogFiles 4
logItem SYSERR Items to log: system, object and protocol errors,
logItem OBJERR and all warnings. Other choices include:
logItem PROTERR EVENT (that occurred), ACTION (taken), INFO
logItem WARNING (misc. information), ACNTING (play-by-play).

leaseTimeDefault 240 minute Default lease time.
supportBOOTP No Don't support remote booting.
supportUnlistedClients Yes Accept requests from any client.

Boot script that starts the
DHCP server

ISC: /etc/init.d/dhcpd (add manually for
FreeBSD)

AIX: /etc/rc.tcpip
HP-UX: none (run by inetd)
Solaris: /etc/init.d/dhcp
Tru64: /sbin/init.d/dhcp

ISC: /etc/init.d/dhcrelay (add manually for
FreeBSD)

AIX: /etc/rc.tcpip
Solaris: /etc/init.d/dhcp
Tru64: none

Boot script configuration file:
DHCP server-related entries

AIX: none
HP-UX: none
Red Hat: /etc/sysconfig/dhcpd

DHCPDARGS="args“
SuSE 7: /etc/rc.config

DHCP_INTERFACE="eth0“
DHCP_RUN_CHROOTED="yes|no”
DHCP_RUN_AS="user“

SuSE 8: /etc/sysconfig/dhcpd
DHCP_INTERFACE="eth0“
DHCP_RUN_CHROOTED
DHCP_RUN_AS="user”
DHCP_OTHER_ARGS="args“

Solaris 8: /etc/default/dhcp
RUN_MODE=server PATH=/var/dhcp

Solaris 9: /etc/inet/dhcpsvc.conf
DAEMON_ENABLED="TRUE“

Tru64: /etc/rc.config
JOIND="yes”
JOIND_FLAGS="args“

AIX: none
HP-UX: N/A
Red Hat: none
SuSE 7: /etc/rc.config

DHCRELAY_INTERFACES="eth0“:
DHCRELAY_SERVERS="host“

SuSE 8: /etc/sysconfig/dhcpd
DHCRELAY_INTERFACES="eth0“
DHCRELAY_SERVERS="host“

Solaris 8: /etc/default/dhcp
RUNMODE=relay
RELAY_DESTINATIONS=server

Solaris 9: /etc/inet/dhcpsvc.conf
DAEMON_ENABLED=TRUE RUN_
MODE=relay
RELAY_DESTINATIONS=server

Tru64: none

Leases data files ISC: /var/lib/dhcp/dhcpd.leases
AIX: /etc/dhcpsd.ar, /etc/dhcpsd.cr
HP-UX: /var/tmp/bootp.dump
Solaris: network files in /var/dhcp
Tru64: /var/join/*.btr

Table 8-9. DHCP server component locations (continued)

Component DHCP server DHCP relay

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 8: Managing Network Services

network 10.10.0.0 24 Our network address and length.
{
 subnet 10.10.1.0 10.10.1.100-10.10.1.175 Address range to assign.
 {
 client 1 aa:bb:cc:dd:ee:ff 10.10.1.105 Reservation.
 {
 option 51 36000 Longer lease time for this client.
 }
 client 0 0 10.10.1.125 Address exclusion.
 option 3 10.10.1.5 Subnet-specific option (default gateways).
 option 28 10.10.1.255 Broadcast address.
 }
 subnet 10.10.20.0 10.10.20.176-10.10.20.200 Address range to assign.
 {
 option 3 10.10.20.88 Default gateways for this subnet.
 option 48 10.10.20.45 X font server.
 option 28 10.10.20.255 Broadcast address.
 }
 option 15 zoas.org Global options: domain
 option 1 255.255.255.0 Netmask
}

Dynamic DNS update commands
updateDNS "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' BOTH NONIM >>/tmp/updns.out 2>&1 "
removeDNS "/usr/sbin/dhcpremove '%s' BOTH NONIM >>/tmp/rmdns.out 2>&1 "

The subnet statements contain the actual IP address ranges to be assigned by this
server. As this file illustrates, AIX uses standard DHCP option numbers to identify
options; see the manual page for DHCP_Server (section 4) for translations.

Dynamic DNS updates are triggered when the updateDNS and removeDNS state-
ments are included within the configuration file. Each of them defines the command
to use to perform the corresponding update operations. I don’t modify these from
the settings provided in the delivered configuration file. The DNS server must also be
running on the local system.

AIX also provides some tools for managing DHCP server configuration and opera-
tion. The dhcpsconf command starts a GUI tool that can be used to create a configu-
ration file and to also to manage the DHCP server. It is illustrated in Figure 8-2.

The main window has three main areas: Option List (list of available DHCP
options), Key List (main statement types to add to the configuration file), and DHCP
Server File (illustrates the structure of the file so far). You begin a new configuration
file by adding a network (select it in the Key List area and then click Add), and then
at least one subnet beneath it.

In general, the current selection is placed in a position immediately subordinate to
whatever is selected in the right-hand pane. Adding an option when the network is
selected makes it a global option for that network, while doing the same thing when a
subnet or client is selected limits the option’s scope to that entity. In the figure, we
are in the process of adding the X font server option to subnet 2. You use the Server ➝

Server Defaults menu path to specify global options and other server characteristics.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring a DHCP Server | 461

The items on the Operations menu control the DHCP server process, and they can
be used to Start it, Stop it, obtain its Status, or have it reread its configuration file
(Refresh).

AIX also provides the dadmin command for querying a DHCP server. For example,
the following command queries the DHCP server on kumquat, asking about the sta-
tus of the specified IP address:

dadmin -h kumquat -q 192.168.44.23
PLEASE WAIT....Gathering Information From the Server....
IP Address Status Lease Time Start Time Last Leased Proxy ...

10.10.20.180 Free

This IP address is not currently in use.

The AIX DHCP relay server is dhcprs, and its configuration file is /etc/dhcprs.cnf.
Here is an example:

Log file directives as for the DHCP server
server 10.10.30.1

The server statement is the most important in the file, and it specifies which remote
DHCP server to forward requests to.

ISC DHCP: FreeBSD and Linux

The open source operating systems all use the DHCP implementation from the Inter-
net Software Consortium (see http://www.isc.org). The DHCP server is dhcpd. It uses
the configuration file /etc/dhcpd.conf. Here is an example version illustrating its
features:

Figure 8-2. The AIX DHCP server configuration utility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 8: Managing Network Services

default-lease-time 14400; Global options.
option subnet-mask 255.255.255.0;
option domain zoas.org;

subnet 10.10.1.0 netmask 255.255.255.0 {
 range 10.10.1.100 10.10.1.104; IP addresses available for assignment.
 range 10.10.1.106 10.10.1.124;
 range 10.10.1.126 10.10.1.175;
 option routers 10.10.1.5; Options sent to these clients.
 option broadcast-address 10.10.1.255;
}

subnet 10.10.20.0 netmask 255.255.255.0 {
 range 10.10.20.176 10.10.20.200; Another address range.
 option routers 10.10.20.88; Options for these clients.
 option broadcast-address 10.10.20.255;
 option font-servers 10.10.20.45;
}

host special { A reservation.
 hardware ethernet aa:bb:cc:dd:ee:ff;
 fixed-address 10.10.1.105;
 default-lease-time 36000; Longer lease time for this host.
}

This configuration file is very easy to understand. Note that we had to specify exclu-
sions by defining multiple ranges for the 10.10.1.0 subnet (although being able to
have more than one range is also a point in this DHCP server’s favor).

Fixed IP addresses can also be assigned based on the client ID, which is defined in
the client’s configuration. This can be useful, for example, when a company has a
pool of wireless cards that staff members borrow. Some of them use the client ID
option to ensure they get the same address regardless of which card they happen to
have borrowed. Include the following option within the host configuration to accom-
plish this:

option dhcp-client-identifier string;

The corresponding client configuration file entry is:

send dhcp-client-identifier string;

Before you can run the ISC DHCP server for the first time, you must create its lease
file using this command:

touch /var/lib/dhcp/dhcpd.leases

The file must exist before the server will start. The server also creates a backup file in
the same location, named dhcpd.leases~, which is used while updating the lease file.
If this process should ever crash and leave the system without a leases file, you must
copy the backup file to the normal filename before restarting the DHCP server. Oth-
erwise, duplicate leases will quickly abound on the affected subnets, and you’ll have
no end of fun cleaning the mess up.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring a DHCP Server | 463

There is also a DHCP relay server from the ISC, dhcrelay. It requires no configura-
tion file and takes the desired DHCP server as its argument, as in this example:

dhcrelay 10.10.30.1

The server is usually started by a boot script. Some systems have options for config-
uring it other than editing the corresponding script file; see Table 8-9 for details.

There is a graphical utility for configuring the DHCP server available in the KDE
desktop environment. It is named kcmdhcpd and written by Karl Backström (http://
www.lysator.liu.se/~backstrom/kcmdhcpd/), and it is illustrated in Figure 8-3.

In the illustration, the 10.10.1.0 subnet’s scope is being set up. The window on the
left is used to specify the scope’s most important properties. We have also clicked on
that window’s Advanced button to open the smaller, frontmost window (where we
are setting the option for an X font server). The utility’s main window appears on the
right.

ISC DHCP Version 3 adds support for dynamic DNS updates.* This feature is in a
preliminary state and may change over time. It currently works only with systems
that have only a single network interface. The current implementation also lacks any
security features and so should only be used when preventing unauthorized updates
is not an issue.

Figure 8-3. The kcmdhcpd utility

* As well as a lot of other cool features!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 8: Managing Network Services

The following configuration file excerpt illustrates the method for enabling dynamic
updates:

subnet ... {
normal statements ...

 ddns-domainname "dhcp.zoas.org";
 ddns-rev-domainname "in-addr.arpa";
}

The two additional substatements specify the DNS domain and reverse lookup
domain that should be added to host names/IP addresses when DNS A and PTR
records are created for them (respectively).

HP-UX

The HP-UX DHCP daemon is on the eccentric side. It is named bootpd, a name that
reflects its dual purpose as a DHCP and BOOTP server. The primary DHCP configu-
ration file is /etc/dhcptab, which uses a termcap-like syntax. Here is an example file:

dhcp_default_client_settings:\ Global settings.
 lease-time=14400:dn=zoas.org:\
 lease-policy=accept-new-clients:\
 subnet-mask=255.255.255.0:

dhcp_pool_group:\ Defines a scope and its properties.
 pool-name=subnet1:\
 addr-pool-start-address=10.10.1.100:\
 addr-pool-last-address=10.10.1.175:\
 reserved-for-other=10.10.1.125:\ Exclusion.
 reserved-for-other=10.10.1.105:\ Reservation.
 allow-bootp-clients=FALSE:\
 gw=10.10.1.5:\ Default gateway.
 ba=10.10.1.255: Broadcast address.

dhcp_pool_group:\
 pool-name=subnet2:\
 addr-pool-start-address=10.10.20.100:\
 addr-pool-last-address=10.10.20.200:\
 gw=10.10.20.88:\ Default gateway.
 ba=10.10.20.255:\ Broadcast address.
 xf=10.10.20.45: X font server.

Here, we have defined our usual address ranges for the two subnets, along with their
associated options. Note that IP addresses for reservations are included in the exclu-
sion list.

Reservations themselves are handled in another configuration file, /etc/bootptab.
Here is an example entry:

pandora:\
 ht=ethernet:\ Identifier type.
 ha=aabbccddeeff:\ Hardware address.
 ip=10.10.1.105:\ IP address to assign.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring a DHCP Server | 465

 vm=rfc1048:\ Implementation style.
 sm=255.0.0.0:\ Subnet mask.
 ba=10.10.1.255 Broadcast address.

The bootpd daemon serves as a DHCP relay agent (in addition to its remote booting
functions). Like reservations, relaying is specified in the /etc/bootptab file, as in this
example:

subnet3:\ Group name from dhcptab.
 ht=ethernet:\
 ha=000000000000:\ This will match any MAC address.
 hm=000000000000:\
 bp=10.10.2.99 :\ Relay host IP address.
 th=0:\ Seconds to wait before relaying.
 hp=4 Maximum hops.

You can also specify relaying for individual hosts by specifying its MAC address as
the host address (ha) and using a mask of all ones (hm).

The HP-UX DHCP server supports dynamic updates to the DNS only in Version 11i.
They are enabled via options to the pool group definition, as in this example:

dhcp_pool_group:\
 pool-name=subnet2:\

...
 pcsn:\ Use hostname specified by client.
 ddns-address=10.10.1.100:\ DNS server address.

In general, you can edit the configuration files by hand, or you can use SAM to con-
trol the various settings within it. Note that the relevant SAM areas are labeled with
reference to remote booting (i.e., BOOTP), but they can be used to administer
DHCP as well; the path from the main menu is Networking and Communications
➝ Bootable Devices.

Solaris

The Solaris DHCP server is named in.dhcpd (following the usual naming convention
for Solaris network daemons). Its configuration files reside in /var/dhcp. It uses two
separate files. The first of these, dhcptab, defines global and subnet- or client-specific
options. Here is an example, which illustrates its termcap-like format:

Locale m :UTCoffst=-14400:DNSdname="zoas.org":\
 :Subnet=255.255.255.0:
plum m :Include=Locale:LeaseTim=14400:LeaseNeg:
special m :Include=Locale:LeaseTim=36000:
10.10.1.0 m :Subnet=255.255.255.0:Router=10.10.1.5:\
 :Broadcst=10.10.1.255:
10.10.20.0 m :Subnet=255.255.255.0:Router=10.10.20.88:\
 :Broadcst=10.10.20.255:XfontSrv=10.10.20.45:

This file defines a series of macros, named groups of settings. It also illustrates the
use of the Include setting, which allows one macro to be incorporated in another
macro as a whole. The settings themselves have very easy-to-understand names.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 8: Managing Network Services

The first two items are used to define global options (note that the first one is
included in the second and third entries). The second item, plum, will be assigned to
most of the IP addresses in the scope, so it functions as a global default (although
there is no way to tell this from this configuration file). This item conventionally has
the same name as the DHCP server’s hostname.

The third item will be used to apply different settings to our reserved IP address. The
final two items define settings that apply to the scopes associated with the specified
subnets. The initial name field must be the same as the subnet address.

The actual IP addresses to assign are stored in files (known as network files) in the
same directory, and they are given names created by replacing all of the periods in
the subnet address with underscores. For example, here is the file named 10_10_1_0,
corresponding to the 10.10.1.0 subnet:

client flags IP address DHCP server Expires Macro
00 00 10.10.1.100 10.10.1.50 0 plum
00 00 10.10.1.101 10.10.1.50 0 plum
00 00 10.10.1.102 10.10.1.50 0 plum
00 00 10.10.1.103 10.10.1.50 0 plum
00 00 10.10.1.104 10.10.1.50 0 plum
01AABBCCDDEEFF 02 10.10.1.105 10.10.1.50 0 special
00 00 10.10.1.106 10.10.1.50 0 plum
...
00 01 10.10.1.125 10.10.1.50 0 plum
...
00 00 10.10.1.200 10.10.1.50 0 plum

Each line in the file defines an IP address within the scope. The fields in this file con-
tain the client ID that is currently using the IP address (or 00 if it is free), flags apply-
ing to that entry (00 for addresses used for normal assignments), the IP address itself,
the IP address of the DHCP server that manages it, the lease expiration time (0 if it is
unassigned), and the macro within the dhcptab file that provides the options for that
IP address.

In this case, we are looking at a file before the DHCP service has been started. Thus,
all the dynamic fields in the file retain their initial entries.

The reserved address, 10.10.1.105, has a somewhat different format. The client ID is
set to the string consisting of 01 (indicating that it is an Ethernet address) followed
by the MAC address (sans colons). The flags field is set to 2, indicating that the
address is permanently assigned. This entry also uses a different macro from the
dhcptab file to obtain its longer lease time.

The excluded address, host 125, is assigned a flag value of 1, which indicates that the
address is unavailable for assignment.

The Solaris DHCP server does not currently support dynamic updates to the DNS.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring a DHCP Server | 467

in.dhcpd can also function as a DHCP relay server. You specify this behavior via the
facility’s boot configuration file: /etc/default/dhcp under Solaris 8 and /etc/inet/
dhcpsvc.conf under Solaris 9. Here are examples illustrating the relevant entries:

Solaris provides the DHCP Manager graphical utility for configuring DHCP. It can
be started from the administrative area of the desktop or using the dhcpmgr com-
mand in /usr/sadm/admin/bin. Solaris 8 also provides the nongraphical, menu-based
utility dhcpconfig for the same purpose (the utility exists under Solaris 9, but this
functionality has been removed).

Tru64

The Tru64 DHCP server is named joind. It uses several configuration files in /etc/
join. The first of these is server.pcy which is used to specify global server options.
Here is a sample version of the file:

accept_client_name Allow clients to specify their own hostnames.
#support_bootp Don't support BOOTP.
#registered_clients_only Accept requests from anyone.
send_options_in_offer Include DHCP options in the initial offer.
use_macaddr_as_id Use the MAC address to identify special clients.

The next file is named nets, and it is used to specify the various scopes managed by
this DHCP server and the range of available addresses within them:

10.10.1.0 10.10.1.22 10.10.1.100-10.10.1.104
 10.10.1.106-10.10.1.124
 10.10.1.126-10.10.1.175

10.10.20.0 10.10.1.22 10.10.20.175-10.10.20.200

The first scope is for the 10.10.1.0 subnet, and it is defined as three address ranges.
The second scope is for the 10.10.20.0 subnet, defined via a single address range.
The second field in each line specifies the DHCP server managing the scope. Note
that fields which are the same in successive lines do not need to be repeated.

The final configuration file is dhcpcap, a termcap-style configuration file used to
specify DHCP options. Here are some example entries:

special:\
 :ht=ether:ha=aabbccddeeff:\ Identify this client via its MAC address.
 :ip=10.10.1.105:\ Assign this IP address.
 :gw=10.10.1.5:\ Default gateway.
 :ba=10.10.1.255:\ Broadcast address.
 :sm=255.255.255.0:\ Subnet mask.
 :dn="zoas.org":\ DNS domain name.
 :lt=36000: Lease time.

/etc/default/dhcp (Solaris 8):
RUNMODE=relay
RELAY_DESTINATIONS=10.10.30.1

/etc/inet/dhcpsvc.conf (Solaris 9):
RUNMODE=relay
RELAY_DESTINATIONS=10.10.30.1
DAEMON_ENABLED=TRUE

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 8: Managing Network Services

subnet1:\
 :nw=10.10.1.0:\ Network address.
 :gw=10.10.1.5:\ Default gateway.

...Same options as above.
 :lt=14400: Lease time.

subnet2:\
 :nw=10.10.20.0:\ Network address.
 :gw=10.10.20.88:\ Default gateway.
 :ba=10.10.20.255:\ Broadcast address.

 ...Same options as above.
 :lt=14400:\ Lease time.
 :xf=10.10.20.45: X font server.

Note that many settings must be repeated in each stanza as there is no global section
or include mechanism.

These configuration files may be created and modified manually. However, Tru64
also provide the xjoin utility for accomplishing this. It is illustrated in Figure 8-4.

The Tru64 DHCP server does not provide dynamic updates to the DNS.

The DHCP relay server is named bprelay, and it is started by a command of the fol-
lowing form, where the argument is the address of the DHCP server to which to relay:

bprelay 10.10.30.1

Note that this server is not started by any boot script. You will have to modify a boot
script if you want it to run as a matter of course.

Figure 8-4. The Tru64 xjoin facility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Time Synchronization with NTP | 469

Time Synchronization with NTP
Computers often don’t work right when the hosts on a network have differing ideas
about what time it is. For example, DNS servers become very upset when the master
server’s and slave servers’ ideas of the current time are significantly different and will
not accept zone transfers under such conditions. Also, many security protocols, such
as Kerberos, have time-out values that depend on accurate clocks

The Network Time Protocol (NTP) was designed to remedy this situation by auto-
mating time synchronization across a network.* The NTP home page is http://www.
ntp.org. There is also a lot of useful information available at http://www.eecis.udel.
edu/~mills/ntp.htm.

You may wonder how computer clocks get out of synchronization in the first place.
Computers contain a oscillator along with some hardware to interface it to the CPU.
However, instability in the oscillator (for example, due to temperature changes) and
latencies in computer hardware and software cause errors in the system clock
(known as wander and jitter, respectively). Thus, over time, the clock settings of dif-
ferent computers that were initially set to the same time will diverge since the errors
introduced by their respective hardware will be different.

NTP is designed to deal with these realities in a very sophisticated manner. It has
been around since 1980 and was designed and written by Professor David L. Mills of
the University of Delaware and his students. This protocol provides time synchroni-
zation for all of the computers within a network and is constructed to be both fault
tolerant and scalable to very large networks. It also includes features for authentica-
tion between clients and servers and for collecting and displaying statistics about its
operations. The protocol has a target precision of about 232 picoseconds.

How NTP Works
NTP operates in a hierarchical client/server fashion, with authoritative time values
moving down from the top-level servers through lower-level servers and then to cli-
ents. The entire scheme is based on the availability of what it calls stratum 1 servers:
servers that receive current time updates from a known-to-be-reliable source, such as
an attached reference clock. Servers that receive time values from these servers are
known as stratum 2 servers (and so on down the server hierarchy).

There are several options for obtaining authoritative time:

• The system can be connected to an external atomic clock.

• You can connect to the National Institute of Standards and Technology (NIST)
by modem and receive this data.

* An older mechanism uses the timed daemon. I recommend replacing it with ntpd, which has the advantage
of setting all of the clocks to the correct time. timed merely sets them all to the same time as the master server
and has no mechanism for ensuring that the time is accurate.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 8: Managing Network Services

• You can use a Global Positioning System (GPS)–based device, which can receive
time values as well as positioning information from satellite sources.

• You can obtain the authoritative time values for your network from external
stratum 1 NTP servers on the Internet. This is in fact the most common practice
for Internet-connected organizations that do not require the extreme precision
needed for a few real-time applications (e.g., air traffic control).

The web page http://www.eecis.udel.edu/~mills/ntp/servers.htm contains links to
lists of Internet-accessible stratum 1 and 2 servers. For most sites, a stratum 2
server is sufficient. Note that some servers require advance permission before
you may connect to them, so check the requirements carefully before setting up
a connection to an Internet NTP server.

In client mode, NTP makes periodic adjustments to the system clock based on the
authoritative time data that it receives from the relevant servers. If the current time
on the system differs from the correct time by more than 128 milliseconds, NTP
resets the system clock. In its normal mode of operation, however, NTP makes
adjustments to the system clock gradually by adjusting its parameters to achieve the
needed correction. Over time, the NTP daemon on the system records and analyzes
successive time errors—known as clock drift—and continues to correct the time
automatically based on this data, even when it cannot reach its time server system.
This entire process is known as disciplining the system clock.

In actual practice, NTP requires multiple sources of authoritative time. This strategy
is used to protect against both single points of failure and unreliability of any single
server (due to hardware failure, malicious tampering, and so on). In other words,

What Is Time?
Here we look at time strictly from a standards point of view.

In 1967, a second was defined as “the duration of 9,192,631,770 periods of the radia-
tion corresponding to the transition between the two hyperfine levels of the ground
state of the cesium-133 atom.” (Cesium atoms keep busy.) Before 1967, the length of
a second was tied to the Earth’s rotation, and the exact length of a second would get
longer each year. The time standard consisting of these 1967 standard seconds is
known as TAI (International Atomic Time).

Coordinated Universal Time (UTC) is the official standard for the current time used by
NTP. UTC evolved from the previous standard, Greenwich Mean Time (GMT).

Unfortunately, TAI time does not exactly mesh with how long it really takes the earth
to rotate on its axis. As a result, leap seconds are inserted into UTC about every 18
months to maintain synchronization with the planet’s slightly irregular and slowing
rotation. The leap seconds ensure that, on average, the Sun is directly overhead within
0.9 seconds of 12:00:00 UTC on the meridian of Greenwich, U.K.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Time Synchronization with NTP | 471

NTP views all time data with a certain amount of distrust, and its algorithms prefer
at least three time sources. Each distinct server is sampled multiple times, and the
NTP algorithms determine the best value to use for the current time from all of this
data (naturally taking into account the network latency, the amount of time required
for the time value to be transmitted from the remote server to the local system). This
value is then used to adjust the time on the local system as described above. In a sim-
ilar manner, client systems may also be configured to request time data from multi-
ple NTP servers.*

All in all, NTP functions extremely well, and all the systems within a network can
achieve synchronization to within a few milliseconds of one another. This level of
accuracy is more than sufficient for most organizations.

Setting Up NTP
The first step for implementing NTP within your network is, as usual, planning.
You’ll need to decide several things, including how and where to obtain authorita-
tive time values, the placement of NTP servers within the network, and which cli-
ents will connect to which servers. To get started, you might connect one or two
local servers to three external stratum 2 servers; the local servers will become the top-
level NTP servers within your organization. Then you can connect clients to the serv-
ers, and time synchronization will begin.

When things are working, you can move to the suggested configuration of three local
servers each connected to three external servers and using a total of at least five exter-
nal servers. Later, if necessary, you can add top-level servers or even another layer of
servers within your organization that use the externally-connected ones as their
authoritative time source.

Within an individual system, the NTP facility consists of a daemon process, a boot
script, a configuration file, several log files, and a few utilities. Installing it is very
easy. You can either download and build the package from source code or install it
from a package provided by your operating system vendor.

Once the software is installed, the next step is to configure the facility. NTP’s config-
uration file is conventionally /etc/ntp.conf. Here is a very simple sample file for a cli-
ent system:

server 192.168.15.33
logfile /var/log/ntp
driftfile /etc/ntp.drift

* Readers interested in very accurate time will be interested in this comment from one of the book’s reviewers:
“One of NTP’s few shortcomings is its inability to handle asymmetric path delays. The latest versions of NTP
mitigate this using the huff ’n’ puff filter (see the tinker command and huffpuff keyword in the ‘Miscellaneous
Options’ documentation).”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 8: Managing Network Services

The first line specifies a server to use when obtaining time data, and remaining lines
specify locations of NTP’s log file and drift file respectively (the latter stores data
about local clock errors for future time corrections).

The configuration files for servers also include a server entry for their sources of time
data. In addition, they may include lines like this one:

peer 192.168.15.56 key 7

This entry indicates that the indicated server is a peer, a computer with which the
local system will exchange—send and receive—time data. Generally, the top-level
servers within the organization can be configured as peers, functioning as both cli-
ents and servers with respect to one another and as servers with respect to general
client systems. The key keyword is used to specify an authentication key for this con-
nection (discussed below).

If a server has a reference clock connected to it, the server entry within its configura-
tion file is somewhat different:

server 127.127.8.0 mode 5

Reference clocks are usually connected via a serial line, and they are specified with an
IP address beginning with 127.127. The final two components of the IP address indi-
cate the type of device (check the device’s documentation) and unit number, respec-
tively.

NTP also includes an authentication facility, which enables clients and servers to ver-
ify that they are communicating with known and trusted computers. The facility is
based upon a private key scheme; keys are conventionally stored in the file /etc/ntp.
keys. This file can contain up to 65,536 32-bit keys. When in use, the facility adds
several lines to the configuration file:

keys /etc/ntp.keys
trustedkey 1 2 3 4 5 6 7 15
request key 15
control key 15

The first line identifies the NTP key file. The second line activates the indicated keys
within the file, and the remaining two lines specify which key to use for NTP queries
and configuration changes, where the indicated key functions as a password in those
contexts (corresponding to the ntpdc and ntpq utilities, respectively). Once specified
and enabled, these keys may be used with the key keyword in server and peer entries.

The most recent versions of NTP also include an additional authentication option
referred to as the autokey mechanism. This scheme was designed for NTP’s multi-
cast mode, in which time data is broadcast rather than being explicitly exchanged
between clients and servers. Using it, clients can generate session keys that can be
used to confirm the authenticity of received data.

Once configured, the NTP daemon must be started at boot time. On System V–style
systems, this is accomplished via a boot script within the usual /etc/rcn.d script

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Time Synchronization with NTP | 473

hierarchy (included as part of the NTP package); on BSD-style systems, you will have
to add the command to one of the boot scripts.

On client machines, at boot time, the system time may be explicitly synchronized to
that of its server by running the ntpdate utility included with the package. This com-
mand takes a form something like the following:

ntpdate -bs 192.168.15.56

The -b option says to set the system time explicitly (rather than adjusting it in the
normal manner), and the -s option says to send the command output to the syslog
facility (rather than standard output). The remaining item on the simple command
line is the IP address of a server from which to request the current time. Multiple
servers may be specified if desired. Be aware that running ntpdate must take place
before the NTP daemon is started. In addition, many application programs and their
associated server processes react rather badly to substantial clock changes after they
have started, so it is a good idea to perform time synchronization activities early
enough in the boot process that they precede the starting of other servers that might
depend on them.

Eventually, the command ntpdate will be retired, as its functionality has been
merged into ntpd in the most recent versions. The command form ntpd -g -q is the
equivalent form, and it queries the time and set the clock to it, exiting afterwards.
The server to contact is specified, as usual, in the configuration file.

Enabling ntpd under FreeBSD

FreeBSD systems provide nptd by default. The daemon is started by the rc.network
boot script at startup whenever the following variables are set in rc.conf or rc.config.
local in /etc:

xntpd_enable="YES" Start the ntpd daemon.
ntpdate_enable="YES" Run the ntpdate command at startup.
ntpdate_flags="-bs 10.1.5.22" Specify options to ntpdate (e.g., desired host).

By default, ntpd is disabled.

A Simple Authentic Time Option
For many sites, the usual authentic time options have significant inconveniences
associated with them. Reference clocks and GPS devices can be expensive, and using
an Internet-based time server can be inconvenient if your connectivity to the Internet
is intermittent. At my site, we’ve found a low-cost and simple solution suitable for
our network. It involves using an inexpensive clock that automatically synchronizes
to NIST’s WWVB time code by receiving its radio transmission.* In my case, the

* One reviewer notes, “You can do something similar with a hand-held GPS with a communication port.
These usually speak a marine control code, but it is trivial to convert it to RS-232.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 8: Managing Network Services

specific clock is an Atomic Time PC Desktop Clock (see http://www.arctime.com
under desktop clocks for details), which retails for about $100 U.S. The device is
shown in Figure 8-5.

Devices of this type can be used as reference clocks using the usual NTP facilities,
but this model is not supported. However, for my site, this is not a problem. We use
a simple Expect script to communicate with the device (which is attached to the
computer via a serial port) and to retrieve the current time:

#!/usr/bin/expect

set clock /dev/ttyS0
spawn -open [open $clock r+]

set the serial line characteristics
stty ispeed 300 ospeed 300 parenb -parodd \
 cs7 hupcl -cstopb cread clocal -icrnl \
 -opost -isig -icanon -iexten -echo -noflsh < $clock

send "o"
expect -re "(.)"
send "\r"
expect -re "(.)"
expect 16 or more characters
expect -re "(................*)"
exit

The script defines a variable pointing to the appropriate serial line, sets the line char-
acteristics using the stty command, and then communicates with the device via a
series of send and expect commands. These tell the clock to transmit the current
time and the script displays the resulting data on standard output:

Mon Oct 07 13:32:22 2002 -0.975372 seconds

We then use a Perl script to parse and reconstruct the data into a form required by
the date command; for example:

date 100713322002.22

Figure 8-5. Atomic Time PC Desktop Clock

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 475

(Remember that date’s argument format is mmddhhmmyyyy.ss.) We can then use
configuration file entries like the following to set up NTP on that computer:

server 127.127.1.1 # LCL (the local clock)
fudge 127.127.1.1 stratum 12

These lines specify the local system clock as the NTP time source. The server then
becomes the authoritative source of time information for all the other systems within
the network. These other systems use the standard NTP facility for synchronizing to
this time source. This level of ultimate time accuracy is perfectly adequate for our
simple needs. However, we set the server’s stratum to the highest value so that no
one else will consider our time authoritative.

An even simpler alternative is to simply define cron jobs on the other servers to
update the time from this master server once or twice a day (using ntpdate or ntpd -g
-q). This approach would also avoid the latencies introduced by the spawned sub-
processes.

Managing Network Daemons under AIX
In general, AIX uses the System Resource Controller to manage daemons, and the
ones related to networking are no exception. The startsrc and stopsrc commands
are used to manually start and stop server processes within the SRC. The following
commands illustrate the facility’s use with several common TCP/IP daemons:

stopsrc -g tcpip Stop all TCP/IP-related daemons.
stopsrc -s named Stop the DNS name server.
startsrc -s inetd Start the master networking server.
startsrc -g nfs Start all NFS-related daemons.

As these commands illustrate, the -s and -g options are used to specify the individ-
ual server or server group (respectively) to which the command applies. As usual, the
lssrc command may be used to display the status of daemons controlled by the SRC,
as in this command, which lists the servers within the nfs group:

lssrc -g nfs
Subsystem Group PID Status
biod nfs 344156 active
rpc.statd nfs 376926 active
rpc.lockd nfs 385120 active
nfsd nfs inoperative
rpc.mountd nfs inoperative

On this system, the daemons related to accessing remote filesystems are running,
while those related to providing remote access to local filesystems are not.

Monitoring the Network
For most of us, networking-related tasks make up a large fraction of our system
administration duties. Installing and configuring a network can be a daunting task,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 8: Managing Network Services

especially if you’re starting from scratch. However, monitoring and managing the
network on an ongoing basis can be no less daunting, especially for very large net-
works. Fortunately, there are a variety of tools to help with this job, ranging from
simple single-host network status utilities to complex network monitoring and man-
agement packages. In this section, we’ll take a look at representative examples of
each type, thereby enabling you to select the approach and software that is appropri-
ate for your site.

Standard Networking Utilities
We’ll begin with the standard Unix commands designed for various network moni-
toring and troubleshooting tasks on the local system. Each command provides a spe-
cific type of network information and allows you to probe and monitor various
aspects of network functionality. (We’ve already considered three such tools: ping
and arp in “Network Testing and Troubleshooting” in Chapter 5 and nslookup in
“Using the nslookup and dig utilities” earlier in this chapter).

The netstat command is the most general of these tools. It is used to monitor a sys-
tem’s TCP/IP network activity. It can provide some basic data about how much and
what kind of network activity is currently going on, and also summary information
for the recent past.

The specific output of the netstat command varies somewhat from
system to system, although the basic information that it provides is the
same. Moving from these generic examples to the format on your sys-
tems will be easy.

Without arguments, netstat lists all active network connections with the local host.*

In this output, it is often useful to filter out lines containing “localhost” to limit the
display to interesting data:

netstat | grep -v localhost
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 737 hamlet.1018 duncan.shell ESTABLISHED
tcp 0 0 hamlet.1019 portia.shell ESTABLISHED
tcp 348 0 hamlet.1020 portia.login ESTABLISHED
tcp 120 0 hamlet.1021 laertes.login ESTABLISHED
tcp 484 0 hamlet.1022 lear.login ESTABLISHED
tcp 1018 0 hamlet.1023 duncan.login ESTABLISHED
tcp 0 0 hamlet.login lear.1023 ESTABLISHED

On this host, hamlet, there are currently two connections each to portia, lear, and
duncan, and one connection to laertes. All but one of the connections—a connection

* Some versions of netstat also include data about Unix domain sockets in this report (omitted from the
upcoming example).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 477

to lear—are outgoing: the address form of a hostname with a port number appended
indicates the originating system for the connection.* The .login suffix indicates a con-
nection made with rlogin or with rsh without arguments; the .shell appendix indi-
cates a connection servicing a single command.

The Recv-Q and Send-Q columns indicate how much data is currently queued
between the two systems via each connection. These numbers indicate current,
pending data (in bytes), not the total amount transferred since the connection began.
(Some versions of netstat do not provide this information and thus always display
zeros in these columns.)

If you include netstat’s -a option, the display will also include passive connections:
network ports where a service is listening for requests. Here is an example from the
output:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 *:imap *:* LISTEN

Passive connections are characterized by the LISTEN keyword in the state column.

The -i option is used to display a summary of the network interfaces on the system:

netstat -i
Name Mtu Network Address Ipkts Opkts
lan0 1500 192.168.9.0 greta 2399283 932981
lo0 4136 127.0.0.0 loopback 15856 15856

This HP-UX system has one Ethernet interface named lan0. The output also gives the
maximum transmission unit (MTU) size for each interface’s local network and a
count of the number of incoming and outgoing packets since the last boot. Some ver-
sions of this command also give counts of the number of errors as well.

On most systems, you can follow the -i option with a time interval argument (in sec-
onds) to obtain an entirely different display comparing network traffic and error and
collision rates (in fact, -i is often optional). On Linux systems, substitute the -w
option for -i.

Here is an example of this netstat report:

netstat -i 5 | awk 'NR!=3 {print $0}'
 input (en0) output input (Total) output
packets errs packets errs colls packets errs packets errs colls
47 0 66 0 0 47 0 66 0 0
114 0 180 0 0 114 0 180 0 0
146 0 227 0 0 146 0 227 0 0
28 0 52 0 0 28 0 52 0 0
^C

* Why is this? Connections on the receiving system use the defined port number for that service, and netstat
is able to translate them into a service name like login or shell. The port on the transmitting end is just some
arbitrary port without intrinsic meaning and so remains untranslated.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 8: Managing Network Services

This command displays network statistics every five seconds.* This sample output is
in two parts: it includes two sets of input and output statistics. The left half of the
table (the first five columns) shows the data for the primary network interface; the
second half shows total values for all network interfaces on the system. On this sys-
tem, like many others, there is only one interface, so the two sides of the table are
identical.

The input columns show data for incoming network traffic, and the output columns
show data for outgoing traffic. The errs columns show the number of errors that
occurred while transferring the indicated number of network packets. These num-
bers should be low, less than one percent of the number of packets. Larger values
indicate serious network problems.

The colls column lists the number of collisions. A collision occurs when two hosts on
the network try to send a packet within a few milliseconds of one another.† When
this happens, each host waits a random amount of time before retrying the transmis-
sion; this method virtually eliminates repeated collisions by the same hosts. The num-
ber of collisions is a measure of how much network traffic there is, because the
likelihood of a collision happening is directly proportional to the amount of network
activity. Collisions are recorded only by transmitting hosts. On some systems, colli-
sion data isn’t tracked separately but rather is merged in with the output errors figure.

The collision rate is low on an average, well-behaved network using hubs or coax
cable, just a few percent of the total traffic. You should start to become concerned
when it rises above about five percent. Network segments using full-duplex switches
should not see any collisions at all, and any amount of them indicates that the switch
is overloaded.

The -s option displays useful statistics for each network protocol (cumulative since
the last boot). Here is an example output section for the TCP protocol:

netstat -s
...
Tcp:
 50 active connections openings
 0 passive connection openings
 0 failed connection attempts
 0 connection resets received
 3 connections established
 45172 segments received
 48365 segments send out
 1 segments retransmitted
 0 bad segments received
 3 resets sent

* The awk command throws away the first line after the headers, which displays cumulative totals since the last
reboot.

† Remember that collisions occur only on CSMA/CD Ethernet networks; token ring networks, for example,
don’t have collisions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 479

Some versions of netstat provide even more detailed per-protocol information.

netstat can also display the routing tables using its -r option. See “Adding a New
Network Host” in Chapter 5 for a discussion of this mode.

Graphical utilities to display similar data are also becoming common. For example,
Figure 8-6 illustrates some of the output generated by the ntop command, written by
Luca Deri (http://www.ntop.org). When it is running, the command generates web
pages containing the collected information.

The window on the left in the illustration depicts one of ntop’s most useful displays.
It shows incoming network traffic for the local system, broken down by origin. The
various columns list average and peak data transmission rates for each one. A similar
display for outgoing network traffic is also available. This information can be very
useful in narrowing down network performance problems to the specific systems
that are involved.

ntop provides many other tables and graphs of useful network data. For example, the
pie chart on the right side of the figure illustrates the breakdown of network traffic
by packet length.

As we’ve seen, the ping command is useful for basic network connectivity testing. It
can also be useful for monitoring network traffic by observing the round trip time
between two locations over time. The best way to do this is to tell ping to send a spe-
cific number of queries. The command format to do this varies by system:

Figure 8-6. Network traffic data produced by ntop

AIX and HP-UX ping host packet-size count
AIX, FreeBSD, Linux, and Tru-64 ping -c count [-s packet-size] host
Solaris ping -s host packet-size count

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 8: Managing Network Services

Here is an example from an AIX system:

ping beulah 64 5
PING beulah: (192.168.9.84): 56 data bytes
64 bytes from 192.168.9.84: icmp_seq=0 ttl=255 time=1 ms
64 bytes from 192.168.9.84: icmp_seq=1 ttl=255 time=0 ms
64 bytes from 192.168.9.84: icmp_seq=2 ttl=255 time=0 ms
64 bytes from 192.168.9.84: icmp_seq=3 ttl=255 time=0 ms
64 bytes from 192.168.9.84: icmp_seq=4 ttl=255 time=0 ms
----beulah PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 5/5/6 ms

This command pings beulah 5 times, using the default packet size of 64 bytes. The
summary at the bottom of the output displays the packet-loss statistics (here, none)
and round-trip time statistics. Used in this way, ping can provide a quick measure of
network performance, provided that you know what normal is for the connection in
question.

You can increase the packet size to a value greater than the MTU to force packet
fragmentation (a value above 1500 is usually sufficient for Ethernet networks) and
thereby use ping to monitor performance under those conditions.*

The traceroute command (devised by Van Jacobson) is used to determine the route
taken by network packets to arrive at their destination. It obtains this route informa-
tion by a clever scheme that takes advantage of the packet’s time-to-live (TTL) field,
which specifies the maximum hops the packet can travel before being discarded.
This field is automatically decremented by each gateway that the packet passes
through. If its value reaches 0, the gateway discards the packet and returns a mes-
sage back to the originating host (specifically, an ICMP time-exceeded message).

traceroute uses this behavior to identify each location in the route to the destina-
tion. It begins with a TTL of 1, so packets are discarded by the first gateway.
traceroute then obtains the gateway address from the resulting ICMP message. After
a fixed number of packets with TTL 1 (usually 3), the TTL is increased to 2. In the
same way, this packet is discarded by the second gateway, whose identity can be
determined by the resulting error message. The TTL is gradually increased in this
way until a packet reaches the destination.

Here is an example of traceroute in action:

traceroute www.fawc.org
traceroute to fawc.org (64.226.114.72),30 hops max,40 byte packets
 1 route129a.ycp.edu (208.192.129.2) 1.870 ms 1.041 ms 0.976 ms
 2 209.222.29.105 (209.222.29.105) 3.345 ms 3.929 ms 3.524 ms
 3 Serial2-2.GW4.BWI1.ALTER.NET (157.130.25.173) 9.155 ms ...
 4 500.at-0-1-0.XL2.DCA8.ALTER.NET (152.63.42.94) 8.316 ms ...

* The “ping of death” attacks (1998) consisted of fragmented ping packets that were too large for their memory
buffer. When the packet was reassembled and the buffer overflowed, the system crashed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 481

 5 0.so-0-0-0.TL2.DCA6.ALTER.NET (152.63.38.73) 9.931 ms ...
 6 0.so-7-0-0.TL2.ATL5.ALTER.NET (152.63.146.41) 24.248 ms ...
 7 0.so-4-1-0.XL2.ATL5.ALTER.NET (152.63.146.1) 25.320 ms ...
 8 0.so-7-0-0.XR2.ATL5.ALTER.NET (152.63.85.194) 24.330 ms ...
 9 192.ATM7-0.GW5.ATL5.ALTER.NET (152.63.82.13) 26.824 ms ...
10 interland1-gw.customer.alter.net (157.130.255.134) 24.498 ms ...
11 * * * No messages received from these hosts.
12 * * *
13 64.224.0.67 (64.224.0.67) 24.937 ms 25.155 ms 24.738 ms
14 64.226.114.72 (64.226.114.72) 26.058 ms 24.587 ms 26.677 ms

Each numbered line corresponds to a successive gateway in the route, and each line
displays the hostname (when available), IP address, and the round-trip times for each
of the three packets (I’ve truncated long lines to fit). This particular route spent quite
a bit of time traveling inside alter.net.

Sometimes, routers or firewalls drop ICMP packets or fail to send error messages.
These situations result in lines like 11 and 12, where three asterisks indicate that the
gateway could not be identified. Other lines may also contain asterisks for similar
reasons. Occasionally, the successive outgoing packets take different routes to the
destination, and different intermediate gateway data is returned. In such cases, all of
the gateways are listed.

Both traceroute and netstat provide a -n option which specifies that
output contain IP addresses only (and hostname resolution should not
be attempted). These options are useful for determining network infor-
mation when DNS name resolution is not working or is unavailable.

Packet Sniffers
Packet sniffers provide a means for examining network traffic on an individual
packet basis. They can be invaluable for troubleshooting problems related to a spe-
cific network operation, such as a client-server application, rather than general net-
work connectivity issues. They can also be abused, of course, and used for
eavesdropping purposes. For this reason, they must be run as root.

The freel tcpdump utility is the best-known tool of this type (it was originally written
by Van Jacobson, Craig Leres, and Steven McCanne and is available from http://www.
tcpdump.org). It is provided with the operating system by many vendors—all but HP-
UX and Solaris in our case—but can be built for these systems as well. (Solaris pro-
vides the snoop utility instead, which we’ll discuss later in this subsection.)

tcpdump allows you to examine the headers of TCP/IP packets. For example, the fol-
lowing command displays the headers for all traffic involving host romeo (some ini-
tial and trailing output columns have been stripped off to save space):

tcpdump -e -t host romeo
arp 42: arp who-has spain tell romeo
arp 60: arp reply spain is-at 03:05:f3:a1:74:e3
ip 58: romeo.1014 > spain.login: S 27643873:27643873(0) win 16384

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 8: Managing Network Services

ip 60: spain.login > romeo.1014: S 19898809:19898809(0) ack
 27643874 win 14335
ip 54: romeo.1014 > spain.login: . ack 1 win 15796
ip 55: romeo.1014 > spain.login: P 1:2(1) ack 1 win 15796
ip 60: spain.login > romeo.1014: . ack 2 win 14334
ip 85: romeo.1014 > spain.login: P 2:33(31) ack 1 win 15796
ip 60: spain.login > romeo.1014: . ack 33 win 14303
ip 60: spain.login > romeo.1014: P 1:2(1) ack 33 win 14335
...
ip 60: spain.login > romeo.1014: F 177:177(0) ack 54 win 14335
ip 54: romeo.1014 > spain.login: . ack 178 win 15788
ip 54: romeo.1014 > spain.login: F 54:54(0) ack 178 win 15796
ip 60: spain.login > romeo.1014: . ack 55 win 14334

This output displays the protocol and packet length, followed by the source and des-
tination hosts and ports. For TCP packets, this information is followed by the TCP
flags (a period or one or more uppercase letters), ack plus the acknowledgement
sequence number, and win plus the contents of the TCP window size field. Note that
the literal sequence numbers are displayed only in the first packet in each direction;
after that, relative numbers are used to improve readability.

So what good is this output? You can monitor the progress of a TCP/IP operation
(the packets that are displayed can be specified in a number of ways); here we see the
initial connection and final termination of an rlogin connection from romeo to spain.
You can also monitor how network traffic is affecting connections of interest by
observing the values in the window field. This field specifies the data window that
the sending host will accept in future packets, specifying the maximum number of
bytes. The window field also serves as the TCP flow-control mechanism, and a host
will reduce the value it places there when the host is congested or overloaded (it can
even use a value of 0 to temporarily halt incoming transmissions). In our example,
there are no congestion problems on either host.

tcpdump can also be used to display the contents of TCP/IP packets, using its -X
option, which displays packet data in hex and ASCII. For example, this command
displays the packet data from packets sent from mozart to salieri:

tcpdump -X -s 0 src mozart and dst salieri
...
0x0000 4510 0053 dd9e 4000 3c06 cbe8 c100 0935 E..S..@.<......5
0x0010 c100 09d8 0201 03fd 1ead 846c c70d c3d6 l....
0x0020 5018 f000 6e99 0000 4672 6920 4d61 7220 P...n...Fri.Mar.
0x0030 2031 2030 393a 3438 3a32 3120 4553 5420 .1.09:48:21.EST.
0x0040 3230 3032 0d0a 6d61 686c 6572 2d32 3032 2002..mozart-202
0x0050 3e3e >>

The output shows only one packet. It contains the current date and time and the ini-
tial prompt after a successful rlogin command from salieri to mozart.

The -s 0 option tells tcpdump to increase the number of bytes of data that are
dumped from each packet to whatever limit is required to display the entire packet
(the default is usually 60 to 80).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 483

We’ve now seen two examples of the arguments to tcpdump, which consists of an
expression specifying the packets to be displayed. In other words, it functions as a fil-
ter on incoming packets. A variety of keywords are defined for this purpose, and logi-
cal connectors are provided for creating complex conditions, as in this example:

tcpdump src \(mozart or salieri \) and tcp port 21 and not dst vienna

The expression in this command selects packets from mozart or salieri using TCP
port 21 (the FTP control port) that are not destined for vienna.

You can save packets to a file rather than displaying them immedi-
ately using the -w option. You then use the -r option to read from a
file rather than displaying current network traffic.

A few vendor-provided versions of tcpdump have some eccentricities:

• The AIX version does not provide the -X option (although you can dump pack-
ets in hex with -x). I recommend replacing it with the latest version from http://
www.tcpdump.org if you need to examine packet contents.

• Tru64 requires that the kernel be compiled with packet filtering enabled (via the
options PACKETFILTER directive). You must also create the pfilt device (interface):

 # cd /dev; MAKEDEV pfilt

Finally, you must configure the interface to allow tcpdump to set it to promiscu-
ous mode and to access the frame headers:

 # pfconfig +p +c network-interface

It is often useful to pipe the output of tcpdump to grep to further refine the displayed
output. Alternatively, you can use the ngrep command (written by Jordan Ritter,
http://www.packetfactory.net/projects/ngrep/) which builds grep functionality into a
packet filter utility. For an example of using ngrep, see “LDAP: Using a Directory
Service for User Authentication” in Chapter 6.

The Solaris snoop command

The Solaris snoop command is essentially equivalent to tcpdump, although I find its
output is more convenient and intuitive. Here is an example of its use:

snoop src bagel and dst acrasia and port 23
Using device /dev/eri (promiscuous mode)
 bagel -> acrasia TELNET C port=32574 a
 bagel -> acrasia TELNET C port=32574
 bagel -> acrasia TELNET C port=32574 e
 bagel -> acrasia TELNET C port=32574
 bagel -> acrasia TELNET C port=32574 f
 bagel -> acrasia TELNET C port=32574
 bagel -> acrasia TELNET C port=32574 r
 bagel -> acrasia TELNET C port=32574
 bagel -> acrasia TELNET C port=32574 i
 bagel -> acrasia TELNET C port=32574
 bagel -> acrasia TELNET C port=32574 s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 8: Managing Network Services

 bagel -> acrasia TELNET C port=32574
 bagel -> acrasia TELNET C port=32574 c
 bagel -> acrasia TELNET C port=32574
 bagel -> acrasia TELNET C port=32574 h

As this example illustrates, the snoop command accepts the same expressions as
tcpdump for use in filtering the packets to display. This output displays a portion of
the login sequence from a telnet session. The data from the packet is displayed to
the right of the header information; here we see the login name that was entered.

snoop has several useful options, as illustrated in these examples:

snoop -o file -q Save packets to a file.
snoop -i file Read packets from a file.
snoop -v [-p n] Display packet details (for packet n).

Packet collecting under AIX and HP-UX

HP-UX’s nettl facility and AIX’s iptrace and ipreport utilities are general-purpose
packet collection packages. They both collect network packet data into a binary file
and can display specified information from such files in an easy-to-read format. They
have the advantage that data collection is fundamentally decoupled from its display.

The specific data to save is highly configurable, and data collection occurs automati-
cally via a network daemon or cron job. This allows the facilities to gather and accu-
mulate a body of network information which can be used for troubleshooting and
performance analysis. In addition, ad hoc filtering can take place afterwards, allow-
ing for much more complex reporting.

The Simple Network Management Protocol
The tools discussed in the previous subsection can be very useful for examining net-
work operations and/or traffic for one or two systems. However, you’ll eventually
want to examine network traffic and other data in the context of the network as a
whole, moving beyond the point of view of any single system. Much more elaborate
tools are needed for this task. We will consider several examples of such packages in
the next section. To understand how they work, however, we’ll need to consider the
Simple Network Management Protocol (SNMP), the network service that underlies a
large part of the functionality of most network management programs. We’ll begin
with a brief look at SNMP’s fundamental concepts and data structures and then go
on to the practicalities of using it on Unix systems. Finally, we’ll discuss some secu-
rity issues that must be resolved when using SNMP.

For a more extended treatment of SNMP, I recommend Essential SNMP by Douglas
Mauro and Kevin Schmidt (O’Reilly & Associates).

SNMP concepts and constructs

SNMP was designed to be a consistent interface for both gathering data from and
seting parameters of various network devices. The managed devices can range from

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 485

switches and routers to network hosts (computers) running almost any operating
system. SNMP succeeds in doing this reasonably well, once you have it configured
and running everywhere you need it. The hardest part is getting used to its some-
what counterintuitive terminology, which I’ll attempt to decode in this section.

SNMP has been around for a while, and there are many versions of it (including sev-
eral flavors of Version 2). The ones that are implemented currently are Version 1 and
Version 2c. There is also a Version 3 in development as of this writing. We will
address version-specific issues when appropriate.

Figure 8-7 illustrates a basic SNMP setup. In this picture, one computer is the Net-
work Management Station (NMS). Its job is to collect and act on information from
the various devices being monitored. The latter are grouped on the right side of the
figure and include two computers, a router, a network printer, and an environmental
monitoring device (these are only a part of the range of devices that support SNMP).

In the simplest case, the NMS periodically polls the devices it is managing, sending
queries for the devices’ current status information. The devices respond by transmit-
ting the requested data. In addition, monitored devices can also send traps: unsolic-
ited messages to the NMS, usually generated when the value of some monitored
parameter falls out of the acceptable range. For example, an environmental monitor-
ing device may send a trap when the temperature or humidity is too low or too high.

The term manager is used to refer both to the monitoring software running on the
NMS as well as the computer (or other device) running the software. Similarly, the

Figure 8-7. SNMP manager and agents

Host

PrinterRouter

Work station

Network management
station (NMS)

Enviromental
monitor

Response

Poll

Response

Poll

Trap

“Manager”
SNMP client

“Agents”
SNMP servers

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 8: Managing Network Services

term agent refers to the software used by the monitored devices to generate and
transmit their status data, but it is also used more loosely to refer to the device being
monitored. Clearly, SNMP is a client-server protocol, but its usage of “client” and
“server” is reversed from the typical usage: the local manager functions as the client,
and the remote agents function as servers. This is similar to the terms’ usage in the X
Window system: X clients on remote hosts are displayed by the X server on the local
host. SNMP messages use TCP and UDP ports 161, and traps use TCP and UDP
ports 162. Some vendors use additional ports for traps (e.g., Cisco uses TCP and
UDP ports 1993).

For an SNMP manager to communicate with an agent, the manager must be aware
of the various data values that the agent keeps track of. The names and contents of
these data values are defined in one or more Management Information Bases (MIBs).
A MIB is just a collection of value/property definitions whose names are arranged
into a standard hierarchy (tree structure). A MIB is not a database but rather a
schema. A MIB does not hold any data values; it is simply a definition of the data val-
ues that are being monitored and that may be queried or modified. These data defini-
tions and naming conventions are used internally by the SNMP agent software, and
they are also stored in text files for use by SNMP managers. MIBs may be standard
and may be implemented by every agent, or proprietary, describing data values spe-
cific to a manufacturer and possibly to a device class.

This will become clearer when we look at an actual data value name. Consider this
one:

iso.org.dod.internet.mgmt.mib-2.system.sysLocation = “Dabney Alley 6 Closet”

The name of this data value is the long, italicized string on the left of the equal sign.
The various components of the name—separated by periods—correspond to differ-
ent levels of the MIB tree (starting with iso at the top). Thus, sysLocation is eight lev-
els deep within the hierarchy. The tree structure is used to group related data values
together. For example, the system group defines various data items that relate to the
overall system (or device), including its name, physical location (sysLocation), and
primary contact person. As this example indicates, not all SNMP data need be
dynamic.

Figure 8-8 illustrates the overall SNMP namespace hierarchy. The top levels of the
tree exist mainly for historical reasons, and most data resides in the mgmt.mib-2 and
private.enterprises subtrees. The former implements what is now the standard MIB,
named MIB II (it is an enhancement to the original standard), and it has a large num-
ber of items under it. Only two of its direct children are included in the illustration:
system, which holds general information about the device, and host, which holds
data related to computer systems. Other important children of mib-2 are interfaces
(network interfaces); ip, tcp, and udp (protocol-specific data); and snmp (SNMP traf-
fic data). Note that all names within the MIB are case-sensitive. Clearly, not all parts
of the hierarchy apply to all devices, and only the relevant portions are implemented
by most agents.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 487

The highlighted items in the figure are leaf nodes that actually contain data values.
Here, we see the system location description, the current number of processes on the
system, and the system load average (moving from left to right).

Each of the points with the MIB hierarchy has both a name and a number associated
with it. The numbers for each item are also given in the figure. You can refer to a data
point by either name or number. For example, iso.org.dod.internet.mgmt.mib-2.sys-
tem.sysLocation can also be referred to as 1.3.6.1.2.1.1.6. Similarly, the laLoad data
item can be specified as iso.org.dod.internet.private.enterprises.ucdavis.laTable.laEn-
try.laLoad and as 1.3.6.1.4.1.2021.10.1.3. Each of these name types is known generi-
cally as an OID (object ID). Usually, only the name of the final node—sysLocation or

Figure 8-8. General SNMP MIB hierarchy

iso (1)

org (3)

dod (6)

internet (1)

mgmt (2) private (4)

mib-2 (1) enterprises (1)

system (1) host (25) ucdavis (2021) ibm (2)

sysLocation (6) hrSystemProcesses (6) laTable (10) unix (4)

laEntry (1) cisco (9)

laLoad (3) hp (11)

dec (36)

sun (42)

compaq (232)

redhat (3212)

suse (7057)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 8: Managing Network Services

laLoad—is needed to refer to a data point, but occasionally the full version of the
OID must be specified (as we’ll see).

The private.enterprises portion of the MIB tree contains vendor-specific data defini-
tions. Each organization that has applied for one is assigned a unique identifier under
this mode; the ones corresponding to the vendors of our operating systems, U.C.
Davis, and Cisco are pictured. For a listing of all assigned numbers, see ftp://ftp.isi.
edu/in-notes/iana/assignments/enterprise-numbers/. You can request a number for
your organization from the Internet Assigned Numbers Authority (IANA) at http://
www.iana.org/cgi-bin/enterprise.pl.

The ucdavis subtree is important for Linux and FreeBSD systems, because the open
source Net-SNMP package is what is used on these systems. This package was devel-
oped by U.C. Davis for a long time (and Carnegie Mellon University before that),
and this is the enterprise-specific subtree that applies to open source SNMP agents.
This package is available for all the operating systems we are considering.

Another important MIB is the remote monitoring MIB, RMON. This MIB defines a
set of generic network statistics. It is designed to allow data collection from a series
of autonomous probes positioned around the network which ultimately transmit
summary data to a central manager. Probe capabilities are supported by many cur-
rent routers, switches and other network devices. Placing probes at strategic points
throughout a WAN can greatly reduce the network traffic required to monitor the
performance across the entire network by limiting the raw data collection to the
probes and minimizing communication with a distant NMS by reducing it to sum-
mary form.

Access to SNMP data is controlled by passwords called community names (or
strings). There are generally separate community names for the agent’s read-only and
read-write modes, as well as an additional name used with traps. Each SNMP agent
knows its name (i.e., password) for each mode and will not answer queries which
specify anything else. Community names can be up to 32 characters long and should
be chosen using the same security considerations as root passwords. We’ll discuss
other security implications of community names in a bit later.

Unfortunately, many devices are delivered with SNMP enabled, using the default
read-only community string public and sometimes the default read-write community
string private. It is imperative that you change these values before the device is placed
on the network (or that you disable SNMP for the device). Otherwise, you immedi-
ately place the device at risk for easy attack for hijacking and tampering by hackers,
and its can vulnerability can put other parts of your network at risk.

The procedure for changing this value varies by device. For hosts, you change it in
the configuration file associated with the SNMP agent. For other types of devices,
such as routers, consult the documentation provided by the manufacturer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 489

In contrast to the relative complexity of the data definitions, the set of SNMP opera-
tions that monitor and manage devices is quite limited, consisting of get (to request a
value from device), set (to specify the value of a modifiable device parameter), and
trap (to send a trap message to a specified manager). In addition, there are a few vari-
ations on these basic operations, such as get-next, which requests the next data item
in the MIB hierarchy. We’ll see the operations in action in the next subsection.

SNMP implementations

The commercial Unix operating systems we are considering all provide an SNMP
agent, implemented as a single daemon or a series of daemons. In addition, the Net-
SNMP package provides SNMP functionality for Linux, FreeBSD, and other free
operating systems. It can also be used with commercial Unix systems that do not
provide SNMP support.

AIX and Net-SNMP also provide some simple utilities for performing client opera-
tions. The utilities from the latter may also be built and used for systems providing
their own SNMP agent.

Table 8-10 lists the various components of the SNMP packages provided by and
available to the various operating systems we are considering.

Table 8-10. SNMP components

Component Location

Insecure agent running after initial OS
install?

AIX: yes
HP-UX: yes
Net-SNMPa: no
Solaris: yes
Tru64: yes

Primary agent daemon AIX: /usr/sbin/snmpd
HP-UX: /usr/sbin/snmpdm
Net-SNMP: /usr/local/sbin/snmpd /usr/sbin/snmpd (SuSE Linux)
Solaris: /usr/lib/snmp/snmpdx
Tru64: /usr/sbin/snmpd

Agent configuration file(s) AIX: /etc/snmpd.conf
HP-UX: /etc/SnmpAgent.d/snmpd.conf
Net-SNMP: /usr/local/share/snmp/snmpd.conf /usr/share/snmp/snmpd.conf (SuSE

Linux)
Solaris: /etc/snmp/conf/snmpdx.* and /etc/snmp/conf/snmpd.conf
Tru64: /etc/snmpd.conf

MIB files AIX: /etc/mib.defs
HP-UX: /etc/SnmpAgent.d/snmpinfo.dat /opt/OV/snmp_mibs/* (OpenView)
Net-SNMP: /usr/share/snmp/mibs/*
Solaris: /var/snmp/mib/*
Tru64: /usr/examples/esnmp/*

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 8: Managing Network Services

We’ll consider some of the specifics for the various operating systems a bit later in
this section.

Net-SNMP client utilities

Unlike most implementations, the Net-SNMP package includes several useful utili-
ties that can be used to query SNMP devices. You can build these tools for most
operating systems even when they provide their own SNMP agent, so we’ll consider
them in some detail in this section. In addition, reading these examples will provide
you with a greater understanding of how SNMP works, regardless of the specific
implementation.

The first tool we’ll consider is snmptranslate, which provides information about the
MIB structure and its entities (but does not display any actual data). Table 8-11 lists
the most useful snmptranslate commands.

Enterprise number(s) AIX: 2 (ibm), 4 (unix)
HP-UX: 11 (hp)
Net-SNMP: 2021 (ucdavis)
Linux: Red Hat: 3212; SuSE: 7057
Solaris: 42 (sun)
Tru64: 36 (dec), 232 (compaq)

Management/monitoring package AIX: Tivoli
HP-UX: OpenView
Solaris: Solstice Enterprise Manager

Boot script that starts the SNMP
agent(s)

AIX: /etc/rc.tcpip
FreeBSD: /etc/rc (add command manually)
HP-UX: /sbin/init.d/Snmp*
Linux: /etc/init.d/snmpd
Solaris: /etc/init.d/init.snmpdx
Tru64: /sbin/init.d/snmpd

Boot script config. file: relevant entries Usual: none used
HP-UX: /etc/rc.config.d/Snmp*: SNMP_*_START=1
Linux: SuSE 7: /etc/rc.config: START_SNMPD="yes“

a Net-SNMP is used on FreeBSD and Linux systems.

Table 8-11. Useful snmptranslate commands

Purpose Command

Display MIB subtree snmptranslate -Tp .oida

Text description for OID snmptranslate -Td .oida

Show full OID name (mib-2 subtree only) snmptranslate -IR -On name

Table 8-10. SNMP components (continued)

Component Location

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 491

As an example, we’ll define an alias (using the C shell) which takes a terminal leaf
entry name (in the mib-2 tree) as its argument and then displays the definition for
that item, including its full OID string and numeric equivalent. Here is the alias defi-
nition:

% alias snmpwhat 'snmptranslate -Td `snmptranslate -IR -On \!:1`'

The alias uses two snmptranslate commands. The one in back quotes finds the full
OID for the specified name (substituted in via !:1). Its output becomes the argu-
ment of the second command, which displays the description for this data item.

Here is an example using the alias which shows the description for the sysLocation
item we considered earlier:

% snmpwhat sysLocation
.1.3.6.1.2.1.1.6
sysLocation OBJECT-TYPE
 -- FROM SNMPv2-MIB, RFC1213-MIB
 -- TEXTUAL CONVENTION DisplayString
 SYNTAX OCTET STRING (0..255)
 DISPLAY-HINT "255a"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "The physical location of this node (e.g.,
 'telephone closet, 3rd floor'). If the location is
 is unknown, the value is the zero-length string."
::={iso(1) org(3) dod(6) internet(1) mgmt(2) mib-2(1) system(1) 6}

Other forms of the snmptranslate command provide related information.

The snmpget command retrieves data from an SNMP agent. For example, the follow-
ing command displays the value of sysLocation from the agent on beulah, specifying
the community string as somethingsecure:

snmpget beulah somethingsecure sysLocation.0
system.sysLocation.0 = "Receptionist Printer"

The specified data location is followed by an instance number, which is used to spec-
ify the row number within tables of data. For values not in tables—scalars—it is
always 0.

For tabular data, indicated by an entry named somethingTable within the OID, the
instance number is the desired table element. For example, this command retrieves
the 5-minute load average value, because the 1-, 5-, and 15-minute load averages are

Translate OID name to number snmptranslate -IR name

Translate OID number to name snmptranslate -On .number†

a Absolute OIDs (numeric or text) are preceded by a period.

Table 8-11. Useful snmptranslate commands (continued)

Purpose Command

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 8: Managing Network Services

stored in the successive rows of the enterprises.ucdavis.laTable (as defined in the
MIB):

snmpget beulah somethingsecure laLoad.2
enterprises.ucdavis.laTable.laEntry.laLoad.2 = 1.22

The snmpwalk command displays the entire subtree underneath a specified node. For
example, this command displays all data values under iso.org.dod.internet.mgmt.mib-
2.host.hrSystem:

snmpwalk beulah somethingsecure host.hrSystem
host.hrSystem.hrSystemUptime.0 = Timeticks: (31861126)
 3 days, 16:30:11.26
host.hrSystem.hrSystemDate.0 = 2002-2-8,11:5:4.0,-5:0
host.hrSystem.hrSystemInitialLoadDevice.0 = 1536
host.hrSystem.hrSystemInitialLoadParameters.0 =
 "auto BOOT_IMAGE=linux ro root=2107
 BOOT_FILE=/boot/vmlinuz enableapic vga=0x0314."
host.hrSystem.hrSystemNumUsers.0 = Gauge32: 1
host.hrSystem.hrSystemProcesses.0 = Gauge32: 205
host.hrSystem.hrSystemMaxProcesses.0 = 0

The format of each output line is:

OID = [datatype:] value

If you’re curious what all these items are, use snmptranslate to get their full descrip-
tions.

Finally, the snmpset command can be used to modify writable data values, as in this
command, which changes the device’s primary contact (the s parameter indicates a
string data type):

snmpset beulah somethingelse sysContact.0 s "chavez@ahania.com"
system.sysContact.0 = chavez@ahania.com

Other useful data types are i for integer, d for decimal, and a for IP address (see the
manual page for the entire list).

Generating traps. The Net-SNMP package includes the snmptrap command for manu-
ally generating traps. Here is an example of its use, which also illustrates the general
characteristics of traps:

snmptrap -v2c dalton anothername '' .1.3.6.1.6.3.1.1.5.3 \
 ifIndex i 2 ifAdminStatus i 1 ifOperStatus i 1

The -v2c option indicates that an SNMP version 2c trap is to be sent (technically,
version 2 traps are called notifications).The next two arguments are the destination
(manager) and community name. The next argument is the device uptime, and it is
required for all traps. Here, we specify a null string, which defaults to the current
uptime. The final argument in the first line is the trap OID; these OIDs are defined in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 493

one of the MIBs used by the device. This one corresponds to the linkDown (as
defined in the IF-MIB), defined as a network interface changing state.

The remainder of the arguments (starting with ifIndex) are determined by the spe-
cific trap being sent. This one requires the interface number and its administrative
and operational statuses, each specified via a keyword–data type–value triple (these
particular data types are all integer). In this case, the trap specifies interface 2. A sta-
tus value of 1 indicates that the interface is up, so this trap is a notification that it has
come back online after being down.

Here is the syslog message that might be generated by this trap:

Feb 25 11:44:21 beulah snmptrapd[8675]: beulah.local[192.168.9.8]:
Trap system.sysUpTime.0 = Timeticks:(144235905) 6 days, 06:39:19,
.iso.org.dod.internet.snmpV2.snmpModules.snmpMIB.snmpMIBObjects.
 snmpTrap.snmpTrapOID.0 = OID: 1.1.5.3,
interfaces.ifTable.ifEntry.ifIndex = 2,
interfaces.ifTable.ifEntry.ifAdminStatus = up(1),
interfaces.ifTable.ifEntry.ifOperStatus = up(1)

SNMP-managed devices generally come with predefined traps that you can some-
times enable/disable during configuration. Some agents are also extensible and allow
you to define additional traps.

AIX and Tru64 clients. AIX also provides an SNMP client utility, snmpinfo. Here is an
example of its use:

snmpinfo -c somethingsecure -h beulah -m get sysLocation.0
system.sysLocation.0 = "Receptionist Printer"

The -c and -h options specify the community name and host for the operation,
respectively. The -m option specifies the SNMP operation to be performed—here,
get—and other options are next and set.

Here is the equivalent command as it would be run on a Tru64 system:

snmp_request beulah somethingsecure get 1.3.6.1.2.1.1.6.0

Yes, it really does require the full OID. The third argument specifies the SNMP oper-
ation, and other keywords used there are getnext, getbulk and set.

Configuring SNMP agents

In this section, we’ll look at the configuration file for each of the operating systems.

Net-SNMP snmpd daemon (FreeBSD and Linux). FreeBSD and Linux systems use the Net-
SNMP package (http://www.net-snmp.org), also previously known as UCD-SNMP.
The package provides both a Unix host agent (the snmpd daemon) and a series of cli-
ent utilities.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 8: Managing Network Services

On Linux systems, this daemon is started with the /etc/init.d/snmp boot script and
uses the /usr/local/share/snmp/snmpd.conf configuration file by default.* On FreeBSD
systems, you must add a command like the following to one of the system boot
scripts (e.g., /etc/rc):

/usr/local/sbin/snmpd -L -A

The options tell the daemon to send log messages to standard output and standard
error instead of to a file. You can also specify an alternate configuration file using the
-c option.

Here is a sample Net-SNMP snmpd.conf file:

snmpd.conf
rocommunity somethingsecure
rwcommunity somethingelse
trapcommunity anothername
trapsink dalton.ahania.com
trap2sink dalton.ahania.com

syslocation "Building 2 Main Machine Room"
syscontact "chavez@ahania.com"

Net-SNMP-specific items: conditions for error flags
#keyw [args] limit(s)
load 5.0 6.0 7.0 1,5,15 load average maximums.
disk / 3% root filesystem below 3% free.
proc portmap 1 1 Must be exactly one portmap process running.
proc cron 1 1 Require exactly one cron process.
proc sendmail Require at least one sendmail process.

The first three lines of the file specify the community name for accessing the agent in
read-only and read-write mode and the name that will be used when it sends traps
(which need not be a distinct value as above). The next two lines specify the trap des-
tination for SNMP version 1 and version 2 traps; here it is host dalton.

The next section specifies the values of two MIB II variables, describing the location
of the device and its primary contact. They are both located under mib-2.system.

The final section defines some Net-SNMP–specific monitoring items. These items
check for a 1-, 5-, or 15-minute load average above 5.0, 6.0, or 7.0 (respectively),
whether the free space in the root filesystem has dropped below 3%, and whether the
portmap, cron, and sendmail daemons are running. When the corresponding value
falls outside of the allowed range, the SNMP daemon sets the corresponding error
flag data value under enterprises.ucdavis for the table row corresponding to the speci-
fied monitoring item: laTable.laEntry.laErrorFlag, dskTable.dskEntry.dskErrorFlag,
and prTable.prEntry.prErrorFlag, respectively. Note that traps are not generated.

* Be aware that the RPMs provided with recent SuSE operating systems use the /etc/ucdsnmpd.conf configura-
tion file instead, although you can change this by editing the boot script. The canonical configuration file
location under SuSE is also different: /usr/share/snmp.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 495

You can also use the command snmpconf -g to configure a snmpd.conf
file. Add the -i option if you want the command to automatically
install the new file into the proper directory (rather than placing it in
the current directory).

Net-SNMP access control. The community definition entries introduced above also have
a more complex form in which they accept additional parameters to specify access
control. For example, the following command defines the read-write community as
localonly for the 192.168.10.0 subnet:

rwcommunity localonly 192.168.10.0/24

The subnet to which the entry applies is specified by the second parameter.

Similarly, the following command specifies a read-only community name secureread
for host callisto and limits access from that host to the mib-2.hosts subtree.

rocommunity secureread callisto .1.3.6.1.2.1.25

The starting point for allowed access is specified as the entry’s third parameter.

This syntax is really a compact form of the general Net-SNMP access control direc-
tives com2sec, view, group, and access. The first two are the most straightforward:

#com2sec name origin community
com2sec localnet 192.168.10.0/24 somethinggood
com2sec canwrite 192.168.10.22 somethingbetter

#view name in or out subtree [mask]
view mibii included .1.3.6.1.2.1
view sys included .1.3.6.1.2.1.1

The com2sec directive defines a named query source–community name pair; this item
is known as a security name. In our example, we define the name localnet for queries
originating in the 193.0.10 subnet using the community name somethinggood.

The view directive assigns a name to a specific subtree; here we give the mib-2 sub-
tree the label mibii and the name sys to the system subtree. The second parameter
indicates whether the specified subtree is included or excluded from the specified
view (more than one view directive can be used with the same view name). The
optional mask field takes a hexadecimal number, which is interpreted as a mask fur-
ther limiting access within the given subtree, for example, to specific rows within a
table (see the manual page for details).

The group directive associates a security name (from com2sec) with a security model
(corresponding to an SNMP version level). For example, the following entries define
the group local as the localnet security name with each of the available security models:

#group grp name model sec. name
group local v1 localnet
group local v2c localnet
group local usm localnet usm means version 3.
group admin v2c canwrite

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 8: Managing Network Services

The final entry defines the group admin as the canwrite security name with SNMP
Version 3.

Finally, the access entry brings all of these items together to define specific access:

group read write notify
#access name context model level match view view view
access local "" any noauth exact mibii none none
access admin "" v2c noauth exact all sys all

The first entry allows queries of the mib-2 subtree from the 192.168.10 subnet using
the community string somethinggood while rejecting all other operations (access hap-
pens via the mibii view). The second entry allows any query and notification from
193.0.10.22 and also allows set operations within the system subtree from this source
using SNMP version 2c clients, all using the somethingbetter community name.

See the snmpd.conf manual page for full details on these directives.

The Net-SNMP trap daemon. The Net-SNMP package also includes the snmptrapd dae-
mon for handling traps that are received. You can start the daemon manually by
entering the snmptrapd -s command, which says to send trap messages to the syslog
Local0 facility (warning level). If you want it to be started at boot time, you’ll need to
add this command to the /etc/init.d/snmp boot script.

The daemon can also be configured by the /usr/share/snmp/snmptrapd.conf file.
Entries in this file have the following format:

traphandle OID|default program [arguments]

traphandle is a keyword, the second field holds the trap’s OID or the keyword
default, and the remaining items specify a program to be run when that trap is
received, along with any arguments. A variety of data is passed to the program when
it is invoked, including the device’s hostname and IP address and the trap OID and
variables. See the documentation for full details.

Note that snmptrapd is a very simple trap-handler. It is useful if you want to record or
handle traps on a system without a manager as well as for experimentation and
learning purposes. However, in the long run, you’ll want a more sophisticated man-
ager. We’ll consider some of these later in this section.

Configuring SNMP nder HP-UX. HP-UX uses a series of SNMP daemons (subagents), all
controlled by the SNMP master agent, snmpdm. The daemons are started by scripts in
the /sbin/init.d subdirectory. The SnmpMaster script starts the master agent.

The subagents are:

• The HP-UX subagent (/usr/sbin/hp_unixagt), started by the SnmpHpunix script.

• The MIB2 subagent (/usr/sbin/mib2agt), started by the SnmpMib2 script.

• The trap destination subagent (/usr/sbin/trapdestagt), started by the SnmpTrpDst
script.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 497

HP-UX also provides the /usr/lib/snmp/snmpd script for starting all the daemons in a
single operation.

The main configuration file is /etc/SnmpAgent.d/snmpd.conf. Here is an example of
this file:

get-community-name: somethingsecure
set-community-name: somethingelse
max-trap-dest: 10 Max. number of trap destinations.
trap-dest: dalton.ahania.com
location: "machine room"
contact: "chavez@ahania.com"

There are also more complex versions of the community name definition entries
which allow you to specify access control on a per-host basis, as in this example:

get-community-name: somethingsecure \
 IP: 192.168.10.22 192.168.10.222 \
 VIEW: mib-2 enterprises -host Use -name to exclude a subtree.
default-mibVIEW: internet Default accessible subtree.

The first entry (continued across three lines) allows two hosts from the 192.168.10
subnet to access the mib-2 and enterprises subtrees (except the former’s host subtree)
in read-only mode, using the somethingsecure community name. The second entry
defines the default MIB access; it is applied to queries from hosts for which no spe-
cific view has been specified.

HP-UX’s SNMP facility is designed to be used as part of its OpenView
network management facility, a very elaborate package which allows
you to manage many aspects of computers and other network devices
from a central control station. In the absence of this package, the
SNMP implementation is fairly minimal.

Configuring SNMP under Solaris. Solaris’ SNMP agent is the snmpdx daemon.* It controls
a number of subagents. The most important of these is mibiisa, which responds to
standard SNMP queries within the mib-2 and enterprises.sun subtrees (although MIB
II is only partially implemented).

The daemons use configuration files in /etc/snmp/conf. The primary settings are con-
tained in snmpd.conf. Here is an example:

set some system values
sysdescr "old Sparc used as a router"
syscontact "chavez@ahania.com"
syslocation "Ricketts basement"

default communities and trap destination
read-community hardtoguess

* Solaris also supports the Desktop Management Interface (DMI) network management standard, and its dae-
mons can interact with snmpdx on these systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 8: Managing Network Services

write-community hardertoguess
trap-community usedintraps
trap dalton.ahania.com Maximum of 5 destinations.

hosts allowed to query (5/line, max=32)
manager localhost dalton.ahania.com hogarth.ahania.com
manager blake.ahania.com

Be aware of the difference between the community definition entries in the preced-
ing example and those named system-read|write-community; the latter allow access
to the system subtree only.

The snmpdx.acl configuration file may be used to define more complex access con-
trol, via entries like these:

acl = {
 {
 communities = somethinggreat
 access = read-write
 managers = localhost, dalton.ahania.com
 }
 {
 communities = somethinggood
 access = read-only
 managers = iago.ahania.com, hamlet.ahania.com, ...
 }
 }

This access control entry defines the access levels and associated community strings
for two lists of hosts: the local system and dalton receive read-write access using the
somethinggreat community name, and the second list of hosts receives read-only
access using the somethinggood community name.

The AIX snmpd daemon. AIX’s snmpd agent is configured via the /etc/snmpd.conf config-
uration file. Here is an example:

what to log and where to log it
logging file=/usr/tmp/snmpd.log enabled
logging size=0 level=0

agent information
syscontact "chavez@ahania.com"
syslocation "Main machine room"

#community name [IP-address netmask [access [view]]]
community something
community differs 127.0.0.1 255.255.255.255 readWrite
community sysonly 127.0.0.1 255.255.255.255 readWrite 1.17.2
community netset 192.168.10.2 255.255.255.0 readWrite 1.3.6.1

#view name [subtree(s)]
view 1.17.2 system enterprises
view 1.3.6.1 internet

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 499

#trap community destination view mask
trap trapcomm dalton 1.3.6.1 fe

This file illustrates both general server configuration and access control. The latter is
accomplished via the community entries, which not only define a community name,
but also optionally limit its use to a host and potentially an access type (read-only or
read-write) and a MIB subtree. The latter are defined in view directives. Here we
define one view consisting of the system and enterprises subtrees and another consist-
ing of the entire internet subtree. Note that the view names must consist of an OID-
like string in dotted notation.

The Tru64 snmpd daemon. The Tru64 snmpd agent is also configured via the /etc/snmpd.
conf configuration file. Here is an example:

sysLocation "Machine Room"
sysContact "chavez@ahania.com"

#community name IP-address access
community something 0.0.0.0 read Applies to all hosts.
community another 192.168.10.2 write

#trap [version] community destination[:port]
trap trapcomm 192.168.10.22
trap v2c trap2comm 192.168.10.212

The first section of the file specifies the usual MIB variables describing this agent.
The second section defines community names; the arguments specify the name, the
host to which it applies (0.0.0.0 means all hosts), and the type of access. The final
section defines trap destinations for all traps and for version 2c traps.

SNMP and security

As with any network service, SNMP has a variety of associated security concerns and
tradeoffs. At the time of this writing (early 2002), a major SNMP vulnerability was
uncovered and its existence widely publicized (see http://www.cert.org/advisories/CA-
2002-03.html). Interestingly, Net-SNMP was one of the few implementations that
did not include the problem, while all of the commercial network management pack-
ages were affected.

In truth, prior to Version 3, SNMP is not very secure. Unfortunately, many devices
do not yet support this version, which is still in development and is a draft standard,
not a final one. One major problem is that community names are sent in the clear
over the network. Poor coding practices in SNMP agents also mean that some
devices are vulnerable to takeover via buffer overflow attacks, at least until their ven-
dors provide patches. Thus, a decision to use SNMP involves balancing security
needs with the functionality and convenience that it provides. Along these lines, I
can make the following recommendations:

• Disable SNMP on devices where you are not using it. Under Linux, remove any
links to /etc/init.d/snmp in the rcn.d subdirectories.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 8: Managing Network Services

• Choose good community names.

• Change the default community names before devices are added to the network.

• Use SNMP Version 3 clients whenever possible to avoid compromising your
well-chosen community names.

• Block external access to the SNMP ports: TCP and UDP ports 161 and 162, as
well as any additional vendor-specific ports (e.g., TCP and UDP port 1993 for
Cisco). You may also want to do so for some parts of the internal network.

• Configure agents to reject requests from any but a small list of origins (when-
ever possible).

• If you must use SNMP operations across the Internet (e.g., from home), do so
via a virtual private network or access the data from a web browser using SSL.
Some applications that display SNMP data are discussed in the next section of
this chapter.

• If your internal network is not secure and SNMP Version 3 is not an option, con-
sider adding a separate administrative network for SNMP traffic. However, this
is an expensive option, and it does not scale well.

As I’ve hinted above, SNMP Version 3 goes a long way toward fixing the most egre-
gious SNMP security problems and limitations. In particular, it sends community
strings only in cryptographically encoded form. It also provides optional user-based
authenticated access control for SNMP operations. All in all, learning about and
migrating to SNMP Version 3 is a very good use of your time.

Network Management Packages
Network management tools are designed to monitor resources and other system sta-
tus metrics on groups of computer systems and other network devices: printers, rout-
ers, UPS devices, and so on. In some cases, performance data can be monitored as
well. The current data is made available for immediate display, usually via a web
interface, and the software updates and refreshes the display frequently.

Some programs are also designed to be proactive and actively look for problems: sit-
uations in which a system or service is unusable (basic connectivity tests fail) or the
value of some metric has moved outside the acceptable range (e.g., the load average
on a computer system rises above some preset level, indicating that CPU resources
are becoming scarce). The network monitor will then notify the system administra-
tor about the potential problem, allowing her to intervene before the situation
becomes critical. The most sophisticated programs can also begin fixing some prob-
lems themselves when they are detected.

Standard Unix operating systems provide very little in the way of status monitoring
tools, and those utilities that are included are generally limited to examining the local
system and its own network context. For example, you can determine current CPU
usage with the uptime command, memory usage with the vmstat command, and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 501

various aspects of network connectivity and usage via the ping, traceroute and
netstat commands (and their GUI-based equivalents).

In recent years, a variety of more flexible utilities have appeared. These tools allow
you to examine basic system status data for group of computers from a single moni-
toring program on one system. For example, Figure 8-9 illustrates some simple out-
put from the Angel Network Monitor program, written by Marco Paganini (http://
www.paganini.net/angel/). The image has been converted to black and white from the
full-color original.

The display produced by this package consists of a matrix of systems and monitored
items, and it provides an easy-to-understand summary display of the current status
for each valid combination. Each row of the table corresponds to the specified com-
puter system, and the various columns represent a different network service or other
system characteristic that is being monitored. In this case, we are monitoring the sta-
tus of the FTP facility, the web server service, the system load average, and the elec-
tronic mail protocol, although not every item is monitored for every system.

In its color mode, the tools uses green bars to indicate that everything is OK (white
in the figure), yellow bars for a warning condition, red bars for a critical condition
(gray in the figure), and black bars to indicate that data collection failed (black in the

Figure 8-9. The Angel Network Monitor

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 8: Managing Network Services

figure). A missing bar means that the data item is not being collected for the system
in question.

In this case, system callisto is having problems with its load average (it’s probably too
high), and its SMTP service (probably not responding). In addition, the load average
probe to system bagel failed. Everything else is currently working properly.

The angel command is designed to be run manually. Once it is finished, a file named
index.html appears in the package’s html subdirectory, containing the display we just
examined. The page is updated each time the command is run. If you want continu-
ous updates, you can use the cron facility to run the command periodically. If you
want to be able to view the status information from any location, you should create a
link to index.html within the web server documents directory.

The Angel Network Monitor is also very easy to configure. It consists of a main Perl
script (angel) and several plug-ins, auxiliary scripts that perform the actual data gath-
ering. The facility uses two configuration files, which are stored in the conf subdirec-
tory of the package’s top-level directory. I had to modify only one of them, hosts.
conf, to start viewing status data.

Here is a sample entry from that file:

#label :plug-in :args :column:images
host!port critical!warning !failure
ariadne:Check_tcp:ariadne!ftp:FTP:alertred!alertyellow!alertblack

The (colon-separated) fields hold the label for the entry (which appears in the dis-
play), the plug-in to run, its arguments (separated by !’s), the table column header,
and the graphics to display when the retrieved value indicates a critical condition, a
warning condition, or a plug-in failure. This entry checks the FTP service on ariadne
by attempting to connect to its standard port (a numeric port number can also be
used) and uses the standard red, yellow, and black bars for the three states (the OK
state is always green).

The other provided plug-ins allow you to check whether a device is alive (via ping),
the system load average (uptime), and the available disk space (df). It is easy to
extend its functionality by writing additional plug-ins and to modify its behavior by
editing its main configuration file.

The Angel Network Monitor performs well at the job it was designed for: providing a
simple status display for a group of hosts. In doing so, it operates from the point of
view of the local system, monitoring those items that can be determined easily by
external probes, such as connecting to ports on a remote system or running simple
commands via rsh or ssh. While its functionality can be extended, more complex
monitoring needs are often better met by a more sophisticated package.

Proactive network monitoring

There is no shortage of packages that provide more complex monitoring and event-
handling capabilities. While these packages can be very powerful tools for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 503

information gathering, their installation and configuration complexity scales at least
linearly with their features. There are several commercial programs that provide this
functionality, including Computer Associates’ Unicenter and Hewlett-Packard’s
OpenView (see the cover article in the January 2000 issue of Server-Workstation
Expert magazine for an excellent overview, available at http://swexpert.com/F/SE.F1.
JAN.00.pdf). There are also many free and open source programs and projects,
including OpenNMS (http://www.opennms.com), Sean MacGuire’s Big Brother (free
for non-commercial uses, http://www.bb4.com) and Thomas Aeby’s Big Sister (http://
bigsister.graeff.com). We’ll be looking at the widely-used NetSaint package, written
by Ethan Galstad (http://netsaint.org).

NetSaint. NetSaint is a full-featured network monitoring package which can not only
provide information about system/resource status across an entire network but can
also be configured to send alerts and perform other actions when problems are
detected.

NetSaint’s continuing development is taking place under a new name,
Nagios, with a new web site (http://www.nagios.com). As of this writ-
ing, the new package is still in an alpha version, so we’ll discuss Net-
Saint here. Nagios should be 100% backward compatible with
NetSaint as it develops toward Version 1.0.

Installing NetSaint is straightforward. Like most of these packages, it has several pre-
requisites (including MySQL and the mping command).* These are the most impor-
tant NetSaint components:

• The netsaint daemon, which continually collects data, updates displays, and
generates and handles alerts. The daemon is usually started at boot time via a
link to the netsaint script in /etc/init.d.

• Plug-in programs, which perform the actual device and resource probing.

• Configuration files, which define devices and services to monitor.

• CGI programs, which support web access to the displays.

Figure 8-10 displays NetSaint’s Tactical Overview display. It provides summary infor-
mation about the current state of everything being monitored. In this case, we are
monitoring 20 hosts, of which 4 currently have problems. We are also monitoring 40
services, 5 of which have reached their critical or warning state. The display shows an
abnormally high number of failures to make the discussion more interesting.

Figure 8-10 also shows the NetSaint menu bar in the window’s left frame. The items
under Monitoring select various status displays. Figure 8-11 is a composite illustra-
tion showing selected items corresponding to the second and third menu choices.

* Recent SuSE Linux distributions include NetSaint (although it installs the package in nonstandard loca-
tions).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 8: Managing Network Services

Figure 8-10. The NetSaint Network Monitor

Figure 8-11. NetSaint status summaries

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 505

The two tables at the top of the figure present the overall status figures in tabular
form. The items in the middle row of the illustration provide a breakdown of host
and service status by computer location (on the left) as well as the details for each
device in the Printers host group. In this way, the location of trouble can be deter-
mined quickly.

NetSaint provides links within each table to more detailed information. If you click
on the “2 WARNING” text in Bldg2’s Service Status item, the table at the bottom of
the figure is displayed. This table provides details about the two warning-level condi-
tions: the FTP service is not responding as expected to queries, and there are 292
processes running (which is above the warning threshold).

Figure 8-12 illustrates NetSaint’s individual host-level reports (which we’ve reformat-
ted slightly to save space). This report is for a host named leah, a Windows system (if
the user-defined icon is to be believed). Earlier, this system was down for over 2
hours. In fact, it has been up only half the time during the periods during which it
was monitored.

The Host State Information table displays a variety of specific information about the
host’s recent monitoring history and its current monitoring configuration. The com-
ment displayed at the bottom of the figure was entered by the system administrator,
and it provides a reason for the system’s recent outage.

The Host Commands area enables the administrator to change many aspects of this
host’s monitoring configuration, including enabling/disabling monitoring and/or
alert notifications, adding/modifying scheduled downtime for the host (during which
monitoring ceases and alerts are not sent), and forcing all defined checks to be run
immediately (rather than waiting for their next scheduled instance).

The second menu item allows you to acknowledge any current problem. Acknowl-
edging simply means “I know about the problem, and it is being handled.” NetSaint
marks the corresponding event as such, and future alerts are suppressed until the
item returns to its normal state. This process also allows you to enter a comment
explaining the situation, an action that is very helpful when more than one adminis-
trator examines the monitoring data.

Table 8-12 lists the locations of the various NetSaint components.

Table 8-12. NetSaint components

Item Standarda SuSE RPM

Daemon bin/netsaint /usr/sbin/netsaint

Configuration files etc /etc/netsaint

Plug-ins libexec /usr/lib/netsaint/plugins

Generated HTML pages share/images /usr/share/netsaint/images

Web interface sbin /usr/lib/netsaint/cgi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 8: Managing Network Services

Configuring NetSaint can seem daunting at first, but it is actually relatively straight-
forward once you understand all of the pieces. It has several configuration files:

netsaint.cfg
Defines directory locations for the package’s various components, the user and
group context for the netsaint daemon, what items to log, log file rotation set-
tings, various timeouts and other performance-related settings, and additional

Logs and comments var/log /var/log/netsaint

Documentation none /usr/share/netsaint/doc

a Relative to /usr/local/netsaint.

Figure 8-12. Host-specific information from NetSaint

Table 8-12. NetSaint components (continued)

Item Standarda SuSE RPM

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 507

items related to some of the package’s advanced features (e.g., enabling event
handling and defining global event handlers).

commands.cfg and hosts.cfg
Define host and service test commands and specify which hosts and services are
monitored. These two files hold the same sorts of entries, and they exist as sepa-
rate files simply for the sake of convenience.

nscgi.cfg
Holds settings related to the NetSaint displays, including paths to web page
items and scripts, and per-item icon and sound selections. The file also defines
allowed access to NetSaint’s data and commands.

resource.cfg
Defines macros that may be used within other settings for clarity and security
purposes (e.g., to hide passwords from view).

We will briefly consider entries in the second class of files here. The file holds sev-
eral different kinds of entries, including the following:

command
Define a monitoring task and its associated command. These entries are also
used to define commands used for other purposes such as sending alerts and
event handlers.

host
Define a host/device to be monitored.

hostgroup
Create a list of hosts to be grouped together in displays.

service
Define an item on a host/device to be checked periodically.

contact
Specify a list of recipients for alerts.

timeperiod
Assign a name to a specified time period.

Here are some example command definitions:

command[do_ping]=/bin/ping -c 1 $HOSTADDRESS$
command[check_telnet]=/usr/local/netsaint/libexec/check_tcp -H $HOSTADDRESS$ -p 23

The first entry defines a command named do_ping, which runs the ping command to
send a single ICMP packet to a host. When this command appears in a service entry,
the corresponding host is automatically substituted for the built-in NetSaint macro
$HOSTADDRESS$.

The second entry defines the check_telnet command, which runs the plug-in named
check_tcp, which attempts to connect to the TCP port specified by -p on the indi-
cated host.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 8: Managing Network Services

It is also possible to define commands with arguments that are replaced at execution
time using macros of the form $ARGn$, as in this example:

command[check_tcp]=/usr/local/netsaint/libexec/check_tcp -H $HOSTADDRESS$ -p $ARG1$

The entry defines the check_tcp command and calls the same plug-in, but it uses the
first argument as the desired port number.

Many plug-ins use the -w and -c options to define value ranges that should generate
warning- and critical-level alerts, respectively. Somewhat counterintuitively, these
options expect the range of acceptable values as their argument. For example, the
following entry defines the command snmp_load5 and sets the warning level to values
over 150:

command[snmp_load5]=/usr/local/netsaint/libexec/check_snmp
 -H $HOSTADDRESS$ -C $ARG1$ -o .1.3.6.1.4.1.2021.10.1.5.2
 -w 0:150 -c :300 -l load5 Output is wrapped here.

It calls the check_snmp command provided with the package for the current host,
using the first command argument as the SNMP community name, and retrieves the
5-minute load average value (in 3-digit form), labeling the data as “label5.” The value
will trigger a warning alert if it is over 150; -w 0:150 means that values between 0 and
150 are not in the warning range. It will also trigger a critical alert if it is over 300, i.e.,
not in the range 0 (optional) to 300. If both are triggered, critical wins.

The following entries illustrate the definitions for hosts:

#host[label]=descr.; IP address;parent;check command
host[ishtar]=ishtar;192.168.76.98;taurus;check-printer-alive;10;120;24x7;1;1;1;
host[callisto]=callisto;192.168.22.124;;check-host-alive;10;120;24x7;1;1;1;

Let’s take these entries apart, field by field (they are separated by semicolons). The
first one is the most complicated and has the following syntax:
host[name]=description, where label is the label to be used in status displays and
description is a (possibly longer) phrase describing the device (we’ve used the same
text for both). The next field holds the device’s IP address, which is the item which
actually identifies the desired device (the preceding items are just arbitrary labels).

The third field specifies the parent device for the item: a list of one or more labels for
intermediate devices located between the current system and this one. For example,
to reach ishtar, we must go through the router named taurus, so taurus is specified as
its parent. The fourth field specifies the command NetSaint should use to determine
whether the host is accessible (“alive”), and the fifth field indicates how many checks
must fail before the host is assumed to be down (10 in our example). The parent is
optional, and the entry for callisto does not use it.

The remaining fields in the example entries relate to alert notifications. They hold
the time interval between alerts when a host remains down, in minutes (here, two
hours), the time period during which alerts should be sent, and three flags indicating
whether to send notifications when the host recovers after being down, when the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 509

host goes down, and when the host is unreachable due to a failure of an intermedi-
ate device, respectively (where 0 means no and 1 means yes). The time period is
defined elsewhere in the configuration file. This one, named 24x7, is included in the
default file and means “all the time.” It’s a convenient choice when you are getting
started using NetSaint. All the flags are set to yes in our examples.

Now that we have both commands and hosts entries, we are ready to define specific
items that NetSaint should monitor. These items are known as services. Here are
some sample entries:

#service[host] =label;; when;;;; notify;;;;;; check-command
service[callisto]=TELNET;0;24x7;4;5;1;admins;960;24x7;0;0;0;;check_telnet
service[callisto]=PROCS;0;24x7;4;5;1;admins;960;24x7;0;0;0;;snmp_nproc!commune!250!400
service[ingres]=HPJD;0;24x7;4;5;1;localhost;960;24x7;0;0;0;;check_hpjd

The most important fields in these entries are the first, third, sixth, and final ones,
which hold the following settings:

• The service definition (field 1), using the syntax service[host-label]=service-
label. For example, the first example entry defines a service named TELNET for
the host entry named callisto.

• The name of the time period during which this check should be performed (field
3), again defined in a timeperiod entry.

• The contact name (field 7): this item holds the name of a contact entry defined
elsewhere in the file. The latter entry type is used to specify lists of users to be
contacted when alerts are generated.

• The command to run to perform the check (final field), defined via a command
entry elsewhere in the configuration file. Arguments to the command are speci-
fied as separate !-separated subfields with the command.

The other fields hold the volatility flag (field 2), maximum number of checks before a
service is considered down (4), number of minutes between normal checks and fail-
ure rechecks (5 and 6), number of minutes between failure alerts while the service
remains down (8), time period during which to send alerts (8), and three alert flags
corresponding to service recovery and whether or not to send critical alerts and
warning alerts, respectively. The penultimate field holds the command name for the
event handler for this service (see below); no event handler is specified in these cases.
The default values, used in the examples, are good starting points.

As we saw in Figure 8-11, NetSaint displays can summarize status information for a
group of devices. You specify this by defining host group. For example, the follow-
ing configuration file entry defines the Printers host group (as displayed in the right
table in the middle row in the illustration):

hostgroup[Printers]=Printers;localhost;ingres,lomein,turtle,catprt

The syntax is simple:

hostgroup[label]=description;contact-group;list-of-host-names

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 8: Managing Network Services

Keep in mind that the host labels refer to the names of host definitions within the
NetSaint configuration file (and not necessarily to literal hostnames). The members
of the specified contact group will be notified whenever there is any problem with
any device in the list.

In addition to sending alert messages, NetSaint also provides support for event han-
dlers: commands to be performed when a service check fails. In this way, you can
begin dealing with a problem before you even know about it. Here are the entries
corresponding to a simple event handler:

#event handler for disk full failures
command[clean]=/usr/local/netsaint/local/clean $STATETYPE$
service[beulah]=DISK;0;24x7;4;5;1;localhost;960;24x7;0;0;0;clean;check_disk!/!15!5

First, we define a command named clean, which specifies a script to run. Its sole
argument is the value of the $STATETYPE$ NetSaint macro, which is set to HARD
for critical failures and SOFT for warnings. The clean command is then specified as
the event handler for the DISK service on beulah. The script uses the find command
to delete junk files within the filesystem and uses the argument value to decide how
aggressive to be. In this case, the warning level means that the disk is 85% full and
critical alerts correspond to 95% full, values specified via the final two parameters to
the service monitoring command named check_disk (defined elsewhere), whose first
argument is the filesystem to check.

NetSaint has a few other nice features which we’ll consider very briefly. First of all, it
can save data between runs (and it does so under the default configuration). You can
also specify whether to display the saved status information when the NetSaint page
is first opened. The following netsaint.cfg entries control this feature:

retain_state_information=1
retention_update_interval=60
use_retained_program_state=1

You can also save the data produced by the status commands for future use outside
of NetSaint, using these main configuration file entries:

process_performance_data=1
service_perfdata_command=process-service-perfdata

The command specified in the second entry must be defined in hosts.cfg or another
configuration file. Typically, this command simply writes the command’s output to
an external file: e.g., echo $OUTPUT$ >> file. The $OUTPUT$ macro expands to the full
output returned by the monitoring command. You can also specify a separate pro-
cessing command for host status monitoring commands. The data in the file can be
analyzed, sent to a database (see the next section), or processed in any other way that
you like.

So far, we have considered NetSaint in the context of a single monitoring location. In
other words, all monitoring commands are issued from a single master system. How-
ever, the NetSaint daemon can also be configured to accept data sent from outside

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 511

sources. It refers to this option as passive mode, which may be enabled via the
check_external_commands main configuration file directive.

As we noted earlier, access to NetSaint is defined in the nscgi.cfg configuration file.
Here are some example entries from that file:

use_authentication=1
authorized_for_configuration_information=netsaintadmin,root,chavez
authorized_for_all_services=netsaintadmin,root,chavez,maresca
hostextinfo[bagel]=;redhat.gif;;redhat.gd2;;168,36;,,;

The first entry enables the access control mechanism. The next two entries specify
users who are allowed to view NetSaint configuration information and services sta-
tus information (respectively). Note that all users also must be authenticated to the
web server using the Apache htpasswd mechanism.

The final entry specifies extended attributes for the host defined in the entry labeled
bagel. The filenames in this example specify images files for the host in status tables
(GIF format) and in the status map (GD2 format), and the two numeric values spec-
ify the device’s location within the status map. NetSaint status maps provide a quick
way of accessing information about individual devices. A sample status map is dis-
played in Figure 8-13. The illustration shows the saintmap utility written by David
Kmoch (http://www.netsaint.org/download/), which provides a convenient way of cre-
ating status maps. In this case, we have grouped devices by their physical location
(although we haven’t bothered to label the groups). The lines from taurus to each
device in the bottom group illustrate the fact that taurus is the gateway to this loca-
tion. When used by NetSaint, each icon will have a status indication—up or down—
added to it, enabling an administrator to get an overall view of things right away,
even when the network is very large and complex.

Figure 8-13. Using netsaint to create a status map

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 8: Managing Network Services

Identifying trends over time

NetSaint is very good about providing up-to-the-minute status information, but there
are also times when it is helpful to compare the current situation to conditions in the
past. Accordingly, we now turn to tools that track status and performance data over
time, thereby providing the sort of historical usage data that is essential to perfor-
mance tuning and capacity planning.

MRTG and RRDtool. One of the best-known packages of this type is the Multi-Router
Traffic Grapher (MRTG), written by Tobias Oetiker and Dave Rand. It collects data
over time and automatically produces graphs of it over various time periods (see http:
//www.mrtg.org). As its name suggests, it was first designed to track the ongoing per-
formance of the routers in a network, but it can be used for a wide variety of data
(even ranging beyond the computer realm). The general term for this type of data is
“time series data,” and it consists of any value that can be tracked over time.

More recently, MRTG has been supplanted by Oetiker’s newer package, RRDtool
(http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/). RRDtool has much more power-
ful—and configurable—graphing facilities, although it requires a separate data col-
lection script or package (the web site contains a list of some of the latter).

Both these tools work by storing only the data needed to produce the various graph
types. Instead of saving every data point, they store a collection of the most recent
ones, as well as summary values collected over various time periods. When new data
comes in, it replaces the oldest point in the current collection of raw values, and the
relevant summary data values are updated as appropriate. This strategy results in
small, fixed-size databases nevertheless offering a wealth of important information.

We’ll now look briefly at the RRDtool package and then consider a popular data col-
lection front-end named Cricket. We’ll begin by creating a simple database, using the
RRDtool command provided by the package:

rrdtool create ping.rrd \
 --step 300 \ Interval is 5 minutes.
 DS:trip:GAUGE:600:U:U \
 DS:lost:GAUGE:600:U:U \
 RRA:AVERAGE:0.5:1:600 \ 600 5-minute averages.
 RRA:AVERAGE:0.5:6:700 \ 700 30-minute averages.
 RRA:AVERAGE:0.5:24:775 \ 775 2-hour averages.
 RRA:AVERAGE:0.5:288:750 \ 750 daily averages.
 RRA:MAX:0.5:1:600 \
 RRA:MAX:0.5:6:700 \
 RRA:MAX:0.5:24:775 \
 RRA:MAX:0.5:288:797

This command creates a database named ping.rrd consisting of two fields, trip and
lost, defined by the two DS lines (DS for “data set”). They will hold the round-trip
travel time for ICMP packets and the percentage of lost packets resulting from run-
ning the ping command. Both are of type GAUGE, meaning that the data for these

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 513

fields should be interpreted as a distinct value. The other data types refer to counters
of various sorts, and their values are interpreted as changes with respect to the pre-
ceding value; they include COUNTER for monotonically increasing data and
DERIVE for data that can vary up or down.

The fourth field in each DS line is the time period between data samples, in seconds
(here 10 minutes), and the final two fields hold the valid range of the data. A setting
of U stands for unknown, and two U’s together have the effect of allowing the data
itself to define the valid range (i.e., accept any value).

The remaining lines of the command, labeled RRA, create round-robin archive data
within the database. Each RRA applies to every defined DA in the file. The second
RRA field indicates the kind of aggregate value to compute; here, we compute aver-
ages and maximum. The remaining fields specify the maximum percentage of the
required sampled data that can be missing, the number of raw values to combine,
and the number of data points of this type to store.

Those final two fields can be confusing at first. Let’s consider a simple example: val-
ues of 6 and 100 would mean that the average (or other function) of 6 raw values will
be computed, and the most recent 100 averages will be saved. If the time period
between data points is 300 seconds (the default value and also specified via the --
step option), this will be a 30-minute average value (6*5 minutes), and we will have
30-minute averages going back for 50 hours (100*6*5). Note that the aggregate peri-
ods do not overlap; the 30-minute values are for the preceding 30 minutes, the 30
minutes before that, and so on. In addition, aggregate definitions always start from
the present moment.*

Thus, in our example database, we are creating 5-minute (--step 300) averages and
maximums, 30-minute values of each type (5*6=30), 2-hour values (5*24=120) and
daily values (5*288=1440=24 hours). Eventually, we will have data going back for
over 2 years. At any given time, we’ll have 50 hours worth of 5-minute averages
(600*5 minutes), about 14.5 days of 30-minute averages, about 64.5 days of 2-hour
averages, and 750 days of daily averages. We’ll also have the maximum value data
for each point.

There are many ways to add data to an RRDtool database. Here is a script illustrat-
ing one of the simplest, using rrdtool’s update keyword:

#!/bin/csh
ping -w 30 -c 10 $1 > /tmp/ping_$1
set trip=`tail -1 /tmp/ping_$1 | awk -F= '{print $2}' | \
 awk -F/ '{print $2}'`
set lost=`grep transmitted /tmp/ping_$1 | awk -F, '{print $3}' \
 | awk -F% '{print $1}'`
rm -f /tmp/ping_$1
rrdtool update ping.rrd "N:"$trip":"$lost

* In other words, contrary to how MRTG works, they do not begin where the preceding one left off.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 8: Managing Network Services

We use the ping command to generate the data, then we take apart the output, and
finally we use rrdtool update to enter it into our database. The final argument to the
command is a colon-separated list of data values, beginning with the time to be asso-
ciated with the data (N means now) followed by the value for each defined data field,
in order. In this case, we use normal Unix commands to obtain the data we need, but
we could also have used SNMP as the sources.

Once we’ve accumulated data for awhile, we can create graphs, again using rrdtool.
For example, the following command (taken from a script) creates a simple graph of
the data from the previous 24 hours:

rrdtool graph ping.gif \
 --title "Packet Trip Times" \
 DEF:time=ping.rrd:trip:AVERAGE \
 LINE2:time\#0000FF

This command defines a graph of a single value, specified via the DEF (definition)
line. The graphed variable is named time, and it comes from the stored averages of
the trip field in the ping.rrd database (raw values cannot be graphed). The LINE2 line
is what actually graphs its values. This line refers to a 2-point line of the defined vari-
able time, displayed in the color corresponding to the RGB value #0000FF (blue).
The backslash before the number sign is required to protect it from the shell; it is not
part of the command syntax. The resulting output file, named ping.gif, is displayed in
Figure 8-14 (although the blue line appears black in this version).

In the graph, time flows forward from left to right, and the current time is at the
extreme right (here, about 8:00 P.M.).

You can display more than one value per graph. Consider Figure 8-15, which dis-
plays the values of the 5-minute load average (black line) and number of processes
(gray line) for a system.

The upper graph displays the values in their normal ranges. In this case, we cannot
see much detail in the load average line because its values are too small with respect
to the number of processes. In the bottom graph, we correct this by multiplying the
load average by 10 to bring the two data sets within the same general numerical
range. Since load averages are a somewhat arbitrary metric anyway, this does not dis-
tort the data (because only relative load average values are really meaningful).

Figure 8-14. A simple RRDtool graph

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 515

Here is the command from the script that created the bottom graph:

rrdtool graph cpu.gif \
 --title "CPU Performance" \
 DEF:la=cpu.rrd:la5:AVERAGE \
 CDEF:xla=la,10,* \
 DEF:np=cpu.rrd:nproc:AVERAGE \
 LINE2:xla\#0000FF:"la*10" \
 'GPRINT:la:AVERAGE:(avg=%.0lf' \
 'GPRINT:la:MIN:min=%.0lf' \
 'GPRINT:la:MAX:max=%.0lf)' \
 LINE2:np\#FF0000:"# procs" \
 'GPRINT:np:AVERAGE:(avg=%.0lf' \
 'GPRINT:np:MIN:min=%.0lf' \
 'GPRINT:np:MAX:max=%.0lf)'

The CDEF (computed definition) command is used to create a new graph variable
based on an expression. In this case, we define the variable xla by multiplying the la
variable by 10. The expression is specified in Reverse Polish Notation (RPN; see the
RRDtool documentation if this is unfamiliar). Both variables are graphed by LINE2
subcommands, and these examples use the optional third field to set a label for the
line. In addition, the parenthesized summary data for each variable shown at the bot-
tom of the graph is created via the GPRINT subcommands (enclosed in quotation
marks to protect special characters from the shell).

As a final graph example, consider Figure 8-16. In this graph, we again display data
from ping.rrd. The average round-trip time is again a blue line, but this time the
background is shaded to indicate whether the packet loss was significant: green

Figure 8-15. Graphing two values

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 8: Managing Network Services

means normal (little or no packet loss), and yellow and red indicate a busy and over-
loaded network, respectively. Note that the illustration in Figure 8-16 colors the
three bands white, light gray, and dark gray, and the blue graph line is black.

This technique was inspired by an example graph created by Brandon Gant (see gal-
lery/brandon_01.html under the main RRDtool page), although his implementation
is undoubtedly more sophisticated.

Here is the command section that created the shaded bands:

DEF:stat=ping.rrd:lost:AVERAGE \
CDEF:band0=stat,0,GE,m,13,LT,+,2,EQ,INF,0,IF \
CDEF:band1=stat,13,GE,m,27,LT,+,2,EQ,INF,0,IF \
CDEF:band2=stat,27,GE,m,1000,LT,+,2,EQ,INF,0,IF \
AREA:band0\#00FF00:"normal" \
...

We define the variable stat as the lost field from ping.rrd. Next, we create three more
variables, named band0, band1, and band2, via a complex conditional expression
that sets the variable’s value to infinity (INF) if it is true and 0 otherwise. For exam-
ple, the first RPN expression is equivalent to 0 <= stat < 13. As defined above, the
AREA subcommand generates a green area plot labeled “normal,” which in this case
consists of a series of vertical green lines and white spaces (since the variable is 0 or
infinite). There are two additional AREA lines for the other two bands in the full
command. Since each value of stat is placed into one of the three bands, the entire
graph background is filled in.

Creating graphs like these can be tedious, but fortunately, there is a utility named
RRGrapher which automates the process. This CGI script, written by Dave Plonka
(http://net.doit.wisc.edu/~plonka/RRGrapher/), is illustrated in Figure 8-17.

You can use this tool to create graphs that draw data from multiple RRD databases.
In this example, we are plotting values from two databases over a specified time
period. The latter is one of RRGrapher’s most convenient features, since rrdtool
requires times to be expressed in standard Unix format (seconds since 1/1/1970) but
you can enter them here in a readable format.

Figure 8-16. Shading a graph based on data values

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 517

Using Cricket to feed RRDtool. To use RRDtool to gather and present data from more
than a few sources, you will need some sort of front-end package to automate the
process. The Cricket package is an excellent choice for this purpose. It was written
by Jeff Allen (http://www.afn.org/~jam/software/cricket/). Cricket is written in Perl,
and it requires a very large number of modules to function (plan on several visits to
CPAN), so installing it may take a bit of time. Once it is up and running, these are its
most important components:

• The cricket-config subdirectory tree, containing specifications for each device to
be monitored (see below).

• The collector script, run periodically from cron (usually every five minutes).

• The grapher.cgi script, used to display Cricket graphs within a web browser.

Figure 8-17. The RRGrapher utility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 8: Managing Network Services

The cricket-config directory tree contains the configuration files that tell the collector
script what data to get from which devices. It holds a hierarchical set of configura-
tion files. Default values set at each level continue to apply to lower levels unless they
are explicitly overridden. Once the initial setup is completed, adding additional
devices is very simple.

The first-level subdirectories within this tree refer to broad classes of devices: rout-
ers, switches, and so on. We will be examining the device class hosts. It is not part of
the default tree installed with the package, but is available at http://www.certaintyso-
lutions.com/tech-advice/cricket-contrib/ (it was created by James Moore). We use this
one because it is relatively simple and refers to metrics we have already examined in
other contexts.

Within the hosts subdirectory of cricket-config there is a file named Defaults, which
supplies default values for entries within this subtree. Here are some lines from that
file, which we’ve annotated with comment lines:

cricket-config/hosts/Defaults
device specification
target --default--
 snmp-host = %server%

define symbolic names for some SNMP OIDs
OID ucd_load1min 1.3.6.1.4.1.2021.10.1.3.1
OID ucd_load5min 1.3.6.1.4.1.2021.10.1.3.2
OID ucd_load15min 1.3.6.1.4.1.2021.10.1.3.3

define specific data values to be collected (RRD data sources)
datasource ucd_load1min
 ds-source = snmp://%snmp%/ucd_load1min
datasource ucd_load5min
 ds-source = snmp://%snmp%/ucd_load5min
datasource ucd_load15min
 ds-source = snmp://%snmp%/ucd_load15min

define a data source group named ucd_System
targetType ucd_System
 ds = "ucd_cpuUser, ucd_cpuSystem, ucd_cpuIdle,
 ucd_memrealAvail, ucd_memswapAvail,
 ucd_memtotalAvail, ucd_load1min, ucd_load5min,
 ucd_load15min"

define 3 subgroups of ucd_System for graphing purposes
 view = "cpu: ucd_cpuUser ucd_cpuSystem ucd_cpuIdle,
 Memory: ucd_memrealAvail ucd_memswapAvail
 ucd_memtotalAvail, Load: ucd_load1min ucd_
 load5min ucd_load15min"

define graphs to be generated
graph ucd_load5min
 legend = "5 Min Load Av"
 si-units= false

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring the Network | 519

graph ucd_memrealAvail
 legend = "Used RAM"
 scale = 1024,*
 bytes = true
 units = "Bytes"

These entries are all quite intuitive. We can see the underlying RRD database struc-
ture used for this data, but using Cricket means that we don’t have to worry about it.
The entries following the data source definitions relate to the Cricket reporting struc-
ture (as we’ll see).

Specific hosts to be monitored are generally defined in files named Targets. Each host
has a subdirectory under hosts in which such a file lives. Here are some excerpts from
the file for host callisto:

cricket-config/hosts/callisto/Targets
Target --default--
 server = callisto
 snmp-community = somethingsecure
Specify data source groups to collect
target ucd_sys
 target-type = ucd_System
 short-desc = "CPU, Memory, and Load"
target boot
 target-type = ucd_Storage
 inst = 1
 short-desc = "Bytes used on /boot"
 max-size = 19487
 storage = boot

This file instructs Cricket to collect values for all of the items defined in the ucd_Sys-
tem and ucd_Storage groups. Each target will appear as an option within the Cricket
web interface for this host.

Figure 8-18 illustrates some Cricket output. The upper-left window lists the first-
level menu; each of its items corresponds to a top-level subdirectory under cricket-
config. The lower-right graph shows the page corresponding the ucd_sys target for
host callisto. It begins with a summary of the current data and then displays one or
more graphs showing the data over time (you can select which ones appear via the
links in the right-hand cell in the Summary table).

In this case, we have chosen the weekly graph. It shows clearly that callisto generally
used very little of its CPU resources in the past seven days, but there was an excep-
tional period on the previous Sunday (although even then the load average was never
very high). Graphs like these can be very helpful in determining what the normal
range of behavior is for the various devices for which you are responsible. When you
understand the normal status and variation, you are in a much better position to rec-
ognize and understand the significance of anomalies that do turn up.

As we’ve seen, network monitoring software can be a powerful tool for keeping track
of system status, both at the current moment and over the long haul. However, don’t

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 8: Managing Network Services

underestimate the time it will take to implement a monitoring strategy for a real-
world environment. As with most things, careful planning can minimize the amount
of time that this will require, but putting a monitoring strategy in place is always a
big job. You need to consider not only the installation and configuration issues but
also the performance impact on your network and the security ramifications of the
daemons and protocols you are enabling. While this can be a daunting task and can-
not be rushed, in the end it is worth the effort.

Figure 8-18. Cricket status and history reports

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

521

Chapter 9 CHAPTER 9

Electronic Mail

Making sure that electronic mail gets sent out and delivered is one of the system
administrator’s most important jobs, and it’s also one that becomes extremely visible
should things go wrong. Administering email is inevitably time-consuming and frus-
trating, at least intermittently. It also is comprised of a set of tasks that can seem rather
daunting to the newcomer. However, don’t let any initial feelings of confusion dis-
courage or overwhelm you; in a surprisingly short time, you’ll be in control and com-
plaining with the best of them about the mail system’s eccentricities and shortcomings.

About Electronic Mail
As with regular postal mail, a properly functioning electronic-mail system depends
on a series of distinct and often geographically-separated facilities and processes
working together. Typically, each of these parts is handled by one or more programs
specifically designed to perform the corresponding tasks.

In general, on Unix systems, the electronic mail facility is composed of the following
components:

Programs that allow users to read and write mail messages
In the jargon, such programs are known as mail user agents. There are a variety
of such programs available, ranging from the traditional (and primitive) mail
command to character-based, menu-driven programs such as elm, mutt, pine,
and the mh family, to Internet-integrated packages such as Netscape (some users
also prefer the mail facilities embedded within their favorite editor, such as
emacs). These programs require only a little administrative time and attention,
usually consisting of setting system-wide defaults for the various packages.

Programs that accept outgoing email (submission agents), send it along its way, and
begin the delivery process

Delivering mail to its final destination is the responsibility of mail transport agents,
which relay mail messages within a site or out onto the Internet toward their final
destinations. Transport agents run as daemons, and they generally use the direc-
tory /var/spool/mqueue as a work queue to hold messages waiting for processing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 9: Electronic Mail

sendmail is the traditional Unix transport agent. sendmail usually functions as
the submission agent as well, although some mail programs (user agents) now
incorporate this capability themselves. Current estimates indicate that sendmail
handles about 75% of all email. Other available transport agents include Post-
fix, qmail, and smail. At present, transport agents most often use the Simple
Mail Transfer Protocol (SMTP) to exchange data, although other transport pro-
tocols are seen occasionally (e.g., UUCP).

Programs that transfer messages to the user’s mailbox
Once mail arrives at its destination, the transport agent hands it off to a delivery
agent that actually places messages into the appropriate user’s mailbox (among
other tasks). User mailboxes are located in /var/mail (/var/spool/mail under AIX,
FreeBSD, and Tru64) and consist of text files named for the corresponding user
account.

There may be different delivery agents for the various classes of messages (e.g.,
local versus remote) and different transport protocols (e.g., SMTP versus
UUCP). Commonly used delivery agents include procmail, mail, rmail, and
mail.local (the latter is part of the sendmail package).

Programs that retrieve stored messages from an ISP or other holding location
When a user or organization has only an intermittent connection to the Internet,
incoming remote messages are usually stored on their ISP’s server until they are
ready to collect them. Periodically, such users/sites must establish a connection
to the ISP and send out all new messages and retrieve those waiting for them.
The program that performs these actions might be termed a retrieval agent,* and
fetchmail is the most common. Once messages have been downloaded, they are
usually handed off to a transport agent for local routing and delivery.

Programs to access delivered messages from a different computer
Some organizations and individual users choose to access email from a com-
puter other than the one where their mailbox is located (the target location for
the delivery agents). For example, a user at a site with a central mail server may
prefer to read his mail on his own workstation rather than on the designated
server. Such schemes use a message store to hold accumulated messages. They
may be stored in traditional user mailboxes—files within the designated mail
spool director—or as records in a database. The user agent must connect to the
message store to view, access, manipulate, and potentially download the mes-
sages. When doing so, the user agent is functioning as an access agent. The mes-
sage retrieval processes uses the Post Office Protocol (POP3) or Internet Message
Access Protocol (IMAP) for communication.

Figure 9-1 illustrates some of these components and concepts via a sample mail mes-
sage sent from Hamlet (user account hamlet at uwitt.edu) to his friend Ophelia
(ophe624@elsinore.gov).

* What I’m calling a retrieval agent can also be thought of as a type of access agent (see the following paragraph).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Electronic Mail | 523

Hamlet composes his message to Ophelia using a mailer program like pine or mutt
on one of the workstations in his department (hostname philo). Depending on his
user agent and its exact configuration, it may forward the message to the local
sendmail process using port 587, allowing sendmail to submit it to the mail facility,
or it may do the submission operation itself, communicating with sendmail via SMTP
on port 25 (the transport agent standard port). In our example, pine has been config-
ured to function as a submission agent as well as a user agent, while mutt relies on
sendmail for mail submission.

At this site, all outgoing mail is funneled through a single mail relay host named
apollo, so the sendmail process on philo passes the message along to the
corresponding process on apollo, which in turns relays it to the Internet. From there,
the message will eventually be sent to ophe624@elsinore.gov, which is redirected (via
DNS MX records) to some system at the ISP used by the elsinore.gov site.

Figure 9-1. Example email configuration

Netscape

polonius.elsinore.gov

sendmailTransport agent

procmail 25Delivery agent

Internet

sendmail587

mutt

25

SMTP
philo.uwitt.edu

(hamlet’s workstation)

apollo.uwitt.edu
(mail relay)

pine

sendmail 25

SMTP

User agent

Submission agent

Transport agent

Transport agent

SMTP

ISP

POP

poste.elsinore.gov
(incomming mail server)

fetchmailRetrieval agent

sendmail 25Transport agent

SMTP

SMTP

25
Message store

polonius:/var/spool/
mail/ophe624
(user mailbox) ophelia (laptop)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 9: Electronic Mail

When convenient, the incoming mail server at elsinore.gov, named poste, connects to
the ISP and uses the fetchmail program to retrieve waiting messages. fetchmail then
forwards the data to sendmail, using the SMTP protocol and port 25, thereby simu-
lating normal incoming TCP/IP mail. The sendmail process on poste sends the mes-
sages for user ophe624 to the sendmail process on polonius, where the procmail
program places it in the correct mailbox, /var/spool/mail/ophe624.

From the point of view of the sendmail transport agent, the mail is now delivered.
However, Ophelia still hasn’t seen the message. She typically reads her mail on her
laptop. To do so, she has configured Netscape’s email component to connect to the
message store—in this case, her mailbox on polonius (providing the appropriate user-
name and password for authentication). Once she’s connected, Netscape displays
information about the messages in her mailbox, showing her the actual message
when requested, retrieving all data via the IMAP protocol. At her option, Ophelia
can delete the message, download it to her laptop, or file it away into one of her mail
folders on polonius (or even leave it in her incoming mailbox).

If elsinore.gov had a direct Internet connection, the initial delivery of mail messages
to their site would be somewhat different. Instead of using fetchmail to retrieve mes-
sages from a remote ISP site, mail would arrive at the computer designated for that
domain via DNS MX records. Most often, this means the site’s firewall, where some
extra precautions are taken. Instead of running sendmail on the firewall, which
involves significant security risks, the firewall can run a much simpler, unprivileged
daemon that forwards SMTP packets to a designated host inside the firewall (in our
example, poste could again be used for the latter at elsinore.gov). Such a daemon is
known as an SMTP proxy.

For added security, this function can be split into two noncommunicating processes.
In fact, the most widely used SMTP proxy facility is the combination of smtpd to
receive and store incoming SMTP data and smtpfwdd to forward SMTP data to the
incoming mail server (available from http://www.obtuse.com). The smtpd daemon
simply accepts SMTP packets, constructs mail messages, and writes them into a
spool directory on disk (e.g., /var/spool/smtpd). Sometime later, smtpfwdd reads mes-
sages from that location and invokes a program to submit them to the mail system.
Usually, this program is sendmail, and it forwards the messages to a transport agent
inside the firewall. On the firewall system, however, sendmail does not run as a dae-
mon and is configured to accept mail only from smtpfwdd. This configuration is illus-
trated in Figure 9-2.

Both daemons implement only the minimal set of SMTP commands to perform their
tasks. By limiting the proxy processes’ functions to simple reading and writing, any
potential troubles arising from malicious SMTP commands are avoided. In addition,
smtpd can optionally filter messages based on a variety of access control settings, and
smtpfwdd can filter messages based on content.

smtpd is designed to be invoked on demand by inetd, so adding an entry for it to the
/etc/inetd.conf configuration file is part of the installation process. smtpfwdd runs as a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Electronic Mail | 525

daemon and is, accordingly, started at boot time. Consult the accompanying docu-
mentation for more information about these programs.

Mail Addressing and Delivery
So far, we have considered only the most straightforward mail addressing case: a
message is addressed to a user at a particular site. However, several complications
can arise, making real-world delivery of actual mail messages much more complex:

• DNS MX records can redirect a message to a host other than the one to which it
was directed.

• Name-mapping functions in the transport agent can map public email addresses
to local user accounts and/or hosts (e.g., Rachel_Chavez@ahania.com to
chavez@dalton).

• Email aliases can redirect incoming messages for a user to a different host and/or
user (or even to a group of users).

• Mail-forwarding mechanisms can also redirect mail to a different destination
address, a facility typically used for users who are away from their home site for
an extended period (e.g., on vacation) or who have left an organization altogether.

Figure 9-2. An SMTP proxy at a firewall

sendmail

Mail submission program

Transport agent

Internet

SMTP

Firewall running an
SMTP proxy

smtpdStores SMTP data

smtpfwdd

25

Forwards SMTP data

sendmail

SMTP

Internal mail hub

Mail routed to
appropriate destinations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 9: Electronic Mail

We will consider the first, third, and fourth items in this section. Transport agent
name mapping is discussed later in this chapter.

DNS MX records

DNS MX records specify the host(s) that handle email for a given computer. They
cause email addressed to that host to be sent to a new destination system rather than
being delivered on that host itself. MX records have the general format:

host [ttl] IN MX n destination

host is the computer to which the record applies, n is a number indicating the
record’s priority level (lower numbers indicate higher priority), and destination is the
name of the host to which mail should be (re)directed. Note that the destination can
be the same as the host itself, and it often is. The hostname specified must be the one
used in the corresponding A record; CNAMEs are not allowed. (ttl is the usual,
optional caching time-to-live parameter.)

Here are some examples for the domain ahania.com:

dalton IN MX 10 dalton
 IN MX 20 postal
 IN MX 90 remote.ahania.com.

newton IN MX 10 apple
 IN MX 20 postal

ahania.com. IN MX 10 granada.ahania.com.
 IN MX 20 laguna.ahania.com.

Host dalton normally receives its own mail since it is listed as its own highest-prior-
ity destination host. That is, mail addressed to someone@dalton or someone@dalton.
ahania.com is delivered to host dalton. If dalton is unavailable, mail is redirected first
to host postal (i.e., postal.ahania.com) and then to host remote.ahania.com, if postal
is also down.

In contrast, email destined for host newton is redirected to host apple under normal
circumstances. In other words, mail to someone@newton or someone@newton.ahania.
com is actually delivered to host apple. If apple is unavailable, mail goes to postal
instead. Thus, in this example, postal serves as a backup mail server for both hosts.

The final two lines specify a default mail destination system for mail addresses of the
form somebody@ahania.com. By default, mail addressed to a user at this site—with-
out including any hostname in the address—is routed to the system granada, which
serves as the incoming mail server for that site. System laguna is specified as a
backup mail destination.

Mail aliases

Mail aliases are another way of rerouting email. In contrast to DNS MX records, these
operate on a per-user basis. Mail aliases are usually defined in the file /etc/aliases (or

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Electronic Mail | 527

occasionally /etc/mail/aliases); this facility is provided by the transport agent. These
aliases are automatically applied to the local recipients of incoming mail. Names
specified in email message addresses are compared against the entries in the aliases
file and are translated according to its directives.*

Some mailer programs also allow users to define personal mail aliases,
but these apply only to outgoing messages created by that specific
user, and they won’t be considered here since they are expanded
before the message enters the larger mail system.

Entries in the aliases file have the following format:

local-name: user [, user ...]

Aliases may be continued onto as many lines as needed by indenting the second and
subsequent lines. This line has the affect of translating the specified local-name into
its corresponding expansion (whatever follows the colon) whenever it is encoun-
tered as an email address by the transport agent on the local system.

Here are some example entries:

eve: ewood
ewood: ewood@altos
ike: \issac@newton

chem: enzo, nadia, vala
phys:
 ike,
 enzo,
 kip
science: chem, phys, max
vala: vala@zoas.com

The first three entries illustrate user account aliases. In this case, mail for eve is redi-
rected to ewood. The name ewood is itself an alias, and it expands to ewood@altos,
so mail coming to this system for eve would go to ewood@altos (at least to start
with). Aliases continue to be expanded up to ten levels deep. In the same way, the
third entry defines an alias for ike: \issac@newton. This is a terminal alias: the initial
backslash prevents any further expansion on the local system, including via .forward
files (see below).

The next three sample entries are used to define some local mailing lists. The first
two lists have three members each. The third list, science, has two other mailing lists
as its members (along with max). Any duplicates in the resulting list are automati-
cally removed by sendmail (user enzo in our example). Note also that entry order is
irrelevant in the aliases file. Thus, the alias defining vala does not need to precede its
use in the chem mailing list.

* This is true for the most common mail system configurations. If NIS or LDAP is in use, the situation can be a
bit more complicated. This issue is covered in detail in the discussion of transport agents later in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 9: Electronic Mail

The component email addresses for mailing lists may also be listed in an external file;
the alias itself is then defined via an include directive in the aliases file, as in this
example:

curry: :include:/usr/local/mail_lists/curry_lovers.list

The full path to the include file must be specified (the directory location in the exam-
ple is arbitrary). In this case, curry_lovers.list is a text file containing the list of email
addresses for this mailing list. You will also see aliases such as owner-curry and simi-
lar names, which are used for mailing list administration.

Names encountered in email addresses which are not defined in the aliases file are
assumed to be usernames on the local system under normal circumstances. You can
also configure some transport agents to perform other kinds of address lookups (as
we’ll see). Similarly, unqualified names (i.e., without an @host part) in alias defini-
tions within the aliases file are also interpreted as local usernames.

The sendmail facility and other transport agents do not access the aliases file directly.
Instead, they use binary random access databases to speed up the alias expansion
process. Whenever you edit the aliases file, you must update these binary files by
running the newaliases command (no arguments required).* However, newaliases
does not need to be run when you edit a list file specified with an include directive.

Aliases may also be used to redirect mail messages to a file or a program, via entries
like the following:

help: help-list, /data/help/incoming
info: "|/usr/local/admin/send_info"

The first alias directs mail addressed to help to help-list and also appends it to the file
/data/help/incoming. The second alias pipes mail messages to the specified program.

Any file specified in an aliases file entry must already exist. For sendmail, the file
must also be writable by the package’s default user (a configuration option discussed
later in this chapter), and it must be setuid to owner but not be executable (i.e., chmod
-x,u+s). This unusual permission requirement makes it quite unlikely that any file
will be accidentally overwritten. Postfix also requires the file to be writable by its
default user.

Defining a pipe as an alias sends mail messages to the standard input of the specified
program. The program runs as the transport agent’s default user, and the program’s
working directory is set to the mail queue directory (usually /var/spool/mqueue). By
default, the program is executed by /bin/sh for sendmail, although you can (and
should) specify a different shell for security reasons (discussed later). Postfix
attempts to run the program directly but falls back to /bin/sh if necessary.

* newaliases is equivalent to sendmail -bi, which may be used in those rare cases in which no newaliases com-
mand is provided.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Electronic Mail | 529

Use a Single Aliases File

Using a single aliases file has a number of advantages, including limit-
ing alias administration to a single point and preventing some sorts of
mail bouncing problems. Such a file lists every user at the site and
defines an alias for each that points to the system where he receives or
collects email. This master aliases file can be distributed using one of
the methods described in Chapter 14.

Mail forwarding

Mail forwarding is the third mail redirection mechanism we will consider. Mail for-
warding for specific users can be specified at the site level using features of the trans-
port agent, or it can be accomplished by an individual user himself. Mail redirection
using sendmail and other transport agents is usually performed when a user has per-
manently left an organization. We will discuss these facilities when we consider
sendmail and Postfix in detail, later in this chapter.

User-specified mail forwarding uses the same basic idea as mail aliases. A user can
cause his mail to be automatically forwarded to a different address by creating a file
named .forward in his home directory.* This file contains one or more email
addresses to which email should be forwarded (the simplest format is to put each
address on a separate line). For example, if the .forward file in user chavez’s home
directory contained the single line rachelc@zoas.org, her email would be forwarded
to the specified address. If she wanted to keep a local copy of the mail as well, she
could use this .forward file:

rachelc@zoas.org, "/home/chavez/mail_pile"

This file would forward the mail to the same address and also place a copy of each
forwarded message into the file mail_pile in her home directory. The target file must
already exist and be owned by user chavez, and common sense dictates that it should
be writable only by the user herself, as should every component subdirectory of the
directory tree in which it resides.

In some configurations/versions, sendmail enforces these file protection require-
ments and will not append mail to files that are group- or world-writable or are
placed in an insecure directory location. Postfix has similar requirements.

With sendmail, forwarding messages to pipes or files also requires that the user’s
login shell be listed in the /etc/shells file. If this file is not used (e.g., under AIX), you
must create it manually (or rely on the internal default list of /bin/sh and /bin/csh).
You can disable this requirement by including the following line within the shells file:

/SENDMAIL/ANY/SHELL/

* Actually, the mail-forwarding file path is a configurable list within the transport agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 9: Electronic Mail

Such an entry is necessary to enable forwarding for users whose shell prevents log-
ging in to the mail server (e.g., having nologin as their shell).

Putting it all together

So how do all of these separate pieces interact to deliver mail? First, the MX records
are examined to see whether email is rerouted at the DNS level. If so, the mail is sent
to the same user at the new host.

If no MX record causes the mail to go to another host, the address is processed for
aliasing via the aliases file and then the forwarding mechanism. Either of these has
the potential to redirect the mail to a different user and/or host. If the host changes,
the message is routed to the specified host (where MX record checking begins again).
On the other hand, if the aliasing does not redirect the message to a different host,
the message is delivered to the appropriate user on the local system.

Let’s consider an example (illustrated in Figure 9-3).* Consider a message addressed
to jane_smith@ahania.com (arriving from some remote sender). The message is
directed first to the incoming mail server, poffice.ahania.com, the destination desig-
nated by the MX record for the domain ahania.com.

* To illustrate the various mail redirection possibilities, this example violates many design principles for an
effective and efficient email system: a central aliases file, a logical and well-ordered set of DNS MX records,
and so on.

Figure 9-3. Mail redirection

ahania.com IN MX 10 poffice.ahania.com.

poffice

@ahania.com=>
 %1@incognito.ahania.com

incognito

jane:
 jane@dalton

dalton

jane: jsmith

~jsmith/.forward:
 janes@zoas.org

TO: janes@zoas.org

TO: jane_smith@ahania.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Electronic Mail | 531

The sendmail configuration on poffice specifies that all incoming mail addressed to
ahania.com be sent to the same user at host incognito. On incognito, an alias for jane
on incognito points to jane@dalton. Finally, on dalton, jane is aliased to jsmith, a local
user account. However, user jsmith has a .forward file in her home directory consist-
ing of the entry janes@zoas.org. So the mail is readdressed accordingly, and the mail
system in the ahania.com domain sends the message back out onto the Internet.
When the message arrives at the zoas.org domain, the entire process begins again.

Electronic Mail Policies
Electronic mail frequently raises as many social issues as it does technical ones. Part
of the system administrator’s job is to educate users about using email properly and
its risks. Many sites implement an email policy to specify appropriate and inappro-
priate uses of user email accounts, as well as to inform users about their rights (and
limitations to them).

The following is a list of items you should consider including in an educational or
policy document about email:

• Reminders to keep email brief and to-the-point and to strive for the same level of
politeness one would use in verbal communications (avoid “flaming”). Wait a day
or so before replying to or sending an emotionally charged message (in the latter
case, having someone else read the message before you send it is also a good idea).

• Limit a message’s recipients as much as possible. In other words, be conserva-
tive about copying (CCing) to additional people. When replying, send your
response only to the message’s author or at least remove extraneous recipients
from the list. Avoid making Reply All the default in your mailer program.

• Any policy your site has with respect to blind copying (BCCs).

• Any forbidden uses of email at your site: e.g., commercial ventures not related to
your organization, chain letters, spam, and so on.

• Any policies you have made with respect to mail attachments (e.g., quarantining
ones possibly containing viruses).

• Email should not be considered private, so confidential information should not
be sent via email. You should also mention any organizational policy on users’
email ownership and privacy (i.e., whether management reserves the right to
examine any email message).

• Politeness dictates that email messages not be forwarded to third parties with-
out the original sender’s approval.

• Email is not considered legal notification in most instances. Use written commu-
nication (a memo or letter) instead of or in addition to email when you need to
officially/legally convey information.

• Email can be forged, so trust your instincts about suspicious messages and inves-
tigate them before taking any action.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 9: Electronic Mail

Configuring User Mail Programs
As we’ve noted, there are a variety of mailer programs available for use as user
agents. Some of the most popular are listed in Table 9-1. Some of them—pine, the mh
family, and Netscape—can also be configured to function as direct mail submission
agents; the others rely on the transport agent for this task.

In Table 9-1, � indicates that the program is installed with the operating system or
provided as an optional package within installation media. A program marked with
� is available by Internet download.

Selecting a mailer program is generally a matter of personal preference. As such, we
won’t discuss their ordinary features here. Instead, we will focus on system adminis-
trator configuration issues for three of the most popular mailers: BSD mail, mutt, and
pine. However, there are two points with regard to other mailer agents that you
should be aware of:

• elm (by David Taylor) is still in wide use as a mailer program, but its functional-
ity has been pretty well superceded by mutt. mutt’s interface is almost identical to
elm’s, and it is a considerably more powerful program (especially compared to

Email Ethics for System Administrators
Anyone with root access on a system can obviously read any file on it, including users’
electronic mail. However, system administrators should obviously not do so in general,
and they should make every effort to avoid looking at actual messages even when they
must debug the mail system. Most times, test messages can be sent to simulate actual
mail traffic. Even if you do need to examine real mail messages, examining the mail
headers is sufficient in almost all cases.

Table 9-1. Mail programs provided by Unix systems

AIX FreeBSD HP-UX Linux Solaris Tru64

System V mail � � �

BSD mail � � � � �a �a

elm (ftp://ftp.virginia.edu/pub/elm/) � � �a

a The corresponding command is mailx.

� � �

mutt (http://www.mutt.org) � � � � � �

pine (http://www.washington.edu/pine/) � � � � � �

Netscape (http://www.netscape.com) � � � � � �

mh and variants (http://www.mhost.com/nmh/) � � � � � �

Emacs internal mailer rmail (http://www.gnu.org) � � � � � �

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring User Mail Programs | 533

vanilla elm, without the many separately available modifications installed). Users
who like elm might be encouraged to try mutt.

• The mh family (mh, nmh, xmh, exmh) uses a mailbox format that is substantially dif-
ferent from the ones used by other user agents. The most widely used mailbox
format on Unix systems is the mbox format, in which all messages are stored
within a single file, separated by lines beginning with “From ” (i.e., followed by a
space and no colon). For this reason, this format is sometime referred to as the
From_ format.

In contrast, the mh mailbox is a directory in which individual mail messages are
stored as separate files, with the message number as the filename. Deleted mes-
sages have names of the form ,n: the original name prepended with a comma.
Some other mailer programs (e.g., mutt) can be configured to read mh mailboxes.

The one task user agents always require of system administrators is configuration of
systemwide default settings. Additionally, users may require help to set up some of
these programs’ advanced features. In the remainder of this section, we will look at
the configuration files for the BSD mail program, mutt, and pine. We will then con-
sider how to set up the latter two programs to use PGP for encrypting email messages.

Table 9-2 lists the user-specific and systemwide configuration files associated with
these three user agents. Note that systemwide configuration files are applied before
the user’s own file, so systemwide settings can be overridden by individual users. The
table also lists the command form that can be used to bypass the system configura-
tion file entirely. However, pine does have the capability of imposing systemwide set-
tings on users (as we will see).

Here is a sample mail.rc configuration file for the mail program (annotated):

set append Append messages to mailbox (versus prepend).
set asksub askcc Prompt for subject and CC list.
set autoprint Print next message after a delete command.
set metoo Don't remove sender from group lists.
set nosave Don't save cancelled messages to dead.letter.
set Replyall Make the r command = reply to sender only.
ignore Received Message-Id Resent-Message-Id Status Mail-From Via

The first five entries set some useful mail options and are generally self-explanatory.
The Replyall option causes mail’s r reply command to default to replying only to the

Table 9-2. Mailer configuration files and options

Mailer System file User file
Option to bypass system
configuration file

BSD mail /etc/mail.rc ~/.mailrc mail -n

mutt /etc/Muttrc ~/.muttrc mutt -n

pine /usr/lib/pine.conf and /usr/lib/pine.conf.fixeda

a These configuration files are sometimes stored in /usr/local/lib instead.

~/.pinerc pine -P /dev/null

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 9: Electronic Mail

sender of the letter, rather than to the entire recipient list. In other words, it inter-
changes the functions of mail’s r and R subcommands. Setting this will cut down on
a lot of unnecessary mail traffic, and it may even prevent some embarrassment on the
part of new mail users. However, you may need to inform experienced users of such
a change if you make it on an existing system.

The remaining lines in the configuration file tell mail to ignore the listed mail header
lines when determining to whom a reply should go.

Users sometime want to change the text editor used by the mail program’s e com-
mand (used to edit a message). mail uses whatever editor is specified in the EDITOR
environment variable in this context.

mutt (written by Michael Elkins and others) comes with an excellent template config-
uration file that lists and describes all the available options. Here is an annotated
sample of a systemwide Muttrc file:

System configuration file for Mutt
ignore certain headers when determining reply recipient
ignore "from " received content- mime-version status sender
ignore references return-path lines x-status message-id
set some options
set abort_nosubject=ask-yes Prompt to abort if no subject (default=yes) .
set askcc=yes Prompt for CC list.
set askbcc=no Don't prompt for BCC list.

set beep=no Turn off beeping!
set beep_new=no Even on new message arrival.

set confirmappend=no Don't prompt for confirmation when appending
set confirmcreate=yes to a mail folder, but do confirm folder creations.

set header=no Don't include headers in quoted messages.
set mail_check=300 Check for new mail every 5 minutes.
set mime_forward=no Include replied-to message as text (rather

than as a MIME attachment).

This file lists some useful options for mutt. Note that mutt also automatically uses the
text editor specified in the EDITOR environment variable as the internal editor for
creating new mail messages.

pine (written at the University of Washington) supports two systemwide configura-
tion files: pine.conf and pine.conf.fixed. The latter file contains mandatory settings
that cannot be overridden by the user in any way (they are applied last, after all other
configuration files and command-line options). The two files are otherwise indistin-
guishable in format and directory location.

Template configuration files can be created with the pine -conf command. The
resulting template file, which includes all major settings with descriptions, is sent to
standard output. You can also set configuration file options using the program’s
internal configuration facilities (choose s and then c from the main menu).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring User Mail Programs | 535

Here is an annotated pine configuration file:

pine configuration file
editor=/usr/bin/jove Specify editor for mail messages; the default

is pico (included in the pine package).

set some options
feature-list=enable-suspend, Let pine sessions be suspended with ^Z.
start editor immediately when composing mail message
 enable-alternate-editor-implicitly,
Make quoted messages in replies as short as possible
 no-include-header-in-reply, Strip off headers.
 no-include-attachments-in-reply, Attachments too.
 strip-from-sigdashes-on-reply, And signatures.

 enable-bounce-command, Allow message bounce (resend) command.
 enable-full-headers-cmd, Allow users to optionally view all headers.
 enable-jump-shortcut, Entering a number jumps to that message.
 enable-tab-completion, Tab key file completion turned on.
 quell-status-message-beeping, No beeping!
 quit-without-confirm, Suppress confirmation at exit.
 save-will-advance Go on to next message after message save.

show these fields when creating a new mail message
default-composer-hdrs=To:,Subject:,Cc:

Unlike the other mailers we’ve considered, pine does not respect the setting of the
EDITOR environment variable. Rather, users must use the program’s own editor set-
ting to specify an alternate message composition editor. The enable-alternate-editor-
implicitly setting causes the specified editor to be invoked immediately when enter-
ing the body of a new message (rather than having to enter pine’s ^_ command). The
other entries in this configuration file are easy to understand.

Automated Email Message Encryption
The PGP facility may be used to encrypt and decrypt email messages as well as regu-
lar files; indeed, this is one of its most common uses. While users may perform these
processes manually (as described in Chapter 7), most prefer that it be handled within
their mailer program. Both mutt and pine can provide this functionality (PGP must
be installed on the local system and be in the search path).

mutt must have been compiled with PGP support in order to use this feature. You
can check the build options using the mutt -v command; check for the HAVE_PGP
option.

Configuring mutt to incorporate PGP requires adding some entries to one of its con-
figuration files. Fortunately, the package provides the exact entries that you need in
some sample configuration files (named pgp*.rc). Here are a few lines from the file for
PGP version 6, which illustrate the nature of the entire set of additional entries:

-*-muttrc-*-
PGP command formats for PGP 6.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 9: Electronic Mail

decrypt a pgp/mime attachment
set pgp_decrypt_command="PGPPASSFD=0; export PGPPASSFD; cat - %f |
 pgp6 +compatible +verbose=0 +batchmode -f"

create a pgp/mime signed attachment
set pgp_sign_command="PGPPASSFD=0; export PGPPASSFD; cat - %f |
 pgp6 +compatible +batchmode -abfst %?a? -u %a?"
...

As this listing indicates, mutt runs external processes to perform PGP operations on
mail messages, and the actual commands to run are defined in entries like these.

To use PGP with mutt to sign or encrypt an outgoing message, you enter the p com-
mand before sending it. This invokes the PGP menu; its most important items are e
(encrypt message), s (sign message), b (do both), and f (forget it—cancel). Selecting
items from this menu merely flags the desired PGP operations for the message. They
are actually carried out when the send command (y) is given. At this point, you will
be prompted for the key to use and the corresponding passphrase.

PGP decryption in mutt is even more automated. When an encrypted and/or signed
message is opened, the relevant PGP operations are performed automatically once
mutt has prompted for the PGP passphrase.

mutt creates encrypted mail messages as MIME attachments with content type
“application/pgp-encrypted”, not as inline text. It can also decrypt only messages in
this format.

pine also supports PGP encryption and decryption, via add-on utilities. One of the
most widely-used is pgp4pine (by Holger Lamm; http://pgp4pine.flatline.de). pine
places the encrypted text within the main text of the email message, surrounded by
header lines; it does not handle MIME attachments.

Once pgp4pine is installed, you must specify two configuration file settings to be able
to call it from within pine:

Programs that message text is piped into prior to display
display-filters=_BEGINNING("-----BEGIN PGP")_ /usr/bin/pgp4pine -d -i TMPFILE
Programs that message text is piped into prior to sending
sending-filters=/usr/bin/pgp4pine -e -i TMPFILE -r RECIPIENTS

The first entry defines a pattern to search for in incoming mail messages: in this case,
the text “-----BEGIN PGP”, followed by the command with which to process it (to
decrypt it, in this case). Once defined, mail messages containing PGP-encrypted text
within their body are automatically decrypted (after the passphrase is entered).

The second entry is used to define a series of filters that can optionally be applied to
outgoing mail messages. It defines a single filter that performs PGP encryption and/
or signing.

To create an encrypted mail message, you must select a filter after issuing the pine
send command; using this configuration, the key sequence Ctrl-X Ctrl-N initiates a
send and selects the first filter, pgp4pine, resulting in the following menu:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring Access Agents | 537

You may:
a) Sign and encrypt the message
b) Sign the message
c) Encrypt the message
d) Send it unmodified
q) Abort and Quit

If you select any of the first three options, you will be prompted for the passphrase.
Note that a key corresponding to the recipient’s email address must be present on
your key ring (you cannot select a key if pine cannot determine which key to use).

If you want to use PGP as a matter of course for mail messages, add the compose-
send-offers-first-filter to the feature-list in one of the pine configuration files.

The pgp4pine facility also has its own configuration file, ~/.pgp4pinerc. In general, the
supplied file works well without modification. However, you will want to verify the
settings specifying the name of the PGP main command for your version of PGP. For
example, here is the setting that corresponds to PGP Version 6:

profile_pgp6_pgp6bin=pgp

This entry says that the pgp command is the one to use. Verify that all entries whose
names begin with “profile_pgpn” are correct for the corresponding version of PGP.

One disadvantage of pgp4pine is that it uses a predictable name for its
temporary file. Users should ensure that any such files lingering after
crashes are deleted (although this happens only very rarely).

Configuring Access Agents
There are several administrative tasks associated with using message stores for some
or all email recipients:

• Selecting and designating a mail server for the message store. For large sites, this
task expands to designing and deploying a scheme in which several servers
divide this task.

• Configuring daemons to run POP and/or IMAP on the mail servers.

• Setting up user mail programs to access the message store instead of or in addi-
tion to the default local mailbox.

The first item is intimately related to the overall network architecture and capacity
planning, and this issue is discussed in this context in Chapter 15.

The second item deals with providing server-side support for remote email clients
wishing to access and retrieve messages. There are two main protocols used for this
purpose: the Post Office Protocol Version 3 (POP3, or just POP) and the Internet
Message Access Protocol Version 4 (IMAP4, or just IMAP).

POP is the older of the protocols, and it is also simpler than IMAP. It was designed
for “offline” mail processing; the user’s mail program connects to the mail server and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 9: Electronic Mail

downloads any new mail messages to the local system (usually deleting them from
the server after doing so). In this scheme, the remote server functions purely as a
temporary remote storage site. Although POP clients can be configured to automati-
cally poll the mail server periodically, POP remains a manual transfer method at
heart.

IMAP implements an interactive client-server model of interaction between the mail
server and the client software. Mail can be downloaded to the local system as with
POP, but an IMAP client can also be used to access and manage a centrally located
mailbox from any remote location. When an IMAP client accesses a remote mail-
box, it can perform operations on the messages stored there without necessarily hav-
ing to download any of them. By default, only mail headers are transferred to the
client (to save bandwidth). The body of the message is downloaded only when a
message is selected for viewing, and it is not deleted from the server. Messages can be
marked with various status flags (e.g., read vs. unread), and this data is stored along
with the message (and accordingly appears during subsequent IMAP sessions). An
IMAP client can also access multiple mailboxes and mailboxes shared among a
group of users.

The functional differences between the two protocols will become clear with an
example. Suppose that user chavez’s mail is delivered to a system named poffice. If
her mail program supports POP, chavez can transfer messages that arrive on poffice
to a different system, most likely her usual workstation. Under this POP configura-
tion, chavez’s mailbox on poffice serves as a message store, and the mailbox on her
local system is her “real” one. She can choose to retain or delete the downloaded
messages on the server (via a configuration option). If she chooses the latter, the next
time she connects to the message store, only messages that arrived since her previ-
ous access will be present in the mailbox.

The POP approach can be beneficial for retrieving mail from remote dialup loca-
tions, because it minimizes the time you must be connected to the mail server.

In contrast, with IMAP, user chavez’s “real” mailbox is on poffice itself, and she can
access it from any system within the network. When she connects to it via a mail
program running IMAP, she will see all of the messages in her mailbox. She will be
able to distinguish new messages from those she’s already read (she may even have
some messages that are marked as deleted but haven’t yet been actually discarded).
She can also save messages from her default mailbox—known as her “inbox”—to
other mail folders that she has created (which frequently reside in the directory tree
under ~chavez/Mail on the server).

There are many sources of POP and IMAP daemons, and many Unix vendors pro-
vide one with the operating system (or as a optional package). The following list gives
the paths to the daemons provided by various Unix versions we are considering:

AIX /usr/sbin/pop3d and /usr/sbin/imapd
FreeBSD several provided in the ports collection

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring Access Agents | 539

In addition, there is a widely used POP/IMAP server package available for free from
the University of Washington (http://www.washington.edu/imap/). In fact, some of
the vendor-provided versions are simply this package.

Usually, both POP and IMAP daemons are controlled by inetd, using /etc/inetd.conf
configuration file entries like these:

pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd

Both daemons should use tcpwrappers for access control. There may be other POP-
and IMAP-related entries in some inetd configuration files, corresponding to other
versions/configurations of the protocols.

The services corresponding to these protocols are defined in /etc/services with entries
like these:

pop3 110/tcp # Post Office Protocol - Version 3
pop3 110/udp # Post Office Protocol - Version 3
imap 143/tcp imap2 # Internet Message Access Protocol
imap 143/udp imap2 # Internet Message Access Protocol

You may also find entries for POP2 (generally port 109) and IMAP version 3 (port
220), which is no longer in wide use, as well as some SSL-enabled variants. The lat-
ter are preferable to avoid sending plain-text passwords across the network.

If you add POP or IMAP daemons to a system, don’t forget to verify that the required
entries in /etc/services and /etc/inetd.conf are present and active (i.e., not commented
out). You may also need to modify the entries in some cases (most often true for the
inetd configuration entries).

Ordinarily, both POP and IMAP rely on passwords for user authentication. Some
particularly poorly implemented clients require the password to be reentered for
each IMAP operation, which can be very tedious. In these cases, it may be preferable
to use host-level equivalence (hosts.equiv-type) authentication. Most IMAP daemons
can configured to do this by creating a link from the IMAP server file to /etc/rimapd.
See “Network Security” in Chapter 7 for more information about inetd, /etc/services,
and host-level equivalence authentication.

Carnegie Mellon University has developed a much more sophisticated IMAP dae-
mon facility known as Cyrus. This package is designed to be efficient and secure
even for very large sites. Cyrus has a number of interesting characteristics:

• Users are not allowed to log in to mail server systems. The actual files are
directly accessible only to the Cyrus processes, via a special user account created

HP-UX none provided
Red Hat Linux /usr/sbin/ipop3d and /usr/sbin/imapd
SuSE Linux /usr/sbin/pop3d and /usr/sbin/imapd
Solaris /opt/sfw/sbin/ipop3d and /opt/sfw/sbin/imapd
Tru64 /usr/sbin/pop3d and /usr/sbin/imapd

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 9: Electronic Mail

for the facility. Users can access mailboxes only via mailer programs implement-
ing IMAP (or POP).

• The mailbox format is nonstandard and designed for scalability. Individual mes-
sages are stored in discrete files. In addition, user mailboxes are protected with
access control lists.

• User authentication can be performed in any of several ways: standard Unix
passwords, Kerberos, PAM.

• Disk-use quotas can be imposed on user mailboxes, if desired.

For more information about IMAP in general and the Cyrus package, see the book
Managing IMAP by Dianna Mullet and Kevin Mullet (O’Reilly & Associates).

Setting Up User Agents to Use POP and IMAP
Many mailer programs support POP and IMAP access to remote mailboxes, among
them mutt, pine, the mh family, and Netscape. In this section, we will briefly consider
how to configure some of them to use a remote mailbox. Unlike the settings for PGP
and mail encryption, settings for POP and IMAP are user-specific and thus typically
reside in the user-specific configuration file.

mutt support for POP and IMAP must be selected at compile time (use the -v option
and look for USE_POP and USE_IMAP). The following configuration file entries set
up mutt as a POP client.

set pop_host=poffice
set pop_user=chavez
set pop_pass=xxx
set pop_delete=yes Delete messages on server after downloading.

In this case, this user connects to host poffice via POP as user chavez (her mailbox is
in the usual location), using the specified password for authentication (obviously,
including this third entry requires care with the configuration file permissions). Once
a message is downloaded from the server, it is deleted from the mailbox. mutt’s G
command is used to initiate mail retrieval via POP.

Here are the entries needed to connect to the same server as the same user using
IMAP:

set spoolfile={poffice}INBOX Where new messages arrive.
set folder={poffice}Mail Saved mail directory.
set imap_user=chavez Connect as this user...
set imap_pass=xxx . . .with this password.
set imap_checkinterval=900 Check for new mail every 15 minutes.
set imap_passive=no Open new IMAP connections as required.

The first entry specifies the mail spool file as the usual user mailbox on the specified
server (the meaning of the keyword INBOX). The second entry defines another mail
location—a namespace, in IMAP parlance—as ~/Mail (where ~ refers to the user
account used for access, specified here as chavez in line 3).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring Access Agents | 541

pine also uses very simple configuration file entries for these purposes. Only one
entry is needed to configure the POP client:

inbox-path={poffice/pop3}

This makes the default mailbox for pine the user’s remote mailbox on the poffice sys-
tem (accessed with the POP3 protocol), using the same username as on the local sys-
tem.

The entries for an IMAP server are very similar:

inbox-path={poffice/user=chavez}inbox
folder-collections={poffice/user=chavez}Mail/[]

The first entry specifies the user’s default mailbox as the mailbox corresponding to
user chavez on system poffice (no protocol is specified because IMAP is the default).
The second entry defines the mail folder collection to be the directory poffice:
~chavez/Mail.

Netscape can also be configured to use POP or IMAP to retrieve or access mail on a
remote system, and it is a very popular choice for PC and Macintosh users. The rele-
vant settings are reached by selecting the Edit ➝ Preferences menu path and then
clicking on the Mail Servers item under Mail & Newsgroups. The Incoming Mail
Servers area of the resulting dialog lists any configured remote mail servers. You can
set one up by clicking the Add or Edit button as appropriate.

Figure 9-4 illustrates the dialog used to configure a POP server.

The fields in this dialog are generally self-explanatory. The Server Type field allows
you to select the protocol for remote mail access (POP is chosen here). The POP tab
lets you specify whether to leave messages on the server or delete them after down-
loading.

Figure 9-4. Configuring Netscape to use POP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 9: Electronic Mail

The corresponding dialogs for an IMAP server are illustrated in Figure 9-5. The
General tab again lists the server name, protocol, username, password retention set-
ting, and mail check interval (if any).

The IMAP panel, shown on the right in the figure, includes settings related to offline
downloads, using an SSL-secured session, and handling of deleted messages. When a
message is deleted with IMAP, the message is marked as such, but it is retained on
the server by default; it actually goes away when the mail folder is “cleaned up”
(known as “expunging”). With these options, a user can select how deleted mes-
sages are treated and whether/when folders are automatically expunged.

The dialog’s Advanced tab lets you specify IMAP namespaces to be accessed on this
server. It comes into play only when namespaces other than the defaults are in use.

Configuring the Transport Agent
Setting up the transport agent is perhaps the most crucial mail-related job presented
to the system administrator. There are a variety of transport agents available on Unix
systems, but sendmail is by far the most widely used. According to current estimates,
sendmail handles over 75% of all Internet mail traffic (Unix and non-Unix alike).
Other transport agents used on Unix systems include Postfix, smail, qmail, and exim.
We will consider sendmail and Postfix here.

sendmail
Eric Allman’s sendmail package is a very powerful facility, capable of handling email
from the moment a user submits a message from a mailer program, transporting it
across a LAN or the Internet to the proper destination system, and then finally hand-
ing it off to the delivery agent, which actually places the message in the user’s mail-
box. In fact, because the package includes a delivery agent program, the facility as a

Figure 9-5. Configuring a Netscape IMAP Server

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 543

whole can handle every aspect of electronic mail except composing and reading mes-
sages and retrieving them from message stores. sendmail is also a well-proven facil-
ity, and, at this point, is quite secure, provided that it is configured properly.

There are commercial and free versions of sendmail. The commercial
versions, developed and sold by Sendmail, Inc., include additional fea-
tures as well as easy-to-use graphical interfaces, integration with other
related commercial products (e.g., virus-scanning software), and tech-
nical support. Vendor-supplied versions of sendmail are created from
the free package.

sendmail is available from http://www.sendmail.org; see also http://www.sendmail.net,
which is Sendmail, Inc.’s site for the free version. For information about commercial
sendmail products, see http://www.sendmail.com.

The current sendmail version series is 8.12.3 (circa April, 2002). sendmail’s major
version number—8—refers to the extensive rewrite of sendmail done in 1993 by its
author, Eric Allman. The other numbers are revisions within that series.* Unfortu-
nately, vendor-included versions of sendmail tend to lag behind the current version
to varying degrees, with free operating systems remaining closest to the current ver-
sion and commercial operating systems quite a bit further behind. (At the moment,
sendmail versions included with commercial operating systems range from 8.8 to 8.
10 for the Unix flavors we are considering.)

You can identify which version of sendmail is running on a system by running the fol-
lowing command:

$ echo | sendmail -bt -d0
Version 8.11.3
Compiled with: LDAPMAP MAP_REGEX LOG MATCHGECOS MIME7TO8 MIME8TO7
 NAMED_BIND NETINET NETUNIX NEWDB NIS QUEUE SASL
 SCANF SMTP USERDB

============ SYSTEM IDENTITY (after readcf) ============
(short domain name) $w = poffice
(canonical domain name) $j = poffice.ahania.com
(subdomain name) $m = ahania.com
(node name) $k = poffice.ahania.com
==
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

This sendmail command runs the facility in its interactive address-testing mode, with
some additional debugging output enabled; in this case, the input is taken from stan-
dard input, which is null, thereby terminating the session after the initial messages
are displayed (/dev/null could also be used as the input source).

* sendmail Version 9 is in development as of this writing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 9: Electronic Mail

The resulting output indicates the sendmail version information and the set of com-
pilation options with which it was built. For example, this version includes support
for interfacing with an LDAP database (indicated by the first keyword in the list).
The second section of the output displays information about the local system and its
DNS domain environment. The final lines pertain to email address translation and
can thus be ignored here.

If you want to find out the sendmail version running on a remote system, telnet to
port 25 (specified as telnet’s second parameter):

$ telnet pauling 25
Trying 192.168.9.220...
Connected to pauling.
Escape character is `^]'.
220 pauling ESMTP Sendmail 8.11.0/8.11.0; Sun, 4 Mar 2001 ...
^]
telnet> quit

Taking the last couple of years as the norm, upgrades to sendmail appear very fre-
quently—every 2–3 months, barring major bugs or security holes. Ideally, hosts that
relay mail into and out of your site should be kept up-to-date with the latest version
of sendmail since these are your most vulnerable security points. Other hosts, which
usually rely on a central mail server for mail transport, can probably make do with
the version that came with the operating system (unless a major security problem is
discovered). In any case, check security sites and mailing lists (as well as the sendmail
home page) regularly for notices of newly discovered sendmail vulnerabilities and
appropriate fixes.

The sendmail facility consists of many components: the sendmail daemon, some
related commands and programs, several configuration files and databases, and con-
figuration-file building tools. These files will be located in standard locations only if
you install sendmail yourself from source code. Table 9-3 lists sendmail’s major com-
ponents, along with their directory locations for the various Unix operating systems.

Table 9-3. Where to find the components of the sendmail package

sendmail component Location

sendmail binary Usual: /usr/sbin
Solaris: /usr/lib

Boot script that starts sendmail AIX: /etc/rc.tcpip
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/sendmail
Linux: /etc/init.d/sendmail
Solaris: /etc/init.d/sendmail
Tru64: /sbin/init.d/sendmail

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 545

Boot script configuration file (and sendmail-enabling
entry)

AIX: none used
FreeBSD: /etc/defaults/rc.conf, /etc/rc.confa

(sendmail_enable="YES”)
HP-UX: /etc/rc.config.d/mailservsa

(export SENDMAIL_SERVER=1)
Linux: /etc/sysconfig/sendmailb

/etc/rc.config.d/sendmail.rc.configa (SuSE 7)
(START_SENDMAIL="yes”)

Solaris: /etc/default/sendmaila
(DAEMON=yes)

Tru64: /etc/rc.config.* (set arguments only)

vacation utility Usual: /usr/bin
Linux: not provided by standard Red Hat

newaliases and mailq commands Usual: /usr/bin
AIX: /usr/sbin
Tru64: /usr/sbin

smrsh

restricted shell (for piping to commands in mail aliases)

AIX: not provided
FreeBSD: /usr/libexec
HP-UX: /usr/sbin
Linux: /usr/sbin (Red Hat)

/usr/lib/sendmail.d/bin (SuSE)
Solaris: /usr/lib
Tru64: not provided

mail.local

(local delivery agent)

AIX: not provided
FreeBSD: /usr/libexec
HP-UX: not provided
Linux: /usr/bin (Red Hat)

/usr/lib/sendmail.d/bin (SuSE)
Solaris: /usr/lib
Tru64: not provided

aliases file Usual: /etc
FreeBSD: /etc/mail
HP-UX: /etc/mail
Tru64: /var/adm/sendmail

sendmail.cf

(primary config. file)

Usual: /etc/mail
AIX: /etc
Linux: /etc
Tru64: /var/adm/sendmail

Additional config. files Usual: /etc/mail
AIX: /etc
Tru64: /var/adm/sendmail

Table 9-3. Where to find the components of the sendmail package (continued)

sendmail component Location

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 9: Electronic Mail

sendmail’s functioning is controlled by the sendmail daemon, and all the other com-
ponents work under its direction. The daemon is generally started at boot time with
a command like the following:

sendmail -bd -q30m

This command runs sendmail as a background daemon and checks its work queue
every 30 minutes. In boot scripts, starting the daemon is generally preceded by com-
mands that remove lingering junk files from sendmail’s queue directory.

On systems with System V–style boot scripts, you can start or restart the sendmail
daemon with a command like this one:

/sbin/init.d/sendmail restart

See Table 9-3 to determine the configuration file location on your system.

On AIX systems, you use these commands to direct the System Resource Controller
to start or restart the daemon:

startsrc -s sendmail
refresh -s sendmail

Configuration file build area (i.e., location of Build script) AIX: /usr/samples/tcpip/sendmail/cf
FreeBSD: /usr/share/sendmail/cf/cf
HP-UX: /usr/newconfig/etc/mail/cf/cf
Linux: /usr/share/sendmail-cf/cf (Red Hat)c

/usr/share/sendmail/cf (SuSE)
Solaris: /usr/lib/mail/cf
Tru64: not providedd

sendmail.pid

(contains PID of sendmail process)

AIX: /etc
FreeBSD: /var/run
HP-UX: /etc/mail
Linux: /var/run
Solaris: /etc/mail
Tru64: /var/run

syslog mail facility messages AIX: not configured
FreeBSD: /var/adm/messages
HP-UX: /var/adm/syslog/mail.log
Linux: /var/log/maillog (Red Hat)

/var/log/mail (SuSE)
Solaris: /var/adm/messages
Tru64: /var/adm/syslog.dated/*/mail.log

a Other features can also be specified in these files (e.g., daemon options).
b The /etc/sysconfig/sendmail file does not exist by default and must be created if desired.
c On Red Hat systems, you must install the separate sendmail-cf package if you want to modify your sendmail configuration.
d The Mail section of the sysman utility offers a prompt-based sendmail.cf setup facility (the direct command ismailsetup). I ignore it and

use the real thing.

Table 9-3. Where to find the components of the sendmail package (continued)

sendmail component Location

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 547

Configuring sendmail

Previously, configuring sendmail was something of a black art; it took a long time to
learn how, and even then the process remained at least somewhat mysterious to all but
the true gurus. However, since the sendmail configuration process began using the m4
macro preprocessor facility to create sendmail.cf configuration files, the job has become
much, much easier. The discussion that follows presents an introduction to sendmail
configuration; of necessity, some of sendmail’s complexity is glossed over at times.

When you create a sendmail configuration file, you tell sendmail about the specifics
of mail submission and delivery on the local computer system. sendmail is highly
configurable, allowing you to specify desired behavior in detail and to modify almost
any of its default settings. Fortunately, however, these defaults are well-chosen, and
configuring sendmail is quite simple for the most commonly used mail scenarios.

sendmail’s main configuration file, sendmail.cf, is created by running a much simpler
source file through the m4 macro processor. To build a custom configuration, you
must create this second file, process it, install the resulting file into the proper direc-
tory, and notify the daemon to reread it.

The configuration file build directory varies for different Linux distributions (see
Table 9-3). The main directory contains a variety of sample configuration source files
(their extension is .mc), and you can usually begin a new configuration by copying
and then modifying one of them. In their simplest form, these files contain three
main types of entries:

Macro invocations
These entries are predefined macros that expand to the items necessary to enable
a particular sendmail feature or setting. Macro names are conventionally in
uppercase letters, and their arguments are specified as a parenthesized, comma-
separated list. The most commonly used macro is FEATURE, which selects the
sendmail feature corresponding to its argument. Feature names are keywords
with lowercase names: e.g., FEATURE(`smrsh'). Features are defined in files
named ../feature/name.m4, and you can examine these files to see what a given
FEATURE macro really does.

Additional macro definitions
These macros are performed via the m4 define command, which has the form:

define(`NAME_OF_ITEM',`value')

Item names are in uppercase (e.g., MASQUERADE_AS). Such defines are used both to
enable sendmail features and to set the values of various sendmail parameters.
The latter have names beginning with conf (e.g., confALIAS_FILE).

Comments
Source files usually begin with a block of comments, delimited by divert(-1)
and divert(0) commands (these tell the preprocessor to ignore all lines between

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 9: Electronic Mail

them). Additional comments may appear elsewhere in the file following the
string “dnl”.*

As the examples illustrated, character strings specified as macro arguments are
enclosed with an initial backquote and a closing single quote:

`string' Note the odd quotes.

You can find information about all of sendmail’s m4-based configuration options in
the README file in top-level sendmail.cf build directory (i.e., ../ relative to the direc-
tory listed in Table 9-3); this document is titled “Sendmail Configuration Files” and
is also available on the sendmail websites. For the goriest of details, consult the book
sendmail by Brian Costales with Eric Allman (O’Reilly & Associates).

Getting started: A sample mail client configuration

The listing below illustrates the use of these various items within a sendmail source
file. This file is used on the client systems of a site that uses a designated mail hub for
all nonlocal outgoing mail; in other words, mail submitted on a client system des-
tined for any local system is delivered directly, but all mail destined for systems out-
side the local domain gets forwarded to the mail hub. This configuration assumes
that the aliases file on each system defines the ultimate email destination for all users
in the domain.

divert(-1)
###

 If you modify this file, you will have
 to regenerate /etc/sendmail.cf (run ./Build)

###
divert(0)
VERSIONID(`Config file for Red Hat Linux')
OSTYPE(`linux')
FEATURE(`smrsh')
define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')
FEATURE(`local_procmail')
define(`SMART_HOST',`poffice.ahania.com. ')
define(`STATUS_FILE',`/var/log/mail.stats')
MAILER(`smtp')
MAILER(`procmail')

As usual, the source file begins with comments. The first macro in the file, VERSIONID,
specifies a version string identifying this particular version of the source file; often,
the value of this macro is a source control system ID string,† although in our case it is
simply a few words of description.

* You may also see this string at the end of some configuration file lines. The dnl macro is an m4 construct that
says to discard everything following it until the newline character when processing the file.

† In other words, “Id” within the source file, which is filled in with a verbose and ugly version string when
you check the file out.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 549

The next macro, OSTYPE, specifies the operating system type of the target system; in
this case, Linux is selected. This macro causes another, OS-specific source file to be
included within this source file. The various defined ostypes and their associated
source files are located in the ../ostype subdirectory (relative to the build directory).
You should select—and examine—the one corresponding to your operating system.
Looking at the file is important so that you are aware of predefined defaults set there.

The next three macros select two sendmail features: the first FEATURE macro, smrsh,
says that sendmail’s smrsh program should be used as the shell through which mail is
sent to files and programs. The second feature, local_procmail, says to make
procmail the default local delivery agent. The intervening line defines the path to the
procmail program (the default is /usr/local/bin/procmail).

The next two lines use the define macro to indicate the system that is the outgoing
mail hub for mail outside the local domain (poffice) and to specify an alternate loca-
tion for the sendmail status/statistics file (usually /etc/mail/statistics). The final two
lines of the file use the MAILER macro to specify that SMTP and procmail local mailers
(delivery agents) are in use on this system.

Note that the order of items within this file is important. This is the general struc-
ture of an .mc source file:

VERSIONID
OSTYPE
DOMAIN Domain-wide configuration file
FEATURE
define
MAILER First “smtp”, then “local”, then others
LOCAL_RULE_* Local rewriting rules (advanced feature)
LOCAL_RULESET

Thus, FEATUREs generally precede defines. However, if a setting related to a feature is
specified in a define macro, that define should precede the corresponding FEATURE.
We saw an example of the latter with the local_procmail feature in our example.

The DOMAIN macro may be used to specify a domain-wide configuration file holding
settings desired on every host (or across a group of hosts), as in this example which
selects the generic domain:

DOMAIN(`generic')

The name specified as its argument is taken as the name of an .m4 file in ../domain
relative to the build directory (i.e., ../domain/generic.m4 in this example).

Occasionally, you may want to ensure that some feature is disabled. The undefine
macro is used in these cases, as in this example, which disables alias expansion:

undefine(`ALIAS_FILE')

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 9: Electronic Mail

Building sendmail.cf

The Build script in the build subdirectory is used to create a configuration file from a
.mc source file. I also tend to be a bit cautious in installing the new file, so I use a
process like this:

cd build-dir
emacs test.mc
./Build test.cf
cp /etc/mail/sendmail.cf /etc/mail/sendmail.cf.save
cp test.cf /etc/mail/sendmail.cf
chmod 444 /etc/mail/sendmail.cf

Whenever you change your sendmail configuration, you must send the running dae-
mon a HUP signal:

kill -HUP `head -1 /location/sendmail.pid`

The sendmail.pid file stores the process ID of the sendmail daemon (on its first line),
along with the command used to initiate it (line two).

Some systems do not provide a Build script. In these cases, use one of the following
commands (executed in the build directory):

make test.cf
m4 ../m4/cf.m4 test.mc > test.cf

The first command is used when there is a Makefile present in the build directory,
and the second is the vanilla invocation of the m4 macro processor. In the latter case,
the command explicitly prepends the standard sendmail m4 include file to the source
file; this step is taken care of for you by the Build script or Makefile.

Configuring the mail hub

Here is a source file that might be used to build the sendmail.cf file for the mail hub
computer system (the initial comment block and VERSIONID and OSTYPE macros have
been omitted):

FEATURE(`use_cw_file')
dnl Send out all mail as user@ahania.com
MASQUERADE_AS(`ahania.com')
FEATURE(`masquerade_envelope')
FEATURE(`allmasquerade')
MAILER(`smtp')
MAILER(`local')

The first feature specifies that an external configuration file will be used to specify a
list of hosts and domains for which this system will accept and deliver mail locally
(traditionally known as the cw file, after sendmail’s internal “class w”). The default file
for this purpose is /etc/mail/local-host-names, an ordinary text file containing one
name per line. At a minimum, this should contain all the aliases for the local host-
name. You will also need to include the local domain within the file in order to sup-
port local delivery of addresses of the form user@local-domain (i.e., user@ahania.com,
in our example).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 551

This macro is actually included by default in most sendmail configura-
tions. Therefore, mail client systems also use this file (it is enabled
within one of the m4 include files), and you should configure it on such
systems as well.

The three lines following the comment enable masquerading on this host. Masquer-
ading presents a single, common source location for all outgoing mail. For example,
it can be used to make all email appear to be coming from a single system, regardless
of where it was actually submitted. It can also be used to make all local sender
addresses conform to a particular form (often user@site),

In this case, the MASQUERADE_AS macro causes all mail leaving the site to appear to be
coming from the user at ahania.com, and all references to any local computer are
removed. The masquerade_envelope feature causes masquerading to occur within the
message’s envelope* as well as the standard mail headers, and allmasquerade says to
masquerade recipient names as well as sender names (the latter is useful when the
recipient list includes both local and nonlocal people).

You can exclude some hosts and/or domains from masquerading
using the MASQUERADE_EXCEPTION macro, which takes as its argument
the host or domain to be excluded.

A related feature is always_add_domain, which appends the local domain to unquali-
fied usernames (although many mailers also do this). It also respects the setting of
MASQUERADE_AS. Including this feature is virtually always safe.

If you decide to use masquerading, you may want to exclude some usernames from
the translation process. This is the purpose of the EXPOSED_USER macro. For example,
the following macro excludes root from masquerading:

EXPOSED_USER(`root')

Other system-related mail addresses should also be so excluded, including Mailer-
Daemon, postmaster, and so on.

We will consider additional masquerading-related features in the “Virtual Hosting”
section later in this chapter.

Selecting mailers

The final two lines of the example mail hub configuration file—the MAILER macros—
activate various delivery agents: in this case, SMTP and the default local delivery
agent.

* The envelope is additional data wrapped around the actual message headers and content. It contains the
actual delivery addresses, and it is built from the message’s mail headers by the mailer (delivery agent).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 9: Electronic Mail

sendmail has many defined mailers, including the following:

local
Local mail delivery (using default or defined programs)

smtp
SMTP mail transport

procmail
Delivery via procmail

cyrus
Delivery to the Cyrus facility

fax
Delivery to HylaFAX (by Sam Leffler; see http://www.hylafax.org)

qpage
Delivery to the QuickPage paging facility (http://www.qpage.org)

usenet
Usenet news delivery

uucp
UUCP mail transport

Once again, order matters among the selected mailers. You will be safe if you place
smtp first, follow it with local, and then list any other mailers. Note that the mailers
local and procmail are made equivalent when you include FEATURE(`local_
procmail').

Best practice is to include MAILER macros only for those mailers that
your site actually uses.

Each of these defined mailers has some associated parameters that can be defined,
including mailer_MAILER_PATH and mailer_MAILER_ARGS, which specify the executable
path and desired command arguments, respectively (where mailer is replaced by the
uppercase mailer name). We’ll look at an example in a bit.

The program used for local mail delivery—MAILER(local)—varies quite a bit from
Unix version to version:

AIX /bin/bellmail
FreeBSD /usr/libexec/mail.local
HP-UX /usr/bin/rmail
Linux /usr/bin/procmail
Solaris /usr/lib/mail.local
Try64 /bin/mail

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 553

In general, you can determine the default local mailer by running a command like the
following (the location of the configuration file will vary):

$ grep Mlocal /etc/sendmail.cf
Mlocal, P=/usr/bin/procmail, ...

The path following “P=” indicates the local delivery agent. There are many delivery
agents in use on Unix systems: mail, rmail, deliver, mail.local (part of the sendmail
package), procmail, and uux with rmail (for UUCP-transported mail).

The default local delivery agent is /bin/mail for mail messages and /bin/sh for mail
messages piped to files or programs. You can override these programs and/or loca-
tions with define macros such as these:

define(`LOCAL_MAILER_PATH', `/usr/bin/rmail')
define(`LOCAL_MAILER_ARGS', `rmail -d $u')
define(`LOCAL_SHELL_PATH', `/usr/bin/sh')
define(`LOCAL_SHELL_ARGS',`sh -c $u')

These entries define the local delivery agent to be /usr/bin/rmail and specify an alter-
nate location for the shell. The _ARGS parameters specify the command to run in each
case: rmail will use the -d option followed by the delivery address ($u, which resolves
to the appropriate username), and piped email will be processed with sh -c address
(where $u will again expand to the delivery address—in this case, the command spec-
ified as the alias translation).

If you want to use sendmail’s mail.local program as the local delivery agent, you can
simply include this macro in your configuration source file:

FEATURE(`local_lmtp',`path-to-mail.local')

The second argument is optional and defaults to /usr/libexec/mail.local.*

As with the local delivery agent, you can determine which program is used for piped
mail messages using a command such as grep Mprog /etc/sendmail.cf. Since piped
email is a traditional security hole, many administrators choose to replace sh with a
more restricted shell. The smrsh shell included with sendmail fits the bill nicely (it’s
pronounced “smursh,” but it stands for “sendmail restricted shell”).

As we’ve seen, smrsh may be selected using the following FEATURE macro:

FEATURE(`smrsh',`path')

The second argument is again optional and defaults to /usr/libexec/smrsh.

Like other restricted shells (see Chapter 7), smrsh ignores all I/O redirection within
commands, strips all initial paths from command names, and restricts allowable
commands to those stored in its executables directory, usually /usr/lib/sendmail.d/bin.
The administrator then places permitted (safe) commands (e.g., vacation) in that

* An alternate default directory for mail.local and smrsh can be set by defining the confEBINDIR parameter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 9: Electronic Mail

directory, usually via symbolic links, taking care to exclude unsafe commands, such
as shells (other than smrsh itself), command interpreters (e.g., Perl, Python), and pro-
grams offering shell escapes. Neither the directory nor the files within it should be
group- or world-writable.

procmail can spawn a subshell, so it should probably not be included
in smrsh’s set of allowed commands (although it is often included any-
way). An alternative method for allowing users to run procmail is to
make it the local mailer (as is the default on Linux systems). You’ll
have to decide which tradeoff is the lesser evil on your system if users
need procmail and you want to make them use smrsh for piped email.

More about pipes to files and programs. Normally, pipes to files can be made to ordinary
files, devices, and other filesystem entities. You may want to limit them to ordinary
files (to prohibit device access and prevent inadvertent errors, such as overwriting
directories) by defining confSAFE_FILE_ENV:

define(`confSAFE_FILE_ENV',`/')

If you further want to limit the allowed locations for writes to files, specify the root
of the desired directory as the second parameter. For example, the following entry
restricts such writes to files under /home:

define(`confSAFE_FILE_ENV',`/home')

Finally, you can disable mail message relaying to files and programs by removing the
/ and | characters from the list of flags given to the local mailer:

MODIFY_MAILER_FLAGS(`LOCAL',`-|/')

Some client and mail hub variations

In this section, we look briefly at a potpourri of additional features related to general
client or hub configuration.

An isolated internal network. A non-Internet-connected LAN can easily rely on a single
host to serve as its conduit to the outside world. The client systems in such a net-
work use an additional feature: nocanonify. This feature tells sendmail not to expand
email addresses to their fully qualified form on the local system. Instead, it will be
done on the mail hub. Delaying it until then saves some unnecessary or redundant
DNS lookups locally even for hosts with connections to the Internet. Moreover, it is
essential to include this feature when clients with limited or no DNS access will be
sending messages to arbitrary Internet destinations that they may not be able to
resolve.

On the mail hub, the relay_entire_domain feature allows that system to accept mail
for forwarding from any host in the local domain. Relaying is discussed in more
detail when we consider sendmail’s anti-spam features later in this section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 555

A null client. It is possible to define an even more minimal client system than the one
we examined earlier. sendmail offers the option of a “null client” system in which all
mail is sent to another host for processing. It uses a minimal configuration file, con-
sisting of merely the OSTYPE macro and one FEATURE macro:

FEATURE(`nullclient',`poffice')

This example specifies the target host—the system to which to forward outgoing
mail—as poffice. This feature also automatically turns off all address aliasing and for-
warding features.*

If you decide to set up a null client system, you should examine the corresponding
operating system–specific include file (in ../ostype) to ensure that no unwanted fea-
tures are enabled there. In addition, there is no need to run the sendmail daemon on
such a client system (user agents will invoke it themselves when necessary).

Mailer-specific and other local relays. More complex mail transport schemes can also be
implemented in addition to what is provided by the SMART_HOST feature (which speci-
fies a host to handle mail addressed to hosts outside the local domain). For example,
different mailers can each have a specified relay host for forwarding mail traffic using
the corresponding protocol. For example, the following macro defines oldmail as the
relay host for UUCP-based mail:

define(`UUCP_RELAY',`oldmail')

Mailer-specific relay settings take precedence over SMART_HOST.

The MAIL_HUB feature routes all outgoing mail to a specified host, as in this example:

define(`MAIL_HUB',`poffice')

Alternatively, LOCAL_RELAY can be defined to route unqualified mail addresses to a
specific host:

define(`LOCAL_RELAY',`poste')
LOCAL_USER(`root admin')

These macros cause all mail addressed to just a username to be routed to poste for
processing, although mail to root and to admin is excepted. The entries in the aliases
file are not used for such rerouted addresses.†

Here is a summary of the various mail hub specification macros:

SMART_HOST
Handles mail going outside domain

* You can disable aliasing and/or forwarding with the macros undefine(`ALIAS_FILE') and
define(`confFORWARD_PATH',`'), respectively.

† If you use both MAIL_HUB and LOCAL_RELAY, MAIL_HUB wins, unless you also include the stickyhost feature. In
the latter case, mail to unqualified usernames goes to the LOCAL_RELAY destination, and all other local outgo-
ing mail goes to the MAIL_HUB destination.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 9: Electronic Mail

MAIL_HUB
Handles local domain mail

LOCAL_RELAY
Handles local unqualified addresses

More addressing options

sendmail supports several ways of implementing aliasing of various sorts, including
NIS/NIS+, LDAP, and lookup tables (databases, actually), in addition to the aliases
file and forwarding mechanisms. In this section, we consider some of these aliasing
methods, along with some related issues.

Sender aliasing. sendmail supports lookup table–based aliasing in addition to the stan-
dard mechanisms; the databases used for these lookups are generically known as
“maps.” The genericstable feature selects map lookup for outgoing sender
addresses. You enable it with configuration source file entries like the following:

FEATURE(`genericstable',`hash /etc/mail/senders')
GENERICS_DOMAIN_FILE(`/etc/mail/local-host-names')

The first entry selects the generics table feature and specifies the database as the
hash-type Berkeley DB file /etc/mail/senders.db (the argument’s syntax is thus db-type
path). The default is hash /etc/mail/genericstable.

The second macro specifies that the file listing the domains to which the map should
be applied is /etc/mail/local-host-names (the same file listing hosts and domains to be
considered as local). Alternatively, a different file could be specified, or the GENERICS_
DOMAIN macro could be used to list the local domains explicitly.

Obviously, the associated database file must also be created. The process for doing
so is simple:

• Create a text file containing entries of the following format:
sender-address desired-translation

For example:
chavez rachel_chavez@ahania.com
carr steve_carr@zoas.org
ewood eve_wood@ahania.com

Names in the left column implicitly have the local domain appended to them,
because only fully qualified sender names are translated by the generics table fea-
ture. (More complex entries are also supported; see the sendmail documentation
for details.)

• Create a database file from the text file using the makemap command. For exam-
ple, to create a database from the file senders.txt, you would generally use this
command, which creates the file /etc/mail/senders.db:

cd /etc/mail; makemap hash senders < senders.txt

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 557

sendmail supports several database formats. The hash variation of the Berkeley
DB database used above is generally preferred, and it is supported by all the sys-
tems we are considering, except AIX. On AIX systems, use the dbm file type.*

Note also that database support is selected at compile time; verify that the list of
compiler options includes NEWDB (indicating Berkeley DB support) and/or NDBM
(DBM support).

So what happens when someone replies to one of these genericized email addresses?
The aliasing mechanisms in the local domain need to recognize and translate the
address accordingly (e.g., via an aliases file entry) for the mail to be delivered to the
proper recipient. You can also use the virtual user table feature for the reverse trans-
lations (discussed under “Virtual hosting,” a little later in this section).

A few more points: first, it is often a good idea to include the always_add_domain fea-
ture when using a generics table to ensure that all names are fully qualified. Second,
the generics_entire_domain feature can be used to apply generics table translation to
senders from subdomains of the domains using the feature. Finally, be aware that
map translations are not recursive; only a single lookup operation is performed.

Using LDAP for incoming mail addresses. Another option for address aliasing is to use an
LDAP database to store the associated information. Recent versions of sendmail
include the capability to issue LDAP queries (provided it is selected at compile-time;
check the options for LDAPMAP). The following configuration source file macros enable
LDAP support for our example domain:

FEATURE(`ldap_routing')
LDAP_ROUTE_DOMAIN(`ahania.com')
define(`confLDAP_DEFAULT_SPEC', `-h orwell.ahania.com -b ou=People,dc=ahania,dc=com')

The first feature enables LDAP support, and the second macro specifies the domain
to which it applies. The final macro specifies the LDAP server and the base distin-
guished name at which to begin the search (see Chapter 6 for a detailed discussion of
LDAP).

Once enabled, sendmail uses the following LDAP attributes of the
inetLocalMailRecipient object class:†

mailLocalAddress
Incoming mail address

mailRoutingAddress
Local address to which to deliver mail

mailHost
Host to which to route mail (not often used)

* Under AIX, you must also build the makemap utility from the sendmail source distribution; it is not provided.

† You can change this class and other LDAP-related defaults using optional arguments to the ldap_routing fea-
ture.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 9: Electronic Mail

Here are some example LDAP records:

dn: uid=chavez,ou=People,dc=ahania,dc=com
uid: chavez
objectClass: posixAccount
objectClass: inetLocalMailRecipient
mailLocalAddress: rachel_chavez@ahania.com
mailRoutingAddress: chavez@dalton.ahania.com

dn: uid=nadia,ou=People,dc=ahania,dc=com
uid: nadia
objectClass: posixAccount
objectClass: inetLocalMailRecipient
mailLocalAddress: nadia_rega@ahania.com
mailRoutingAddress: nrega

dn: uid=scarr,ou=People,dc=ahania,dc=com
uid: scarr
objectClass: posixAccount
objectClass: inetLocalMailRecipient
mailLocalAddress: steve_carr@ahania.com
mailRoutingAddress: scarr@zoas.org
mailHost: oldmail.ahania.com

(Note that only the relevant attributes are shown; in actual practice, these entries
would probably contain additional object classes and their associated attributes.)

The first two examples translate generic incoming addresses: a fully qualified address
and a (local) alias, respectively. The final example performs a similar translation, this
time introducing a different domain in the target address. In addition, the mail will
be routed to the host oldmail (as specified in the mailHost attribute). In other words,
incoming messages addressed to steve_carr@ahania.com will be routed to host
oldmail, which will deliver them to scarr@zoas.org.

The redirect feature. sendmail offers a very convenient way to deal with email that
comes to people who have left an organization: its redirect feature. When this is
included in the configuration source file, mail addressed to any recipient of the form
someone@anywhere.REDIRECT is returned to the sender with the message:

551 User has moved; please try someone@anywhere

To use the feature, you must define aliases of the proper form for users who have
left. For example, this alias will notify anyone who sends a message to erika that her
mail should now go to eps@essadm.com:

erika: eps@essadm.com.REDIRECT

Virtual hosting

We saw a simple example of address masquerading when we considered the exam-
ple mail hub configuration earlier. Many times, however, a mail host needs to pro-
vide mail services for several distinct domains (often in the context of website

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 559

hosting). This process is known as virtual hosting, and sendmail provides several fea-
tures to support it. The most important of these is the virtual user table, which trans-
lates incoming addresses according to a map that you set up.

Here are some sample configuration file entries using this feature:

FEATURE(`virtusertable',`hash /etc/mail/vuser')
VIRTUSER_DOMAIN_FILE(`/etc/mail/local-host-names')

As you can see, the virtual user table entries are quite similar to those used with the
generics table feature.

The format of the source file for the virtual user map is:

incoming-address desired-local-recipient

The entries in this file typically include not only individual user address translations
but also blanket transformations of the addresses for entire domains. Here are some
examples (assume ahania.com is the local domain):

rachel_chavez@ahania.com chavez@dalton.ahania.com
erika@ahania.com erikap@mango.essadm.com
help@ahania.com error:No such user
@essadm.com czarina@essadm.com
@zoas.org %1@ahania.com

The first two entries translate addresses to different users within the same and a dif-
ferent domain, respectively. The third entry returns an error to the sender for any
message addressed to help in the local domain.

The final two entries match any address in the specified domain. The entry for
essadm.com sends all messages to any user at that domain to the user czarina. The
final line maps all addresses of the form user@zoas.com to the same username in the
local domain. Note that more complex constructs are possible; see the sendmail doc-
umentation for details about the entry syntax.

Once again, the makemap command is used to create the database file. For example:

cd /etc/mail; makemap hash vuser < vuser.txt

By default, the map is used only for fully qualified addresses in the local domain. The
virtuser_entire_domain feature can be used to apply virtual user table translation to
addresses referring to subdomains of the associated domain(s).

Virtual hosting requires that the DNS setup for the hosted domains
match the setup specified to sendmail. In particular, the MX records
for these domains should point to the appropriate system in the host
domain.

The services switch file

The order of various name-lookup services is controlled, as usual, by the network
services switch file, which is /etc/nsswitch.conf on Linux and Solaris systems (more

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 9: Electronic Mail

specifically, it is controlled by the aliases entry). For example, the following entry
specifies that the standard aliases file should be used for aliases, followed by any NIS,
and then the NIS+ maps:

aliases: files nis nisplus

For systems not supporting the services switch file, sendmail provides similar func-
tionality via the confSERVICE_SWITCH_FILE setting:

define(`confSERVICE_SWITCH_FILE',`/etc/mail/service.switch')

The file above selects the usual name and location for this file (although the setting
isn’t configured at all on many systems). The file has a slightly different format, omit-
ting the colon following the initial keyword:

aliases files nis nisplus
hosts files dns nis nisplus

As this example indicates, the sendmail services switch file can contain entries for
both aliases and hosts, providing search orders for mail addresses and hostnames,
respectively. See “Adding a New Network Host” in Chapter 5 for more information
about the network services switch file.

Spam suppression

sendmail offers several features designed for dealing with spam, the electronic equiva-
lent of junk mail.* These features can be grouped into four areas:

Message relaying
Current versions of sendmail disable relaying, the passing on of received mes-
sages that are not destined for any local user. Doing so prevents the bad guys
from using your mail server as a conduit for generating spam traffic, consuming
(stealing) your resources in the process. Accordingly, this item is related more to
general spam prevention than to eliminating spam locally.

Verifying sender data
By default, sendmail rejects mail coming from a DNS domain whose name can-
not be resolved and from senders without fully qualified mail addresses (there
are features to override these defaults). Such messages are very likely to have
forged headers and to be spam. You can use the access database to define excep-
tions to these tests if you need to (see the next item).

Address-based mail filtering via an access database and public blacklists
Mail from various users and/or sites can be rejected. These features are highly
configurable to allow both limited relaying and specification of mail sources
whose messages you want to ignore or reject.

* The official technojargon term for spam is unsolicited commercial email, or UCE; it is also occasionally
referred to as unsolicited bulk email (UBE).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 561

Mail header checking
sendmail can apply a series of administrator-defined checks to mail headers to
determine whether the mail should be accepted. See the sendmail documenta-
tion and the file knetch.mc (ostensibly from Eric Allman’s own system), which is
usually included in the build directory, for more information and examples.

We will consider the first and third items in more detail in the remainder of this sec-
tion. For a different approach to detecting and processing spam, see the section on
procmail later in this chapter.

Message relaying. Prior to sendmail Version 8.9, the transport agent operated in a
friendly mode, relaying any mail that was presented to it. This is known as “promis-
cuous relaying.” Unfortunately, systems that allow such relaying—referred to as
“open relays”—have been misused by spammers, who send messages through sys-
tems that allow relaying, thus disguising or erasing the true origin of the messages.
This is a problem for the relay system because the spammers are consuming band-
width and system resources on the relay host. For example, all of the DNS lookups
needed to deliver, say, 10,000 spam email messages are happening on your system
rather than theirs.

As a result, all relaying is turned off by default in recent sendmail versions. However,
sendmail does include options to turn on relaying only as needed, in limited and con-
trolled ways. We’ve already seen one example of this in the relay_entire_domain fea-
ture. Also, when you use the cw file for the domain lists for the generics and/or
virtual user tables, you effectively turn on relaying for the included domains.

The RELAY_DOMAIN and RELAY_DOMAIN_FILE macros can be used to specify additional
domains for relaying. These macros take a domain list and filename (containing the
domain list) as arguments, respectively. You can also use the access database to spec-
ify allowed relay domains and hosts (see the next section).

You may also want to reject mail addressed to nonexistent local addresses. The
LUSER_RELAY macro specifies how such messages should be handled. For example:

define(`LUSER_RELAY',`tundra.ahania.com')
define(`LUSER_RELAY',`local:trashman')
define(`LUSER_RELAY',`error:wrong number bozo')

The first example reroutes such messages to the host tundra. The second sends them
to a local address (via the LOCAL mailer); this address can be an alias pointing any-
where you want. Finally, the third example returns such messages with the indicated
error message (which may not be appropriate for use at your site).

If you are using limited relaying, the best practice is to undefine the relay settings for
mailers you are not using in order to minimize your site’s vulnerability to misuse by
spammers. For example:

undefine(`UUCP_RELAY')

and similarly for other unused mailers (e.g., DECNET, BITNET and so on).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 9: Electronic Mail

Some people advise rejecting all mail with any variation of UUCP-style addresses
using this macro:

FEATURE(`nouucp',`reject')

This advice arose from the fact that spammers used to occasionally use such
addresses in an attempt to trick sendmail. However, doing this will reject all legiti-
mate email from sites that happen to still use UUCP (and there are more of them
than you think). All in all, this feature has no appreciable effect on spam and can
block real electronic mail. For this reason, I strongly discourage you from using it.

Public blacklists and the access database

We now turn to two features related to stopping spam at the incoming mail host,
preventing it from ever reaching user mailboxes.

The first of these is the ability to reject mail from any site included in one of the pub-
lic lists of known spammers and open relays:

FEATURE(`dnsbl')

This feature tells sendmail to check senders against such a list. Such facilities use
standard DNS facilities to take advantage of the normally unused IP address 127.0.0.
2; the facilities set up an otherwise normal DNS server that returns this address for
all sites (IP addresses) in their list. Transport agents can choose to interpret the
address as marking a bad site, and sendmail rejects mail from these sites when this
feature is enabled.*

The default list to check is the Realtime Blackhole List run by the Paul Vixie and
coworkers’ Mail Abuse Prevention System (MAPS) project (see http://maps.vix.com
for more information; the actual server is rbl.maps.vix.com). You can specify a differ-
ent server to query via the second argument to the macro, and you may include the
feature multiple times. MAPS provides other lists as well, as do several other organi-
zations (e.g., the Open Relay Behaviour-modification System (ORBS); see http://
www.orbs.org).

There is always a small possibility of rejecting legitimate mail messages using this fea-
ture. If this occurs, you can use the access database to make exceptions without dis-
abling the entire feature.

You enable use of an access database (map) using the following features:

FEATURE(`access_db', `hash /etc/mail/access')
FEATURE(`blacklist_recipients')

The access_db feature’s arguments specify the type and pathname for the database
file (as for the generics and virtual user tables); the default file type and location are
given in the example.

* You can also consult these lists via the procmail mail filtering program and have more options for handling
the corresponding messages (see the discussion of this facility later in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 563

The second feature is optional. The blacklist_recipients feature allows you to
include access database entries blocking incoming messages for local mail recipients
and hosts.

You create the access database file using the makemap command:

cd /etc/mail; makemap hash access < access.txt

The entry format for access database entries is the following:

item action

where item is a username, host, domain, or network, and action is a keyword indicat-
ing how to treat email from that source. The available keywords include:

OK
Accept email even if it fails other tests.

RELAY
Relay messages from this source.

REJECT
Reject messages from this source.

ERROR
Reject messages with a specified error message (see examples).

DISCARD
Silently ignore messages from this source.

In addition, if a site’s entry in the access database specifies mail rejection in any of its
variations, outbound mail directed there will also be prohibited.

Here are some examples:

bad-guys.org REJECT
evil-ones.net ERROR:"550 No spam accepted"
mole.bad-guys.org OK
zoas.org RELAY
10.0.22 RELAY
something4nothing@notaol.org DISCARD
mybadguy@ REJECT
fortress.ahania.com ERROR:"550 No mail allowed"

The first two entries reject mail from the specified domains, using the default and
specified error message, respectively. Note that error messages that you specify must
begin with the 550 error code. The third entry defines an exception to the preceding
rejection of mail from the bad-guys.org domain, allowing mail from host mole to get
through.

The fourth and fifth entries allow relaying of mail originating from the zoas.org
domain and any host on the 10.0.22 subnet. The following two entries apply to spe-
cific mail accounts, discarding any mail received from sender something4nothing in
the notaol.org domain and rejecting incoming mail addressed to mybadguy in the
local domain. The final entry rejects mail addressed to anyone on host fortress in the
local domain.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 9: Electronic Mail

Note that the last two entries, which apply to local recipients rather than remote
senders, require the blacklist_recipients feature in order to be valid.

If finer-grained access control is desired, the access database also supports a slightly
modified syntax variation allowing separate entries for senders, recipients, and con-
nections at a site. It consists of prepending one of From:, Connect:, and To: to the
simpler entry. For example, the following entry rejects mail from the specified
address but allows outgoing messages addressed to it:

From:spammer@notaol.org REJECT

Similarly, the following entries reject mail to and from evil-ones.org but define an
exception for one sender and another recipient:

From:evil-ones.org REJECT
To:evil-ones.org REJECT
From:myguy@evil-ones.org OK
To:mygal@evil-ones.org OK

You can also use the access database to implement unidirectional relaying. For exam-
ple, this entry relays messages from zoas.org but does not relay messages from other
sources to it:

Connect:zoas.org RELAY

Note that Connect: is used, not From:. Use To: to allow relaying to a specified desti-
nation.

Access control entries allowing access from specific sites or senders
cannot protect against address spoofing.

The entries in the access database are used by three distinct sendmail message exami-
nation phases.* Messages are checked first for allowed relaying (based on the client
hostname and address), then for an allowed sender, and finally for an allowed recipi-
ent. If a message is rejected in one phase, it cannot be restored later. This means that
the preceding syntax does not allow for certain kinds of exceptions to be defined. For
example, you cannot allow email to a specific user always to get through regardless
of its origin, because the local addresses checks are downstream from the message
source checks.

However, you can use the delay_checks feature to reverse the order of the three test
phases. In this mode, recipient-level access controls have the highest precedence,
rather than the lowest.

* To be more technically accurate, the entries are used by three different sendmail “rulesets”: check_relay,
check_mail, and check_rcpt.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 565

In addition, if you add the friend argument when you invoke the delay_checks fea-
ture, you can define local addresses that are exceptions to all access checks, using the
following syntax:

To:rubbish@ahania.com SPAMFRIEND

This entry exempts all mail addressed to rubbish in the local domain from access
control tests, causing it to be accepted regardless of its origin. (Thus, “spamfriend” is
used to mark recipients who don’t mind getting spam.)

sendmail security

In this section, we take up several topics related to sendmail security. We’ll begin by
considering the ownerships and permissions of the various sendmail-related files and
directories, to which I’ve already alluded several times in the course of this discus-
sion. There are several points to keep in mind:

• The directory locations of all sendmail-related files—executables, configuration
files, spool directory, and so on—should be safe: root should own each subdirec-
tory in the path (along with the appropriate group), and no component of any
path should be world-writable.

• The configuration files themselves should not be world-writable either. This
includes sendmail.cf and any other configuration files you are using (usually
located in /etc/mail).

• Ideally, the spool directory should be protected against all but root* access, using
a mode of 700. However, restricting access in this way prevents ordinary users
from listing the queue contents with mailq. If this is a problem, you have the
choice of relaxing the permissions with a less restrictive mode or using a privacy
option to allow certain users to view the queue despite the protection (discussed
below).

The sendmail default user. Although it is a SETUID root program, the sendmail process
always tries to reduce its privilege to the minimum required to perform a task by giv-
ing up its root privilege for some other user context appropriate to the task at hand.
For example, it takes on the identity of the recipient user when performing certain
mail forwarding tasks.

The confDEF_USER_ID parameter specifies the user/group combination to use when
sendmail wants to reduce its privilege but there is no specific user identity to take on.
Here is an example:

define(`confDEF_USER_ID',`mailnull:mailngrp')

* Or another user specified via the confRunAsUser parameter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 9: Electronic Mail

The macro sets the user and group identities that sendmail assumes to the user and
group named mailnull and mailngrp, respectively. The mailnull user should be
defined with a password file entry like this one:

mailnull:***:9947:9947:sendmail default:/not/real:/dev/null

The user’s home directory should not exist, and no valid login shell should be speci-
fied. The password for this account should also be set to an asterisk or other invalid
character (either here or in the shadow password file when in use).

The group is set up similarly, for example:

mailngrp:*:9947:

The actual UID and GID do not matter, but this user and group should not own any
files or be used for any other purpose. As a result, the nobody user should not be
used as the default user.

Privacy options. sendmail provides a number of options for restricting or eliminating
various sensitive tasks via the confPRIVACY_FLAGS parameter:

define(`confPRIVACY_FLAGS',`flag-list')

The second argument is a comma-separated list of flags that you want to enable.
There are several flags you should consider including:

• authwarnings is the default setting for this parameter. It causes sendmail to add
authentication warning headers to suspicious mail messages (see the sendmail
documentation for details on these checks).

• noexpn and novrfy prevent responses to the SMTP EXPN and VRFY commands,
respectively. These commands are designed to expand aliases and verify mail
addresses, but they are often misused by spammers (to discover legitimate email
addresses) and other bad guys. You may also prefer to use goaway, which dis-
ables all SMTP verification and status queries.

• restrictmailq restricts the use of the mailq command to users in the group that
owns the /var/spool/mqueue directory. In addition, it permits group members to
view the queue even when the directory permissions do not allow file access,
allowing you to use a protection mode of 700 without breaking the mailq com-
mand.

• restrictqrun prevents anyone but the user owner of the queue directory (usu-
ally root) from processing the queue.

• noreceipts causes sendmail to ignore return-receipt requests (eliminating the
associated bandwidth wastage).

SASL authentication. The Simple Authentication and Security Layer (SASL) provides
authentication capabilities to connection-based network communications (for more
information, see http://asg.web.cmu.edu/sasl/). SASL authentication can be per-
formed using a variety of mechanisms, and the communications partners can also

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 567

negotiate a protection method (e.g., encryption) for future messages. A variety of net-
work facilities use SASL, including OpenLDAP and sendmail.

Authentication for SMTP connections via SASL is supported starting in sendmail
Version 8.10 using the Cyrus SASL facility (http://asg.web.cmu.edu/cyrus/), and Ver-
sion 8.11 adds support for encryption via TLS (the Transport Layer Security proto-
col, designed to replace SSL; see http://www.openssl.org). SASL support must be
enabled at compile time (check for the SASL option).

sendmail provides macros that allow you to specify:

• Allowed authentication mechanisms, as well as those acceptable for relaying

• Authentication requirements and authentication data (or location) for the local
server

• Authentication and encryption requirements on a per-domain or host level via
entries in the normal access map

To use these features, you must install the Cyrus SASL library (see http://asg.web.
cmu.edu/cyrus/), compile sendmail with SASL support, and then configure it appro-
priately. For more information, consult the following:

• The “STARTTLS” and “SMTP Authentication” sections of the sendmail configu-
ration README file

• The auth.html and starttls.html pages at http://www.sendmail.org/~ca/email/ and
the sysadmin.html page in the cyrus subdirectory at the same location

Reducing the sendmail daemon’s privileges. In the past, the fact that sendmail runs setuid
root has been one of the factors allowing for security breaches. As a result, sugges-
tions for reducing the daemon’s privilege level appear frequently. One method for
doing so is to use the chroot facility (see Chapter 3). This approach retains the set-
uid status but limits the daemon’s functioning to a minimal, isolated filesystem.

Version 8.12 provides a different technique for addressing this issue. It separates
sendmail into two daemons, one operating as the transport agent and another operat-
ing a mail submission agent that handles mail from mailer programs that require
message submission services. Their characteristics are described in Table 9-4.

Table 9-4. Dividing the sendmail daemon

Transport agent Submission program

Name sm-mta sendmail

Owners (user, group) root, GID 0 sm-msp, sm-msp

File Protection 550 (not SETUID) 555 + SETGID

Run as daemon? yes no

Work queue /var/spool/mqueue /var/spool/clientmqueue

Configuration file sendmail.cf submit.cf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 9: Electronic Mail

The binaries for the two files are copies of the same executable with different owner-
ships and permissions. The sm-mta program is a drop-in replacement for the current
sendmail daemon. It requires changing the name of the program in the system star-
tup files and adding the -L sm-mta option to the startup command. For example:

/usr/sbin/sm-mta -L sm-mta -bd -q30m

The other program is owned by a new user and group and is setgid to that group. Its
work queue must be also be owned by this user and group and have the mode 660. It
is not run as a daemon and has a separate configuration file, called submit.cf above.
The latter includes the msp feature:

FEATURE(`msp')

The feature enables and sets the various mail submission program–related parame-
ters (e.g., the work queue directory).

Check the documentation for the latest version of sendmail for current information
about these features.

Monitoring ongoing operation

sendmail provides several utilities for monitoring its ongoing operation. The most
important of these is mailq (equivalent to sendmail -bp), which lists the contents of
sendmail’s work queue (/var/spool/mqueue):

mailq
f3FHZeI08989 1240 Sun Apr 15 13:35 chavez
 (Deferred: Connection refused by dalton.ahania.com.)
 jones@dalton.ahania.com

This display lists only a single entry. The first line indicates the name of the message
file in the work queue directory along with its submission time and sender. The sec-
ond line in this entry indicates the message status; in this case, the remote host to
which the message is addressed is not answering. The final line lists the recipient
address.

Several different types of files may be present in the work queue directory; all have
names consisting of a prefix plus the message ID. The prefix indicates the file con-
tent type:

qf Control file (includes message headers)

df Data file (message text)

xf Holds mailer error messages (“transcript file”)

Qf Indicates a bounced message

tf Temporary file used as scratch when the qf file is being updated

Tf Message processing has generated 32 or more locking failures

There are a couple of situations in which you may have to deal with the contents of
the mail work queue:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 569

• If the queue becomes seriously overloaded, sendmail and/or system performance
can be strained. In such cases, the best response is to temporarily stop the
sendmail daemon, move the files to an alternate directory (or rename and recre-
ate mqueue, making sure to set the ownerships and protections properly: root
and 700), and restart the daemon. Then you can run sendmail manually on the
saved files at a more convenient time without affecting any more incoming mail.
To do so, use a command like the following, where save_queue is the location of
the moved files:

sendmail -oQ/var/spool/save_queue -q

• Check the queue occasionally for files that will never be successfully processed.
For example, from time to time you will encounter orphaned df files, messages
without any control file (which are therefore undeliverable). You can archive or
delete these files as you see fit.

You can also examine sendmail operations by looking at the statistics file contents
with the mailstats command, a separate utility included in the sendmail package
(the statistics file location is set by defining STATUS_FILE and defaults to /etc/mail/
statistics). Here is an example of running mailstats:

mailstats
Statistics from Sun Apr 8 14:38:37 2001
msgsfr bytes_from msgsto bytes_to msgsrej msgsdis Mailer
 53 378K 5 12K 0 0 local
 1231 7425K 0 0K 0 0 relay

T 1284 7803K 5 12K 0 0
C 1284 5 0

(The first column, which shows mailer numbers, is omitted to save space.) The col-
umns show the number of messages received (msgsfr), sent (msgsto), rejected
(msgsrej), and discarded (msgsdis), as well as the number of bytes received (bytes_
from) and sent (bytes_to), broken down by mailer. This output is from a system that
holds very few user mailboxes, so the local traffic is quite limited. Most messages are
relayed to a mail hub for processing. The final two lines in the output show the totals
for the each column and the connection totals. Much larger numbers and additional
mailers will probably appear in the output from typical systems at your site.

sendmail includes the ability to keep track of hosts to which delivery has failed and to
use that data to prioritize future work. The following macro enables this feature
using the conventional directory location:

define(`confHOST_STATUS_DIRECTORY',`/var/spool/mqueue/.hoststat')

You can view the current status data using the hoststat command (equivalent to
sendmail -bh):

hoststat
---Hostname--------------How long ago----------Results---------
dalton.ahania.com 00:00:30 Deferred: Connection refu
newton.ahania.com 01:47:03 250 2.0.0 f32Hl3720131 Me

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 9: Electronic Mail

The entries indicate the time and results of the last connection attempt for each host.
You can reset all host connection data by issuing the purgestat command (equiva-
lent to sendmail -bH).

Performance

In this section, we look at some of the parameters that sendmail provides for optimiz-
ing its performance.

Mail queues can get very large when a great deal of mail arrives at the same time. The
mail queue can get large at other times as well. For example, as we’ve seen, mail mes-
sages are held in the work queue when the first attempt to deliver them fails. This
can cause two types of performance bottlenecks. First, disk I/O itself can simply
overwhelm its I/O capacity. In addition, very large queue directories suffer from the
Unix operating systems’ degrading directory-lookup performance (which becomes
prohibitive at about 2000 files for typical nonlogged Unix filesystems).

One solution to both types of I/O bottlenecks is to use multiple queue directories,
ideally each placed on a different physical disk. The following macro configures
sendmail to use multiple work queues:

define(`QUEUE_DIR',`/var/spool/mqueue/q*')

The macro tells sendmail to use all subdirectories with names starting with “q” under
the usual directory as its work queues (sendmail picks the queue for each message at
random). The directories can be local subdirectories or (better) symbolic links to
actual directories on different disks. Multiple queue directories can also allow mail
message processing to proceed in parallel across each work location. Files can be
moved between queue directories on the same system, because the algorithm used to
generate their names is guaranteed not to repeat for 60 years.

Here are some additional settings that may be useful in some situations. Most of
them define parameters that serve to throttle back the workload when things get
overloaded:

define(`confMAX_DAEMON_CHILDREN',n)
When needed, the main sendmail daemon will create additional child processes
to help. This sets the maximum number of additional processes; additional con-
nections will be refused when the maximum is reached. The default is no limit.

define(`confFALLBACK_MX',`host')
The fallback host to which to send bounced messages and messages with bogus
addresses for further processing. Defining this can reduce the load somewhat on
the local server. This setting is undefined by default.

define(`CONNECTION_RATE_THROTTLE',n)
The rate at which connections are accepted as n per second (the default is no
limit). Additional connections are delayed. This setting can be useful for both
smoothing out spikes in mail traffic and regulating the general flow rate.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 571

define(`confMIN_QUEUE_AGE',`time')
Minimum time a message must wait in the queue before processing. This can be
useful on a busy server as a way to process only a part of the queue at a time, as
each queue run will skip jobs younger than this. The time is specified as a num-
ber followed by s (seconds), m (minutes) or h (hours): e.g., 5m. The default is 0,
meaning no delay.

define(`confQUEUE_LA',nq)
define(`confREFUSE_LA',nr)

Load averages at which to queue all incoming mail (suppressing attempts at
immediate delivery) and at which to refuse additional connections (they default
to 8 times and 12 times the number of CPUs, respectively). These may need to
be lowered somewhat on very busy systems with slower CPUs.

define(`confMIN_FREE_BLOCKS',n)
The number of blocks of free space that must be present in the work queue’s file-
system for additional mail to be accepted. The default is 100. This parameter
provides a way to reserve a portion of disk space that (greedy) sendmail cannot
use.

define(`confMAX_MESSAGE_SIZE',bytes)
define(`mailer_MAILER_MAX',bytes)

The maximum size of acceptable messages (larger ones are rejected). The first
macro sets the limits for the system; the second form specifies a limit for an indi-
vidual mailer.

define(`confCON_EXPENSIVE',`True')
define(`SMTP_MAILER_FLAGS',`e')

These two macros can be used to queue outgoing SMTP mail without further
processing. They can be useful for a very busy system with an intermittent ISP
connection where just letting the mail accumulate in the queue is too much of a
performance hit.

define(`confTO_parameter',n)
sendmail provides a plethora of configurable timeout parameters for each phase
of message processing. In most cases, the defaults are fine, but you may want to
decrease some of them on very busy servers.

Debugging techniques

There are several distinct sources of information that can be useful for debugging
sendmail configurations and operations. See the book sendmail, by Brian Costales
with Eric Allman (O’Reilly & Associates), for full information about all of the debug-
ging features discussed in this section.

The first of these is the facility’s log file. Here are some sample entries (which we
have wrapped to fit the page):

Apr 15 12:44:12 kevin sendmail[25907]: f3FGhti25833:
to=chavez@newton.ahania.com, ctladdr=jones (133/78),

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 9: Electronic Mail

delay=00:00:17, xdelay=00:00:00, mailer= esmtp, pri=210301,
relay=newton.ahania.com., dsn=4.0.0,
stat=Deferred: Connection refused by newton.ahania.com.

Apr 15 12:49:49 kevin sendmail[25927]: f3FGnmd25925:
to=ahania@newton.ahania.com, ctladdr=root (0/0),
delay=00:00:01, xdelay=00:00:01, mailer=esmtp, pri=30056,
relay=newton.ahania.com. [192.168.9.216], dsn=5.1.1,
stat=User unknown

Apr 15 16:22:35 kevin sendmail[20388]: f36KK5h20388:
ruleset=check_mail, arg1=<someone@zoas.org>,
relay=IDENT:root@[10.0.19.223],
reject=451 4.1.8 <someone@zoas.org>...
Domain of sender address someone@zoas.org does not resolve

All three of these entries clearly indicate specific mail delivery problems. The first
entry indicates that host newton is not currently answering SMTP queries, and so this
message from local user jones (UID 133, GID 78) has been sent to the work queue.
The second entry indicates that the user ahania is unknown on host newton. Finally,
the third entry indicates that the domain name in the sender address cannot be
resolved via DNS.

You can also use the telnet command to see the results for various senders and
recipients by connecting to port 25. In these example, system kevin plays postman
for the local domain. In this mode, you enter actual SMTP commands manually.

Here is the initial connection command:

telnet kevin 25
Trying 10.0.19.223...
Connected to kevin.
Escape character is `^]'.
220 kevin.ahania.com ESMTP Sendmail 8.11.0/8.11.0; Mon, 16 Apr 2001 11:22:54 -0400
HELO zebra
250 kevin.ahania.com Hello zebra [10.0.19.184], pleased to meet you

(Throughout this output, we’ve wrapped lines as necessary.)

The test session begins by issuing a HELO* command, which begins an SMTP session
and gives the connecting hostname as its argument. Next, we set up a test mail mes-
sage by specifying the sender:

MAIL From: luc@bad-guys.org
550 5.7.1 luc@bad-guys.org... Access denied

Access from this sender is denied, as specified by the access map. We clear the mes-
sage state and try another test message:

RSET
250 2.0.0 Reset state
MAIL From: bill@zoas.org

* The ESMTP version is EHLO.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 573

250 2.1.0 bill@zoas.org... Sender ok
RCPT To: mybadguy
550 5.7.1 mybadguy... Access denied

The failure this time occurs because the recipient is prohibited by the access map
from receiving mail. Here is our next attempt:

RSET
250 2.0.0 Reset state
MAIL From: bond@mole.bad-guys.org
250 2.1.0 bond@mole.bad-guys.org... Sender ok
RCPT To: chavez
250 2.1.5 chavez... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
This is a test message.
.
250 2.0.0 f3GFOD728166 Message accepted for delivery
QUIT
221 2.0.0 kevin.ahania.com closing connection
Connection closed by foreign host.

The message succeeds, and we enter the message text with the SMTP DATA command
(although there is no need to do so if testing the addressing is what we are after).
After the message is sent, we end the telnet session.

Properly interpreting the output from such test sessions requires a knowledge of the
local sendmail configuration. For example, if the local configuration uses the delay_
checks feature, then the output of the first attempt would be different:

MAIL From: luc@bad-guys.org
250 2.1.0 luc@bad-guys.org... Sender ok
RCPT To: chavez
550 5.7.1 chavez... Access denied

In this case, the prohibited address seems to pass, and recipient chavez seems to be
the problem, but this is simply the result of delaying the sender check until after the
recipient check; the “Access denied” message appears after the recipient but applies
to the sender.

Another useful SMTP command is ETRN, which tells the sendmail daemon to process
the queue for the host given as its argument:

ETRN zebra.ahania.com
250 2.0.0 Queuing for node zebra.ahania.com started

Such commands can be used to retrieve messages manually from a remote source
such as an ISP.

You can see sendmail perform the SMTP transactions for a message by using its ver-
bose option, -v, as in this example:

sendmail -v chavez@ahania.com < /dev/null

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 9: Electronic Mail

sendmail’s verify mode (-bv) can be used to verify a recipient address, as in this
example, which checks the address chavez:

sendmail -bv chavez
chavez@newton.ahania.com... deliverable:
mailer relay, host kevin, user chavez@newton.ahania.com

The output indicates that the address is deliverable: it will be relayed to user chavez
on host newton in the local domain via relay system kevin.

Another useful sendmail feature is its address translation mode (-bt). Traditionally,
this mode was used to verify and debug the complex address rewriting rules needed
in earlier versions of sendmail, and it can still be used for this task. Over the years,
however, many other useful internal commands have been added. Several useful ones
are illustrated in the following annotated session:

sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> /mx zebra List MX records for host.
getmxrr(zebra) returns 2 value(s):
 zebra.ahania.com.
 bella.ahania.com.ahania.com.
> $m Display value of internal variable.
ahania.com
> $=w Display member of a class (here, local hosts).
[192.168.9.220]
kevin
localhost
[127.0.0.1]
ahania.com
> .Cwsalk Add a member to class w (local hosts): salk.
> /map virtuser rachel_chavez@ahania.com
map_lookup: Translate an address using the virtual user map.
virtuser (rachel_chavez@ahania.com)
returns chavez@ahania.com This is the translation (local address).
> /try smtp chavez Show address translation for mailer/recipient.
Trying envelope recipient address chavez for mailer smtp
canonify returns: chavez Output shortened!
PseudoToReal returns: chavez
MasqSMTP returns: chavez < @ LOCAL >
EnvToSMTP returns: chavez < @ kevin . ahania . com . >
final returns: chavez @ kevin . ahania . com
Rcode = 0, addr = chavez@kevin.ahania.com
> /tryflags S The /try command now applies to senders.
> /try smtp chavez Show address translation for mailer/sender.
Trying envelope sender address chavez for mailer smtp
...
Rcode = 0, addr = rachel_chavez@ahania.com
> ^D

The two /try subcommands indicate that incoming SMTP-transported mail to recip-
ient chavez goes to chavez on host kevin (where is it relayed to its final destination, as

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 575

we’ve seen), and that outgoing SMTP-transported messages from user chavez will
have rachel_chavez@ahania.com as the sender (the same information was also given
by the earlier /map subcommand).

Other useful subcommands include =M, which lists defined mailers, and -dn.m, which
turns on the specified debugging level , a topic to which we now turn.

sendmail also offers an exhaustive debugging mode, selected with the command’s -d
option. The option takes a debugging level and optional sublevel as its argument—
the syntax is -dlevel.sublevel—where the level indicates the general area of output
information and the sublevel indicates the verbosity level (the default for the latter is
1, the least detailed level). Multiple level specifications can be given, separated by
commas.

Table 9-5 lists the most useful debugging options. Note that these options appear on
normal sendmail commands: most often, sending a test message, but sometimes
using -q to process the work queue. In some cases, you need to include -v to make
the debugging output appear.

Here is an example displaying the delivery process for local recipient trucks:

sendmail -v -d11.2 trucks < /dev/null
trucks... aliased to trucks@zebra.ahania.com
openmailer: procmail -Y -a -d trucks
trucks... Connecting to local...
openmailer: openmailer: running as r/euid=371/0, r/egid=0/0
MCI@80efaf0: flags=2<TEMP>,
 errno=0, herrno=0, exitstat=0, state=2, pid=13143,
 maxsize=0, phase=NULL, mailer=local,

Table 9-5. Useful sendmail debugging options

Option Result

-d0 Show sendmail version, compile flags, and host and domain information.

-d0.15 Also display defined mailers, with flags (“F=”).

-d8.7 Show DNS name resolution process.

-d11.2 Trace the delivery process.

-d17 Show MX hosts.

-d27 Show alias translation, including forwarding.

-d34.11 Trace header generation (including skipped ones).

-d35.9 Display internal macro values (e.g., $k).

-d37 Display options as they are set.

-d37.8 Also show each item added to class lists (e.g., class w, which holds local hosts/domains).

-d40 Watch queue processing.

-d44.5 Show all file open attempts (useful primarily for file opening–related failures).

-d60 Display map lookup operations.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

576 | Chapter 9: Electronic Mail

 status=NULL, rstatus=NULL,
 host=NULL, lastuse=Wed Dec 31 19:00:00 1969
trucks... Sent
giveresponse: status=0, dsn=2.0.0, e->e_message=<NULL>

Here we see that the local mailer is procmail, as well as a great deal of information
about the process that delivers the mail.

Similarly, the following command shows the alias translation process for user lilith
on host dalton (output is shortened):

/usr/sbin/sendmail -d27 lilith < /dev/null
alias(lilith)
lilith (, lilith) aliased to ldonna
alias(ldonna)
ldonna (, ldonna) aliased to lcapri
alias(lcapri)
lcapri (, lcapri) aliased to lmc2499@dalton.ahania.com
forward(lmc2499)
alias(lil)
lil (, lil) aliased to lil@garden.ahania.com

This output traces a somewhat lengthy chain of aliases that ultimately translates lilith
to lil@garden.ahania.com.

Macro summary

We will end our consideration of sendmail with Table 9-6, which lists all the macros
we have discussed in this section (ordered alphabetically by the name of the most sig-
nificant component).

Table 9-6. Essential sendmail macros

Macro Meaning and use

define(`ALIAS_FILE',`path') Location of aliases file.

undefine(`ALIAS_FILE') Disable aliases file.

define(`confCON_EXPENSIVE',`True') Hold (don’t transport) mail for expensive mailers.

define(`confDEF_USER_ID',`user:group') Default user and group.

define(`confEBINDIR',`path') Location of smrsh and mail.local.

define(`confFALLBACK_MX',`host') Send bounced/bogus mail here.

define(`confFORWARD_FILE',`path[:path...]') Path to search for forward files ($z = ~).

define(`confLDAP_DEFAULT_SPEC',
`-h ldap-host -b root-key')

Specify the LDAP server and root key.

define(`confMAX_DAEMON_CHILDREN',n) Maximum child processes.

define(`confMAX_MESSAGE_SIZE',bytes) Largest acceptable message.

define(`confMIN_FREE_BLOCKS',blocks) Required filesystem free space.

define(`confMIN_QUEUE_AGE',`time') Messages stay in queue at least this long.

define(`confPRIVACY_FLAGS',`flag-list') SMTP privacy options.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 577

define(`confQUEUE_LA',load-average) Queue all incoming mail when load average is above this
level.

define(`confREFUSE_LA',load-average) Refuse connections when load average is above this
level.

define(`confSAFE_FILE_ENV',`path') Pipe mail only to regular files under the specified path.

define(`confSERVICE_SWITCH_FILE',`path') Location of network services switch file (when not pro-
vided by the operating system).

define(`confTO_parameter',n) Set timeout length.

define(`CONNECTION_RATE_THROTTLE',n) Accept only n connections per second.

define(`LOCAL_MAILER_ARGS',`command') How to run the local mailer program.

define(`LOCAL_MAILER_PATH',`path') Path to the local mailer program executable.

define(`LOCAL_RELAY',`host') Send mail to unqualified names here.

FEATURE(`stickyhost') Do so even if the MAIL_HUB feature is also used.

define(`LOCAL_SHELL_ARGS',`command') How to run mailer for piped messages.

define(`LOCAL_SHELL_PATH',`path') Path to the shell program.

define(`MAIL_HUB',`host') Send local mail to a different host.

define(`mailer_MAILER_ARGS',`command') How to run the specified mailer’s program.

define(`mailer_MAILER_FLAGS',`addl-flags') Add flags to the usual set for the specified mailer.

define(`mailer_MAILER_MAX',bytes) Maximum message size for the specified mailer.

define(`mailer_MAILER_PATH',`path') Path to the executable for the specified mailer.

define(`mailer_RELAY',`host') Use this to relay mail for the specified mailer.

define(`PROCMAIL_MAILER_PATH',`path') Path to procmail.

define(`SMART_HOST',`host') Send all nonlocal mail to this host.

define(`SMTP_MAILER_FLAGS',`e') Make the SMTP mailer “expensive.”

define(`STATUS_FILE',`path') Location of statistics file.

DOMAIN(`name') Include the ../domain/name.m4 file.

EXPOSED_USER(`user') Exclude user from masquerading.

FEATURE(`access_db', `dbtype path') Use the specified access database.

FEATURE(`allmasquerade') Masquerade recipients, too.

FEATURE(`always_add_domain') Add domain to unqualified names.

FEATURE(`blacklist_recipients') Allow incoming address entries in the access map.

FEATURE(`delay_checks'[, `friend']) Reverse the order of access checks. If the argument is
included, enable the SPAMFRIEND feature (overrides
checks).

FEATURE(`dnsbl'[,`server']) Use the Internet blacklist on the specified server.

FEATURE(`generics_entire_domain') Use the generics table for hosts in subdomains of any rel-
evant domain.

Table 9-6. Essential sendmail macros (continued)

Macro Meaning and use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 9: Electronic Mail

FEATURE(`genericstable',`dbtype path') Use the specified generics table map for rewriting outgo-
ing sender addresses.

FEATURE(`ldap_routing') Use LDAP for mail routing.

FEATURE(`local_lmtp'[,`path-to-mail.local']) Use mail.local as the local mailer for pipes to files
and programs (specifying the path to the executable if
necessary).

FEATURE(`local_procmail') Use procmail as the local mailer.

FEATURE(`masquerade_envelope') Masquerade envelope as well as headers.

FEATURE(`msp') Use separate MTA and MSA processes.

FEATURE(`nocanonify') Defer DNS lookups (usually to mail hub).

FEATURE(`nouucp',`reject') Reject UUCP-style mail addresses.

FEATURE(`nullclient',`mailhub’) Send all mail to the specified server for processing.

FEATURE(`redirect') Enable .REDIRECT alias suffix support for users who have
left the organization.

FEATURE(`relay_entire_domain') Perform relaying for any host in a local domain.

FEATURE(`smrsh'[,`path-to-smrsh']) Use smrsh for piped email messages.

FEATURE(`use_cw_file') Define local hosts and domains in a file.

define(`confCW_FILE',`path') Specify the path to the file.

FEATURE(`virtuser_entire_domain') Use the virtual user table for hosts in subdomains of any
relevant domain.

FEATURE(`virtusertable',`dbtype path') Use the specified virtual user table map for routing
incoming addresses.

GENERICS_DOMAIN(`domain')
GENERICS_DOMAIN_FILE(`path')

Use the generics table for the specified domain or
domains listed in the specified file.

LDAP_ROUTE_DOMAIN(`ldap-domain')
LDAP_ROUTE_DOMAIN_FILE(`path')

Use LDAP routing for the specified domain or the
domains listed in the specified file.

LOCAL_USER(`name') Exclude user from the effect of LOCAL_RELAY.

LUSER_RELAY(`host, address, or error') Destination/error for invalid local addresses.

MASQUERADE_AS(`domain') Make all messages appear to be coming from the speci-
fied domain.

MASQUERADE_EXCEPTION(`host or domain') Don’t apply masquerading to this host or domain.

MODIFY_MAILER_FLAGS(`mailer',`+|-flags') Add/remove the specified flags from the default list for
the indicated mailer.

OSTYPE(`name') Specify operating system.

RELAY_DOMAIN(`domain')
RELAY_DOMAIN_FILE(`path')

Relay messages for the specified domain or the domains
listed in the specified file.

VERSIONID(`string') Identify the version of the configuration source file.

VIRTUSER_DOMAIN(`domain')
VIRTUSER_DOMAIN_FILE(`path')

Use the virtual user table for the specified domain or the
domains listed in the specified file.

Table 9-6. Essential sendmail macros (continued)

Macro Meaning and use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 579

Postfix
Postfix is an alternative mail transport agent that has received quite a bit of attention
in the past couple of years. It is the work of Wietse Venema; he wrote the initial ver-
sion while spending a sabbatical year at IBM’s Thomas J. Watson Research Center
(where the program was named VMailer). The first production-quality version of
Postfix was released in 1999, and it is still a work in progress. The package’s home
page is http://www.postfix.org.

This discussion is based on the Postfix version current at the time of
this writing (20010228 Patchlevel 01). Fortunately for its users but
unfortunately for writers, the package is evolving rapidly. This discus-
sion also assumes familiarity with common electronic mail facility con-
cepts. See the earlier discussion of sendmail if you need such
information (even if you don’t plan on using sendmail).

Postfix was designed as a sendmail replacement with several goals in mind:

High security
Mail processing activities are divided among several distinct processes to insu-
late them (and there are no parent/child relationships among the various pro-
cesses). This separation means that there is no direct path from the Internet to
the most privileged parts of the facility. In addition, none of the components are
SETUID, and most of the pieces can be optionally run in chrooted environment.

Performance under high loads
The documentation states that Postfix can process and deliver over 1,000,000
mail message a day on a desktop PC (configuration not specified). Postfix
includes a considerable number of settings that you can use to optimize its func-
tioning in your specific environment.

Easy configuration and administration
Postfix configuration files are simple, and you can get even a fairly complex con-
figuration up and running in a matter of minutes.

Compatibility with existing mail setups
Postfix provides several commands for compatibility with existing habits and
scripts, including sendmail, newaliases, and mailq, and it supports the usual mail
aliasing and forwarding mechanisms.

Figure 9-6 illustrates the basic Postfix mail transport process. As it indicates, the
package’s design is modular, separating the various processes from each other and
allowing you to easily disable features you don’t need to use. In the diagram, each of
the rounded rectangles represents a daemon. The shaded rectangles indicate the mes-
sage-flow path through the facility, and the white rectangles provide specific auxil-
iary services.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 9: Electronic Mail

The left part of the diagram depicts how Postfix receives incoming mail. Mail created
on the local system is handled by a component named sendmail, which sends it to the
maildrop queue to await processing. This queue is processed by the pickup daemon,
which feeds messages to the cleanup daemon. Incoming mail from outside sources is
handled by the smtpd daemon, which similarly sends it to the cleanup daemon.

The cleanup daemon prepares messages for delivery, adding any required headers,
optionally transforming addresses, bouncing invalid and acceptable messages, and so
on. The rewrite (address rewriting) and bounce daemons aid in these processes.

Figure 9-6. Postfix mail processing

Local mail

sendmail

maildrop queue

Internet mail

smtpd

pickup cleanup
bounce

rewrite

incoming queue

qmgr
bounce

resolve

active queue

deferred queue

local smtp

User mailbox

Internet

Mail submission

Mail delivery

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 581

When finished, cleanup sends the message to the incoming queue to await delivery
(packaged as a single file).

With the incoming queue, the Postfix delivery process begins. The queue manager
process (qmgr) oversees and controls the delivery process. Jobs from the incoming
queue are moved to the active queue and then either delivered or sent to the deferred
queue. Whenever space opens up in the active queue, one job each is moved from
incoming and deferred. Jobs waiting in the deferred queue are scheduled via an
“exponential backup” algorithm: each delivery failure results in a longer wait period
before the next attempt.

Within the active queue, jobs are selected using a round-robin selection method
based on their final destination (to prevent any one site from consuming a dispropor-
tionate share of resources). An unreachable destination list is maintained and used to
optimize the selection process.

The bounce and resolve daemons aid the queue manager in its work. Ultimately, qmgr
hands messages off to a delivery agent. Two of these are illustrated in the figure:
local, which places messages in local user mailboxes, and smtp, which typically
routes outgoing messages to the Internet.

A few pieces of the package are not shown in the diagram. The most important of
these is the master daemon, which serves as the supervisor for the entire facility and
is the only daemon that is always running. In addition, there are two other mailers:
the error mailer for creating and handling mail resulting from errors, and the pipe
mailer, which handles mail destined for other transport protocols (currently UUCP).

Table 9-7 lists the standard locations for the various Postfix components.

Table 9-7. Postfix components and their locations

Postfix component Location

Command binaries Usual: /usr/sbina

Daemon binaries Usual: /usr/libexec/postfix
Linux: /usr/lib/postfix (SuSE)

Queue directory Usual: /var/spool/postfix

Configuration files Usual: /etc/postfix

Boot script that starts Postfix AIX: Modify /etc/rc.tcpip
FreeBSD: /etc/rc
HP-UX: Create /sbin/init.d/postfixb

Linux: /etc/init.d/postfix provided in RPMsb

Solaris: Create /etc/init.d/postfixb

Tru64: Create /sbin/init.d/postfixb

Boot script configuration file Usual: None used
Linux: /etc/rc.config.d/postfix.rc.config (SuSE 7)

Make sure POSTFIX_CREATECF="no”
/etc/sysconfig/postfix (SuSE 8)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 9: Electronic Mail

In addition to the daemons, the Postfix facility includes several administrative utili-
ties. The most important of these are postfix (used to start and stop the facility and
similar actions) and postmap (creates Postfix lookup maps). We will see examples of
their use later in this section. Other commands include:

postalias
Maintains the aliases database (used by newaliases)

postconf
Displays Postfix configuration parameters

postsuper
Maintains/cleans up Postfix queues

postcat
Displays the contents of queue files

postdrop
Submits mail to the maildrop queue when the queue is not world-writable

postkick, postlock, and postlog
Scriptable interfaces to Postfix features

Finally, Postfix configuration files reside in /etc/postfix. The only exception to this is
the aliases file, which is typically located in /etc.

Installing Postfix

Installing Postfix is not difficult, but it does require some care. It is possible to use
both Postfix and sendmail on the same system, and the procedures for doing so are
discussed in the INSTALL file in the Postfix source distribution. In this discussion,
we will assume that Postfix is replacing sendmail.

These are the steps required to install Postfix:

• Back up your current sendmail installation. Make sure that you save all compo-
nents of the package: binaries, configuration files, and the build directory, map
source files, and so on.

syslog mail-facility messages AIX: Not configured
FreeBSD: /var/log/maillog
HP-UX: /var/adm/syslog/mail.log
Linux: /var/log/maillog (Red Hat)

/var/log/mail (SuSE)
Solaris: /var/adm/messages
Tru64: /var/adm/syslog.dated/*/mail.log

a The FreeBSD ports collection installs Postfix under /usr/local by default.
b You must create/verify links to desired S and K files.

Table 9-7. Postfix components and their locations (continued)

Postfix component Location

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 583

• Make sure that all sendmail queues are empty (flush them if necessary). Then
stop the daemon and disable the associated boot script commands/files.

• Remove all sendmail components except the aliases file and the directory it
resides in. Alternatively, you can copy the aliases file to /etc if this is not its stan-
dard location (see Table 9-3).

On systems with a package manager, you can use the appropriate utility to
remove the corresponding package(s) (see “Essential Administrative Tech-
niques” in Chapter 3). On Linux systems, you will need to include the --nodeps
option on the rpm -e command to successfully remove the sendmail RPMs. This
is safe because the components that other programs depend on are all included
with Postfix and so will remain available once it is installed.

• Install Postfix, either from a binary package (currently, these are available for
Linux and FreeBSD) or from source code.

• Set up the Postfix configuration files. Run the newaliases command to ensure
that the alias file’s binary database has been generated.

• Modify or create the required scripts to start Postfix at boot time (see Table 9-7).
At a minimum, you’ll need to run the postfix start command.

• Start Postfix, and test the new mail system.

I recommend trying this process for the first time on a test system, rather than your
central mail hub!

Configuring Postfix

Postfix configuration files reside in the /etc/postfix directory. This location is assumed
in the discussion that follows.

Postfix’s primary configuration file is main.cf. The Postfix package includes a sample
version of main.cf, which describes most of its possible entries. The package also pro-
vides a number of smaller sample files illustrating features related to a single purpose
(named sample-*.cf).

The main.cf file often begins with entries specifying the package’s file and directory
locations. These sample entries list the default settings:*

config_directory = /etc/postfix
queue_directory = /var/spool/postfix
daemon_directory = /usr/libexec/postfix
command_directory = /usr/sbin

These entries also illustrate the general entry format: setting = value. When value is a
list, the individual items are separated with spaces and optional commas. Entries in

* If the daemon and command locations are the same, the program_directory entry may be present instead of
the two separate ones in this example.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

584 | Chapter 9: Electronic Mail

the configuration file may continue onto as many lines as needed by beginning the
second and subsequent lines with whitespace.

There are several related settings you should be aware of (but for which the default
values are often correct):

myhostname = garden.ahania.com
mydomain = ahania.com
mydestination = $myhostname, localhost.$mydomain

These entries specify the local hostname, the local domain (defaults to the domain
part of myhostname), and a list of destinations that should be considered local (the
local host), respectively. Note that parameter settings may be used in other entries by
preceding the parameter name with a dollar sign.

On SuSE 7 Linux systems, the SuSEconfig automated system configu-
ration facility will write over your main.cf file every time it is run
unless you disable this in the /etc/sysconfig/postfix configuration file (or
in /etc/rc.config.d/postfix.rc.config on system running SuSE 7):

POSTFIX_CREATECF="no"

Notifying the daemon. Whenever you modify the Postfix configuration, you will need
to notify the master daemon with this command:

postfix reload

This command tells the process to reread its configuration files.

Client systems. Next, we consider some settings relevant to mail client systems. For a
minimal client configuration, only two additional entries are needed:

relayhost = poffice.ahania.com
mynetworks_class = host

The first entry specifies a destination for all nonlocal mail, and the second prevents
Postfix from relaying mail for any computer except the local host.

You can also specify a host to handle all unknown local users. This example redi-
rects mail for unknown local users to the same user on system poffice:

luser_relay = $user@poffice.ahania.com

Finally, if you want to define a null client system, which forwards even seemingly
local mail to a mail server, define a relayhost and comment out the entries for smtp
unix and local unix in the master.cf configuration file.

The mail hub. The configuration file on the mail hub typically has some additional
entries. Here are some annotated examples:

add the domain to list of local destinations
mydestination = $myhostname, localhost.$mydomain, $mydomain
relay mail from these origins: any host in the domain
relay_domains = $mydestination, $mydomain

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 585

In both cases, mydomain is added to the parameter’s default list. In agreement with
current security recommendations, relaying is disabled by default in Postfix.

By default, Postfix relays mail for all hosts in the domains listed in relay_domains. It
also relays for hosts from any subnet the local host trusts, as defined by the
mynetworks parameter:

mynetworks = 10.0.19.0/24, 10.0.13.0/24, 127.0.0.0/8

In this case, Postfix will trust any host on the 10.0.19 and 10.0.13 subnets, as well as
the local host. It is important to specify the setting for mynetworks correctly. It
should consist of only trusted local subnets (and not the entire class A, B, or C
address).* If this parameter is not explicitly defined, the list defaults to the local sub-
net and 127.0.0.0.

Postfix can also automatically rewrite all local sender addresses on outgoing mail to
the user@domain form by including these entries:

masquerade_domains = $mydomain
masquerade_exceptions = root, postmaster

The first entry sets the domain used for address masquerading, and the second entry
lists users whose addresses should be excluded from the operation

The local delivery agent. By default, Postfix uses its own local daemon for local mail
delivery. You can specify a different program with the mailbox_command parameter.
For example, this entry makes procmail the local delivery agent:

mailbox_command = /usr/bin/procmail

If you choose to use procmail this way, you must define an alias for root, or mail for
the superuser will be lost.

The mail_spool_directory parameter may be used to specify an alternate directory for
user mailboxes, as in this example:

mail_spool_directory = /var/newmail

Systems with intermittent Internet connections. On mail hubs having only intermittent
Internet connections (for example, via a dialup ISP), you can use these entries to
accumulate messages between connections:

relayhost = ISP-host Relay external mail to this host.
defer_transports = smtp Hold outgoing mail transported via SMTP.
disable_dns_lookups = yes Don't perform DNS name resolution tests.

The final entry is necessary to avoid mail being rejected because of name resolution
failures. It may be used on any system that lacks external DNS lookup capabilities.

* How this list is interpreted is determined by the mynetworks_style parameter, whose default setting is subnet.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 9: Electronic Mail

Postfix also includes a feature designed to optimize the process of delivering mail to
an intermittently connected site; the daemon that provides this functionality is
known as the flush daemon. It is configured via the fast_flush_domains parameter:

fast_flush_domains = $relay_domains

This entry causes fast flush service to be used for all domains for which this server
relays mail. When the connection to one of these locations is made,* this service
causes Postfix to attempt to deliver only the mail destined for that specified destina-
tion rather than flushing the entire queue. Obviously, this is much more efficient for
both the client and the mail server.

Address transformations. Postfix can perform a variety of address-transformation oper-
ations on sender and recipient addresses. The simplest of these is to append the local
domain to nonqualified outgoing sender addresses, using the myorigin parameter:

myorigin = $mydomain

This entry is often included on both the mail hub and client systems.

Like sendmail, Postfix can use binary lookup tables—called maps—to perform vari-
ous sorts of address translations and for other purposes, such as access control.
Maps are created from a text source file with the postmap command.

Outgoing mail address mapping—e.g., to a standard form like first.last@domain—is
done via the canonical map, which is specified via this configuration file entry:

canonical_maps = hash:/etc/postfix/canonical.db

This example specifies that the file canonical.db in the Postfix configuration direc-
tory should be used as the canonical address map, and that the file is a hash-type
database.

Here are some example entries from the map’s source file:

chavez rachel_chavez@ahania.com
carr steve_carr@zoas.org
ewood eve_wood@ahania.com

When this map is used, the sender name in the left column is translated to the form
given in the right column.

The following command may be used to create the canonical.db map from a source
file named canonical:

postmap hash:canonical

The hash: prefix specifies the database type (a hash is the default, so the prefix is
actually optional here). Use the postconf -m command to list the database types sup-
ported on your system; the list of possibilities includes hash, dbm, and btree.

* More specifically, when the connecting system issues an SMTP ETRN command (described in the discussion
of fetchmail later in thus chapter),

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 587

The default canonical map is applied to both senders and recipients within the mes-
sage and the envelope. Alternatively, you can specify a map used only for sender
addresses or recipient addresses via these configuration file parameters:

sender_canonical_maps = hash:/etc/postfix/sender_canonical
recipient_canonical_maps = hash:/etc/postfix/recipient_canonical

These maps are applied before the general canonical map when it is also enabled.

Postfix Address Maps

Postfix can similarly perform map lookup–based transformations on
incoming recipient addresses using its virtual map (discussed later in
this section).

Postfix also offers a map for generating mail messages indicating the new address for
departed users. This is called the relocated map. Here are the associated configura-
tion file entries:

relocated_maps = hash:/etc/postfix/relocated
local_recipient_maps = $relocated_maps, $alias_maps,
 unix:passwd.byname

The first entry specifies the type and file location for the map file, as usual. The sec-
ond entry adds the relocated map to the front of the list of items to use for looking up
incoming mail recipients. In this case, the relocated map is checked first, followed by
the aliases database and the password file.

Entries in the relocated map consist of the local username and the new email address.
Here is an example:

erika eps@essadm.com

Virtual domains. Postfix can be configured to support virtual domains, using its virtual
map facility. Here is an example configuration file entry enabling this feature using
the virtual.db map file:

virtual_maps = hash:/etc/postfix/virtual

The map file performs two functions: enabling virtual domain support for listed
domains and specifying incoming recipient address translations. Here are some
example entries from the virtual map source file (assume the local domain is ahania.
com):

zoas.org whatever
essadm.com whatever

webmaster@essadm.com czarina@lecarre.ahania.com
smith@zoas.org hayes@oldwest.ahania.com
jones@zoas.org kidcurry@oldwest.ahania.com
@zoas.org @ahania.com
rachel_chavez@ahania.com chavez@dalton.ahania.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 9: Electronic Mail

The first two entries enable virtual hosting for the zoas.org and essadm.com domains;
the text in the second column for such entries is ignored. The third entry redirects
mail for webmaster@essadm.com to a specific local user. The fourth and fifth entries
specify local recipients for users smith and jones at zoas.org. The sixth entry, for
@zoas.org, will be used for any other recipient in that domain; in this case, mail will
be redirected to the same user in ahania.com, the local domain. The final entry illus-
trates that this map may also be used for general incoming recipient address transla-
tion unrelated to virtual hosting, in this case translating the address rachel_
chavez@ahania.com to the appropriate, fully qualified recipient address.

As usual, the virtual map database is created with postmap. For example, this com-
mand would create the hash-type database virtual.db from the source file virtual:

postmap virtual

Postfix handles virtual domains somewhat differently than sendmail users may be
used to. In particular, usernames that exist in the local domain are not recognized in
virtual domains by default. In other words, if chavez is a user in ahania.com, essadm.
com is a hosted virtual domain, and there is no virtual map entry for chavez@essadm.
com, mail to that address will bounce. In contrast, sendmail-style virtual domains
attempt to deliver such mail to chavez@ahania.com (bouncing it when no identically
named user exists).

You can implement sendmail-style virtual domains by making two modifications to
the Postfix configuration:

• Remove the virtual domain entry from the virtual map.

• Add the virtual domain name to the mydestination list.

LDAP lookups. Postfix can also be configured to use LDAP for local recipient address
translations. This capability must be selected at compile time. You can determine
whether your installation supports it via the postconf -m command.

Here are some example configuration file entries:

alias_maps = hash:/etc/aliases, ldap:ldapsource
ldapaliases_server_host = orwell.ahania.com
ldapaliases_search_base = dc=ahania,dc=com
ldapaliases_query_filter = (mailacceptinggeneralid=%s)
ldapaliases_result_attribute = maildrop

The first entry adds LDAP the list of items to use for address translation, checking it
after the aliases file. The remaining entries specify the LDAP server to connect to, the
root of the tree to search, the query that should be run, and the record field to return
to Postfix (respectively). In this case, the LDAP database is queried by searching the
mailacceptinggeneralid field for the address; the contents of the maildrop field from
matching record(s) are used as the new address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 589

Here is a sample LDAP entry using these default attributes:

dn: cn=some-object, dc=ahania, dc=com
...
mailacceptinggeneralid: help@zoas.org
mailacceptinggeneralid: oliviav@essadm.com
maildrop: vargas@dalton.ahania.com

This example illustrates the use of multiple key fields, any of which will translate to
the local mail address vargas@dalton.ahania.com. Of course, you can use any object
type, key field, and return field that makes sense in the context of the local LDAP
schema.

Access control and spam suppression

Postfix includes an access control facility that can be used for both security-related
and spam-suppression purposes. Postfix allows you to specify incoming mail restric-
tions based on the connecting system (the “client”), the sender, and/or the recipient,
via the smtpd_client_restrictions, smtpd_sender_restrictions, and smtpd_recipient_
restrictions configuration file entries, respectively. It also provides the smtpd_helo_
restrictions and smtpd_etrn_restrictions parameters for specifying restrictions for
hosts attempting to use the SMTP HELO/EHLO commands (to initiate an SMTP ses-
sion) and the SMTP ETRN command (to request that pending mail be transferred).

The setting for any of these parameters is a list of items, which can include Postfix
keywords and/or a type:file specification for an external map. The most important
keywords are listed in Table 9-8.

Table 9-8. Postfix access control keywords

Keyword Meaning

reject_unknown_client
reject_unknown_sender_domain
reject_unknown_recipient_domain

Reject if DNS cannot resolve the connecting system’s/sender’s/ recipient’s address
(respectively).

reject_non_fqdn_hostname
reject_non_fqdn_sender
reject_non_fqdn_recipient

Reject if the connecting system’s/ sender’s/recipient’s hostname is not fully qualified.

permit_mynetworks Accept if the connecting system is a member of a trusted network

check_relay_domains Accept if the client system is a member of one of the domains listed in relay_domains.

reject_unauth_destination
permit_auth_destination

Reject/accept if the destination address is in relay_domains or my_destinations.

reject_maps_rbl Reject blacklisted sites, as defined by the maps_rbl_domains parameter.

reject_unauth_pipelining Prevent unverified SMTP pipelining (exploited by some bulk mailers).

reject_unknown_hostname Reject SMTP HELO/EHLO commands from client systems whose hostnames cannot
be resolved.

reject_invalid_hostname Reject if the hostname in the SMPT HELO/EHLO command uses invalid syntax.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

590 | Chapter 9: Electronic Mail

Here are some examples, which also introduce a couple more related parameters:

smtpd_sender_restrictions: hash:/etc/postfix/senders,
 reject_non_fqdn_sender, reject_unknown_client
 reject_unknown_sender_domain, reject_unauth_destination,
 reject_unauth_pipelining, reject_maps_rbl
maps_rbl_domains = blackholes.mail-abuse.org, rbl.maps.vix.com
smtpd_recipient_restrictions: hash:/etc/postfix/no-mail, permit
smtpd_helo_restrictions = reject_maps_rbl, reject_invalid_hostname
smtpd_helo_required = yes
smtpd_etrn_restrictions = permit_mynetworks

This configuration is fairly restrictive. Messages from unknown clients and unknown
senders are rejected, as are ones from or sent by blacklisted domains (lines 1–3),
defined as the two sites in the second entry (line 4). Likewise, messages to nonlocal
destinations are also rejected (line 2). Senders (line 1) and recipients (line 6) are
checked against access maps. Recipients are accepted provided they pass all the
restrictions in the access map (line 5). Blacklisted sites are not allowed to connect to
this server, and connections using malformed SMTP HELO/EHLO commands are also
rejected (line 6), although this command is required for a successful connection (line
7). Finally, only systems in the local networks may use the SMTP ETRN command to
retrieve their mail (line 8).

The recipients entry illustrates the use of the generic permit keyword, which simply
makes the entry’s effect evident; in other words, all lines end with an implicit permit
unless you include an explicit reject. When access is determined, list items are
applied in order.

Access map source files consist of user and/or domain names, followed by the
desired action. At the moment, actions consist of rejection, specifiable in two forms
(as illustrated in the examples below), acceptance, and any of the restriction key-
words. Here is an example that might be part of a sender access map:

bad-guys.org REJECT
evil-ones.net 550 No spam allowed.
zoas.org OK
mybadguy@ permit_mynetworks

check_client_access type:map
check_sender_access type:map
check_recipient_access type:map
check_helo_access type:map

Determine access by looking up the specified item in the indicated access map.a

permit Permit the access (unconditionally).

reject Reject the access (unconditionally).

a The keyword is optional when used in the corresponding restrictions parameter. Thus, check_sender_access is optional in smtpd_sender_
restrictions, and a bare type:file list item will interpreted as the sender access map.

Table 9-8. Postfix access control keywords (continued)

Keyword Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 591

These entries reject all mail from anyone at bad-guys.org and evil-ones.net (using the
indicated error code and message in the latter case). Mail from zoas.org is accepted.
When a user named mybadguy sends a message, it is rejected unless the client sys-
tem is a member of one of the local networks.

You create the binary form of the map using the postmap command as usual:

cd /etc/postfix; postmap senders

Access control entries allowing access from specific sites and/or send-
ers cannot protect against addressing spoofing.

Postfix also allows you to define “restriction classes”: named groups of keywords
that can be used within access maps. In fact, if you want to use a reference to an
access map within an access map entry, you must do so via a restriction class,* as in
this example:

main.cf:
smtpd_restriction_classes = no_unknown, check_sender, accept_iffy
no_unknown = reject_unknown_sender_domain, reject_unknown_client,
 reject_non_fqdn_sender, reject_non_fqdn_hostname
check_sender = check_sender_access hash:/etc/postfix/senders
accept_iffy = check_sender_access hash:/etc/postfix/iffy
smtpd_recipient_restrictions = /etc/postfix/our-mail

/etc/postfix/senders:
bad-guys.org REJECT

/etc/postfix/iffy:
mole@bad-guys.org OK
weasel@bad-guys.org OK
ferret@bad-guys.org OK
bad-guys.org REJECT

/etc/postfix/our-mail:
chavez@ahania.com OK
ahania.com no_unknown
essadm.org check_sender
zoas.org accept_iffy

This configuration defines three restriction classes: non_unknown, which rejects mail
from unknown sources; check_sender, which looks up the sender in an access map
named senders; and accept_iffy, which looks up the sender in a different access map,
iffy. In addition, recipients are checked against the our-mail access map. This setup
allows recipients in different local domains to have different checks applied to their
incoming mail.

* This is required because the corresponding map files need to be open already when the access map is pro-
cessed, which is one of the effects of defining the restriction class in the main Postfix configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

592 | Chapter 9: Electronic Mail

These restriction classes are actually applied in the recipients map, our-mail. Mes-
sages to chavez are accepted without further checking. Messages to other users in the
ahania.com domain are checked for unknown client and sender addresses before
being accepted for delivery. Messages to users in the essadm.org domain are rejected
if they come from a sender at bad-guys.org (via the sole entry in the senders map).
Finally, messages to users in zoas.org are usually rejected if they come from someone
at bad-guys.org, but they are accepted from the three bad-guy.org users listed in the
iffy map.

Postfix can also accept or reject mail based on the contents of either the message
headers or body contents, using these configuration file entries:

header_checks = regexp:/etc/postfix/header_checks
body_checks = regexp:/etc/postfix/body_checks

These examples define the pathname for the map used to specify the desired header/
body checks. They use a map type of regexp, indicating that the specified file is a reg-
ular expression map, another of the supported map types (which may be used for
any map file throughout the Postfix facility). The map source file looks like this:

/viagra/ REJECT
/^Subject: [-A-Z0-9!]*$/ REJECT
/^To: .*@bad-guys.org/ REJECT
/[%!@].*[%!@]/ 550 Sender-specified routing rejected

This map, designed to be used to check mail message headers, rejects mail that con-
tains “viagra” anywhere in the mail headers, has a subject that contains only upper-
case letters, numbers, dashes, exclamation points and spaces, is addressed to any
user @garden.ahania.com, or contains explicit routing within the address. In the lat-
ter case, the message is restricted and results in the specified error code and message
text.

As usual, the binary map file must be created from this source file using the postmap
command.

In addition to this regular expression–based filtering, Postfix also includes full con-
tent-filtering hooks (à la procmail). See the FILTER_README file in the top-level
directory of the Postfix source tree for details.

Postfix security

Postfix is designed to be very secure. In this section, we’ll cover various odds and ends
related to Postfix security, beginning with these two configuration file parameters:

mail_owner = postfix
default_privs = nobody

These entries specify the owner of the Postfix processes and queue directory and the
user identity that Postfix assumes when delivering messages to a file or program and
there is no associated user context (respectively). The postfix user account should
have a unique UID and group (typically also named postfix).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 593

As with any administrative facility, you will need to ensure that the Postfix files and
directories have the proper ownerships and permissions. The postfix check com-
mand can be used to examine the installation for these problems, and it should be
run periodically.

As I’ve noted before, Postfix gives you two configuration options with respect to the
maildrop queue: the queue directory can be world-writable (via chmod o+t), or it can
be only group-writable. In the latter case, Postfix uses a SETGID program for local
mail submission (owned by the postfix user and group). The non-SETGID configura-
tion is the default. To switch to the second option, you must:

• Assign the proper ownership and protection to the maildrop queue directory.

• Run the INSTALL.sh script (located in the root of the Postfix source tree), speci-
fying this group at the SETGID privilege prompt.

Finally, many administrators choose to run Postfix in a chrooted environment (with /
var/spool/postfix serving as the root directory). This is easy to configure, but it is not
the default. The examples/chroot-setup subdirectory of the source tree contains
example scripts showing the required steps for converting to such a setup for various
operating systems. For example, here are the files for a FreeBSD and an AIX system:

Warning: Programs that “fix” sendmail permissions
The Postfix file and directory permissions can get changed on Linux systems by the
automated system configuration utilities: From the Postfix FAQ:

Unfortunately, some Linux systems have a helpful utility called linuxconf that
automatically ‘fixes’ file permissions to what they are supposed to be for Send-
mail’s sendmail command. Even when you reset the SETUID bit on the Postfix
sendmail executable file, linuxconf will happily turn it on again for you.

There is at present no way to prevent linuxconf from doing this.

On some older SuSE systems, the SuSEconfig facility does the same thing. However,
you can override this by adding the following line to /etc/permissions.local:

/usr/sbin/sendmail root.root 755

You will also want to check these entries in /etc/sysconfig/security (or in /etc/rc.config
on pre–Version 8 systems):

CHECK_PERMISSIONS=set Fix incorrect permissions
PERMISSION_SECURITY="secure local" Permission spec. file list

Permission correction happens only when the first entry has the value set. The second
entry indicates which files contain the correct file ownerships and permissions; the list
of items is used as extensions to files of the form /etc/permissions.*. Note also that if
your system is set to easy rather than secure, you should consider changing it (see
Chapter 7).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

594 | Chapter 9: Electronic Mail

FreeBSD:
umask 022
mkdir /var/spool/postfix/etc
chmod 755 /var/spool/postfix/etc
cd /etc
cp host.conf localtime services resolv.conf /var/spool/postfix/etc

AIX:
umask 022
mkdir /var/spool/postfix/etc
chmod 755 /var/spool/postfix/etc
for file in /etc/environment /etc/netsvc.conf /etc/localtime
do
 test -e $file && cp $file /var/spool/postfix/etc
done
cp /etc/services /etc/resolv.conf /var/spool/postfix/etc
mkdir /var/spool/postfix/dev
chmod 755 /var/spool/postfix/dev
mknod /var/spool/postfix/dev/null c 2 2
chmod 666 /var/spool/postfix/dev/null

FreeBSD requires only that a few files from /etc exist in the chroot jail. The script for
AIX conditionally copies a list of files (i.e., if they exist), copies two files that it
knows it will need, and creates a /dev/null device in the jail (using the mknod com-
mand). Note that both scripts are careful to set the umask appropriately and to set the
ownership and permissions for any subdirectories they create.

Monitoring and performance

As with any system facility, Postfix requires some amount of ongoing monitoring and
occasional maintenance. In this section, we look at some of the features related to
monitoring and performance optimization.

We’ve seen the postfix command several times already. Three of its most important
options are start and stop, which start and stop the facility, and flush, which may be
used to force processing of the mail queue. These commands may be used to take
care of common facility-wide failures and backlogs.

Postfix also allows you to configure what sorts of errors should be reported to
postmaster:

notify_classes = list

The item list consists of one or more keywords: bounce (copies message), 2bounce
(for double bounces), delay (sends headers only), policy (UCE restriction rejections),
protocol (protocol errors), resource (shortages/problems), and software (problems
causing failed deliveries). The default list is resource, software.

Postfix also provides many resource usage and performance-related settings that can
be used to optimize its configuration on your system. The most important of these
are listed in Table 9-9.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring the Transport Agent | 595

Debugging

There are three main sources of troubleshooting information available with Postfix:
syslog entries, verbose command modes, and system call tracing. We will consider
each of these in turn.

Normally, Postfix sends status and error messages to the syslog facility. You can con-
figure the minimum severity level for which you want messages reported in the usual
way, using the /etc/syslog.conf configuration file.

You can enable verbose logging for the various Postfix daemons by adding the -v
option to the command corresponding specifications in /etc/postfix/master.cf (in the
final column). For example, this modification enables verbose mode for the smtpd
daemon:

smtp inet n - n - - smtpd -v

The final source of debugging information comes from system call tracing. Be aware,
however, that this data is extremely verbose and often obscure. You can enable trac-
ing in this way:

• Add -D to smtpd line in master.cf.

• Configure the debugger_command in the main.cf configuration file:
debugger_command =
 PATH=/usr/bin:/usr/X11/bin
 strace -p $process_id -o /tmp/pfx_$process_id & sleep 5

This entry is from a Linux system. strace may need to be replaced by trace,
ktrace, truss, or some other command on your system.

Table 9-9. Some Postfix resource usage and performance parameters

Parameter Meaning

default_destination_concurrency_limit Number of parallel deliveries to the same destination. The default of 10 can be
lowered if some site(s) are a bottleneck for delivering other mail.

default_destination_recipient_limit Maximum number of recipients per message delivery (more are batched). The
default is 50.

minimal_backoff_time Amount of time to wait after the first failed delivery attempt. The default is 1000s
(the units must be specified), about 17 minutes.

maximal_backoff_time Maximum amount of time to wait after a failed delivery attempt (waiting time
increases with each failure to this limit). The default is 4000s (about 67 minutes).

queue_run_delay Second between qmgr attempts to process the queue. The default is 1000s.

bounce_size_limit Maximum size in bytes of the body text that is included in a bounced message. The
default is 50000.

default_process_limit Maximum number of child processes for each Postfix subsystem.

message_size_limit Maximum size of a message in bytes. The default is 1,024,000 (a pseudo MB).

qmgr_message_active_limit Maximum number of entries in the active queue.

queue_minfree Amount of free space that must remain available in the filesystem containing the
queue directories (the default is 0).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

596 | Chapter 9: Electronic Mail

Once the daemon is invoked, system call tracing output goes to the specified file in
the /tmp directory. You can examine this file as it runs and use the same command to
stop the trace operation when appropriate.

It is also possible to run Postfix daemons under a symbolic debugger. See the docu-
mentation for details about how to accomplish this.

Retrieving Mail Messages
As we’ve already seen, sites that connect intermittently to the Internet can compli-
cate mail relaying and delivery. The central issue for such sites is the method for forc-
ing mail to be sent and retrieved periodically in some automated way. Basically, the
local queue needs to be flushed (e.g., via sendmail -q or postfix flush) when the
connection is made, and mail for local users needs to be retrieved. (Of course, these
two processes can be handled by different servers and so need not happen at the
same time). Sending local mail is easily handled by adding the appropriate com-
mand to the connection script (or creating a script that activates the connection,
flushes the queue, and then terminates the connection).

Retrieving mail can be performed manually via the SMTP ETRN command on
remote servers that allow SMTP connections and support the enhanced SMTP proto-
col. Here is an example:

telnet kevin.ahania.com 25
Trying 10.0.19.223...
Connected to kevin.
Escape character is `^]'.
220 kevin.ahania.com ESMTP Sendmail 8.11.0/8.11.0;
Mon, 16 Apr 2001 11:22:54 -0400
EHLO astarte
250 kevin.ahania.com Hello astarte
...
ETRN mailhost.zoas.org

The final command requests mail for the specified host.

The fetchmail program, written by Eric Raymond, provides automated mail retrieval
capabilities. It is a powerful program that supports a variety of transport protocols
and authentication mechanisms. It operates by retrieving messages from a remote
mail server and sending them on to SMTP port 25 on the local system (or a specified
remote system). As a result, to the transport agent, they look like normal incoming
mail messages.

You will often need to ensure that localhost is included in the transport
agent’s list of allowed relay hosts for fetchmail to function properly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Retrieving Mail Messages | 597

The fetchmail command is the heart of the package. It is generally started at boot
time via a command like this one:

fetchmail -d 900

This command starts the program in daemon mode and specifies that it will poll
each remote mail server every 900 seconds (four times an hour). When the daemon is
running, the fetchmail command (without arguments) wakes up the daemon and
forces an immediate poll of all servers defined in the configuration file. Alternatively,
you can specify hosts to poll by listing their names as arguments, as in this example:

fetchmail mailer.notaol.com

This command polls the specified host immediately, determining connection infor-
mation from its configuration file entry (discussed below). Alternatively, you can
specify various connection parameters via command-line options (which override
settings in the configuration file entry).

The fetchmail --quit command form kills the running daemon. You can also
include -v or -v -v for verbose/ultra verbose output.

fetchmail’s default configuration file is ~/.fetchmailrc (i.e., located in the home direc-
tory of the user who issues the fetchmail command, typically root). An alternate
location may be specified with the FETCHMAILHOME environment variable or the
-f command-line option. The configuration file must have the protection mode 600.

Table 9-10 lists the most important fetchmail configuration parameters, giving both
the configuration file and command-line option forms.

Table 9-10. Important fetchmail parameters

Keyword Meaning Command-line option

set daemon seconds Set the polling interval in seconds when fetchmail is run
as a daemon.

-d

set logfile path Enable logging to the specified file. -L

set syslog
set nosyslog

Use/don’t use syslog for messages (fetchmail logs to
the mail facility, using the info, alert, and err severity levels).

--syslog
--nosyslog

defaults settings Specify defaults for various settings.

poll host Define a remote mail server.

proto protocol Connection protocol to use (e.g., pop3, imap, etrn). -p

user usernamea User account on the remote server. -u

is user(s)a

to user(s)a
Corresponding local user account (the two keywords are syn-
onymous).

password stringa Password for the remote account.

auth scheme Specify the authorization scheme in use: e.g., password,
kerberos, kerberos_v5, ntlm, ssh, any (try various in turn).

-A

localdomains list Domains to treat as local.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

598 | Chapter 9: Electronic Mail

Here is a sample .fetchmailrc file:

set logfile /var/log/fetchmail.logset syslog
defaults proto pop3 user "ispuser"

poll pop.essadm.org pass "password"
poll mailer.notaol.org proto imap
 user "rjchavez24" there has password "another-password"
 and is chavez here
poll getmail via pop.essadm.org proto etrn
poll poffice.ahanai.com proto imap auth ssh
 plugin "ssh %h /usr/sbin/imapd"

The first section of this configuration file defines some global settings and provides
defaults for some parameters for the entries that follow. In this case, logging mes-
sages go to the specified log file and also to the syslog facility. The default connec-
tion protocol is POP3, and the default user is ispuser.

The first poll entry defines a POP3 connection to pop.essadm.org, and the entry speci-
fies the password for the ispuser account on the remote system.

The second poll entry defines an IMAP mail server (at mailer.notaol.org), to which
the local host connects as user rjchavez24 (with the indicated password), corre-
sponding to the local user chavez. In other words, this entry retrieves the mail for
rjchavez24 from the specified server and delivers it to user chavez. Note that you can

smtphost host(s)a Send incoming mail to this host (or the first available host
when the argument is a list). Hostname(s) may include an
optional port number: host/port (the default is port 25).

-S host

limit bytesa Limit message to this size (ignored by the ETRN protocol). -l

keepa

nokeepa
Retain/don’t retain downloaded messages on the server
(using ETRN implies nokeep).

-k
-K

flusha Delete old messages from the server before fetching new
ones (valid for POP3/IMAP protocols only).

-F

folder path(s)a Specify remote mailbox path (valid for IMAP only). -r path

preconnect commanda Run this command before connecting.

postconnect commanda Run this command after connecting.

plugin command Use this command to make the server connection. --plugin

skip host Poll this host only when it is explicitly listed on the command
line (e.g. fetchmail [options] host).

via host Poll this DNS name; when used, the string following poll is
treated just as a label.

interval n Poll this site only on every nth poll (i.e., less frequently than
normal).

a These are user-related options, which must follow all server-related options (unmarked) in configuration file entries.

Table 9-10. Important fetchmail parameters (continued)

Keyword Meaning Command-line option

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 599

use multiple user keywords with an entry to retrieve mail for multiple users in a sin-
gle operation.

The third poll entry also retrieves mail from pop.essadm.org (as did the first poll
entry). Here the target is specified as getmail, which functions simply as an entry
label (which can be referenced on the fetchmail command line), and the host to
which to connect follows the via keyword. This entry specifies the ETRN protocol,
so it will cause fetchmail to issue an SMTP ETRN command to the remote server on
behalf of the local host.

The final entry illustrates the method for using ssh to connect to a remote mail
server, in this case poffice.ahania.com.

In fetchmail configuration files, you will sometimes see entries like this one, which is
designed to retrieve mail for multiple local users from a common (“multidrop”) mail-
box on the mail server:

poll pop.essadm.org proto pop3 localdomains zoas.org ahania.com
 user "ispuser" pass "password" to trucks * here

This entry polls to pop.essadm.org using the POP3 protocol, mapping the remote
user ispuser to the local user trucks and passing through all other users’ mail to the
local host (specified by the asterisk as the final entry in the to user list). However,
you should be aware that this approach is prone to many sorts of problems: mail to
mailing lists can end up being delivered to the account running fetchmail instead of
local subscribed users, mail destined for blind-carbon-copied recipients may be lost,
mail loops can arise—the list goes on. The fetchmail documentation recommends
that you use the ETRN protocol instead in such circumstances.

There are quite a few other fetchmail features that space constraints preclude dis-
cussing in detail. Consult Table 9-10 and the fetchmail documentation for more
information.

The fetchmail package also includes a graphical configuration tool, fetchmailconf,
which can make setting up configuration file entries easier for new fetchmail users.
Figure 9-7 illustrates its novice-mode configuration dialogs; these specific settings
would create entries similar to some that we looked at earlier.

The program also has an advanced configuration mode, which lets you set up entries
that are as complex as you need them to be.

Mail Filtering with procmail
Previously, we’ve considered spam suppression features in both sendmail and Post-
fix. These features can be very effective at blocking some spam before it ever enters
your site. The procmail program, written by Stephen van den Berg, offers a different
method for accomplishing this task. The package’s homepage is http://www.
procmail.org.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

600 | Chapter 9: Electronic Mail

In fact, procmail is a very powerful, general-purpose mail filtering facility. Its capabil-
ities are not limited to removing spam; procmail can be used for several different pur-
poses:

• To identify spam messages, which can then be discarded or set aside for later
examination.

• To scan mail for security problems, such as viruses, macros within mail attach-
ments, and so on, allowing you to discard or quarantine suspicious messages.

• To sort incoming mail messages by sender, subject area, or any other scheme
that makes sense to you.

• To reject mail from specific users or sites or with specific characteristics or con-
tent (as defined locally); again, such mail can either be discarded or set aside as
appropriate.

In fact, procmail is the mail filtering tool of choice for most users on Unix systems.

procmail can be applied to incoming mail in two main ways:* by using it as the local
delivery agent (the program to which the transport agent hands off local messages
for actual delivery), or by piping incoming mail for individual users to it, usually in
the .forward file, as in this canonical example:

"|IFS=' ' && exec /usr/bin/procmail -Yf- || exit 75 #username"

Figure 9-7. The fetchmail configuration utility

* procmail can also be used to process an existing mailbox; see the “Notes” section of the man page for an
example script, or use a command like cat file | formail -s procmail. Be very careful when using this tech-
nique with a mail spool file: it is very easy to create infinite loops that continuously generate new mail mes-
sages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 601

This example first sets the shell’s interfield separator character to a space (see
Chapter 3) and execs procmail, specifying -Y (assume BSD mailbox format) and -f-
(which tells the program to update the timestamp in the leading From header). You
may need to modify the path to one appropriate to your system. If you want to be
extra cautious, you can use an entry like this one:

"|IFS=' ' && p=/usr/bin/procmail && test -f $p
 && exec $p -Yf- || exit 75 #username"

This version tests for the existence of the procmail executable before running it. The
output is wrapped here, but it is a single line in the .forward file.

In any case, if the procmail program fails, the process returns an exit code of 75. The
final item is a shell comment, but it is required. As the procmail man page explains it,
this item “is not actually a parameter that is required by procmail; in fact, it will be
discarded by sh before procmail ever sees it; it is however a necessary kludge against
overoptimizing sendmail programs.” Whatever.

The individual user .forward file entries are not needed—and should
not be used—when procmail is the local delivery agent.

Configuring procmail
procmail gets its instructions about which mail filtering operations to perform in a
configuration file. The systemwide configuration file is /etc/procmailrc. The user-spe-
cific procmail configuration file is ~/.procmailrc. The systemwide configuration file is
also invoked when individual users run procmail unless its -p option is included or
the configuration file to use is explicitly specified as the command’s final argument.

When procmail is being used only on a per-user basis, it is best to
leave the global configuration file empty. Actions specified in the glo-
bal configuration file are run in the root account context, and you have
to set up this file very carefully in order to avoid security risks.

procmail examines each successive mail message it receives and applies the various
filters defined in the configuration file (known as “recipes”) in turn. The first recipe
that results in a destination or other disposition for the message causes all further
processing to stop. If all of the recipes are applied without effect—in other words, if
the message passes unaffected through all the filters—the mail is appended to the
user’s normal mailbox (which can be defined via the procmail DEFAULT variable).

procmail configuration file entries have this general format:

:0 [flags] Indicates the start of a new recipe.
* condition Zero or more lines of regular expressions.
disposition Destination/treatment of matching messages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

602 | Chapter 9: Electronic Mail

Let’s begin with some simple examples:

Define variables
PATH=/bin:/usr/bin:/usr/local/bin:$HOME/bin:/usr/sbin
MAILDIR=$HOME/Mail
DEFAULT=$MAILDIR/unseen

Discard message from this user.
:0
* ^From.*jerk@bad-guys.org
/dev/null

Copy all mail messages into my message archive file.
:0c:
archive

The initial section of the configuration file defines some procmail variables: the
search path, the mail directory, and the default message destination for messages not
redirected or discarded by any recipe.

The first recipe filters out mail from user jerk at bad-guys.org by redirecting it to /dev/
null. Note that the condition is a regular expression against which incoming message
text is matched. Contrary to expectations, however, pattern matching is not case-
sensitive by default.

The second recipe unconditionally copies all incoming messages to the file ~/Mail/
archive—relative pathnames are interpreted with respect to MAILDIR—while retain-
ing the original message in the input stream. Since there is no condition specified, all
messages will match and be processed by the recipe.

Copying occurs because the c flag (clone the message) is included in the start line. As
this recipe indicates, the start line can potentially include a variety of items. The 0
can be followed by one or more code letters (flags specifying message-handling varia-
tions), and the entire string can be followed by another colon, which causes procmail
to use a lock file when processing a message with this recipe. The lock file serves to
prevent multiple procmail processes, handling different mail messages (as might be
generated by the transport agent when mail is arriving rapidly), from trying to write
to the same file simultaneously. The terminal colon can optionally be followed by a
lock-file name. In most cases, the filename is left blank (as it was here), allowing
procmail to generate the name itself.

If this was the entire .procmailrc configuration file, all messages not discarded by the
first recipe would end up in the location specified by the DEFAULT variable: ~/Mail/
unseen.

Similar recipes can be used to direct procmail to sort incoming mail into bins:

Set directory for relative pathnames
HOME=/home/aefrisch/Mail

Sort and transfer various types of messages
:0:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 603

* ^From: (patti_singleton|craig_stone|todd_stone)@notaol\.org
new-family

:0c:
* ^TO_help@zoas\.org
support/archive

:0:
* ^TO_help@zoas\.org
* ^Subject: Case.*[GVPM][0-9][0-9][0-9]+
support/existing
:0:
* ^TO_help@zoas\.org
support/incoming

The first recipe sends mail from various users at notaol.org to the indicated mail
folder (they are some of my siblings). The remaining three recipes copy all messages
addressed to help into the file archive in the indicated directory and sort the mes-
sages into two other mail folders. The third recipe directs messages whose subject
line begins with “Case” and contains one of the indicated letters followed by three or
more consecutive digits into the existing file, and all other messages go into the
incoming file (both in my ~/support subdirectory).

The ordering of configuration-file recipes can be important. For example, mail to
help from one of my siblings will still go into the new-family file, not one of the ~/
Mail/support files.

The ^TO_ component used in some of the preceding recipes is actually a procmail
keyword, and it causes the program to check all recipient-related headers for the
specified pattern.

You can specify more than one condition by including multiple asterisk lines:

Define a FROM header set
FROM="^(From[]|(Resent-)?(From|Reply-To|Sender):)"
Discard some junk
:0H
* $ $(FROM).*@bad-guys\.org
* ^Subject: .*what a deal
/dev/null

:0
* ^Subject:.*last chance|\
 ^Subject:.*viagra|\
 ^Subject:.*??
/dev/null

The first recipe discards mail from anyone in the indicated domain that contains the
indicated string in the subject line. Note that conditions are joined with AND logic.
If you want to use OR logic, you must construct a single condition using the regular
expression | construct. The second recipe provides an example of doing so. Its
search expression could be written more succinctly, but this way it is easier to read.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

604 | Chapter 9: Electronic Mail

This recipe also illustrates the use of configuration-file variables. We define one
named FROM, which matches a variety of headers indicating a message’s sender/ori-
gin (the square brackets contain a space and a tab character). The variable is then
used in the first condition, and the initial dollar sign is required to force variable
dereferencing within the pattern.

Other procmail disposition options

You can also use a pipe as the destination by including a vertical bar as the first char-
acter in the line:

Run message (except from root and cron) through a script
:0
* !^From: (root|cron)
| $HOME/bin/chomp_mail.pl

This recipe sends all mail not from root or cron (the exclamation mark indicates a
negative test) to the indicated Perl script. We don’t use procmail locking here; if the
script does any writing to files, it will need to do its own locking (procmail locking is
not recommended for this purpose).

Be aware that procmail assumes that commands will be executed in
the context of the Bourne (sh) shell at a very deep level. If your login
shell is a C shell variant, place the following command at the top of
your procmail configuration file to avoid unwanted weirdness:

$SHELL=/bin/sh

In these next examples, we forward mail to another user and generate and send a
mail message within procmail recipes:

Distribute CCL mail list messages related to Gaussian
:0
* ^Subject: CCL:.*g(aussian|9)
! ccl_gauss,ccl_all

Distribute remaining CCL mailing list messages
:0
* ^Subject: CCL:
! ccl_all

Send rejection message to this guy
:0
* ^From:.*persistent@bad-guys\.org
* !X-Loop: chavez@ahania.com
| (formail -r -a "X-Loop: chavez@ahania.com"; \
 echo "This is an auto-generated reply."; \
 echo "Mail rejected; it will never be read.") \
 | sendmail -t -oi

The first recipe distributes selected items from a mailing list to a group of local users.
Messages from the mailing list are identifiable by the beginning of their subject lines,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 605

and the recipe selects messages with either “gaussian” or “g9” anywhere in the sub-
ject line. The selected messages are forwarded to the two indicated local users, which
are actually aliases expanding to a list of users.

The second recipe sends all the remaining messages from the same list to the ccl_all
alias. The users in this internal list want to receive the entire mailing list, and the
combination of recipes 1 and 2 produces that result.

The final recipe sends a reply to any mail messages from the specified user. It uses
the formail utility, which is part of the procmail package. The formail -r command
creates a reply to the mail message the command receives as input, discarding exist-
ing message headers and the message body. The new body text is created via the two
echo commands which follow, and the completed message is piped to sendmail for
submission to the mail facility. sendmail’s -t option tells the program to determine
the recipients from the message headers, and -oi causes it not to treat a line contain-
ing a sole period as the end of input (only rarely needed, but traditionally included
just to be safe).

This message also illustrates a technique for avoiding mail loops with procmail. The
formail command adds an X-Loop header to the outgoing mail message (via the -a
option). The conditions also check for the presence of this header, bypassing the
message when it is found. In this way, this recipe prevents procmail from processing
the generated message should it bounce.

Table 9-11 lists some useful formail options.

procmail recipes can also be used to transform incoming mail messages. Here is a
nice example by Tony Nugent (slightly modified):

--- Strip out PGP stuff ---
:0fBbw

Table 9-11. Useful formail options

Option Meaning

-r Generate a reply, deleting existing headers and body.

-X header: Extract/retain the named message header.

-k Keep the message body also when using -r or -X.

-a header:text Append the specified header if it is not already present.

-A header:text Append the specified header in any case.rr

-i header:text Append the specified header, prepending Old- to the name of the existing header (if any).

-I header:text Replace the existing header line.

-u header: Keep only the first occurrence of the named header.

-U header: Keep only the final occurrence of the named header.

-x header: Just extract the named header .

-z Ensure that there is whitespace following every header field name, and remove (zap) headers with-
out contents. If used with -x, it also trims initial and final whitespace from the resulting output.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

606 | Chapter 9: Electronic Mail

* (BEGIN|END) PGP (SIG(NATURE|NED MESSAGE)|PUBLIC KEY BLOCK)
| sed -e 's+^- -+-+' \
 -e '/BEGIN PGP SIGNED MESSAGE/d' \
 -e '/BEGIN PGP SIGNATURE/,/END PGP SIGNATURE/d' \
 -e '/BEGIN PGP PUBLIC KEY BLOCK/,/END PGP PUBLIC KEY BLOCK/d'

Add (or replace) an X-PGP header
:0Afhw
| formail -I "X-PGP: PGP Signature stripped"

These recipes introduce several new procmail flags. The set in the first recipe, Bfw,
tells procmail to search the message body only (B) (the default is the entire message),
that the recipe is a filter (f) and messages should continue to be processed by later
configuration file entries after it completes, and that the program should wait for the
filter program to complete before proceeding to the next recipe in the configuration
file (w).

The sed command in the disposition searches for various PGP-related strings within
the message body (b flag). When found, it edits the message, replacing two space-
separated hyphens at the beginning of a line with a single hyphen and removing vari-
ous PGP-related text, signature blocks and public key blocks (accomplishing the last
two operations by using sed’s text section–removal feature).

The next recipe will be applied only to messages that matched the conditions in the
previous recipe (the A flag), operating as a filter (f) on the message headers only (h)
and waiting for the filter program to complete before continuing with the remainder
of the configuration file (w). The disposition causes the message to be piped to
formail, where an X-PGP header is added to the message or an existing header of
this type is replaced (-I option).

Table 9-12 lists the most important procmail start-line flags.

Table 9-12. procmail Flags

Flag Meaning

Ha Search the message headers.

Ba Search the message body.

ha Process the message header.

ba Process the message body.

c Perform the operation on a copy of the message.

D Perform case-sensitive regular expression matching.

f Recipe is a filter only; matching messages remain in the input stream.

A Chain this recipe to the immediately preceding one, executing only when a message has matched the patterns
in the preceding recipe (which will have included the f flag).

a Process this recipe only when the preceding one was successful.

e Process this recipe only when the preceding one failed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 607

Using procmail to discard spam

procmail can be very useful in identifying and removing spam messages. For it to be
successful, you must be able to describe common patterns in the messages you want
to treat as spam and write recipes accordingly.

In this section, we will look at a variety of recipes that may be useful as starting
points for dealing with spam. They happen to come from my own .procmailrc file,
and so are applied only to my mail. As an administrator, you can choose to deal with
spam at several levels: via the transport agent (e.g., checking against blacklists), at
the system level, and/or on a per-user basis. In the case of procmail-based filtering,
anti-spam recipes can be used in a systemwide procmailrc file or made available to
users wanting to filter their own mail.

The following recipe is useful at the beginning of any procmail configuration file,
because it formats mail headers into a predictable format:

Make sure there's a space after header names
:0fwh
|formail -z

The next two recipes provide simple examples of one approach to handling spam:

Mail from mailing lists I subscribe to
:0:
* ^From: RISKS List Owner|\
 ^From: Mark Russinovich
to-read

Any other mail not addressed to me is spam
Warning: may discard BCC's to me
:0
* !To: .*aefrisch
/dev/null

Spam is discarded by the second recipe, which defines spam as mail not addressed to
me. The first recipe saves mail from a couple of specific senders to the file to-read. It
serves to define exceptions to the second recipe, because it saves messages from these
two senders regardless of who they are addressed to. This recipe is included because
I want to retain the mail from the mailing lists corresponding to these senders, but it
does not arrive addressed to me.

E Process this recipe only when the preceding recipe’s conditions did not match the current message (i.e., create
an ELSE condition).

w Wait for the filter program to complete and check its exit code before continuing on to the next recipe. The W
form does the same thing while suppressing any “Program failure” messages.

a The default actions when none of the relevant flags are specified are H and bh. However, H alone implies B is off (search headers only), b
without h says to process only the message body, and so on.

Table 9-12. procmail Flags (continued)

Flag Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

608 | Chapter 9: Electronic Mail

In fact, there are other recipes which fall between these two, because there are a lot
of exceptions to be handled before I can discard every message not addressed to me.
Here are two of them:

Mail not addressed to me that I know I want
:0:
* !To: .*aefrisch
* ^From: .*oreilly\.com|\
 ^From: .*marj@zoas\.org|\
 ^From: aefrisch
$DEFAULT

Keep these just in case
:0:
* ^To: .*undisclosed.*recipients
spam

The first recipe saves mail sent from the specified domain and the remote user
marj@zoas.org via the first two condition lines. I include this recipe because I receive
mail from these sources which is not addressed to me—and thus can resemble
spam—because of the way their mailer programs handle personal mailing lists. I also
retain messages from myself, which result from a CC or BCC on an outgoing mes-
sage.

The second recipe saves files addressed to any variant of “Undisclosed Recipients” to
a file called spam. Such mail is almost always spam, but once in a while I discover a
new exception.

The next few recipes in my configuration file handle mail that is addressed to me but
is still spam. This recipe discards mail with any of the specified strings anywhere in
the message headers:

Vendors who won't let me unsubscribe
:0H
* cdw buyer|spiegel|ebizmart|bluefly gifts|examcram
/dev/null

Such messages are spam sent by vendors from which I did once buy something and
who ignore my requests to stop sending me email.

The next two recipes identify other spam messages based on the Subject: header:

Assume screaming headers are spam
:0D
* ^Subject: [-A-Z0-9\?!._]*$
/dev/null

More spam patterns
:0
* ^Subject: .*(\?\?|!!|\$\$|viagra|make.*money|out.*debt)
/dev/null

The first recipe discards messages whose subjects consist entirely of uppercase let-
ters, numbers, and a few other characters. The second message discards messages

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 609

whose subject lines contain two consecutive exclamation marks, question marks or
dollar signs, the word “viagra,” “make” followed by “money,” or “out” followed by
“debt” (with any intervening text in the latter two cases).

It is also possible to check mail senders against the contents of an external file con-
taining spam addresses, partial addresses, or any other patterns to be matched:

Check my blacklist (a la Timo Salmi)
:0
* ? formail -x"From" -x"From:" -x"Sender:" -x"X-Sender:" \
 -x"Reply-To:" -x"Return-Path" -x"To:" | \
 egrep -i -f $HOME/.spammers
/dev/null

This recipe is slightly simplified from one by Timo Salmi. It uses formail to extract
just the text from selected headers and pipes the resulting output into the egrep com-
mand, taking the patterns to match from the file specified to its -f option (-i makes
matches case insensitive).

My spam identification techniques are very simple and therefore quite aggressive.
Some circumstances call for more restraint than I am inclined to use. There are sev-
eral ways of tempering such a drastic approach. The most obvious is to save spam
messages to a file rather than simply discarding them. Another is to write more
detailed and nuanced recipes for identifying spam. Here is an example:

Discard if From:=To:
SENTBY=`formail -z -x"From:"`
:0
* ! ^To: aefrisch
* ? ^To: .*$SENTBY
/dev/null

This recipe discards messages where the sender and recipient addresses are the
same—a classic spam characteristic—and are different from my address. The con-
tents of the From: header are extracted to the SENTBY variable via the backquoted
formail command. This variable is used in the second condition, which examines the
To: header for the same string. More complex versions of such a test are also possi-
ble (e.g., one could examine more headers other than just From:).

There are also a myriad of existing spam recipes that people have created available
on the web.

Using procmail for security scanning

procmail’s pattern-matching and message-disposition features can also be used to
scan incoming mail messages for security purposes: for viruses, unsafe macros, and
so on. You can create your own recipes to do so, or you can take advantage of the
ones that other people have written and generously made available. In this brief sec-
tion, we will look at Bjarni Einarsson’s Anomy Sanitizer (see http://mailtools.anomy.
net/sanitizer.html). This package is written in Perl and requires a basic knowledge of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

610 | Chapter 9: Electronic Mail

Perl regular expressions to configure.* Once configured, you can run the program via
procmail using a recipe like this one:

:0fw
|/usr/local/bin/sanitizer.pl /etc/sanitizer.cfg

This recipe uses the sanitizer.pl script as a filter on all messages (run synchronously),
using the configuration file given as the script’s argument.

The package’s configuration file, conventionally /etc/sanitizer.cfg, contains two types
of entries: general parameters indicating desired features and program behavior, and
definitions of file/attachment types and the way they should be examined and
modified.

Here are some examples of the first sort of configuration file entries:

Global parameters
feat_log_inline = 1 # Append log to modified messages.
feat_log_stderr = 0 # Don't log to standard error also.
feat_verbose = 0 # Keep logging brief.
feat_scripts = 1 # Sanitize incoming shell scripts.
feat_html = 1 # Sanitize active HTML content.
feat_forwards = 1 # Sanitize forwarded messages.

Template for saved file names
file_name_tpl = /var/quarantine/saved-$F-$T.$$

The first group of entries specify various aspects of sanitize.pl’s behavior, including
level of detail and destinations for its log messages as well as whether certain types of
message content should be “sanitized”: examined and potentially transformed to
avoid security problems. The final entry specifies the location of the package’s quar-
antine area: the directory location where potentially dangerous parts of mail mes-
sages are stored after being removed.

The next set of entries enables scanning based on file/attachment-extension and
specifies the number of groups of extensions that will be defined and default actions
for all other types:

feat_files = 1 # Use type-based scanning.
file_list_rules = 3 # We will define 3 groups.
Set defaults for all other types
file_default_policy = defang # Rewrite risky constructs.
file_default_filename = unnamed.file # Use if no file name given.

A sanitizer policy indicates how a mail part/attachment will be treated when it is
encountered. These are the most important defined policies:

mangle
Rewrite the file name to avoid reference to a potentially dangerous extension (e.g.,
rewrite to something of the form DEFANGED-nnnnn).

* The program also requires that its library file and those from the MIME:Base64 module that it uses be avail-
able within the Perl tree. See the installation instructions for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 611

defang
Rewrite the file contents and rename it to eliminate potentially dangerous items.
For example, Java Scripts in HTML attachments are neutralized by rewriting
their opening line:

<DEFANGED_SCRIPT language=JavaScript>

accept
Accept the attachment as is.

drop
Delete the attachment without saving it.

save
Remove the attachment, but save it to the quarantine directory.

We’ll now turn to some example file-type definitions. This set of entries defines the
first file type as the filename winmail.dat (the composite mail message and attach-
ment archive generated by some Microsoft mailers) and all files with extensions .exe,
.vbs, .vbe, .com. ,chm, .bat, .sys or .scr:

Always quarantine these file types
file_list_1_scanner = 0
file_list_1_policy = save
file_list_1 = (?i)(winmail\.dat
file_list_1 += |\.(exe|vb[es]|c(om|hm)|bat|s(ys|cr))*)$

Notice that the file_list_1 parameter defines the list of filenames and extensions using
Perl regular expression syntax. The policy for this group of files is save, meaning that
files of these types are always removed from the mail message and saved to the quar-
antine area. The attachment is replaced by some explanatory text within the modi-
fied mail message:

NOTE: An attachment was deleted from this part of the message,
because it failed one or more checks by the virus scanning system.
The file has been quarantined on the mail server, with the following file name:

 saved-Putty.exe-3af65504.4R

This message is a bit inaccurate, since in this case the attachment was not actually
scanned for viruses but merely identified by its file type, but the information that the
user will need is included.

Clearly, it will be necessary to inform users about any attachment
removal and/or scanning policies that you institute. It will also be
helpful to provide them with alternative methods for receiving files of
prohibited types that they may actually need. For example, they can be
taught to send and receive word-processing documents as Rich Text
Format files rather than, say, Word documents.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

612 | Chapter 9: Electronic Mail

Here are two more examples of file group definitions:

Allow these file types through: images, music, sound, etc.
file_list_2_scanner = 0
file_list_2_policy = accept
file_list_2 = (?i)\.(jpe?g|pn[mg]
file_list_2 += |x[pb]m|dvi|e?ps|p(df|cx)|bmp
file_list_2 += |mp[32]|wav|au|ram?
file_list_2 += |avi|mov|mpe?g)*$

Scan these file types for macros, viruses
file_list_3_scanner = 0:1:2:builtin 25
file_list_3_policy = accept:save:save:defang
file_list_3 = (?i)\.(xls|d(at|oc|ot)|p(pt|l)|rtf
file_list_3 += |ar[cj]|lha|[tr]ar|rpm|deb|slp|tgz
file_list_3 += |(\.g?z|\.bz\d?))*$

The first section of entries defines some file types that can be passed through unex-
amined (via the accept policy). The second group defines some extensions for which
we want to perform explicit content scanning for dangerous items, including viruses
and embedded macros in Microsoft documents. The file_list_3 extension list
includes extensions corresponding to various Microsoft document and template files
(e.g., .doc, .xls, .dot, .ppt and so on) and a variety of popular archive extensions.

The scanner and policy parameters for this file group now contain four entries. The
file_list_3_scanner parameter’s four colon-separated subfields define four sets of
return values for the specified scanning program: the values 0, 1, and 2 and all other
return values resulting from running the builtin program. The final subfield specifies
the program to run—here it is a keyword requesting sanitizer.pl’s built-in scanning
routines with the argument 25—and serves as a placeholder for all other possible
return values that are not explicitly named in earlier subfields (each subfield can hold
a single or comma-separated list of return values).

The subfields of the file_list_policy_3 parameter define the policy to be applied when
each return value is received. In this case, we have the following behavior:

By default, the sanitizer.pl script checks macros in Microsoft documents for dangerous
operations (e.g., attempting to modify the system registry or the Normal template).
However, I want to be more conservative and quarantine all documents containing
any macros. To do so, I must modify the script’s source code. Here is a quick and dirty
solution to my problem, which consists of adding a single line to the script:

Return value Action

0 Accept the attachment.

1 and 2 Remove and save the attachment.a

a Why two values here? The tool’s virus-scanning features require four return codes, so four must be defined for the other features as well.

all others Modify the attachment to munge any dangerous constructs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Filtering with procmail | 613

Lots of while loops here - we replace the leading \000 boundary
with 'x' characters to ensure this eventually completes.
#
$score += 99 while ($buff =~ s/\000Macro recorded/x$1/i);
$score += 99 while ($buff =~ s/\000(VirusProtection)/x$1/i);

The line in bold is added. It detects within the document macros that have been
recorded by the user. The solution is not an ideal one, because there are other meth-
ods of creating macros which would not be detected by this string, but it illustrates
what is involved in extending this script, if needed.

Debugging procmail

Setting up procmail configuration files can be both addictive and time-consuming.
To make debugging easier, procmail provides some logging capabilities, specified
with these configuration file entries:

LOGFILE=path
LOGABSTRACT=all

These variables set the path to the log file and specify that all messages directed to
files be logged. If you would like even more information, including a recipe-by-rec-
ipe summary for each incoming message, add this entry as well:

VERBOSE=yes

Here are some additional hints for debugging procmail recipes:

• Isolate everything you can from the real mail system. Use a test directory as
MAILDIR when developing new recipes to avoid clobbering any real mail, and
place the recipes in a separate configuration file. Similarly, use a test file of mes-
sages rather than any real mail by using a command like this one:

cat file | formail -s procmail rcfile

This command allows you to use the prepared message file and also to specify
the alternate configuration file.

• When testing spam-related recipes, send messages to a file while you are debug-
ging, rather than to /dev/null.

• If you are trying to test the matching-conditions part of a recipe, use a simple,
uniquely-named file as the destination, and incorporate the possibly more com-
plex destination expression only when you have verified that the conditions are
constructed correctly.

You can also run the sanitizer.pl script to test your configuration with a command
like this one:

cat mail-file | /path/sanitizer.pl config-file

You will also want to include this line within the configuration file:

feat_verbose = 1 # Produce maximum detail in log messages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

614 | Chapter 9: Electronic Mail

Additional information

Here are some other useful procmail-related web pages:

http://www.ii.com/internet/robots/procmail/qs/
Nancy McGough/Infinite Ink’s “Procmail Quick Start”

http://www.uwasa.fi/~ts/info/proctips.html
Timo Salmi’s wonderful “Procmail Tips and Recipes” page

http://www.iki.fi/era/procmail/mini-faq.html
The official procmail FAQ

http://www.ling.Helsinki.fi/users/reriksso/procmail/links.html
A very large collection of procmail-related links

A Few Final Tools
We’ll end this chapter on electronic mail by looking at a few related tools and utilities.

You should be aware of the vacation program (included with the sendmail package).
It is a utility for automatically sending a predefined reply to all arriving mail while a
user is away from email access. To use it, the user creates a file named .vacation.msg
in his home directory and creates a .forward file containing an entry like the following:

\username, "|/usr/bin/vacation username"

This sends each mail message to the user’s usual mailbox and pipes it to the vaca-
tion program, giving the username as its argument. The slash is needed before the
username to create a terminal mail destination and avoid an infinite loop.

Finally, the user activates the service with the following command:

$ vacation -I

To disable vacation, simply move or remove the .forward file.

Running the vacation command without any arguments triggers an
automated setup process. First, a message file is created and started in
a text editor (selected via the EDITOR environment variable). The pro-
gram then automatically creates a .forward file and runs vacation -I.
As a side effect, any existing .forward file is lost.

Next, you might find useful these commands that notify users that they have
received new mail: biff, xbiff, and coolmail (a prettier xbiff written by Byron C.
Darrah and Randall K. Sharpe; I found it on the Internet at http://www.redhat.com/
swr/src/coolmail-1.3-9.src_dl.html, but it builds easily on other systems). The oldest
of these, biff, requires the comsat network service, which is managed by inetd.
These days, however, it is often disabled by default in /etc/inetd.conf because the
graphical utilities have usually replaced biff. To enable the comsat service, uncom-
ment the corresponding line in inetd.conf and kill -HUP the inetd process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

A Few Final Tools | 615

Postfix also sends comsat-based messages directly, and this feature is enabled by
default. To disable the comsat client code in the Postfix delivery agent, include the
following parameter in /etc/postfix/main.cf:

biff = no

HP-UX, FreeBSD, and Solaris all offer a neat utility called from. This program dis-
plays the header lines from all mail messages in your mailbox, as in this example:

$ from
From uunet!modusmedia.com!palm Thu Mar 1 23:04:39 2001
From uunet!ccsilver.com!sales Fri Mar 2 20:16:38 2001
From uunet!suse.de!isupport Fri Mar 2 17:16:39 2001

Finally, grepmail is a utility for searching mail folders; it was written by David Cop-
pit and is available free of charge at http://grepmail.sourceforge.net). It searches the
headers and/or message text for a specified regular expression and displays match-
ing messages. It has many options; Table 9-13 lists the most useful.

Here are a couple of examples of using grepmail:

$ grepmail -R -i -l hilton ~/Mail
Mail/conf/acs_w01

$ grepmail -i hilton ~/Mail/conf/acs_w01 | grep -i telephone
Telephone: 619-231-4040

The first command searches for the string “hilton” (in any mix of cases) in all the
mail files in the user’s mail directory tree, specifying that only the filename for
matching files be displayed. The second command searches the file found by the first
command for the same string, this time displaying the entire matching message. In
this case, the output of grepmail is piped to grep to search for the string “telephone”.
The resulting command returns one matching line. Of course, the two grepmail com-
mand could also be combined, but I have separated them to illustrate several com-
mand options.

Table 9-13. grepmail options

Option Meaning

-R Recurse subdirectories.

-b Body must match the expression

-h Header must match the expression.

-i Make the search case-insensitive.

-v Display nonmatching messages.

-l Display only the names of files with a matching message.

-d date Limit search to messages on the specified date (one format is mm/dd/yy). You can also use the forms before
date, after date, and between dateanddate as this option’s argument. See the manual page for details.

-m Add a X-Mailfolder: header to displayed messages.

-M Don’t search nontext MIME attachments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

616

Chapter 10CHAPTER 10

Filesystems and Disks

Managing Unix filesystems is one of the system administrator’s most important
tasks. You are responsible for ensuring that users have access to the files they need
and that these files remain uncorrupted and secure. Administering a filesystem
includes tasks such as:

• Making local and remote files available to users

• Monitoring and managing the system’s disk resources

• Protecting against file corruption, hardware failures, and user errors via a well-
planned backup schedule

• Ensuring data confidentiality by limiting file and system access

• Checking for and correcting filesystem corruption

• Connecting and configuring new storage devices when needed

Some of these tasks—such as checking for and correcting filesystem corruption—are
usually done automatically at boot time, as part of the initial system startup. Oth-
ers—like monitoring disk space usage and backups—are often done manually, on a
periodic or as-needed basis.

This chapter describes how Unix handles disks and filesystems. It covers such topics as
mounting and dismounting local and remote filesystems, the filesystem configuration
file, making local filesystems available to remote Unix and Windows users, checking
local filesystem integrity with the fsck utility, and adding new disks to the system. It
also looks at some optional filesystem features offered in some Unix implementations.

We looked at file ownership and protection in “Files” in Chapter 2.
This chapter considers filesystem protection for network shared file-
systems. Other related topics considered elsewhere in this book
include the discussions in Chapter 15 of managing disk space with
disk quotas (“Monitoring and Managing Disk Space Usage”), disk I/O
performance (“Disk I/O Performance Issues”), and planning for swap
space (“Managing Memory”), and the discussion of planning and per-
forming backups in Chapter 11.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Types | 617

Filesystem Types
Before any disk partition can be used, a filesystem must be built on it. When a file-
system is made, certain data structures are written to disk that will be used to access
and organize the physical disk space into files (see “From Disks to Filesystems,” later
in this chapter).

Table 10-1 lists the most important filesystem types available on the various systems
we are considering.

About Unix Filesystems: Moments from History
In the beginning was the System V filesystem. Well, not really, but that’s where we’ll
start. This filesystem type once dominated System V–based operating systems.*

The superblock of standard System V filesystems contained information about cur-
rently available free space in the filesystem in addition to information about how the
space in the filesystem is allocated. It held the number of free inodes and data blocks,
the first 50 free inode numbers, and the addresses of the first 100 free disk blocks.
After the superblock came the inodes, followed by the data blocks.

The System V filesystem was designed for storage efficiency. It generally used a small
filesystem block size: 2K bytes or less (minuscule, in fact, by modern standards). Tra-
ditionally, a block is the basic unit of disk storage;† all files consume space in multi-
ples of the block size, and any excess space in the last block cannot be used by other
files and is therefore wasted. If a filesystem has a lot of small files, a small block size

Table 10-1. Important filesystem types

Use AIX FreeBSD HP-UX Linux Solaris Tru64

Default local jfs or jfs2 ufs vxfsa

a HP-UX defines the default filesystem type in /etc/default/fs’s LOCAL variable.

ext3, reiserfs ufs ufs or advfs

NFS nfs nfs nfs nfs nfs nfs

CD-ROM cdrfs cd9660 cdfs iso9660 hsfs cdfs

Swap not needed swap swap, swapfs swap swap not needed

DOS not supported msdos not supported msdos pcfs pcfs

/proc procfs procfs not supported procfs procfs procfs

RAM-based not supported mfsb

b This feature is deprecated and will be replaced by the md facility in Version 5.

not supported ramfs, tmpfs tmpfs mfs

Other union hfs ext2 cachefs

* The filesystem that came to be known as the System V filesystem (s5fs) actually predates System V.

† This block is not related to the blocks used in the default output from commands like df and du. Use -k with
either command to avoid having to worry about units.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

618 | Chapter 10: Filesystems and Disks

minimizes waste. However, small block sizes are much less efficient when transfer-
ring large files.

The System V filesystem type is obsolete at this point. It is still supported on some
systems for backward compatibility purposes only.

The BSD Fast File System (FFS) was designed to remedy the performance limitations
of the System V filesystem. It supports filesystem block sizes of up to 64 KB. Because
merely increasing the block size to this level would have had a horrendous effect on
the amount of wasted space, the designers introduced a subunit to the block: the
fragment. While the block remains the I/O transfer unit, the fragment becomes the
disk storage unit (although only the final chunk of a file can be a fragment). Each
block may be divided into one, two, four, or eight fragments.

Whatever its absolute performance status, the BSD filesystem is an unequivocal
improvement over System V. For this reason, it was included in the System V.4 stan-
dard as the UFS filesystem type. This is its name on Solaris and Tru64 systems (as
well as under FreeBSD). For a while, this filesystem dominated in the Unix arena.

In addition to performance advantages, the BSD filesystem introduced reliability
improvements. For example, it replicates the superblock at various points in the file-
system (which are all kept synchronized). If the primary superblock is damaged, an
alternate one may be used to access the filesystem (instead of it becoming unread-
able). The utilities that create new filesystems report where the spare superblocks are
located. In addition, the FFS spreads the inodes throughout the filesystem rather
than storing them all at the start of the partition.

The BSD filesystem format has a more complex organizational structure as well. It is
organized around cylinder groups: logical subcylinders of the total partition space.
Each cylinder group has a copy of the superblock, a cylinder group map recording
block use in its domain, and a fraction of the inodes for that filesystem (as well as
data blocks). The data structures are placed at a different offset into each cylinder
group to ensure that they land on different platters. Thus, in the event of limited disk
damage, a copy of the superblock will still exist somewhere on the disk, as well as a
substantial portion of the inodes, enabling significant amounts of data to be poten-
tially recoverable. In contrast, if all of the vital information is in a single location on
the disk, damage at that location effectively destroys the entire disk.

The Berkeley Fast File System is an excellent filesystem, but it suffers from one signif-
icant drawback: fsck performance. Not only does the filesystem usually need to be
checked at every boot, the fsck process is also very slow. In fact, on current large
disks, it can take hours.

Journaled filesystems

As a result, a different filesystem strategy was developed: journaled filesystems.
Many operating systems now use such filesystems by default. Indeed, the current
Solaris UFS filesystem type is a journaled version of FFS. In these filesystems,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Types | 619

filesystem structure integrity is maintained using techniques from real-time transac-
tion processing. They use a transaction log which is stored either in a designated
location within the filesystem or in a separate disk partition set aside for this pur-
pose.

As the filesystem changes, all metadata changes are recorded to the log, and writing
entries to the log always precedes writing the actual buffers to disk.* In the case of a
system crash, the entries in the log are replayed, which ensures that the filesystem is
in a consistent state. This operation is very fast, and so the filesystem is available for
essentially immediate use. Note that this mechanism is exactly equivalent to tradi-
tional fsck in terms of ensuring filesystem integrity. Like fsck, it has no effect on the
integrity of the data.

Journaled filesystems can also be more efficient than traditional filesystems. For
example, the actual disk writes for multiple changes to the same metadata can be
combined into a single operation. For example, when several files are added to a
directory, then each one causes an entry to be written to the log, but all four of them
can be combined in a single write to disk of the block containing the directory.

BSD soft updates

In the BSD world, development of the FFS continues. The current version offers a
feature called soft updates designed to make filesystems available immediately at boot
time.†

The usual FFS writes blocks to disk in a synchronous manner: in order, and waiting
for each write operation to complete before stating the next one. In contrast, the soft
updates method uses a delayed, asynchronous approach by maintaining a write-back
cache for metadata blocks (a technique referred to as delayed writes). This often pro-
duces significant performance improvements in that many modifications to meta-
data can take place in memory rather than each one having to be performed on disk.
For example, consider a directory tree removal. With soft updates, the metadata
changes for the entire delete operation might be made in only a single write, a great
savings compared to the traditional approach.

* Writes to the log itself can be synchronous (forced to disk immediately) or buffered (written to disk only
when the buffer fills up).

† For technical details about soft updates, see the articles “Metadata Update Performance in File Systems” by
Gregory Ganger and Yale Patt, published in the USENIX Symposium on Operating Systems Design and Imple-
mentation (1994; available in an expanded version online at http://www.ece.cmu.edu/~ganger/papers/CSE-
TR-243-95.pdf) and “Soft Updates: A Technique for Eliminating Most Synchronous Writes in the Fast File-
system” by Marshall Kirk McKusick and Gregory R. Ganger, published in the Proceedings of 1999 USENIX
Annual Technical Conference (available online at http://www.usenix.org/publications/library/proceedings/
usenix1999/mckusick.html). For a comparison of FFS with soft updates to journaled filesystems, see the
paper “Journaling versus Soft Updates: Asynchronous Meta-data Protection in File Systems” by Margo I.
Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A. Smith, Craig A. N. Soules, and Christopher A. Stein,
published in the Proceedings of 2000 USENIX Annual Technical Conference (available online at http://www.
usenix.org/publications/library/proceedings/usenix2000/general/seltzer.html).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

620 | Chapter 10: Filesystems and Disks

Of course, overlapping changes to metadata can also occur. To account for these sit-
uations, the soft updates facility maintains dependency data specifying the other
metadata changes that a given update assumes have already taken place.

Blocks are selected for writing to disk according to an algorithm designed for overall
filesystem efficiency. When it is time to write a metadata block to disk, soft updates
reviews the dependencies associated with the selected block. If there are any depen-
dencies that assume that other pending blocks will have been written first, the
changes creating the dependencies are temporarily undone (rolled back). This allows
the block to be written to disk while ensuring that the filesystem remains consistent.
After the write operation completes, the rolled back updates to the block are restored,
ensuring that the in-memory version contains the current data state. The system also
removes dependency list entries that have been fulfilled by writing out that block.*

Soft updates have the advantage that the only filesystem inconsistencies that can be
caused by a crash are inodes and data blocks marked as in use that are actually free
(consult the papers listed in the earlier footnote to see why this is true). Because these
errors are benign, the filesystem can be made available for immediate use after reboo-
ting. A background process similar to fsck is used to locate and correct these errors.

Default Local Filesystems
Table 10-2 lists the characteristics of the default local filesystem types for the various
Unix versions.

* Occasionally, soft updates require more write operations than the traditional method. Specifically, block roll
forwards immediately make the block dirty again. If the block doesn’t change again before it gets flushed to
disk, an extra write operation occurs that would not otherwise have been necessary. The block selection
algorithm attempts to minimize the number of rollbacks in order to avoid these situations.

Table 10-2. Default local filesystem characteristics

Item AIX FreeBSD HP-UX
Linux
(Red Hat)

Linux
(SuSE) Solaris Tru64 Tru64

Type jfs ufs vxfs ext3 reiserfs ufs ufs advfs

Journaled yes soft
updates

yes yes yes yes no yes

64 bit
(files>2
GB)

yes yes yes yes yes yes yes yes

Dynamic
resizing

yes yes yes yes yes yesa no yesb

Sparse
file sup-
port

yes yes yes no yes yes yes yes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Filesystems | 621

Managing Filesystems
This section covers such topics as mounting and dismounting local and remote file-
systems, the filesystem configuration file, and checking local filesystem integrity with
the fsck utility: in other words, the nitty gritty details of managing filesystems.

Mounting and Dismounting Filesystems
Mounting is the process that makes a filesystem’s contents available to the system,
merging it into the system directory tree. A filesystem can be mounted or dis-
mounted: that is, it can be connected to or disconnected from the overall Unix file-
system. The only exception is the root filesystem, which is always mounted on the
root directory while the system is up and cannot be dismounted.

Thus, in contrast to some other operating systems, mounting a Unix filesystem does
more than merely make its data available. Figure 10-1 illustrates the relationship
between a system’s disk partitions (and their corresponding special files) and its over-
all filesystem. On this system, the root filesystem—the filesystem stored on the first
partition of the root disk (disk 0)—contains the standard Unix subdirectories /bin, /etc,
and so on. It also contains the empty directories /home, /var, and /chem, which serve as
mount points for other filesystems. This filesystem is accessed via the special file /dev/
dsk/c1d0s0.

The figure also shows several other filesystems. One of them, accessed via the spe-
cial file /dev/dsk/c1d0s8 (partition 8 of the root disk), contains the files and directo-
ries under /var. A third filesystem—partition 9 on disk 1—is accessed via the special
file /dev/dsk/c1d1s9 and contains users’ home directories, located under /home.

Another filesystem on this system is stored on partition 2 of disk 1 and is accessed
via the special file /dev/dsk/c1d1s2. Its own root directory contains the subdirectories
./organic and ./inorganic and their contents. We’ll call this the /chem filesystem, after
its mount point within the system’s directory tree. When /dev/dsk/c1d1s2 is
mounted, these directories will become subdirectories of /chem.

NFSv3
support

yes yes yes yes yes yes yes yes

dump
version
provided

yes yes yes yes no yes yes yes

a Solaris 9 only
b Requires the AdvFS utilities (additional cost option)

Table 10-2. Default local filesystem characteristics (continued)

Item AIX FreeBSD HP-UX
Linux
(Red Hat)

Linux
(SuSE) Solaris Tru64 Tru64

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

622 | Chapter 10: Filesystems and Disks

One of the directories in the /chem filesystem, ./inorganic, is empty and is to be used
as the mount point for yet another filesystem. The files in this fifth filesystem, on
partition 2 on disk 2 and corresponding to the special file /dev/dsk/c1d2s2, become a
subtree of the /chem filesystem when mounted.

The files in the root directory and its system subdirectories all come from disk 0, as
do the empty directories /chem, /home, and /var before filesystems are mounted on

Figure 10-1. Mounting disk partitions within the Unix filesystem

disk 0

root filesystem
/dev/dsk/c1d0s0
/var filesystem
/dev/dsk/c1d0s8

disk 1

/chem filesystem
/dev/dsk/c1d1s2
/home filesystem
/dev/dsk/c1d1s9

disk 2

/chem/inorganic filesystem
/dev/dsk/c1d2s2

/

bin

chem

dev

etc

home

var

tmp

adm

cron

mail

chavez

marcus

wells

inorganic

organic

metals

radio

silicon

bin

methyl

ometals

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Filesystems | 623

them. Figure 10-1 illustrates the fact that the contents of the /chem directory tree
come from two different physical disks.

In most cases, there is no necessary connection between a given filesystem and a par-
ticular disk partition (and its associated special file), for example, between the /chem
filesystem and the special file /dev/dsk/c1d1s2. The collection of files on a disk parti-
tion can be mounted on any directory in the filesystem. After it is mounted, its top-
level directory is accessed via the directory path where it is mounted, and it is often
referred to by that directory’s name.

At the same time, the root directory of the mounted filesystem replaces the directory
where the filesystem is mounted. As a side effect, any files that were originally in the
mount directory—in this example, any files that might have been in /chem prior to
mounting the new filesystem—disappear when the new filesystem is mounted and
thus cannot be accessed; they will reappear once the filesystem is dismounted.

To illustrate this phenomenon, let’s watch a filesystem being mounted:

ls -saC /chem /chem's contents before mount.
total 20
4 . 4 .. 12 README
mount /dev/dsk/c1d1s2 /chem Mount partition 2 on disk 1.
ls -saC /chem /chem's contents after mount.
total 48
4 . 4 .. 4 inorganic 32 lost+found
4 organic
du -s /chem /chem is much bigger.
587432 /chem

Before the filesystem is mounted, there is just one ordinary file in /chem: README.
After /dev/dsk/c1d1s2 is mounted, README disappears. It’s still on the root disk, but
it can’t be accessed while the /chem filesystem is mounted. However, it will reappear
when the filesystem is dismounted. After the filesystem is mounted, the subdirecto-
ries organic and inorganic appear, along with their contents (reflected in the larger
amount of data under /chem).

On most Unix systems, a filesystem can only be mounted in one place
at one time (Linux is an exception).

Disk Special File Naming Conventions
We looked at disk special filenames in detail in “Devices” in Chapter 2. The follow-
ing list reviews the disk special file naming conventions for a SCSI disk under the var-
ious operating systems we are considering by listing the special file used for a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

624 | Chapter 10: Filesystems and Disks

partition on the third SCSI disk (SCSI ID 4) on the first SCSI controller (accessed in
raw mode):*

The mount and umount Commands
To mount a filesystem manually, use the mount command as follows:

mount [-o options] block-special-file mount-point

This command mounts the filesystem located on the specified disk partition. The
root directory on this filesystem will be attached at mount-point within the overall
Unix filesystem. This directory must already exist before the mount command is exe-
cuted.

For example, the commands:

mkdir /users2
mount /dev/dsk/c1t4d0s7 /users2

create the directory /users2 and mount the filesystem located on the disk partition
/dev/dsk/c1t4d0s7 on it. On some systems, mount’s -r option may be used to mount
a filesystem read-only. For example:

mount -r /dev/dsk/c1t4d0s7 /mnt

Use mount without options to display a list of currently mounted filesystems.

The mount command can also be used to mount remote filesystems via NFS. We’ll
consider this use later in this chapter.

The umount command may be used to dismount filesystems:

umount name

This command dismounts the filesystem specified by name, where name is either the
name of the filesystem’s block special file or the name of the mount point where this
filesystem is mounted. The -f option may be used to force an dismount operation in
some cases (e.g., when there are open files), but it should be used with caution.

This section has illustrated only the simplest uses of mount and umount. We’ll look at
many more examples in the course of this chapter.

AIX /dev/hdisk2 (refers to the entire disk)
FreeBSD /dev/da0s1e (short form: /dev/da1c)
HP-UX dev/rdsk/c0t4d0
Linux /dev/sdc1
Solaris /dev/rdsk/c0t4d0s7
Tru64 /dev/rdisk/dsk2c

* Under FreeBSD 4, the block and raw devices are equivalent. Character devices are vestigial in Version 4 and
are slated to be removed in FreeBSD Version 5.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Filesystems | 625

Figuring Out Who’s Using a File
Filesystems must be inactive before they can be dismounted. If any user has one of a
filesystem’s directories as her current directory or has any file within the filesystem
open, you’ll get an error message something like this one if you try to unmount that
filesystem:

umount: /dev/hdb1: device is busy

The fuser command may be used to determine which files within a filesystem are
currently in use and to identify the processes and users that are using them. If fuser
is given a filename as its argument, it reports on that file alone. If it is given a disk
special filename as its argument, it reports on all files within the corresponding file-
system. The -u option tells fuser to display user ID’s as well as PID’s in its output.

For example, the following command displays all processes and their associated
users that are using files on the specified disk on an HP-UX system:

$ fuser -u /dev/dsk/c1t1d0

Under Linux, including the -m option will allow you to specify the filesystem by
name; the -c option performs the same function under Solaris.

Here is an example of fuser’s output:

/chem: 3119c(chavez) 3229(chavez) 3532(harvey) 3233e(wang)

Four processes are using the /chem filesystem at this moment. Users chavez and har-
vey have open files, indicated by the second and third process IDs, which appear
without a final code letter. User chavez also has her current working directory within
this filesystem (indicated by the c code after the first PID), and user wang is running
a program whose executable resides within the filesystem (indicated by the e code
after the final PID).

fuser’s -k option may be used to kill all of the processes using the specified file or
filesystem.

The lsof command performs a similar function on FreeBSD systems (and is also
available for the other operating systems as well). Its output is a great deal more
detailed. Here is a small part of its output (shortened to fit):

COMMAND PID USER FD TYPE DEVICE NAME
vi 74808 aefrisch cwd VDIR 116,131072 /usr/home/aefrisch
vi 74808 aefrisch rtd VDIR 116,131072 /
vi 74808 aefrisch txt VREG 116,131072 /usr/bin/vi
vi 74808 aefrisch txt VREG 116,131072 /usr/libexec/ld-elf.so.1
vi 74808 aefrisch txt VREG 116,131072 /usr/lib/libncurses.so.5
vi 74808 aefrisch txt VREG 116,131072 /usr/lib/libc.so.4
vi 74808 aefrisch 0 VCHR 0,0 /dev/ttyp0
vi 74808 aefrisch 1 VCHR 0,0 /dev/ttyp0
vi 74808 aefrisch 2 VCHR 0,0 /dev/ttyp0
vi 74808 aefrisch 3-W VREG 116,131072 /usr/home/aefrisch/.login
vi 74808 aefrisch 4 VREG 116,131072 /var/tmp/vi.recover/vi.CJ6cay
vi 74808 aefrisch 5 VREG 116,131072 / (/dev/ad0s1a)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

626 | Chapter 10: Filesystems and Disks

These are the entries generated by a vi process editing this user’s .login file. Note that
this file is opened for writing, indicated by the W following the file descriptor num-
ber (column FD).

FreeBSD also provides the fstat command, which performs a similar function.

The Filesystem Configuration File
Mounting filesystems by hand every time they are needed would quickly become
tedious, so the required mount commands are generally executed automatically at
boot time. The filesystem configuration file typically contains information about all
of the system’s filesystems, for use by mount and other commands.*

/etc/fstab is the standard Unix filesystem configuration file. It generally has the fol-
lowing format:

special-file mount-dir fs-type options dump-freq fsck-pass

The fields have the following meanings:

special-file
The name of the special file on which the filesystem resides. This must be a
block device name.

mount-dir
The directory on which to mount the filesystem. If the partition will be used for
swapping, / is sometimes used for this field.

fs-type
The filesystem type. The value for local filesystems is highly version-dependent.
Common type values are nfs for volumes mounted remotely via NFS, swap or sw
for swap partitions (although Tru64 uses UFS for these as well, and HP-UX also
has the swapfs type for paging to a file within the filesystem), and ignore, which
tells mount to ignore the line. Available filesystem types for the various Unix ver-
sions are listed later in this chapter.

options
This field consists of one or more options, separated by commas. The fs-type
field, above, determines which options are allowed for any given kind of filesys-
tem. For ignore type entries, this field is ignored.

Multiple options are separated by commas, without intervening spaces. On
many systems, the keyword defaults may be placed into this field if no options
are needed. Table 10-3 lists commonly used options for local filesystems and
paging/swap spaces.

* This section covers only local disks. We’ll look at entries for remote disks later in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Filesystems | 627

dump-freq
A decimal number indicating the frequency with which this filesystem should be
backed up by the dump utility. A value of 1 means backup should occur every
day, 2 means every other day, and so on. A value of 0 means that the device is
not to be backed up (for example, swap devices). Not all systems actually use
this field.

fsck-pass
A decimal number indicating the order in which fsck should check the filesys-
tems. A value of 1 indicates that the filesystem should be checked first, 2 indi-
cates that the filesystem should be checked second, and so on. The root and/or
boot filesystems generally have the value 1. All other filesystems generally have
higher pass numbers. For optimal performance, two filesystems that are on the
same disk drive should have different pass numbers; however, filesystems on dif-
ferent drives may have the same pass number, letting fsck check the two filesys-
tems in parallel. fsck will usually be fastest if all filesystems checked on the same
pass are roughly the same size. This field should be 0 for swap devices (0 dis-
ables checking by fsck).

Table 10-3. Commonly used filesystem options

Option Meaning

rw Read-write filesystem (default for read-write devices).

ro Read-only filesystem (default for read-only media such as CDs).

nosuid The SetUID access mode is ignored within this filesystem; suid is the default.

noauto Don’t automatically mount this filesystem at boot time; auto is the default (Linux, FreeBSD).

noexec Prevent binary programs from executing; exec is the default (Linux, FreeBSD, Tru64).

nodev Prevent device access via special files (AIX, Linux, FreeBSD, Tru64).

user Allow ordinary users to mount this filesystem (Linux).

nogrpid Use System V–style group ownership inheritance for new files (i.e., the owner’s primary
group); BSD-style is the default (Linux, Tru64).

resuid=n resgid=n Set the UID/GID that has access to the reserved blocks with the filesystem (Linux ext2/ext3).

largefiles Support files larger than 2 GB (HP-UX VxFS, Solaris).

logging Maintain a transaction log (Solaris). The default is nologging.

delaylog Delay writing log entries slightly to improve performance, increasing risk of loss slightly. (HP-
UX VxFS)

writeback Write out log metadata and filesystem blocks in either order, for a slight performance
improvement and increased risk of loss in the event of a crash (Linux ext3).

nolog Don’t use a transaction log (HP-UX VxFS).

nologging Don’t use a transaction log (Solaris).

forcedirectio Use direct I/O to this filesystem: i.e., no buffering (Solaris). Useful for certain applications such
as databases.

notail Disable default behavior of storing small files directly within the hash tree (Linux ReiserFS).

resize=n Resize the filesystem to n blocks on mounting (Linux ReiserFS).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

628 | Chapter 10: Filesystems and Disks

Here are some typical /etc/fstab entries, defining one or more local filesystems, a CD-
ROM drive, and a swap partition:

FreeBSD
device mount type options dump fsck
/dev/ad0s1a / ufs rw 1 1
/dev/cd0c /cdrom cd9660 ro,noauto 0 0
/dev/ad0s2b none swap sw 0 0

Linux
device mount type options dump fsck
/dev/sda2 / reiserfs defaults 1 1
/dev/sda1 /boot ext2 defaults 1 2
/dev/cdrom /cdrom auto ro,noauto,user 0 0
/dev/sda3 swap swap pri=42 0 0

HP-UX
device mount type options dump fsck
/dev/vg00/lvol3 / vxfs defaults 0 1
/dev/vg00/lvol1 /stand hfs defaults 0 1
/dev/dsk/c1t2d0 /cdrom cdfs defaults 0 0
/dev/vg01/swap ... swap pri=0 0 0

Tru64
device mount type options dump fsck
root_domain#root / advfs rw 0 1
/dev/disk/cdrom0c /cdrom cdfs ro 0 2
swap partition is defined in /etc/sysconfigtab

HP-UX and Tru64 use a logical volume manager by default for all local
disks. Accordingly, the devices specified in /etc/fstab refer to logical
volumes rather than actual disk partitions. Hence the rather strange
device names in their examples. Logical volume managers are dis-
cussed later in this chapter.

Tru64 specifies swap partitions via the following stanza in the /etc/sysconfigtab file:

vm:
 swapdevice = /dev/disk/dsk0b

rq Mount read-write and enable disk quotas (Tru64).

quota Enable disk quotas (HP-UX, Solaris).

userquota
groupquota

Enable user/group disk quotas (FreeBSD).

usrquota grpquota Enable user/group disk quotas (Linux).

pri=n Set swap space priority (0 to 32767). Under Linux, higher numbers indicated more favored
areas, which are used first; HP-UX favors lower priority areas.

xx Ignore this entry (FreeBSD).

Table 10-3. Commonly used filesystem options (continued)

Option Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Filesystems | 629

Solaris: /etc/vfstab

Solaris uses a different filesystem configuration file, /etc/vfstab, which has a some-
what different format:

block-special-file char-special-file mount-dir fs-type fsck-pass auto-mount? options

The ordering of the normal fstab fields is changed somewhat, and there are two addi-
tional ones. The second field holds the character device corresponding to the block
device in the first field (which is used by the fsck command). The sixth field speci-
fies whether the filesystem should be mounted automatically at boot time (note that
the root filesystem is set to no).

Here is an example file:

Solaris
mount fsck
device device mount type fsck auto? options
/dev/dsk/c0t3d0s2 /dev/rdsk/c0t3d0s0 / ufs 1 no rw
/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 /home ufs 2 yes rw,logging
/dev/dsk/c0t3d0s1 - - swap - no -

Note that hyphens are placed in unused fields.

AIX: /etc/filesystems and /etc/swapspaces

The filesystem configuration file under AIX is /etc/filesystems. This file is updated
automatically by various AIX filesystem manipulation commands, including crfs,
chfs, and rmfs. /etc/filesystems contains all the information in /etc/fstab and some
additional data as well, arranged in a stanza-based format. Here are some example
entries:

/:
 dev = /dev/hd4 Disk device.
 vol = "root" Descriptive label.
 vfs = jfs2 Filesystem type.
 mount = automatic Mount automatically with mount -a.
 check = true Check with fsck if needed.
 log = /dev/hd8 Device to use for filesystem log.

/chem:
 dev = /dev/us00 Logical volume.
 vol = "chem" Descriptive label.
 vfs = jfs2 Filesystem type.
 log = /dev/loglv01 Device to use for filesystem log.
 mount = true Mount automatically with mount -a.
 check = 2 Sets the fsck pass.
 options = rw,nosuid Mount options.
 quota = userquota Enable user disk quotas.

Each mount point in the overall filesystem has its own stanza, specifying which logi-
cal volume (equivalent to a disk partition for this purpose) is to be mounted there.
Like HP-UX and Tru64, AIX uses a logical volume manager by default (discussed
later in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

630 | Chapter 10: Filesystems and Disks

Under AIX, paging logical volumes are listed in /etc/swapspaces, rather than in the
filesystem configuration file. That file is maintained by paging space administration
commands such as mkps, chps, and rmps, and its format is very simple:

hd6:
 dev = /dev/hd6

paging00:
 dev = /dev/paging00

This sample file lists two paging areas.

Automatic Filesystem Mounting
Regardless of its form, once the filesystem configuration file is set up, mounting may
take place automatically. mount’s -a option may be used to mount all filesystems that
the filesystem configuration file says should be mounted on most systems. In addi-
tion, if a filesystem is included in the filesystem configuration file, the mount and
umount commands will now require only the mount point or the special file name as
their argument. For example, the command:

mount /chem

looks up /chem in the filesystem configuration file to determine what special file is
used to access it and then constructs and performs the proper mount operation. Sim-
ilarly, the following command dismounts the filesystem on special file /dev/disk1d.:

umount /dev/disk1d

umount also has a -a option to dismount all filesystems.

Both mount and umount have options to specify the type of filesystem being mounted
or dismounted. Generally, this option is -t, but HP-UX and Solaris use -F, and AIX
uses -v. This option may be combined with -a to operate on all filesystems of a given
type. For example, the following command mounts all local filesystems under Tru64:

mount -a -t advfs

FreeBSD, Tru64, and Linux also allow a type keyword to be preceded with no, caus-
ing the command to operate on all filesystem types except those listed. For example,
this Linux command mounts all filesystems except DOS filesystems and remote
(NFS) filesystems:

mount -tnomsdos,nfs -a

Finally, under FreeBSD, Tru64, and Solaris, umount has a -h option that unmounts all
remote filesystems from a specified host. For example, this command unmounts all
filesystems from dalton:

umount -h dalton

Under AIX, the -n option performs the same function.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Filesystems | 631

Using fsck to Validate a Filesystem
A number of problems, ranging from operator errors to hardware failures, can cor-
rupt a filesystem. The fsck utility (“filesystem check”) checks the filesystem’s consis-
tency, reports any problems it finds, and optionally repairs them. Only under very
rare circumstances will these repairs cause even minor data loss.

The equivalent utility for Tru64 AdvFS filesystems is verify (located in
/sbin/advfs).

fsck can find the following filesystem problems:

• One block belonging to several files (inodes).

• Blocks marked as free but in use.

• Blocks marked as used but free.

• Incorrect link counts in inodes (indicating missing or excess directory entries).

• Inconsistencies between inode size values and the number of data blocks refer-
enced in address fields.

• Illegal blocks (e.g., system tables) within files.

• Inconsistent data in the filesystem’s tables.

• Lost files (nonempty inodes not listed in any directory). fsck places these files in
the directory named lost+found in the filesystem’s top-level directory.

• Illegal or unallocated inode numbers in directories.

Basically, fsck performs a consistency check on the filesystem, comparing such items
as the block free list against the disk addresses stored in the inodes (and indirect
address blocks) and the inode free list against inodes in directory entries. It is impor-
tant to understand that fsck’s scope is limited to repairing the structure of the filesys-
tem and its component data structures. The utility can do nothing about corrupted
data within structurally intact files.

On older BSD-style systems, the fsck command is run automatically on boots and
reboots. Under the System V scheme, fsck is run at boot time on filesystems only if
they were not dismounted cleanly (e.g., if the system crashed). System administra-
tors rarely need to run this utility manually: on boots when it finds serious problems
(because fsck’s automatic mode isn’t authorized to repair all problems), after creat-
ing a new filesystem, and under a few other circumstances. Nevertheless, you need to
understand how fsck works so that you’ll be able to verify that the system boots cor-
rectly and to quickly recognize abnormal situations.

fsck has the following syntax:

fsck [options] device

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

632 | Chapter 10: Filesystems and Disks

device is the special file for the filesystem. fsck runs faster on a character special file.
If the device is omitted—as it is at boot time—all filesystems listed in the filesystem
configuration file will be checked (all filesystems whose check attribute is not false
will be checked under AIX).

On all systems except FreeBSD and Linux, the block device must be
specified for the root filesystem in order to check it with fsck.

If fsck finds any problems, it asks whether or not to fix them. The example below
shows a fsck report giving details about several filesystem errors and prompting for
input as to what action to take:

fsck /dev/rdisk1e
/dev/rdisk1e
** Phase 1--Check Blocks and Sizes
POSSIBLE FILE SIZE ERROR I = 478
** Phase 2--Check Pathnames
** Phase 3--Check Connectivity
** Phase 4--Check Reference Counts
UNREF FILE I = 478 OWNER = 190 MODE = 140664
SIZE = 0 MTIME = Sept 18 14:27 1990
CLEAR? y

FREE INODE COUNT WRONG IN SUPERBLOCK
FIX? y

** Phase 5--Check Cylinder Groups
1243 files 28347 blocks 2430 free
*** FILE SYSTEM WAS MODIFIED ***

fsck found an unreferenced inode—an inode marked as in use but not listed in any
directory. fsck’s output indicates its inode number, owner UID, and mode. From
this information, we can figure out that the file is owned by user chavez and is a
socket. The mode is interpreted as illustrated in Figure 10-2.

The first one or two digits of the mode indicate the file type: in this case, a socket
that can be safely removed.

The available options for fsck allow automatic correction of the filesystem to take
place (or be prevented):

-p Preen the filesystem; automatically perform repairs that don’t change any file’s
contents.

-n Answer no to all prompts: list but don’t repair any problems found.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Filesystems | 633

-y Answer yes to all prompts: repair all damage regardless of severity. Use this
option with caution.*

-P Preen the filesystem only if it is dirty (Tru64).

-f Force a check even if the filesystem is clean (Linux).

-b n
Use an alternate superblock located at block n (BSD-style syntax). 32 is always
an alternate superblock.

fsck is normally run with the -p option. In this mode, the following problems are
silently fixed:

• Lost files will be placed in the filesystem’s lost+found directory, named for their
inode number.

• Link counts in inodes too large.

• Missing blocks in the free list.

• Blocks in the free list also in files.

• Incorrect counts in the filesystem’s tables.

• Unreferenced zero-length files are deleted.

More serious errors will be handled with prompts as in the previous example.

For UFS filesystems under Solaris, the BSD-style options are specified as arguments
to the -o option (the filesystem type-specific options flag). For example, the follow-
ing command checks the UFS filesystem on /dev/dsk/c0t3d0s2 and makes necessary
nondestructive corrections without prompting:

fsck -F ufs -o p /dev/dsk/c0t3d0s2

Figure 10-2. Interpreting fsck output

* At the same time, it’s not clear what alternatives you have. You can’t mount a damaged filesystem, and, unless
you’re a real wizard regarding filesystem internals, fsck is the only tool available for fixing the filesystem.

1 4 0 6 6 4
Other access

Group access

User access

Special modes: SetUID = 4, SetGID = 2, sticky bit = 1;
both SetUID and SetGID=6, etc.

File type: named pipe = 01, char. spec. file = 02, directory = 04,
block spec. file = 06, plain file = 10, symb. link = 12, socket = 14.
Leading zeroes are usually omitted

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

634 | Chapter 10: Filesystems and Disks

After fsck

If fsck modifies any filesystem, it will print a message like:

*** FILE SYSTEM WAS MODIFIED ***

If the root filesystem was modified, an additional message will also appear, indicat-
ing additional action needed:

BSD-style if the automatic filesystem remount fails:
mount reload of /dev/device failed:
*** REBOOT NOW ***

System V-style:
***** REMOUNTING ROOT FILE SYSTEM *****

If this occurs as part of a normal boot process, the remount or reboot will be initi-
ated automatically. If fsck has been run manually on the root filesystem on a BSD
system, the rebooting command needs to be entered by hand. Use the reboot com-
mand with the -n option:

reboot -n

The -n option is very important. It prevents the sync command from being run,
which flushes the output buffers and might very well recorrupt the filesystem. This is
the only time when rebooting should occur without syncing the disks.

From Disks to Filesystems
As we’ve seen, the basic Unix file storage unit is the disk partition. Filesystems are
created on disk partitions, and all of the separate filesystems are combined into a sin-
gle directory tree. The initial parts of this section discuss the process by which a
physical disk becomes one or more filesystems on a Unix system, treating the topic at
a conceptual level. Later subsections discuss the mechanics of adding a new disk to
the various operating systems we are considering.

Defining Disk Partitions
Traditionally, the Unix operating system organizes disks into fixed-size partitions,
whose sizes and locations are determined when the disk is first prepared (as we’ll
see). Unix treats disk partitions as logically independent devices, each of which is
accessed as if it were a physically separate disk. For example, one physical disk may
be divided into four partitions, each of which holds a separate filesystem. Alterna-
tively, a physical disk may be configured to contain only one partition comprising its
entire capacity.

Many Unix implementations allow several physical disks to be combined into a sin-
gle logical device or partition upon which you can build a filesystem. Systems offer-
ing a logical volume manager carry this trend to its logical conclusion, allowing
multiple physical disks to be combined into a single logical disk, which can then be

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 635

divided into logical partitions. AIX uses only an LVM and does not use traditional
partitions at all.

Physically, a disk consists of a vertical stack of equally spaced circular platters. Read-
ing and writing is done by a stack of heads that move in and out along the radius as
the platters spin around at high speed. The basic idea is not so different from an
audio turntable—I hope you’ve seen one—although both sides of the platters can be
accessed at once.*

Partitions consist of subcylinders† of the disk: specific ranges of distance from the
spindle (the vertical center of the stack of platters): e.g., from one inch to two inches,
to make up an arbitrary example. Thus, a disk partition uses the same sized and
located circular section on all the platters in the disk drive. In this way, disks are
divided vertically, through the platters, not horizontally.

Partitions can be defined as part of adding a new disk. In some versions of Unix,
default disk partitions are defined in advance by the operating system. These default
definitions provide some amount of flexibility by defining more than one division
scheme for the physical disk.

Figure 10-3 depicts a BSD-style partition scheme. Each drawing corresponds to a dif-
ferent disk layout: one way of dividing up the disk. The various cylinders graphically
represent each partition’s location on the disk. The solid black area at the center of
each disk indicates the part of the disk that cannot be accessed, containing the bad
block list and other disk data.

* Also, the disk tracks are concentric, not continuous, as they are on an LP. If you don’t know what an LP is,
think of it as a really wide CD (about 12” diameter) with data on both sides.

† I’m using this term in a descriptive sense only. Technically, a disk cylinder consists of the same set of tracks
on all the platters that make up the disk (where a track is the portion of the platter surface that can be
accessed from one of the discrete radial positions that the head can take as its moves along the radius).

Figure 10-3. Sample disk partitioning scheme

2

f

g

3

c

1

a

b

d

e

- inaccessible disk area (bad block map, etc.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

636 | Chapter 10: Filesystems and Disks

Readers who prefer numeric to graphical representations can consider the numeric
partitioning scheme in Table 10-4, which illustrates the same point.

Seven different partitions are defined for the disk, named by letters from a to g.
Three drawings are needed to display all seven partitions because some of them are
defined to occupy the same disk locations.

Traditionally, the c partition comprised the entire disk, including the forbidden area;
this is why the c partition was never used under standard BSD. However, on most
current systems using this sort of naming convention, you can use the c partition to
build a filesystem that uses the entire disk. Check the documentation if you’re
unsure about the conventions on your system.

The other six defined partitions are a, b, and d through g. However, it is not possible
to use them all at one time, because some of them include the same physical areas of
the disk. Partitions d and e occupy the same space as partition g in the sample lay-
out. Hence, a disk will use either partitions d and e, or partition g, but not both. Sim-
ilarly, the a and b partitions use the same area of the disk as partition f, and
partitions f and g use the same area as partition c.

This disk layout, then, offers three different ways of using the disk, divided into one,
two, or four partitions, each of which may hold a filesystem or be used as a swap
partition. Some disk partitioning schemes offer even more alternative layouts of the
disk. Flexibility is designed in to meet the needs of different systems.

This flexibility also has the following consequence: nothing prevents
you from using a disk drive inconsistently. For example, nothing pre-
vents you from mounting /dev/disk2d and /dev/disk2g from the same
disk. However, this will have catastrophic consequences, because
these two partitions overlap. Best practice is to modify partitions in a
standard layout that you will not be using so that they have zero
length (or delete them).

Table 10-4. Sample disk partitioning scheme

Partition Start End

a 655360 671739

b 327680 655359

c 0 671739

d 163840 327679

e 0 163839

f 327680 671739

g 0 327679

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 637

These days, the following partition naming conventions generally apply:

• The partition holding the root (or boot) filesystem is the first one on the disk and
is named partition a or slice 0.

• The primary swap partition is normally partition b/slice 1.

• Partition c and slice 2 refer to the entire disk.

Adding Disks
In this section, we’ll begin by examining the general process of adding a disk to a
Unix system and then go on to consider the commands and procedures for the vari-
ous operating systems. The following list outlines the steps needed to make a new
disk accessible to users:

• The disk must be physically attached to the computer system. Consult the man-
ufacturer’s instructions and your own system’s hardware documentation for the
procedure.

• A suitable device driver for the disk’s controller must be present in the operating
system. If the new disk is being added to an existing controller, or you’re also
adding a new controller that is among those supported by the operating system,
this is not a problem. Otherwise, you’ll need to build a new kernel or load the
appropriate kernel module (see Chapter 16).

• The disk must be low-level formatted.* These days, this is always done by the
manufacturer.

• One or more partitions must be defined on the disk.

• The special files required to access the disk’s partitions must exist or be created.

• A Unix filesystem must be created on each of the disk partitions to be used for
user files.

• The new filesystem should be checked with fsck.

• The new filesystem should be entered into the filesystem configuration file.

• The filesystem can be mounted (perhaps after creating a new directory for its
mount point).

• Any site-specific activities must be performed (such as configuring backups and
installing disk quotas).

The processes used to handle these activities will be discussed in the sections that
follow.

* What I’m referring to here is not what is meant when one “formats” a diskette or disk on a PC system. In
general, microcomputer operating systems like Windows use the term format differently than Unix does.
Formatting a disk on these systems is equivalent to making a filesystem under Unix (and most other operat-
ing systems). Unix disk formatting is equivalent to what Windows calls a low-level format. This step is almost
never needed in either environment.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

638 | Chapter 10: Filesystems and Disks

As usual, planning should precede implementation. Before performing any of these
operations, the system administrator must decide how the disk will be used: which
partitions will have filesystems created on them and what files (types of files) will be
stored in them. The layout of your filesystems can influence your system’s perfor-
mance significantly. You should therefore take some care in planning the structure of
your filesystem.

For best performance, heavily used filesystems should each have their own disk
drive, and they should not share a disk with a swap partition. Preferably, heavily
used filesystems should be located on drives attached to different controllers. This
setup balances the load between disk drives and disk controllers. These issues are
discussed in more detail in “Disk I/O Performance Issues” in Chapter 15. Coming up
with the optimal layout may require consulting with other people: the database
administrator, software developers, and so on.

We now turn to the mechanics of adding a new disk. We’ll begin by considering
aspects of the process that are common to all systems. The subsequent subsections
discuss adding a new SCSI disk to each of the various Unix versions we are
considering.

Preparing and connecting the disk

There are two main types of disks in wide use today: IDE disks and SCSI disks. IDE*

disks are low cost devices developed for the microcomputer market, and they are
generally used on PC-based Unix systems. SCSI disks are generally used on (non-
Intel) Unix workstations and servers from the major hardware vendors. IDE disks

Finding a Hardware/Software Balance
Some system administrators love tinkering with hardware; the most hard-core of them
consider reseating the CPU boards as the first response to any system glitch. At the
other extreme are system administrators who can program their way out of any emer-
gency but throw up their hands when they have to install a new disk drive.

A good system administrator will be able to hold her own in both the hardware and
software arenas. Most of us tend to prefer one to the other, but we can all become pro-
ficient in both areas in the long run. The best way to improve your skills in whatever
areas you feel least comfortable is to find a safe test system where you can learn, exper-
iment, play, and make mistakes in private and without risk. In time, you may even find
that you actually enjoy doing jobs that used to bore, disgust, or intimidate you.

* IDE expands to Integrated Drive Electronics. These disks are also known as ATA disks (AT Attachment).
Current IDE disks are virtually always EIDE: extended IDE, a follow-on to the original standard. SCSI
expands to Small Computer System Interface.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 639

generally do not perform as well as SCSI disks (claims made by ATA-2 drive vendors
notwithstanding).

IDE disks are easy to attach to the system, and the manufacturer’s instructions are
generally good. When you add a second disk drive to an IDE controller, you will
usually need to perform some minor reconfiguration for both the existing and new
disks. One disk must be designated as the master device and the other as the slave
device; generally, the existing disk becomes the master and the new disk is the slave.

The master/slave setting for a disk is specified by means of a jumper on the disk drive
itself, and it is almost always located on the same face of the disk as the bus and
power connector sockets. Consult the documentation for the disk you are using to
determine the jumper location and proper setting. Doing so on the new drive is easy
because you can do it before you install the disk. Remember to check the existing
drive’s configuration as well, because single drives are often left unjumpered by the
manufacturer. Note that the master/slave setting is not an operational definition; the
two disks are treated equally by the operating system.

SCSI disks are in wide use in both PC-based systems and traditional Unix comput-
ers. When performance counts, use SCSI disks, because high-end SCSI subsystems
are many times faster than the best EIDE-based ones. The SCSI subsystems are also
more expensive than the best EIDE-based ones.

SCSI disks may be internal or external. These disks are designated by a number rang-
ing from 0 to 6 known as their SCSI ID (the SCSI ID 7 is used by the controller
itself). Normal SCSI adapters thus support up to seven devices, each of which must
be assigned a unique SCSI ID; wide SCSI controllers support up to 15 devices (ID 7
is still used for the controller). SCSI IDs are generally set via jumpers on internal
devices and via a thumbwheel or push button counter on external devices. Keep in
mind that when you change the ID setting of a SCSI disk, the device must generally
be power-cycled before the change will take effect.

On rare occasions, the ID display setting on an external SCSI disk will not match
what is actually being set. When this happens, the counter is either attached incor-
rectly (backwards) or faulty (the SCSI ID does not change even though the counter
does). When you are initially configuring a device, check the controller’s power-on
message to determine whether all devices are being recognized and to determine the
actual SCSI ID assignments being used. Once again, these problems are rare, but I
have seen two examples of the former and one example of the latter in my career.

SCSI disks come in many varieties; the current offerings are summarized in
Table 10-5. You should be aware of the distinction between normal and differential
SCSI devices. In the latter type, there are two physical wires for each signal within
the bus, and such devices use the voltage difference between the two wires as the sig-
nal value. This design reduces noise on the bus and allows for longer total cable
lengths. Special cables and terminators are needed for such SCSI devices (as well as

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

640 | Chapter 10: Filesystems and Disks

adapter support), and you cannot mix differential and normal devices. Differential
signaling has used two forms over the years, high voltage differential (HVD) and low
voltage differential (LVD); the two forms cannot be mixed. The most recent stan-
dards employ the latter exclusively.

Table 10-5 can also serve as a simple history of SCSI. It shows the progressively faster
speeds these devices have been able to obtain. Speed-ups come from a combination
of a faster bus speed and using more bits for the bus (the “wide” devices). The most
recent SCSI standards are all 16 bits, and the term “wide” has been dropped from the
name because there are no “narrow” devices from which they need to be distin-
guished.

The maximum total cable length in the table refers to a chain consist-
ing entirely of devices of that type. If you are using different (compati-
ble) device types in the same chain, the maximum length is the
minimum allowed for the various device types. Lowest common
denominator wins in this case.

There are a variety of connectors that you will encounter on SCSI devices. These are
the most common:

• DB-25 connectors are 25-pin connectors that resemble those on serial cables.
They have 25 rounded pins positioned in two rows about 1/8” apart. For exam-
ple, these connectors are used on external SCSI Zip drives.

• 50-pin Centronics connectors were once the most common sort of SCSI connec-
tor. The pins on the connector are attached to the top and bottom of a narrow
flat plastic bar about 2” long, and the connector is secured to the device by wire
clips on each end.

Table 10-5. SCSI versions

Version name Single-ended Bus width

Maximum total cable length

Differential Maximum speed

SCSI-1, SCSI-2 5 MB/s 8 bits 6 m 25 m (HVD)

Fast SCSI 10 MB/s 8 bits 3 m 25 m (HVD)

Fast Wide SCSI 20 MB/s 16 bits 3 m 25 m (HVD)

Ultra SCSI 20 MB/s 8 bits 1.5 m 25 m (HVD)

Wide Ultra SCSI 40 MB/s 16 bits 1.5 m 25 m (HVD)

Ultra2 SCSI 40 MB/s 8 bits n/a 12 m (HVD), 25 m (LVD)

Wide Ultra-2 SCSI 80 MB/s 16 bits n/a 12 m (HVD), 25 m (LVD)

Ultra3 SCSI (a.k.a.
Ultra160 SCSI)

160 MB/s 16 bits n/a 12 m (LVD)

Ultra320 SCSI 320 MB/s 16 bits n/a 12 m (LVD)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 641

• 50-pin micro connectors (also known as mini-micro connectors or SCSI II con-
nectors) are distinguished by their flat, very closely spaced pins, also placed in
two rows. This connector is much narrower than the others at about 1.5” in
width.

• 68-pin connectors (also known as SCSI III connectors) are a 68-pin version of
micro connectors designed for wide SCSI devices.

Figure 10-4 illustrates these connector types (shown in the external versions).

From left to right, Figure 10-4 shows a Centronics connector, two versions of the 50-
pin mini-micro connector, and a DB-25 connector. 68-pin connectors look very simi-
lar to these 50-pin mini-micro connectors; they are simply wider. Figure 10-5 depicts
the pin numbering schemes for these connectors.

You can purchase cables that use any combination of these connectors and adapters
to convert between them.

Figure 10-4. SCSI connectors

Figure 10-5. SCSI connector pinouts

14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13

DB-25 male

Centronics male

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Mini-micro male

25

50

24

49

23

48

22

47

21

46

20

45

19

44

18

43

17

42

16

41

15

40

14

39

13

38

12

37

11

36

10

35

9

34

8

33

7

32

6

31

5

30

4

29

3

28

2

27

1

26

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

642 | Chapter 10: Filesystems and Disks

The various SCSI devices on a system are connected in a daisy chain (i.e., serially, in
a single line). The first and last devices in the SCSI chain must be terminated for
proper operation. For example, when the SCSI chain is entirely external, the final
device will have a terminator attached and the SCSI adapter itself will usually pro-
vide termination for the beginning of the chain (check its documentation to deter-
mine whether this feature must be enabled or not). Similarly, when the chain is
composed of both internal and external devices, the first device on the internal por-
tion of the SCSI bus will have termination enabled (for example, via a jumper on an
internal disk), and the final external device will again have a terminator attached.

Termination consists of regulating the voltages across the various lines comprising
the SCSI bus. Terminators prevent the signal reflection that would occur on an open
end. There are several different types of SCSI terminators:

• Passive terminators are constructed from resistors. They attempt to ensure that
the line voltages in the SCSI chain remain within their proper operating ranges.
This type of termination is the least expensive, but it tends to work well only
when there are just one or two devices in the SCSI chain and activity on the bus
is minimal.

• Active terminators use voltage regulators and resistors to force the line voltages
to their proper ranges. While passive terminators simply reduce the incoming
signal to the proper level (thus remaining susceptible to all power fluctuations
within it), active terminators use a voltage regulator to ensure a steady standard
for use in producing the target voltages. Active terminators are only slightly
more expensive than passive terminators, and they are always more reliable. In
fact, the SCSI II standard calls for active termination for all SCSI chains.

• Forced perfect termination (FPT) uses a more complex and accurate voltage regu-
lation scheme to force line voltages to their correct values. In this scheme, the
voltage standard is taken from the output of two regulated voltages, and diodes
are used to eliminate fluctuations within it. This results in increased stability
over active termination. FPT will generally eliminate any flakiness in a SCSI
chain, and you should consider it any time your chain consists of more than
three devices (despite the fact that it is 2–3 times more expensive than active ter-
mination).

• Some hybrid terminators are also available. In such devices, key lines are con-
trolled via forced perfect termination, and the remaining lines are regulated with
active termination. Such devices tend to be almost as expensive as FPT termina-
tors and so are seldom preferable to them.

A few SCSI devices have built-in terminators that you select or deselect via a switch.
External boxes containing multiple SCSI disks also often include termination. Check
the device characteristics for your devices to determine if such features are present.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 643

Be aware that filesystems on SCSI disks are not guaranteed to survive a
change of controller model (although they usually will); the standard
does not specify that they must be interoperable. Thus, if you move a
SCSI disk containing data from one system to another system with a
different kind of SCSI controller, there’s a chance you will not be able
to access the existing data on the disk and will have to reformat it.
Similarly, if you need to change the SCSI adapter in a computer, it is
safest to replace it with another of the same model.

Having said this, I will note that I do move SCSI disks around fairly
often, and I’ve only seen one failure of this kind. It’s rare, but it does
happen.

Once the disk is attached to the system, you are ready to configure it. The discussion
that follows assumes that the new disk to be added is connected to the computer and
is ready to accept partitions. These days, disks seldom if ever require low-level for-
matting, so we won’t pay much attention to this process.

Before turning to the specific procedures for various operating systems, we’ll look at
the general issue of creating special files.

Making special files

Before filesystems can be created on a disk, the special files for the desired disk parti-
tions must exist. Sometimes, they are already on the system when you go to look for
them. On many systems, the boot process automatically creates the appropriate spe-
cial files when it detects new hardware.

Otherwise, you’ll have to create them yourself. Special files are created with the
mknod command. mknod has the following syntax:

mknod name | major minor

The first argument is the filename, and the second argument is the letter c or b,
depending on whether you’re making the character or block special file. The other
two arguments are the major and minor device numbers for the device. These num-
bers serve to identify the proper device driver to the kernel. The major device num-
ber indicates the general device type (disk, serial line, etc.), and the minor device
number indicates the specific member within that class.

These numbers are highly implementation-specific. To determine the numbers you
need, use the ls -l command on some existing special files for disk partitions; the
major and minor device numbers will appear in the size field. For example:

$ cd /dev/dsk; ls -l c1d* Major, minor device numbers.
brw------- 1 rootroot0,144 Mar 13 19:14 c1d1s0
brw------- 1 rootroot0,145 Mar 13 19:14 c1d1s1
brw------- 1 rootroot0,146 Mar 13 19:14 c1d1s2
...
brw------- 1 rootroot0,150 Mar 13 19:14 c1d1s6
brw------- 1 rootroot0,151 Mar 13 19:14 c1d1s7
brw------- 1 rootroot0,160 Mar 13 19:14 c1d2s0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

644 | Chapter 10: Filesystems and Disks

brw------- 1 rootroot0,161 Mar 13 19:14 c1d2s1
...
$ cd /dev/rdsk; ls -l c1d1*
crw------- 1 rootroot3,144 Mar 13 19:14 c1d1s0
crw------- 1 rootroot3,145 Mar 13 19:14 c1d1s1
...

In this example, the numbering pattern is pretty clear: block special files for disks on
controller 1 have major device number 0; the corresponding character special files
have major device number 3. The minor device number of the same partition of suc-
cessive disks differs by 16. So if you want to make the special files for partition 2 on
disk 3, its minor device number would be 162+16 = 178, and you’d use the follow-
ing mknod commands:

mknod /dev/dsk/c1d3s2 b 0 178
mknod /dev/rdsk/c1d3s2 c 3 178

Except on Linux and FreeBSD systems, be sure to make both the block and charac-
ter special files.

On many systems, the /dev directory includes a shell script named MAKEDEV which
automates running mknod. It takes the base name of the new device as an argument
and creates the character and block special files defined for it. For example, the fol-
lowing command creates the special files for a SCSI disk under Linux:

cd /dev
./MAKEDEV sdb

The command creates the special files /dev/sdb0 through /dev/sdb16.

FreeBSD

The first step is to attach the disk to the system and then reboot.* FreeBSD should
detect the new disk. You can check the boot messages or the output of the dmesg
command to ensure that it has:

da1 at adv0 bus 0 target 2 lun 0
da1: <SEAGATE ST15150N 0017> Fixed Direct Access SCSI-2 device
da1: 10.000MB/s transfers (10.000MHz, offset 15), Tagged Queueing Enabled
da1: 4095MB (8388315 512 byte sectors: 255H 63S/T 522C)

On Intel-based systems, disk ordering happens at boot time, so add-
ing a new SCSI disk with a lower SCSI ID than an existing disk will
cause special files to be reassigned† and probably break your /etc/fstab
setup. Try to assign SCSI IDs in order if you anticipate adding addi-
tional devices later.

* If the system has hot swappable SCSI disks, you can use the cancontrol rescan bus command to detect them
without rebooting.

† This can happen at other times as well. For example, changes to fiber channel configurations such as switch
reconfigurations might lead to unexpected device reassignments, because the operating system gets informa-
tion on hardware addressing from the programmable switch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 645

FreeBSD disk partitioning is a bit more complex than for the other operating sys-
tems we are considering. It is a two-part process. First, the disk is divided into physi-
cal partitions, which BSD calls slices. One or more of these is assigned to FreeBSD.
The FreeBSD slice is then itself subdivided into partitions. The latter are where file-
systems actually get built.

The fdisk utility is used to divide a disk into slices. Here we create a single slice com-
prising the entire disk:

fdisk -i /dev/da1
******* Working on device /dev/da1 *******
...
Information from DOS bootblock is:
The data for partition 1 is:
<UNUSED>
Do you want to change it? [n] y
Supply a decimal value for "sysid (165=FreeBSD)" [0] 165
Supply a decimal value for "start" [0]
Supply a decimal value for "size" [0] 19152
Explicitly specify beg/end address ? [n] n
sysid 165,(FreeBSD/NetBSD/386BSD)
 start 0, size 19152 (9 Meg), flag 0
 beg: cyl 0/ head 0/ sector 1;
 end: cyl 18/ head 15/ sector 63
Are we happy with this entry? [n] y
The data for partition 2 is:
<UNUSED>
Do you want to change it? [n] n
...
Do you want to change the active partition? [n] n
Should we write new partition table? [n] y

Unless you want to create multiple slices, this step is required only on
the boot disk on an Intel-based system. However, if you’re using a
slice other than the first one, you’ll need to create the special files to
access it:

cd /dev; ./MAKEDEV /dev/da1s2a

The disklabel command creates FreeBSD partitions within the FreeBSD slice:

disklabel -r -w da1 auto

The auto parameter says to create a default layout for the slice. You can preview
what disklabel will do by adding the -n option.

Once you have created a default label (division), you can edit it by running
disklabel -e. This command starts a editor session from which you can modify the
partitioning (using the editor specified in the EDITOR environment variable).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

646 | Chapter 10: Filesystems and Disks

disklabel is a very cranky utility, and often fails with the message:

disklabel: No space left on device

The message is completely spurious. This happens more often with
larger disks than with smaller ones. If you encounter this problem, try
running sysinstall, and select the Configure→Label menu path. This
form of the utility can usually be coaxed to work, but even it will not
accept all valid partition sizes. Caveat emptor.

Once you have made partitions, you create filesystems using the newfs command, as
in this example:

newfs /dev/da1a
/dev/da1a: 19152 sectors in 5 cylinders of 1 tracks, 4096 sectors
 9.4MB in 1 cyl groups (106 c/g, 212.00MB/g, 1280 i/g)
super-block backups (for fsck -b #) at:
 32

The following options can be used to customize the newfs operation:

-U Enable soft updates (recommended).

-b size
Filesystem block size in bytes (the default is 16384; value must be a power of 2).

-f size
Filesystem fragment size: the smallest allocatable unit of disk space. The default
is 2048 bytes. This parameter determines the minimum file size, among other
things. It must be a power of 2 less than or equal to the filesystem block size and
no smaller than one eighth of the filesystem block size. Experts recommend
always making this value one eighth of the filesystem block size.

-i bytes
Number of bytes per inode (the default is 4 times the fragment size: 8192 with
the default fragment size). This setting controls how many inodes are created for
the new filesystem (number of inodes equals filesystem size divided by byte per
inode). The default value generally works well.

-m free
Percentage of free space reserved. The default is 8%; you can usually safely
decrease it to about 5% or even less for a very large disk.

-o speed | space
Set the optimization preference. speed means that the filesystem will attempt to
minimize the time spent allocating disk blocks, while space means that it will try
to minimize disk fragmentation. The default is space if the minimum free space
percentage is less than 8%, and speed otherwise. Hence, speed is the default with
the default free space percentage.

The tunefs command can be used to modify the values of -m and -o for an existing
filesystem (using the same option letters). Similarly, -n can be used to enable/disable
soft updates for an existing filesystem (it takes enable or disable as its argument).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 647

Finally, we run fsck on the new filesystem:

fsck /dev/da1a
** /dev/da1a
** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
1 files, 1 used, 4682 free (18 frags, 583 blocks, 0.4% fragmentation)

In this instance, fsck finishes very quickly.

If you use the menu-driven version of disklabel in the sysinstall util-
ity, the newfs and mount commands can be run for you automatically
(and the utility does so by default).

The growfs command can be used to increase the size of an existing filesystem, as in
this example:

growfs /dev/da1a

By default, the filesystem is increased to the size of the underlying partition. You can
specify a specific new size with the -s option if you want to.

Linux

After attaching the disk to the system, it should be detected when the system is
booted. You can use the dmesg command to display boot messages. Here are some
sample messages from a very old, but still working, Intel-based Linux system:

scsi0 : at 0x0388 irq 10 options CAN_QUEUE=32 CMD_PER_LUN=2 ...
scsi0 : Pro Audio Spectrum-16 SCSI
scsi : 1 host.
Detected scsi disk sda at scsi0, id 2, lun 0
scsi : detected 1 SCSI disk total.

The messages indicate that this disk is designated as sda.

On Intel-based systems, disk ordering happens at boot time, so add-
ing a new SCSI disk with a lower SCSI ID than an existing disk will
cause special files to be reassigned* and probably break your /etc/fstab
setup. Try to assign SCSI IDs in order if you anticipate adding addi-
tional devices later.

* This can happen at other times as well. For example, changes to fiber channel configurations such as switch
reconfigurations might lead to unexpected device reassignments because the operating system gets informa-
tion on hardware addressing from the programmable switch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

648 | Chapter 10: Filesystems and Disks

If necessary, create the device special files for the disk (needed only when you have
many, many disks). For example, these commands create the special files used to
access the sixteenth SCSI disk:

cd /dev; ./MAKEDEV sdp

Assuming we have our special files all in order, we will use fdisk or cfdisk (a screen-
oriented version) to divide the disk into partitions (we’ll be creating two partitions).
The following commands will start these utilities:

fdisk /dev/sda
cfdisk /dev/sda

The available subcommands for these utilities are listed in Table 10-6.

cfdisk is often more convenient to use because the partition table is displayed con-
tinuously, and we’ll use it here. cfdisk subcommands always operate on the current
(highlighted) partition. Thus, in order to create a new partition, move the highlight
to the line corresponding to Free Space and press n.

You first need to select either a primary or a logical (extended) partition. PC disk
partitions are of two types: primary and extended. A disk may contain up to four par-
titions. Both partition types are a physical subset of the total disk. Extended parti-
tions may be further subdivided into units known as logical partitions (or drives) and
thereby provide a means for dividing a physical disk into more than four pieces.

Next, cfdisk prompts for the partition information:

Primary or logical [pl]: p
Size (in MB): 110

If you’d rather enter the size in a different set of units, use the u subcommand (units
cycle among MB, sectors, and cylinders). Once these prompts are answered, you will
be asked if you want the partition placed at the beginning or the end of the free space
(if there is a choice).

Use the same procedure to create a second partition, and then activate the first parti-
tion with the b subcommand. Then, use the t subcommand to change the partition

Table 10-6. Linux partitioning utility subcommands

Action fdisk cfdisk

Create new partition. N N

Change partition type. T T

Make partition active (bootable). A B

Write partition table to disk. W W

Change display/entry size units. U U

Display partition table. P Always visible

List available subcommands. m At dialog bottom

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 649

types of the two partitions. The most commonly needed type codes are 6 for Win-
dows FAT16, 82 for a Linux swap partition, and 83 for a regular Linux partition.

Here is the final partition table (output has been simplified):

 cfdisk 2.11i

 Disk Drive: /dev/hde
 Size: 3228696576 bytes
 Heads: 128 Sectors per Track: 63 Cylinders: 782

Name Flags Part Type FS Type Size (MB)
--
/dev/sda1 Boot Primary Linux 110.0
/dev/sda2 Primary Linux 52.5
 Pri/Log Free Space 0.5

(Yes, those sizes are small; I told you it was an old system.)

At this point, I reboot the system. In general, when I’ve changed the partition layout
of the disk—in other words, done anything other than change the types assigned to
the various partitions—I always reboot PC-based systems. Friends and colleagues
accuse me of being mired in an obsolete Windows superstition by doing so and
argue that this is not really necessary. However, many Linux utility writers (see
fdisk) and filesystem designers (see mkreiserfs) agree with me.

Next, use the mkfs command to create a filesystem on the Linux partition. mkfs has
been streamlined in the Linux version and requires little input:

mkfs -t ext3 -j /dev/sda1

This command* creates a journaled ext3 filesystem, the current default filesystem
type for many Linux distributions. The ext3 filesystem is a journaled version of the
ext2 filesystem, which was used on Linux systems for several years and is still in wide
use. In fact, ext3 filesystems are backward-compatible and can be mounted in ext2
mode.

If you want to customize mkfs’s operation, the following options can be used:

-b bytes
Set filesystem block size in bytes (the default is 1024).

-c
Check the disk partition for bad blocks before making the filesystem.

-i n
Specify bytes/inode value: create one inode for each n bytes. The default value of
4096 usually creates more than you’ll ever need, but probably isn’t worth
changing.

* Actually, the fsck, mkfs, mount, and other commands are front ends to filesystem-specific versions. In this
case, mkfs runs mke2fs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

650 | Chapter 10: Filesystems and Disks

-m percent
Specify the percentage of filesystem space to reserve (accessible only by root and
group 0). The default is 5% (half of what is typical on other Unix systems). In
these days of multigigabyte disks, even this percentage may be worth rethinking.

-J device
Specify a separate device for the filesystem log.

Once the filesystem is built, run fsck:

fsck -f -y /dev/sda1

The -f option is necessary to force fsck to run even though the filesystem is clean.
The new filesystem may now be mounted and entered into /etc/fstab.

The tune2fs command may be used to list and alter fields within the superblock of
an ext2 filesystem. Here is an example of its display output (shortened):

tune2fs -l /dev/sdb1
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: filetype sparse_super
Filesystem state: not clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 253952
Block count: 507016
Reserved block count: 25350
Free blocks: 30043
Free inodes: 89915
First block: 0
Block size: 4096
Last mount time: Thu Apr 4 11:28:19 2002
Last write time: Wed May 22 10:00:36 2002
Mount count: 1
Maximum mount count: 20
Last checked: Thu Apr 4 11:28:01 2002
Check interval: 15552000 (6 months)
Next check after: Tue Oct 1 12:28:01 2002
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)

The check-related items in the list indicate when fsck will check the filesystem even
if it is clean (they appear fifth to third from last). The Linux version of fsck for ext3
filesystems checks the filesystem if either the maximum number of mounts without a
check has been exceeded or the maximum time interval between checks has expired
(20 times and 6 months in the preceding output; the check interval is given in sec-
onds).

tune2fs’s -i option may be used to specify the maximum time interval between
checks in days, and the -c option may be used to specify the maximum number of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 651

mounts between checks. For example, the following command disables the time-
between-checks function and sets the maximum number of mounts to 25:

tune2fs -i 0 -c 25 /dev/sdb1
Setting maximal mount count to 25
Setting interval between check 0 seconds

Another useful option to tune2fs is -m, which allows you to change the percentage of
filesystem space held in reserve. The -u and -g options allow you to specify the user
and group ID (respectively) allowed to access the reserved space.

You can convert an ext2 filesystem to ext3 with a command like this one:

tune2fs -j /dev/sdb2

Existing ext2 and ext3 filesystems can be resized using the resize2fs command,
which takes the filesystem and new size (in 512-byte blocks) as parameters. For
example, the following commands will change the size of the specified filesystem to
200,000 blocks:

umount /dev/sdc1
e2fsck -f /dev/sdc1
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/1: 11/247296 files (0.0% non-contiguous), 15979/493998 blocks
resize2fs -p /dev/sdc1 200000
resize2fs 1.23 (15-Aug-2001)
Begin pass 1 (max = 1)
Extending the inode table XX
Begin pass 3 (max = 10)
Scanning inode table XX
The filesystem on /dev/sdc1 is now 200000 blocks long.

The -p option says to display a progress bar as the operation runs. Naturally, the size
of the underlying disk partition or logical volume (discussed later in this chapter) will
need to be increased beforehand.

Increasing the size of a filesystem is always safe. If you want the new size to be the
same as the size of the underlying disk partition—as is virtually always the case—
you can omit the size parameters from the resize2fs command. To decrease the size
of a filesystem, perform the resize2fs operation first, and then use fdisk or cfdisk to
decrease the size of the underlying partition. Note that data loss is always possible,
even likely, when decreasing the size of a filesystem, because no effort is made to
migrate data within the filesystem prior to shortening it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

652 | Chapter 10: Filesystems and Disks

The Reiser filesystem. Some Linux distributions also offer the Reiser filesystem,
designed by Hans Reiser (see http://www.reiserfs.org).* The commands to create a
Reiser filesystem are very similar:

mkreiserfs /dev/sdb3
<-------------mkreiserfs, 2001------------->
reiserfsprogs 3.x.0k-pre9
mkreiserfs: Guessing about desired format..
mkreiserfs: Kernel 2.4.10-4GB is running.
13107k will be used
Block 16 (0x2142) contains super block of format 3.5 with standard journal
Block count: 76860
Bitmap number: 3
Blocksize: 4096
Free blocks: 68646
Root block: 8211
Tree height: 2
Hash function used to sort names: "r5"
Objectid map size 2, max 1004
Journal parameters:
 Device [0x0]
 Magic [0x18bbe6ba]
 Size 8193 (including journal header) (first block 18)
 Max transaction length 1024
 Max batch size 900
 Max commit age 30
Space reserved by journal: 0
Correctness checked after mount 1
Fsck field 0x0
ATTENTION: YOU SHOULD REBOOT AFTER FDISK!
 ALL DATA WILL BE LOST ON '/dev/hdf2'!
Continue (y/n):y
Initializing journal - 0%....20%....40%....60%....80%....100%
Syncing..ok
ReiserFS core development sponsored by SuSE Labs (suse.com)
Journaling sponsored by MP3.com.
To learn about the programmers and ReiserFS, please go to
http://namesys.com
Have fun.
reiserfsck -x /dev/sdb3
<-------------reiserfsck, 2001------------->
reiserfsprogs 3.x.0k-pre9
Will read-only check consistency of the filesystem on /dev/hdf2
 Will fix what can be fixed w/o --rebuild-tree
Will put log info to 'stdout'
Do you want to run this program?[N/Yes] (note need to type Yes):Yes
13107k will be used
###########
reiserfsck --check started at Wed May 22 11:36:07 2002
###########

* The name is pronounced like the word riser (as in stairs) and rhymes with sizer and miser.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 653

Replaying journal..
No transactions found
Checking S+tree..ok
Comparing bitmaps..ok
Checking Semantic tree...ok
No corruptions found
There are on the filesystem:
 Leaves 1
 Internal nodes 0
 Directories 1
 Other files 0
 Data block pointers 0 (zero of them 0)
###########
reiserfsck finished at Wed May 22 11:36:19 2002
###########

Reiser filesystems may be resized with the resize_reiserfs -s command. They can
also be resized when they are mounted. The latter operation uses a command like the
following:

mount -o remount,resize=200000 /dev/sdc1

This command changes the size of the specified filesystem to 200,000 blocks. Once
again, increasing the size of a filesystem is always safe, while decreasing it requires
great care to avoid data loss.

Solaris

In this section, we add a SCSI disk (SCSI ID 2) to a Solaris system.

After attaching the device, boot the system with boot -r, which tells the operating
system to look for new devices and create the associated special files and links into
the /devices tree.* The new disk should be detected when the system is booted (out-
put simplified):

sd2 at esp0: target 2 lun 0
 corrupt label - wrong magic number
 Vendor 'QUANTUM', product 'CTS160S', 333936 512 byte blocks

The warning message about a corrupt label comes because no valid Sun label (a ven-
dor-specific disk header block that Sun uses) has been written to the disk yet. If you
miss the messages during the boot, use the dmesg command.

We now label the disk and then create partitions on it (which Solaris sometimes calls
slices). Solaris uses the format utility for these tasks.† Previously, it was often neces-
sary to tell format about the characteristics of your disk. These days, however, the util-
ity knows about most kinds of disks, which makes adding a new disk much simpler.

* You should verify that these steps are done correctly after the boot. If not, you can create the /devices entries
and links in /dev by running the drvconfig and disks commands. Neither requires any arguments.

† Solaris also contains a version of the fdisk utility designed for operating system installations. This is not what
you should use to prepare a new disk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

654 | Chapter 10: Filesystems and Disks

Here is the command used to start format and write a generic label to the disk (if it is
unlabeled):

format /dev/rdsk/c0t2d0s2 Partition 2 = the entire disk.
selecting /dev/rdsk/c0t2d0s2
[disk formatted, no defect list found]

FORMAT MENU:
...Menu is printed here.
format> label Write generic disk label.
Ready to label disk, continue? y

Once the disk label is written, we can set up partitions. We’ll be dividing this disk
into two equal partitions. We use the partition subcommand to define them:

format> partition
PARTITION MENU:
 0 - change `0' partition
 1 - change `1' partition

...
 7 - change `7' partition
 select - select a predefined table
 modify - modify a predefined partition table
 name - name the current table
 print - display the current table
 label - write partition map and label to the disk
 quit
partition> Redefine partition 0
Enter partition id tag[unassigned]: root Specifies partition use.
Enter partition permission flags[wm]: wm Read-write, mountable.
Enter new starting cyl[0]:
Enter partition size[0b, 0c, 0e, 0.00mb, 0.00gb]: 5.00gb
...
partition> 1
Enter partition id tag[unassigned]:
Enter partition permission flags[wm]: wm
Enter new starting cyl[0]: 10403
Enter partition size[0b, 0c, 0e, 0.00mb, 0.00gb]: 7257c
...
partition> print Print partition table.
Current partition table (unnamed):
Total disk cylinders available: 17660 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks
 0 root wm 0 - 10402 5.00GB (10403/0/0) 10486224
 1 unassigned wm 10403 - 17659 3.49GB (7257/0/0) 7315056
 2 unassigned wm 0 0 (0/0/0) 0

...
 7 unassigned wm 0 0 (0/0/0) 0

We define two partitions here, 0 and 1. In the first case, we specify a starting cylin-
der number of 0 and the partition size in GB. In the second case, we specify a start-
ing cylinder and the length in cylinders. We took a look at the partition table
between issuing these two commands to find these numbers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 655

The partition ID tag is a label specifying the intended use of the partition. Partition 0
will be used for the root filesystem and is labeled accordingly.

The permission flags are usually one of wm (read-write and mountable) and wu (read-
write and not mountable). The latter is used for swap partitions.

Once the partitions are defined, we write a label to the disk using the label subcom-
mand:

partition> label
Ready to label disk, continue? y
partition> quit
format> quit

The partition submenu also has a name subcommand, which allows a custom parti-
tion table to be named and saved; it can be applied to a new disk with the select
subcommand on the same menu.

Now, we create filesystems on the new disk partitions with the newfs command:

newfs /dev/rdsk/c0t2d0s0
newfs: construct a new file system /dev/rdsk/c0t2d0s3: (y/n)? y
/dev/rdsk/c0t0d0s3: 10486224 sectors in 10403 cylinders
 of 16 tracks, 63 sectors
5120.2MB in 119 cyl groups (88 c/g, 43.31MB/g, 5504 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
 32, 88800, 177568, 266336, 355104, 443872, 532640, 621408, 710176, ...

The prudent course of action is to print out this list and store it somewhere for safe
keeping, in case both the primary superblock and the one at address 32 get corrupted.*

Finally, we run fsck on the new filesystem:

fsck -y /dev/rdsk/c0t2d0s0
** /dev/rdsk/c0t0d0s3
** Last Mounted on
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
2 files, 9 used, 5159309 free (13 frags, 644912 blocks, 0.0% fragmentation)

This process is repeated for the other disk partition.

You can customize the parameters for the new filesystem using these options to
newfs:

-b size
Filesystem block size in bytes (the default is 8192; value must be a power of 2
from 4096 to 8192).

* A tip from one of the book’s technical reviewers: “If you lose your list of backup superblocks, make a file-
system on a device of the same size and read the locations of the superblocks when you newfs that new par-
tition.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

656 | Chapter 10: Filesystems and Disks

-f size
Filesystem fragment size: the smallest allocateable unit of disk space. The default
is 1024 bytes (must be a power of 2 in the range of 1024 to 8192). This parame-
ter determines the minimum file size, among other things. It must be less than or
equal to the filesystem block size and no smaller than one eighth the filesystem
block size.

-i bytes
Number of bytes per inode (the default is 2048). This setting controls how many
inodes are created for the new filesystem (number of inodes equals filesystem
size divided by bytes per inode). The default value of 2048 usually creates more
than you’ll ever need except for filesystems with many, many tiny files. You can
usually increase this to 4098 without risk.

-m free
Percentage of free space reserved. The default is 10%; you can usually safely
decrease it to about 5% or even less for a very large disk.

The -N option to newfs may be used to have the command display all of the parame-
ters it would pass to mkfs—the utility that does the actual work—without building
the filesystem.

Logging is enabled for Solaris UFS filesystems at mount time, via the
logging mount option.

AIX, HP-UX, and Tru64

These operating systems use a logical volume manager (LVM) by default. Adding
disks to these systems is considered during the LVM discussion later in this chapter.

Remaking an existing filesystem

Occasionally, it may be necessary to reconfigure a disk. For example, you might
want to select another layout, using a different set of partitions. You might want to
change the value of a filesystem parameter, such as its block size. Or you might want
to add an additional swap partition or get rid of an unneeded one. Sometimes, these
operations require that you recreate the existing filesystems.

Recreating a filesystem will destroy all the existing data in the filesystem, so it is essen-
tial to perform a full backup first (and to verify that the tapes are readable; see
Chapter 11). For example, the following commands may be used to reconfigure a
filesystem with a 4K block size under Linux:

umount /chem Dismount filesystem.
dump 0 /dev/sda1 Backup.
restore -t Check tape is OK!
mke2fs -b 4096 -j /dev/sda1 Remake filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 657

mount /chem Mount new filesystem.
cd /chem; restore -r Restore files.

A very cautious administrator would make two copies of the backup tape.

Logical Volume Managers
This section looks at logical volume managers (LVMs). The LVM is the only disk
management facility under AIX, and the corresponding facilities are also used by
default under HP-UX and Tru64. Linux and Solaris 9 also offer LVM facilities. As
usual, we’ll begin this section with a conceptual overview of logical volume manag-
ers and then move on to the specifics for the various operating systems.

When dealing with an LVM, you will do well to forget everything you know about
disk partitions under Unix. Not only is a completely different vocabulary employed,
but some Unix terms—like partition—also are used with completely different mean-
ings. However, once you get past the initial obstacles, the LVM point of view is very
clear and sensible, and it is superior to the standard Unix approach to handling
disks. A willing suspension of disbelief will come in very handy at first.

In general, an LVM brings the following benefits:

• Filesystems and individual files can be larger than a single physical disk.

• Filesystems may be dynamically extended in size without having to be rebuilt.

• Software disk mirroring and RAID are often supported (for data protection and
continued system availability even in the face of disk failures).

• Software disk striping is often provided as part of an LVM for improved I/O per-
formance.

Disks, volume groups, and logical volumes

To begin at the beginning, there are disks: real, material, solid objects that hurt your
toe if they fall on it. However, such disks must be initialized and made into physical
volumes before they may be used by the LVM. When they are made part of a volume
group (defined in a moment), these disks are divided into allocable units of space
known as physical partitions (AIX) or physical extents (HP-UX and Tru64). The
default size for these units is generally 4 MB. Note that these partitions/extents are
units of disk storage only; they have nothing to do with traditional Unix disk parti-
tions.

A volume group is a named collection of disks. Volume groups can also include col-
lections of disks accessed as a single hardware unit (e.g., a RAID array). Volume
groups allow filesystems to span physical disks (although it is not required that they
do so). Paradoxically, the volume group is the LVM equivalent of the Unix physical
disk: that entity which can be split into subunits called logical volumes, each of
which holds a single filesystem. Unlike Unix disk partitions, volume groups are infi-
nitely flexible in how they may be divided into filesystems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

658 | Chapter 10: Filesystems and Disks

HP-UX allows volume groups to be subdivided into sets of disks called physical vol-
ume groups (PVGs). These groups of disks are accessed through separate controllers
and/or buses, and the facility is designed to support high-availability systems by
reducing the number of potential single points of hardware failure.

Logical volumes are the entities on which filesystems reside; they may also be used as
swap devices, as dump devices, for storing boot programs, and by application pro-
grams in raw mode (analogously to a raw-mode disk partition). They consist of some
number of fixed physical partitions (disk chunks) generally located arbitrarily within
a volume group (although some implementations optionally allow specific physical
volumes to be requested when a logical volume is created or extended). Hence, logi-
cal volumes may be any size that is a multiple of the physical partition size for their
volume group. They may be easily increased in size after creation while the operat-
ing system is running. Logical volumes may also be shrunk (although not without
consequences to any filesystem they may contain).

Logical volumes are composed of logical partitions (AIX) or logical extents (HP-UX).
Many times, physical and logical partitions are identical (or at least map one-to-one).
However, logical volumes have the capability of storing redundant copies of all data,
if desired; from one to two additional copies of each data block may be stored. When
only a single copy of the data is stored, one logical partition corresponds to one
physical partition. If two copies are stored, one logical partition corresponds to two
physical partitions: one original and one mirror. Similarly, in a doubly mirrored logi-
cal volume, each logical partition corresponds to three physical partitions.

The main LVM data storage entities are illustrated in Figure 10-6 (representing an
AIX system). The figure shows how three physical disks are combined into a single
volume group (named chemvg). The separate disks composing it are suggested via
shading.

Three user logical volumes are then defined from chemvg.* Two of them—chome and
cdata—store a single copy of their data using physical partitions from three separate
disks. cdata is a striped logical volume, writing data to all three disks in parallel. It
uses identically sized sections from each physical disk. chome illustrates the way that
a filesystem can be spread across multiple physical disks, even noncontiguously in
the case of hdisk3.

The other logical volume, qsar, is a mirrored logical volume. It contains an equal
number of physical partitions from all three disks; it stores three copies of its data
(each on a separate disk), and one physical partition per disk is used for each of its
logical partitions.

Once a logical volume exists, you can build a filesystem on it and mount it normally.
At any point in its lifetime, a filesystem’s size may be increased as long as there are

* In addition to the logging volume group required by AIX for the jfs journaled filesystem type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 659

free physical partitions within its volume group. There need not initially be any free
logical partitions within its logical volume. Generally, both the logical volume and
filesystem are resized using a single command.

Some operating systems can also reduce the size of an existing logical volume. If this
operation is performed on a mounted filesystem, and the new size of the logical vol-
ume is still at least a little larger than the existing filesystem, it can be accomplished
without losing any data. Under any other conditions, data loss is very, very likely
indeed. This technique is not for the fainthearted.

Currently, there is no easy way to decrease the size of a filesystem under AIX or
FreeBSD, even if there is unused space within the filesystem. If you want to make a
filesystem smaller, you need to back up the current files (and verify that the tape is
readable!), delete the filesystem and its logical volume, create a new, smaller logical
volume and filesystem, and then restore the files. The freed logical partitions can
then be allocated as desired within their volume group; they can be added to an
existing logical volume, used to make a new logical volume and filesystem, used in a
new or existing paging space, or held in reserve.

Table 10-7 lists the LVM-related terminology used by the various Unix operating
systems.

Figure 10-6. Logical volume managers illustrated

Available physical volumes are . . .

combined into a volume group . . .

from which logical volumes
containing filesystems are built.

qsar cdata chome lvlog

hdisk1 hdisk2 hdisk3

chemvg

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

660 | Chapter 10: Filesystems and Disks

Disk striping

Disk striping is an option that is increasingly available as an extension to Unix, espe-
cially on high-performance systems. Striping combines one or more physical disks (or
disk partitions) into a single logical disk, viewed like any other filesystem device by
the rest of Unix. Disk striping is used to increase I/O performance at least as often as
it is used to create very large filesystems spanning more than one physical disk.
Striped disks split I/O operations across the physical disks in the stripe, performing
them in parallel, and are thus able to achieve significant performance improvements
over a single disk (although not always the nearly linear speedups that are sometimes
claimed). Striping is especially effective for single-process transfer rates to a very large
file and for processes performing a large number of I/O operations. Disk striping per-
formance is discussed in detail in “Disk I/O Performance Issues” in Chapter 15.

Special-purpose striped-disk devices are available from many vendors. In addition,
many Unix systems offer software disk-striping. They provide utilities for configur-
ing physical disks into a striped device, and the striping itself is done by the operat-
ing system, at the cost of some additional overhead.

The following general considerations apply to software striped-disk configurations:

• For maximum performance, the individual disks in the striped filesystem should
be on separate disk controllers. However, it is permissible to place different disks
on a given controller into separate stripe sets.

• Some operating systems require that the individual disks be identical devices: the
same size, the same partition layout, and often the same brand. If the layouts are
different, the size of the smallest disk is often what is used for the filesystem and
any additional space on the other disks will be unusable and wasted.

• In general, disks used for striping should not be used for any purpose other than
the I/O whose performance you want to optimize. Placing ordinary user files on

Table 10-7. LVM terminology

Item AIX FreeBSDa

a As we’ll see, the FreeBSD entity mappings here are not precise because the concepts are somewhat different.

HP-UX Linux Solaris
Tru64
AdvFSb

b Not a true LVM, AdvFS nevertheless shares many features with them.

Tru64 LSM

Facility Logical
Volume
Manager

Vinum
Volume
Manager

Logical
Volume
Manager

Logical
Volume
Manager

Volume
Manager

Advanced
File System

Logical
Storage
Manager

Virtual disk volume
group

None volume
group

volume
group

volume domain disk group

Logical
volume

logical
volume

Volume logical
volume

logical
volume

volume,
soft
partition

fileset volume

Allocation
unit

partition Subdisk extent Extent extent extent extent

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 661

striped disks seldom makes sense. Similarly, striping swap space makes sense
only if paging performance is the most significant disk I/O performance factor
on the system.

• In no case should the device containing the root filesystem be used for disk strip-
ing. This is really a corollary of the previous item.

• The stripe size selected for a striped filesystem is important. The optimal value
depends on the typical data transfer characteristics and requirements for the
application programs for which the filesystem is intended. Some experimenta-
tion with different stripe sizes will probably be necessary. Provided that pro-
cesses using the striped filesystem perform large enough I/O operations, a larger
stripe size will generally result in better I/O performance. However, the tradeoff
is that larger stripe sizes mean a larger filesystem block size and, accordingly, less
efficient allocation of available disk space.

• Software disk striping is really designed for two to four disks. In most cases, any
additional performance gains are generally quite modest.

• SCSI disks make the most sense when you’re using software striping for perfor-
mance.

Software disk-striping is generally accomplished via the LVM or similar facility.

Disk mirroring and RAID

Another approach to combining multiple disks into a single logical device is RAID
(or Redundant Array of Inexpensive* Disks). In general, RAID devices are designed for
increased data integrity and availability (via redundant copies), not for improved per-
formance (RAID 0 is an exception).

There are at least 6 defined RAID levels that differ in how the multiple disks within
the unit are organized. Most available hardware RAID devices support some combi-
nation of the following levels (level 2 is not used in practice). Table 10-8 summarizes
the available RAID levels.

* Some acronym expansions put “Independent” here.

Table 10-8. Commonly used RAID levels

Level Description Advantages/Disadvantages

0 Disk striping only. + Best I/O performance for large transfers.

+ Largest storage capacity.

– No data redundancy.

1 Disk mirroring: every disk drive is duplicated for 100% data
redundancy.

+ Most complete data redundancy.

+ Good performance on small transfers.

– Largest disk requirements for fault tolerance.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

662 | Chapter 10: Filesystems and Disks

Figure 10-7 illustrates RAID 5 in action, using 5 disks.

There are also some hybrid RAID levels:

• RAID 0+1: Mirroring of striped disks. Two striped sets are mirrors of one
another. Data is striped across each stripe set, and the same data is sent to both

3 Disk striping with a parity disk; data is split across component
disks on a byte-to-byte basis; the parity disk enables recon-
struction of all data if a drive fails.

+ Data redundancy with minimal overhead.

+ Decent I/O performance for reads.

– Parity disk is a bottleneck for writes.

– Significant operating system overhead.

4 Disk striping with a parity disk; data is split across component
disks on a per-block basis; the parity disk enables reconstruc-
tion of all data if a drive fails.

+ Data redundancy with minimal overhead.

+ Better than level 3 for large sequential writes.

– Parity disk is a bottleneck for small writes.

– Significant operating system overhead.

5 Same as level 3 except that the parity information is split across
multiple component disks, in an attempt to prevent the parity
disk from becoming an I/O bottleneck.

+ Data redundancy with minimal overhead.

+ Best performance for writes.

– Not as fast as level 3 or 4 for reads.

– Significant operating system overhead.

Figure 10-7. The RAID 5 data distribution scheme

Table 10-8. Commonly used RAID levels (continued)

Level Description Advantages/Disadvantages

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Data Parity

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 663

stripes. Thus, this RAID variation provides both I/O performance advantages
and fault tolerance.

• RAID 1+0 (sometimes called RAID 10): Striping across mirror sets. Similar in
intent to RAID 0+1, it provides equivalent performance advantages and slightly
better fault tolerance in that it is easier to rebuild the RAID device after a single
disk failure (since the data on only one mirror set is affected).

Both these levels use a minimum of four disks.

Most hardware RAID devices connect to standard SCSI or SCSI-2 controllers.* Many
systems also offer software RAID facilities within their LVM (as we shall see).

The following considerations apply to all software RAID implementations:

• Be careful not to overload disk controllers when using software RAID, because
this will significantly degrade performance for all RAID levels. Putting disks on
separate controllers is almost always beneficial.

• As with plain disk striping, the stripe size chosen for RAID 5 can effect perfor-
mance. The optimum value to choose is very highly dependent on the typical
I/O operation type.

• The sad fact is that if you want both high performance and fault tolerance, soft-
ware RAID, and especially RAID 5, is likely to be a poor choice. RAID 1 works
reasonably (with two-way mirroring), although it does add some overhead to the
system. The additional overhead that RAID 5 places on the operating system is
considerable, about 23% more than required for normal I/O operations. The
bottom line for RAID 5 is to spend the money to get a hardware solution, and
use software RAID 5 only if you can’t afford anything better. Having said that,
software RAID 5 often works well on a dedicated file server with a lot of CPU
horsepower, some fast SCSI disks, and very few write operations.

AIX

AIX defines the root volume group, rootvg, automatically when the operating system
is installed. Here is a typical setup:

lsvg rootvg Display volume group attributes.
VOLUME GROUP: rootvg VG IDENTIFIER: 0000018900004c0...
VG STATE: active PP SIZE: 32 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 542 (17344 MB)
MAX LVs: 256 FREE PPs: 69 (2208 MB)
LVs: 11 USED PPs: 473 (15136 MB)
OPEN LVs: 10 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes

* A small minority use fiber channel.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

664 | Chapter 10: Filesystems and Disks

MAX PPs per PV: 1016 MAX PVs: 32
LTG size: 128 kilobyte(s) AUTO SYNC: no
HOT SPARE: no
lsvg -l rootvg List logical volumes in a volume group.
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd5 boot 1 1 1 closed/syncd N/A
hd6 paging 16 16 1 open/syncd N/A
hd8 jfs2log 1 1 1 open/syncd N/A
hd4 jfs2 1 1 1 open/syncd /
hd2 jfs2 49 49 1 open/syncd /usr
hd9var jfs2 3 3 1 open/syncd /var
hd3 jfs2 1 1 1 open/syncd /tmp
hd1 jfs2 1 1 1 open/syncd /home
hd10opt jfs2 1 1 1 open/syncd /opt
lg_dumplv sysdump 32 32 1 open/syncd N/A

Adding a new disk under AIX follows the same basic steps as for other Unix sys-
tems, although the commands used to perform them are quite different. Once you’ve
attached the device to the system, reboot it. Usually, AIX will discover new devices at
boot time and automatically create special files for them. Defined disks have special
filenames like /dev/hdisk1. The cfgmgr command may be used to search for new
devices between boots; it has no arguments.

The lsdev command will list the disks present on the system:

$ lsdev -C -c disk
hdisk0 Available 00-00-0S-0,0 1.0 GB SCSI Disk Drive
hdisk1 Available 00-00-0S-2,0 Other SCSI Disk Drive
...

The new disk must then be made part of a volume group. To create a new volume
group, use the mkvg command:

mkvg -y "chemvg" hdisk5 hdisk6

This command creates a volume group named chemvg consisting of the disks hdisk5
and hdisk6. mkvg’s -s option can be used to specify the physical partition size in MB:
from 1 to 1024 (4 is the default). The value must be a power of 2.*

After a volume group is created, it must be activated with the varyonvg command:

varyonvg chemvg

Thereafter, the volume group will be activated automatically at each boot time. Vol-
ume groups are deactivated with varyoffvg; all of their filesystems must be dis-
mounted first.

* You will need to increase this parameter for disks larger than 4 GB (1016 * 4 MB), because the maximum
number of physical partitions is 1016. You can increase the latter limit using the -t option to mkvg and chvg.
The new maximum will be this option’s value times 1016. This can be necessary when adding a large (18 GB
or more) disk to an existing volume group containing significantly smaller disks. It may also eventually be
necessary for future very, very large disks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 665

A new disk may be added to an existing volume group with the extendvg command.
For example, the following command adds the disk hdisk4 to the volume group
named chemvg:

extendvg chemvg hdisk4

The following other commands operate on volume groups:

chvg
Change volume group characteristics.

reducevg
Remove a disk from a volume group (removing all disks deletes the volume
group).

importvg
Add an existing volume group to the system (used to move disks between sys-
tems and to activate existing volume groups after replacing the root disk).

exportvg
Remove a volume group from the system device database but don’t alter it (used
to move disks to another system).

Logical volumes are created with the mklv command, which has the following basic
syntax:

mklv -y "lvname" volgrp n [disks]

lvname is the name of the logical volume, volgrp is the volume group name, and n is
the number of logical partitions. For example, the command:

mklv -y "chome" chemvg 64

makes a logical volume in the chemvg volume group consisting of 64 logical parti-
tions (256 MB) named chome. The special files /dev/chome and /dev/rchome will auto-
matically be created by mklv.

The mklv command has many other options, which allow the administrator as much
control over how the logical volume maps to physical disks as desired, down to the
specific physical partition level. However, the default settings work very well for
most applications.

The following commands operate on logical volumes:

extendlv
Increase the size of a logical volume.

chlv
Change the characteristics of a logical volume.

mklvcopy
Increase the number of data copies in a logical volume.

rmlv
Delete a logical volume.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

666 | Chapter 10: Filesystems and Disks

A small logical volume in each volume group is used for logging and other disk man-
agement purposes. Such logical volumes are created automatically by AIX and have
names like lvlog00.

Once the logical volumes have been created, you can build filesystems on them. AIX
has a version of mkfs, but crfs is a much more useful command for creating filesys-
tems. There are two ways to create a filesystem:

• Create a logical volume and then create a filesystem on it. The filesystem will
occupy the entire logical volume.

• Create a filesystem and let AIX create a logical volume for you automatically.

The second way is faster, but the logical volume name AIX chooses is quite generic
(lv00 for the first one so created, and so on), and the size must be specified in 512-
byte blocks rather than in logical partitions (which default to 4 MB units).

The crfs command is used to create a filesystem. The following basic form may be
used to create a filesystem:

crfs -v jfs2 -g vgname -a size=n -m mt-pt -A yesno -p prm

The options have the following meanings:

-v jfs2
The filesystem type is jfs2 (“enhanced journaled filesystem,” using the logging
logical volume in its volume group), the recommended local filesystem type.

-g vgname
Volume group name.

-a size=n
Size of the filesystem, in 512-byte blocks.

-m mt-pt
Mount point for the filesystem (created if necessary).

-A yesno
Whether the filesystem is mounted by mount -a commands.

-a frag=n
Use a fragment size of n bytes for the filesystem. This value can range from 512
to 4096, in powers of 2, and it defaults to 4096. Smaller sizes will allocate disk
space more efficiently for usage patterns consisting of many small files.

-a nbpi=n
Specify n as the number of bytes per inode. This setting controls how many
inodes are created for the new filesystem (number of inodes equals filesystem
size divided by bytes per inode). The default value of 4096 usually creates more
than you’ll ever need except for filesystems with many, many tiny files. The max-
imum value is 16384.

-a compress=LZ
Use transparent LZ compression on the files in the filesystem (this option is dis-
abled by default).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 667

For example, the following command creates a new filesystem in the chemvg volume
group:

crfs -v jfs2 -g chemvg -a size=50000 -a frag=1024 -m /organic2 -A yes
mount /organic2

The new filesystem will be mounted at /organic2 (automatically at boot time), is 25
MB in size, and uses a fragment size of 1024 bytes. A new logical volume will be cre-
ated automatically, and the filesystem will be entered into /etc/filesystems. The initial
mount must be done by hand.

The -d option is used to create a filesystem on an existing logical volume:

crfs -v jfs2 -d chome -m /inorganic2 -A yes

This command creates a filesystem on the logical volume we created earlier. The size
and volume group options are not needed in this case.

The chfs command may be used to increase the size of a filesystem. For example, the
following command increases the size of the /inorganic2 filesystem (and of its logical
volume chm00) created above:

chfs -a size=+50000 /inorganic

An absolute or relative size may be specified for the size parameter (in 512-byte
blocks). The size of a logical volume may be increased with the extendlv command,
but it has no effect on filesystem size.

The following commands operate on AIX jfs and jfs2 filesystems:

chfs
Change filesystem characteristics.

rmfs
Remove a filesystem, its associated logical volume, and its entry in /etc/filesys-
tems.

Replacing a failed disk. When you need to remove a disk from the system, most likely
due to a hardware failure, there are two considerations to keep in mind:

• If possible, perform the steps to remove a damaged non-root disk from the LVM
configuration before letting field service replace it (otherwise, it will take some
persistence to get the system to forget about the old disk).

• Items must be removed in the reverse order from the way they were created: file-
systems, then logical volumes, then volume groups.

The following commands remove hdisk4 from the LVM configuration (the volume
group chemvg2 and the logical volume chlv2 holding the /chem2 filesystem are used
as an example):

umount /chem2 Unmount filesystem.
rmfs /chem2 Repeat for all affected filesystems.
rmlvcopy chlv2 2 hdisk4 Remove mirrors on hdisk4.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

668 | Chapter 10: Filesystems and Disks

chps -a n paging02 Don't activate paging space at next boot.
shutdown -r now Reboot the system.
chpv -v r hdisk4 Make physical disk unavailable.
reducevg chemvg2 hdisk4 Remove disk from volume group.
rmdev -l hdisk4 -d Remove definition of disk.

When the replacement disk is added to the system, it will be detected, and devices
will be created for it automatically.

Getting information from the LVM. AIX provides many commands and options for list-
ing information about LVM entities. Table 10-9 attempts to make it easier to figure
out which one to use for a given task.

Disk striping and disk mirroring. A striped logical volume is created by specifying mklv’s
-S option, indicating the stripe size, which must be a power of 2 from 4K to 128K.
For example, this command creates a 500 MB logical volume striped across two
disks consisting of a total of 125 logical partitions, each 4 MB in size:

mklv -y cdata -S 64K chemvg 125 hdisk5 hdisk6

Table 10-9. AIX LVM informational commands

If you want to see: Use this command:

All disks on the system lspv

All volume groups lsvg

All logical volumes lsvg -l 'lsvg'

All filesystems

All filesystems of a given type

lsfs

lsfs -v type

What logical volumes are in a volume group lsvg -l vgname

What filesystems are in a volume group lsvgfs vgname

What disks are in a volume group lsvg -p vgname

Which volume group a disk is in lsvg -n hdiskn

Disk characteristics and settings lspv hdiskn

Volume group settings lsvg vgname

Logical volume characteristics lslv lvname

Size of an unmounted local filesystem (in blocks) lsfs file-system

Whether there is any unused space on a logical volume already containing a filesystem
(compare lv size and fs size)

lsfs -q file-system

Disk usage summary map by region lspv -p hdiskn

Locations of the free physical partitions on a disk broken down by region lspv hdiskn

Locations of all free physical partitions in a volume group, by disk and disk region lsvg -p vgname

Which logical volumes use a given disk, broken down by disk region lspv -l hdiskn

What disks a logical volume is stored on, including disk region distribution lslv -l lvname

Table showing the physical-to-logical partition mapping for a logical volume lslv -m lvname

Table showing physical partition usage for a disk by logical volume lspv -M hdiskn

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 669

Note that the disk names are required on the mklv command when creating a striped
logical volume.

Multiple data copies—mirroring—may be specified with the -c option, which takes
the number of copies as its argument (the default is 1). For example, the following
command creates a two-way mirror logical volume:

mklv -c 2 -s s -w y biovg 500 hdisk2 hdisk3

The command specifies two copies, a super strict allocation policy (forces each mir-
ror to a separate physical disk, which are listed), and specifies that write synchroniza-
tion take place during each I/O operation (which reduces I/O performance but
guarantees data synchronization).

An entire volume group can also be mirrored. This is configured using the mirrorvg
command.

Finally, the -a option is used to request placement of the new logical volume within a
general region of the disk. For example, this command requests that the logical vol-
ume be placed in the center portion of the disk to as great an extent as possible:

mklv -y chome -ac chemvg 64

Disks are divided into five regions named as follows (beginning at the outer edge):
edge, middle, center, inner-middle, and inner-edge. The middle region is the default,
and the other available arguments to -a are accordingly e, im, and ie.

AIX does not provide general software RAID, although one can use mirrors and
stripes to achieve the same functionality as RAID 0, 1, and 1+0.

HP-UX

HP-UX provides another version of a LVM that is used by default. The vg00 volume
group holds the system files, which are divided into several logical volumes:

vgdisplay vg00 Display volume group attributes.
--- Volume groups --- Output shortened.
VG Name /dev/vg00
VG Write Access read/write
VG Status available
Max LV 255
Cur LV 8
Open LV 8
Max PV 16
Cur PV 1
Act PV 1
Max PE per PV 2500
PE Size (Mbytes) 4
Total PE 2169
Alloc PE 1613
Free PE 556
Total Spare PVs 0
Total Spare PVs in use 0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

670 | Chapter 10: Filesystems and Disks

bdf Output shows mounted logical volumes.
Filesystem kbytes used avail %used Mounted on
/dev/vg00/lvol3 143360 22288 113567 16% /
/dev/vg00/lvol1 83733 32027 43332 42% /stand
/dev/vg00/lvol7 2097152 419675 1572833 21% /var
/dev/vg00/lvol6 1048576 515524 499746 51% /usr
/dev/vg00/lvol5 65536 1128 60386 2% /tmp
/dev/vg00/lvol4 2097152 632916 1372729 32% /opt
/dev/vg00/lvol8 20480 1388 17900 7% /home

The process of creating a volume group begins by designating the component disks
(or disk partitions) as physical volumes, using the pvcreate command:

pvcreate /dev/rdsk/c2t0d0

Next, a directory and character special file must be created in /dev for the volume
group:

mkdir /dev/vg01
mknod /dev/vg01/group c 64 0x010000

The major number is always 64, and the minor number is of the form 0x0n0000,
where n varies from 0 to 9 and must be unique across all volume groups (I assign
them in order).

The volume group may now be created with the vgcreate command, which takes the
volume group directory in /dev and the component disks as its arguments:

vgcreate /dev/vg01 /dev/dsk/c2t0d0

vgcreate’s -s option may be used to specify an alternate physical extent size (in
megabytes). The default of 4 may be too small for large disks. You can add an addi-
tional volume to an existing volume group with the vgextend command.

The vgcreate and vgextend commands also have a -g option, which allows you to
define named subsets of the disks in the volume group, known as physical volume
groups, as in this example that creates two physical volume groups in the vg01 vol-
ume group:

vgcreate /dev/vg01 -g groupa /dev/dsk/c2t2d0 /dev/dsk/c2t4d0
vgextend /dev/vg01 -g groupb /dev/dsk/c1t0d0 /dev/dsk/c1t1d0

The file /etc/lvmpvg holds the physical volume group data, and it may be edited
directly rather than running vgcreate:

VG /dev/vg01
PVG groupa
/dev/dsk/c2t0d0
/dev/dsk/c2t4d0
PVG groupb
/dev/dsk/c1t0d0
/dev/dsk/c1t1d0

Once the volume group is created, the lvcreate command may be used to create a
logical volume. For example, the following command creates a 200 MB logical vol-
ume named chemvg:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 671

lvcreate -n chemvg -L 200 /dev/vg01

If the specified size is not an even multiple of the extent size (4 MB), the size is
rounded up to the nearest multiple.

If the new logical volume is to be used for the root or boot filesystem or as a swap
space, you must run the lvlnboot command with its -r, -b, or -s option (respec-
tively). The command takes the logical volume device as its argument:

lvlnboot -r -s /dev/vg01/swaplv

The -r option will create a combined boot/root volume if the specified logical vol-
ume is the first one on the physical volume.

Once a logical volume is built, a filesystem may be built upon it. For example:

newfs /dev/vg01/rchemvg

The logical volume name is concatenated to the volume group directory in /dev to
form the special filenames referring to the logical volume; note that newfs uses the
raw device. The new filesystem may then be mounted and entered into the filesys-
tem configuration file.

You can customize the parameters for a new VxFS filesystem using these options to
newfs:

-b size
Filesystem block size in bytes. The default is 1024 for filesystems smaller than 8
GB, 2048 for ones up to 16 GB, 4096 for ones less than 32 GB, and 8192 for
larger ones. The value must be a power of 2 from 4096 to 8192 (or to 65536 on
700 series systems using disk striping, which is discussed later in this chapter).

-l
Enable files larger than 2 GB.

Other commands that operate on LVM entities are listed below:

vgextend
Add disk to volume group.

vgreduce
Remove disk from volume group.

vgremove
Remove a volume group.

lvextend
Add physical extents or mirrored copies to a logical volume.

lvreduce
Remove physical extents or mirrored copies from a logical volume.

Lvremove
Remove a logical volume from a volume group.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

672 | Chapter 10: Filesystems and Disks

Displaying LVM information. The following commands display information about LVM
entities:

pvdisplay disk
Summary information about the disk drive.

pvdisplay -v disk
Mapping of physical extents to logical extents.

vgdisplay vg
Summary information about the volume group.

vgdisplay -v vg
Brief information about all logical volumes within the volume group.

lvdisplay lv
Summary information about the logical volume.

lvdisplay -v lv
Mapping of logical to physical extents for the logical volume.

Disk striping and mirroring. The LVM is also used to perform disk striping and disk
mirroring on HP-UX systems. For example, the following command creates a 200
MB logical volume named cdata with one mirrored copy:

lvcreate -n cdata -L 200 -m 1 -s g /dev/vg01

The -s g option specifies that the mirrors must be placed into different physical vol-
ume groups.

Under HP-UX, disk striping occurs at the logical volume level. The following com-
mand creates an 800 MB four-way striped logical volume, using a striped width of
64 KB:

lvcreate -n tyger -L 400 -i 4 -I 64 /dev/vg01

The -i option specifies the number of stripes (disks) and can be no larger than the
total number of disks in the volume group; -I specifies the stripe size in KB, and its
valid range is powers of 2 from 4 to 64.

Most HP-UX version do not provide software RAID.*

Tru64

Tru64 provides two facilities which have many of the characteristics of a logical vol-
ume manager:

• The Advanced File System (AdvFS), whose name is something of a misnomer, as
it is actually both a filesystem type and a simple logical volume manager. The

* Software RAID is provided under HP-UX with VxVM (the Veritas Volume Manager, which supports soft-
ware RAID 5, 0+1, and 1+0). HP began shipping VxVM with HP-UX 11i.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 673

filesystem is included with the operating system, but there is also an add-on
product containing additional AdvFS utilities.

• The Logical Storage Manager (LSM) facility is an advanced LVM facility. It adds
an additional layer to the structure usually found in logical volume managers.
This is an add-on product.

We’ll consider each of them in separate subsections.

AdvFS. The AdvFS defines the following entities:

• A volume is a logical entity that can correspond to a disk partition, an entire
disk, an LSM volume (see below), or even an external storage device such as a
hardware RAID array.

• A domain is a set of one or more volumes.

• A fileset is a directory tree that can be mounted within the filesystem. Domains
can contains multiple filesets.

Unlike other LVMs, under the AdvFS, domains and filesets—physical storage and
directory trees—are independent, and either one can be modified without affecting
the other (as we’ll see).

The AdvFS facility is used by default on Tru64 systems. It defines two domains and
several filesets:

showfdmn root_domain Describe this domain.
 Id Date Created LogPgs Version Domain Name
3a535b22.000c47c0 Wed Jan 3 12:02:26 2001 512 4 root_domain

 Vol 512-Blks Free % Used Cmode Rblks Wblks Vol Name
 1L 524288 95680 82% on 256 256 /dev/disk/dsk0a
mountlist -v List mounted filesets.
 root_domain#root Root filesystem.
 usr_domain#usr Mounted at /usr.
 usr_domain#var Mounted at /var.
showfsets usr_domain List filesets in a domain.
usr
 Id : 3a535b27.0005a120.1.8001
 Files : 43049, SLim= 0, HLim= 0
 Blocks (512) : 1983812, SLim= 0, HLim= 0
 Quota Status : user=off group=off Output shortened.
var
 Id : 3a535b27.0005a120.2.8001
 Files : 1800, SLim= 0, HLim= 0
 Blocks (512) : 34954, SLim= 0, HLim= 0
 Quota Status : user=off group=off

You can create a new domain with the mkfdmn command:

mkfdmn /dev/disk/dsk1c chem_domain

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

674 | Chapter 10: Filesystems and Disks

This command creates the chem_domain domain consisting of the specified volume
(here, a disk partition). If you have the AdvFS Utilities installed, you can add vol-
umes to a domain with the addvol command, as in this example, which adds a sec-
ond disk partition to the chem_domain domain:

addvol /dev/disk/dsk2c chem_domain
balance chem_domain

You can similarly remove a volume from a domain with the rmvol command. The
balance command is typically run after either one; it has the effect of balancing disk
space usage among the various volumes in the domain to improve performance.

Once a domain has been created, you can create filesets within it. This process cre-
ates an entity which is effectively a relocateable filesystem; a fileset is ready to accept
files as soon as it is created (no mkfs step is required), and its contents can be moved
to a different physical disk location in its domain if required.

The following commands create two filesets with our domain, and mount them into
two existing directories immediately afterward:

mkfset chem_domain bronze
mkfset chem_domain silver
mount chem_domain#bronze /bronze
mount chem_domain#silver /silver

The fileset is referred to by appending its name to the domain name, separated by a
number sign (#). Note that we don’t have to specify any actual disk locations (and
indeed we cannot do so). These matters are handled by the AdvFS itself.

The rmfset command may be used to remove a fileset from a domain. The renamef-
set command may be used to change the name of a fileset, as in this example:

renamefset chem_domain lead gold

The AdvFS offers some limited disk striping facilities as part of its optional utilities
package. A file can be striped by creating it with the stripe command:

stripe -n 2 sulfur

This command creates the file sulfur as a two-way striped file. The file must created
before any data is placed into it. More complex striping of entire volumes can be
done with the Logical Storage Manager described in the next subsection.

LSM. The Tru64 Logical Storage Manager is designed to support advanced disk fea-
tures such as disk striping and fault tolerance. It is a layered product which must be
added to the basic Tru64 operating system.

Under the LSM, a whole new set of terminology comes into play:

Disk group
A named collection of disks using a common LSM database. This roughly corre-
sponds to a volume group.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 675

Plex
The primary data storage entity. A plex can be concatenated, meaning that the
discrete subdisks are simply combined sequentially, or striped, where data is
striped across subdisks for higher performance. Software RAID 5 plexes can also
be created.

Subdisk
A group of contiguous physical disk blocks. Subdisks are defined to force plexes
to specific physical disk locations.

Volume
A collection of one or more plexes, conceptually performing the same function
as a logical volume. Filefilesystemssystems are built upon volumes. The innova-
tion introduced by the LSM is that the component plexes in a mirrored volume
need not be identical. For example, one plex might be made up of three sub-
disks, and another one could be composed of four subdisks of the same total
size.

For the most common cases, you need only worry about disk groups and volumes;
plexes are taken care of automatically by the LSM. In the remainder of this section,
we’ll look briefly at some simple examples of LSM configuration. Consult the docu-
mentation for full details.

The voldiskadd command is used to create new disk group.* This command takes the
disks to be added to the group as its arguments:

voldiskadd dsk3 dsk4 ...

It is an interactive tool which will prompt you for the additional information it
needs, including the disk group name (we’ll use dg1 in our examples) and the use for
each disk (data or spare).

If you later want to place additional disks into a disk group, you use the voldg com-
mand, as in this example, which adds several more disks to dg1:

voldg -g dg1 adddisk dsk9 dsk10 dsk11

Volumes are generally created with the volassist command. For example, the fol-
lowing command creates a volume consisting of a concatenated plex named chem-
vol, essentially a logical volume comprised of space from multiple disks on which a
filesystem can be built:

volassist -g dg1 make chemvol 2g dsk3 dsk4

The volume is created using the dg1 disk group, using the specified disks (the disk
list is optional). Its size is 2 GB.

* This discussion assumes that the LSM has been initialized by creating the root disk group. This is done with
the volsetup command, which takes two or more disks as its arguments. The vold and voliod daemons
should also be running (which happens automatically during a successful LSM installation).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

676 | Chapter 10: Filesystems and Disks

We’ll go on to make this a mirrored plex, using these commands:

volassist -g dg1 mirror chemvol init=active layout=nolog dsk5 dsk6
volassist addlog chemvol dsk7

The first command adds a mirror to the chemvol volume (we’ve again chosen to
specify which disks to use). The second command adds the required logging area to
the volume.

The same technique could be used to mirror a single disk by using
only one disk in each volassist command.

We can create a striped plex in a similar way:

volassist -g dg1 make stripevol 2g layout=stripe nstripe=2 dsk3 dsk4

This command creates a two-way striped volume named stripevol.*

The following command will create a 3 GB RAID 5 volume:

volassist -g dg1 make raidvol 3g layout=raid5 nstripe=5 disks

For both striped and RAID 5 volumes, you can also use the stripeunit attribute (fol-
lowing nstripe) to specify the stripe size.

Disk groups containing mirrored or RAID 5 volumes should include designated hot
spare disks. The following commands designate dsk9 as a hot spare for our disk
group:

voledit -g dg1 set spare=on dsk9
volwatch -s lsmadmin@ahania.com

The volwatch command enables automatic hot spare replacement (-s), and its argu-
ment is the email address to which to send notifications when these events occur.

Once an LSM volume is created, it can be placed within an AdvFS domain and used
for creating filesets.

The following commands are useful in obtaining information about LSM entities:

voldg -g dg free
Display free space in a disk group.

voldisk list
List all component disks used by the LSM.

volprint -v
List all volumes.

* For more complex striped and RAID 5 plexes, you may need to define subdisks to force the various stripes
to specific disks (e.g., to spread them across multiple controllers) as the default assignments made by the
LSM often do not do so.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 677

volprint -ht volume
Display information about a specific volume.

volprint -pt
List all plexes.

volprint -lp plex
Display information about a specific plex.

volprint -st
List all subdisks.

volprint -l subdisk
Display information about a specific subdisk.

Finally, the volsave command is used to save the LSM metadata to a disk file, which
can then be backed up. The default location for these files is /usr/var/lsm/db, but you
can specify an alternate location using the command’s -d option. The files them-
selves are given names of the form LSM.n.host, where n is a 14 digit encoding of the
date and time. The volrestore command will restore the saved data should it ever be
necessary.

Solaris

Solaris 9 introduces a logical volume manager as part of the standard operating sys-
tem. This facility was available as an add-on product with earlier versions of Solaris
(although there have been some changes with respect to previous versions—see the
documentation for details).

The Solaris Volume Manager supports striping, mirroring, RAID 5, soft partitions
(the ability to divide any disk into more than four partitions), and some other fea-
tures. The Volume Manager must be initialized before its first use, using commands
like these:

metadb -a -f c0t0d0s7 Create initial state database replicas.
metadb -a -c 2 c1t3d0s2 Add replicas on this slice.

We are now ready to create volumes. We will look briefly at some simple examples
in the remainder of this section.

The Solaris Volume Manager uses fixed names for volumes of the form dn, where n is
an integer from 0 to 127. Thus, the maximum number of volumes is 128. The
metainit command does most of the work of creating and configuring volumes.

The following command will create a concatenated volume consisting of three disks:

metainit d1 3 1 c1t1d0s2 1 c1t2d0s2 1 c1t3d0s2

The parameters are the volume name, the number of components (always greater
than one for a concatenated volume), and then three pairs consisting of the number
of component disks (always 1 here) followed by desired disk(s). When the com-
mand completes, the volume d1 can be treated as if it were a single disk partition.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

678 | Chapter 10: Filesystems and Disks

You can expand an existing filesystem using a similar command, as in this example,
which expands the /docs filesystem (originally on c0t0d0s6):

umount /docs
metainit d10 2 1 c0t0d0s6 1 c2t3d0s2 Add additional disk space.
vi /etc/vfstab Change the filesystem's devices to /dev/md/[r]dsk/md10.
mount /docs
growfs -M /dev/md/rdsk/d10 Increase the filesystem size to the volume size.

The following command will create a striped volume:

metainit d2 1 2 c1t1d0s2 c2t2d0s2 -i 64k

The parameters following the volume name indicate that we are creating a single
striped volume with two component disks, using a stripe size (interlace value) of 64
KB (-i).

You can mirror volumes using metainit’s -m option, followed by the metattach com-
mand, as in this example:

metainit d20 -f 1 1 c0t3d0s2 Create the volume to be mirrored.
umount /dev/dsk/c0t3d0s2
metainit d21 1 1 c2t1d0s2 Create a volume to be used as the mirror.
metainit d22 -m d20 Specify the volume to be mirrored.
vi /etc/vfstab Modify entry to point to the mirror volume (d22).
mount /dev/md/dsk/d22 Remount filesystem.
metattach d22 d21 Add a mirror.

In this case, we add a mirror to an existing filesystem. We use the -f option on the
first metainit command to force a volume to be created from an existing filesystem.

If we were mirroring the root filesystem, we would run the metaroot
command (specifying the mirror volume as its argument) and then
reboot the system, rather than ummounting and remounting the file-
system.

Other volume types can also be mirrored—concatenated, striped, etc.—using just
the final two commands.

You can specify the read and write policies for mirrored volumes using the metaparam
command, as in this example:

metaparam -r geometric -w parallel d22

The -r option specifies the read policy, one of roundrobin (successive read opera-
tions go to each disk in turn, which is the default), first (all reads go to the first
disk), and geometric (read operations are divided between the component disks by
assigning specific disk regions to each one). The geometric read policy can minimize
seek times by confining disk head movement to a subset of the disk, which can pro-
duce measurable performance improvements for I/O that is seek time–limited (e.g.,
randomly accessed data, such as a database).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 679

The -w parameter specifies the write policy, one of parallel (write to all disks at the
same time, which is the default) and serial. The latter might be used to improve per-
formance when both mirrors are on the same busy disk controller.

The following command will create a RAID 5 volume:

metainit d30 -r disks -i 96k

This creates a RAID 5 volume using a stripe size of 96 KB. The default stripe size is
16 KB, and it must range from 8 KB to 100 KB.

Don’t try to access a RAID 5 volume until it has finished initializing.
This can take a while. You can check its status with the metastat com-
mand.

You can replace a failed RAID 5 component volume using the metareplace com-
mand, as in this example:

metareplace -e d30 c2t5d0s2

Alternatively, you can define a hot spare pool from which disks can be taken as
needed for all RAID 5 devices. For example, these commands create a pool named
hsp001* and designate it for use with RAID 5 device d30:

metainit hsp001 c3t1d0s2 c3t2d0s2
metaparam -h hsp001 d30

You can modify the disks in a hot space pool using the metahs command and its -a
(add), -r (replace), and -d (delete) options.

The last Volume Manager feature we’ll consider is soft partitions. Soft partitions are
simply logical partitions (subsets) of a disk. For example, the following command
creates a volume consisting of 2 GB from the specified disk:

metainit d7 -p c2t6d0s2 2g

When used with a new disk, you can add the -e option to the command. This causes
the disk to be repartitioned so that all but 4 MB is in slice 0 (the 4 MB is in slice 7
and is used to hold a state database replica). For example, this command performs
that repartitioning and then assigns 3 GB of slice 0 to volume d8:

metainit d8 -p -e c2t5d0s2 3g

Once volumes are created, you can create a UFS filesystem on them using newfs as
usual. You can also remove any volume with the metaclear command, which takes
the desired volume as its argument. Naturally, any data on the volume will be lost.

* Hot spare pool names must be of the form hspnnn, where nnn ranges from 000 to 999. Why you would need
1000 hot space pools for 128 volumes is a good question.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

680 | Chapter 10: Filesystems and Disks

The following commands are useful for obtaining information about the Volume
Manager and individual volumes:

metadb
List all state database replicas.

metadb -I
Show status of state database replicas.

metastat dn
Show volume status.

metaparam dn
Show volume settings.

Linux

Linux systems can use both a logical volume manager and software disk striping and
RAID, although the two facilities are separate. They are compatible, however; for
example, RAID volumes can be used as components in the logical volume manager.

The Linux Logical Volume Manager (LVM) project has been in existence for several
years (its homepage is http://www.sistina.com/products_lvm.htm), and support for the
LVM is merged into the Linux 2.4 kernel. Conceptually, the LVM allows you to
combine and divide physical disk partitions in a completely flexible manner. The
resulting filesystems are dynamically resizable. The current version of the LVM sup-
ports up to 99 volume groups and 256 logical volumes. The maximum logical vol-
ume size is currently 256 GB.

The logical volume manager is included in some recent Linux distributions (for
example, SuSE Linux 6.4 and later). If it is not included in yours, installing it is quite
straightforward:

• Download the LVM package and the appropriate kernel patch for your system.

• Unpack and build the LVM package.

• If necessary, patch the kernel source code and build a new kernel, enabling LVM
support during the kernel configuration process. One way to do this is to use the
make xconfig command. Use the Block Devices button from the main menu.

• If you have selected modular support for the LVM, add entries to /etc/modules.
conf to enable the modprobe command to load the LVM module at boot time.
Here are the needed entries:

 alias block-major-58 lvm-mod
 alias char-major-109 lvm-mod

• Install the new kernel into the boot directory, and enable its use with LILO or
GRUB.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 681

• Modify the system startup and shutdown scripts to activate and deactivate the
LVM configuration. Add these commands to the startup scripts:

 vgscan # Search for volume groups
 vgchange -a y # Activate all volume groups

Add this command to the shutdown script:
 vgchange -a n # Deactivate all volume groups

• Reboot the system using the new kernel.

The LVM package includes a large number of administrative utilities, each of which
is designed to create or manipulate a specific type of LVM entity. For example, the
commands vgcreate, vgdisplay, vgchange, and vgremove create, display information
about, modify the characteristics of, and delete a volume group (respectively). You
can also backup and restore the volume group configurations with vgcfgbackup and
vgcfgrestore, change the size of a volume group with vgextend (increase its size by
adding disk space to it) and vgreduce (decrease its size), divide and combine volume
groups (vgsplit and vgmerge), move a volume group between computer systems
(vgexport and vgimport), search all local disks for volume groups (vgscan), and
rename a volume group (vgrename). (Many of these commands are similar to the HP-
UX equivalents.)

There are similar commands for other LVM entities:

Physical volumes
pvcreate, pvdisplay, pvchange, pvmove, and pvscan.

Logical volumes
lvcreate, lvdisplay, lvchange, lvremove, lvreduce, lvextend, lvscan, and
lvrename.

Let’s look at some of these commands in action as we create a volume group and
some logical volumes and then build filesystems on them.

The first step is to set the partition type of the desired disk partitions to 0x8E. We
use fdisk for this task; here is the process for the first disk partition:

fdisk /dev/sdb1
Command (m for help): t
Partition number (1-4): 1
Hex code (type L to list codes): 8e
Command (m for help): w

The first time we use the LVM, we need to run vgscan to initialize the facility (among
other things, it creates the /etc/lvmtab file). Next, we designate the disk partitions as
physical volumes by specifying the desired disk partitions as command arguments to
the pvcreate command (/dev/sdc2 is the second partition we will be using in our vol-
ume group):

pvcreate /dev/sdb1 /dev/sdc2
pvcreate -- reinitializing physical volume
pvcreate -- physical volume "/dev/sdb1" successfully created
...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

682 | Chapter 10: Filesystems and Disks

We are now ready to create a volume group, which we will name vg1:

vgcreate vg1 /dev/sdb1 /dev/sdc2
vgcreate -- INFO: using default physical extent size 4 MB
vgcreate -- INFO: maximum logical volume size is 255.99 Gigabyte
vgcreate -- doing automatic backup of volume group "vg1"
vgcreate -- volume group "vg1" successfully created and activated

This command creates the vg1 volume group using the two specified disk partitions.
In doing so, it creates/updates the ASCII configuration file /etc/lvmtab (which holds
the names of the system’s volume groups) and places a binary configuration file into
two subdirectories of /etc: lvmtab.d/vg1 and lvmconf/vg1.conf (the latter directory will
also store old binary configuration files for this volume group, reflecting changes to
its characteristics and components).

The vgcreate command also creates the special file /dev/vg1/group, which can be
used to refer to the volume group as a device.

Now we can create two 800 MB logical volumes:

lvcreate -L 800M -n chem_lv vg1
lvcreate -- doing automatic backup of "vg1"
lvcreate -- logical volume "/dev/vg1/chem_lv" successfully created
lvcreate -L 800M -n bio_lv -r 8 -C y vg1
lvcreate -- doing automatic backup of "vg1"
lvcreate -- logical volume "/dev/vg1/bio_lv" successfully created

We set the sizes of both logical volumes via the lvcreate command’s -L option. In
the case of the second logical volume, bio_lv, we also specify that the read-ahead
mode chunk size is 8 sectors via -r (the amount of data returned at a time during
sequential access) and specify that a contiguous logical volume be created (via the -C
y option).

Once again, two new special files are created, each named after the corresponding
logical volume and located under the volume group directory in /dev (here, /dev/vg1).

We can now create filesystems using the ordinary mke2fs command, specifying the
logical volume as the device on which to build the new filesystem. For example, the
following command creates an ext3 filesystem on the bio_lv logical volume:

mke2fs -j /dev/vg1/bio_lv

Once built, this filesystem may be mounted as usual. You can also build a Reiser file-
system on a logical volume.

In addition to the previously mentioned commands, the LVM provides the e2fsadmin
command, which can be used to increase the size of a logical volume and the ext2 or
ext3 filesystem it contains a single, nondestructive operation. This utility requires the
resize2fs utility (originally developed by PowerQuest as part of its PartitionMagic
product and now available under the GPL at http://e2fsprogs.sourceforge.net).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 683

Here is an example of its use; the following command adds 100 MB to the bio_lv log-
ical volume and the filesystem that it contains:

umount /dev/vg1/bio_lv
e2fsadm /dev/vg1/bio_lv -L+100M
e2fsck 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/vg1/bio_lv: 11/51200 files (0.0% non-contiguous), 6476/819200 blocks
lvextend -- extending logical volume "/dev/vg1/bio_lv" to 900 MB
lvextend -- doing automatic backup of volume group "vg1"
lvextend -- logical volume "/dev/vg1/bio_lv" successfully extended

resize2fs 1.19 (13-Jul-2000)
Begin pass 1 (max = 5)
Extending the inode table XX
Begin pass 3 (max = 25)
Scanning inode table XX
The filesystem on /dev/vg1/bio_lv is now 921600 blocks long.

e2fsadm -- ext2fs in logical volume "/dev/vg1/bio_lv"
successfully extended to 900 MB

Note that the filesystem must be unmounted in order to increase its size.

To use the Linux software RAID facility, you must install the component disks,
enable RAID support in the kernel and then set up the RAID configuration. You can
perform the second task using a utility like make xconfig and selecting the Block
Devices category from the main menu. The Multiple devices driver support item is
the one that must be enabled to access all of the other RAID-related items. I recom-
mend enabling all of them.

RAID devices use special files of the form /dev/mdn (where n is an integer), and they
are defined in the /etc/raidtab configuration file. Once defined, you can create them
using the mkraid command and start and stop them with the raidstart and raidstop
commands. Alternatively, you can define them with the persistent superblock
options, which enables automatic detection and mounting/dismounting of RAID
devices by the kernel. In my view, the latter is always the best choice.

The best way to understand the /etc/raidtab file is to examine some sample entries.
Here is an entry corresponding to a striped disk using two component disks, which I
have annotated:

raiddev /dev/md0 Defines RAID device 0.
raid-level 0 RAID level.
nr-raid-disks 2 Number of component disks.
chunk-size 64 Stripe size (in KB).
persistent-superblock 1 Enable the persistent superblock feature.
device /dev/sdc1 Specify the first component disk ...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

684 | Chapter 10: Filesystems and Disks

raid-disk 0 and number it.
device /dev/sdd1 Same for all remaining component disks.
raid-disk 1

If we had wanted to define a two-way mirror set instead of a stripe set, using the
same disks, we would omit the chunk-size parameter and change the raid-level
parameter from 0 to 1 in the first section, and the rest of the entry would remain the
same.

We can set up a RAID 0+1 disk, a mirrored striped disk, in this way:

raiddev /dev/md0
...Set up the first striped disk.
raiddev /dev/md1
...Set up the second striped disk.

raiddev /dev/md2
raid-level 1
nr-raid-disks 2
persistent-superblock 1
device /dev/md0 The component disks are also md devices.
raid-disk 0
device /dev/md1
raid-disk 1

The following entry defines a RAID 5 disk containing 5 component disks, as well as a
spare disk to be automatically used should any of the active disks fail:

raiddev /dev/md0
raid-level 5 Use RAID level 5.
nr-raid-disks 5 Number of active disks in the device.
persistent-superblock 1
device /dev/sdc1 Specify the 5 component disks.
raid-disk 0
device /dev/sdd1
raid-disk 1
device /dev/sde1
raid-disk 2
device /dev/sdf1
raid-disk 3
device /dev/sdg1
raid-disk 4
device /dev/sdh1 Specify a spare disk.
spare-disk 0

You can use multiple spare disks if you want to.

RAID devices can be used with the logical volume manager if desired.

FreeBSD

FreeBSD provides the Vinum Volume Manager. It uses somewhat different concepts
than other LVMs. Under Vinum, a drive is a physical disk partition. Disk space is
allocated from drives in user-specified chunks known as subdisks. Subdisks in turn

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 685

are used to define plexes, and one or more plexes makes up a Vinum volume. Multi-
ple plexes within a volume constitute mirrors.

Be prepared to be very patient when learning Vinum. It is quite inflexi-
ble in how it wants operations to be performed. Plan to learn the pro-
cedures on a safe test system.

In addition, be aware that the facility is still under development. As of
this writing, only the most basic functionality is present.

To use a disk partition with Vinum, it must be prepared as follows:

• Create one or more slices on it using fdisk.

• Create an initial disk label using disklabel or sysinstall. I prefer the latter. If
you choose to use sysinstall, create a single swap partition in each slice that
you want to use with Vinum. Ignore the messages about it being unable to start
the swap partition (you don’t want it to anyway).

• Modify the disk label using disklabel -e. Only the partition list at the bottom
will need to be changed. It must look like this when you are done:

 # size offset fstype [fsize bsize bps/cpg]
 c: 11741184 0 unused # (Cyl. 0 - 11647)
 e: 117411184 0 vinum

If you used sysinstall to create the initial disk label, all you have to do is add
the final line.

Partition e is somewhat arbitrary, but it works. Note that partition c cannot be used
with Vinum.

Once the drives are prepared, the best way to proceed is to create a description file
that defines the Vinum entities that you want to create. Here is a file that defines a
volume named big:

drive d1 device /dev/da1s1e Define drives.
drive d2 device /dev/da2s1e
volume big Define volume big.
 plex org concat Create a concatenated plex.
 sd length 500m drive d1 First 500 MB subdisk from drive d1.
 sd length 200m drive d2 Second 200 MB subdisk from drive d2.

The file first defines the drives to be used, naming them d1 and d2. Note that this
operation needs to be performed only once for a given partition. Future example
configurations will omit drive definitions.

The second section of the file defines the volume big as one concatenated plex (org
concat). It consists of two subdisks: 500 MB of space from /dev/da1s1e and 200 MB
of space from /dev/da2s1e. This disk space will be treated as a single unit.

You can create these entities using the following command:

vinum create /etc/vinum.big.conf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

686 | Chapter 10: Filesystems and Disks

The final argument specifies the location of the description file.

Once the volume is created, you can create a filesystem on it:

newfs -v /dev/vinum/big

The device is specified via the file in /dev/vinum named for the volume. The -v option
tells newfs not to look for partitions on the specified device. Once newfs completes,
the filesystem may be mounted. For it to be detected properly at boot time, how-
ever, the following line must be present in /etc/rc.conf:

start_vinum="YES"

This causes the Vinum kernel module to be loaded on boots.

Here is a description file that defines a striped (RAID 1) volume:

volume fast
 plex org striped 1024k
 sd length 0 drive d1
 sd length 0 drive d2

This stripe set consists of two components. The plex line has an additional entry, the
stripe size. This value must be a multiple of 512 bytes. The subdisk definitions spec-
ify a length of 0; this corresponds to all available space in the device. The actual vol-
ume can be created using the vinum create command as before.

If both of these volumes were created, then different areas of the various disk parti-
tions would be used by each one. Vinum drives can be subdivided among different
volumes. You can specify the location with the drive when the subdisk is created (see
the vinum(8) manual page for details).

The following configuration file creates a mirrored volume by defining two plexes:

volume mirror
 plex org concat First mirror.
 sd length 1000m drive d1
 plex org concat Second mirror.
 sd length 1000m drive d2

Creating and activating the mirrored volume requires several vinum commands (the
output is not shown):

vinum create file Create the volume.
vinum init mirror.p1 Initialize the subdisk.
Wait for command to finish.
vinum start mirror.p1 Activate the mirror.

When you first create a mirrored volume, the state of the second plex appears in sta-
tus listings as faulty, and its component subdisk has a status of empty. The vinum
init command initializes all of the component subdisks of plex mirror.p1, and the
vinum start command regenerates the mirror (actually, creates it for the first time).
Both of these commands start background processes to do the actual work, and you

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 687

must wait for the initialization to finish before running the regeneration. You can
check on their status using this command:

vinum list

Once both of these commands have completed, you can build a filesystem and
mount it.

The following description file created a RAID 5 volume named safe:

volume safe
 plex org raid5 1024k
 sd length 0 drive d1
 sd length 0 drive d2
 sd length 0 drive d3
 sd length 0 drive d4
 sd length 0 drive d5

This volume consists of a single plex containing five subdisks. The following com-
mands can be used to create and activate the volume:

vinum create file Create the volume.
vinum init safe.p0 Initialize the subdisks.

Once again, the initialization process runs in the background, and you must wait for
it to finish before creating a filesystem.

As a final example, consider this description file:

volume zebra
 plex org striped 1024k
 sd length 200m drive d1
 sd length 200m drive d2
 plex org striped 1024k
 sd length 200m drive d3
 sd length 200m drive d4

This file defines a volume named zebra, which is a striped mirrored volume (RAID
0+1). The volume consists of two striped plexes which become mirrors. The follow-
ing commands are required to create and activate this volume:

vinum create file Create the volume.
vinum init zebra.p0 zebra.p1 Initialize subdisks.
vinum start zebra.p1 Regenerate the mirror.

The following commands are useful for displaying Vinum information:

vinum list
Display information about all Vinum entities.

vinum ld
List drives, including current free space.

vinum lv
List volumes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 10: Filesystems and Disks

vinum ls
List subdisks.

vinum ls -v
Display subdisk details, including the plex they are part of and their component
drives.

vinum lp
List plexes.

vinum lp -v
Display plex details, including the volume they belong to.

You can follow any of these commands with the name of a specific item to limit the
display to its characteristics.

Here is an example of the vinum list command:

4 drives:
D d1 State: up Device /dev/ad1s1e Avail: 2799/2999 MB (93%)
D d2 State: up Device /dev/ad1s2e Avail: 2799/2999 MB (93%)
D d3 State: up Device /dev/ad1s3e Avail: 2799/2999 MB (93%)
D d4 State: up Device /dev/ad1s4e Avail: 532/732 MB (72%)

1 volumes:
V zebra State: up Plexes: 2 Size: 400 MB

2 plexes:
P zebra.p0 S State: up Subdisks: 2 Size: 400 MB
P zebra.p1 S State: faulty Subdisks: 2 Size: 400 MB

4 subdisks:
S zebra.p0.s0 State: up PO: 0 B Size: 200 MB
S zebra.p0.s1 State: up PO: 1024 kB Size: 200 MB
S zebra.p1.s0 State: R 16% PO: 0 B Size: 200 MB
S zebra.p1.s1 State: R 16% PO: 1024 kB Size: 200 MB

This display shows the zebra volume we defined earlier. The subdisk initialization
has completed. At this moment, the regeneration operation is 16% complete.

Floppy Disks
On systems with floppy disk drives, Unix filesystems may also be created on floppy
disks. (Before they can be used, floppy disks must, of course, be formatted.) But why
bother? These days, it is usually much more convenient to use floppy disks in one of
the following ways:

• Mounted as a DOS-type filesystem whose files can then be accessed with stan-
dard utilities like cp and ls.

• Using special utilities designed to read and write files to and from DOS disks
(we’ll look at specific examples in a minute).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 689

Floppy disk special files

Floppy disks are accessed using the following special files (the default refers to a 1.44
MB 3.5-inch diskette):

Floppy disk special files are only occasionally needed on Solaris systems, because
these devices are managed by the media handling daemon (discussed later in this
chapter).

Using DOS disks on Unix systems

Methods for accessing DOS disks vary widely from system to system. In this section,
we’ll look at formatting diskettes in DOS format and copying files to and from them
on each system.

Under HP-UX, the following commands format a DOS floppy disk:

$ mediainit -v -i2 -f16 /dev/rdsk/c0t1d0
$ newfs -n /dev/rdsk/c0t1d0 ibm1440

The -n option on the newfs command prevents boot information from being written
to the diskette.

HP-UX provides a number of utilities to access files on DOS diskettes: doscp, dosdf,
doschmod, dosls, dosll, dosmkdir, dosrm, and dosrmdir. Here is an example using
doscp:

$ doscp /dev/rdsk/c0d1s0:paper.txt paper.new

This command copies the file paper.txt from the diskette to the current HP-UX direc-
tory.

On Linux and FreeBSD systems, a similar process is used. These commands format a
DOS floppy and write files to it:

The Mtools utilities are also available on Linux and FreeBSD systems (described in
the next section).

AIX /dev/fd0
FreeBSD /dev/fd0
HP-UX /dev/dsk/c0t1d0 (Normal disk naming convention)
Linux /dev/fd0
Solaris /dev/diskette
Tru64 /dev/fd0

Linux
fdformat /dev/fd0
mkfs -t msdos /dev/fd0
mount /dev/fd0 /mnt
cp prop2.txt /mnt
umount /mnt

FreeBSD
fdformat /dev/fd0
newfs_msdos /dev/fd0
mount /dev/fd0 /mnt
cp prop2.txt /mnt
umount /mnt

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

690 | Chapter 10: Filesystems and Disks

AIX also provides several utilities for accessing DOS disks: dosformat, dosread,
doswrite, dosdir, and dosdel. However, they provide only minimal functionality—
for example, there is no wildcard support—so you’ll be much happier and work
more efficiently if you use the Mtools utilities.

On Solaris systems, diskettes are controlled by the volume management system and
its vold daemon. This facility merges the diskette as transparently as possible within
the normal Solaris filesystem.

These commands could be used to format a diskette and create a DOS filesystem on it:

$ volcheck
$ fdformat -d -b g04

The volcheck command tells the volume management system to look for new media
in the devices that it controls. The fdformat command formats the diskette, giving it
a label of g04.

The following commands illustrate the method for copying files to and from diskette:

$ volcheck
$ cp ~/proposals/prop2.txt /floppy/g96
$ cp /floppy/g96/drug888.dat ./data
$ eject

The diskette is mounted in a subdirectory of /floppy named for its label (or in /floppy/
unnamed_floppy if it does not have a label). Configuration of vold is discussed later
in this chapter.

Tru64 provides no support for DOS diskettes, so you’ll need to use the Mtools utili-
ties, to which we will now turn.

The Mtools utilities

The Mtools package is available for all the Unix versions we are considering. It is cur-
rently maintained by David Niemi and Alain Knaff (see http://mtools.linux.lu).

The package contains a series of utilities for accessing DOS diskettes and their files,
modeled after their similarly named DOS counterparts:

mformat
Format a diskette in DOS format.

mlabel
Label a DOS diskette.

mcd
Change the current directory location on the diskette.

mdir
List the contents of a directory on a DOS diskette.

mtype
Display the contents of a DOS file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 691

mcopy
Copy files between a DOS diskette and Unix.

mdel
Delete file(s) on a DOS diskette.

mren
Rename a file on a DOS diskette.

mmd
Create a subdirectory on a DOS diskette.

mrd
Remove a subdirectory from a DOS diskette.

mattrib
Change DOS file attributes.

Here are some examples of using the Mtools utilities:

$ mdir
Volume in drive A is GIAO24
Directory for A:/
SILVERDAT79 1-29-95 9:36p
PROP43_1 TXT2304 1-29-95 9:33p
REFCARD DOC73216 1-13-95 5:28p
3 File(s) 1381376 bytes free
$ mren prop43_1.txt prop43_1.old
$ mcopy a:refcard.doc .
Copying REFCARD.DOC
$ mcopy proposal.txt a:
Copying PROPOSAL.TXT
$ mmd data2
$ mcopy gold* a:data2
Copying GOLD.DAT
Copying GOLD1.DAT
$ mcopy "a:\data*.dat" ./data
Copying NA.DAT
Copying HG.DAT
$ mdel silver.dat

As these examples illustrate, the Mtools utilities are designed to make accessing dis-
kettes as painless as possible. For example, it generally assumes that files being
referred to are on the floppy disk. The only time that you have to refer explicitly to
the diskette—via the a: construct—is with the mcopy command, which makes sense
because there is no other way to know which direction the copy is taking place. Note
also that filenames on diskette are not case-sensitive.

Stupid DOS partition tricks

On PC-based Unix systems, hard-disk DOS partitions can also be mounted within
the Unix filesystem. This allows not only for copying files between Unix and the
other operating systems, but also for handling the entire partition using Unix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

692 | Chapter 10: Filesystems and Disks

utilities. For example, suppose you decide to change the partitioning scheme on your
boot disk, decreasing the size of the DOS partition (without affecting the Unix parti-
tions). The following commands will let you do so without reinstalling DOS, Win-
dows, or any installed software:

mount -t msdos /dev/hdal /mnt Linux is used as an example.
cd /mnt
tar -c -f /tmp/dos.tar *
unmount /mnt
Mess with partitions and/or filesystems.
mount -t msdos /dev/hda1 /mnt
cd /mnt
tar -x -f /tmp/dos.tar
cd /; umount /mnt

You could restore only some of the files from the tar archive if that is what made
sense. Many other operations along these lines are also possible: for example, mov-
ing the DOS partition from the first hard drive to the second one, copying a DOS
partition between systems or across a network, and so on. There are, of course, other
ways of accomplishing these same tasks, but this procedure is often much faster.

When the partition in question is the Windows boot partition, this
procedure works very well with older and simpler Windows versions
such as Windows 98 and Windows ME. For Windows NT and later,
you may have to alter the Boot.Ini file to get the system to boot.

CD-ROM Devices
CD-ROM drives are also generally treated in a manner similar to disks. The follow-
ing special files are used to access SCSI CD-ROM devices:

The following example commands all mount a CD on the various systems:

mount -o ro -v cdrfs /dev/cd0 /mnt AIX
mount -r -t cd9660 /dev/cd0c /mnt FreeBSD
mount -o ro -F cdfs /dev/dsk/c1t2d0 /mnt HP-UX
mount -r -t iso9660 /dev/sonycd_31a /mnt Linux
mount -o ro -t hsfs /dev/c0t2d0s0 /mnt Solaris
mount -r -t cdfs /dev/disk/cdrom0c /mnt Tru64

Entries can also be added to the filesystem configuration file for CD-ROM
filesystems.

AIX /dev/cd0
FreeBSD /dev/cd0c or /dev/acd0c (SCSI or ATAPI)
Linux /dev/cdrom
Solaris /dev/dsk/c0tnd0s02 (Normal disk naming conventions)
HP-UX /dev/dsk/cmtnd0 (Normal disk naming conventions)
Tru64 /dev/disk/cdrom0c

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

From Disks to Filesystems | 693

CD-ROM drives under AIX

On AIX systems, if you add a CD-ROM drive to an existing system, you’ll need to
create a device for it in this manner:

mkdev -c cdrom -r cdrom1 -s scsi -p scsi0 -w 5,0
cd0 available

This command adds a CD-ROM device using SCSI ID 5.

Individual CDs are usually mounted via predefined mount points. For example, the
following commands create a generic CD-ROM filesystem to be mounted on /cdrom:

mkdir /cdrom
crfs -v cdrfs -p ro -d cd0 -m /cdrom -A no

This filesystem will be mounted read-only and will not automatically be mounted
when the system boots. A CD may now be mounted with the mount /cdrom com-
mand.

The lsfs command may be used to list all defined CD-ROM filesystems:

$ lsfs -v cdrfs
Name Nodename Mount Pt VFS Size Options Auto Acct
/dev/cd0 -- /cdrom cdrfs -- ro no no

The Solaris media-handling daemon

Solaris has a similar media handling facility implemented by the vold daemon. It gen-
erally mounts CDs and diskettes in directory trees rooted at /cdrom and /floppy,
respectively, creating a subdirectory named for the label on the current media (or
unnamed_cdrom and unnamed_floppy for unlabeled ones).

There are two configuration files associated with the volume management facility.
/etc/vold.conf specifies the devices that it controls and the filesystem types it sup-
ports:

Volume Daemon Configuration file
#

Database to use (must be first)
db db_mem.so

Labels supported
label dos label_dos.so floppy
label cdrom label_cdrom.so cdrom
label sun label_sun.so floppy

Devices to use
use cdrom drive /dev/dsk/c0t6 dev_cdrom.so cdrom0
use floppy drive /dev/diskette dev_floppy.so floppy0

Actions
insert /vol*/dev/diskette[0-9]/* user=root /usr/sbin/rmmount
insert /vol*/dev/dsk/* user=root /usr/sbin/rmmount

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

694 | Chapter 10: Filesystems and Disks

eject /vol*/dev/diskette[0-9]/* user=root /usr/sbin/rmmount
eject /vol*/dev/dsk/* user=root /usr/sbin/rmmount
notify /vol*/rdsk/* group=tty /usr/lib/vold/volmissing -c

List of file system types unsafe to eject
unsafe ufs hsfs pcfs

The section labeled Actions indicates commands to be run when various events
occur—media is inserted or removed, for example. The final section lists filesystem
types that must be unmounted before being removed and hence will require the user
to issue an eject command.

If you want to share mounted CDs via the network, you’ll need to add an entry to /etc/
rmmount.conf:

Removable Media Mounter configuration file.
#

File system identification
ident hsfs ident_hsfs.so cdrom
ident ufs ident_ufs.so cdrom floppy
ident pcfs ident_pcfs.so floppy

Actions
action -premount floppy action_wabi.so.1
action cdrom action_filemgr.so
action floppy action_filemgr.so

File System Sharing
share cdrom*
share solaris_2.x* -o ro:phys

File-sharing entries are in the final section of this file. An entry is provided for shar-
ing standard CD-ROM filesystems (mounted at /cdrom/cdrom*). The -o in the sec-
ond entry in this section passes options to the share command, in this case limiting
access. You can modify the provided entry for CD-ROMs if appropriate. Shared CD-
ROM filesystems can be mounted by other systems using the mount command and
entered into their /etc/vfstab files.

Tru64 also has a vold daemon. However, it is part of its Logical Stor-
age Manager facility and thus performs a completely different func-
tion.

Sharing Filesystems
In the final section of this chapter, we consider sharing local filesystems with other
systems, including Windows systems. It covers the most common Unix filesystem
sharing facility, NFS, and the Samba facility, which makes Unix filesystems available
to Windows systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Filesystems | 695

More information about NFS is available in NFS and NIS by Hal Stern, Mike Eisler
and Ricardo Labiaga (O’Reilly & Associates). More information about Samba is
available in the books Teach Yourself Samba in 24 Hours by Gerald Carter with Rich-
ard Sharpe (SAMS) and Using Samba by Robert Eckstein, David Collier-Brown, and
Peter Kelly (O’Reilly & Associates).

NFS
The Network File System (NFS) enables filesystems physically residing on one com-
puter system to be used by other computers in the network, appearing to users on the
remote host as just another local disk.* NFS is universally available on Unix systems.

The following configuration files are used by NFS:

/etc/fstab (/etc/vfstab under Solaris)
Remote filesystems are entered into the filesystem configuration file, using only a
slightly varied syntax from regular entries.

/etc/exports
This file controls which filesystems on the local system can be mounted by
remote hosts and under what conditions and restrictions. On Solaris systems,
this file is not used, but the file /etc/dfs/dfstab performs an analogous function.

Table 10-10 lists the daemons used by NFS and the files that start them in the vari-
ous Unix versions.

* However, NFS assumes that users will have accounts with the same UID on both systems.

Table 10-10. NFS daemonsa

Item AIX FreeBSD HP-UX Linux Solaris Tru64

Main NFS
daemon

nfsd nfsd nfsd rpc.nfsd nfsd nfsd

Handles
mount
requests

mountd mountd mountd rpc.
mountd

mountd mountd

Block/asynch.
I/O

biod nfsiod biod nfsiod

File locking rpc.lockd rpc.lockd rpc.lockd rpc.lockd lockd Rpc.lockd

Network sta-
tus monitor

rpc.statd rpc.statd rpc.statd rpc.statd statd Rpc.statd

RPC port
mapper

portmap portmap portmap portmap rpcbind portmap

Boot script(s)a

a The portmap daemon is started by a different file, as part of general TCP/IP initialization.

/etc/rc.nfs /etc/rc.net-
work

/sbin/init.d/
nfs.*

/etc/init.d/
nfs*

/etc/init.d/nfs.
*

/etc/init.d/
nfs*

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

696 | Chapter 10: Filesystems and Disks

A few remarks about some of these daemons are in order:

• The nfsd daemon handles filesystem exporting and file access requests from
remote systems. An NFS server—any system that makes its filesystems available
to other computers—runs multiple instances of this daemon.

• The biod daemon performs NFS (block) I/O operations for client processes.
Multiple instances of this daemon typically run on NFS clients.

• The mountd daemon handles mount requests from remote systems.

• The rpc.lockd daemon manages file locking on both server and client systems.

• The rpc.statd daemon handles lock, crash, and recovery services (client and
server).

• The portmap daemon facilitates initial connection between local and remote serv-
ers (not strictly an NFS daemon but required for the NFS server facility to func-
tion).

As Table 10-10 indicates, the names of these daemons vary on some systems.

Mounting remote directories

As we’ve noted, remote filesystems may be entered into the filesystem configuration
file in order to allow them to be automatically mounted at boot time. The format for
an NFS entry is:

host:pathname mount-pt nfs options 0 0

where the first field is a concatenation of the remote hostname and the pathname to
the mount point of the desired filesystem on the remote host, joined with a colon.
For example, to designate the filesystem mounted at /organic on host duncan, use
duncan:/organic. The filesystem type field is set to nfs, and the remaining fields have
their usual meanings. Note that the dump frequency and fsck pass fields should be
zero.

Here is an example:

device mount type options dump fsck
duncan:/organic /duncan/organic nfs bg,intr 0 0

On Solaris systems, the /etc/vfstab entries look like this:

mount fsck
device dev mount type pass auto? options
duncan:/organic - /remote/organic nfs - yes bg,intr

In addition to options for local filesystems, there are many other options available for
remote filesystems. The most important are summarized in Table 10-11.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Filesystems | 697

The soft and hard options are worth special mention. They define the action taken
when a remote filesystem becomes unavailable. If a remote filesystem is mounted as
hard, NFS will try to complete any pending I/O requests forever, even after the maxi-
mum number of retransmissions is reached; if it is mounted soft, an error will occur
and NFS will cancel the request.

If a remote filesystem is mounted hard and intr is not specified, the process will
block (be hung) until the remote filesystem reappears. For an interactive process
especially, this can be quite annoying. If intr is specified, sending an interrupt signal
to the process will kill it. This can be done interactively by typing Ctrl-C (although it
won’t die instantly; you’ll still have to wait for the timeout period). For a back-
ground process, sending an INT (2) or QUIT (3) signal will usually work (again not
necessarily instantaneously):

kill -QUIT 34216

Sending a KILL signal (–9) will not kill a hung NFS process.

It would seem that mounting filesystems soft would get around the process-hanging
problem. This is fine for filesystems mounted read-only. However, for a read-write
filesystem, a pending request could be a write request, and so simply giving up could
result in corrupted files on the remote filesystem. Therefore, read-write remote file-
systems should always be mounted hard, and the intr option should be specified to
allow users to make their own decisions about hung processes.

Here are some additional example /etc/fstab entries for remote filesystems:

duncan:/benzene /rings nfs rw,bg,hard,intr,retrans=5 0 0
portia:/propel /peptides nfs ro,soft,bg,nosuid 0 0

The first command mounts the filesystem mounted at /benzene on the host duncan
under /rings on the local system. It is mounted read-write, hard, with interrupts
enabled. The second command mounts the /propel filesystem on the host portia

Table 10-11. Important NFS-specific mounting options

Option Meaning

bg If the NFS mount of this filesystem fails on the first try, continue retrying in the background. This speeds up
booting when remote filesystems are unavailable.

retry=n Number of mount retries before giving up (100,000 is the default).

timeo=n Set the timeout—the length of time to wait for the first try of each individual NFS request before giving
up—to the specified number of tenths of seconds. Each subsequent retry doubles the previous timeout
value.

retrans=n Retransmit a request n times before giving up (the default is 3).

soft, hard Quit or continue trying to connect even after the retrans value is met.

intr Allow an interrupt to kill a hung process.

rsize=n

wsize=n

The size of the read or write buffer in bytes. Tuning these sizes can have a significant impact of NFS perfor-
mance on some systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

698 | Chapter 10: Filesystems and Disks

under /peptides; this filesystem is mounted read-only, and the SetUID status of any of
its files is ignored on the local host.

Under AIX, remote filesystems have stanzas in /etc/filesystems like local ones, with
some additional keywords:

/rings: Local mount point.
 dev = /benzene Remote filesystem.
 vfs = nfs Type is NFS.
 nodename = duncan Remote host.
 mount = true Mount on boot.
 options = bg,hard,intr Mount options.

Once defined in the filesystem configuration file, the short form of the mount com-
mand may be used to mount the filesystem. For example, the following command
mounts the proper remote filesystem at /rings:

mount /rings

The mount command may also be used to mount remote filesystems on an ad hoc
basis, for example:

mount -t nfs -o rw,hard,bg,intr duncan:/ether /mnt

This command mounts the /ether filesystem from duncan under /mnt on the local
system. Note that the option that specifies the filesystem type varies on some sys-
tems. In fact, the filesystem type is usually superfluous.

Exporting local filesystems

The /etc/exports file controls the accessibility of local filesystems to network access
(except on Solaris systems; see below). Its traditional form consists of a series of lines
containing a local filesystem mount point and followed by one or more hostnames:

/organic spain canada
/inorganic

This export configuration file allows the hosts spain and canada to mount the /organic
filesystem and any remote host to remotely mount the /inorganic filesystem.

The preceding examples present only the simplest examples of filesystem export
options. In fact, any filesystem, directory, or file can be exported, not just the
entire filesystem. And there is greater control over the type of access allowed.
Entries in /etc/exports consist of lines of the form:

pathname -option,option...

pathname is the name of the file or directory to which network access will be
allowed. If pathname is a directory, all of the files and directories below it within the
same local filesystem are also exported, but not any filesystems mounted within it.
The second field in the entry consists of options specifying the type of access to be
given and to whom.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Filesystems | 699

A filesystem should be exported only once to a given host. Exporting
two different directories within the same filesystem to the same host
doesn’t work in general.

Here are some sample entries from /etc/exports (note that only the first option in the
list is preceded by a hyphen):

/organic -rw=spain,access=brazil:canada,anon=-1
/metal/3 -access=duncan:iago,root=duncan
/inorganic -ro

This file allows the host spain to mount /organic for reading and writing and the
hosts brazil and canada to mount it read-only, and it maps anonymous users—user-
names from other hosts that do not exist on the local system and the root user from
any remote system—to the UID –1. This corresponds to the nobody account, and it
tells NFS not to allow such a user access to anything. On some systems, the UID –2
may be used to allow anonymous users access only to world-readable files. The -rw
option exports the directory read-write to the hosts specified as its argument and
read-only to all other allowed hosts; this access is referred to as read-mostly.

Note that hosts within a list are separated by colons.

The second entry grants read-write access to /metal/3 to the hosts duncan and iago,
and allows root users on duncan to retain that status and its access rights when using
this filesystem. The third entry exports /inorganic read-only to any host that wants to
use it.

Table 10-12 lists the most useful exports file options.

Table 10-12. Useful exports file options

Option Meaning

rw=list ro=list Read-write and read-only access lists. rw is the default.

root=list List of hosts where root status may be retained for this filesystem.

anon=n Map remote root access to this UID.

maproot=n Map remote root access to this UID (FreeBSD).

mapall=n Map all remote users to this UID (FreeBSD).

root_squash Map UID 0 and GID 0 values to the anonymous values (under Linux, to those specified in the
anonuid and anongid options). This is the default.

anonuid=n anongid=n UID/GID to which to map incoming root/group 0 access (Linux).

noaccess Prohibits access to the specified directory and its subdirectories (Linux). This option is used to
prevent access to part of a tree that has already been exported.

secure Require access to be via the normal privileged NFS port (Linux). This is the default. I do not rec-
ommend ever using the insecure option.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

700 | Chapter 10: Filesystems and Disks

If you modify /etc/exports, the exportfs command must be run to put the new access
restrictions into effect. The following command puts all of the access information in
/etc/exports into effect:

exportfs -a

FreeBSD does not provide the exportfs command. You can use this command instead:

kill -HUP `cat /var/run/mountd.pid`

Tru64 also does not have exportfs. The NFS mountd daemon detects changes to the
file automatically.

The showmount command may be used to list exported filesystems (using its -e
option) or other hosts that have remotely mounted local filesystems (-a). For exam-
ple, the following command shows that the hosts spain and brazil have mounted the
/organic filesystem:

showmount -a
brazil:/organic
spain:/organic

This data is stored in the file /etc/rmtab. This file is saved across boots, so the infor-
mation in it can get quite old. You may want to reset it from time to time by copying
/dev/null onto it (the system boot scripts take care of this automatically when NFS is
started).

If you’re having trouble allowing other systems to mount the local file-
systems from some particular system, the first thing to check is that
the NFS server daemons are running. These daemons are often not
started by default. If they are not running, you can start them manu-
ally, using the boot script listed in Table 10-10.

Exporting directories under Linux. The exports file has a slightly different format on
Linux systems; options are included in parentheses at the end of the entry:

/organic spain(rw) brazil(ro) canada(ro)
/metal/3 *.ahania.com(rw,root_squash)
/inorganic (ro)

Based on this file, /organic is exported read-write to spain and read-only to brazil and
canada. /metal/3 is exported read-write to any host in the domain ahania.com, with
UID 0 access mapped to the nobody account. /inorganic is exported read-only to the
world.

Exporting filesystems under Solaris. On Solaris systems, filesystem exporting is done via
the /etc/dfs/dfstab configuration file, which stores the share commands needed to
export filesystems. The following dfstab file is equivalent to the exports file we looked
at previously:

share -F nfs -o rw=spain,access=brazil:canada,anon=-1 /organic
share -F nfs -o access=duncan:iago,root=duncan /metal/3
share -F nfs -o ro /inorganic

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Filesystems | 701

For example, the first line exports the /organic filesystem: it allows spain to mount it
for reading and writing and brazil and canada to mount it read-only. Requests from
usernames without accounts on the local system are denied.

These same commands need to be executed manually to put these access restrictions
into effect prior to the next reboot (be sure that mountd is running).

The NFS Automounter
Once a network has even a moderate number of systems in it, trying to cross-mount
even one or two filesystems from each system can quickly become a nightmare. The
NFS automounter facility is designed to handle such situations by providing a means
by which remote directories are mounted only when they are needed: when a user or
process uses or refers to a file or subdirectory located within the remote directory.
Directories that have not been used in a while are also unmounted automatically.

Using the automounter has the potential for simplifying remote directory manage-
ment. The filesystem configuration file is made more straightforward because it lists
only local filesystems and perhaps one or two statically mounted remote filesystems
or directories. Booting is faster because NFS mounts are done later. Systems can also
be shut down unexpectedly with fewer ill effects and hung processes.

The automounter works by detecting attempted access to any part of the remote
directories under its control. When such an event occurs, the automounter gener-
ally mounts the remote filesystem into a directory known as its staging area—usu-
ally /tmp_mnt—and creates a (pseudo) symbolic link to the mount location expected
by the user. For example, if a user attempts to copy the file /data/organic/strained/
propell.com, and /organic is a directory on host spain, the automounter will mount
that remote directory on /tmp_mnt and create a link to the local mount point, /data/
organic. To the user, the file will look like it really is located in /data/organic/
strained; however, if he changes to the directory /data/organic and issues a pwd com-
mand, the real mount point will be visible (confusion is also likely if he uses a com-
mand like cd .. after moving to an automounted directory until he gets used to how
the automounter works).

The automounter uses configuration files known as maps, which are of two types:

• Direct maps hold entries for remote directories to be mounted on demand by the
automounter. These entries are really just abbreviated versions of traditional
NFS /etc/fstab entries.

• Indirect maps are used for local directories whose subdirectories are each NFS-
mounted, most likely from different remote hosts. For example, user home
directories are usually managed with an indirect map. They are all automounted
at a standard location within the filesystem on every system within a network,
even though every one of them may be physically located on a separate system.

Indirect maps are used far more frequently than direct ones.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

702 | Chapter 10: Filesystems and Disks

Direct maps are conventionally stored in /etc/map.direct. Here is a sample entry from
a direct map:

/metal/3 -intr dalton:/metal/3

This entry places the directory /metal/3 on host dalton under automounter control.
The directory will be mounted when needed at /metal/3 on the local system; directo-
ries controlled by direct maps do not use the automounter staging area. The second
field in the entry holds options for the mount command.

Indirect maps are generally named for the local directory whose (potential) contents
they specify. Here is a short version of the indirect map /etc/auto.homes, which is
used to configure the local directory /homes; its entries specify the remote locations
of the various subdirectories of /homes:

chavez-rw,intr dalton:/home/chavez
harvey-rw,intr iago:/home/harvey
wang-rw,intr portia:/u/wang
stein-rw,intr hamlet:/home/stein4

The format is very similar to that for direct maps. In this case, the first field is the
name of the subdirectory of /homes from which the remote directory will be accessed
locally. Note that we have set up automounting at /homes, not in the usual location
of /home, because it is illegal to mix local and automounted subdirectories within the
same local directory.

Once the automounter is configured in this way on every system, user home directo-
ries will be invariant to the system the user happens to be using. No matter where he
is, his home directory will always have the same files within it.

The automounting facility uses the automount daemon, which may be started with a
command like this one:

automount -tl 600 /homes /etc/auto.homes /- /etc/auto.direct

The -tl option specifies how long a directory must be idle before it is automatically
unmounted (in seconds; five minutes is the default). The next two arguments illus-
trate the method for specifying a local directory for automounter control and its cor-
responding indirect map. The final two arguments illustrate how a direct map is
specified; the local directory is always specified as /- for a direct map. A command
like the previous needs to be added to (or uncommented out within) the system ini-
tialization scripts for the automounter to be started at boot time.

If you want to stop the automounter process for some reason, use the kill com-
mand without any signal option; this will send the process a TERM signal and allow
it to terminate gracefully and clean up after itself. For example:

kill `ps -ea | grep automoun | awk '{print $1}'`

If you kill it with -9, hung processes and undeletable phantom files are the almost
certain result.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Filesystems | 703

Samba
The free Samba facility allows Unix filesystems to be shared with Windows systems.
Samba does so by supporting the Server Message Block (SMB) protocol,* the native
resource sharing protocol for Microsoft networks. It is available for all of the Unix
versions we are considering.

With Samba, you can make Unix filesystems look like shared Windows filesystems,
allowing them to be accessed using the normal Windows facilities and commands
such as net use. Linux systems can also mount Windows filesystems within the Unix
filesystem using a related facility.

Installing Samba is quite simple. The books I mentioned earlier have excellent dis-
cussions of the procedure. Once you have built Samba, the next step is to create the
Samba configuration file, smb.conf, usually stored in the lib subdirectory of the main
Samba directory or in /etc/samba.

Here is a simple version of this file:

[global] Global settings applying to all exports.
hosts allow = vala, pele
hosts deny = lilith
valid users = dagmar, @chem, @phys, @bio, @geo
invalid users = root, admin, administrator
max log size = 2000 Log size in KB.
[chemdir] Define a directory (share) for export.
path = /chem/data/new Local (Unix) path to be shared.
comment = New Data Description of the filesystem.
read only = no Filesystem is not read-only.
case sensitive = yes Filenames are case sensitive.
force group = chemists Map all user access to this Unix group.
read list = dagmar, @chem, @phys Users/groups allowed read access.
write list = @chem Users/groups allowed write access.

The first section of the configuration file, introduced by the [global] line, specifies
global Samba settings that apply to all filesystems exported via the facility. Its first
two lines specify remote systems that are allowed to access Samba filesystems and
those that are forbidden from doing so, respectively. The next two lines similarly
specify Unix users and groups that are allowed and denied access (note that group
names are prefixed by an at sign: @chem). The final line of this first section specifies
the maximum size of the Samba log file in KB.

The second section of the sample Samba configuration file defines a filesystem for
exporting (i.e., a share). In this case, it consists of the local path /chem/data/new, and
it will be accessed by remote systems using the share name chemdir (defined in the
section’s header line). This exported filesystem is exported read-write and uses case-
sensitive filenames. All incoming access to the filesystem will take place as if the user

* Also known as the Common Internet File System, CIFS (this week...).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

704 | Chapter 10: Filesystems and Disks

were a member of the local Unix chemists group. Windows user dagmar and groups
chem and phys are allowed read access to the filesystem, and members of Windows
group chem are also given write access. Whether an individual file may be read or
written will still be determined by its Unix file permissions.

User home directories are exported in a slightly different way via configuration file
entries like these:

[homes] Create the special homes share.
comment = Home directories
writeable = yes
valid users = %S %S expands to the share name (here = username).

These entries create a share for each local Unix user home directory (as defined in
the password file). These shares are actually created on the fly as they are accessed.
For example, if user chavez attempts to access the share \\india\home (where india is
the Unix system), the share \\india\chavez will be created and presented to her. Only
she will be able to access this share due to the valid users line in the homes share def-
inition; all other users will be denied access. User chavez can access the share as
either \\india\homes or as \\india\chavez.

You can use the testparm command to verify the syntax of a Samba configuration file
before you install it. See the Samba documentation for full details on configuration
file entries.

Another useful Samba feature is the username mapping file, specified via a configura-
tion file entry like the following:

username map = /etc/samba/smbusers

Entries within the file look like this:

Unix = Windows
chavez = rachel
root = Administrator admin Multiple names are allowed.
quigley = "Filbert Quigley" Quote names with spaces.

Map files can have some unexpected effects. For one thing, when a password is
required by the Unix system before access is granted, it is that password for the Unix
account that will be needed. This can be confusing if the mapping sends a user to an
account that is different from the one he usually uses. Secondly, home share names
will again reflect the mapped Unix username.

The smbstatus command may be used to display current remote users of local filesys-
tems on the Unix system:

$ smbstatus
Samba version 1.9.16
Service uid gid pid machine
--
chemdir nobody chemists 14810 vala (192.168.13.34) Jul 14 11:51:07
No locked files

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Filesystems | 705

Samba authentication

In general, Samba prompts the user for a password when required. By default, these
passwords are sent across the network in unencrypted form (i.e., as clear text). This
is an insecure practice that most sites will find unacceptable. Samba can be modified
to use only encoded passwords as follows:

• Add the following entries to the global section of the Samba configuration file:
encrypt passwords = yes
security = user

• Use the mksmbpasswd.sh script included with the Samba package source code to
create the initial Samba password file. For example:

cat /etc/passwd | mksmbpasswd.sh > /etc/samba/private/smbpasswd

The smbpasswd file should be owned by root and have the permissions mode
600. The subdirectory in which it resides should be protected 500.

Once encrypted passwords are enabled, users must use the smbpasswd command in
order to set their Samba passwords.

You can use a single Unix server to authenticate all Samba passwords by using these
configuration file entries:

security = server
password server = host
encrypt passwords = yes

You can authenticate Samba using a Windows domain controller with these configu-
ration file entries:

security = domain
workgroup = domain
password server = domain-controllers
encrypt passwords = yes

See the Samba documentation and the previously cited books for more details about
this topic (including how to use a Samba server as a Windows domain controller).

Mounting Windows filesystems under Linux and FreeBSD. The Samba package includes the
smbclient utility in order to access remote SMB-based shares from the Unix system.
It uses an interface similar to the FTP facility.

A much better approach is provided on Linux systems via the built-in smbfs filesys-
tem type. For example, the following command mounts the depot share on vala as
the local directory /win_stuff:

mount -t smbfs -o username=user,password=xxx //vala/depot /win_stuff

This command makes the connection as the specified user account on the Windows
system using the specified password. If the password option is omitted, you will be
prompted for the proper password. If you do include a password in the /etc/fstab file,
be sure to protect the file from ordinary users. In general, you should not use the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

706 | Chapter 10: Filesystems and Disks

Administrator password. Create an unprivileged user account to use for the mount
process instead.

A similar facility is available under FreeBSD Version 4.5 and later. For example:

mount_smbfs -I vala //chavez@vala/depot /mnt
Password: Not echoed.

Passwords can be stored in a file named $HOME/.nsmbrc. In this case, add the -N
option to the command to suppress the password prompt. Here is a sample file:

[VALA:CHAVEZ:DEPOT] server:user:share
password=xxxxxxxx

Yes, the first line really does have to be in uppercase (ugh!).

You can also enter such filesystems into /etc/fstab on either system, using entries like
these:

remote share mount point type options
//chavez@vala/depot /depot/vala smbfs noauto 0 0 FreeBSD
//vala/depot /depot/vala smbfs noauto,username=chavez,password=x 0 0 Linux

Under FreeBSD, you’ll need to specify the password in the .nsmbrc file if you want to
remote share to mounted automatically.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

707

Chapter 11 CHAPTER 11

Backup and Restore

Every user of any computer figures out sooner or later that files are occasionally lost.
These losses have many causes: users may delete their own files accidentally, a bug
can cause a program to corrupt its data file, a hardware failure may ruin an entire
disk, and so on. The damage resulting from these losses can range from minor to
expansive and can be very time-consuming to fix. To ensure against loss, one pri-
mary responsibility of a system administrator is planning and implementing a
backup system that periodically copies all files on the system to some other location.
It is also the administrator’s responsibility to see that backups are performed in a
timely manner and that backup tapes (and other media) are stored safely and
securely. This chapter will begin by discussing backup strategies and options and
then turn to the tools that Unix systems provide for making them.

An excellent reference work about backups on Unix systems is Unix Backup and
Recovery by W. Curtis Preston (O’Reilly & Associates). It covers the topics we are
discussing here in complete detail and also covers material beyond the scope of this
book (e.g., backing up and restoring databases).

Planning for Disasters and Everyday Needs
Developing an effective backup strategy is an ongoing process. You usually inherit
something when you take over an existing system and start out doing the same thing
you’ve always done when you get a new system. This may work for a while, but I’ve
seen companies try to retain their centralized, hordes-of-operators–based backup
policies after they switched from a computer room full of mainframes to a building
full of workstations. Such an attempt is ultimately as comical as it is heroic, but it all
too often ends up only in despair, with no viable policy ever replacing the outdated
one. The time to develop a good backup strategy is right now, starting from however
you are approaching things at the moment.

Basically, backups are insurance. They represent time expended in an effort to pre-
vent future losses. The time required for any backup strategy must be weighed

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

708 | Chapter 11: Backup and Restore

against the decrease in productivity, schedule slippage, and so on if the files are
needed but are not available. The overall requirement of any backup plan is that it be
able to restore the entire system—or group of systems—within an acceptable
amount of time in the event of a large-scale failure. At the same time, a backup plan
should not sacrifice too much in the way of convenience, either in what it takes to
get the backup done or how easy it is to restore one or two files when a user deletes
them accidentally. The approaches one might take when considering only disaster
recovery or only day-to-day convenience in isolation are often very different, and the
final backup plan will need to take both of them into account (and will accordingly
reflect the tension between them).

There are many factors to consider in developing a backup plan. The following ques-
tions are among the most important:

What files need to be backed up? The simplest answer is, of course, everything, and
while everything but scratch files and directories needs to be saved somewhere, it
doesn’t all have to be saved as part of the system backups. For example, when
the operating system has been delivered on CD-ROM, there is really no need to
back up the system files, although you may choose do so anyway for reasons of
convenience.

Where are these files? This question involves both where the important files are
within the filesystem and which systems hold the most important data.

Who will back up the files? The answer may depend on where the files are. For
example, many sites assign the backup responsibility for server systems to the
system administrator(s) but make users responsible for files that they keep on
their workstation’s local disks. This may or may not be a good idea, depending
on whether or not all of the important files really get backed up.

Where, when, and under what conditions should backups be performed? Where
refers to the computer system on which the backup will be performed; this need
not necessarily be the same as the system where the files are physically located.
Similarly, in an ideal world, all backups would be performed after hours on
unmounted filesystems. That’s not always practical in the real world, however.

How often do these files change? This information will help you decide both when
and how often to perform backups and the type of schedule to implement. For
example, if your system supports a large, ongoing development project, the files
on it are likely to change very frequently and will need to be backed up at least
daily and probably after hours. On the other hand, if the only volatile file on
your system is a large database, its filesystem might need to backed up several
times every day while the other filesystems on the same system would be backed
up only once a week.*

* In actual fact, a database is often backed up using a facility provided by the software vendor, but you get the
idea here.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Planning for Disasters and Everyday Needs | 709

How quickly does an important missing or damaged file need to be restored? Since
backups protect against both widespread and isolated file loss, the timeframe in
which key files need to be back online needs to be taken into account. The num-
ber of key files, how widely spread they are throughout a filesystem (or net-
work), and how large they are will also influence matters. Your system may only
have one irreplaceable file, but you’ll need to plan very differently depending on
whether it is 1 KB or 1 GB in size. Note that losing even a single 1 KB file can
wreak havoc if it’s the license file without which the central application program
won’t run.

How long do we need to retain this data? Backups protect current data from acci-
dents. As such, they are normally needed—or useful—only for a relatively short
period (months or a year or two) In contrast, most sites also need to create per-
manent archives of important “point-in-time” data, for example, the software
and data used to prepare a tax return. These need to be saved for an indefinite
period: many years or even decades. While the requirements are similar, the
goals are different enough that you are unlikely to be able to rely on your regular
backups for archival purposes. Thinking about this kind of data and how to cre-
ate and store it must be part of every effective backup plan.

Where should the backup media be stored? Recent backups are generally kept close
to the computer for quick restoration. Long-term backups and archives should
be stored in a secure offsite location.

Where will the data be restored? Will the backup files be used only on the system
from which they were made, or is there an expectation that they could be
restored to a different system in an emergency? If multisystem compatibility is
ever important, it needs to be taken into account in designing the backup and
recovery plan. For example, you might need to ensure that any compression
scheme in use on one system can be decoded by the other target systems (or
avoid using any vendor-specific formats). Other examples of this sort of issue
include access control list data that might be backed up along with files and
backups of a filesystem from a system that is larger than the maximum filesys-
tem size on the target system.

Backing up Active Filesystems

Virtually all Unix documentation recommends that filesystems be
unmounted before a backup is performed (except for the root filesys-
tem). This recommendation is rarely followed, and in practice, back-
ups can be performed on mounted filesystems. However, you need to
make users aware that open files are not always backed up correctly. It
is also true that there are circumstances in which events in an active
filesystem can cause some files or even the entire backup archive itself
to be corrupt. We will consider those that are relevant to the various
available backup programs as we discuss them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 11: Backup and Restore

Backup Capacity Planning
Once you have gathered all the data about what needs to be backed up and the
resources available for doing so, a procedure like the following can be used to
develop the detailed backup plan itself:

1. Begin by specifying an ideal backup schedule without considering any of the
constraints imposed by your actual situation. List what data you would like to
be backed up, how often it needs to be backed up, and what subdivisions of the
total amount make sense.

2. Now compare that ideal schedule to what is actually possible in your environ-
ment, taking the following points into consideration:

• When the data is available to be backed up: backing up open files is always
problematic—the best you can hope for is to get an uncorrupted snapshot of
the state of the file at the instant that the backup is made—so, ideally, back-
ups should be performed on idle systems. This usually translates to after
normal working hours.

• How many tape drives (or other backup devices) are available to perform
backups at those times and their maximum capacities and transfer rates: in
order to determine the latter, you can start with the manufacturer’s specifi-
cations for the device, but you will also want to run some timing tests of
your own under actual conditions to determine realistic transfer rates that
take into account the system loads, network I/O rates, and other factors in
your environment. You will also need to take into account whether all the
data is accessible to every backup device or not.

At this point (as with any aspect of capacity planning), there is no substitute for
doing the math. Let’s consider a simple example: a site has 180 GB of data that
all needs to be backed up once a week, and there are 3 tape drives available for
backups (assume that all of the data is accessible to every drive). Ideally, back-
ups should be performed only on week nights between midnight and 6 A.M. In
order to get everything done, each tape drive will have to back up 60 GB of data
in the 30 hours that the data is available. That means that each tape drive must
write 2 GB of data per hour (333 KB/sec) to tape.

This is within the capabilities of current tape drives when writing local data.*

However, much of the data in our example is distributed across a network, so
there is a chance that data might not be available at a fast enough rate to sustain
the tape drive’s top speed. Some backup programs also pause when they
encounter an open file, giving it a chance to close (30 seconds is a typical wait
period); when there are a lot of open files in a backup set, this can substantially
increase how long the backup takes to complete.

* In practice, of course, you would also need an auto loading tape device (or someone to change tapes in the
middle of the night).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Planning for Disasters and Everyday Needs | 711

In addition, we have not made any allowances for performing incremental back-
ups (discussed below) between full backups. Thus, this example situation seems
to strain the available resources.

3. Make modifications to the plan to take into account the constraints of your envi-
ronment. Our example site is cutting things a bit too close for comfort, but they
have several options for addressing this:

• Adding additional backup hardware, in this case, a fourth tape drive.

• Decreasing the amount of data to be backed up or the backup frequency: for
example, they could perform full backups only every two weeks for some or
all of the data.

• Increasing the amount of time available/used for backups (for example, per-
forming some backups on weekends or doing incremental backups during
the early evening hours).

• Staging backups to disk. This scheme writes the backup archives to a dedi-
cated storage area. The files can then be written to tape at any subsequent
time. Disks are also faster than tape drives, so this method also takes less
time than directly writing to tape. It does, of course, require that sufficient
disk space be available to store the archives.

4. Test and refine the backup plan. Actually trying it out will frequently reveal fac-
tors that your on-paper planning has failed to consider.

5. Review the backup plan on a periodic basis to determine if it is still the best solu-
tion to your site’s backup needs.

Backup Strategies
The simplest and most thorough backup scheme is to copy all the files on a system to
tape or other backup media. A full backup does just that, including every file within a
designated set of files, often defined as those on a single computer system or a single
disk partition.*

Full backups are time-consuming and can be unwieldy; restoring a single file from a
large backup spanning multiple tapes is often inconvenient, and when files are not
changing very often, the time taken to complete a full backup may not be justified by
the number of new files that are actually being saved. On the other hand, if files are
changing very rapidly, and 50 users will be unable to work if some of them are lost,
or when the amount of time a backup takes to complete is not an issue, then a full
backup might be reasonable even every day.

* For the purposes of this discussion, I’ll focus on per-disk partition backups, but keep in mind that this is not
the only reasonable way of organizing things. I’ll also refer to “backup tapes” most of the time in this chapter.
In most cases, however, what I’ll be saying will apply equally well to other backup media.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 11: Backup and Restore

Incremental backups are usually done more frequently. In an incremental backup, the
system copies only those files that have been changed since some previous backup.
Incrementals are used when full backups are large and only a small amount of the
data changes within the course of, say, one day. In such cases, backing up only the
changed files saves a noticeable amount of time over performing a full backup.

Some Unix backup programs use the concept of a backup level to distinguish differ-
ent kinds of backups. Each backup type has a level number assigned to it; by defini-
tion, a full backup is level 0. Backing up the system at any level means saving all the
files that have changed since the last backup at the previous level. Thus, a level 1
backup saves all the files that have changed since the last full (level 0) backup; a level
2 backup saves all the files that have been changed since the last level 1 backup, and
so on.*

A typical backup strategy using multiple levels is to perform a full backup at the
beginning of each week, and then perform a level 1 backup (all files that have
changed since the full backup) each day. The following weekly backup schedule
summarizes one implementation of this plan:

Monday: Level 0 (full)
Tuesday–Friday: Level 1 (incremental)

A seven-day version of this approach is easy to construct.

The primary advantage of this plan is that only two sets of backup media are needed
to restore the complete filesystem (the full backup and the incremental). Its main dis-
advantage is that the daily backups will gradually grow and, if the system is very
active, may approach the size of the full backup set by the end of the week.

A popular monthly plan for sites with very active systems might look something like
this:

First Monday: Level 0 (full)
All other Mondays: Level 1 (weekly incremental to previous Level 0)
Tuesday–Friday: Level 2 (daily incremental to previous Level 1)

This plan will require three sets of backup media to do a complete restore (the most
recent backup of each type).

In deciding on a backup plan, take into account how the system is used. The most
heavily used portions of the filesystem may need to be backed up more often than
the other parts (such as the root filesystem, which contains standard Unix programs
and files and which therefore rarely changes). A few parts of the system (like /tmp)
need never be backed up. You may want to create some additional filesystems that

* Not all backup commands explicitly use level numbers, but the concept is valid for and can be implemented
with any of the available tools, provided you are willing to do some of the record keeping yourself (by hand
or by script).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Planning for Disasters and Everyday Needs | 713

will never be backed up; anyone using them would be responsible for backing up his
own files.

You should also consider performing a full backup—whether the schedule calls for it
or not—before you make significant changes to the system, such as building a new
kernel, adding a new application package, or installing a new version of the operat-
ing system. This may be one of the few times that the root filesystem gets backed up,
but if you ever have a problem with your system disk, you will find it well worth the
effort when you can avoid a significant amount of reconfiguration.

Unattended backups

The worst part of doing backups is sitting around waiting for them to finish. Unat-
tended backups solve this problem for some sites. If the backup will fit on a single
tape, one approach is to leave a tape in the drive when you leave for the day, have the
backup command run automatically by cron during the night, and pick up the tape
the next morning.

Sometimes, however, unattended backups can be a security risk; don’t use them if
untrusted users have physical access to the tape drive or other backup device and
thus could steal the media itself. Backups needed to be protected as strongly as the
most secure file on the system.

Similarly, don’t do unattended backups when you can’t trust users not to acciden-
tally or deliberately write over the tape or other rewriteable media (ejecting the tape
after the backup is completed sometimes prevents this, but not always). You also
won’t be able to use them if the backup device is in heavy use and can’t be tied up by
the backup for the entire night.

Data verification

In many cases, backups can simply be written to media, and the media can go
directly to its designated storage location. This practice is fine as long as you are
100% confident in the reliability of your backup devices and media. In other cases,
data verification is a good idea.

Data verification consists of a second pass through the backed-up data, in which
each file is compared to the version on disk, ensuring that the file was backed up cor-
rectly. It also verifies that the media itself is readable.

Some sites will choose to verify the data on all backups. All sites should perform veri-
fication operations on at least a periodic basis for all of their backup devices. In addi-
tion, as they age and wear out, many devices begin to produce media that can only
be successfully read in the drive that produced it. If you need backups that will be
readable by devices or systems other than the one that originally wrote on the physi-
cal media, you should also periodically verify the backups’ readability by examining
them on the target devices and systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 11: Backup and Restore

Storing backup media

Properly storing the backup tapes, diskettes, or other media once you’ve written
them is an important part of any backup plan. Here are some things to keep in mind
when deciding where to store your backup media:

Know where things are. Having designated storage locations for backups makes
finding the right one quickly much more likely. It is also important that anyone
who might need to do a restore knows where the media are kept (you will want
to take a vacation occasionally). Installation CDs, bootable recovery tapes, boot
diskettes, and the like also ought to be kept in a specific location known to those
people who may need them. I can assure you from personal experience that a
system failure is much more unpleasant when you have to dig through boxes of
tapes or piles of CDs looking for the right one before you can even attempt to fix
whatever’s wrong with the system.

Another aspect of knowing where things are concerns figuring out what tape
holds the file that you need to restore. Planning for this involves making records
of backup contents, which is discussed later in this chapter.

Make routine restorations easy. Backups should be stored close enough to the
computer so that you can quickly restore a lost file, and tapes should be labeled
sufficiently well so that you can find the ones you need.

Ideally, you should have a full set of tapes for each distinct operation in your
backup schedule. For example, if you do a backup every day, it’s best to have
five sets of tapes that you reuse each week; if you can afford it, you might even
have 20 sets that you rotate through every four weeks. Using a single set of tapes
over and over again is inviting disaster.

Labeling tapes clearly is also a great help in finding the right one quickly later.
Color-coded labels are favored by many sites as an easy yet effective way to dis-
tinguish the different sets of tapes. At the other extreme, I visited a site where the
backup system they developed prints a detailed label for the tape at the conclu-
sion of each backup.

Write-protect backup media. This prevents backup media from being accidentally
overwritten. The mechanism for write-protection varies with different media
types, but most mechanisms involve physically moving a plastic dial or tab to
some designated position. The position that is the unwriteable one varies: floppy
disks, optical disks and DAT (4mm) tapes are writeable when the tabbed open-
ing is closed, while 8mm tapes and removable disks are writeable when it is
open.

Consider the environment. Most backup media like it cool, dry, and dark. High
humidity is probably the most damaging environment, especially for cartridge-
enclosed media, which are easily ruined by the moisture condensation that
accompanies temperature drops in humid conditions. Direct sunlight should
also be avoided, especially for floppy disks, since most plastic materials will

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Planning for Disasters and Everyday Needs | 715

deform when subjected to the temperature within the trunk of a car or the
enclosed passenger compartment on a hot summer day. Dust can also be a prob-
lem for most backup media. I’ve had lint make floppy disks unreadable after tak-
ing them home in my coat pocket (now I put them in a zip-top plastic bag first).

The fact that backup media prefer the same environment used for many computer
rooms does not necessarily mean that any or all backup media should be stored in
the same room as the computer. Doing so runs the risk that a major problem will
destroy both the computer and the backups. Backup tapes are actually more sensi-
tive to some types of problems than some computer components. For example, if
a pipe bursts above the computer room, the computer may suffer only minor dam-
age, but your backup tapes will usually all be ruined if they get wet.

If the tape storage area differs in temperature from the computer area by more
than a few degrees, allow the tapes to acclimate to the computer temperature
before writing to them.

Magnetic interference is also something to think about. One of this book’s tech-
nical reviewers relayed a story about “an entire backup library that kept getting
wiped out on a nearly daily basis. Turns out that the tapes were in a secure loca-
tion but placed against a wall that was shared with a freight elevator. The mag-
netic fields and such caused by the moving lift caused all that nice magnetic tape
storage to become erased. Funny but cautionary.”

Handle media properly. Some media have special requirements that you’ll need to
take into account. For example, floppy disks and zip disks ideally should be
stored upright, resting on a thin edge rather than stacked on top of one another.
Similarly, cartridge tapes like to be stored with the spools vertical (perpendicu-
lar to the ground, like a car’s tires) with the edge that contacts the drive heads
down (so gravity pulls tape away from the spools). When you’re counting on
media to preserve important data, humor them and orient them the way they
prefer.

Take security into account. In every location where you store backup tapes, the
usual physical security considerations apply: the tapes should be protected from
theft, vandalism, and environmental disasters as much as is possible.

Off-site and long-term storage

Off-site backups are the last barrier between your system and total annihilation.
They are full backup sets that are kept in a locked, fireproof, environmentally-con-
trolled location completely off site. Such backups should be performed on
unmounted filesystems if at all possible.

Preparing backups for off-site storage is also one of the few times when simply mak-
ing a backup is not enough.* In these cases, you also need to verify that the backup

* Another such time is when you are rebuilding a filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 11: Backup and Restore

tape or diskette is readable. This is done by using an appropriate restore command to
list the contents of the tape or diskette. While this will not guarantee that every file is
completely readable, it will improve the odds of it considerably. Some backup utili-
ties provide a full verification facility in which the entire content of each file in a
backup set is compared with the corresponding file on disk; this is the preferred
method of checking critical backups. In any case, backups should be verified in the
best way available whenever the integrity of the backup is essential.

Permanent Backups

For data meant for permanent archiving, you should create and verify
two sets of backup media with the idea that the redundant copy can
be used should the first one fail. The media should also be checked
periodically (annually or possibly biannually). When a particular
media item fails—and they all will eventually—a new copy should be
made from the other one to replace it.

You should also make sure that you have at least one working drive of
the type that you are using for permanent storage media. For exam-
ple, if you have an archive of 8 mm tapes, you will need to always have
working 8 mm tape drives to read them. This will continue to be true
if your primary backup medium changes. Similarly, you must main-
tain whatever software programs and other running environment is
required to use the data for it to be of any use.

Finally, tapes should be rewound or retensioned regularly (perhaps
twice a year) to maintain readability. Given this requirement, tapes are
being superceded by CDs as permanent storage media.

When Being Compulsive is Good
It’s very easy to put off doing backups, especially when you are responsible only for
your own files. However, performing backups regularly is vital. Basically, it’s a good
idea to assume that the next time you sit down at the computer, all your disks will have
had head crashes. Keeping such a catastrophe in mind will make it obvious what needs
to be backed up and how often. Backups are convenient for restoring accidentally
deleted files, but they are also essential in the event of serious hardware failures or
other disasters. Catastrophes will happen. All hardware has a finite lifetime, and even-
tually something will fail.

Given this reality, it is obvious why an almost drone-like adherence to routine is an
important attribute for an effective system administrator. Planning for worst-case sce-
narios is part of the job. Let them call you compulsive if they want to; one day, your
compulsiveness—also known to many as carefulness—will save them, or at least their
files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backup Media | 717

Backup Media
When I first started working as a system administrator, 9-track tape was the only
medium you’d consider using for a backup.* That’s certainly no longer true. Today,
there are many different media suitable for storing backed-up data. This section pro-
vides a quick summary of the available choices. This list includes most of the drives
and media types which are in common use. The backup strategy for any particular
system will often involve more than one media type.

Up-to-the-minute information about available backup devices and media may be
obtained from http://www.storagemountain.com. There is also an excellent discus-
sion in Unix Backup and Recovery.

Magnetic tape

Magnetic tape of one sort or another has been the traditional backup medium for
decades. Over the years, it has taken on a variety of sizes and forms, beginning with
7-track and then 9-track tape: 1/2-inch wide tape wound around a circular reel. The
introduction of plastic cartridges containing the tape and both reels was a major step
forward in terms of reducing the space requirements of backup media. The first tape
of this type was 1/4-inch cartridge tape (also known as QIC tape), which for a while
was the medium of choice for most workstations; these tapes are still occasionally
used.

Around 20 years ago, higher-capacity tapes in formats originally developed for other
markets became available. 8 mm tape drives became popular in the late 1980s and
are still in wide use. Originally designed for video uses, the tapes are about the size of
an audio cassette. 4 mm digital audio tapes (commonly called DAT tapes although
the data storage scheme is technically known as DDS) are also in wide use. DAT car-
tridges are about 25% smaller than 8 mm tapes.

8 mm and 4 mm tapes come in two grades, one designed for video and
audio recording (respectively), and a better, more expensive grade
designed for data. Be sure to purchase only data-quality tapes.
Although lower-quality tapes will sometimes appear to work fine, in
my experience they are much, much less reliable about retaining data
(despite urban legends to the contrary).

Both of these tape types are in use today, although DAT is far more prevalent than
8 mm. Both types of tape come in a variety of lengths and corresponding data capaci-
ties. Currently, the largest ordinary 8 mm tapes are 160 meters long and hold up to

* The only other possibilities were punch cards and paper tape.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 11: Backup and Restore

7 GB of data,* although there are also tapes that hold 1.2 GB (54 m) and 2.4 GB
(112 m). DAT tapes correspond to various DDS levels:

DDS-1
2 and 3 GB tapes (60 and 90 m

DDS-2
4 GB tapes (120 m)

DDS-3
12 GB tapes (125 m)

DDS-4
20 GB tapes (150 m)

DDS-3 and DDS-4 use a different technology than the earlier versions.

Be aware that only the newest tape drives can support the largest tapes, but most
drives provide read-only backward compatibility.

There are also several newer magnetic tape technologies. Exabyte’s Mammoth-2†

and Sony’s Advanced Intelligent Tape (AIT) technologies take 8 mm tapes to much
higher capacities: 20, 40, or 60 GB and 35 or 50 GB, respectively. They both use the
Advanced Metal Evaporative (AME) cartridge developed by Sony (a new 8 mm for-
mat). Some Mammoth-2 drives can also read earlier 8 mm tapes, but they require an
extensive clearing procedure to be performed after each instance. These are also
among the fastest tape drives, with transfer rates of up to 12 MB/s for Mammoth-2
drives and 6 MB/s for AIT drives.

The Digital Linear Tape (DLT) technology was initially developed by Digital Equip-
ment Corporation, but they later sold it to Quantum Corporation. This format uses
cartridges similar to DEC’s old TK family, which have proven themselves to be
extremely reliable and long-lived. It is also a fast format, with transfer rates of up to
10 MB/s.

The high capacity of magnetic tapes make them ideal for unattended backups: you
can put a tape in at night, start a shell script that puts several filesystems on one tape,
and go home.

Tapes also have some disadvantages:

• They are extremely sensitive to heat and electromagnetic fields and fail quite eas-
ily when they are mishandled. Electromagnetic fields are produced by a variety
of common devices found near computers, including UPS power supplies,
external peripheral devices containing their own power supplies, monitors, and

* That is, 7 GB of bits. The amount of “data” written may be much more if the original files are compressed
before or as they are written to tape. Tape drive and media manufacturers love to inflate their products’
capacities by quoting maximum compressed data numbers.

† This was preceded by the Mammoth technology, which was notoriously unreliable. Mammoth-2 initially
seems to be better.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backup Media | 719

speakers. Moreover, simply reading a magnetic tape also contributes to data deg-
radation.

• They are sequential storage devices. In order to reach a given file on a tape, you
have to wind the tape to the proper point. This is more of a problem for older
tapes drives; current high-end drives can reach an arbitrary point on a tape in
seconds.

Magneto-optical disks

Magneto-optical disks have the same width and length as floppy disks but are about
twice as thick and hold a lot more data. Magneto-optical disks also come in 3.5-inch
and 5.25-inch versions,* and their current capacity ranges up to 9.1 GB. Optical disks
are purported to be much more stable than any of the purely magnetic media; the
stability comes from the fact that they are written magnetically but are read opti-
cally, so reading the disk has no degrading effect on the stored data. In addition, the
media can also be erased and rewritten as needed. Finally, magneto-optical disks also
have the advantage of being random access devices. Transfer rates for these devices
peak at about 5 MB/s.

Current drives are still quite expensive—over $2000—as are the disks themselves,
but they are nevertheless very popular. As I noted in the previous edition of this book
(circa 1995), “a rewriteable medium that can permanently store over a gigabyte of
data in the space of a couple floppy disks probably has a future.” Now it’s gigabytes
of data and a definite future.

There are also other optical formats used or in development by a few
manufacturers.

CDs and DVDs

Writeable CDs and DVDs have become viable backup media due to the substantial
price reductions for both drives and media. There are two types of writeable CDs,
referred to as CD-R (write-once CDs) and CD-RW (rewriteable CDs). Both come in
640 MB capacity, and recently 700 MB CD-R media have become available.

Writeable DVD technology is just emerging into the general marketplace at this writ-
ing. In fact, there are several DVD recording formats:

DVD-RAM
The first available format, it is now falling out of use since it cannot be read in
ordinary DVD drives.

* You might wonder what is so magical about 3.5 and 5.25 inches. Devices of this size fit easily into the stan-
dard device bays found in PCs as well as into available storage boxes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 11: Backup and Restore

DVD-R
Write-once DVDs (also an aging technology).

DVD-RW
Rewriteable DVDs that can be read by ordinary DVD drives.

DVD+RW
An emerging technology devised by a coalition of drive manufacturers. These
drives can produce ordinary (sequential) DVDs as well as random access disks.
The former are readable by ordinary DVD players (but not by recorders of the
other types), although some older models may require firmware updates.
DVD+RW media can hold up to 4.7 GB per side.

As of this writing, Hewlett-Packard has recently released a low-cost DVD+RW
writer suitable for use on PC-based systems, so this may become a popular
backup device in that market in time.

Removable disks: Zip and Jaz

Removable disks are fully enclosed disk units that are inserted into a drive as needed.
They tend to be significantly more reliable than either tapes or floppy disks. On Unix
systems, they generally behave like a hard disk, but it is also possible to treat them as
a giant floppy disk. They are suitable as backup media in some environments and cir-
cumstances.

There have been a variety of removable disk technologies over the years. The Zip and
Jaz drives by Iomega have come to dominate this market. Zip drives—which come in
100 MB and 250 MB sizes—can be used with most Unix systems. Jaz drives, which
have capacities of 1 GB or 2 GB, can also be used. I had a great deal of trouble with
early Jaz drives, which were designed for infrequent, intermittent backup use and
consistently failed when used on even a semi-continuous basis. More recent drives
are said to be better. Both drive types are available with various I/O interfaces: SCSI,
USB, IDE.

Floppy disks

Floppy disk drives are still found on most PC-based computer systems,* and they do
have some limited backup uses. For example, PC-based Unix versions (as well as a
few running on larger systems) often use floppy disks for emergency boot devices. In
addition, floppy disks can be useful for inherently limited backup tasks, such as sav-
ing customized system configuration files from the root filesystem. Standard floppy
disks hold 1.44 MB, and some Unix workstations include drives that double that
capacity to 2.8 MB. Occasionally, you will come across a floppy drive that also sup-
ports Super disks: media that look like floppy disks but hold 120 MB.

* Although this will probably no longer be true in a couple of years.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backup Media | 721

Hard disks

Given the low prices of hard disks these days, they may also be a viable backup tar-
get device in some circumstances. For example, some sites provide a large backup
disk on the local network where users can make periodic copies of key files that they
are working on. Large disks can also be used for scratch purposes, for temporary
data repositories and data holding areas, and similar purposes. They can also be used
as a staging area where backups are stored temporarily on the way to being written
to tape or other media.

Stackers, jukeboxes, and similar devices

There are a variety of devices designed to make media handling more automated, as
well as to store and make available large numbers of media units. For example, there
are auto-loading tape drives—also known as stackers—which can feed tapes auto-
matically from a stack of 10 or so. Early stackers could access the component tapes
only in order, but many current devices can retrieve any desired tape.

Another type of device puts multiple drive units into a box that looks to users like a
single tape drive with the combined capacity of all of its components. Alternatively,
such a device can be used to make multiple identical tapes simultaneously.

Still other units combine both multiple drives and tape auto-loading capabilities.
These devices are known as jukeboxes or libraries.* The most sophisticated of them
can retrieve a specific tape and place it into the desired drive. Some of these devices
include integrated bar-code readers so that tapes can be identified by their physical
label rather than storage location or electronic label. Similar devices also exist for
optical disks and writeable CD-ROMs.

Media Lifetime
From time to time, you also need to think about the reasonable expected lifetime of
your backup media. Stored under the right conditions, tapes can last for years, but
unfortunately you cannot count on this. Some manufacturers recommend replacing
tapes every year. This is certainly a good idea if you can afford to do so. The way that
tapes and diskettes are stored also affects their lifetime: sunlight, heat, and humidity
can all significantly shorten it. I always replace tapes that have had read errors or
other failures more than once, regardless of their age; for some people and situa-
tions, a single failure is enough. I always throw away diskettes and Zip disks at the
first hint of trouble.

* Very large libraries (greater than 500 volumes) are known as silos. The two types of devices used to be dis-
tinguished by whether or not multiple hosts could be connected, but some libraries now have this capability.
Separate silos are also able to pass tapes between them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 11: Backup and Restore

Even so-called permanent media like CDs actually have a finite lifetime. For exam-
ple, CDs begin to fail after about 5 years (and sometimes even sooner). Accordingly,
creating two copies of important data and checking them periodically is the only pru-
dent course.

Given these considerations, your site may want to consider alternative media for off-
site and archival backups. For example, manufacturers of optical disks claim a life-
time of 15 years for this media (this is based on accelerated aging tests; as of this
writing, we won’t know for about 8–9 years whether this is really true).

Comparing Backup Media
Table 11-1 lists the most important characteristics of a variety of backup media. The
largest media capacity for each item shown is the biggest that was available as of this
writing. These size values refer to raw data capacity: the actual amount of data that
can be written to the media.

The drive price is the lowest generally available price at this time and can be assumed
to use the least expensive I/O interface; you can expect SCSI versions of many
devices that are also available in IDE form to cost at least 15% more (and sometimes
much more). Similarly, at about $100, a USB floppy drive costs 10 times that of an
ordinary one.

The media prices are the lowest commonly available when the media is purchased in
large quantities (e.g., 50–100 for CDs) and in no-frills packaging (e.g., on a spindle
for CDs rather than in individual jewel cases). All prices are domestic prices in the
United States, in U.S. dollars, as of mid-2002.

The minimum lifetime column gives an approximate rule-of-thumb time period
when you can expect some media to begin failing. Of course, individual media will
fail even sooner in some cases.

Table 11-1. Popular backup devices and media

Type Media capacity Drive pricea Media pricea Minimum lifetime

Floppy disk 1.44 MBb $10 $0.25 2 years

Super disk 120 MB $120 $8 2–3 years

Zip Disk 100 MB $70 $5 3–5 years

250 MB $140 $12 3–5 years

Jaz Disk 1 GB $300 $80 4–5 years

2 GB $340 $100 4–5 years

CD-R 700 MB (80 minutes) $150 $0.85 5 years

CD-RW 640 MB (74 minutes) $150 $1 5 years

DVD-R 4.7 GB (single-sided) $700 $8 5 years?

9.4 GB (double-sided) $700 $40 5 years?

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backup Media | 723

Tape Special Files
Traditionally, special files used to access tape drives had names of the form /dev/rmtn
or /dev/rmt/n, where n indicates the drive number. Tape drives are virtually always
accessed via the character (raw) special file. Currently, special file names usually
include other characters as prefixes and/or suffixes, which indicate the way the
device is to be accessed: the density setting to use, whether to use the drive’s built-in
hardware compression, whether to rewind the tape after the operation is completed,
and so on.

AIX systems also use suffixes to select whether the tape should be retensioned before
use. Retensioning refers to equalizing the tension on a tape, and it consists of mov-
ing the tape to the beginning, then the end, and then rewinding back to the begin-
ning; it’s even slower than it sounds. The idea is to eliminate any latent slackness in
the tape, but it is seldom necessary in practice.

Table 11-2 lists the current tape special file naming conventions for the various oper-
ating systems we are considering.

DVD+RW 4.7 GB $600 $8 5 years?

DAT tape 4 mm DDS 4 GB (120 m DDS-2) $550 $6 3–4 years

12 GB (125 m DDS-3) $700 $12.50 3–4 years

20 GB (150 m DDS-4) $1200 $26 3–4 years

8 mm tape 7 GB (160 m) $1200 $6 2–4 years

Mammoth-2 (AME) 20 GB $2500 $36 3–4 years?

60 GB $3700 $45 3–4 years?

AIT tape 35 GB $900 $79 3–4 years?

50 GB $2600 $85 3–4 years?

100 GB $3900 $105 3–4 years?

DLT 40 GB $4000 $70 10 years

SuperDLT 110 GB $6000 $150 10 years

Magneto-optical (RW) 5.2 GB $2300 $65 15 years?

9.1 GB $2700 $93 15 years?

Hard disk 100 GB (IDE) N/A $2–3/GB 5–7 years

180 GB (SCSI) N/A $10/GB 5–7 years

a Approximate minimum price in U.S. dollars.
b A few floppy drives provided by Unix vendors increase the maximum capacity to 2.8 MB.

Table 11-1. Popular backup devices and media (continued)

Type Media capacity Drive pricea Media pricea Minimum lifetime

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 11: Backup and Restore

Table 11-2. Tape special file names

Unix version Format and examplesa

a In all cases, n refers to the tape drive number. The examples are all for a non-rewinding tape device with hardware compression dis-
abled using the lowest and highest density (as available).

Prefixes/suffixes man page

AIX /dev/rmtn[.m]

/dev/rmt0.1
/dev/rmt0.5

Note: Compression is
enabled and disabled with the
chdev command.

m:

none=rewind, no retension, low density
1=no rewind, no retension, low density
2=rewind, retension, low density
3=no rewind, retension, low density
4=rewind, no retension, high density
5=no rewind, no retension, high density
6=rewind, retension, high density
7=no rewind, retension, high density

rmt(4)

FreeBSD /dev/[n]rastn
/dev/[e|n]rsan

/dev/nrast0
 /dev/nrsa0

n=no rewind
e=eject tape on close

(Density and compression are chosen with the mt
utility.)

ast
sa(4)

HP-UX /dev/rmt/
citjd0TYPE[b][n]

/dev/c0t3d0DDSbn
/dev/c0t3d0BESTbn

i=controller
j=SCSI ID
n=no rewind
b=use BSD-style error control
TYPE=keyword indicating tape type and/or density
(e.g., BEST, DDS)

mt(7)

Linux /dev/[n]stnx

/dev/nst0
/dev/nst0m

n=no rewind

x:

none=default density
l=low density
m=medium density
a=autoselect density

st

Solaris /dev/rmt/nx[b][n]

/dev/rmt/0lbn
/dev/rmt/0hbn

b=use BSD-style error control
n=no rewind

x:

none=default density
l=low density
m=medium density
h=high density
c=use hardware compression

st

Tru64b

b Older Tru64 systems use the now-obsolete device names of the form /dev/tz* and /dev/ta*.

/dev/[n]rmt/tapen_dm

/dev/nrmt/tape0_d2
/dev/nrmt/tape0_d3

m:

0=low density, use compression
1=high density, use compression
2=low density, no compression
3=high density, no compression
(values 4–7 are also defined for some drives)

tz

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backup Media | 725

Some systems provide simpler names as links to commonly-used tape devices. You
can figure out which device they refer to by looking at a long directory listing. Here is
an example from an HP-UX system:

crw-rw-rw- 2 bin bin 205 0x003000 Oct 7 1999 0m
crw-rw-rw- 2 bin bin 205 0x003080 Oct 7 1999 0mb
crw-rw-rw- 2 bin bin 205 0x003040 Oct 7 1999 0mn
crw-rw-rw- 2 bin bin 205 0x0030c0 Oct 7 1999 0mnb
crw-rw-rw- 2 bin bin 205 0x003000 Oct 7 1999 c0t3d0BEST
crw-rw-rw- 2 bin bin 205 0x003080 Oct 7 1999 c0t3d0BESTb
crw-rw-rw- 2 bin bin 205 0x003040 Oct 7 1999 c0t3d0BESTn
crw-rw-rw- 2 bin bin 205 0x0030c0 Oct 7 1999 c0t3d0BESTnb
crw-rw-rw- 1 bin bin 205 0x003001 Oct 7 1999 c0t3d0DDS
crw-rw-rw- 1 bin bin 205 0x003081 Oct 7 1999 c0t3d0DDSb
crw-rw-rw- 1 bin bin 205 0x003041 Oct 7 1999 c0t3d0DDSn
crw-rw-rw- 1 bin bin 205 0x0030c1 Oct 7 1999 c0t3d0DDSnb

In this case, 0m and c0t3d0BEST refer to the same tape drive and access mode (as do
their corresponding suffixed forms).

The default tape drive on a system is usually the first drive in its default (rewinding)
mode:

On Linux systems (and some others), the device /dev/tape is a link to the default tape
device on the system. You can make the link point to whatever drive you want to by
recreating the link. On FreeBSD systems, some commands use the TAPE environ-
ment variable to locate the default tape drive.

AIX tape device attributes

On AIX systems, you can use the lsattr command to view the attributes of a tape
drive:

$ lsattr -E -H -l rmt0
attribute value description user_settable

block_size 1024 BLOCK size (0=variable length) True
compress yes Use data COMPRESSION True
density_set_1 140 DENSITY setting #1 True
density_set_2 20 DENSITY setting #2 True
extfm yes Use EXTENDED file marks True
mode yes Use DEVICE BUFFERS during writes True

This 8 mm tape drive will use data compression and a block size of 1024 by default.

AIX /dev/rmt0
FreeBSD /dev/rsa0
HP-UX /dev/rmt/0m
Linux /dev/st0
Solaris /dev/rmt/0
Tru64 /dev/rmt/tape0_d0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 11: Backup and Restore

You must use the chdev command to change the many attributes of a tape drive
(rather than having these selections encoded into the special file name as with other
systems). For example, the following command changes the block size to 1024 and
turns off compression and retensioning for drive 1:

chdev -l rmt0 -a block_size=1024 -a compress=no -a ret=no

Backing Up Files and Filesystems
Most systems offer a variety of utilities for performing backups, ranging from gen-
eral-purpose archiving programs like tar and cpio to programs designed for imple-
menting multilevel incremental backup schemes on a per-filesystem basis. When the
largest tapes held only a couple hundred megabytes, choosing the right utility for sys-
tem backups was easy. tar and cpio were used for small and ad hoc backups and
other data transfer needs, and the more sophisticated utilities specifically designed
for the task were used for system backups, because their specialized abilities—the
ability to span tapes and to automatically perform incremental backups—were essen-
tial to getting the job done.

This distinction breaks down to a great extent when a single tape can hold gigabytes
of data. For example, incrementals are less important when you can fit all the impor-
tant data on a system onto one or two tapes—and you have the time to do so. Large
tapes also make it practical to back up a system in logically grouped chunks of files,
which may be spread arbitrarily throughout the physical filesystem. A successful sys-
tem backup process can be built around whatever utilities make sense for your sys-
tem.

One dubious piece of advice about backups that is frequently given is
that you should limit filesystem size to the maximum backup media
capacity available on the system. In this view, multi-tape backup sets
are simply too much trouble, and the backup process is simplified if all
of the data from a filesystem will fit onto a single tape.

While being able to back up a filesystem with a single tape is certainly
convenient, I think it is a mistake to let current media capacity dictate
filesystem planning to such a degree. Breaking disks into more, smaller
filesystems limits flexibility in allocating their resources, a concern that
is almost always far more important than reducing the complexity of
backing them up. Designing the filesystem needs to take all of the fac-
tors affecting the system and its efficient use into account. If tape-sized
backup sets are what is desired, it’s easy enough to write scripts to do
so when overall circumstances dictate that some individual filesys-
tems need to be bigger.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up Files and Filesystems | 727

When tar or cpio Is Enough
In some cases, especially single-user systems, an elaborate backup process is not
needed. Rather, since the administrator and the user are one and the same person, it
will be obvious which files are important, how often they change, and so on. In cases
like this, the simpler tape commands, tar and cpio, may be sufficient to periodically
save important files to tape (or other media).

While the canonical model for this situation is Unix running on a workstation, these
utilities may also be sufficient for systems with relatively small amounts of critical
data. tar and cpio also have the advantage that they will back up both local and
remote filesystems mounted via NFS.

The tar command

We’ll begin with a simple example. The following tar command saves all files under
/home to the default tape drive:

$ tar -c /home

-c says to create a backup archive.

tar’s -C option (big C) is useful for gathering files from various parts of the filesys-
tem into a single archive. This option causes the current directory to be set to the
location specified as its argument before tar processes any subsequent pathname
arguments. Multiple -C options may be used on the same command. For example,
the following tar commands save all the files under the directories /home, /home2,
and /chem/public:

$ tar -cf /dev/rmt1 /home /home2 /chem/public
$ tar -cf /dev/rmt1 -C /home . -C /home2 . -C /chem public

The two commands differ in this respect: the first command saves all of the files
using absolute pathnames: /home/chavez/.login, for example. The second command
saves files using relative pathnames: ./chavez/.login. The file from the first archive
would always be restored to the same filesystem location, while the file from the sec-
ond archive would be restored relative to the current directory (in other words, rela-
tive to the directory from which the restore command was given).

It is a good idea to use absolute pathnames in the arguments to -C. Relative path-
names specified to -C are interpreted with respect to the current directory at the time
that option is processed rather than with respect to the initial current directory from
which the tar command was issued. In other words, successive -C options accumu-
late, and tar commands using several of them as well as relative pathnames can
become virtually uninterpretable.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 11: Backup and Restore

Traditionally, all tar options were placed in a single group immedi-
ately following the command verb, and a preceding hyphen was not
needed. The POSIX standard specifies a more traditional Unix syntax,
preferring the second form to the first one for this command:

$ tar xpfb /dev/rmt1 1024 ...
$ tar -x -p -f /dev/rmt1 -b 1024 ...

The versions of tar on current operating systems usually accept both
formats, but an initial hyphen may become be a requirement at some
point in the future.

tar archives are often compressed, so it is very common to see compressed tar
archives with names like file.tar.Z, file.tar.gz or file.tgz (the latter two files are com-
pressed with the GNU gzip utility).

Solaris enhancements to the tar command. The Solaris version of tar offers enhance-
ments that make the command more suitable for system-level backups. They allow
all or part of the list of files and directories to be backed up to be placed in one or
more text files (with one item per line). These files are included in the file list given to
tar, preceded by -I, as in this example:

$ tar cvfX /dev/rst0 Dont_Save /home -I Other_User_Files -I Misc

This command backs up the files and directories in the two include files, as well as
those in /home. The command also illustrates the use of the -X option, which speci-
fies the name of an exclusion file listing the names of files and directories that should
be skipped if encountered by tar. Note that wildcards are not permitted in either
include or exclusion files. In case of conflicts, exclusion takes precedence over inclu-
sion.

The -I and -X options may also be used in restore operations per-
formed with the tar command.

On Solaris and a variety of other System V systems, the file /etc/default/tar may be
used to customize the mappings of the default archive destinations specified with
tar’s single-digit code characters (for example, the command tar 1c creates an
archive on drive 1). Here is a version from a Solaris system:

Block
#Archive=Device Size Blocks
#
archive0=/dev/rmt/0 20 0
archive1=/dev/rmt/0n 20 0
archive2=/dev/rmt/1 20 0
archive3=/dev/rmt/1n 20 0
archive4=/dev/rmt/0 126 0
archive5=/dev/rmt/0n 126 0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up Files and Filesystems | 729

archive6=/dev/rmt/1 126 0
archive7=/dev/rmt/1n 126 0

The first entry specifies the device that will be used when tar 0 is specified. In this
case, it is the first tape drive in its default modes. The second entry defines archive 1
as the first tape drive in non-rewinding mode. The remaining two fields are optional;
they specify the block size for the device and its total capacity (which may be set to
zero to have the command simply detect the end-of-media marker).

The GNU tar utility: Linux and FreeBSD. Linux distributions and FreeBSD provide the
GNU version of the tar command. It supports tar’s customary features and con-
tains some enhancements to them, including the ability to optionally span media vol-
umes (-M) and to use gzip compression (-z). For example, the following command
will extract the contents of the specified compressed tar archive:

$ tar xfz funsoftware.tgz

The cpio command

cpio can also be used to make backups. It has several advantages:

• It is designed to easily back up completely arbitrary sets of files; tar is easiest to
use with directory subtrees.

• It packs data on tape much more efficiently than tar. If fitting all your data on
one tape is an issue, cpio may be preferable.

• On restores, it skips over bad spots on the tape, while tar just dies.

• It can span tapes, while many versions of tar are limited to a single volume.

Using its -o option, cpio copies the files whose pathnames are passed to it via stan-
dard input (often by ls or find) to standard output; you redirect standard output to
use cpio to write to floppy disk or tape. The following examples illustrate some typi-
cal backup uses of cpio:

$ find /home -print | cpio -o >/dev/rmt0
$ find /home -cpio /dev/rmt0

The first command copies all files in /home and its subdirectories to the tape in drive
0. The second command performs the identical backup via a version of find that
offers a -cpio option.

Incremental backups with tar and cpio

Combining find with tar or cpio is one easy way to perform incremental backups,
especially when only two or three distinct backup levels are needed. For example, the
following commands both copy all files under /home which have been modified
today into an archive on /dev/rmt1, excluding any object (.o) files:

$ find /home -mtime -1 ! -name *.o -print | cpio -o >/dev/rmt1
$ tar c1 `find /home -mtime -1 ! -name '*.o' ! -type d -print`

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 11: Backup and Restore

The find command used with tar needs to exclude directories, because tar will auto-
matically archive every file underneath any directory named in the file list, and all
directories in which any file has changed will appear in the output from find.

You can also use find’s -newer option to perform an incremental backup in this way:

$ touch /backup/home_full
$ find /home -print | cpio -o > /dev/rmt0
A day later...
$ touch /backup/home_incr_1
$ find /home -newer /backup/home_full -print | cpio -o > /dev/rmt0

The first command timestamps the file /backup/home_full using the touch command
(/backup is a directory created for such backup time records), and the second com-
mand performs a full backup of /home. Some time later, the second two commands
could be used to archive all files that whose data has changed since the first backup
and to record when it began. Timestamping the record files before this backup
begins ensures that any files that are modified while it is being written will be backed
up during a subsequent incremental, regardless of whether such files have been
included in the current backup or not.

pax: Detente between tar and cpio

The pax command attempts to bridge the gap between tar and cpio by providing a
single general-purpose archiving utility.* It can read and write archives in either for-
mat (by default, it writes tar archives), and offers enhancements over both of them,
making it an excellent utility for system backups in many environments. pax is avail-
able for all of the Unix versions we are considering. Like cpio, pax archives may span
multiple media volumes.

pax’s general syntax is:

pax [mode_option] other_options files_to_backup

The mode_option indicates whether files are being written to or extracted from an
archive, where -w says to write to an archive, -r says to read and extract from an
archive, and -rw indicates a pass-through mode in which files are copied to an alter-
nate directory on disk (as with cpio -p); pax’s default mode when no mode_option is
given is to list the contents of an archive.

The following commands illustrate pax file archiving modes of operation:

$ pax -w -f /dev/rmt0 /home /chem
$ find /home /chem -mtime -1 -print | pax -w -f /dev/rmt0
$ pax -w -X -f /dev/rmt0 /

* Indeed, on systems offering pax, cpio and tar are often just links to it. pax’s syntax is an amalgamation of the
two, which is not surprising for a peace imposed by POSIX (although the name purportedly stands for por-
table archive exchange).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up Files and Filesystems | 731

The first two commands perform a full and incremental backup of the files in /home
and /chem to the default tape drive in each case. The third command saves all of the
files in the disk partition corresponding to the root directory; the -X option tells pax
not to cross filesystem boundaries.

AIX prefers pax over vanilla tar and cpio. The command has been enhanced to sup-
port large files (over 2 GB).

Backing Up Individual Filesystems with dump
The BSD dump utility represents the next level of sophistication for backup systems
under Unix. It selectively backs up all of the files within a filesystem (single disk par-
tition), doing so by copying the data corresponding to each inode to the archive on
the backup device. It also has the advantage of being able to back up any type of file,
including device special files and sparse files. Although there are slight variations
among different versions of this command, the discussion here applies to the follow-
ing Unix implementations of this command:

Getting Users to Do Backups
At some sites, certain backup responsibilities are left to individual users: when a site
has far too many workstations to make backing up all of their local disks practical,
when important data resides on non-Unix systems like PCs (especially if they are not
connected to the local area network), and so on.

However, even when you’re not actually performing the backups yourself, you will
probably still be responsible for providing technical support and, more often than not,
reminders to the users who will be performing the backups. Here are some approaches
I’ve tried to facilitate this:

• Make a habit of encouraging users rather than threatening them (threats don’t
work anyway).

• Use peer pressure to your advantage. Setting up a central backup storage loca-
tion that you look after can make it obvious who is and isn’t doing the backups
they are supposed to. Note that this idea is inappropriate if data sensitivity is an
issue.

• Create tools that automate the backup process as much as possible for users.
Everyone has time to drop in a tape and start a script before they leave for the
day.

• Provide a central repository for key files that get backed up as part of the system/
site procedure. Users can copy key files and know they will be backed up when
they’re really in a jam and really don’t have time to do a backup themselves.

AIX backup
FreeBSD dump

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 11: Backup and Restore

On systems supporting multiple filesystem types, dump may be limited to UFS (BSD-
type) filesystems; on Linux systems, it is currently limited to ext2/ext3 filesystems,
although the XFS filesystem provides the similar xfsdump utility. Under HP-UX,
vxdump and vxrestore support VxFS filesystems. Tru64 provides vdump for AdvFS file-
systems.

dump keeps track of when it last backed up each filesystem and the level at which it
was saved. This information is stored in the file /etc/dumpdates (except on HP-UX
systems, which use /var/adm/dumpdates). A typical entry in this file looks like this:

/dev/disk2e 2 Sun Feb 5 13:14:56 1995

This entry indicates that the filesystem /dev/disk2e was last backed up on Sunday,
February 5 during a level 2 backup. If dump does not find a filesystem in this list, it
assumes that it has never been backed up.

If dumpdates doesn’t exist, the following command will create it:

touch /path/dumpdates

The dumpdates file must be owned by the user root. If it does not exist, dump will not
create it and won’t record when filesystem backups occur, so create the file before
running dump for the first time.

The dump command takes two general forms:

$ dump options-with-arguments filesystem
$ dump option-letters corresponding-arguments filesystem

where filesystem is the block special file corresponding to the filesystem to be backed
up or the corresponding mount point from the filesystem configuration file. In the
first, newer form, the first item is the list of options to be used for this backup, with
their arguments immediately following the option letters in the normal way (e.g., -f
/dev/tape).

In the second, older form, option-letters is a list of argument letters corresponding to
the desired options, and corresponding-arguments are the values associated with each
argument, in the same order. This syntax is still the only one available under Solaris
and HP-UX.

Although not all options require arguments, the list of arguments must correspond
exactly, in order and in number, to the options requiring arguments. For example,
consider the set of options 0sd. The s and d options require arguments; 0 does not.
Thus, a dump command specifying these options must have the form:

$ dump 0sd s-argument d-argument filesystem

HP-UX dump and vxdump
Linux dump (but the package is not usually installed by default)
Solaris ufsdump
Tru64 dump and vdump

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up Files and Filesystems | 733

Failing to observe this rule can have painful consequences if you are running the
command as root, including destroying the filesystem if you swap the argument to
the f option and dump’s final argument when you are running the command as root.
You’ll get no argument from me if you want to assert that this is a design defect that
ought to have been fixed long before now. When you use dump, just make sure an
argument is supplied for each option requiring one. To avoid operator errors, you
may want to create shell scripts that automatically invoke dump with the proper
options.

dump’s most important options are the following (we will use the newer form):

-0, . . . , -9
These options indicate the level of the dump this command will perform. Given
any level n, dump will search dumpdates for an entry reporting the last time this
filesystem was dumped at level n–1 or lower. dump then backs up all files that
have been changed since this date. If n is zero, dump will back up the entire file-
system. If there is no record of a backup for this filesystem for level n–1 or lower,
dump will also back up the entire filesystem. If no level option is specified, it
defaults to -9. This option does not require any argument.

Older versions of dump not supporting hyphenated options require that the level
option be the first option letter.

-u
If dump finishes successfully, this option updates its history file, dumpdates. It
does not require an argument.

-f device
This option states that you want to send the dump to something other than the
default tape drive (i.e., to a file or to another device). The defaults used by vari-
ous Unix versions were listed previously. If you use this option, it must have an
argument, and this argument must precede the filesystem being dumped. A
value of “-” (a single hyphen) for its argument indicates standard output.

-W
Display only what will be backed up when the indicated command is invoked,
but don’t perform the actual backup operation.

-s feet -d dens
These options were needed on older versions of dump to determine the capacity of
the backup media. Recent versions of dump generally don’t need them as they
keep writing until they detect an end-of-media mark.

If you do need to use them to lie to dump about the tape length because your ver-
sion uses a default capacity limit suitable for ancient 9-track tapes, -s specifies
the size of the backup tape, in feet; -d specifies the density of the backup tape, in
bits per inch. Since dump will respect end-of-media marks that it encounters
before it has reached this limit, the fix for such situations is to set the capacity to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 11: Backup and Restore

something far above the actual limit. For example, the options -d 50000 -s 90000
define a tape capacity somewhat over 4 GB.

-b factor
Specifies the block size to use on the tape, in units of 1024-byte (or sometimes
512-byte) blocks.

Here is a typical use of the dump command:

$ dump -1 -u -f /dev/tape /chem

The second command performs a level 1 incremental backup on the /chem filesys-
tem using the tape drive linked to /dev/tape; dump will update the file the dumpdates
file upon completion.

dump notifies the user whenever it requires some interaction. Most often, dump will
have filled the tape currently in use and ask for another. It will also ask whether to
take corrective actions if problems arise. In addition, dump prints many messages
describing what it is doing, how many tapes it thinks it will need, and the like.

The HP-UX fbackup utility

HP-UX provides the fbackup and frecover utilities designed to perform system back-
ups. One significant advantage that they have over the standard Unix utilities is that
they can save and restore HP-UX access control lists along with other file metadata.

fbackup provides for nine levels of incremental backups, just like dump. fbackup stores
backup records in the file /var/adm/fbackupfiles/dates, which the system administra-
tor must create before using fbackup.

The following examples illustrate how fbackup might be used for system backup
operations:

fbackup -0u -f /dev/rmt/1m -i /chem
fbackup -1u -i /chem -i /bio -e /bio/med
fbackup -1u -f /dev/rmt/0m -f /dev/rmt/1m -i /chem
fbackup -0u -g /backup/chemists.graph -I /backup/chemists.TOC

The first command performs a full backup of /chem to tape drive 1, updating the
fbackup database. The second command does a level 1 backup of /chem and /bio,
excluding the directory /bio/med (as many -i and -e options as you need can be
included). The third command performs a level 1 backup of /chem using multiple
tape drives in sequence.

The final command performs a full backup as specified by the graph file /backup/
chemists.graph, writing an index of the backup to the file /backup/chemists.TOC. A
graph file is a text file with the following format:

c path

where c is a code indicating whether path is to be included (i) or excluded (e) from
the backup.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up Files and Filesystems | 735

Related Tape Utilities
There are two other Unix tape utilities you should know about, which are also of use
in performing backups from time to time.

Data copying and conversion with dd

The dd utility transfers raw data between devices. It is useful for converting data
between systems and for reading and writing tapes from and to non-Unix systems. It
takes a number of option=value pairs as its arguments. Some of the most useful
options are:

if Input file: source for data.

of Output file: destination for data.

ibs
Input block size, in bytes (the default is 512).

obs
Output block size, in bytes (the default is 512).

fskip
Skip tape files before transferring data (not available in all implementations).

count
The amount of data (number of blocks) to transfer.

conv
Keyword(s) specifying desired conversion of input data before outputting: swab
means swap bytes, and it is the most used conversion type. lcase and ucase
mean convert to lower- and uppercase, respectively, and ascii and ebcdic mean
convert to ASCII or EBCDIC.

For example, the following command processes the third file on the tape in drive 0,
using an input block size of 1024 bytes and swapping bytes in all data; the com-
mand writes the converted output to the file /chem/data/c70o.dat:

$ dd if=/dev/rmt0 of=/chem/data/c70o.dat \
 ibs=1024 fskip=2 conv=swab

As always, be careful to specify the appropriate devices for if and of;
transposing them can have disastrous consequences.

Tape manipulation with mt

Unix provides the mt command for direct manipulation of tapes. It can be used to
position tapes (to skip past backup save sets, for example), to rewind tapes, and to
perform other basic tape operations. Its syntax is:

$ mt [-f tape-device] command

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 11: Backup and Restore

where tape-device specifies which tape drive to use, and command is a keyword indi-
cating the desired action. Useful keywords include rewind (to rewind the tape),
status (display device status—you can see whether it is in use, for example), fsf n
(skip the next n files), and bsf n (skip back n files).

For example, to rewind the tape in the second tape drive, you might use a command
like:

$ mt -f /dev/rmt1 rewind

The Solaris version of mt includes an asf subcommand, which moves the tape to the
nth file on the tape (where n is given as asf’s argument), regardless of the tape’s cur-
rent position.

Under FreeBSD, the mt command is used to set the tape drive density and
compression:

$ mt -f /dev/nrsa0 comp on density 0x26

AIX also includes the tctl utility (to which mt is really a link). tctl has the same syn-
tax as mt and offers a few additional seldom-wanted subcommands.

Restoring Files from Backups
All of the backup facilities described in the previous sections have corresponding file
restoration facilities. We’ll look at each of them in turn in this section.

Restores from tar and cpio Archives
Individual files or entire subtrees can be restored easily from tar and cpio archives.
For example, the following pairs of commands restore the file /home/chavez/freeway/
quake95.data and user harvey’s home directory (respectively) from an archive made
of /home located on the tape in the default tape drive (here, we use /dev/rmt0 for as
the example location):

$ tar -xp /home/chavez/freeway/quake95.data
$ cpio -im '*quake95.data' < /dev/rmt0
$ tar -xp /home/harvey
$ cpio -imd '/home/harvey*' < /dev/rmt0

The -p option to tar and -m option to cpio ensure that all file attributes are restored
along with the file. cpio’s -d option creates subdirectories as necessary when restor-
ing a directory subtree (tar does so by default).*

* The second cpio command also assumes that there is no file or directory in /home that begins with “harvey”
other than user harvey’s home directory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restoring Files from Backups | 737

Restores with pax are similar. For example, the first of the following commands lists
the files on the tape in drive 0, and the remaining commands extract various files
from it:

$ pax -f /dev/rmt0 -v –v gives a more detailed/verbose listing.
$ pax -r '/h95/*.exe' Select files via a regular expression.
$ pax -r /home/chavez Restore chavez's home directory.
$ pax -r -f my_archive -c '*.o' Restore everything except object files.
pax -r -pe -f /dev/rmt0 Restore files incl. owner, mode & mod. time.

pax’s coolest feature has to be its -s option, which allows you to massage filenames
as files are written to, extracted from, or even just listed from an archive. It takes a
substitution command as used in ed or sed as its argument (which will usually need
to be enclosed in single quotation marks) indicating how filenames should be trans-
formed. For example, the following command changes the second-level directory
name of each file from chavez to harvey as files are read from the archive, changing
their target location on disk:

$ pax -r -s ',^/home/chavez/,/home/harvey/,' \
 -f /dev/rmt0 /home/chavez

The substitution clause searches for /home/chavez at the beginning of the pathname
of each file to be restored and changes it to /home/harvey, using commas as the field
separator within the substitution string.

Here are some additional -s clauses for specific kinds of transformations:

-s ',^/home/chavez/,,' Remove partial directory component.
-s ',^.*//*,,' Remove entire directory component.
-s ',^//*,,' Make pathnames relative to current directory.

Multiple -s options are allowed, but only the first matching one is used for any given
filename.

Be aware that pax is not without its eccentricities. One of the most
annoying is the following: in some versions of pax, directories matched
via wildcards in the pattern list during restore operations are not
extracted in their entirety; only explicitly listed ones are. Note that this
is the opposite of the way cpio works and also counter to the way tar
operates. I’d be positive this was a bug except that it happens in more
than one vendor’s version, although not in every vendor’s version.
With pax, caveat emptor would appear to be the watchword.

Restoring from dump Archives
The restore utility retrieves files from backup tapes made with the dump utility. It is
supported by those systems supporting a version of dump. Solaris calls its version
ufsrestore in keeping with the name of its version of dump. HP-UX and Tru64 pro-
vide vxrestore and vrestore commands for their default filesystem types. All of these
commands have the same syntax and options. The commands can restore single
files, directories, or entire filesystems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

738 | Chapter 11: Backup and Restore

To restore an entire filesystem, you must restore the most recent backup tapes from
each backup level: the most recent full dump (0), the most recent level 1 dump, and
so on. You must restore each level in numerical order, beginning with level 0.
restore places the files it retrieves in the current working directory. Therefore, to
restore a filesystem as a whole, you may wish to create and mount a clean, empty
filesystem, make the current working directory the directory in which this filesystem
is mounted, and then use restore to read the backup tapes into this directory. Note
that such restore operations will have the side effect of recreating deleted files.

After a full restore, you need to do a full (level 0) backup. The reason for this is that
dump backs up files by their inode number internally, so the tape from which you just
restored from won’t match the inodes in the new filesystem since they were assigned
sequentially as files were restored.

In general, the restore command has the following forms (similar to dump’s):

$ restore options-with-arguments [files-and-directories]
$ restore option-letters corresponding-arguments [files-and-directories]

where files-and-directories is a list of files and directories for restore to retrieve from
the backup tape. If no files are listed, the entire tape will be restored.

In the first, newer form, the first item is the list of options to be used for this backup
with their arguments immediately following the option letters in the normal way (e.g.,
-f /dev/tape). In the second, older form, option-letters is a list of argument letters for
the desired options, and corresponding-arguments are the values associated with each
argument, in the same order. This syntax is still the only one available under AIX and
Solaris.

Most options to restore do not have any arguments. However, as with dump, it is
important that any arguments appear in the same order as the options requiring
them.

restore places the files that it retrieves in the current working directory. When a
directory is selected for restoration, restore restores the directory and all the files
within it, unless you have specified the -h option.

restore’s most important options are the following:

-r
Read and restore the entire tape. This is a very powerful command; it should be
used only to restore an entire filesystem located on one or more tapes. The file-
system into which the tape is read should be newly created and completely
empty. This option can also be used to restore a complete incremental dump on
top of a newly restored filesystem. That is, after using the -r option to restore
the most recent full dump, you use it again to restore successive incremental
dumps until the filesystem has been completely restored.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restoring Files from Backups | 739

-x
Extract all files and directories listed and restore them in the current directory.
Each filename to be extracted must be a complete pathname relative to the root
directory of the filesystem being restored. For example, to restore the file /chem/
pub/old/gold.dat from a dump of the /chem filesystem, you must specify the file-
name as pub/old/gold.dat. You should be in /chem when you execute the restore
command if you want the file to be restored to its original location.

-t
Type the names of the listed files and directories if they appear on the backup
tape. This option lets you find out whether a given file is on a particular tape
more quickly than reading the entire tape. When used without a file list, it veri-
fies that a dump tape is readable.

-f file
The corresponding argument is the name of the file or device holding the dump.
If this option is omitted, restore assumes that the dump tape is mounted on
your default tape drive. Use a hyphen for file to specify standard input.

-s n
The value n indicates which file on tape is to be used for the restore. For exam-
ple, -s 3 says to use the third tape file.

-i
Enter interactive mode. This is almost always the most convenient method for
restoring a small group of files. It is described in detail in the next section.

A typical usage of the restore command is:

cd /home
restore -x -f /dev/rmt1 chavez/mystuff others/myprogram

This restores the directory /home/chavez/mystuff and the file called /home/others/
myprogram from a backup tape (assuming that /home is the filesystem in the
archive). The directories chavez and others are assumed to be in the current direc-
tory (and created if necessary), and the specified subdirectory and file are restored
under them. These both originally resided within the /home directory. Note, how-
ever, that the mount point name is not used in the restore command. The com-
mand must be executed from /home to restore the files to their original locations.

On Solaris and HP-UX systems, the corresponding options would be:

xf /dev/rmt1 chavez/mystuff others/myprogram

dump and restore both save files independently of where the filesystem happens to be
mounted at the time; that is, the pathnames used by these commands are relative to
their position in their own filesystem, not in the overall system filesystem. This
makes sense, because the filesystem could potentially be mounted anywhere in the
overall directory tree, and files should still be able to be restored to their correct loca-
tion relative to the current mount point for their filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

740 | Chapter 11: Backup and Restore

If you need to restore some files that have been destroyed by accident, your most dif-
ficult problems will be determining which set of backup tapes contains these files
and waiting for the system to read through one or more full backup tapes. If you do
incremental backups, knowing when a file was last modified will help you to find the
correct backup tape. Creating online table-of-contents files is also very useful (this
topic is discussed later in this chapter).

The restore utility’s interactive mode

The interactive mode is entered with restore’s -i option. Once there, the contents of
a tape can be scanned and files chosen for extraction. This mode’s use is illustrated
in this sample session:

$ restore -i -f /dev/rmt1 Initiate restore's interactive mode.
restore > help
Available commands are:
 ls [arg] - list directory
 cd arg - change directory
 add [arg] - add `arg' to list of files to be extracted
 delete [arg] - delete `arg' from list of files to be extracted
 extract - extract requested files
...
If no `arg' is supplied, the current directory is used
restore > ls List directory on tape.
chavez/ harvey/ /ng
restore > cd chavez/vp Change tape current directory.
restore > ls
v_a.c v_a1.c v_b3.c v_d23.c v_early
restore > add v_a1.c Select (mark) files to be restored.
restore > add v_early
restore > ls
v_a.c *v_a1.c v_b3.c v_d23.c *v_early
restore > delete v_early Remove a file from the extract list..
restore > extract Write selected files to current directory.
You have not read any tapes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #: 1 Tape number if known.
set owner/mode for '.'? [yn] n Don't change ./'s ownership or protection.
restore > quit End the restore interactive session.

The final prompt from restore asks whether to change the ownership and protec-
tion of the current directory to match that of the root directory on the tape. Answer
yes only if you are restoring an entire filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restoring Files from Backups | 741

Combining Several Backups onto a Single Tape

If you want to place several archives onto the same tape, all you need to
do is rewind the tape (if necessary) before writing the first archive and
then use a nonrewinding device for all subsequent backup operations.

To retrieve files from a multiarchive tape, you must position the tape
at the proper location before issuing the restoration command.
restore can do this automatically using its -s option, which takes the
tape file number you want to use as its argument.

For all other backup types, position the tape with the mt command.
For example, the following commands position the tape just after the
second archive on the tape:

$ mt -f /dev/rmt0 rewind If necessary
$ mt -f /dev/nrmt0 fsf 2

Again, you will need to use the nonrewinding form of the tape device;
otherwise, the tape will be rewound to the beginning after position-
ing. Once at the desired point, you can write an additional backup
archive to the tape or perform a restore operation using the next
archive on the tape, as appropriate.

The HP-UX frecover utility

The HP-UX frecover utility restores files archived by fbackup, using a very similar
syntax. For example, the first of the following commands restores the /chem/
fullerenes subdirectory tree:

frecover -x -i /chem/fullerenes
frecover -r -f /dev/rmt/1m

The second command restores all files on the tape in drive 1. frecover also accepts
the -i, -e, and -g options. Other useful options include the following:

• -X and -F restore all retrieved files relative to the current directory (converting
absolute pathnames to relative ones) or into the current directory (stripping off
all paths), respectively.

• -o says to overwrite files on disk that are newer than the file in the backup set.

• -N says to read the backup media without restoring any files. It is useful for veri-
fying the integrity of a backup and for creating table-of-contents files.

Moving Data Between Systems
In general, tar, cpio, and dump write archives that are readable on many different
computer systems. However, sometimes you will run into problems reading a tape
on a system other than the one on which it was written. There are four major causes
for such problems:

Block size differences
The simplest cause of tape reading problems is a difference in the block size with
which the archive was written and the block size expected by the drive on which

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

742 | Chapter 11: Backup and Restore

you’re trying to read it. Some tape drives assume specific fixed block sizes. You
can specify the block size to backup and restore utilities (-b is often the relevant
option), and on many systems you can set the characteristics of the drive itself.
The most commonly used block sizes are 512 and 1024.

Archive format incompatibilities
The backup utilities provided by early versions of Unix differed from those in
use today, so very old computer systems may not be able to read tapes written
on a current machine. The modern versions of most utilities include backward-
compatibility options that allow you to write tapes in the old format if you need
to read them on an ancient system.

Byte order differences
Whether a computer system is big endian or little endian determines how it inter-
prets the individual bytes within larger data units, such as words. Big-endian sys-
tems consider the byte with the lowest address as the most significant; little-
endian systems consider it to be the least significant. Tape archives, like all other
data on a computer system, reflect this fundamental attribute of the hardware.
When you want to read a tape produced by a computer of one type on a differ-
ent computer of the other type, you’ll need to swap the bytes before utilities like
tar can make sense of the archive.

For example, you could use this AIX command to list the contents of a tape writ-
ten on an IRIX system:

$ dd if=/dev/rmt1 conv=swab | tar tvf -

The dd command reads the tape file and swaps the bytes, passing the converted
archive to the tar command, which lists the archive it finds on standard input.
You could construct the equivalent reversed pipe to produce a byte-swapped
archive on tape.

Compressed archives
If you write a tape on a drive that performs automatic data compression, you
won’t be able to read it on a drive that lacks this feature. In order to write tapes
that will be readable on drives without compression, you’ll need to specify the
noncompressing special file to the backup utility (refer to the discussion of spe-
cial files earlier in this chapter, as well as the relevant manual pages for your sys-
tems, for details).

Making Table of Contents Files
It is often convenient to have online listings of the contents of system backup tapes.
For one thing, they make it much easier to figure out which tape has the file you
need to restore, especially when multiple levels of incremental backups are in use. It
is quite easy to create such files at the time the backup is performed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making Table of Contents Files | 743

If you’re using tar or cpio for backup, you can take advantage of the -v option to
create a listing of the tape’s contents as it is written, as in these examples:

$ today='date +%d%b%Y'
$ tar -cv /home > /backup/home_full_$today.TOC
 or
$ tar -cv /home | tee /backup/home_full_$today.TOC

Both tar commands archive the contents of /home, generating a long, directory-like
listing as it does so and saving it to a file with a name like /backup/home_full_
21mar1995.TOC. The second command also displays the same output on the screen.

cpio sends the file list to standard error, so it must be captured slightly differently:

$ toc='date +/backup/home_full_%d%b%y.TOC'
$ find /home -print | cpio -ov > /dev/rmt0 2> $toc

If you want to use the C shell, the commands are a little different:

% set toc='date +/backup/home_full_%d%b%y.TOC'
% (find /home -print | cpio -ov > /dev/rmt0) >& $toc

The file lists produced by cpio commands like these contain only the pathnames of
the files in the archive. If you want a more detailed listing, you can generate it with a
second cpio command or a more complex pipe leading up to the cpio backup com-
mand:

$ cpio -itv < /dev/rmt0 > $toc
$ find /home | cpio -o | tee /dev/rmt0 | cpio -t -i -v > $toc

The first command lists the files in the archive on tape. The second command avoids
having to reread the backup tape by using the find command to generate a list of
files, which cpio makes into an archive. This archive is then sent both the the tape
drive and to another cpio command. The latter lists the archive contents and writes it
to the specified table-of-contents file.

Making a table of contents file for a dump tape requires a subsequent restore com-
mand. For example, here is a script that performs a backup with dump and then cre-
ates a table-of-contents file with restore:

#!/bin/csh
bkup+toc - perform dump and verify tape/make TOC file
$1 = filesystem
$2 = dump level (default=0)
#
if ($#argv < 1) then
 echo "do_backup: filesystem [dump-level]"
 exit 1
endif

set lev=0
if ("$2" != "") set lev=$2
dump -${lev} -u -f /dev/rmt1 $1
if ($status) then

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

744 | Chapter 11: Backup and Restore

 echo "do_backup: dump failed"
 exit 1
endif
restore -t -v -f /dev/rmt1 > /backup/`date +$1:t_%m-%d-%Y.$lev`

This script runs the dump command on the filesystem given as its first argument,
using the backup level specified as its second argument (or level 0 by default). If the
dump command exits normally, the restore command is used to verify the backup
and write its contents to a file. The file’s name contains the disk name and the
month, day, and year when the backup was done, and its extension is the backup
level: e.g., chem_06-24-2001.2 would be the filename for a level 2 backup of /chem
made on June 24, 2001.

On an HP-UX system, you can use this frecover command to create a table-of-con-
tent file:

frecover -r -Nv -f /dev/rmt/0m > $toc

Network Backup Systems
So far, we’ve considered only backups and restores of disks on a local computer sys-
tem. However, many organizations need to take a more unified and comprehensive
approach to their total backup needs. We will consider various available solutions
for this problem in this section.

Remote Backups and Restores
The simplest way to move beyond the single-system backup view is to consider
remote backup and restores. It is very common to want to perform a backup over the
network. The reasons are varied: your system may not have a tape drive at all since
not all systems come with one by default any more, there may be a better (faster,
higher capacity) tape drive on another system, and so on.

Most versions of dump and restore can perform network-based operations (Tru64
requires you to use the separate rdump and rrestore commands). This is accom-
plished by specifying a device name of the form host:local_device as an argument to
the -f option. The hostname may also optionally be preceded by a username and at-
sign; for example, -f chavez@hamlet:/dev/rmt1 performs the operation on device /dev/
rmt1 on host hamlet as user chavez.

This capability uses the same network services as the rsh and rcp commands.
Remote backup facilities depend on the daemon /usr/sbin/rmt (which is often linked
to /etc/rmt).* To be allowed access on the remote system, there needs to be a .rhosts
in its root directory, containing at least the name of the (local) host from which the
data will come. This file must be owned by root, and its mode must not allow any

* On a few older systems, you’ll need to create the link yourself.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Backup Systems | 745

access by group or other users (for example, 400). This mechanism has the mecha-
nism’s usual negative security implications (see “Network Security” in Chapter 7).

Some versions of the tar command can also use the rmt remote tape
facility.

The HP-UX fbackup and frestore utilities accept remote tape drives as arguments to
the normal -f option. For example:

fbackup -0u -f backuphost:/dev/rmt/1m -i /chem

The Amanda Facility
Amanda is the Advanced Maryland Automated Network Disk Archiver. It was devel-
oped at the University of Maryland (James da Silva was the initial author). The
project’s home page is http://www.amanda.org, where it can be obtained free of
charge. This section provides an overview of Amanda. Consult Chapter 4 of Unix
Backup and Recovery for a very detailed discussion of all of Amanda’s features (this
chapter is also available on the Amanda home page).

About Amanda

Amanda allows backups from a network of clients to be sent to a single designated
backup server. The package operates by functioning as a wrapper around native
backup software like GNU tar and dump. It can also back up files from Windows cli-
ents via the Samba facility (smbtar). It has a number of nice features:

• It uses its own network protocols and thus does not suffer from the security
problems inherent in the rmt approach.

• It supports many common tape and other backup devices (including stackers
and jukeboxes).

• It can perform full and incremental backups and decide the backup level auto-
matically based on specified configuration parameters.

• It can take advantage of hardware compression features, or it can compress
archives prior to writing them to tape (or other media) when the former is not
available. Software compression may be performed either by the main server or
by the client system.

• It provides excellent protection against accidental media overwriting.

• It can use holding disks as intermediate storage for backup archives to maximize
tape write performance and to ensure that data is backed up in spite of tape
errors (allowing the backup set to be written to backup media at a later time).

• It can use Kerberos-based authentication in addition to providing its own
authentication scheme. Kerberos encryption can also be used to protect the data
as it is transmitted across the network.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

746 | Chapter 11: Backup and Restore

At present, Amanda does have a couple of annoying limitations:

• It cannot split a backup archive across multiple tapes. When it encounters an
end-of-tape mark while saving a backup archive, it begins writing the archive
from the beginning on the next tape.

• It cannot produce individual backup archives larger than a single tape. This is a
consequence of the first limitation.

• Only a single backup server is supported.

How Amanda works

Amanda uses a combination of full and incremental backups to save all of the data
for which it is responsible, using the smallest possible daily backup set that can do
so. Its scheme first computes the total amount of data to be backed up. It uses this
total, along with a couple of parameters defined by the system administrator, to fig-
ure out what to do in the current run. These are the key parameters:

The number of runs in a backup cycle
At a rate of one Amanda run per day, this corresponds to the desired number of
days between full backups.

The percentage of data that changes between Amanda runs
In the single run per day case, this is the percentage of the data that changes each
day.

Amanda’s overall strategy is twofold: to complete a full backup of the data within
each cycle and to be sure that all changed data has been backed up between full
dumps. The traditional method of doing this is to perform the full backup followed
by incrementals on the days between them. Amanda operates differently.

Each run (night), Amanda performs a full backup of part of the data, specifically, the
fraction that is required to back up the entire data set in the course of a complete
backup cycle. For example, if the cycle is 7 days long (with one run per day), 1/7 of
the data must be backed up each day to complete a full backup in 7 days. In addi-
tion to this “partial” full backup, Amanda also performs incremental backups for all
data that has changed since its own last full backup.

Figure 11-1 illustrates an Amanda backup cycle lasting 4 days, in which 15% of the
data changes from day to day. The box at the top of the figure stands for the com-
plete set of data for which Amanda is responsible; we have divided it into four seg-
ments to represent the part of the data that gets a full backup at the same time.

The contents of the nightly backups are shown at the bottom of the figure. The first
three days represent a start-up period. On the first night, the first quarter of the data
is fully backed up. On the second night, the second quarter is fully backed up, and
the 15% of the data from the previous night that changed during day 2 is also saved.
On day 3, the third quarter of the total data is fully backed up, as well as the changed
15% of day 2’s backup. In addition, 15% of the portion backed up on the first night

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Backup Systems | 747

is written for each of the intervening nights since its full backup: in other words, 30%
of that quarter of the total data.

By day 4, the normal schedule is in force. Each night, one quarter of the total data is
backed up in full, and incrementals are performed for each of the other quarters as
appropriate to the time that has passed since their last full backup.

This example uses only first-level incremental backups. In actual prac-
tice, Amanda uses multiple levels of incremental backups to minimize
backup storage requirements.

To restore files from an Amanda backup, you may need one complete cycle of media.

Let’s now consider a numeric example. Suppose we have 100 GB of data that we
need to back up. Table 11-3 illustrates four Amanda backup schedules based on dif-
fering cycle lengths and per-day change percentages.

Figure 11-1. The Amanda backup scheme

Table 11-3. Sample Amanda backup sizes (total data=100 GB)

3-day cycle
10% change

5-day cycle
10% change

7-day cycle
10% change

7-day cycle
15% change

Full portion 33.3 20.0 14.3 14.3

1st previous day 3.4 2.0 1.4 2.2

2nd previous day 6.8 4.0 2.8 4.4

3rd previous day 6.0 4.2 6.6

1st day 2nd day 3rd day Day 1 Day 2 Day 3 Day 4

Regular backup cycle

Total data to be backed up
on a 4-day backup cycle with
a 15% change rate per day.

The daily backup size is 37% of the total size.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

748 | Chapter 11: Backup and Restore

The table columns illustrate the data that would comprise each daily backup, break-
ing it down by the full backup portion and the incremental data from each previous
full backup within the cycle.

Note that Amanda computes what should be backed up every time it is run, so it is
not as static as the preceding examples suggest, but the examples nevertheless pro-
vide a general picture of how the facility operates.

In the next section, we consider how the backup size depends on the backup cycle
more formally, including some expressions that can be used to decide on an appro-
priate backup cycle for specific conditions.

Estimating the Daily Change Rate

You can use the find command to help estimate the daily change rate:

$ find dir -newer /var/adm/yesterday -ls | \
 awk '{sum+=$7}; END {print "diff =",sum}'

Repeat the command as needed to cover all the data to be backed up.
Use touch to update the time for the file /var/adm/yesterday after all
the find commands are run.

Then, divide this value by the total used space (e.g., taken from df out-
put). Repeat the process for several days or weeks to determine an
average rate.

Doing the math

Next, we consider some expressions that can be used to compute starting parame-
ters for Amanda (which can be fine-tuned over time, based on actual use). If this sort
of mathematical analysis is of no interest to you, just skip this section.

We will use the following variables:

T = total amount of data
p = percentage change between runs (in decimal form: e.g. 12%=0.12)
n = number of runs in a complete cycle (often days)
S = amount of data that must be backed up every run (day)
F = fraction of the total data that must be backed up every run (day): S/T

To compute per-run amount of data that must be backed up, use this expression for S:

4th previous day 8.0 5.6 8.8

5th previous day 7.0 11.0

6th previous day 8.4 13.2

Daily size (GB) 43.5 40.0 43.7 60.5

Table 11-3. Sample Amanda backup sizes (total data=100 GB) (continued)

3-day cycle
10% change

5-day cycle
10% change

7-day cycle
10% change

7-day cycle
15% change

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Backup Systems | 749

For example, 70 GB of data that changes by 10% per day using a 1 week backup
cycle requires that 31 GB be backed up every night (70/7 + 70 × 0.1 × 6/2 = 10 + 42/2
= 10 + 21 = 31). If 31 GB is larger than the maximum capacity that you have in the
available time, you’ll need to adjust the other parameters (see below).

Alternatively, if you have a fixed amount of backup capacity per run, you can figure
out the required cycle length. Refer to the discussion of capacity planning earlier in
this chapter for information on determining how much capacity you have.

To compute n for a given nightly capacity, use this expression:

where

We have introduced the variable x to make the expression for n simpler. Suppose that
you have a nightly backup capacity of 40 GB for the same scenario (70 GB total data,
changing at 10% per day). Then x = 0.1/2 + 40/70 = 0.05 + 0.57 = 0.62. We can now
compute n: (0.62 ±) / 0.1 = (0.62 ±) / 0.1 = (0.62 ± 0.42) / 0.1 =
6.2 ± 4.2.

This calculation yields solutions of 2 and 11 (rounding to integers). We can either do
full backups of about half the data every night or use a much longer 11-day cycle and
still be able to get the backups all done. Note that these values take maximum
advantage of the available capacity.

Now suppose that you have a nightly backup capacity of only 20 GB for the same sce-
nario (70 GB total data, changing at 10% per day). Then x = 0.1/2 + 40/70 = 0.05 +
0.29 = 0.34. We can now compute n: (0.34 ±) / 0.1. The square-root
term is now imaginary (since 0.12–0.20 is negative), indicating that this proposed
configuration will not work in practice.* The available capacity is simply too small.

In general, you can compute the minimum per-run capacity for a given per-run per-
centage change (p) with this expression (which introduces F as the fraction of the
total data that must be backed up):

 (where);

* Mathematically, there are no real solutions to the underlying quadratic equation.

S T
n
---- Tp n 1–()

2
-------------------------+=

n x x2 2p–±
p

--------------------------------=

x p
2
--- S

T
----+

 =

0.38 0.2– 0.18

0.12 0.2–

Fminimum for fixed p 2 p
2

p
2
---–= F S

T
----= Sminimum∴ FT=

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

750 | Chapter 11: Backup and Restore

F indicates the fraction of that data that must be backed up each run in order for the
system to succeed. So, in our case of a 10% change rate, F = 2 × –(0.1/2) = 2
× –0.05 = 2 × 0.22–0.05 = 0.44–0.05 = 0.39 ≈ 40%. Note that this expression
is independent of T (the total backup data); whenever the data changes by about
10% per run, you must be able to back up at least 40% of the total data every run for
success. In our case, this corresponds to a minimum nightly capacity of 0.4 × 70 =
29 GB.

Alternatively, you can compute the run cycle n that is required to minimize F (and
thus S) for a given value of p with this expression:*

In our case, the cycle period which minimizes the amount of data to be backed up is
= = 4.47 ≈ 5 days. Again, this value is independent of the amount of

data. In our case, when the data is changing by 10% per day, a cycle time of 5 days
will minimize the amount of data that must be backed up every night. This is the
most efficient cycle length with the minimum nightly backup capacity.

Thus, both the minimum time cycle and per-run fraction of data to back up are
determined only by the rate at which the data is changing, and the actual per-run
backup size for a given amount of total backup data can be easily computed from
them. Thus, having an accurate estimate for p is vital to rational planning.

This discussion ignores compression in analyzing backup procedures.
If your tape drive can compress data, or if you decide to compress it
with software before writing it to tape, you will need to take the
expected compression factor into account in your computations.

Configuring Amanda

Building and installing Amanda is generally straightforward, and the process is well-
documented, so we will not consider it here.

The Amanda system includes the following components:

• Client programs, of which amandad is the most important. This daemon commu-
nicates with the Amanda server during backup runs, calling other client pro-
grams as appropriate: selfcheck (verify local Amanda configuration), sendsize
(estimate backup size), sendbackup (perform backup operations), and amcheck
(verify Amanda setup). These programs are part of the Amanda client system; on
the Amanda server, these programs are found with the package’s other helper
programs, in /usr/local/lib/amanda or /usr/lib/amanda.

* Mathematically, the value of n where ∂F / ∂n = 0. In this specific example, the mathematical region around
the minimum is quite flat.

0.1 2⁄
0.05

nminimum S
2
p
---=

2 0.01⁄ 20

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Backup Systems | 751

• Server programs to perform the various phases of the actual backup operations.
The amdump program is the one that initiates an Amanda run, and it is usually run
periodically from cron. It controls a number of other programs, including
planner (determine what to backup), driver (interface to device), dumper (com-
municate with client amandad processes), taper (write data to media), and
amreport (prepare report for an Amanda run).

• Administrative utilities to perform related tasks. They include amcheck (verify
Amanda configuration is valid and the facility is ready to run), amlabel (prepare
media for use with Amanda), amcleanup (clean up after an aborted run or system
crash), amflush (force data from the holding area to backup media), and amadmin
(perform various administrative functions).

• Configuration files that specify Amanda operations, such as what to back up and
how often to do so, as well as the locations and characteristics of the tape device.
These files are amanda.conf and disklist, and they reside in a subdirectory of the
main Amanda directory (canonically, this location is /usr/local/etc/amanda, but it
can be /etc/amanda when the package is preinstalled). A typical name is Daily.
Each subdirectory corresponds to an Amanda “configuration,” a distinct set of
settings and options referred to by the directory name.

• The amrestore utility, which can be used to restore data from Amanda backups.
In addition, the amrecover utility supports interactive file restoration. It relies on
a couple of daemons to do its job: amindexd and amidxtaped.

Setting up an Amanda client. Once you have installed the Amanda software on a client
system, there are a few additional steps to take. First, you must add entries to the /
etc/inetd.conf and /etc/services files to enable support for the Amanda network ser-
vices:

/etc/services:
amanda 10080/udp

/etc/inetd.conf:
amanda dgram udp wait amanda /path/amandad amandad

The Amanda daemon runs as user amanda in this example; you should use whatever
username you specified when you installed the Amanda software.

In addition, you’ll need to ensure that all the data that you want to be backed up is
readable by the Amanda user and group. Similarly, the file /etc/dumpdates must exist
and be writeable by the Amanda group.

Finally, you must set up the authorization scheme that amandad will use. This is usu-
ally selected at compile time. You may use normal .rhosts-based authentication, Ker-
beros authentication (see below) or a separate .amandahosts (the default
mechanism). The .amandahosts file is similar to a .rhosts file, but it applies only to
the Amanda facility and so does not carry the same level of risk. Consult the Amanda
documentation for full information about authentication options.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

752 | Chapter 11: Backup and Restore

Selecting an Amanda server. Selecting an appropriate system as the Amanda server is
crucial to good performance. You should keep the following items in mind:

• The system should have the best tape drives (or other backup devices) possible.

• The system should have sufficient network bandwidth for the estimated data
flow.

• The system should have sufficient disk space for the holding area. A good size is
at least twice the size of the largest per-run dump size.

• If the server will be performing software compression on the data, a fast CPU is
necessary.

• Large amounts of memory will have little effect on backup performance, so there
is no reason to overconfigure the system with memory.

Setting up the Amanda server. There are several steps necessary to configure the
Amanda server once the software is installed. First of all, you must add entries to the
same network configuration files as those for Amanda clients:

/etc/services:
amanda 10080/udp
amandaidx 10082/tcp
amidxtape 10083/tcp

/etc/inetd.conf:
amandaidx stream tcp nowait amanda /path/amindexd amindexd
amidxtape stream tcp nowait amanda /path/amidxtaped amidxtaped

Next, you must configure Amanda by creating the required configuration files. Cre-
ate a new subdirectory under etc/amanda in the top-level Amanda directory (i.e., /usr/
local or /), if necessary. We will use Daily as our example. Then, create and modify
amanda.conf and disklist configuration files in this subdirectory (the Amanda pack-
age contains example files that can be used as a starting point).

We will begin with amanda.conf and consider its contents in groups of related
entries. We will examine an annotated sample amanda.conf file.

The initial entries in the file typically specify information about the local site and
locations of important files:

org "ahania.com" Organization name for reports.
mailto "amanda-rep" Mail reports to this user.
dumpuser "amanda" Amanda user account.
printer "tlabels" Printer for tape labels.
logdir "/var/log/amanda" Put log files here.
indexdir "/var/adm/amindex" Store backup set index data here.

The next few entries specify the basic parameters for the backup procedure:

fundamental parameters
dumpcycle 7 days Length of the backup cycle (default=10 days).
runspercycle 5 Amanda runs per cycle (if < 1/day).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Backup Systems | 753

network-related resource settings
netusage 400 kps Maximum network bandwidth (default=300).
inparallel 20 Max. simultaneous backups (default=10).
ctimeout 120 Client timeout period (default=30 seconds).

incremental level bump parameters
bumpsize 20 mb Min. savings for level 2 incrs. (default=10).
bumpdays 1 Required # days at each level (default=2).
bumpmult 2 Multiply bumpsize by this for each higher incremental level (default=1.5).

The incremental bump level parameters specify when Amanda should increase the
incremental backup level in order to make the backup set size smaller. Using these
settings, Amanda will switch from level 1 incrementals to level 2 incrementals when-
ever it will save at least 20 MB of space. The multiplication factor has the effect of
requiring additional savings to move to each higher incremental level. The threshold
for each level is this factor times the saving required for the previous level, i.e., 40 for
levels 2 to 3, 80 for levels 3 to 4, and so on. This strategy is designed to ensure that
the added complexity of multiple levels of incremental backups also bring significant
savings in the size of the backup set.

These next entries specify information about the tape drive and media to use:

number of tapes in use Set to at least # tapes required for one full cycle
tapecycle 25 plus a few spares (default=15).
labelstr "Daily[0-9][0-9]*" Format of the table labels (regular expression).

tapedev "/dev/rmt/0"
tapetype "DLT"

#changerdev "/dev/whatever"
#tpchanger "script-path" Script to change to next tape (supplied).
#runtapes 4 Maximum number of tapes per run.

The first two entries specify the number of tapes in use and the pattern used by their
electronic labels. Note that tapes must be prepared with amlabel prior to use (dis-
cussed below).

The next two entries specify the location of the tape drive and its type. The final
three entries are used with tape changers and are commented out in this example.
Only one of tapedev and tpchanger must be used.

Tape types are defined elsewhere in the configuration file with stanzas like this:

define tapetype DLT {
 comment "DLT with 10 GB tapes"
 length 12500 mb Tape capacity (takes compression into account).
 speed 1536 kps Drive speed.
 lbl-templ "file" PostScript template file for printed labels.
}

The example configuration file includes many defined tape types. The length and
speed parameters are used only for estimation purposes (e.g., how many tapes will be
required). When performing the actual data transfer to tape, Amanda will keep writ-
ing until it encounters an end-of-tape mark.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

754 | Chapter 11: Backup and Restore

The following entry and holdingdisk stanza defines a disk holding area:

When media is unavailable, save this % of holding space
for degraded-mode incremental backups.
reserve 50 Default is 100%.

holdingdisk amhold0 { Name is amhold0.
 comment "Primary holding disk"
 directory "/scratch/amanda"
amount of space to use (+) or save (-); 0=use all (default)
 use -2 Gb Always leave this much space.
}

More than one holding disk may be defined.

The final task to be done in the configuration file is to define various dump types:
generalized backup actions having specific characteristics (but independent of the
data to be backed up). Here is an example for the normal backup type (you can
choose any names you like):

define dumptype normal {
 comment "Ordinary backup"
 holdingdisk yes Use a holding disk.
 index yes Maintain index info on contents.
 program "DUMP" Backup command.
 priority medium Specify backup relative priority.
use 24-hour clock without punctuation
 starttime 2000 Don’t begin backup before this time (8 P.M. here).
}

This dump type uses a holding disk, creates an index for the backup set contents for
interactive restoration and uses the dump program to perform the actual backup. It
runs at medium priority compared to other backups (the possibilities are low (0),
medium (1), high (2) and an arbitrary integer, with higher numbers meaning the
backup will be performed sooner). Backups using this method will not begin before 8
pm regardless of when the amdump command is issued.

Amanda provides several pre-defined dump types in the example amanda.conf file
which can be used or customized as desired.

Here are some other parameters that are useful in dump type definitions:

program "GNUTAR" Use the GNU tar program for backups.
This is also the value to use for Samba backups.

exclude ".exclude" GNU tar exclusion file (located in top-level
of the filesystem to be backed up).

compress server "fast" Use software compression on server using the
fastest compression method. Other keywords are
"client" and "best".

auth "krb4" Use Kerberos 4 user authentication.
kencrypt yes Encrypt transmitted data.
ignore yes Do not run this backup type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Backup Systems | 755

Amanda’s disklist configuration file specifies the actual filesystems to be backed up.
Here are some sample entries:

host partition dumptype spindle
hamlet sd1a normal -1
hamlet sd2a normal -1
dalton /chem srv_comp -1
leda //leda/e samba -1 # Win2K system
astarte /data1 normal 1
astarte /data2 normal 1
astarte /home normal 2 # dump all alone

The columns in this file hold the hostname, disk partition (specified by file in /dev,
full special file name, or mount point), the dump type, and a spindle parameter. The
latter serves to control which backups can be done at the same time on a host. A
value of -1 says to ignore this parameter. Other values define backup groups within a
host; Amanda will only run backups from the same group in parallel. For example,
on host astarte, the /home filesystem must be backed up separately from the other
two (the latter may be backed up simultaneously if Amanda so wishes).

There are a few final steps that are needed to complete the Amanda server setup:

• Prepare media with the amlabel command. For example, the following com-
mand will prepare a tape labeled “DAILY05” for use with the Amanda configu-
ration named Daily:

$ amlabel Daily DAILY05

Similarly, the following command will prepare the tape in slot 5 of the associ-
ated tape device as “CHEM101” for use with the Chem configuration:

$ amlabel Chem CHEM101 slot 5

• Use the amcheck command to check and verify the Amanda configuration.

• Create a cron job for the Amanda user to run the amdump command on a regular
basis (e.g., nightly). This command takes the desired configuration as its argu-
ment.

Amanda expects the proper tape to be in the tape drive when the backup process
begins. You can determine the next tape needed for the Daily configuration by run-
ning the following command:

amadmin Daily tape

The Amanda system will need some ongoing administration, including tuning and
cleanup. The latter is accomplished via the amflush and amcleanup commands.
amflush is used to force the data in the holding disk to backup media, and it is typi-
cally required after a media failure occurs during an Amanda run. In such cases, the
backup data is still written to the holding disk. The amcleanup command needs to be
run after an Amanda run aborts or after a system crash.

Finally, you can temporarily disable an Amanda configuration by creating a file
named hold in the corresponding subdirectory. While this file exists, the Amanda

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

756 | Chapter 11: Backup and Restore

system will pause. This can be used to keep the configuration information intact in
the event of a hardware failure on the backup device or a device being temporarily
needed for another task.

Amanda reports and logs

The Amanda system produces a report for each backup run and sends it by elec-
tronic mail to the user specified in the amanda.conf configuration file. The reports
are quite detailed and contain the following sections:

• The dump date and time and estimated media requirements:
These dumps were to tape DAILY05.
Tonight's dumps should go onto one tape: DAILY05.

• A summary of errors and other aberrations encountered during the run:
FAILURE AND STRANGE DUMP SUMMARY:
dalton.ahania.com /chem lev 0 FAILED [request ... timed out.]

Host dalton was down so the backup failed.

• Statistics about the run, including data sizes and write rates (output has been
shortened):

STATISTICS:
 Total Full Daily
 -------- -------- --------
Dump Time (hrs:min) 2:48 2:21 0:27
Output Size (meg) 9344.3 7221.1 2123.2
Original Size (meg) 9344.3 7221.1 2123.2
Avg Compressed Size (%) -- -- --
Tape Used (%) 93.4 72.2 21.2
Filesystems Dumped 10 2 8
Avg Dump Rate (k/s) 1032.1 1322.7 398.1
Avg Tp Write Rate (k/s) 1234.6 1556.2 1123.8

• Additional information about some of the errors/aberrations, when available.

• Informative messages from the various subprograms called by amdump:
NOTES:
 planner: Adding new disk hamlet.ahania.com:/sda2
 taper: tape DAILY05 9568563 kb fm 1 [OK]

• A summary table listing the data that was backed up and related information:
DUMP SUMMARY:
 DUMPER STATS TAPER STATS
HOST DISK L ORIG-KB OUT-KB COMP% MMM:SS KB/s MMM:SS KB/s

hamlet sd1a 1 28255 28255 -- 2:36 180.3 0:21 1321.1
hamlet sd2a 0 466523 466523 -- 36:51 211.1 5:33 1400.8
dalton /chem 1 FAILED---------------------------------------
ada /home 1 39781 39781 -- 5:16 125.7 0:29 1356.7
...

You should examine the reports regularly, especially the sections related to errors
and performance.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Backup Systems | 757

Amanda also produces log files for each run, amdump.n, and log.date.n, located in
the designated log file directory. These are more verbose versions of the email report,
and they can be helpful in tracking some sorts of problems.

Restoring files from an Amanda backup

Amanda provides the interactive amrecover utility for restoring files from Amanda
backups. It requires that backup sets be indexed (using the index yes setting) and
that the two indexing daemons mentioned previously be enabled. The utility must be
run as root from the appropriate client system.

Here is a sample session:

amrecover Daily
AMRECOVER Version 2.4.2. Contacting server on depot.ahania.com ...
...
Setting restore date to today (2001-08-12)
200 Working date set to 2001-08-14.
200 Config set to Daily.
200 Dump host set to astarte.ahania.com.
$CWD '/home/chavez/data' is on disk '/home' mounted at '/home'.
200 Disk set to /home.
amrecover> cd chavez/data
/home/chavez/data
amrecover> add jetfuel.jpg
Added /chavez/data/jetfuel.jpg
amrecover> extract
Extracting files using tape drive /dev/rmt0 on host depot...
The following tapes are needed: DAILY02
Restoring files into directory /home
Continue? [Y/n]: y
Load tape DAILY02 now
Continue? [Y/n]: y
warning: ./chavez: File exists
Warning: ./chavez/data: File exists
Set owner/mode for '.'? [yn]: n
amrecover> quit

In this case, the amrecover command is very similar to the standard restore com-
mand in its interactive mode.

The amrestore command can also be used to restore data from an Amanda backup. It
is designed to restore entire images from Amanda tapes. See its manual page or the
discussion in Unix Backup and Restore for details on its use.

Commercial Backup Packages
There are several excellent commercial backup facilities available. An up-to-date list
of current packages can be obtained from http://www.storagemountain.com. We
won’t consider any particular package here but, rather, briefly summarize the impor-
tant features of a general-purpose backup package, which can potentially serve as cri-
teria for comparing and evaluating any products your site is considering.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

758 | Chapter 11: Backup and Restore

You should expect the following features from a high-end commercial backup soft-
ware package suitable for medium-sized and larger networks:

• The ability to define backups sets as arbitrary lists of files that can be saved and
reloaded into the utility as needed.

• A capability for defining and saving the characteristics and data comprising stan-
dard backup operations.

• A facility for exclusion lists, allowing you to create, save, and load lists of files
and directories to exclude from a backup operation (including wildcard specifi-
cations).

• An automated backup scheduling facility accessed and controlled from within
the backup utility itself.

• The ability to specify default settings for backup and restore operations.

• The ability to back up all important file types (e.g., device files, sparse files) and
attributes (e.g., access control lists).

• The ability to back up open files or to skip them entirely without pausing (at
your option).

• The ability to define and initiate remote backup and restore operations.

• Support for multiple backup servers.

• Support for high-end backup devices, such as stackers, jukeboxes, libraries and
silos.

• Support for tape RAID devices, in which multiple physical tapes are combined
into a single high-performance logical unit via parallel write operations.

• Support for non-tape backup devices, such as removable disks.

• The capability to perform multiple operations to distinct tape devices simulta-
neously.

• Support for multiplexed backup operations in which multiple data streams are
backed up to a single tape device at the same time.

• Support for clients running all of the operating systems in use at your site.

• Compatibility with the standard backup utilities, which may be important to
some sites (so that saved files can be restored to any system).

• Facilities for automatic archiving of inactive files to alternate online storage
devices (for example, jukeboxes of optical disks) to conserve disk space and
reduce backup requirements.

• Inclusion of some kind of database manager so that you (and the backup soft-
ware) can perform queries to find the media needed to restore files.

See Chapter 5 of Unix Backup and Recovery for an extended discussion of commer-
cial backup package features.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up and Restoring the System Filesystems | 759

Backing Up and Restoring
the System Filesystems
This final section covers backing up and restoring the filesystem containing the oper-
ating system itself, including the case of a system disk failure. Recovering from such a
disaster has come to be known as “bare metal recovery” in recent years. Unix Backup
and Restore includes detailed chapters describing these techniques and procedures
for several Unix varieties.

Filesystems containing operating system files such as / and /usr pose few problems
when all you need to restore is the occasional accidentally deleted or otherwise lost
file. When the file in question is an unmodified system file, you can usually restore it
from the operating system installation media, provided you have it and that it is
readable under normal system conditions. If either of these conditions is not true,
you should do a full backup of all system filesystems from time to time.

Files that you modify in the system partitions should be backed up regularly. In
Chapter 14, we looked at a script that saves all modified configuration and other files
to a user filesystem, allowing them to be backed up regularly and automatically via
the system backup procedures. Alternatively, the script could save them directly to
the backup media (even to a diskette if the archive is small enough).

When system filesystems need to be completely restored (usually due to hardware
problems), some special considerations come into play. There are often two distinct
approaches that can be taken:

• Reinstalling from the original operating system installation tapes or CDs and
then restoring files you have modified. This approach may also involve reconfig-
uring some subsystems.

• Booting from alternate media and then restoring the filesystems from full back-
ups that you have made.

Which alternative is preferable depends a lot on the characteristics of your particular
system: how many files have been customized and how widely they are spread across
the various system filesystems, how much device and other reconfiguration needs to be
redone, and similar considerations. If you have to restore multiple partitions, it is usu-
ally faster to reinstall the operating system from scratch unless unsaved data in another
partition on the same disk will be lost using the standard installation procedures.

If you decide to take the second route, booting from alternate media and then restor-
ing from a backup, you will need to make reliable full backups of the system whenever
it changes significantly. Because you are depending on them for a system restoration in
an emergency, these backups should be verified or even made in duplicate.

In either case, you will sometimes also need to consult records of the disk partitions
and associated filesystem layouts, as well as the logical volume configuration, when a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

760 | Chapter 11: Backup and Restore

logical volume manager is in use. This is vital when the system disk has been dam-
aged and must be replaced to restore the system to its previous configuration. Be sure
to keep records of this data (see below).

Here is a general procedure for restoring a key filesystem from a backup (some of the
individual steps are discussed in detail Chapter 10):

• Boot off alternate media, either an installation tape or CD, or a special bootable
diskette or tape (discussed in a bit). At this point, you will be running off an in-
memory filesystem (RAM disk) or one based on the boot medium.

• Create device files for the disks, disk partitions, and/or tape drive that you will
need to access, if necessary. They may already have been provided for you if you
used a system utility to create the bootable tape or diskette.

• Prepare the hard disk as necessary. This may include formatting (rarely) or parti-
tioning it. Be sure to do anything required to make the disk bootable.

• Create a new filesystem on the appropriate partition, if necessary.

• Mount the system filesystem (/mnt is the conventional location).

• Change the current directory to the mount point. Restore the files from the
backup tape. Afterwards, change back to the root directory and dismount the
restored filesystem.

• Repeat the process for any additional filesystem and then reboot the system.

There is one additional point to consider when using this approach—or planning to
rely on it. The filesystem provided by emergency boot tapes or diskettes is very lim-
ited, and only a small subset of the normal system commands are available. You will
need to verify that the restoration utility you need is available after booting from
alternate media. For example, if the boot diskette provides only cpio, the backup of
the root filesystem had better not be a tar archive or you will be in trouble. You
should also ensure that any shared libraries needed by your desired utility are
present. Be sure to verify this before the disaster occurs.

We will now look at this process on each of our Unix operating systems individually.

AIX: mksysb and savevg
AIX provides the mksysb utility for creating bootable backup tapes of the actual live
system, which are self-restoring in the event of a failure. It saves all of the filesystems
in the root volume group, generally /, /usr, /var, /home (unless you’ve moved it), and
/tmp, plus any paging spaces in rootvg. mksysb is invoked as follows:

mksysb -i /dev/rmt0

mksysb relies on a data file that records various system configuration information. It
is updated by including mksysb’s -i option. Use the -m option instead if you wish to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up and Restoring the System Filesystems | 761

restore the exact disk locations of the filesystems in the root volume group as well as
their contents (-m says to save the logical volume maps as well as the other configura-
tion information).

To restore the root volume group, boot from the mksysb tape and select the appropri-
ate option from the resulting menu. The system will then be restored from the mksysb
tape.

You can use a similar technique to clone a system from a mksysb tape made on a dif-
ferent system. If all the devices are identical, the only restriction is that you should
not install a kernel from a multiprocessor system onto a single CPU system or vice
versa.

When devices differ between the source and target system, a slightly modified tech-
nique is used. First, you boot off the install media, and then you select the option for
restoring from a mksysb tape. In this mode, the operating system will automatically
substitute drivers from the installation media when the ones on the mksysb tape are
not correct for the target system. Note that this method will work only if the target
system has the correct drives for accommodating both the mksysb and installation
media simultaneously.

Restoring individual files from a mksysb tape

mksysb tapes can also serve as nonemergency backups of the root volume group. It is
very easy to restore individual files from it. These tapes contain four distinct (tape)
files, and the disk files from the root volume group are in the fourth file, which con-
sists of a restore archive.

Thus, you could use the following command to restore the file /usr/bin/csh and the
subdirectory /etc/mf from a mksysb backup tape:

restore -s 4 -x -q -f /dev/rmt0 ./bin/csh ./etc/mf

The -s option indicates which tape file to use, and the -q option suppresses the ini-
tial prompt asking you to press the Enter key after you have mounted the first vol-
ume. Use restore’s -T option to list the contents of the archive.

Saving and restoring AIX user volume groups

The savevg command may be used to back up an entire user volume group, just as
mksysb does for the root volume group. For example, the following command saves
all of the files in the chemvg volume group to tape drive 1:

savevg -i chemvg /dev/rmt1

The -i option creates the configuration file needed to save and restore the volume
group; using -m instead also saves the logical volume maps, allowing their physical
locations on disk to be reproduced.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

762 | Chapter 11: Backup and Restore

savevg also has a -e option, which says to exclude the files and directories listed in
the file /etc/exclude.vgname from the save set.* Wildcards are not permitted in exclu-
sion lists.

All of the logical volumes and filesystems and the files within them in a volume
group can be restored from a savevg tape; the restvg utility performs this operation.
For example, these commands restore the chemvg volume group we just saved:

restvg -q -f /dev/rmt1
restvg -q -s -f /dev/rmt1 hdisk4 hdisk5

The first command restores the volume group to its original disks, beginning immedi-
ately and without prompting for the first tape volume. The second command restores
the structure and contents of the chemvg volume group to disks 4 and 5, shrinking all
logical volumes to the minimum size necessary to hold the files within them (-s).

The tape made by savevg is a restore archive, so it is easy to extract individual files
from it, as in this example:

restore -f /dev/rmt1 -T -q
restore -f /dev/rmt1 -x -q -d ./chem/src/h95

The first command lists the contents of the archive, and the second command
restores the /chem/src/h95 subtree, creating any necessary subdirectories (-d).

FreeBSD
FreeBSD provides a several options for restoring system files, but all of them require
that you have a complete backup of the filesystem from which to restore.

In the event of a system disk or boot failure, you must boot from alternate media
(CD-ROM or a boot floppy). Then select the Fixit option from the main menu that
appears. At this point, you can choose to boot from the second installation CD
(which will function as a live filesystem) or a fixit floppy, or you can start a limited
shell. The first two options tend to be the most useful.

The fixit floppy is a limited FreeBSD operating system containing enough tools to
restore from a backup. It includes support for the tar and restore commands and
tape devices. You create a fixit floppy by mounting the first installation CD and
using a command like this one:

dd if=/cdrom/floppies/fixit of=/dev/rfd0c bs=36b

This floppy can be customized after creation for your specific needs.

In order to save the disk partition layouts on a FreeBSD system, use the fdisk -s and
disklabel commands. Along with /etc/fstab, this information will allow you to recon-
struct the disk partitions and filesystem layout. The disklabel command can also be
used to write a boot block to a replacement system disk.

* The mksysb command also recognizes -e, and its exclusion file is /etc/exclude.rootvg.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up and Restoring the System Filesystems | 763

HP-UX: make_recovery
HP-UX provides the make_recovery facility for creating bootable recovery tapes as
part of the Ignite-UX package (the utility is stored in /opt/ignite/bin). A common
method of using this utility is the following:

make_recovery -p -A -d /dev/rmt/1mn
emacs /var/opt/ignite/recovery/arch.include
make_recovery -r -A -d /dev/rmt/1mn -C

First, we run the command in preview mode (-p). This command does not write any
data to tape, but instead creates the file /var/opt/ignite/recovery/arch.include which
consists of a list of the items to be included. Here, we are choosing to save the entire
root filesystem via -A; the default is to save only the subset of files that are part of the
HP-UX operating system.

Once this command completes, we check the /var/opt/ignite/logs/makrec.log1 log file
for any errors or warnings. If any are present, we must take any corrective action nec-
essary and then rerun the first command.

Once any warnings are dealt with, the arch.include file can be edited to add or
remove items, and then make_recovery can be run again in resume (-r) mode.* The -C
option tells the command to update the stored data of the most recent make_recovery
procedure.

This process must be repeated after each significant system change. The check_
recovery command can be used to determine if make_recovery needs to be run.

Although these tapes are not intended to replace normal backups, it is possible to
retrieve individual files from them. To do so, you must manually position the tape to
the second file and then extract the desired items with tar:

cd /
mt -t /dev/rmt/1mn fsf 1
tar xvf /dev/rmt/1m relative-pathname(s)

The file list should be specified as relative pathnames (e.g., etc/hosts, not /etc/hosts).

The most recent versions of the HP Ignite-UX package also provide
make_tape_recovery (creates tape recovery images on the client system
itself and from the Ignite-UX server) and make_net_recovery (write a
recovery image to the disk drive of the Ignite-UX server across the net-
work). See the documentation for details

* In some cases, additional considerations apply when some system files reside outside the root volume group;
see the manual page for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

764 | Chapter 11: Backup and Restore

Linux
On Linux systems, you can create a boot floppy of the current kernel with this com-
mand:

dd if=/boot/file of=/dev/fd0

Simply copying the compressed kernel to diskette is all that is required, because the
Linux kernel is structured so that it is the image of a bootable floppy disk (and it is
loadable by either the DOS boot loader or lilo).

This procedure will enable you to boot your system should there be some problem
booting from the hard disk. However, if your system disk is damaged and the root
filesystem there is inaccessible, you will need a true recovery system to restore things.
In such circumstances, you can boot using a rescue disk, which is created with the
installation CD mounted with a command like this one:

dd if=/cdrom/disks/rescue of=/dev/fd0 bs=18k

The rescue floppy contains tools needed to restore a saved backup, including tape
devices and the tar command.

To record the disk partitioning information, use the fdisk -l command. Along with
/etc/fstab, this information will allow you to reconstruct the disk partitions and file-
system layout, and you can use lilo to create a boot block on a replacement system
disk. Note that its -r option will prove very useful when the new root partition is
mounted at some other point (e.g., /mnt) within the rescue filesystem.

Recent versions of Red Hat Linux also provide a system rescue option
when booting from the installation CD.

Solaris
Solaris provides little in the way of tools for system backup and recovery. You should
make full backups of the root filesystem. You can then boot off alternate media to
create a minimally working system and restore from your backup.

The prtvtoc command along with /etc/checklist will provide the information required
to recreate the disk partitioning and filesystem layout scheme. You can use the
installboot command to write a boot block to the system disk. Note that boot
images are stored within the installed filesystem at /usr/platform/model/lib/fs/ufs/
bootblk, where model is a string corresponding to your specific Sun hardware model
(e.g., SUNW-Sun-Blade-100).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backing Up and Restoring the System Filesystems | 765

Tru64: btcreate
Tru64 provides the btcreate command for creating a bootable backup tape for the
operating system. The tape consists of a bootable miniature operating system and a
complete backup of the system files.

Running btcreate is very easy in that it will prompt you for all of the information
that it requires. The default (suggested) answers are almost always correct. A restore
from a btcreate tape will recreate the logical volume configuration from the original
system in addition to restoring all of the system files.

On Tru64 systems, you can use the disklabel -r command to record disk partition-
ing information and recreate them if necessary.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

766

Chapter 12CHAPTER 12

Serial Lines and Devices

This chapter discusses how to work with serial lines on Unix systems. Traditionally,
this meant configuring terminals and modems, but now the topic’s scope has grown
to include related facilities as well, such as fax services and USB.

This chapter begins by considering traditional serial lines. First, we’ll look at the spe-
cial files used for serial lines and other terminal sessions. Next, we will discuss how
to set the characteristics of individual terminals and generic terminal types. We then
go on to consider terminal line configuration issues, including how to add and trou-
bleshoot new terminals and modems. We’ll conclude with a brief look at the
HylaFAX fax service package and USB devices.

Celeste Stokely’s website, at http://www.stokely.com/unix.serial.port.
resources, is an invaluable guide to all aspects of using serial ports on
Unix systems.

About Serial Lines
Serial lines were first used for connecting terminals to computers. As time went on,
however, many other devices have been connected via serial lines as well: modems,
printers, digital cameras, and MP3 players, to name just a few. While serial lines are
not fast communications channels, they do provide a straightforward, standardized
way of sending data to or from a computer. In traditional contexts, serial lines use
the RS-232 communications standard. We will consider this standard in some detail
later in this chapter, after we’ve discussed some more practical aspects of administer-
ing serial lines and devices.

Device Files for Serial Lines
The special files for serial ports vary between systems, but they traditionally have
names of the form /dev/ttyn, where n is a one- or two-digit number corresponding to
the serial line number (System V and BSD style, respectively); numbering begins at 0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

About Serial Lines | 767

or 00. For example, /dev/tty2 and /dev/tty16 correspond to the third and seventeenth
serial lines on a system, respectively (BSD-style systems always use two digits: /dev/
tty02). Terminals, modems, and other serial devices are accessed via these special files.

On more recent System V–based systems, special files for direct terminal lines are
stored in the directory /dev/term and have names that are their line number: /dev/
term/14, for example. There are often links to the older names.

The file /dev/tty (no suffix) serves a special purpose. It is a synonym for each pro-
cess’s controlling TTY. It can be used to ensure output goes to the terminal, regard-
less of any I/O redirection.

The special file /dev/console always refers to the system console device. On many
workstation systems, /dev/console is redefined depending on how the workstation is
being used. /dev/console refers to the system CRT display when the system is being
used in a nongraphical mode. When a windowing session is running, however, /dev/
console may become one of its windows (rather than the device as a whole).

Systems may have other terminal special files corresponding to devices that they sup-
port. For example, under AIX, the special file /dev/lft is used for the physical work-
station console. It comes into play most often when the console is used as an
ordinary character terminal (i.e., its nongraphical, command-line login mode). It is
also the device to which the X server attaches when the workstation is running in its
normal graphical mode.

There are also other terminal devices in /dev used for indirect login sessions via a net-
work or windowing system; these are the pseudo-terminal devices. Each pseudo-ter-
minal consists of two parts:

• The master or control pseudo-terminal, which usually has a device name of the
form /dev/pty[p-s]n or /dev/ptc/n (BSD and System V, respectively). Many sys-
tems support both naming formats.

• The slave pseudo-terminal (also called a virtual terminal), which has a device
name of the form /dev/tty[p-s]n or /dev/pts/n. It emulates an ordinary serial line
terminal for command output.

n is usually a single hexadecimal digit in both cases. The slave pseudo-terminals pro-
vide a TTY-like interface to user processes. The two parts work in pairs, with the
same device number n. Output appears in the virtual terminal, and this device is also
what is listed by commands like ps. On recent System V–based systems, only a sin-
gle master pseudo-terminal is used for all of the virtual terminals (true for the Sys-
tem V names under AIX, HP-UX and Solaris; Tru64 has merged the control
functionality into the slave device, thus eliminating use of a master pseudo-terminal
special file).

Table 12-1 lists the special files for serial lines and pseudo-terminals on the various
systems we are considering. The special files for the first serial line and the first
pseudo-terminal are listed in each case.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

768 | Chapter 12: Serial Lines and Devices

As the table indicates, dial-out modems sometimes use a different special file than
terminals do. For example, under Solaris, the special file /dev/cua/0 refers to the first
serial line in dial-out mode. Similarly, under HP-UX, /dev/cua0p0 and /dev/ttyd0p0
both refer to the same serial line and are used for dial-out and dial-in modems,
respectively.

The two special files differ only in their minor device numbers (their subtype within
their device class), which are offset by 128. You can use the ls -l command to find
the major and minor device numbers for a special file; they appear in the size field:

crw-rw-rw- 1 bin bin 1 0x000201 Feb 1 06:59 cua0p2
crw-rw-rw- 1 bin bin 1 0x000201 Feb 1 06:59 cul0p2
crw--w--w- 1 bin bin 1 0x000200 Jan 15 15:52 tty0p2
crw--w---- 1 uucp bin 1 0x000202 Feb 1 06:59 ttyd0p2

These four devices all refer to the same physical serial port, accessed in different
modes: as a dial-out modem, as a direct serial connection to another computer, as a
terminal line, and as a dial-in modem.

You could use the MAKEDEV or mknod command if you needed to create any of these
special files for a serial line. The first is preferred if it is available because it is much
easier to use:

cd /dev
./MAKEDEV tty4

This command will create all the special files associated with the fifth serial line.

On systems without MAKEDEV, you must run the mknod command. For example, the
following commands may be used to create the additional outgoing special files for a
bidirectional modem on the fifth terminal line (which is usually named /dev/tty0p4):

mknod /dev/cul0p4 c 1 0x401
mknod /dev/cua0p4 c 1 0x401

These commands both create character special files (the c code letter) for device class
1 (serial lines). You can then use these device files for configuring the serial line in

Table 12-1. Serial line special files

Version Serial line Dial-out form

Pseudo-terminal

Control Slave

AIXa

a Also provides the BSD-style pseudo-terminal special filenames.

/dev/tty0 /dev/tty0 /dev/ptc /dev/pts/0

FreeBSD /dev/ttyd0 /dev/cuaa0 /dev/ptyp0 /dev/ttyp0

HP-UXa /dev/tty0p0 /dev/cua0p0, /dev/ttyd0p0b

b This form is used for dial-in modems.

/dev/ptmx /dev/pts/0

Linux /dev/ttyS0 /dev/ttyS0 /dev/ptyp0 /dev/ttyp0

Solarisa /dev/term/a /dev/cua/0 /dev/ptmx /dev/pts/0

Tru64 /dev/tty00 /dev/tty00 (not used) /dev/pts/0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Specifying Terminal Characteristics | 769

the various contexts (as we’ll see). Alternatively, you can use SAM to create any
required special files, via its Peripheral Devices ➝ Terminals and Modems ➝ Actions
➝ Add Terminal or Add Modem menu path.

The tty Command
The tty command displays what special file is being used for a login session. For
example:

$ hostname
hamlet
$ tty
/dev/tty12
$ rlogin duncan
AIX Version 5
(C) Copyrights by IBM and by others 1982, 2000.
$ tty
/dev/pts/4

This user is directly logged in to the 13th terminal line on hamlet. On duncan, his
remote session is using pseudo-terminal 4.

Specifying Terminal Characteristics
Unix programs are generally written to be terminal-independent: they don’t know
about or rely on the specific characteristics of any particular kind of terminal, but
rather, they call a standard screen manipulation library that is responsible for inter-
facing to actual terminals. Such libraries serve to map general terminal characteris-
tics and functions (e.g., clearing the screen) to the specific character sequences
required to perform them on any specific terminal.

Terminal definitions are stored in databases on the system, and users indicate what
kind of terminal they are using by setting the TERM environment variable (usually at
login time). These databases are handled differently under BSD and System V and
are the subject of the next section.

termcap and terminfo
Programs use the name specified in the TERM environment variable as a key into the
system terminal definitions database. Under the BSD scheme, terminal definitions
are stored in the file /etc/termcap; under System V, they are stored in the subdirecto-
ries of the terminfo top-level subdirectory. Some systems provide both facilities:

AIX /usr/lib/terminfo
FreeBSD /etc/termcap (a link to /usr/share/misc/termcap)
Linux /etc/termcap and /usr/share/terminfo
HP-UX /usr/lib/terminfo (a link to /usr/share/lib/terminfo)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

770 | Chapter 12: Serial Lines and Devices

This section provides a brief overview of termcap and terminfo entries. See the Nut-
shell Handbook termcap & terminfo, by John Strang, Linda Mui, and Tim O’Reilly
(O’Reilly & Associates), for detailed information about the Unix terminal definition
databases and modifying or writing entries.

termcap entries

The BSD termcap database is a text file consisting of a series of entries that describe
how different terminals function. Here is a sample entry for a VT100 terminal:

d0|vt100|vt100am|dec vt100:\
 :co#80:li#24:am:ho=\E[H:\
 :ku=\EOA:kd=\EOB:

This sample entry is much shorter than an actual entry, but it will serve to illustrate
the features of termcap entries. The first line is a series of aliases for the terminal
type. Any entry without a space can be used as the value of the TERM environment
variable. The remainder of the entry is a colon-separated series of capability codes
and values. There are several kinds of capabilities. They can specify:

Data about the terminal
In the sample entry, the co code tells how many columns the terminal screen has
(80), the li code indicates how many lines it has (24), and the am code says that
the terminal can automatically wrap long output strings onto multiple lines on
the terminal screen.

The sequence of characters sent to the terminal to get it to perform some action
In the sample entry, the ho code indicates the character sequence required to
move the cursor “home” (the upper left corner of the screen). In these sequences,
the ESCAPE character is abbreviated \E. Thus, to get a VT100 to move the cur-
sor to its upper left corner, you send it the sequence “ESCAPE [H.”*

The character sequence emitted when a special key is pressed
In the sample entry, the ku code holds the sequence for the up arrow key; on a
VT100, the terminal emits “ESCAPE O A” when you press this key. Similarly,
the kd code specifies the sequence emitted by the down arrow key.

On FreeBSD systems, you must run the following command after modifying the ter-
mcap file:

cap_mkdb /usr/share/misc/termcap

Solaris /etc/termcap and /usr/share/lib/terminfo
Tru64 /usr/share/lib/termcap and /usr/lib/terminfo

* This doesn’t mean that if you type this sequence, the cursor will move. This discussion refers to sequences
sent to the terminal as a device, before any hardware interpretation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Specifying Terminal Characteristics | 771

terminfo entries

The System V terminfo database is a series of binary files describing terminal capabil-
ities. Each entry is a separate file in the subdirectory of the main terminfo location
that is named for the first letter of its name: e.g., the terminfo entry for a VT100 is
stored in the file terminfo/v/vt100. terminfo entries are compiled from source code
vaguely similar to termcap. Here is the equivalent terminfo source code for the sam-
ple termcap entry for the VT100:

vt100|vt100am|dec vt100,
 am, cols#80, lines#24, home=\E[H,
 kcud1=\EOB, kcuu1=\EOA,

The following commands are available for manipulating terminfo entries:

tic
Compile terminfo source.

infocmp
List source for a compiled terminfo entry. The -C option says to list the equiva-
lent termcap entry for a compiled terminfo entry (i.e., translate from terminfo to
termcap).

captoinfo
Translate a termcap entry into terminfo source.

Modifying entries

If you need to change a termcap entry, you just have to edit /etc/termcap; to change a
terminfo entry, list its source with infocmp, edit the source, and then recompile it
with tic. In either case, it’s wise to test the new entry by installing it under a slightly
different name (vt100t for example) rather than merely replacing the old one. The
easiest way to create a new entry is usually to find an existing one for a similar device
and then rename and modify it for the new terminal type.

The terminfo commands listed previously are useful not only for modifying terminfo
entries or creating new ones but also whenever you need to convert an entry from
one format to the other. For example, I wanted to use an old terminal I had on an
AIX system, but the system had no terminfo entry for it. However, I was able to find
a termcap entry for it on a BSD system, so all I had to do was extract the entry into a
separate file, ship it to the AIX system, run captoinfo on it, and then compile the
result with tic.

Users can specify an alternate termcap or terminfo database with the TERMCAP and
TERMINFO environment variables. If their value is a filename, that file (TERMCAP)
or directory (TERMINFO) will be used instead of the usual location. In the latter
case, the named directory must contain subdirectories named for the first letter of
the entries they hold, just as the standard location does. Thus, if TERMINFO is set to
/home/chavez/terminfo and TERM is set to etchasketch, the file /home/chavez/
terminfo/e/etchasketch must be a compiled terminfo entry for that device type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

772 | Chapter 12: Serial Lines and Devices

The TERMCAP environment variable can also be used to pre-retrieve a termcap
entry; this feature is discussed in the next subsection.

The tset Command
Once a user has set the terminal type with the TERM environment variable, the tset
command can be used to initialize the terminal. Without arguments, tset sets basic
terminal properties to common default values, including setting the erase, kill, and
interrupt characters, and sending any appropriate initialization sequences for that
terminal type. tset is traditionally included in default user initialization files when
the user’s default login location is a terminal.

Although it’s most often used without options, tset is actually a very versatile util-
ity. For example, it can prompt for the terminal type if desired by using its -m option.
For example, the following command prompts the user for the terminal type, supply-
ing vt100 as a default, and then initializes the terminal:

$ tset -m ":?vt100"
TERM = (vt100)

If the user enters a carriage return, tset will use vt100 as the terminal type; other-
wise, it will use whatever type the user enters. In either case, tset will then initialize
the terminal accordingly. Instead of vt100, you can enter any terminal type that your
system supports.

You can use tset to prompt for and set the TERM variable by including its hyphen
option, which directs tset to echo the terminal type to standard output:

$ TERM=`tset - -Q -m ":?vt100"` Bourne and Korn shells
$ export TERM

% setenv TERM `tset - -Q -m ":?vt100"` C shell

The -Q option suppresses the normal messages tset prints out.

On BSD-based systems, tset can also be used to set the TERMCAP environment
variable. When used this way, the entire termcap entry corresponding to the type
named in the TERM variable becomes the value of the TERMCAP variable. Setting
TERMCAP allows programs to start up more quickly, since they don’t need to search
the termcap database file.

tset’s -s option generates the shell commands necessary to set the TERM and
TERMCAP environment variables (commands are generated for the shell specified in
the SHELL environment variable). There are many ways of executing them; one
common way is to use the eval command:

$ eval `tset -sQ -m ":?vt100"`

The tset command in back quotes is executed first. It prompts for the terminal type,
initializes the terminal, and then emits the commands necessary to set TERM and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Specifying Terminal Characteristics | 773

TERMCAP, which are executed by eval. These are the commands tset produces for
the Bourne shell:

export TERMCAP TERM;
TERM=vt100;
TERMCAP=`d0|vt100:co#80:li#24:am:ho=\E[H: . . .';

Another way to execute the emitted commands is to capture them in a file, which is
then source’d (in the C shell):*

tset -sQ -m ":?vt100" >! ~/.tmpfile
source ~/.tmpfile
rm ~/.tmpfile

These are the commands as they might appear in a user initialization file. They can
also be kept in a separate file, to be source’d whenever it is necessary to change the
terminal type. The first command prompts for the terminal type and initializes the
terminal. The remaining commands generate and execute setenv commands for
TERM and TERMCAP, and then finally delete the temporary file.

What’s in the temporary file? Assuming that the user selects the terminal type vt100
(i.e., assuming that she selects the default that tset suggests), ~/.tmpfile will look like
this:

set noglob;
setenv TERM vt100;
setenv TERMCAP 'd0|vt100:co#80:li#24:am:ho=\E[H: ... ';
unset noglob;

The set noglob command turns off shell interpretation for the special characters
(asterisks and so on) that are commonly used in termcap entries. Note that if some-
thing goes wrong with this sequence of commands, unsetnoglob will never be exe-
cuted, and the user will get a shell in which shell wildcards don’t work. This is rare,
but it’s certainly confusing.

The stty Command
While tset performs type-specific terminal initialization, the stty command can be
used to specify generic terminal and terminal line characteristics (such as parity). Its
general syntax is:

$ stty option [value]

Not all options require values. stty’s options are not preceded by hyphens, although
some options have a hyphen as the first character of their name. Options often come
in pairs—like echo and -echo—where the second form means the negative of the first
(in this case “no echo”).

* If you’re wondering what the exclamation point after the output redirection sign is for, it overrides the shell’s
noclobber variable, which prevents files from being accidentally overwritten. With the exclamation point,
any existing file will be overwritten anyway.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

774 | Chapter 12: Serial Lines and Devices

stty has a large number of options; the most useful are listed in Table 12-2.

For example, the werase option tells stty which character, when typed, should erase
the previous word. By default, it’s Ctrl-W. (Try it; many Unix users aren’t even
aware that this feature exists.*) Likewise, the reprint option tells stty which charac-
ter, when typed, will make the system reprint the line you’re currently typing. The
sane option just might help you to restore normal functioning if you accidentally do
something that confuses your terminal.

Table 12-2. Commonly used stty options

Option Meaning Example

n Baud rate. 38400

rows n Lines on the screen. rows 36

columns n Columns on the screen. columns 80

echo Echo typed characters on the screen. -echo

erase c Delete the previous character. erase ^H

kill c Erase entire command line. kill ^U

intr c Interrupt the foreground command. intr ^C

eof c End-of-file signal. eof ^D

susp c Suspend the foreground command. susp ^Z

lnext c Interpret the next character literally (used to insert
control characters into the command line).

lnext ^V

werase c Erase the previous word. werase ^W

rprnt c Reprint the pending command line. rprnt ^R

stop c Pause terminal input and output. stop ^S

start c Restart paused terminal. start ^Q

flush c Discard all pending (undisplayed) output. flush ^O

quit c Kill foreground command and dump core. quit ^\

oddp Enable odd parity. oddp

evenp Enable even parity. evenp

-parity No parity is generated or detected. -parity

cstopb Use two stop bits. cstopb

-cstopb Use one stop bit. -cstopb

clocal Use hard carrier (-clocal means soft). -clocal

sane Reset many options to reasonable settings. sane

* Some C shell versions change its behavior. The line bindkey “^W” backward-delete-word in the .cshrc file
will fix it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Specifying Terminal Characteristics | 775

Among the most useful stty options is erase, which defines the control sequence
that erases the previous character (performed by the Delete or Backspace key). If the
key is echoed as ^H or ^? instead of removing the previous character:

$ grpe^H^H

A command like the following will fix it:

$ stty erase ^h

This command sets the erase character to Ctrl-H, the sequence emitted by the Back-
space key. You can type the desired keystroke in as erase’s argument or use the sym-
bolic form: the caret character followed by the appropriate letter for that control
sequence. Case does not matter, and this symbolic form may be used for any stty
option requiring a character as its value. The code for the Delete key is ^?.

When a terminal has become hopelessly messed up and won’t respond to anything,
the following command sequence may help:

^J^Jstty sane^J

This has the effect of clearing out any junk remaining around in the terminal’s buffer
and then resetting the terminal to a set of safe settings.

The stty -a command may be used to display the current terminal settings:

$ stty -a
speed 38400 baud; rows 40; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D;
eol = <undef>; eol2 = <undef>; start = ^Q; stop = ^S; susp = ^Z;
rprnt = ^R; werase = ^W; lnext = ^V; flush = ^O; min = 1;
time = 0; -parenb -parodd cs8 -hupcl -cstopb cread -clocal
-crtscts -ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr
-igncr icrnl ixon -ixoff -iuclc -ixany imaxbel opost -olcuc
-ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0
ff0 isig icanon iexten echo echoe echok -echonl -noflsh -xcase
-tostop -echoprt echoctl echoke

stty and the terminal characteristics databases provide complementary information.
termcap and terminfo provide generic information about all terminals of a given type,
while stty -a provides information about the current setting of options that are, for
the most part, supported by many terminals. For example, the vt100 entries provide
fairly complete information about the features specific to VT100 terminals. How-
ever, by themselves, termcap, terminfo, and tset do not support users who like or
require particular terminal options—for example, users who like “#” as an erase
character (a feature of very, very old Unix systems) or whose modem only runs at
9600 baud.* stty controls the TTY device driver, and thus it allows a user to specify

* This term follows colloquial usage, which falsely equates the term baud with bits/sec. The former is properly
defined as “symbols per second, where a symbol encodes one or more bits. Such a definition is only correctly
applicable to the analogue data stream between two modems. For example, a V.32 modem provides 9600
bps at 2400 baud, using 16 different symbols (points in amplitude/phase space), each encoding 4 bits.”
(Thanks to Peter Jeremy for that one.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

776 | Chapter 12: Serial Lines and Devices

options like these. It can be particularly useful when a user logs in to another system
remotely; in this situation, the properties of the remote connection often don’t corre-
spond exactly to the default settings and must be explicitly changed.

Adding a New Serial Device
To add a new serial device to the system, you must perform the following steps:

• Physically connect the terminal or modem to the computer.

• Determine the special file in /dev that communicates with the serial line.

• In the case of terminals, make sure a termcap or terminfo entry exists for the kind
of terminal you are adding. If none exists, you will have to create one.

• Add or modify an entry in the relevant configuration files (which files to use
depends on the desired use: login, dial-up, dial-out, and so on).

• If appropriate, force init to reread the terminal configuration information.

Each of these steps will be considered in turn.

Making the Physical Connection
This section discusses issues related to making the physical connection between a
terminal or modem and the computer. It is condensed from the Nutshell Handbook
Managing uucp and Usenet, by Grace Todino and Tim O’Reilly (O’Reilly & Associ-
ates), with some additions and slight alterations.

The serial cables used to connect computers or terminals to modems are commonly
called RS-232 cables; technically, they conform—more or less—to the Electronic
Industries Association (EIA) RS-232C or the more recent RS-232D standard. By
extension (really by bending, if not breaking, the standard), RS-232 cables have come
to be used to connect computers to all kinds of serial devices—terminals, printers,
and ports on other computers, as well as modems.

Full RS-232 cables consist of up to 25 wires, each with a specific function and each
intended to carry a different signal. Only two of the wires are commonly used for data
transmission; the rest are used for various kinds of control signals. In fact, many of
the signals defined by the RS-232 standard are rarely used. Table 12-3 lists the RS-232
signals typically used for serial devices. Accordingly, current devices virtually always
use only a subset of the 25 pins, and smaller connectors containing only the relevant
pins are much more common than ones with the full set.

Table 12-3. RS-232 signals and their functions

Pin Number Function Direction (DTE DCE)

1 Frame Ground (FG) ↔
2 Transmit Data (TD) →

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 777

In general, serial communication works as follows. A piece of equipment (a com-
puter or a modem) sends a signal across the cable by applying a small positive or
negative voltage to a specific pin in the cable’s end connector. The signal is carried
across the wires in the cable to the corresponding pin at the other end, where it is
detected by another piece of equipment. The voltage either may be held high (posi-
tive) as a go-ahead signal or may pulse quickly to convey data, with the sequence of
negative and positive voltages being interpreted as binary values.

As Table 12-3 indicates, only two of the 25 pins—pins 2 and 3—are actually used for
data transmission. These two lines are used differently by computers and modems.
The RS-232 standard defines two types of equipment: Data Terminal Equipment
(DTE) and Data Communications Equipment (DCE). Most (but not all) computers
are DTE; modems are always DCE. DTE uses pin 2 to transmit data and pin 3 to
receive it; DCE does the reverse.

To connect a terminal or computer to a modem or printer (DTE↔DCE), you want
to make the connection straight through: all the pins on the first device are con-
nected to the corresponding pin on the second device (see Figure 12-1). To make a
connection between two computers (DTE↔DTE) or between a terminal and a com-
puter, you need a cable with lines 2 and 3 crossed. The latter is known as a null-
modem cable. Modems use straight-through cables, not null-modem cables.

If you do not know whether a device is DTE or DCE, you can always
tell by measuring the voltage on pins 2 and 3. The transmitter should
always have a negative voltage, even when idle. If pin 2 is negative, the
device is DTE. If pin 3 is negative, the device is DCE.

Hardware handshaking and flow control

Pin 7 is the signal ground. It provides the reference against which other signals are
measured. A pin is said to be asserted when a voltage greater than ±5 volts (relative to
signal ground) is present on the pin. On the data lines, a voltage more negative than
–5 volts is considered a binary 1, and a voltage more positive than +5 volts is consid-
ered a binary 0.

3 Receive Data (RD) ←
4 Request to Send (RTS) →
5 Clear to Send (CTS) ←
6 Data Set Ready (DSR) ←
7 Signal Ground (GND) ↔
8 Data Carrier Detect (DCD) ←
20 Data Terminal Ready (DTR) →

Table 12-3. RS-232 signals and their functions (continued)

Pin Number Function Direction (DTE DCE)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

778 | Chapter 12: Serial Lines and Devices

On the control lines, a positive voltage is considered the “on” state and a negative
voltage is considered off. This is the direct opposite of the case for the data lines.

The remainder of the RS-232 lines shown in Chapter 11 are control lines. Most types
of equipment (including modems) are not happy just to receive a stream of data.
They need more control through a process called handshaking. In handshaking, some
preliminary communication between the two pieces of equipment must take place
before data can be sent.

Let’s consider what type of handshaking might be necessary between a computer and
a modem in order to dial up another computer system.

First of all, on an outgoing call, the computer needs to know that the modem is avail-
able to make the call. Then the modem needs to tell the computer that it has made a
connection.

A computer (DTE) asserts pin 20 (Data Terminal Ready) to show that it is ready. A
modem (DCE) asserts pin 6 (Data Set Ready). When the modem makes a connec-
tion with another modem on the other end, it asserts pin 8 (Data Carrier Detect) to
let the computer know that a connection has actually been established. Most Unix
systems in the U.S.A. ignore DSR and simply rely on DCD alone for this type of
handshaking (although European systems may use DSR). DTR is asserted when a
program such as getty opens the device with an open system call. The open sleeps on
the line until DCD is asserted by the modem or terminal on the other end of the line.
These voltages usually remain high during the entire transmission.*

If the voltage on pin 20 drops, it tells the modem that the computer is unable to con-
tinue transmission, perhaps because it is down. The modem will hang up the phone

Figure 12-1. Pin assignments for serial cables

* Modern Unix computers often use a scheme known as soft carrier, in which DCD is assumed always to be
asserted (and the actual line is not checked). Under this approach, only 3 pins are needed for communica-
tion: transmit (2), receive (3), and signal ground (7). Some cables contain only these three pins. You can
enable soft carrier for a terminal line using the stty command’s -clocal option or via settings in a configu-
ration file.

DTE
FG
TD
RD

RTS
CTS
DSR

SG
DCD
DTR

1
2
3
4
5
6
7
8

20

DCE
FG
TD
RD
RTS
CTS
DSR
SG
DCD
DTR

1
2
3
4
5
6
7
8
20

Straight through

DTE
FG
TD
RD

RTS
CTS
DSR

SG
DCD
DTR

1
2
3
4
5
6
7
8

20

DTE
FG
TD
RD
RTS
CTS
DSR
SG
DCD
DTR

1
2
3
4
5
6
7
8
20

Null modem

Computer ComputerModem Terminal

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 779

if a call is in progress. If the voltage on pin 8 drops, it tells the computer that the
modem no longer has a connection. In both cases, these pins give a simple yes/no
report on the state of the transmission. This form of handshaking is sometimes
referred to as modem control.

There is a further level of handshaking that is used to control the rate of data trans-
mission. Particularly when transmitting large amounts of data at high speed, it is
possible that one end of a link may try to send data faster than the other end can
receive it. To keep this from happening, there is a flow-control handshake that allows
either end to prevent the other from sending any more data until the slower end
catches up.

RTS/CTS is used as a kind of throttle. Whenever a DTE device is able to send data, it
asserts pin 4, Request to Send. If the DCE is ready to accept data, it asserts pin 5,
Clear to Send. If the voltage on RTS or CTS drops at any time, this tells the sending
system that the receiver is not ready for more data: “Whoa! Hold on till I get my
buffers cleared.” Since this flow control handshake is implemented in the serial port
hardware, it is considerably more efficient and reliable than the Ctrl-S/Ctrl-Q (XON/
XOFF) handshake that can be performed in software.

Table 12-4 provides an example of a conversation between computer and modem
that illustrates these principles in action (the plus and minus signs signify raised and
lowered voltage, respectively).

The function of pins 6, 8, and 20 is asymmetrical between DTE and DCE (in the
same way as pins 2 and 3). A DTE device (a computer or terminal) asserts DTR (pin
20) and expects to receive DSR (pin 6) and DCD (pin 8). Therefore, a null-modem
cable must cross these control lines as well as the data lines, allowing DTR (pin 20)

Table 12-4. Computer-modem communications

Device Signal Meaning

Computer DTR + I want to call another system. Are you ready?

Modem DSR + I’m ready. Go ahead and dial.

Modem DCD + I’ve got your party.

Computer RTS + Can I send data now?

Modem CTS + Sure. Go ahead.

Computer TD ... Data sent out.

Modem ... RD Data received.

Modem CTS - Hold on for a moment!

Modem CTS + I’m OK again. Go ahead!

The previous four steps may be repeated, with either device in the sending role, and either device using flow control.

Computer DTR - I’m done. Please hang up.

Modem DCD - Whatever you say.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

780 | Chapter 12: Serial Lines and Devices

on each DTE interface to drive both DSR (pin 6) and pin 8 (DCD) on the other. That
is, whenever either side asserts DTR, the other side thinks it is getting DSR and DCD.

Some publications suggest that you can fake out pins 4 and 5 by tying
them together at each end of the cable. As a result, whenever the com-
puter looks for a go-ahead signal, it gets it—from itself. This is really a
poor practice. It will generally work if you are simply connecting ter-
minals, since people cannot type fast enough ever to require the com-
puter to “cry uncle.” Nevertheless, there can be problems. For
example, a function key programmed to send a long string of charac-
ters—or a PC trying to upload a file—can send too fast for a loaded
system to capture all the characters. Dropped characters can result,
unless the system can rely on the flow-control handshake.

For similar reasons, pins 4 and 5 are also crossed in null modem cables. Figure 12-1,
earlier in the chapter, illustrates the pin assignments for a straight through and a null
modem cable.

Now that we’ve considered how they work, it’s time to consider actual serial cables.
There are several varieties you may encounter, illustrated in Figure 12-2.* The cables
pictured are the following, from left to right:

• USB Type-B and Type-A connectors (both male). USB is discussed in the final
section of this chapter.

• DB-9 connector (female), a 9-pin cable commonly used for connecting devices to
computer serial ports.

• DB-25 connector (male), containing the full 25 pins.

• 8-pin mini DIN connector (male), a connector type used for serial ports on older
Macintosh systems.

• RJ-12 modular plug containing 6 wires. RJ-45 (8-wire) plugs are also used for
serial devices (as well as for network cables).

The latter two connector types are less frequently used these days.

Figure 12-3 displays the pin numbering schemes for the four traditional serial con-
nectors (looking at the front of the connector).

* http://www.cablestogo.com/resources/connector_guide.asp is a very useful guide to cable connectors and con-
tains excellent illustrations of the full range of cable types for computer devices.

Figure 12-2. Serial cables

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 781

Table 12-5 lists the pin equivalencies for three cable types.

Finally, the RS-232C standard limits the maximum length for RS-232 cables to 50
feet. In practice, however, they can be used over much larger distances (many hun-
dreds of feet), especially at lower baud rates.

Terminal Line Configuration
Once you’ve physically connected the device to the computer, you need to assemble
the information necessary to configure the line:

• The appropriate special file.

• If the device is a terminal, the name of the corresponding termcap or terminfo
entry.

Figure 12-3. Serial cable pin assignments

Table 12-5. Serial cable pin correspondences

Signal DB25 DB9 Mini DIN

FG 1 none none

TD 2 3 3

RD 3 2 5

RTS 4 7 6

CTS 5 8 2

DSR 6 6 none

SG 7 5 4, 8

DCD 8 1 7

DTR 20 4 1

1 2 3 4 5

6 7 8 9

6 7 8

3 4 5

1 2

6 5 4 3 2 1

DB25 male

DB9 male

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

8-pin mini DIN male RJ-12 plug

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

782 | Chapter 12: Serial Lines and Devices

• Other line and device characteristics needed by the various configuration files.
The most crucial of these is the line speed (or maximum device speed, which-
ever is determinant).

Once you have this information, you are ready to modify the appropriate configura-
tion files. The configuration files relevant to terminal lines are very different between
the BSD (used by FreeBSD) and System V (almost everybody else) paradigms, and
Solaris uses a proprietary* facility for handling serial lines. The various versions are
treated separately.

FreeBSD configuration files

In addition to the termcap file, FreeBSD uses the following configuration files for ter-
minal lines:

/etc/ttys
Lists serial lines in use and their characteristics

/etc/gettytab
Holds generic serial line definitions

/etc/ttys must contain an entry for each terminal-related device to be used, including
serial lines used for other purposes (e.g., printers) and pseudo-terminals. Each entry
in the /etc/ttys file has four fields:

port command type [flags]

Fields are separated by one or more spaces or tab characters. Comments begin with a
number sign and may be placed at the end of an entry or on separate lines. The fields
have the following meanings:

port
Special filename in /dev that communicates with this serial line.

command
The command that init should execute to monitor this terminal line. For termi-
nals and modems, the program used is getty. If init should not create a process
to monitor this line, this field should contain the keyword none. This is the case
for pseudo terminals and for serial lines where no one will log in: printers, termi-
nals used purely as displays, and the like. Use a full pathname for all com-
mands, and enclose commands containing spaces in quotation marks.

type
For serial lines that support user logins, the name of a terminal type described in
/etc/termcap. If a terminal type is included, the TERM variable will be set to this
value at login. Alternatively, the field can contain the keyword network (for

* Not that anyone else would want it...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 783

pseudo terminals) or dialin (for dial-up modems); such keywords can be used
by user initialization files or the tset command.*

flags
Zero or more keywords, separated by spaces. The following keywords are
supported:

on
Line is enabled, and command will be run by init.

off
Line is disabled, and the entry is ignored. No getty process is created.

secure
Allow root logins.

window=cmd
init should run cmd before the one in field 2.

group=name
Used to define named groups of teminal for use the /etc/login.conf file (see
“Managing User Accounts” in Chapter 6).

off status is used for lines that are down, not in use, or for which no getty com-
mand should be run (e.g., a line connected to a dial-out modem). Multiple keywords
should not be enclosed in quotation marks, even though they are separated by
spaces. For pseudo-terminals, the status field should be blank (not on).

Here are some sample entries:

dev command type flags
ttyd0 "/usr/libexec/getty std.9600" vt100 on secure
ttyd1 "/usr/libexec/getty std.38400" dialup off # 555-1111
ttyv0 "/usr/libexec/getty Pc" cons25 on secure
ttyp0 none network off

The first entry describes the terminal on the first terminal line. This terminal has type
vt100, corresponding to a VT100 terminal. Whenever the terminal line is idle (i.e.,
whenever a user logs out or when the system enters multiuser mode), init runs the
specified getty command, using the std.9600entry in /etc/gettytab to provide infor-
mation about the terminal line (discussed below). This terminal is enabled, and it is
secure, meaning that users may use it to log in as root.

The second entry describes a dialup modem on the second serial line (the baud speed
serves only a descriptive function since the line is off). The third line defines a virtual

* What I’m calling keywords have termcap entries like the following:
sa|network:\
 :tc=unknown:

This entry defines a terminal type of network whose only characteristic equivalences it to the unknown ter-
minal type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

784 | Chapter 12: Serial Lines and Devices

terminal session for a directly connected terminal (or the console), and the final line
illustrates the entry form for virtual terminal devices for network use.

Secure terminal lines. If you wish to allow people to log in as root on a specific termi-
nal, place the keyword secure in the status field for its terminal line. Conversely, you
can prevent users from logging in as root by omitting or deleting the keyword secure
from this field. For security reasons, secure status should only be granted to the sys-
tem console and possibly to one or more directly connected terminals. Denying it to
pseudo-terminals means that anyone wanting to become root via a network session
will need to log in initially as a normal user and then become root. Thus, such users
will need to know both a user account password and the root password.

The /etc/gettytab file. The command field in /etc/ttys usually contains a getty com-
mand, which has the following syntax:

"getty gettytab-entry"

gettytab-entry identifies a particular entry in the file /etc/gettytab, specifying the char-
acteristics of this terminal line. This file is similar in form to /etc/termcap. The first
line of each entry identifies one or more synonymous names that identify the entry;
any name not containing spaces can be used as a valid argument to getty. Subse-
quent lines describe various line characteristics. Here are some sample lines:

/etc/gettytab
default:\
 :cb:ce:ck:lc:fd#1000:im=\r\n%s/%m (%h) (%t)\r\n\r\n:\
 :sp#1200:if=/etc/issue:
cons8:\
 :p8:sp#9600:
2|std.9600|9600-baud:\
 :sp#9600:
g|std.19200|19200-baud:\
 :sp#19200:
std.38400|38400-baud:\
 :sp#38400:

The names std.n are traditionally used for standard terminal lines, running at n baud.
Thus, std.9600 in the previous example refers to terminal lines at 9600 baud. Auto-
baud modems are set to the type corresponding to their maximum speed. These
entries frequently set only the sp (line speed) characteristic.

The default entry sets defaults for all entries; characteristics set in individual entries
override them.

System V configuration files

System V also uses the getty program to handle terminal lines, but it is started in a
different way. In addition to the terminfo and/or termcap databases, the System V–
style terminal configuration files are the following:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 785

/etc/inittab
System initialization configuration file

/etc/gettydefs
Terminal line definition file

The lines in /etc/inittab to start getty processes look like this:

Starting at the left, the fields are the inittab identifier, the run levels to which the
entry applies, the action to take, and the process to initiate: in this case, getty. The
action field for terminal line entries holds either off (for lines not in use) or respawn,
which says to start another getty process whenever one exits.

The getty command’s syntax varies among these four Unix versions. The preceding
examples included the entries for the console device and a modem on the first serial
line. In general, the System V–style getty command takes two arguments: the TTY
name, corresponding to the name part of the special filename (i.e., without /dev/),
and a label to look up in the /etc/gettydefs file, which holds generic line definitions.
The label is often the same as the line speed.

Here are a few version-specific comments:

• The AIX version of getty does not use the gettydefs or the second getty parame-
ter (configuration data is stored in the ODM database). It requires the full path-
name to the special file as its sole argument.

• The -h option on the HP-UX version tells getty not to force a hang up on the ter-
minal line before initializing it.

• Linux systems do not define a console device in the usual way. Instead, one or
more virtual console sessions are defined for use when the console is used as a
terminal (rather than as a graphical workstation). The --noclear option to the
mingetty command says not to clear the screen before issuing a login prompt.
This command is a minimal implementation of getty used only in this context.

• Linux offers several getty-type commands for use with terminal lines and
modems. I prefer mgetty, and recent Red Hat and SuSE distributions finally agree
with me. Its -D option says the line is a data line, i.e., there is no fax machine on

AIX cons:0123456789:respawn:/usr/sbin/getty /dev/console
t1:234:respawn:/usr/sbin/getty /dev/tty0

HP-UX cons:123456:respawn:/usr/sbin/getty console console
t1:234:respawn:/usr/sbin/getty -h tty0p1 57600

Linux 1:2345:respawn:/sbin/mingetty --noclear tty1
t1:234:respawn:/sbin/mgetty -D -i /etc/issue -s 57600 ttyS1

Tru64 cons:1234:respawn:/usr/sbin/getty console console vt100
t1:234:respawn:/usr/sbin/getty /dev/tty00 57600 vt100

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

786 | Chapter 12: Serial Lines and Devices

the line (-F says the opposite). The -i option specifies an alternate, shorter text
file to be displayed before the login prompt, a step always appreciated by users
of slower modems. Finally, -s specifies the line speed. The final command line
item is mgetty’s required parameter: the name part of the device file.

• The Tru64 getty command uses a third parameter specifying the terminal type
for that terminal line.

When adding a new device, you’ll need to add a new line to /etc/inittab (or modify an
existing one). There must be a separate entry in the inittab file for every terminal line
on which someone can log in.

The /etc/gettydefs file. The /etc/gettydefs file is used on HP-UX and Tru64 systems.
Here are some sample entries from an HP-UX system:

console # B9600 SANE CLOCAL CS8 ISTRIP IXANY TAB3 HUPCL
 # B9600 SANE CLOCAL CS8 ISTRIP IXANY TAB3 HUPCL
 #Console Login: #console

19200 fixed baud entry
19200 # B19200 CS8 CLOCAL
 # B19200 SANE -ISTRIP CLOCAL
 #@S login: #19200

Modem cycle with hardware flow control
28800 # B28800 CS8 CRTSCTS
 # B28800 SANE -ISTRIP HUPCL CRTSCTS
 #@S login: #14400

14400 # B14400 CS8 CRTSCTS
 # B14400 SANE -ISTRIP HUPCL CRTSCTS
 #@S login: #9600

9600 # B9600 CS8 CRTSCTS
 # B9600 SANE -ISTRIP HUPCL CRTSCTS
 #@S login: #28800

Each entry in /etc/gettydefs describes one operating mode. Distinct entries are sepa-
rated by blank lines. The fields in each entry are as follows:

label # initial flags
 # final flags
 # login prompt #next label

The label is used to refer to the entry on the getty command. The initial and final
flags are set on the device during the periods before and after login is executed,
respectively. Commonly used flags are:

Bn
Baud rate of n baud.

CLOCAL
Local directly connected line.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 787

HUPCL
Hang up on close (useful for modems).

TAB3
Tabs are sent to the terminal as spaces.

SANE
Set various parameters to reasonable values (as in stty).

The fourth field in the gettydefs file holds the login prompt used on that line.

The nextlabel field indicates which label should be used next if a break character is
received on the line. It is designed to enable cycling through various baud rates on
dialup lines. If the next label is the same as the label, no such cycling will occur; this
is how hard-wired lines are set up. In our example file, the 19200 entry is hardwired
at that speed, and the remaining three entries form a small cycle.

Setting terminal line types under HP-UX. On HP-UX systems, the default terminal type
for each terminal line may be specified in the /etc/ttytype file. It has entries of the
form:

terminal-type line-name

terminal-type is the name of a terminfo entry, and line-name is again the name part of
the special filename. For example, the following entry sets the default terminal type
to vt100 for the fourth terminal line:

vt100 tty0p3 HP-UX
vt100 tty03 Tru64

The Linux mgetty configuration files. mgetty uses several configuration files stored in /etc/
mgetty+sendfax:

mgetty.config
Main mgetty configuration file (entries common to data and fax lines).

login.config
Specifies programs to be run by connection type. The default version of this file
is usually quite adequate; simply uncomment the entries applying to the types of
connections you will support. The /bin/login entry is typically used for dial-up
lines.

dialin.config
Accept/reject incoming calls based on Caller ID.

/etc/nologin.ttyxx
If this file exists, the corresponding line is disabled.

Configuring terminal lines under AIX. As we’ve noted, AIX uses inittab but not gettydefs.
Terminal line characteristics are stored in the ODM and may be set or changed with
the chdev command. For example, the following command enables logins on /dev/tty0,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

788 | Chapter 12: Serial Lines and Devices

setting the line speed to 19200 baud; setting the stty modes before a login to hupcl,
cread, and tab3 (hang up on close, enable received, and expand tabs to spaces); and
setting the stty modes after login is executed to cread, echoe, and cs8 (enable
receiver, echo erase characters as backspace-space-backspace, and use 8-bit charac-
ters):

$ chdev -1 tty0 -a login=enable -a speed=19200 -a term=vt100 \
 -a runmodes='hupcl,cread,table3' \
 -a logmodes='cread,echoe,cs8'

Any stty options may be used for the initial and final flags, set with the runmodes
and logmodes attributes (respectively).

The login terminal line attribute indicates how the line will be used. When it is given
a value of share, connections may take place in both directions (as for a bidirectional
model):

chdev -l tty0 -a login=share ...

A value of disable configures a line for dial-out only, and enable is the correct value
for a dial-in–only line.

Starting the Terminal Line
The final step in installing a new serial device is (re)starting its line. To start up a ter-
minal line, you must force init to reread the terminal line initialization information.
When it does, init becomes aware that the device has been added and takes the
appropriate action (usually starting a getty process for it).

Under FreeBSD, the following command sends a hang-up (HUP) signal to init (pro-
cess 1):

kill -HUP 1

init catches this signal and interprets it as a command to reread initialization infor-
mation without interrupting the system’s activity; kill is being used in its generic,
signal-sending capacity rather than to terminate a process. Therefore, by modifying
the configuration files and executing the command kill -HUP 1, you add a new ter-
minal without rebooting the system or otherwise interrupting the system’s normal
operation.

On most System V–based systems, the telinit q command performs the same func-
tion. Under HP-UX and Tru64, use init q instead (unless you’ve created a link
named telinit).

After you execute this command, check the new terminal. It should have a login
prompt and allow you to log in normally. Sorting out terminal line problems is the
topic of the next section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 789

Terminal Handling Under Solaris
With Solaris, terminal lines are handled in a very different manner. The Service
Access Facility (SAF) controls terminal lines and remote printing under Solaris (it is
derived from the System V.4 standard). The seeming complexity of the SAF can be
somewhat intimidating initially, but it is more verbose than truly complicated. The
SAF has the potential to manage vast areas of system capabilities, but in fact, in its
present form, what it does is really quite limited. We’ll attempt to demystify its
workings here.

Solaris provides a graphical tool for interfacing with the SAF. It does
make setting things up a lot easier and more automated. However, in
this section, we’ll be looking at the underlying commands first, so that
the concepts and procedures are clear.

Structure of the Service Access Facility

The Service Access Facility (SAF) is organized in the following hierarchy:

• At the top level is the Service Access Controller (SAC), which oversees the entire
facility. The sac daemon is started in /etc/inittab by an entry like this one:

sc:234:respawn:/usr/lib/saf/sac -t 300

The -t option to the sac command specifies how often the daemon polls the
port monitors it controls (in seconds).

• The SAC starts and controls various port monitors: processes responsible for
monitoring one or more ports and connecting requests that arrive on them with
the proper system process. sac starts all of the port monitors listed in its configu-
ration file, /etc/saf/_sactab, when it begins executing.

Currently, there are two different port monitors: ttymon, which is responsible for
terminal lines, and listen. The latter was designed to be responsible for manag-
ing general network services, but it is really capable of handling only remote
printing in the present implementation.* On many systems, it is not used at all.

• Port monitors connect requests to local system services. For example, ttymon
connects incoming requests on serial lines to the login service and the login pro-
gram.

Multiple instances of a port monitor may be present. For example, there will be one
ttymon process on the system for each serial port managed by the SAF.

* An amusing comment in /etc/init.d/inetsvc attests to this fact when it explains why the main TCP/IP network-
ing daemon, inetd, is started with the -s option:
Run inetd in "standalone" mode (-s flag) so that it doesn't have
to submit to the will of SAF. Why did we ever let them change inetd?
/usr/sbin/inetd -s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

790 | Chapter 12: Serial Lines and Devices

The following commands are used to configure the SAF and its serial port monitors:

sacadm
High level SAF configuration: add, delete, enable, disable, start, and stop port
monitors.

pmadm
Configure port monitor services (and associated processes) for individual ports.

ttyadm
Helper utility formats input to pmadm for serial ports.

sttydefs
Create and modify entries in /etc/ttydefs describing terminal line characteristics.

Port monitors

The sacadm -l command lists port monitors currently administered by the sac
daemon:

sacadm -l
PMTAG PMTYPE FLGS RCNT STATUS COMMAND
zsmon ttymon - 0 ENABLED /usr/lib/saf/ttymon #

This output illustrates more of the structure implicit in the SAF. The PMTAG field
shows the name assigned to a particular defined instance of a port monitor. If that
sounds like gibberish, the following may help. The term “port monitor” is used
somewhat promiscuously in the Solaris documentation. There are three kinds of
entities that might be referred to as port monitors, depending on the context:

• Port monitor types, of which there are only two: ttymon and listen. The fact that
these are also the names of the executable commands for individual port moni-
tor processes is one major source of confusion.

• Port monitor tags (PMTAG), which define groups of one or more actual port
monitor processes (whether or not they are all actually running at any given
time). By default, there is only one defined tag per port monitor type: zsmon for
ttymon (named for the Zilog serial ports used on Sun CPU boards), and tcp for
listen (in the United States, anyway). However, it is possible to have more than
one PMTAG per port monitor type; we’ll look at how one might be created
shortly.

• Actual port monitor processes, each handling a single port (or request source in
the case of network printing requests). The port monitor processes for a given
port monitor tag are defined in the file /etc/saf/pmtag/_pmtab (for example, /etc/
saf/zsmon/_pmtab), which is maintained by the pmadm command. ttymon port
monitors run the ttymon command, and listen port monitors run the listen com-
mand. Individual port monitors are identified by service tags (SVCTAG).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 791

Sun recommends creating a PMTAG for each block of serial ports with its own sepa-
rate controller. The sacadm command may be used to create a new PMTAG. For
example, this command creates mux0 as a ttymon-type port monitor:

sacadm -a -p mux0 -t ttymon -c /usr/lib/saf/ttymon \
-v `ttyadm -V` -y "MUX 0 ttymon" -n 9999

The options to sacadm used in the preceding example have the following meanings:

-a Add a port monitor.

-t Specify port monitor type (ttymon or listen).

-p Specify PMTAG.

-c Specify command to run for associated port monitor processes.

-v Specify version number (returned by the command ttyadm -V).

-y Description for _pmtab entry.

-n Number of times to restart port monitor if it dies.

The command creates a subdirectory of /etc/saf named mux0; the pmadm command
would be used to create actual port monitors associated with this PMTAG.

The pmadm -l command may be used to list all port monitors for a given PMTAG:*

$ pmadm -l -p zsmon Use -L for a compact format.
PMTAG PMTYPE SVCTAG FLGS ID <PMSPECIFIC>
zsmon ttymon ttya u root /dev/term/a I - /usr/bin/login
- 38400 ldterm,ttcompat ttya login: - tvi925 n # Bidir. Modem
zsmon ttymon ttyb u root /dev/term/b - - /usr/bin/login
- 9600 - ttyb login: - tvi925 - # Terminal

On this system, the zsmon PMTAG includes two ttymon port monitors: ttya and ttyb,
controlling /dev/term/a and /dev/term/b, respectively. ttya is used for a bidirectional
(dial-in/dial-out) modem, and ttyb controls a terminal.

Creating port monitors with pmadm

The following pmadm command could be used to create the port monitor for /dev/
term/b:

pmadm -a -p zsmon -s ttyb -i root -f u -v `ttyadm -V` \
 -m "`ttyadm -d /dev/term/b -T vt100 -s /usr/bin/login \
 -l 57600 -p \"ttyb login: \"`"

Since pmadm is a complicated and completely general port monitor administration
utility, Solaris provides some auxiliary commands to help generate its required input.
The auxiliary command for serial lines is ttyadm.

* The -t and -s options may be used with pmadm -l to list port monitors of a given type or with a specified
SVCTAG, respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

792 | Chapter 12: Serial Lines and Devices

Let’s take the preceding command apart:

pmadm -a Add a port monitor.
-p zsmon Port monitor tag.
-s ttyb Service tag (conventional name is shown).
-i root Run service (specified below) as this user (root).
-f u Create utmp entry for port (required by login).
-v `ttyadm -V` Version (determined/returned by ttyadm).
-m "`ttyadm ...`" Port monitor-specific data, formatted by ttyadm:

 ttyadm -d /dev/term/b Special file for port.
 -T vt100 Terminal type (defined in the terminfo database).
 -s /usr/bin/login Service program.
 -l 57600 Line type (entry label in /etc/ttydefs).
 -p \"ttyb login: \" Login prompt (protect quotes with backslashes).

This command adds (-a) the port controlled by the special file /dev/term/b (-d to
ttyadm) to the port monitor zsmon's control (-p). The pmadm command uses the
ttyadm command twice to format its input correctly: the output of ttyadm is placed
into the pmadm command via back quotes. The second ttyadm command does most of
the work. It specifies that the /usr/bin/login service will execute at that port when
connection is requested (ttyadm -s); the login prompt will be:

ttyb login:

The terminal line’s configuration corresponds to the entry labeled 57600 in the /etc/
ttydefs file (ttyadm -l).

The command for a bidirectional modem line is similar (the changes are in boldface):

pmadm -a -p zsmon -s ttya -i root -f u -v `ttyadm -V` \
 -m "`ttyadm -d /dev/term/a -T vt100 -s /usr/bin/login \
 -l 57600E -p \" login: \" \

-b -S n -t 30 -m ldterm,ttcompat`"

The second ttyadm command uses these additional options:

-b
Designates a bidirectional modem line.

-S n
Set software carrier off.

-t 30
Login timeout period (seconds).

-m ldterm,ttcompat
Additional STREAMS modules to load (required for modems).

To change a port monitor definition, you must remove the old one first, using pmadm
-r, and then use pmadm -a to add a correctly configured one.

The ttydefs file

The configuration file used by ttymon is /etc/ttydefs. It is viewed and maintained by
the sttydefs command. ttydefs holds essentially the same data as gettydefs; the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding a New Serial Device | 793

sttydefs interface is an attempt to provide continuity across any future file format
changes.

Here are some sample entries from /etc/ttydefs:

57600E:57600 hupcl:57600 hupcl::57600E

57600:57600 hupcl evenp:57600 evenp::38400
38400:38400 hupcl evenp:38400 evenp::19200
19200:19200 hupcl evenp:19200 evenp::57600

The first entry specifies a line fixed at 57600 baud. The remaining lines form a cycle
for an autobaud modem (the hupcl attribute tells the line to hang up when a connec-
tion terminates and the evenp attribute select even parity).

The sttydefs -l command may also be used to view the available line definitions.
Here is the output corresponding to the first sample entry above:

$ sttydefs -l 57600E
--
57600E:57600 hupcl evenp:57600 evenp::57600E
--

ttylabel: 57600E
initial flags: 57600 hupcl evenp
final flags: 57600 evenp
autobaud: no
nextlabel: 57600E

The sttydefs command has two other main options, -a and -r, which add and
remove entries from the /etc/ttydefs file, respectively. When adding an entry, the fol-
lowing additional options are available:

-n Next label.

-i Initial flags.

-f Final flags.

-b Set autobaud on terminal line.

The next label, initial flags (terminal settings set prior to login), and final flags (termi-
nal settings after login) have the same meanings as they do in the /etc/ttydefs file, but
their use has been greatly expanded. Any flags accepted by the stty command are
accepted in this field, separated by spaces. The -a and -r options require and the -l
option accepts a label for the /etc/ttytab entry.

For example, the following commands add a new entry named 57600i and delete an
entry named 1200 from the /etc/ttydefs file:

sttydefs -a 57600i -n 57600i -i "57600 erase ^h" \
-f "57600 sane crt erase ^?"

sttydefs -r 1200

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

794 | Chapter 12: Serial Lines and Devices

Using admintool to configure serial lines

admintool can be used to perform the same configuration steps we have just done
manually. Figure 12-4 illustrates the dialog it provides for performing this task.

The tool provides three configuration modes—basic, more, and expert—which pro-
vide access to successively more attributes. It also provides a series of templates: pre-
defined collections of settings designed for specific purposes. The figure illustrates
those designed for a bidirectional modem.

Most of the fields are self-explanatory. The only tricky one is labeled Baud Rate. It is
used to select an entry within /etc/gettydefs, rather than specifying a literal baud rate.

Troubleshooting Terminal Problems
Messed-up terminals are an occasional problem that system administrators have to
deal with. When a terminal is hung (when it won’t respond to any input) or seems to
have gone crazy, here are some things to try that address the most common causes:

• If the user knows what she did last, try to undo it. For example, if she was exper-
imenting with stty options, try a stty sane command.

• If the terminal doesn’t respond at all, the user might have accidentally hit Ctrl-S,
the pause key, the hold screen key, or something else that temporarily stops

Figure 12-4. Configuring a serial line with admintool

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Terminal Problems | 795

output. Try entering Ctrl-Q and then these other keys to see if things get going
again.

• Check the terminal settings via its setup menu. In particular, is its baud rate set
correctly?

• Try entering the reset command. If it doesn’t work, try preceding and following
it with a line feed (Ctrl-J if the terminal has no line feed key):

^Jreset^J

Substituting stty sane in place of reset can also work. Running either command
twice in succession is frequently necessary.

• If the user has turned the power off and back on, check other settings like the
emulation mode. If the user hasn’t cycled power, try this yourself; there are some
conditions that only cycling the power will clear. Leave the terminal off for about
10 seconds to allow the internal capacitors to discharge completely.

• Next, go to another terminal and try to kill the program that was running on the
hung terminal. It may be that the program—and not the terminal—is hung. Try
a variety of signals in an attempt to neutralize the process—TERM (kill’s
default), KILL, INT, QUIT, STOP—use kill -l to list the available signals or
consult /usr/include/sys/signal.h.

Use the ps command with its -t option to limit the display to the desired termi-
nal. -t takes the device name as its argument, in the same form in which it
appears in the TTY column of ps’s output. For example, the following com-
mand displays the processes for /dev/tty15:

$ ps -t15

If nothing else works, trying killing the user’s login shell. If the terminal doesn’t
come back after a few seconds, try cycling the power again.

• If cycling the power and killing everything in sight doesn’t bring the terminal
back, check the connections. Has the connector fallen off the back, for example?
(In some cases, you’ll want to check this first.) If a cable is loose, it will eventu-
ally fall due to gravity alone, even if the terminal hasn’t moved an inch in
months.

For a new terminal, try checking these items:

• Is the terminal plugged into the correct RS-232 connector on the back of the sys-
tem? It is easy to lose track of a cable between the terminal and the computer.
Good record keeping and labeling will help eliminate this problem.

• Is the cable functioning properly? You can verify this by testing it on another
cable or swapping it with a cable known to be working.

• Are the brightness and contrast settings turned all the way down? Verify that the
display is in fact visible.

• Is the terminal port enabled and does it specify an appropriate way to call getty?

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

796 | Chapter 12: Serial Lines and Devices

• Is the getty process running? Use ps piped to grep to count the number of getty
processes and verify that the right number are present. Did you remember to sig-
nal init?

• Are you using the right kind of cable (null modem versus straight through)? If
not, a command like the following will hang:

cat file > /dev/ttyn

Don’t forget to kill the process once you’ve verified that it is hung.

A device called a breakout box can be invaluable for troubleshooting
difficult cable problems, especially if you are trying to build your own
cables. You can usually pick one up at any electronics supply store for
a reasonable price (under $50 U.S.). The breakout box includes LEDs
that display which signals are actually active at any point. Better mod-
els also allow you to easily rearrange the wires in a cable or assert the
proper voltage on individual pins for testing purposes.

Controlling Access to Serial Lines
Most Unix versions provide some mechanism for limiting direct root logins to cer-
tain terminal lines. Note that these mechanisms have no effect on the ability of a user
to gain root access via the su command. We’ll consider the ones offered by each
operating system in turn.

As we’ve seen earlier in this chapter, FreeBSD allows you to state explicitly whether
direct root logins may take place on a line-by-line basis via the secure keyword in /etc/
ttys. For example, these entries allow root logins on the terminal connected to the
first serial line, but not on the terminal connected to the second serial line:

name getty type flags
ttyd0 "/usr/libexec/getty std.9600" vt100 on secure
ttyd1 "/usr/libexec/getty std.9600" vt100 on

FreeBSD also provides general user class–based terminal restrictions via the ttys.
allow and ttys.deny attributes in /etc/login.conf. See “Managing User Accounts” in
Chapter 6 for details.

Under Solaris, if the file /etc/default/login contains a CONSOLE entry, direct root log-
ins are limited to that device. For example, this entry limits root logins to the system
console:

CONSOLE=/dev/console

On HP-UX systems, the file /etc/securetty lists devices where root is allowed to log in.
Here are some sample entries:

console
tty00
tty01

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

HP-UX and Tru64 Terminal Line Attributes | 797

Note that /dev/ is not included in the line designation. The HP-UX file restricts access
to the listed terminal lines to privileged users, rather than applying only to root.

Tru64 uses the file /etc/securettys in a similar manner:

/dev/console # console
:0 # X display
local:0

Note that the full special filename is included in the Digital Unix file. The second
and third entries are also typically found in these files and refer to X-based sessions.

Linux systems can restrict terminal access via the PAM facility. The pam_securetty
module provides support for a HP-UX style /etc/securetty file, and the pam_time
module allows you to specify terminal access by user, group, PAM service and/or day
and time. See “User Authentication with PAM” in Chapter 6 for details.

Under AIX, the lsuser command can be used to determine the terminals on which
root is allowed to log in directly:

lsuser -fa ttys rlogin root
root:
 ttys=ALL
 rlogin=true

This command also indicates whether direct root logins can come in over the net-
work. The following command will disable network-based root logins and limit root
logins to the console device and the terminal on the first serial port:

chuser ttys="/dev/lft,/dev/tty0" rlogin=false root

The ttys attribute takes a comma-separated list of TTY special files, indicating the
terminals upon which the specified user may log in—note that this mechanism is
available for all users, not just root. The keyword ALL applies to all terminal lines
(including network connections), and prefacing any special filename with an excla-
mation point excludes that terminal. For example, this command prevents direct
root logins on serial lines 0 and 1:

chuser ttys="!/dev/tty0,!/dev/tty1" rlogin=false root

This mechanism is an interface to the ttys attribute in root’s stanza in /etc/security/
user. It may be used to set up restrictions for any user, as well as a default terminal
list via the default stanza. The file may also be edited directly.

HP-UX and Tru64 Terminal Line Attributes
Under HP-UX and Tru64, the enhanced security facility provides a mechanism for
specifying several security-related terminal line attributes. Default values applying to
all terminals without explicitly set overrides are found in the t_ fields of the default
file, stored in /etc/auth/system under Tru64 and /tcb/files/auth/system under HP-UX.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

798 | Chapter 12: Serial Lines and Devices

Here is an example from a Tru64 system:

default:\
 :d_name=default:\

...
 :t_logdelay#2:t_maxtries#10:t_unlock#0:\
 :t_login_timeout#15:chkent:

These are the settable terminal line attribute fields, which may be used in the default
file and in the ttys file; the latter contains entries for each terminal line on the system
and is located in /etc/auth/system under Tru64 (in binary form, as ttys.db) and in /tcb/
files/auth/system under HP-UX:

t_maxtries
Terminal will be automatically locked after t_maxtries+1 consecutive login fail-
ures.

t_logdelay
Indicates the number of seconds to wait after an unsuccessful login attempt
before giving the next prompt.

t_lock
Indicates that the terminal line is locked (t_lock@ means unlocked).

t_login_timeout
Number of seconds after which to abort an incomplete login.

t_unlock
Number of seconds after which to unlock a terminal locked due to too many
unsuccessful login attempts (Tru64 only). A value of 0 means that the terminal
line must be explicitly unlocked by the system administrator.

Here is an example ttys entry:

tty02:t_devname=tty02:t_uid=root:t_logtime#791659419:\
 :t_unsucuid=wang:t_unsuctime#793396080:t_prevuid=chavez:\
 :t_prevtime#791659434:t_failures#4:t_maxtries#8:t_logdelay#5:\
 :t_login_timeout#20:chkent:

In addition to the specific security attributes, the entry also holds information about
recent login activity on that terminal line: the UID and time of the most recent suc-
cessful login, last unsuccessful login attempt, and most recent logout from this termi-
nal; and the number of consecutive login failures (this is reset to 0 after a successful
login). See the ttys manual page for details on all terminal line-related attributes.

In addition, the v_users attribute in the devassign file can specify a comma-separated
list of users who may access each device on the system; see the devassign manual
page for more information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The HylaFAX Fax Service | 799

The HylaFAX Fax Service
Many current Unix operating systems provide some sort of fax support. In this sec-
tion, we’ll consider the free HylaFAX package, originally written by Sam Leffler
while at Silicon Graphics,* because it is the most widely used and is available for
many different Unix versions. HylaFAX is capable of sending and receiving faxes on
the local system, and accepting fax jobs from other hosts on the network. Outgoing
faxes are queued as necessary. An interface to electronic mail is also available. The
package’s home page is http://www.hylafax.org.

Fax services are provided by three daemons:

faxq
The queuing agent, which prepares fax files, and schedules and initiates outgo-
ing fax transmissions.

hfaxd
The fax server daemon, which provides local and remote fax submission sup-
port, access control and other management functions.

faxgetty
A getty implementation which handles incoming faxes.

The package also includes a variety of utilities, many of which we’ll consider here;
the corresponding binary files are mainly stored in /usr/local/bin and /usr/local/sbin,
although a few are in /var/spool/hylafax/bin (if you use the default installation
directories).

Actual fax images are stored in the subdirectories docq (outgoing) and recvq (incom-
ing) under /var/spool/hylafax. Other important subdirectories of this main HylaFAX
spooling location are sendq (outgoing job control files), log (contains log files for
each fax session), config (modem type definitions), and etc (most HylaFAX configu-
ration files).

HylaFAX installs easily on most systems, and the documentation provides lots of
information about the process, so we won’t spend time considering it here. Once the
software is installed, you use the faxsetup script to perform initial configuration. The
script asks you a series of questions about your system setup and desired package
usage, and automatically generates configuration files based upon that information.

The faxaddmodem script is used to configure a modem within the HylaFAX system,
and it is called by faxsetup during the initial setup process. You can also use it to
change the settings for an existing modem.

* The latter is evidenced by the default fax cover sheet still distributed with the package: it includes the SGI
logo.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

800 | Chapter 12: Serial Lines and Devices

Be sure to specify the outgoing serial line device to these scripts on systems that use
multiple device special files to refer to the same serial line: e.g., /dev/cuaa0, /dev/
cua0p0, and /dev/cua/0 under FreeBSD, HP-UX, and Solaris (respectively).

Once the faxsetup script has completed, there are still a few items to deal with:

• Make sure that HylaFAX daemons are started when the system boots. On sys-
tems with System V–style initialization files, ensure that the initialization file
(hylafax) included with the package is copied into the init.d subdirectory and
linked to the proper rcn.d subdirectory. On FreeBSD and AIX systems, you may
have to add a command executing it to one of the system initialization files.

Regardless of the system, this script is the best way to start, stop and
restart the HylaFAX daemons.

• Configure the serial line to run the HylaFAX faxgetty program if you plan to
receive faxes. This will be done in /etc/inittab or in /etc/ttys under FreeBSD. Here
is a sample inittab entry from a Linux system:

fax:2345:respawn:/usr/local/sbin/faxgetty ttyS0

The command requires only the desired serial line as its argument. On Solaris
systems, you must perform this step and also make sure that no ttymon monitor
is assigned to the fax serial port.

• Set up cron jobs to perform periodic maintenance on the HylaFAX spooling
area. The faxqclean command will automatically purge files related to com-
pleted jobs and older failed jobs. How often to run it depends on the amount of
fax traffic and the available disk space on the system. If you just send/receive the
occasional fax, running it once a week is probably fine; on the other hand, if the
system functions as a full-time fax server, then the current documentation rec-
ommends running it once an hour.

The faxcron command will automatically purge files related to completed jobs
and older failed jobs as well as create some useful fax service reports. The com-
mand is designed to run daily. For most sites, the default settings work fine, but
you can customize faxcron as needed. Current modifiable parameters include
how long to retain old received faxes, log entries, temporary files, and the like.

Here are some sample crontab entries:
0 * * * * /usr/local/sbin/faxqclean
0 3 * * * /usr/local/sbin/faxcron | mail faxadm

The output of faxcron is mailed to the fax administrator since it contains useful
reports. Note that faxcron is a bash script. If your system does not have bash,
then you must explicitly run the command with sh:

0 3 * * * /bin/sh /usr/local/sbin/faxcron | mail faxadm

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The HylaFAX Fax Service | 801

Sending Faxes
The HylaFAX package provides the sendfax utility for submitting faxes. The follow-
ing example briefly illustrates its features and use:

$ sendfax -s na-let \ Use letter size images (use a4 for A4).
-T 5 -t 2 \ Dial call up to 5 times; attempt to transmit twice.
-f "Erika Plantagenet" \ Fax sender name.
-r "Sales Data" \ Contents of Re: field (subject).
-c "Call if any questions." \ Comments.
-P high \ Priority (vs. bulk or normal).
-h dalton.ahania.com \ Send to HylaFAX server on this host.
-a 20:05 \ Transmit fax at 8:05 P.M.
-d "Amy Ng@1.293.555.1212" \ Recipient name and phone number.
letter.txt graph.tif Files to transmit.

A few notes:

• The -d option must follow all other options which apply to that fax. It may also
appear more than once in order to send the fax to multiple recipients. Other
options which appear between instances of -d apply to the subsequent fax. For
example, in this command, the fax to Amy is sent at high priority and the one to
Sam is sent at bulk priority:

$ sendfax -P bulk -d "Sam@5551212" -P high -d "Amy@5552121" fax.txt

• HylaFAX can handle ASCII text, PDF, PostScript and TIFF image files as fax
content.

• Users can specify a default fax server via the FAXSERVER environment variable.

• Support for remote faxing must be set up on the server system (see below).

• Many of the options refer to information used on the fax cover sheet. Not all
items will work with all cover templates (include the default provided with the
package). The default template file is /usr/lib/fax/faxcover.ps.

Don’t Be Afraid to Say No

I try to avoid being a prima donna as much as possible, but setting up
fax cover templates for HylaFAX is one place where I draw the line,
pointing to my job description as I refuse to help. Don’t get suckered
into doing this or you’ll be ensnared in an infinite time sink. These
files must be in PostScript format and use the dictionary mechanism
for passing fax-specific parameters (e.g., the sender and recipient
names). There is no easy way to generate them, and I’m no PostScript
hacker. I leave creating one as an exercise for the fax user (and fortu-
nately no one has ever ordered me to do otherwise).

The key point to make with users is that they can always create a cover
sheet as the first page of the fax file that they create. Using the sendfax
command’s -n option will suppress the HylaFAX cover page, as will
setting AutoCoverPage to no (see below).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

802 | Chapter 12: Serial Lines and Devices

Managing Faxes
HylaFAX provides several utilities for monitoring the fax facility and manipulating
fax jobs. For example, the faxstat command displays information about fax jobs, as
in these examples:

faxstat -s -l List faxes to send.
HylaFAX scheduler on dalton.ahania.com: Running
Modem ttyS0 (1.293.555.9988): Sending job 4

JID Pri S Owner Number Pages Dials TTS Status
4 127 R chavez 2032390846 0:2 0:12
5 127 B jones 2032390846 0:0 0:12 Blocked

faxstat -r -l List faxes that have been received.
HylaFAX scheduler on dalton.ahania.com: Running
Modem ttyS0 (1.293.555.9988): Sending job 4

Protect Page Owner Sender/TSI Recvd@ Filename
-rw---- 1 14 2935551122 19:52 fax00012.tif

This system is currently sending a fax, has one more job waiting to send and has
recently received one as well. The xferfaxstats command may be used to produce a
summary report of all fax activity, broken down by sending user.

Several other utilities are provided for manipulating individual fax jobs, which are
referred to by job ID (listed in the first column in the faxstat -s output). The faxrm
and faxabort commands can be used to remove/terminate fax jobs, as in these
examples:

$ faxrm 4 Remove pending fax (abort if sending).
Job 4 removed.

$ faxrm -a -h mahler 28 Remove fax job on another host as fax admin.
Password: Fax administration password (see below).
Job 28 removed.

A user removes a fax job on the local system in the first example. Another user
removes a job from a remote host in the second command by specifying the proper
HylaFAX administrative password.

Contrary to most job manipulation commands of this type, the supe-
ruser cannot use faxrm to remove a user’s fax job. Rather, root must
use a command like the following:

su chavez -c "faxrm 4"

The quotation marks are necessary for the argument to be passed to
the faxrm command.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The HylaFAX Fax Service | 803

The faxalter command may be used to modify the characteristics of a pending fax
job. For example, the following command sets job 24 to be released for transmission
at 9:00 P.M. and sets its priority to bulk (low):

$ faxalter -p bulk -a 21:00 24

As we’ve seen, the faxstat command also lists the status of faxes that have been
received, including the files where they are stored. The faxabort command may be
used to abort a current incoming fax. The faxinfo command may be used to view the
characteristics of a received fax:

faxinfo fax00027.tif
/var/spool/fax/recvq/fax00027.tif:
 Sender: +12935557778
 Pages: 3
 Quality: Normal
 Page: North American Letter
 Received: 2002:02:02 11:23:21
TimeToRecv: 0:24
SignalRate: 38400 bit/s
DataFormat: 2-D MR

Incoming faxes are saved in TIFF format. They may be viewed with any TIFF viewer,
or you may use the fax2ps command to convert them to PostScript format.

Ideally, I’d like to be able to route incoming faxes to their recipient automatically.
However, current fax technology doesn’t provide a general way to specify a recipient
electronically.* Beyond the fax data itself, all an incoming fax includes is the originat-
ing phone number, the incoming phone number and/or transmitting station identi-
fier (TSI), a string associated with the sending fax machine (or modem).

HylaFAX can route faxes based on any of these. In practical terms, the most useful
routing items are the originating phone number (which must be obtained via caller
ID) and the incoming phone number. In the latter case, HylaFAX has the ability to
route on the direct inward dial (DID) or direct number identification service (DNIS)
telephone number. DID and DNIS are services offered by the telephone company in
which a block of virtual telephone numbers are all routed to one or more real phone
lines.† Using either of them, various employees in a company can each be assigned
their own, unique fax number, but all incoming faxes actually go to one or more
phone lines managed by the HylaFAX server. The DID/DNIS number of the incom-
ing call is passed to HylaFAX which can use it as a key for determining where to
route the fax.

* HylaFAX developers and partisans take extreme exception to this opinion.

† DNIS is also used in other contexts (e.g., for routing voice calls to the correct person based upon the which
of several 800 telephone numbers was dialed). Similarly, DID is also used, for example, to route incoming
phone calls to employee extensions without requiring an operator. Both services are expensive. DNIS typi-
cally uses a T1 line, and its monthly costs start at around $100–200 U.S. In my area (Connecticut, U.S.A.),
DID currently costs about $100 U.S. per month for 20 virtual numbers and also requires a startup fee of
about $750 U.S. (as of July 2002).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

804 | Chapter 12: Serial Lines and Devices

Processing of received faxes is handled automatically by the /var/spool/hylafax/bin/
faxrcvd script. In its delivered form, it calls a script named FaxDispatch in /var/spool/
hylafax/etc via the shell’s dot command. This script has the responsibility for setting
the SENDTO and FILETYPE environment variables. They specify the mail recipient
and file type to be used for routing the file, which default to FaxMaster and ps,
respectively.

This file must be a valid sh script. The HylaFAX documentation suggests a from like
the one is this simple version:

case "$DEVICE" in Attempt to match the incoming modem line.
ttyS4)
 SENDTO=amy_ng
 ;;
ttyS5)
 SENDTO=sam_wood
 ;;
esac

case "$SENDER" in Attempt to match originating phone number in TLS.
12935551212)
 SENDTO=chavez
 ;;
esac

case "$CIDNUMBER" in Attempt to match the DNIS or caller ID number.
8985551212)
 SENDTO=harvey
 FILETYPE=tif
 ;;
41255512)
 SENDTO=mktg
 ;;
esac

If FaxDispatch finds a match, it resets the value of SENDTO and possibly FILETYPE
which were initialized in faxrcvd. Ultimately, faxrcvd sends the fax in a mail mes-
sage to the SENDTO user, converting it to the format specified in FILETYPE (Post-
Script format by default); the converted fax is included in the message as a MIME
attachment. Note that the CIDNUMBER variable is used for both Caller ID and
DID/DNIS numbers (based on which of them is in use).

In general, the order of statements in FaxDispatch will be significant. Using the logic in
the preceding example, the final matching entry will prevail over any previous ones.*

Unfortunately, this routing feature is not of any practical use at my site because we
don’t have DID, and users at my site cannot predict who is going to send them faxes.

* Since FaxDispatch is a shell script, it can in fact be made to perform any desired function, provided you have
the time to write the appropriate script.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The HylaFAX Fax Service | 805

In such cases, however, you can modify the faxrcvd script to perform whatever
actions you want for an incoming fax rather than always generating email. For exam-
ple, we replace most of its logic with a simple command that just prints each incom-
ing fax, something like this:

/usr/bin/fax2ps -S $1 | lpr -P $FAX_PRINTER

Faxes are then delivered the old fashioned way, via sneakernet.

HylaFAX Configuration Files
The HylaFAX package uses a number of configuration files. These are the most
important:

/usr/local/lib/fax/hfaxd.conf
Configuration file for hfaxd, containing the locations of important configuration
files, entry format for various status display lines, basic timeout settings and
other fundamental parameters. It seldom needs to be altered.

/usr/local/lib/fax/hyla.conf
Settings for sendfax and other client commands. Users can define their own ver-
sions of these settings via the file ~/.hylarc. The system-wide version must be cre-
ated by the system administrator. Here is a simple example:
 AutoCoverPage: no
 Cover-From-Company: Ahania, LLC
 Cover-From-Voice: 1-293-555-1212
 Cover-From-Fax: 1-293-555-1213

/var/spool/hylafax/etc/config
General settings for the local site. Here is an example version of this file:
 LogFacility: daemon Syslog facility for messages.
 CountryCode: 1
 AreaCode: 293
 LongDistancePrefix: 1
 InternationalPrefix: 011
 DialStringRules: etc/dialrules
 ServerTracing: 1 Log all server actions.
 MaxConcurrentJobs: 1 Should be £ total modems.
 MaxSendPages: 20 Maximum fax sizes.
 MaxRecvPages: 50
 MaxDials: 12 Total number of phone call attempts.
 MaxTries: 3 Maximum transmission attempts (after connect).

Most of these settings define items needed to dial telephone numbers properly.
The final settings specify the maximum lengths for faxes (including any cover
page) and the maximum number of phone calls and transmission attempts that
will be made to send each fax.

/var/spool/hylafax/etc/config/config.line
Per-modem configuration files, containing a variety of communications-related
settings as well as overrides to the settings in the main config file. These files

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

806 | Chapter 12: Serial Lines and Devices

have an extension named for the serial line to which they apply. On systems
using subdirectories of /dev for serial device files, the extension is constructed as
subdirectory_device: e.g., /dev/cua/0 would use config.cua_0 under Solaris.

Controlling Access to HylaFAX
Host and user-based access control to the local HylaFAX facility is defined in the /
var/spool/hylafax/etc/hosts.hfaxd file. Entries in this file have the following form:

sender:map-to-uid:send-password:admin-password

where sender is a regular expression against which potential fax senders are com-
pared. It can contain patterns to match the username and/or host name. The second
field, map-to-uid, is the local UID to which matched senders should be mapped for
permissions and accounting purposes (if desired). send-password is an optional
encoded password to be used for validation prior to accepting a fax, and admin-
password is an encoded password which must be entered in order for matching users
to perform administrative functions (e.g., modifying or removing other users’ faxes).

The order of entries within the file is important since the first matching entry is used.
If no entry matches, access is denied. Thus, entries are generally ordered from most
to least specific.

Here is a sample hosts.hfaxd file:

^chavez@.*ahania\.com$:::xxxxx chavez can administer from anywhere in domain.
!^s_king@ User s_king uses too much paper: deny access.
ahania\.com$:::: Users in the domain can send (no password).
zoas\.org$:1234:yyy: zoas.org’s users need password (UID mapped).
192.168.10.33 All users on this host can fax.

As the second entry indicates, a leading exclamation point indicates an access denial
entry.

The HylaFAX package provides the faxadduser and faxdeluser commands for add-
ing and removing entries to this file. However, they are required only when you need
to generate an encoded password; in other cases, it is just as easy to edit the file
directly.

Here is a faxadduser command which creates an entry allowing user mercury to
administer the fax system:

faxadduser -a olympus mercury

This is the resulting entry:

mercury:::UiB7EkUrafx7I

This is actually too broad, since any user from any FQDN containing “mercury”
would also match. However, once the encoded password is created, it is easy to edit
manually. Alternatively, you could use a faxadduser command like this one:

faxadduser -a olympus 'mercury@.*ahania\.com'

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

USB Devices | 807

Be aware that faxadduser does not check to see if an existing entry like the one you
are adding already exists; it simply blindly adds what you specify to the file.

HylaFAX also has many other useful features--such as an email-to-fax
gateway, faxing to pages, bulk faxing (horrors!), and the ability to
reject junk faxes--which space limitations don’t permit us to consider.
However, the basic ones discussed here are sufficient for many envi-
ronments.

USB Devices
The Universal Serial Bus (USB) was designed by a consortium of hardware and soft-
ware vendors—Compaq, Intel, Microsoft and NEC—beginning in 1994. It was con-
ceived to provide a standardized way of connecting a wide range of peripheral
devices to a computer (read “personal computer”) and to correct some of the limita-
tions of traditional serial and parallel lines.

USB has the following advantages:

• Up to 127 devices can be connected.

• Devices can be added and removed while the system is running.

• Connectors have been standardized across all device types.

• It is much faster. The theoretical bandwidth of a USB bus is 12 Mbs/sec; how-
ever, actual throughput is more like 8–8.5 Mbs/sec, and devices seldom achieve
more than about 2 Mbs/sec.

USB cables contain only four wires: power, ground, send, and receive. Communica-
tion is handled in a hierarchical manner, under the control of a master; attached
devices all function as slaves, thereby eliminating issues such as avoiding collisions.
USB cable connectors are illustrated on the far left in Figure 12-2, and Figure 12-5
illustrates their corresponding pinouts.

B-type connectors are used for the USB port on the device, and A-type connectors are
used for the port on the hub or computer system.

FreeBSD, HP-UX, Linux, Solaris, and Tru64 all support USB devices to some extent,
although the support under HP-UX and Tru64 is limited to the USB keyboards and

Figure 12-5. USB connectors

4 3

1 2

USB A-type male

1 2 3 4

USB B-type male

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

808 | Chapter 12: Serial Lines and Devices

mice that come with the system (and are accordingly preconfigured by the operating
system).

We will consider configuring three sample USB devices—a mouse, a Zip drive, and a
printer—on the other three systems in the remainder of this section.

Table 12-6 summarizes the device files used for some USB devices on these systems.

FreeBSD USB Support
FreeBSD provides good support for USB devices, although some of it is in the experi-
mental stage. See the FreeBSD USB project’s home page, http://www.etal.net/~n_
hibma/usb/, for details on the current status.

Before you can use USB devices, you must configure support in the kernel. The fol-
lowing kernel configuration file lines relate to USB support:

device uhci General USB support modules.
device usb
device ugen
device ohic Alternate USB chipset support.
device uhid
device ukbd Keyboard.
device ulpt Printer.
device umass Mass storage: Zip drive.
device umodem Modem.
device ums Mouse.
device uscanner Scanner.

You should always include the first four items. Include uhid also if you are using a
mouse or keyboard. Include as many of the other items as makes sense for your con-
figuration (or include all of them to allow for flexibility in the future).

You can determine if your kernel includes USB support that is compatible with the
USB controller on the system by examining the output of dmesg:

dmesg | grep usb
usb0: OHCI version 1.0, legacy support
usb0: <OHCI (generic) USB controller> on ohci0
usb0: USB revision 1.0

This kernel is configured for USB support, and it successfully detected the controller.

You can load the USB kernel module manually via the kldload usb command. Alter-
natively, you can set the appropriate modules to load automatically in the /boot/

Table 12-6. Example USB device special files

Device FreeBSD Linux Solaris

mouse /dev/ums0 /dev/input/mouse0, /dev/input/mice /dev/usbms

Zip drive /dev/da0s4 /dev/sda4 /dev/dsk/c1t0d0s0:c

printer /dev/ulpt0 /dev/usblp0 /dev/usbprn0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

USB Devices | 809

loader.conf file. Here we load general USB support and the modules for the mouse,
keyboard, printer and Zip drive:

usb_load="YES"
ums_load="YES"
ukdb_load="YES"
umass_load="YES"
ulpt_load="YES"

See Chapter 16 for information about building FreeBSD kernels and modules.

You can list the current USB devices with the usbdevs command:

usbdevs
addr 1: OHCI root hub, (unknown)
 addr 2: Genius USB Wheel Mouse, KYE
 addr 3: TUSB2046 hub, Texas Instruments
 addr 4: Espon Stylus Photo 1280
 addr 5: USB Zip 250, Iomega

This system has a USB mouse in one of the system’s USB ports and a USB hub in the
other. The secondary hub has a printer and a Zip 250 drive attached to it.

Some USB devices are configured automatically when they are detected, via the usbd
daemon; the actions performed are specified in its configuration file, /etc/usbd.conf.
This is the case for the printer, the Zip drive, and the USB mouse used in the system
console’s text mode.

Using the mouse under X as well requires an additional step, however. You must edit
the XF86Config file to make X aware of the USB mouse (this file is usually in /etc).
Under XFree86 Version 3.3, you modify the Pointer section as follows:

Section "Pointer"
 Device "/dev/sysmouse"
 Protocol "MouseSystems"
EndSection

A USB printer is also easy to configure. You can set it up like any other printer within
the LPD facility, using the special file /dev/ulpt0 to refer to the printer.

A Zip drive is accessed via the USB mass storage driver. Via sleight of hand, it man-
ages to trick the standard SCSI driver into servicing a USB disk. Accordingly, the ker-
nel must also provide SCSI support in order to use such USB devices, and SCSI disk
special files will be used to refer to them.

For example, the following command can be used to mount the disk in a Zip drive at
/zip:

mount -t msdos /dev/da0s4 /zip

The DOS partition on a Zip disk appears as the fourth slice to FreeBSD.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

810 | Chapter 12: Serial Lines and Devices

Alternatively, you can create a UFS filesystem on a Zip disk using the usual com-
mands (see “From Disks to Filesystems” in Chapter 10):

disklabel -w -r da0 zip250
newfs /dev/da0c
mount -t ufs /dev/da0c /somewhere

Linux USB Support
Linux also provides good support for USB devices. Once again, support for them
must be enabled in the kernel. Figure 12-6 illustrates make xconfig’s USB menu.

We show only part of this very long parameter list (the gap indicates omitted selec-
tions). The items are divided into sections of related settings, beginning with general
USB support and then support for hubs and devices classes, followed later by choices
corresponding to specific USB devices. The ones required for our three devices are
highlighted. I recommend selecting module-based support whenever possible.

You will also want to install the usbutils package and possibly the usbview package,
as well (the latter provides a graphical USB device display command of the same
name). We’ll use tools from the former in this section.

You can view the currently attached USB devices with lsusb:

lsusb | grep Bus
Bus 001 Device 001: ID 0000:0000
Bus 001 Device 002: ID 0458:0003 KYE Systems Corp.(Mouse Systems)
Bus 001 Device 003: ID 0451:2046 Texas Instruments TUSB2046 Hub
Bus 001 Device 004: ID 059b:0030 Iomega Corp. Zip 250

USB device attributes are also available within the /proc filesystem, in files named
like /proc/bus/usb/bus#/dev#. For example, the usbmodules command can be used to
list the device-specific modules used by a USB device:

usbmodules --device /proc/bus/usb/001/002
usbmouse
hid

As with FreeBSD, using a USB mouse in the system console does not require configu-
ration. If you want to use one under X, however, you must edit the XF86Config file,
usually found in /etc/X11 (we are assuming Version 4 here). In order to use a USB
mouse instead of the usual mouse type, add an InputDevice section like this one:

Section "InputDevice"
 Identifier "USB Mouse"
 Driver "mouse"
 Option "Protocol" "IMPS/2"
 Option "Device" "/dev/input/mice"
EndSection

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

USB Devices | 811

The special file mentioned in this example, mice, refers to any and all USB mice
present on the system. If you want to specify just the first USB mouse, substitute /dev/
input/mouse0.

In addition, you must designate the mouse to the X server via an InputDevice direc-
tive in the ServerLayout section. For example, these entries allow you to use both a
normal and a USB mouse:

Section "ServerLayout"
 Identifier "Layout[all]"

Figure 12-6. Linux USB-related kernel parameters

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

812 | Chapter 12: Serial Lines and Devices

 InputDevice "Mouse[1]" "CorePointer"
 InputDevice "USB Mouse" "SendCoreEvents"

...
EndSection

If you want to use only a USB mouse, remove the entry for the usual mouse, and set
the second parameter of the USB mouse’s entry to CorePointer.

Configuring a USB printer is no different than configuring any other printer. Using
the administrative tools to do so is often a quick method. For example, Figure 12-7
illustrates the SuSE Linux YAST2 printer management facility’s built-in USB printer
support. In it, we see the available USB device choices.

Alternatively, you can set up a printer manually, using the same device file, /dev/usb/
lp0. On SuSE 7 systems, the corresponding device is /dev/usblp0.

As under FreeBSD, accessing a USB Zip drive uses an interface to the SCSI sub-
system (which must also be enabled in the kernel). For example, the following com-
mand could be used to mount a Zip disk at /zip:

mount -t vfat /dev/sda4 /zip

The Zip disk’s DOS partition is interpreted as partition 4 on the disk. You can also
build other filesystem types on Zip disks, if you like.

For more information about the Linux USB project, see http://www.linux-usb.org.

Figure 12-7. Adding a USB printer with YAST2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

USB Devices | 813

Solaris USB Support
Solaris also provides support for USB devices. In fact, some Sun systems, like my Sun
Blade, come with USB keyboards and mice standard, and no additional configura-
tion is required to use them.

You can also use the system’s USB ports for other sorts of devices. I tried using the
same devices on my Sun as for the other two operating systems. The Zip drive
worked fine. I used the following command to mount it:

mount -F pcfs /dev/dsk/c1t0d0s0:c /zip

Like the other systems, the Solaris USB mass storage driver interfaces to the SCSI
drive, and so the Zip drive’s special filename is of the usual SCSI form. The DOS par-
tition corresponds to the c slice.

Solaris offers support only for a very few USB printers, accessed via the /dev/usbprn*
device files or via the usual /dev/printers/* files.

Keeping Up to Date
Serial lines and terminal handling is an area in which tremendous changes have taken
place in recent years. Thus, it illustrates one of the occupational hazards of any techni-
cally-oriented profession: having one’s expertise become outdated and stale. Here are
some simple things you can do to avoid having this happen to you:

• Attend system administration-related technical conferences, such as LISA (see
http://www.usenix.org/events/), or those put on by hardware vendors. I try to
attend at least one a year.

• Regularly monitor administrative and security-related websites, mailing lists or
newgroups. Late breaking news often first appears in these forums. This is espe-
cially important for administrators of open source operating systems.

• Subscribe to—and read—periodicals (at least a few of the articles or columns)
devoted to the types of systems that you administer. I subscribe to SysAdmin
magazine (see http://www.samag.com) as well as some operating system–specific
publications.

• Reread all of the manual pages on the system every six months. I have a friend
who does this religiously, and it’s his recommendation. I must admit that I don’t
really have time to do this, but I do try to read all of the administrative (1m)
manual pages about once a year. (Even this is a lot to do when you administer
10 different kinds of systems.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

814

Chapter 13CHAPTER 13

Printers and the Spooling Subsystem

Despite years of hype about the coming paperless office, printing has become more
frequent and more complex as time has passed, not less so. Ordinary users now rou-
tinely print tens or even hundreds of pages a week, often including the sort of high-
quality graphics formerly done only rarely, on expensive, special-purpose devices.

This chapter discusses the printing subsystems of the various Unix versions we are
considering. Nowhere is there more variation than in accessing printing devices and
spooling jobs. The FreeBSD, Linux,* and Tru64 operating systems use the BSD
spooling system, HP-UX and Solaris use the System V spooling system, and AIX uses
its own spooling system. Each of them is discussed individually.

In this chapter, I’ll talk almost exclusively about “print” jobs, but the general discus-
sion applies equally well to related hardcopy devices such as plotters. In fact, the
Unix spooling subsystems are flexible enough to be used for purposes unrelated to
printing: archiving data, running programs in batch mode, and playing music,
among others.†

A spooling system typically includes the following components:

Printers
Current output devices include laser printers and inkjet printers, as well as special-
purposes devices such as label printers. Printing can be done by a printer attached
to the local computer via a serial, parallel, or USB port; by a printer on a remote
system; or by a standalone device connected directly to the local area network.

User commands to initiate printing
The user specifies the file to print, which device to print it on (if there is more
than one possibility), and any other necessary instructions. BSD calls them print
jobs, while System V and AIX refer to them as print requests.

* Linux distributions also offer the LPRng system, discussed later in this chapter. In some cases, this is now
the default.

† The spooling system can also be used to send faxes, a topic discussed in Chapter 12 (and placed there
because most of the administrative tasks related to faxing concern interfacing to serial lines and modems).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printers and the Spooling Subsystem | 815

Queues
Queues store and sequentially process print jobs. Conceptually, a queue is basi-
cally a line waiting to use a specific device.

Spooling directories
Spooling directories hold pending jobs. Under BSD, the entire file to be printed
is copied to a spooling directory. Under AIX and System V, by default only a
small request file is generated, and the file is accessed in its original location at
the proper time.

Server processes
Server processes accept print requests, set up and store the files associated with
them, and transfer the resulting jobs from the spooling directory to the actual
devices.

Filters
Filters transform the files to be printed into the internal formats required by the
printer. Filters are programs which the print server runs automatically for each
print job.

Administrative commands
These commands start and stop the entire subsystem or specific printers and
manage queues and individual print jobs. In addition, configuration files are usu-
ally used to specify the various characteristics and desired settings for each print-
ing device. They are typically modified automatically by the various
administrative commands, but some files need to be edited manually.

Remote printing support
These days, remote printing is at least as common as local printing. A system
that lets users on other hosts send jobs to some or all of its printers is referred to
as a print server, and the remote systems from which jobs originate are thus its
clients. We will consider remote printing in the context of each of the three
spooling subsystems.

An excellent reference for all aspects of Unix printing is the book
Network Printing by Todd Radermacher and Matthew Gast (O’Reilly
& Associates). Despite its title, it discusses both the local and net-
work-related aspects of print spooling, including a extended section
on print filters.

Table 13-1 presents a summary of the spooling subsystem components for the vari-
ous Unix versions.

Table 13-1. Print system components

Component Location

Version BSD: FreeBSD, Linux, Tru64
System V: HP-UX, Solaris
Proprietary: AIX

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

816 | Chapter 13: Printers and the Spooling Subsystem

We will conclude this section by considering some useful and often requested user
commands related to printing beyond those required to submit and manipulate print
jobs. We describe each of the briefly, and Table 13-2 gives their availability by oper-
ating system.

a2ps or enscript
Commands to convert text files to PostScript. Many systems provide both of
these (as well as other, similar commands).

Spool directories BSD: /var/spool/lpd/*
System V: /var/spool/lp/request/*
AIX: /var/spool/lpd/qdir and /var/spool/qdaemon
FreeBSD: /var/spool/output/lpd/*
Solaris: /var/spool/lp/requests/*

Configuration file(s) BSD: /etc/printcap
System V: /etc/lp/*
AIX: /etc/qconfig
Solaris: /etc/printers.conf in addition

First serial port device AIX: /dev/tty0
FreeBSD: /dev/ttyd0
HP-UX: /dev/ttyp0
Linux: /dev/ttyS0
Solaris: /dev/term/a
Tru64: /dev/tty00

First parallel port device Usual: /dev/lp0
FreeBSD: /dev/lpt0
HP-UX: /dev/lp
Solaris: /dev/ecpp0
Linux: /dev/parport0, but a module usually maps this to /dev/lp0

Boot script (starts the spool-
ing daemon)

AIX: /etc/inittab and /etc/rc.tcpip
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/lp
Linux: /etc/init.d/lpd
Solaris: /etc/init.d/lp
Tru64: /sbin/init.d/lpd

Boot script configuration FreeBSD: lpd_enable="YES” (and others) in /etc/rc.conf or /etc/rc.conf.local
HP-UX: LP=1 in /etc/rc.config.d/lp
SuSE: START_LPD="yes” and DEFAULT_PRINTER in /etc/rc.config (SuSE 7)

DEFAULT_PRINTER in /etcsysconfig/printer (SuSE 8)

Remote printing support Usual: incoming and outgoing BSD-based
AIX: BSD, AIX, outgoing System V
HP-UX: incoming and outgoing BSD and HP-UX

Table 13-1. Print system components (continued)

Component Location

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printers and the Spooling Subsystem | 817

mpage
A command to print text or PostScript files with multiple page images appearing
on each sheet of paper. The default is to print 4 pages per sheet. The utility can
print up to 8 pages per sheet.

lptest and pmbpage
Utilities to generate test output for printers. The first command produces the
standard line-printer ripple pattern: a long string consisting of all available char-
acters, which is offset by one character in each successive printed line. The sec-
ond command produces an image that may be used to determine the boundaries
of the printable area on a physical page.

pr
A utility that can format text files as a series of columns across the page (among
other things). In this mode, it can be useful for preprocessing certain kinds of
text files prior to printing them. Note that pr in its more general form is also
used by various traditional print filtering mechanisms.

ghostview, gv and similar commands
Utilities that allow you to preview PostScript files on screen. They rely upon the
Ghostscript PostScript facility.

ghostscript
A command that allows a PostScript file to be printed to a non-PostScript
printer.

Screen capture utilities
Most versions of the X Windows system provide the xwd command for creating
an image file from a window. More sophisticated screen capturing facilities are
included as part of the gimp graphics editing package.

Table 13-2. Available user printing-related utilitiesa

a A check (�) means that the item is provided with the operating system or included among its optional components. The letter a indicates
that the item can be obtained for that operating system, typically by downloading source code from the Internet and then building the
program, although sometimes in prebuilt form via one of the public software archives.

Command AIX FreeBSD HP-UX Linux Solaris Tru64

a2ps and/or enscript � � � � � �

mpage � � � � � �

lptest � � � � �

pmbpage � �

pr a � a � � a

ghostview and/or gv a � a � � �

xwd � � � � �

gimp a � or a a � � a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

818 | Chapter 13: Printers and the Spooling Subsystem

The BSD Spooling Facility
The BSD printing subsystem is often referred to by the name of the spooling dae-
mon, lpd. We will so designate it from now on. It can maintain multiple printers,
printers at local and remote sites, and multiple print queues. This system can be
adapted to support laser printers, raster printers, and other types of devices. As
shipped, the spooling system is usually configured to support only a standard line
printer.

User Commands
The LPD spooling system provides several commands allowing users to submit and
manage their print jobs:

lpr
Submits a job for printing. When a job is submitted, the lpd daemon assigns it a
job ID number, which is used to refer to it in any subsequent commands.

lpq
Lists jobs that are currently in a print queue.

lprm
Removes jobs from the print queues. By default, users can remove only their
own jobs, but root can delete any job.

Each of these commands includes a -P option for specifying the desired printer. If it
is omitted, the default printer is used, which is specified by setting the PRINTER
environment variable to the name of the printer to be used by default. If this variable
is not set and -P is not included on a command, the first printer defined in the /etc/
printcap configuration file (discussed below) is used (although some older LPD sub-
system implementations default to the printer named lp).

The LPD user commands are also supported for compatibility pur-
poses by AIX and Solaris.

Manipulating Print Jobs
The system administrator is often called upon to manage and manipulate individual
print jobs. We will consider the basic techniques for doing so in this section.

Use the lpq command to list the contents of a print queue. For example, the follow-
ing command lists the jobs in the queue for printer ps:

$ lpq -P ps
Rank Owner Job Files Total Size
1st chavez 15 l1726.f 74578 bytes
2nd harvey 16 fpppp.F 12394 bytes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The BSD Spooling Facility | 819

lprm can be used to remove individual print jobs. Its syntax is:

lprm -P printer jobs-to-remove

The jobs to be removed may be specified in various ways: as a list of job IDs and/or
usernames (in the latter case, all jobs belonging to the specified users will be
removed), or with a single hyphen, in which case all jobs will be removed when the
command is run by root. So, to remove job 15 from the queue ps, use the command:

lprm -P ps 15

Similarly, to remove all jobs from the plot queue, use this command:

lprm -P plot -

Finally, you can use the lpc administrative utility (which we’ll discuss in more detail
very shortly) to reorder jobs within a queue. For example, to move a job within its
print queue, use lpc’s topq subcommand. This command moves job 12 to the top of
the ps queue:

lpc topq ps 12

The final parameter is the list of jobs to move. It may be specified as a list of job IDs
and/or usernames (the latter select all jobs belonging to those users). topq will move
the specified jobs to the top of the queue for the specified printer. If more than one
job is specified, the jobs take on the order in which they are listed on the command
line: at the end, the job listed first will be at the top of the queue.

Managing Queues
The lpc utility is used to perform most administrative tasks connected with the
spooling system under BSD, including shutting down a printer for maintenance, dis-
playing a printer’s status, and manipulating jobs in print queues (as we’ve just seen).
The command to invoke the line printer control utility is simply lpc:

lpc
lpc>

lpc is now running and issues its own prompt. lpc has several internal subcommands:

status printer
Display status of the line printer daemon and the specified print queue.

stop printer
Stops all printing on printer after the current job has finished. Users can still use
lpr to add new jobs to the queue, but they won’t be printed until the printer is
started again. This command lets you stop the printer in a clean way, and it is
usually used when you need to add supplies or perform routine maintenance.

abort printer
Terminates any printing in progress immediately and disables all printing on the
specified printer. It does not remove any jobs from the queue; any jobs currently
in the queue will be printed when the printer is restarted. To restart the printer,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

820 | Chapter 13: Printers and the Spooling Subsystem

use the start command. abort is useful when the spooling system reports that a
daemon is present but nothing appears to be happening. abort is an immediate
version of stop.

clean printer
Remove all jobs from the printer's queue. The current job will still complete.

start printer
Restarts printing on the printer after an abort or stop command.

disable printer
Prevents users from adding new jobs to the specified queue. The superuser can
still add jobs to the queue, and printing will continue. Disabling its queue, wait-
ing for all pending jobs to finish, and then stopping the printer is the most grace-
ful way to turn off a printer.

enable printer
Allows users to spool jobs to the queue again. enable restores normal operation
after the disable command.

down printer
Stops printing and disables the queue for printer. Thus, down is equivalent to
disable plus stop.

up printer
Enables the queue and starts printing on printer. Thus, up is equivalent to enable
plus start.

For all of the lpc subcommands, the keyword all can be substituted for the printer
name to act on every printer on the system. lpc also provides a help subcommand
that can be used to obtain the list of available subcommands or a description of any
individual subcommand.

Here are some examples using lpc:

lpc
lpc> status ps
ps:
 queuing is enabled Info about the ps queue and device.
 printing enabled
 5 entries in spool area
 daemon started The lpd daemon is running.
lpc> disable ps Block new job submissions to ps.
ps:
 queuing disabled
lpc> stop ps Stop printing on device ps.
ps:
 printing disabled
lpc> quit

Single lpc internal commands can also be executed from the command line by speci-
fying it as lpc’s arguments:

lpc up ps

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The BSD Spooling Facility | 821

The Spooling Daemon
The BSD spooling daemon is usually located at /usr/sbin/lpd. It is started by a system
initialization script at boot time (see Table 13-1), using commands like the following:

if [-f /usr/sbin/lpd]; then
 rm -f /dev/printer /var/spool/lpd.lock
 /usr/sbin/lpd; echo -n 'lpd' >/dev/console
fi

If the server program is readable, the boot script removes the old socket and old lock
file (the latter is designed to ensure that only one instance of the daemon is running
at any time), and then the script starts the daemon. The new daemon will automati-
cally recreate its lock file and communications interface as part of its initialization
tasks.

Occasionally, the spooling daemon gets hung. The main symptom of this is a queue
with jobs in it but nothing printing. In this case, you should kill the old daemon and
start a new one manually:

ps aux | grep lpd
root 5990 2.2 0.8 1408 352 p0 S 0:00 grep lpd
root 208 0.0 0.2 1536 32 ? I 0:00 lpd
kill -9 208
rm -f /dev/printer /var/spool/lpd.lock
/usr/lib/lpd

Note that you also need to remember to remove the old socket and lock files.

The same actions can be accomplished by invoking the lpd boot script (when avail-
able). For example:

/etc/init.d/lpd restart

Configuring Queues: The printcap File
The file /etc/printcap lists all output devices supported by the spooling system.* In
other words, the entries in the printcap file define the available printers on the system.

Here is a sample printcap entry for a simple line-oriented printer (a rather rare item
these days):

line printer--system default printer
lp|lpt1|Machine Room Line Printer:\
 :sd=/var/spool/lpd/lpt1:\ Spool directory
 :lp=/dev/lp0:\ Printer's physical device
 :lf=/var/adm/lpd-errs:\ Path to printer's error log file
 :pl#66:pw#132: Set page length and width

* Unlike the similarly named and constructed termcap file, the printcap file is not merely a printer characteris-
tics database. On the contrary, it is a required configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

822 | Chapter 13: Printers and the Spooling Subsystem

The first line is a comment (indicated by the number sign). The second line provides
names for this entry and its associated queue and printer, separated by vertical bar
characters. Specifying several names, as we’ve done here, is typical: a short name for
common use and additional names indicating the printer type and/or location.

Fields within a printcap entry are separated by and surrounded by colons, and
entries may extend beyond one line by escaping the newline character with a back-
slash and including a tab at the beginning of each continuation line. Setting names
are typically two characters and are usually followed by an assignment character and
the desired value.

We’ve annotated the remaining lines in the preceding printcap entry. These settings
are fairly self-explanatory. The only tricky part is the two settings on the final line.
These are numeric settings specifying the page length and width (in lines and charac-
ters, respectively) for this printer, and the assignment character is a number sign
instead of an equal sign.

Here is a more complex printcap entry for a laser printer:

laser printer
ps|ps3a|hp4000|3rd Floor Laser Printer:\
 :sd=/var/spool/lpd/ps3a:\ Spool directory
 :lp=/dev/lp0:\ Printer's physical device
 :lf=/var/adm/lperr/ps-errs:\ Error log file
 :pl#66:pw#0:\ Page length/width
 :mx#500:hl:\ Max. file size=500 blocks; print burst page last
 :if=/usr/lbin/pcfof +Chp4000tn.pcf:\ Filter specifications
 :vf=/usr/lbin/psrast:\
 :af=/var/adm/lpacct: Accounting file

The entry begins as before with a comment and a line specifying several names for
this printer. The next four lines define the same settings as in our first example, and
the following line defines the maximum number of pages that a job may send to this
printer (here set to 1000 blocks) and also specifies that the banner/burst page be
printed after each job rather than before. This setting, hl, is a Boolean setting; speci-
fying its name turns it on, and appending an at sign to the name turns it off: hl@.

The next two fields specify filters to be used with this printer: if specifies a program
that prepares the input for printing, and vf specifies a program that processes input
consisting of raster images. The many filter settings that can be specified are listed in
Table 13-3. Multiple filters are piped together as specified in the printcap manual
page; see the same source for the calling arguments that are used with filter pro-
grams. General filter programs are often provided by the operating system vendor,
and manufacturers also can supply ones customized for their printer devices.

The final line in the laser printer entry specifies the accounting file to be used with this
printer. This file will eventually be processed by the pac utility, described in
Chapter 17. Accounting records are not generated automatically by the LPR subsystem
but must be explicitly created by one of the filter programs. Traditionally, this is han-
dled by the if filter. We’ll look at a sample filter program later in this section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The BSD Spooling Facility | 823

Table 13-3 lists the most important printcap entry fields.

See the manual page for full details on all printcap entry fields.

Table 13-3. Useful printcap entry settings

Field Default Meaning

General Settings

br none Baud rate for serial line printers.

mc none Maximum number of copies that can be requested (FreeBSD only).

mj 1 million Maximum number of jobs in queue (not available under FreeBSD and some
Linux).

mx 0 Maximum file size (0=no limit).

pc 200 Price per page/foot (units=$0.0001).

pl, pw 66,132 Page length in lines, width in characters (used for accounting).

px, py 0, 0 Page width/length in pixels.

rg none Restrict printing to members of this group (not always implemented).

rw off Open output device read-write.

Printer Operations

hl off Print burst page after job.

sb off Use a one-line banner only.

sc off Suppress multiple copy requests.

sf off Suppress form feeds.

sh off Suppress burst (header) pages.

File/Directory Locations

*f none Filters, where the initial character defines the filter type: if=input and account-
ing, of=general output, cf=cifplot, df=dvi/TEX, ff=Fortran (AKA formfeed),
gf=plot, nf=ditroff, tf=troff, vf=raster image, xf=pass-through (for prefor-
matted output).

af none Accounting file pathname.

lf /dev/console Error log file pathname.

lo lock Lock filename.

lp /dev/lp Device special file.

sd /usr/spool/lp Spooling directory.

st status Status filename.

Remote Printing

rm none Remote host.

rp lp Remote queue name.

rs off Require remote users to have a local account.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

824 | Chapter 13: Printers and the Spooling Subsystem

Spooling directories

As we’ve noted, a spooling directory holds files destined for a particular printer until
the daemon, lpd, can print them. Spooling directories are conventionally located
under /var/spool/lpd. Each printer generally has its own spooling directory.

All spooling directories must be owned by the special user daemon and the group
daemon and have access mode 755 (read and execute access for everyone; read, exe-
cute, and write access for user). This protection scheme gives the spooling system
sole write access to files that have been spooled, forcing users to use the spooling sys-
tem and preventing anyone from deleting someone else’s pending files or otherwise
misbehaving.

To create a new spooling directory called /var/spool/lpd/newps, execute the following
commands:

cd /var/spool/lpd
mkdir newps
chown daemon.daemon newps
chmod 755 newps
ls -ld newps
drwxr-xr-x 2 daemon daemon 2048 Apr 8 09:44 newps

You will have to create new spooling directories when you add additional printers.

Restricting printer access

The printcap variable rg can be used to restrict a print queue to the members of a
specified group. For example, rg=chem will restrict the printer to members of the
chem group. Not all implementations of the LPD spooling service support this fea-
ture (for example, Tru64 does not).

We’ll look at the access restriction scheme for remote printing later in this section.

A filter program

Here is a simple printer filtering program that illustrates the general techniques used
in such programs, including accounting record creation (we have removed all of the
code testing for invalid input, missing/empty files, and the like to make the basic
structure clear):

#!/bin/sh
Filter for PostScript files to an HP DeskJet

Obtain and process program options.
while getopts a:c:h:m:n:p:q:r option; do
 ...
done
acct_file="$1" # Real filter tests for not null

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The BSD Spooling Facility | 825

Set parameter defaults.
MODEL=""
RESOLUTION="600"
QUALITY="normal"

Let user override defaults if desired.
. $HOME/config.hp # Real filter checks if file exists

Create option for model if defined
if ['' != "$MODEL"]; then
 MODEL="-sModel=$MODEL"
fi

Reset printer, prevent stair step and print
printf '\033E\033&k2G\033&s0C'
gs -q -sDEVICE=hpdj $MODEL -r"$RESOLUTION" \
 -sPrintQuality="$QUALITY" \
 -sPagecountFile="./_pages_$randstring" \
 -sOutputFile=- $PSCONFIGFILE -
printf '\033E' # Printer reset/final page eject

Write accounting record
pages=`cat ./_pages_$randstring`
printf '%7.2f\t%s:%s\n' "$pages" "$host" "$user" >> "$acct_file"
rm -f ./_pages_$randstring

The program first parses its options (not shown) and then stores the name of the
printing accounting file given as its final argument. It then sets the default values for
some printer specification parameters—printer model, print resolution, and print
quality—and then reads in a user-specific configuration file that can change some of
these values. Next, the script defines the MODEL variable as the option that will be
used on the subsequent print command if the user has specified a specific printer
model (by default, no model is specified).

The final two sections of the script perform the real work. First, the printer is sent an
appropriate reset string (this script is designed for Hewlett-Packard DeskJet series
printers) via the printf command. Then the gs command invokes the Ghostscript
facility to process the files to be printed (they are assumed to be PostScript files).
Finally, the printer is sent a simple reset code to restore its default settings and eject
the final page (if necessary).

The last action of the script is creating and writing the accounting record. It relies on
the page count provided by the Ghostscript facility via an external file, specified on
the gs command line and here (we won’t worry about how the randstring variable is
created). Once the page count is read, the script writes a properly formatted record
to the accounting file and removes the scratch file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

826 | Chapter 13: Printers and the Spooling Subsystem

Remote Printing
The BSD printing facility can also send files to printers on remote hosts or directly
attached to the network, provided that the remote printers also support the LPD
spooling protocol. Here is a sample printcap entry for a remote printer:

Remote printer entry
remlp|hamlq|hamlet's letter quality printer|:\
 :lp=:\
 :rm=hamlet:rp=lp2:\
 :lf=/var/adm/lpd_rem_errs:\ Include a log file if you need debugging info.
 :sd=/var/spool/lpd/remlp:

This entry specifies the properties of a printer named remlp. The empty lp field
shows that this entry describes a remote printer, and the rm field indicates the desti-
nation system for remote printing (in this case, the host hamlet). The rp field holds
the name of the target printer on the destination host. Thus, in this example, send-
ing a file to the printer remlp will result in its being printed by printer lp2 on system
hamlet. Although this entry does not contain any specific details about the remote
printer, the printcap entry can include filter, accounting file, and other settings as
well. Alternatively, these items can be defined in the remote system’s own printcap
file. Of course, the local printcap entry will need to define all appropriate printer set-
tings for network-attached printers that support LPD.

Accepting incoming remote print jobs also requires minimal additional configura-
tion. In order for a system to allow a remote system to send jobs to it, the remote sys-
tem’s hostname must be listed in the file /etc/hosts.lpd or /etc/hosts.equiv. If the first
file exists, the hostname must appear in it, or remote printing requests will be
refused. If /etc/hosts.lpd does not exist, the /etc/hosts.equiv file is checked (see “Net-
work Security” in Chapter 7 for more on the /etc/hosts.equiv file).

Finally, if a printer’s printcap entry contains the rs characteristic, only remote users
with accounts on the local system (defined as an account having the same UID on
the local and remote systems) will be allowed to send remote jobs to that printer.

Adding a New Printer
To add a new printer to a system using the BSD spooling facility, you must:

• Physically connect the printer to the computer (if applicable). Follow the manu-
facturer’s instructions regarding cable selection and general procedures.

• For serial line printers, make sure that the line is disabled (in other words, no
getty process should be started for it). See Chapter 12 for details.

• If this is the first printer on the system, verify that the lpd server will be started at
boot time: make sure the relevant boot scripts are present, the lines relating to lpd
are not commented out, and any configuration variables in use are set properly.

• Add an entry for the printer to /etc/printcap. If you are adding a new printer of
the same type as an existing one, you can copy and modify the existing entry,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The BSD Spooling Facility | 827

changing the name, special file, spool directory, accounting file, error log file,
and any other relevant characteristics as appropriate for the new printer. Printer
manufacturers also sometimes provide printcap entries for their printers.

• Create a spooling directory for the printer.

• Create the printer’s accounting file (defined in the af field of their printcap entry)
with the touch command; for example:

touch /var/adm/lp_acct/ps3
chown daemon /var/adm/lp_acct/ps3
chmod 755 /var/adm/lp_acct/ps3

As in this example, printer accounting files are typically stored under /var/adm,
and must be owned by user daemon, and daemon requires write access to the
file.

• Start the printer and its queue:
lpc up ps3

• Test the new printer by spooling a small file.

Troubleshooting hints are discussed in the final section of this chapter.

LPD Variations
We close this section by looking briefly at some of the features of the LPD spooling
system in the various operating system environments.

FreeBSD

In addition to the commands we’ve considered so far, FreeBSD also provides the
chkprintcap command, which performs some primitive verification of printcap
entries. Its most useful form is with its -d option. In this mode, it will ensure that no
two printers are sharing a spool directory and will also create any missing spool
directories referenced in the printcap file.

FreeBSD’s lptcontrol command is also occasionally useful. It can be used to change
the state of a parallel port among the following: standard, extended, polled, and
interrupt-driven (see the manual page for details). Note that lptcontrol will need to
be run at boot time in order to retain the desired setting.

Tru64

Tru64 provides an excellent printer configuration utility named printconfig, illus-
trated in Figure 13-1.

Its main window is in the upper left in the illustration. Here, you can add a new
printer, choosing from a large list of predefined types in the upper scroll box, or you
can modify one of the existing printers listed in the lower box. You can also desig-
nate any printer to be the system default printer (the tool automatically assigns lp as
one of its names and reorders printcap entries appropriately).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

828 | Chapter 13: Printers and the Spooling Subsystem

The windows in the upper right and bottom center of the illustration show the pro-
cess of adding a new printer (here named laser3). The most important printcap entry
fields are included on the former, while all of the remaining possible settings are
accessible via the scrolling list in the latter. The utility fills in default values for many
fields based on the printer type you initially selected, including the paths to many fil-
ter programs (provided with the operating system).

Tru64 also provides an older text-based, menu driven utility named lprsetup. This
brief session will give you a sample of its general flavor:

/usr/sbin/lprsetup

Tru64 UNIX Printer Setup Program
Command < add modify delete exit view quit help >: view

lp|lp0|0|hp4000:\
 :af=/usr/adm/lpacct:\
 :if=/usr/lbin/pcfof +Chp4000tn.pcf:\
 :lf=/usr/adm/lperr:\

Figure 13-1. The Tru64 printconfig utility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 829

 :lp=/dev/lp:\
 ...

Command < add modify delete exit view quit help >: quit

Linux

Linux systems also provide GUI interfaces for creating printcap entries. For exam-
ple, the linuxconf tool can be used to configure printers. Similarly, SuSE’s yast2 tool
can do the same job; the appropriate module is reached by selecting Hardware
➝ Printer from the main window. The resulting dialogs are illustrated in Figure 13-2.

The main window for this module (at the top in the figure) lists configured printers
and also allows you to add a new one. The two other windows in the illustration are
from the series of dialogs that follow during the add printer process. The one on the
left specifies the specific printer model you are adding, and the one on the right
allows you to specify characteristics of that particular printer. In this case, we specify
letter-size paper and color printing at a resolution of 360 × 360 dpi. Later dialogs
request other general information required by the printcap entry, and the tool cre-
ates the entry automatically once the process completes.

System V Printing
The System V printing system is used on a wide range of Unix systems, from micro-
computers with a single printer to high-end mainframes with many printers. Among
the operating systems we are considering, the System V printing facility is used by
HP-UX and Solaris.

Figure 13-2. SuSE Linux yast2 printer configuration

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

830 | Chapter 13: Printers and the Spooling Subsystem

Traditionally, System V printing command options did not allow a
space between the option letter and its argument. Although some
implementations are more flexible today, we retain the older syntax
here.

User Commands
The System V spooling subsystem provides several user commands for submitting
and managing print jobs:

lp
Initiate print requests. When a user submits a print job, it is assigned a unique
request ID, which is used to identify it thereafter, usually consisting of the
printer name and a number: “ps-102” for example. The lp user command is also
supported for compatibility purposes by FreeBSD.

lpstat
List queue contents and configuration. This command is discussed later in this
subsection.

cancel
Cancel a pending request. By default, users can remove only their own jobs, but
root can delete any job.

Special Requests
Because of my particular experience, I always associate printing with lots of user
requests for special—meaning preferential—treatment. I was a system administrator
for a project on tight deadlines, so work was always being finished up at the last minute.
The work usually got done just in time, but then the engineering drawings still had to
be output to one of two very slow electrostatic plotters. As a result, I could expect to get
at least two or three hard-luck stories about deadlines every day between four and five
in the afternoon, always accompanied by a request to move up a job in the plot queue.

That may sound like no big deal, but everyone was aware of how slow those plotters
were, and they all watched the queues like vultures. About 50% of the time, moving
one person’s job up would result in another user becoming irate. Things got bad
enough that my partner and I found one of those Poor planning on your part does not
constitute an emergency on my part signs for our cubicle—one with a reasonably
humorous illustration to accompany the saying.

What actually helped get things under control was our formulating a policy about plot-
ter usage and in-queue priorities, which was approved by our management and then
circulated to all of our users. That way, everyone knew what were and were not rea-
sonable expectations. And if we chose to deviate from the policy once in a while to help
out a guy in a real time crunch, at least he understood that we were doing him a favor
(we really did have other things to keep us busy besides monitoring the plotter queues).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 831

All of these commands are supported by AIX as an alternate interface to its own
queuing system.

The system default printer

The lp command includes a -d option for specifying the desired destination: printer
or printer class (see below). If it is omitted, the destination designated in the
LPDEST environment variable is used. If this variable is not set and -d is not included
on a command, the system default printer is used. This is set by the system adminis-
trator using the lpadmin command, as in this example which makes PS2 the default
destination:

lpadmin -dPS2

The lpstat command’s -d option may be used to list the system default destination:

$ lpstat -d
system default destination: PS2

Device classes

When initiated by the lp command, print requests are sent to the queue for a
destination. Destinations may be either a specific printer (or other device) or a
deviceclass, which provides a mechanism to group similar devices and declares them
to be equivalent to and substitutable for one another.* For example, all of the laser
printers can be grouped into a class laser, users may then spool a print request to
destination laser, and it will be printed on the first available device in that class. All
devices within a device class share a single queue.

The lp command places a print request into a queue, either for a specific device or a
class containing several devices. Sometime later, the print service daemon, lpsched,
actually sends the job to the printing device. We’ll discuss how to place specific
printers into device classes later in this section.

Getting status information

The lpstat command can provide status information about current printing queues
and devices. Table 13-4 lists lpstat’s most useful options.

* In other operating systems, this construct is called a printer pool.

Table 13-4. Options to lpstat

Option Meaning

-alist Indicate whether the queues for the printers in list are accepting jobs or not.

-clist Display the members of the listed classes.

-olist List print requests. In this case, list may include request IDs, printer names, and class names. In the latter case,
all requests for these printers and classes will be displayed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

832 | Chapter 13: Printers and the Spooling Subsystem

All lists are comma-separated; enclose them in quotes if they contain special charac-
ters that have meaning to the shell. For all options, if the list is omitted, all entities of
the specified type are assumed. For example, the command

lpstat -uchavez,jones

lists all jobs belonging to users chavez and jones, while lpstat -u lists all jobs belong-
ing to all users. Similarly, lpstat -c may be used to list the members of all defined
classes.

Without any options, lpstat displays all requests that were submitted by the user
executing the lpstat command (it is thus equivalent to lpstat -u$USER).

For example, the following command lists all jobs in the queue for printer PS:

$ lpstat -oPS
PS-1139 chavez 89427 May 25 07:19 on PS
PS-1140 harvey 302052 May 25 07:21
PS-1141 stein 58357 May 25 07:26
PS-1142 stein 9846 May 25 07:26

The following command displays the current status of destinations PS and PS2:

$ lpstat -pPS,LP2
printer PS now printing PS-1139. enabled since May 13 22:12
printer LP2 is idle. enabled since May 13 22:12

The following command indicates whether the queue for device class laser is accept-
ing new jobs or not:

$ lpstat -alaser
laser accepting requests since Jan 23 17:52

The following command displays the special file used as an interface for PS:

$ lpstat -vPS
device for PS: /dev/tty0

Manipulating Individual Print Requests
Under System V, the system administrator may cancel any pending job using the
cancel command, which takes either the request IDs of the jobs to be cancelled or a
list of one or more printers as its argument. In the first case, the specified requests are

-plist Display the current status of the specified printers.

-ulist Display the status of all jobs belonging to the specified users.

-vlist Display the special file used by the specified printers.

-s Provide a summary: list all classes and their members and all printers and their associated devices.

-t Display all status information

-d Display the system default destination.

Table 13-4. Options to lpstat (continued)

Option Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 833

cancelled, even if they are currently printing; in the second case, whatever request is
currently printing on each indicated printer is terminated.

Other useful options to cancel in conjunction with a printer list allow you to remove
multiple requests via a single operation: -a removes all requests belonging to the user
who executes the command for the listed printer, and -e (for everything) removes
every job in the queue. The -i option limits the operation to local print jobs, and the
-u option limits the operation to requests belonging to the user specified as its argu-
ment. The -u option may be specified multiple times to select more than one user.

For example, the following command cancels all jobs belonging to users chavez and
harvey on printers PS2 and PS3:

cancel PS2 PS3 -uchavez -uharvey

Pending print jobs may also be moved between print queues with the lpmove com-
mand, which has the following syntax:

lpmove request-IDs new_dest
lpmove old_dest new_dest

The first form moves the specified jobs to the new destination designated as the com-
mand’s final argument; the second form moves all jobs currently queued for old_dest
to new_dest (useful when a printer has gone down and an alternate is available).
Note that if old_dest and new_dest are printers in the same class, then an lpmove is
not necessary: since the same queue feeds both devices, jobs will automatically be
routed to the second printer if the first one goes down.

On the other hand, if old_dest is currently up and running, the lpmove command has
the side effect of disabling that queue as well as moving all jobs within it.

In many implementations (including HP-UX but not Solaris), lpmove can only be
used when the printing service is shut down (how to do so is discussed later in this
section).

Managing Queues
In the System V printing subsystem, queues are controlled via two pairs of com-
mands: accept and reject, and enable and disable.

The accept and reject commands may be used to permit and inhibit spooling to a
print queue; both take a list of destinations as their argument. With its -r option,
reject may also specify a reason for denying requests, which will be displayed to
users attempting to send jobs to that queue. For example, the following commands
close and then reopen the queue associated with the printer PS:

reject PS
accept PS

The following command closes the queue for the destination class laser:

reject -r"There is no paper in the entire building..." laser

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

834 | Chapter 13: Printers and the Spooling Subsystem

accept and reject don’t affect whether pending jobs continue to print or not.

The enable and disable commands are used to control the status of a particular
printing device. They both take a list of printers as their arguments; in this case, since
actual devices are being controlled, destination classes are not valid arguments.
disable also has a -r option to allow an administrator to specify a reason that a
printer is going down. It also has a -c option, which automatically cancels any jobs
that are currently printing on the specified device(s). By default, jobs printing when
the disable command is executed will be reprinted on another printer in the same
class (if any) or when the device comes back up. For example, the following com-
mands disable and then reenable the device PS:

disable -r"Changing toner cartridge; back by 11" PS
lpstat -pPS
Printer PS disabled since May 24 10:53 -
Changing toner cartridge; back by 11
enable PS

Starting and Stopping the Print Service
Print requests are actually handled by the lpsched daemon, which is started automat-
ically at system boot time. The commands look something like these:

if ["$LP" -eq 1 -a -s /var/spool/lp/pstatus]; then
 ps -ef | grep lpsched | grep -iv grep > /dev/null 2>&1
 if [$? = 0]; then
 /usr/sbin/lpshut > /dev/null 2>&1
 fi
 rm -f /var/spool/lp/SCHEDLOCK
 /usr/sbin/lpsched && echo line printer scheduler started
fi

These commands first verify that the printing subsystem is enabled in the startup
configuration files (LP is set to 1 for this HP-UX system) and that the subsystem’s
status file exists and is not empty. Then the process list is examined to determine
whether lpsched is already running; if it is, the lpshut command is used to terminate
it gracefully. Check to make sure the server startup and shutdown programs are
available. Next, lpsched’s lock file is deleted (this file ensures that only one instance
of lpsched is running at a time), and then the new daemon is started (which will cre-
ate its own lock file). If lpsched starts successfully, a message is printed to standard
output.

The -r option to lpstat may be used to determine if the print scheduling daemon is
running:

$ lpstat -r
scheduler is running

As we’ve seen, the printing service may be shut down with the lpshut command.
This command disables all devices but does not prevent requests from being added

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 835

to queues. The print service may be restarted by rerunning the appropriate boot
script, as in this HP-UX example:

lpshut
/sbin/init.d/lp start

If you kill lpsched using any other method, or if it crashes, you may need to remove
its lock file manually (/var/spool/lp/SCHEDLOCK) if the boot script does not do this
for you.

As we’ve seen, the administrative commands for the System V spooling system gener-
ally reside in /usr/sbin.

Managing Printers and Destination Classes
The lpadmin command is used to define and modify the characteristics of printer
devices and classes. It should only be used for such purposes when lpsched has been
stopped with lpshut.

The -p option is used to specify the printer to be affected by the lpadmin command. -p
may be used on every lpadmin command. lpadmin also has many other options
designed to perform various administrative functions within the spooling system.

Defining or modifying a printer

In its most basic form, the lpadmin command defines a printer by specifying its device
file and model definition:

lpadmin -pprinter -vspecial-file interface-option

where printer is the name for the printer and special-file is the pathname to the spe-
cial file through which the system communicates with the printer. If the specified
printer already exists, its definition is modified; otherwise, a new printer is created.

The interface option has one of the following forms:

-eprinter
Copy an existing printer’s interface.

-mmodel
Specify printer by model type by specifying the appropriate filename in /var/
spool/lp/model.*

-iinterface-path
Specify the full path to a printer interface program.

* This conventional location is often a link. Under HP-UX 10, it is a link to /etc/lp/model, and on Solaris sys-
tems, it is a link to /usr/lib/lp/model. Indeed, both operating systems keep most of the spooling subsystem-
related configuration data in subdirectories under /etc/lp (with links to the “standard” locations).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

836 | Chapter 13: Printers and the Spooling Subsystem

The purpose of these options is to specify which printer interface program is to be
used with the new printer. A printer interface is a shell script that performs the vari-
ous tasks necessary to prepare the printer for printing and then spools the desired
files to the device. When a printer is defined, its interface program is copied to the
directory /var/spool/lp/interface into a file having the same name as the printer.

The easiest option to use is -e, which says to use the same interface as an existing
printer. For example, the following command defines a new printer PS4, attached via
/dev/ttd2; it is the same model as the existing printer PS3:

$ lpadmin -pPS4 -ePS3 -v/dev/ttd2

For a new printer type, you may find an appropriate interface program already on the
system since modern operating systems usually provide many of them (stored in /var/
spool/lp/model). Interface programs are also often available from the manufacturer of
the printer.

The -m option specifies the filename of an interface program stored in /var/spool/lp/
model. For example, the following command defines a new printer named
Workhorse, which will use the interface program named laserjet4 and is attached to
the computer via /dev/ttd5:

$ lpadmin -pWorkhorse -v/dev/ttd5 -mlaserjet4

This command will create a copy of /var/spool/lp/model/laserjet4 as /var/spool/lp/
interface/Workhorse.

Finally, the -i option may be used to specify the path to the desired interface pro-
gram explicitly.

Deleting printers

The -x option to lpadmin removes the definition of a printer from the system. For
example, this command removes the printer Slow from the system:

lpadmin -xSlow

Managing device classes

The -c option to lpadmin is used to place a printer into a class. For example, the
command:

lpadmin -pPS2 -claser

will add the printer PS2 to the class laser, creating the class if it does not already exist.

Similarly, the -r option may be used to remove a printer from a class. For example,
the following command removes the printer PS1 from the class laser:

lpadmin -pPS1 -rlaser

You can also place the printer into a destination class as you create it:

lpadmin -pPS7 -v/dev/ttd2 -mpostscript -claser

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 837

Even when a printer has been placed into a class, users can still spool print jobs to its
individual queue.

This command creates a printer PS7, a PostScript printer accessed via /dev/ttd2, and
adds it to the class laser.

When removing a printer from a class or from the system with -r or -x, if the speci-
fied printer is the only member of its class, that class is also removed as a side effect.

Defining Printer Classes

It is important to ensure that all of the printers within a class are func-
tionally equivalent to one another. If they’re not the same make and
model, they should at least have identical capabilities and produce
identical output for a given print job.

In-queue priorities

Print requests in destination queues are assigned priority numbers that determine the
order in which requests get printed (the default is their order of submission). The
standard System V scheme is to use priority numbers ranging from 0 to 39, with
lower numbers designating higher priorities (meaning printed sooner). Solaris uses
this system, but HP-UX uses a different system with priorities running from 0 to 7,
with 7 being the highest priority level. The two operating systems also differ in the
commands they provide for setting and modifying job priorities.

Priorities under HP-UX. HP-UX provides the -g option to lpadmin to define a default pri-
ority level for each printer. For example, this command sets the default priority level
for printer PS0 to 2:

lpadmin -pPS0 -g2

The default priority level is 0 (the lowest level). In the case of a printer class, the
default priority for jobs placed in the queue is the highest default priority among
printers in the class.

Priority levels for pending jobs can be modified with the lpalt command (which can
also alter some other job characteristics such as the title and number of copies). For
example, this command changes the priority level for the specified job to 7:

lpalt -p7 PS0-21

We’ll look at other options to lpalt later in this section.

The lpfence command provides the final mechanism for managing printing via prior-
ities. It sets a minimum priority level—called the fence—for a job to be allowed to
print. This characteristic is specified for an individual print queue (printer or class).
For example, the following commands modify the queue PS1, setting its default pri-
ority to 1 and its fence to 4:

lpadmin -pPS1 -g1
lpfence PS1 4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

838 | Chapter 13: Printers and the Spooling Subsystem

In this configuration, new jobs without explicit priorities will be assigned priority 1,
but only jobs with a priority of 4 or more will be printed. As with lpadmin, lpfence
can only be executed when lpsched is not running.

When a user initiates a print request with the lp command, he can specify a priority
level using the -p option. At the moment, there is no way to limit the priority level
that an individual user can specify, so any priority system you implement can be cir-
cumvented by a knowledgeable user.

Priorities under Solaris. Solaris provides the lpusers command to set the system-wide
default printing priority level and to specify priority limits on a user-by-user basis.

The -d option is used to set the system default priority: the priority level a request
will be assigned when no explicit priority is set on the lp command. For example, the
following command sets the system default priority to 15:

lpusers -d15

The priority of an individual print request may be specified with the -q option to lp:

$ lp -dlaser -q25 long_file

This user has lowered the priority of this print request by setting the priority level to
25. Similarly, the following command queues a print request at higher than normal
priority (by specifying a lower priority level):

$ lp -dlaser -q10 imp_file

The system administrator can set limits on how much a user can lower the priority
level for his requests. These limits, in combination with the system default printing
priority, can effectively set different printing priorities for different classes of users.

The -q option to the lpusers command specifies priority level limits. The -u option
specifies one or more users to whom the specified limit applies. If no users are speci-
fied, -q sets the default priority limit; this limit is for users who do not have a spe-
cific value assigned. If -u is used without -q (i.e., no priority is specified), the limits
for the specified users are reset to the system default priority limit. Here are some
examples:

lpusers -d15 System default priority level.
lpusers -q10 System default priority limit.
lpusers -q5 -uchavez,wang Users chavez and wang' limit is 5.
lpusers -q0 -uharvey User harvey's limit is 0.
lpusers -ustein User stein's limit is 10.

First, the system default priority level and limit are set to 15 and 10, respectively. For
this system, unprioritized jobs are given a priority level of 15, and in general, users
may increase their priority by specifying a priority level as low as 10. However, the
users chavez and wang may specify a level as low as 5, and user harvey may specify
one as low as 0, effectively granting him almost immediate access to a printer if
desired. Finally, the priority limit for user stein is set to the system default of 10.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 839

The system administrator may change the priority of a pending print request using lp
-q in conjunction with the -i option, which specifies a request ID. For example, the
following command lowers the priority setting to 2 for print job PS-313:

lp -iPS-313 -q2

This option may be used to rearrange jobs within a print queue.

The -H option to lp allows a fast method to move a job to the head of a queue. By
specifying the immediate keyword as its argument, the specified job advances at once
to the top of the queue:

lp -iPS-314 -Himmediate

Two successive jobs sent to the top of the queue in this manner will print in reverse
chronological order: the job sent most recently will print first.

If you want a job to start printing immediately, without even waiting for the current
job to finish, the current job may be suspended with the hold keyword. For example,
the following commands start up request PS-314 as soon as possible:

lp -iPS-314 -Himmediate
lp -iPS-209 -Hhold

Many printers, especially PostScript printers, can sometimes retain a printing state
across jobs. How killing a job in this way will affect them is indeterminate. It’s usu-
ally better to let the printing job finish.

If you do suspend a printing job, you can restart it later by specifying the resume key-
word to lp -H:

lp -iPS-209 -Hresume

Printer interface programs

We conclude this subsection with a brief look at printer interface programs. These
programs may range from very simple to quite complex. By convention, an interface
script takes the following arguments:

program-name request-ID username job-title #copies printer-options file(s)
$0 $1 $2 $3 $4 $5 $6

Here is a simple interface program:*

#!/bin/sh

job=$1; user=$2; title=$3; copies=$4; do_banner=$5
printer=`basename $0`

* Actually, the simplest possible interface program is:
#!/bin/sh
cat $6 2>&1

It ignores most of its arguments and can print only one file at a time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

840 | Chapter 13: Printers and the Spooling Subsystem

star="**"

Construct the banner page unless suppressed
if ["$do_banner" != "no"]; then
 echo "\004\c"
 echo "\n\n\n$star"
 banner $title
 echo "\n\n\nUser: $user"
 echo "Job: $job"
 echo "Printer: $printer"
 echo "Date: `date`"
 echo "\004\c"
fi

Print the files
shift;shift;shift;shift;shift Discard all arguments except the file list.
files="$*"
while [$copies -gt 0]; do
 for file in $files
 do
 cat "$file" 2>&1
 echo "\004\c"
 done
 copies=`expr $copies - 1`
done

When this program is invoked, standard output from the script will go to the printer.
This script first prints a banner page (unless the user didn’t want one), using the
print job’s title and including other data including the username, printer name, and
date. It then sends the appropriate number of copies of each file to the printer, plac-
ing a form feed after each one.

If there is no interface program for your printer, you can try writing one yourself.
The simplest way to do so is to use one of the existing programs as a starting point.

Remote Printing
Remote printing is far less standard under the System V spooling system than for the
LPD spooling system. Thus, we will consider each system separately.

HP-UX remote printing

HP-UX supports outgoing printing to other HP-UX systems and to remote LPD-
based systems by providing the rmodel printer model, which can be specified in a nor-
mal lpadmin command to create a print queue. Here is a sample command, which cre-
ates a local queue named hamlas (-p) for printing on the printer named laser (-orp)
located on host hamlet (-orm):

lpadmin -phamlas -v/dev/null -mrmodel -ob3 -ormhamlet -orplaser

The -ob3 option enables support for BSD-style print request numbering. Note also
that the printer device is specified as /dev/null (-v).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 841

HP-UX will also accept incoming print jobs from other HP-UX systems and LPD-
based systems. It provides the rlpdaemon server for this purpose, generally controlled
by inetd (see “Network Security” in Chapter 7) via a configuration entry like this one:

printer stream tcp nowait root /usr/sbin/rlpdaemon rlpdaemon -i

The -i option tells rlpdaemon to exit after processing the request that invoked it, and
it should only be used when the server is controlled by inetd. Don’t forget to tell
inetd to reread its configuration file after activating this line. In addition, the corre-
sponding service must be defined in /etc/services:

printer 515/tcp spooler # remote print spooling

If a system will be receiving more than an occasional remote print job, rlpdaemon
should be started at boot time instead (you can modify the lp boot script to accom-
plish this), and the /etc/inetd.conf entry should be commented out. You can also use
SAM to set up remote printing.

HP-UX also provides the HP Distributed Print Service (HPDPS) as part
of the Distributed Computing Environment (DCE). We will not con-
sider it here.

Solaris remote printing

The Solaris version of lpadmin includes a -s option, which can be used to define a
remote LPD-based printer. Its argument is the remote host and queue in the format:
host!queue. Here is an example:

lpadmin -pColor -shamlet\!dj200

This command adds a queue named Color, which sends jobs to the queue dj200 on
host hamlet. No model or device specification options are required in this case. Note
that the exclamation mark must be escaped to protect it from the shell.

If the name of the remote queue is the same as the one you are specifying for the
local queue, only the hostname need be given to -s:

lpadmin -pdj200 -shamlet

The Solaris version of lpadmin can also send print jobs directly to a remote printer
device (i.e., network attached) in raw mode (in which job data is not interpreted) by
using the netstandard model, as in this example:

lpadmin -php4k -v/dev/null -mnetstandard -o protocol=tcp \
 -o dest=engprt

A port number can be added to the remote hostname using a colon as the separator
character.

Solaris provides the in.lpd daemon for servicing incoming print requests from LPD-
based systems. It is controlled by inetd via the following configuration file entry:

printer stream tcp6 nowait root /usr/lib/print/in.lpd in.lpd

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

842 | Chapter 13: Printers and the Spooling Subsystem

You can comment/uncomment this entry to enable/disable this facility. The daemon
interfaces to the rest of the Solaris printing system as needed in order to fulfill incom-
ing print requests.

Adding a New Printer
Now that we’ve looked at all of the pieces, we’re ready to add a new printer to the
system. To add a new local printer to a System V system, you must:

• Physically connect the printer to the computer.

• For serial line printers, set the run level field for the port’s entry in /etc/inittab to
off.

• If this is the first printer on the system, make sure that there is a link from the init.
d/lp boot script to an S-file and a K-file file in the appropriate boot subdirectories.

• Shut down the printing service with lpshut. Then add the new printer to the sys-
tem with lpadmin.

• Add the printer to a device class, if appropriate.

• Restart the lpsched system. Then, start the printer and its queue; for example:
accept PS3; enable PS3
printer "PS3" now accepting requests
printer "PS3" now enabled

• Test the new printer by printing a small file. Troubleshooting hints are dis-
cussed in the final section of this chapter.

System V Spooling System Variations
As we’ve noted before, System V spooling system implementations vary quite a bit.
In this section, we will look at some additional operating system–specific characteris-
tics on our two operating systems.

Solaris: Additional configuration files

On Solaris systems, the lpadmin command maintains a printer configuration file, /etc/
printers.conf. This is an ordinary text file, but it is better not to edit it manually as it
is only a summary of printer configuration. Printer configurations may also be stored
in one of the available directory services (e.g., NIS, NIS+, LDAP, and so on).

There is also a user-specific configuration file feature. A user can create a file named
.printers in her home directory containing her desired default printer, desired
options for various printers, aliases for print commands, and the like. See the
printers manual page for details.

The lpset and lpget commands are also provided for maintaining both of these
printer configuration databases.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 843

Solaris: Controlling printer access

Solaris provides the -u option to lpadmin for managing user access to printers and
classes. By default, all users are allowed to use any destination. With the -u option,
the system administrator can specify who can use each destination by defining an
allow list or a deny list.

For any destination, if the allow list exists, only users whose usernames appear in it
will be allowed access to it. If there is a deny list, those users appearing on the list
will be denied access to the printer. An allow list precludes the existence of a deny
list. Allow and deny lists do not affect root or the special user lp.

Usernames are specified in the form:

host!username

where host is a hostname and username indicates a user on that host. Either part is
optional. Either part may also be replaced by the keyword all, which acts as a wild-
card for that component. A missing host corresponds to the local system. Here are
some examples:

!chavez User chavez on the local system.
hamlet!chavez User chavez on hamlet.
chavez User chavez on any system.
hamlet!all All users from hamlet.
!all All local users.

For example, the following command allows only users on hamlet and duncan to use
destination PS1:

lpadmin -pPS1 -uallow:duncan\!all,hamlet\!all

The following command prevents user harvey on the local system and user wang on
any system from using destination laser:

lpadmin -plaser -udeny:\!harvey,wang

You can remove a user from an allow list by using a deny list and vice versa. For
example, this command removes user wang from the list of denied users for laser:

lpadmin -plaser -uallow:wang

Now suppose we want to remove user duncan!idaho from the allow list on PS1 that
we set up earlier. If we execute this command:

lpadmin -pPS1 -udeny:duncan\!idaho

the result will be removing the duncan!all entry from the allow list (this makes sense
if you think about it).

Finally, be aware that consecutive additions to the allow list or deny list are additive:
the lists keep getting bigger rather than being replaced. If you need to start over in
constructing either list, use the -uallow:all option to clear all current entries.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

844 | Chapter 13: Printers and the Spooling Subsystem

Solaris: Forms and filters

Solaris extends the lpadmin command in many ways. Here are some of the most use-
ful additional options:

-Dstring
Create a description of the printer for use in status displays.

-Itype
Define the types of jobs the printer can handle.

-fname
Specify allowed forms for a printer or class.

-oname=value
Specify additional printer characteristics.

The first option is self-explanatory, and it is extremely useful at sites where there are
a lot of printers. The remaining options serve to define the variations that are possi-
ble for a single printer (or destination class). For example, the -f option is used to
specify forms that are allowed or not allowed on a destination device. Forms are
alternate print media supported by the same device, for example, different sizes of
paper, labels, or printed forms such as invoices or checks. Forms are defined via the
lpforms command and are stored in /etc/lp/forms.

The -I option is used to define the types of files that can be printed at the destina-
tion. -I is designed to enable fully automated printing. Ideally, once all destinations
are configured with -I, the print service will have the ability to figure out where to
print a request based upon the file’s characteristics—known as its content type—
without the user having to specify a destination at all (the user can specify the file’s
content type with the -T option to lp). Programs known as filters are provided to
convert different content types; the lpfilter command installs and manages these
filter programs (which are stored in /etc/lp/fd). See the lp, lpfilter, and lpadmin
manual pages for details on content types and filters in the Solaris spooling system.

Here is an example illustrating some of these options:

lpadmin -p exp2 -v /dev/term/b -c exper \
-I "simple,fortran,pcl,postscript" \
-f "allow:plain,invoice,labels,secret" -o width=14i \
-D "WhizBang Model 2883/XX2 Printer"

This command defines a printer, attached via /dev/term/b, named exp2, and
described as a “WhizBang Model 2883/XX2 Printer”. It is part of the class exper. The
printer can handle plain ASCII files, text files with Fortran carriage control informa-
tion, and PCL and PostScript output. The allowed forms on this device are invoice,
plain, labels, and secret. The -o option specifies that the printer has a width of 14
inches. Note that we’ve added a space between options and their argument for read-
ability (since Solaris allows it).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 845

HP-UX: Altering pending print jobs

We introduced the lpalt command earlier in this section in the context of changing
the priority of a pending job (via its -p option). The command can also be used to
change other aspects of pending jobs. These are its most useful options:

-nn
Change the number of copies to be printed to n. This can be useful for prevent-
ing printer abuse before it happens.

-ttitle
Change the job title.

-dqueue
Move the job to new queue. A new request ID will be generated. This option has
an advantage over lpmove in that the scheduler can remain running in this case.

-oname=val
Change other job option (specified with lp -o).

The following command illustrates some of these options:

lpalt -n1 -p7 -dPS6 laser-23
request id is PS6-78 (1 file)

This command moves the specified job to the queue PS6, setting the number of cop-
ies to 1 and its in-queue priority to 7. The job is assigned a new request ID when it
enters the new queue.

HP-UX: Analyzing printer usage

HP-UX also provides a utility for analyzing spooling subsystem usage data: lpana. In
order for data to be collected, lpsched must be run with the -a option. You will need
to modify /sbin/init.d/lp if you want this to be the default mode. The lpana command
supports a -d option to specify the printer or class in which you are interested (other-
wise, all destinations are included).

Here is an example of the report produced by this utility:

lpana
performance analysis is done from Aug.18 '01 10:00 through Aug.18 '01 11:03
---printers ----wait---- ---print--- ---bytes--- -sum- num_of
 /classes-- AV SD AV SD AV SD KB requests
PS1 2'11 111 0'19 13 9029 4387 150 17
test 0'13 1 0'44 22 41462 154801 2875 71

This report provides data for two printers, PS1 and test, for a one-hour period on
August 18, 2001. The data about total printer traffic is at the extreme right of the
report, in the last two columns. The final column lists the number of jobs handled
during the report period, and the penultimate column gives their collective size in
kilobytes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

846 | Chapter 13: Printers and the Spooling Subsystem

Columns two through four list the average wait time, print time, and size in bytes for
each printer, as well as the standard deviation of each figure. Times are given in the
format: minutes'seconds. From this report, we can see that the printer test not only
printed far more jobs than PS1, and although the jobs were larger on average (almost
five times as large), they printed much more quickly (in about 44 seconds, on aver-
age). Jobs queued to test also waited much less time before printing than did ones to
PS1.

Graphical administration tools

Both HP-UX and Solaris provide graphical tools for administering the printing sub-
system. In both cases, the tools can be used both to manipulate print jobs and
queues and to configure printers. We will focus on the latter.

Under HP-UX, the SAM facility’s printing area is reached via Printers and Plotters ➝

LP Spooler from the main window. The resulting window is the uppermost one in
Figure 13-3.

Selecting Printers and Plotters brings up a list of configured print destinations
(shown in the middle window). The bottom window illustrates part of the process of
adding a new printer. Here we are adding a printer named color_dj. We have selected

Figure 13-3. Configuring printers with SAM

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V Printing | 847

the model from a pop-up list (by clicking on the Printer Model/Interface button), in
this case deskjet8550. We are also placing the printer into the class color.

On Solaris systems, the Print Manager module of the admintool facility can be simi-
larly used to configure a new print destination. It is illustrated in Figure 13-4.

The figure shows the main dialog used to configure a local printer. We have speci-
fied a name and description for this printer and selected its special file, model, sup-
ported content, and the desired error notification method via pop-up menus. Finally,
we have used the unlabeled field and the Add button at the bottom of the form to
construct the list of users who are allowed to use this printer. Thus, while this form
does not present every option which can be configured via lpadmin, it does make
basic configuration tasks quick and straightforward.

Figure 13-4. Configuring a printer with the Solaris Print Manager

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

848 | Chapter 13: Printers and the Spooling Subsystem

The AIX Spooling Facility
AIX offers a third approach to printing and spooling. It is based on AIX’s general
queueing system; printing is just one predefined way to use it. The queueing sys-
tem’s general operation is illustrated in Figure 13-5.

Jobs are submitted to a queue by users using the qprt or enq commands (or another
user command that calls them). A file printed using these commands is linked to the
spooling area by default, so if the file changes or is deleted before the job actually
prints, the output will be affected (the -c option may be used to copy the file to the
spooling area with either command). Print requests are stored in /var/spool/lpd/qdir,
and any spooled files are stored in /var/spool/qdaemon.

AIX also supports the BSD and System V user print commands for
ease-of-use purposes: lp, cancel, lpstat, lpr, lpq, and lprm.

The queues are monitored by the qdaemon daemon, which schedules and initiates
jobs. When it is time for a job to execute, qdaemon sends the corresponding file to the

Figure 13-5. The AIX queueing system

print queue rem print queue las print queue lptr

user submits print job

qdaemon

enq

qdaemon

user submits batch job

print queue bat

ksh

enq

qdaemon

rembak piobe

laser
printer

line
printer

rembak (on remote host)

“backend”
programs

Ethernet

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The AIX Spooling Facility | 849

queue’s backend program for processing. In the case of printing on the local system,
the program is /usr/lib/lpd/piobe, but in theory, any program may be used as a back-
end (this is discussed further later in this section). The output of the backend pro-
gram is then sent to a specified physical device in the case of local printing. It may
also be directed to a file.

SMIT provides an excellent interface to the queueing system, and it is usually the
easiest way to create and configure queues and their associated devices. In this sec-
tion, we will look at all of the components of the queuing system individually so that
you will understand how the system works, even if you choose to use SMIT to make
administering it easier. The SMIT fastpaths mkpq and chpq will take you directly to
the forms to create and modify queues and their associated printing devices.

Manipulating Print Jobs
The enq command is the main interface to the printing system. It can be used by
users to initiate print requests and by the system administrator to alter the status of
print jobs and queues. AIX also provides a series of more intuitively named utilities,
which are effectively aliases to subsets of enq’s functionality: qprt (print), qcan (can-
cel a job), qchk (check the status of a job or queue), qmov (move jobs from one queue
to another), qadm (administer the subsystem), and others. Their options work the
same as the corresponding enq options.

Job numbers

Each print job is assigned a unique job number within the queueing system, by
which it may be referred to in subsequent commands. Unfortunately, it is often not
displayed by default. However, the print submission commands enq -j, lpr -j, and
qprt -#j will all display the job number assigned to a print job at the time it is sub-
mitted. lp displays job numbers by default. Alternatively, the job number may be
determined via the qchk command (described in a bit).

The default print queue under AIX

On all AIX printing-related commands, the -P option is used to specify the desired
queue; if it is omitted, then the system default queue—the first one listed in /etc/
qconfig—will be used. Users can set their own default printer via the PRINTER or
LPDEST environment variables. Note that the latter always takes precedence over the
former, even when the BSD-compatible lpr command is used to submit the print job.

Displaying job and queue status information

The qchk command display status information about print jobs and queues. Its -q
option may be used to display the status of a specified queue. For example, the fol-
lowing command lists the status of the queue laser3:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

850 | Chapter 13: Printers and the Spooling Subsystem

$ qchk -q -P laser3
Queue Dev Status Job Files User PP % Blks Cp Rnk
------- ----- -------- --- ------ -------- --- -- ----- -- ---
laser3 dlas3 RUNNING 30 l213.f chavez 10 43 324 1 1
 QUEUED 31 hpppp harvey 41 1 2
 QUEUED 32 fpppp harvey 83 1 3
 QUEUED 33 x27j.c king 239 1 4

The columns in the report hold the queue name and device (which are not repeated
on subsequent lines), the job status, job number, file to be printed, submitting user,
pages printed so far, percentage of the job printed so far, job size in blocks, number
of copies requested, and rank within the queue for each job in the queue.

When a queue is down, the first line of the display will look like this:

laser3 dlas3 DOWN

Other useful options to qchk for listing queue contents are -A (replaces -q to list all
queues), -L (for a long listing format), and -u followed by a list of users to limit the
display to jobs submitted by those users. For systems with large numbers of print
jobs, where three-digit job numbers are not sufficient, add -W to the qchk command
to display the full job numbers.

Deleting print jobs

To delete a job in a print queue, use the qcan command:

qcan -x job-number

where job-number is the number of the job to be removed; since job numbers are
unique across the entire queueing system, the queue name isn’t needed. All jobs in a
queue may be deleted with the -X option:

qcan -P laser -X

When run as the administrator, this command removes all jobs from queue laser. If
the specified queue is used for remote printing (described later in this section), the
command will affect only jobs that haven’t yet been transferred to the remote system.

Moving jobs between queues

Pending print jobs may be moved between print queues using the qmov utility. Here
are some examples using qmov:

qmov -m laser -# 8
qmov -m laser -P inkjet
qmov -m laser -P inkjet -u chavez

The first qmov command moves job 8 from its present queue to the laser queue. The
second command moves all jobs currently in the inkjet queue to the laser queue. The
third command moves all of user chavez’s jobs in the queue inkjet to the queue laser.
qmov will not move a currently printing job, and you’ll get an error if there are no jobs
matching your specifications in the source queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The AIX Spooling Facility | 851

Suspending print jobs

The qhld command holds and releases jobs in print queues. For example, this com-
mand places print job 8 on hold:

qhld -# 8

This command places all jobs currently waiting in the queue laser on hold:

qhld -P laser

qhld’s -r option releases a previously held job:

qhld -r -# 8
qhld -r -P laser

The qprt -#h and enq -H commands may be used to submit a job to a queue in an
initial held status.

Print job priorities

Jobs are assigned priorities within the queue. Together with the queue discipline
parameter (described below), these priorities determine the order of printing. Priori-
ties range from 0 to 20 for ordinary users (the default is 15); users in the group
system may use priorities up to 30. Any user may alter the values for his own jobs;
the system level (21-30) is the only way for an administrator to guarantee that a job
she moves up will stay above the others. Higher-numbered jobs print sooner.

Users can assign a priority to a job when they submit it with qprt’s -R option. To
change the priority of a pending job, use the enq -R command:

enq -# job-number -R new-priority

For example, the following command changes the priority of job number 45 to 22:

enq -# 45 -R 22

Managing Queues and Devices
AIX makes a distinction between queues and devices and requires them to be config-
ured and managed as separate objects. Each queue has one or more associated
devices, which are the entities that map one-to-one with physical printers. Similarly, a
printing device can have more than one queue feeding it.

The following qadm options control individual device status:

-D dev
Designate a device as down; no more jobs will be sent to it, but current jobs will
finish.

-U dev
Bring a device back up.

-K dev
Same as -D, but current jobs are killed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

852 | Chapter 13: Printers and the Spooling Subsystem

If a queue has only one device associated with it, the queue name alone will suffice to
designate the device. If more than one device is controlled by the queue, you must
specify which one you want by appending its name to the queue name, using a colon
as separator. For example, the following command brings the lp0 device of the queue
laser down:

qadm -D laser:lp0

Jobs can still be sent to the queue even when its device(s) are down. An entire queue
may be disabled by changing its up attribute in /etc/qconfig to FALSE, a task that can
be accomplished with the chque command. For example, the following command
disables the queue laser:

chque -q laser -a "up = FALSE"

The spaces around the equal sign, the quotation marks, and the uppercase letters on
the keyword are all required.

When a queue has been disabled, its devices are automatically taken down; they will
need to be brought back up (with qadm -U) when the queue is reenabled.

Current AIX documentation still states that the queueing system
should be shut down before changes like disabling a queue are per-
formed, using these commands:

chgsys -s qdaemon -O Turn off autorestarting
enq -G Stop the queueing subsystem

However, these commands no longer seem to be effective under AIX 5,
and the qdaemon process is immediately restarted anyway. Neverthe-
less, it is only prudent to wait to make major configuration changes to
a print queue until current jobs have completed, pending jobs have
been deleted or moved, and the associated device(s) have been dis-
abled with qadm -D.

The qdaemon Server Process
The qdaemon server is managed by the System Resource Controller. It is started from
the inittab file via an entry like this one:

qdaemon:23456789:wait:/usr/bin/startsrc -sqdaemon

You can check its status with the following command:

lssrc -s qdaemon
Subsystem Group PID Status
qdaemon spooler 311412 active

Configuring Queues: The /etc/qconfig File
Queues are defined in the /etc/qconfig file. Each queue has one or more associated
devices, which are the entities that map one-to-one with physical printers. The linked

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The AIX Spooling Facility | 853

pair of a queue and a device is sometimes referred to as a virtual printer. We’ll begin
by looking at the structure of the queue configuration file and then go on to consider
the commands that are typically used to manipulate it.

The queue configuration file is an ordinary text file, but it should be
edited directly only with great caution and by administrators who are
intimately familiar with the entire qdaemon subsystem. Very minor set-
ting changes are usually safe to make, but adding new queues and
devices should be done with the commands provided or with SMIT, as
they create or modify entries in the ODM which are not easy to per-
form manually.

In general, a print queue definition has the following form:

queue-name:
 device = qdev1[,qdev2 . . .]

attribute = value
. . .

qdev1:
 backend = /usr/lpd/piobe

attribute = value

. . .
[qdev2:
 backend = /usr/lib/lpd/piobe

attribute = value
. . .]

Here are two sample print queue entries from /etc/qconfig:

lpt: A queue named lpt
 device = lp0
lp0: Its associated device
 file = /dev/lp0
 header = never
 trailer = never
 access = both
 backend = /usr/lib/lpd/piobe

laser: A queue named laser
 device = lp0,lp1 Queue laser's two devices
 acctfile = /var/adm/qacct
lp0:
 file = /dev/lp0 The first device, listed again
 header = always
 trailer = never
 access = both
 backend = /usr/lib/lpd/piobe
lp1: The second device
 file = /dev/lp1
 header = never
 trailer = never
 access = both
 backend = /usr/lib/lpd/piobe

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

854 | Chapter 13: Printers and the Spooling Subsystem

Each full definition has several parts. The first is the queue definition, beginning with
a header line consisting of the queue name followed by a colon. In the example, lpt
and laser are the two queue header lines. Next, indented with respect to the header,
are queue attribute definitions. The queue lpt has only one attribute defined: its
device, lp0. laser’s stanza specifies two devices, lp0 and lp1, and defines a file in
which to place accounting data.

The definitions for a queue’s device(s) must immediately follow the queue defini-
tion. Hence, lp0 is defined after lpt, and lp0 and lp1 are defined after laser. Although
both queues use device lp0, its definition must still be repeated in each queue defini-
tion. In fact, as in our example, the settings for the device may differ, and each set
will apply only to jobs printed on that device from the corresponding queue.

When a queue has multiple associated queue devices, it is used to feed jobs to all the
devices, which are assumed to be equivalent. When it is time for a job to be spooled,
qdaemon will send it to the first available device for its queue. When more than one
queue services the same device, as in the preceding example, then the spooler alter-
nates among them, regardless of the relative sizes, priorities and age of the jobs
within them (such characteristics are compared only among jobs in the same queue
to determine printing order, not across queues).

The most important queue and device attributes are listed in Table 13-5.

The easiest way to view the attributes of a queue or queue device is to view the queue
configuration file.

Table 13-5. Important AIX queue and device attributes

Attribute Meaning

Queue attributes

acctfile Accounting file pathname (the default is not to use any accounting file).

device List of associated device names.

discipline Job selection algorithm: fcfs for first come, first served or sjn for shortest job next (the default is fcfs).

up Set to TRUE or FALSE, depending on whether the queue is enabled or disabled.

Device attributes

access Available access to printer device: one of write (meaning only write access) or both (read-write
access). The latter is the default.

align Whether to send a form feed before starting a job if the printer is idle (default = TRUE).

backend Path to the backend program.

file Special file associated with the device as defined in the ODM (which is not the same as the raw port’s
special file).

header When a header page should be placed before a job. Valid keywords are: never (the default setting),
always, and group (print header only once for multifile print jobs).

trailer When a trailer page should be sent (same keywords and default value as for header).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The AIX Spooling Facility | 855

If you’d like all of the gory details about a printer, use the following command:

lsvirprt -q queue -d device | more

Creating and modifying print queues

SMIT provides the easiest method for creating and modifying print queues. Its use is
illustrated in Figure 13-6.

If you follow the stack of dialogs from the bottommost (at the top left) to topmost
(top right), you will see the successive prompts generated by SMIT to obtain the
information necessary to create a new printer device and queue(s) to feed it. Here we
add a new local printer, attached via a serial port (specifically, port 0 attached to the
sa0 adapter). The printer is an IBM 4076 inkjet printer, and we create a queue for
PostScript jobs named color_ps. Optionally, we could have created several different
queues for this printer, each designed to handle a different type of print job. The
final dialog also allows you to configure various serial line settings.

AIX provides several commands that may be used to create and configure printer
devices and queues in a similar manner. For example, the following command may
be used to create a queue and device similar to what we just accomplished with
SMIT (in this case, we add a generic type printer):

/usr/lib/lpd/pio/etc/piomkpq \
 -A local \ A local printer

-p generic \ Generic printer type
-v osp \ ODM data type (list with lsdev -P -c printer)
-s rs232 -r sa0 -w 0 \ Uses the specified serial adapter and port
-D asc -q text1 \ A queue for ASCII data
-D ps -q ps1 Another queue for PostScript data

Figure 13-6. Creating a print queue with SMIT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

856 | Chapter 13: Printers and the Spooling Subsystem

Printer type definitions are stored in /usr/lib/lpd/pio/predef. The entire collection
might not be included in the operating system installation and often must be
installed manually later.

Here is the command for adding a similar printer attached to a parallel port:

/usr/lib/lpd/pio/etc/piomkpq -A local -p generic -v osp \
 -s parallel -r ppa0 -w 0 Parallel port information

-D asc -q text2

The following command adds an additional, previously defined device to an existing
queue:

/usr/lib/lpd/pio/etc/piomkpq -A local -p generic \
-d lp2 -D asc -Q text0 Both the device and the queue already exist.

The device options are replaced by -d, and the queue is specified with -Q rather than
-q.

The chque and chquedev commands may be used to change the attributes of queues
and devices, respectively, as in these examples:

chque -q laser -a "discipline = sjn"
chquedev -q laser -d lp0 -a "header = never"

The first command changes the discipline attribute for queue laser to sjn (shortest job
next). The spaces around the equal sign are required. The second command changes
the header attribute for the laser queue’s device lp0 to the value never. Be aware that
this change will affect the printer on that device only when it is accessed from queue
laser.

The rmquedev and rmque commands may be used to remove devices and queues
(respectively):

rmquedev -q tek -d lp2
rmque -q tek

These commands remove the device for the queue tek and then the queue itself
(queues can be deleted with rmque only after all their devices are gone). However, the
device lp2 is still defined in the ODM. If you should ever need to remove it, you can
verify its existence and then remove it with these commands:

lsdev -C -l lp2
lp2 Available 01-S3-00-00 Other serial printer
rmdev -l lp2 -d

These commands should be used with caution and only when no queue is referenc-
ing device lp2.

If you use SMIT to remove a queue and its device(s), the ODM objects
are removed as well.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The AIX Spooling Facility | 857

Remote Printing
The following queue form in /etc/qconfig is used to define a queue for a printer on
another host:

rem0:
device = @laertes
host = laertes
up = TRUE
s_statfilter = /usr/lib/lpd/aixshort
l_statfilter = /usr/lib/lpd/aixlong
rq = laser
@laertes:
backend = /usr/lib/lpd/rembak

The rem0 queue will send remote print jobs to the queue laser on the system laertes.
The backend program for remote printing is /usr/lib/lpd/rembak. If the remote sys-
tem is a BSD system, the filters /usr/lib/lpd/bsdshort and /usr/lib/lpd/bsdlong should be
substituted for the AIX filters in the queue definition, and the filters /usr/lpd/
att{short,long} are used for System V systems supporting remote printing (i.e., serv-
ing as print servers).

For incoming LPD-based print jobs, AIX runs the BSD lpd daemon and uses the nor-
mal /etc/hosts.lpd (or /etc/hosts.equiv) file to allow remote BSD systems to send print
jobs to its queues, as described previously in the BSD section of this chapter. How-
ever, you may need to start the lpd daemon manually:

startsrc -s lpd

Incoming jobs also require the writesrv service to be running. It is usually started
from /etc/inittab, but you can verify that it is running with lssrc.

Adding a New Printer
To add a printer to the queueing system, these steps must be taken:

• Physically connect the device to the system.

• Make a device and queue for that printer. I find it’s easiest to use SMIT for this
step. Enter the command smit mkpq to perform this process. Choose the correct
printer type from the list; then specify the controller and line to which the
printer is attached.

• Test the printer. Printer troubleshooting tips are discussed later in this chapter.

Using the Queueing System as a Batch Service
The printing system represents but one use of the AIX queueing system. Since poten-
tially any program may be used as a queue backend program, many other uses are
possible, such as a simple batch system. Here is a sample configuration:

batch:
 device = batdev

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

858 | Chapter 13: Printers and the Spooling Subsystem

 discipline = fcfs
batdev:
backend = /bin/csh

With a shell specified as the backend program, users may submit shell scripts to the
queue. The qdaemon will manage this queue, sending one script at a time to be pro-
cessed by the shell. Shell scripts could be used to run any desired program. For
example, the following script could be used to run a program bigmodel:

#!/bin/csh
ln -s ~chavez/output/bm.scr fort.8
ln -s ~chavez/output/bm.out fort.6
bigmodel <<END &> ~chavez/output/bm.log
140000
C6H6N6
Na
Hg
END

This file illustrates several important features about running programs from shell
scripts (in this case, a Fortran program):

• The symbolic links set up at the beginning of the file are used to associate For-
tran unit number and files. By default, I/O to unit n uses a file named fort.n.
Symbolic links allow a user to specify any desired paths.

• The form <<END is used to place standard input for a command or program
within the shell script. All subsequent lines prior to one containing just the string
specified after the << are interpreted as input to the command or program.

• The queueing system has no provision for saving job output, so the script must
handle this itself.

Once set up, the enq command may be used as an interface to such a batch queue,
allowing users to submit jobs to the queue and the administrator to delete them,
alter their priority, and manage the status of the batch queue in the same manner as
for print queues.

Troubleshooting Printers
This section contains strategies and suggestions for approaching various printing
problems.

The first step is to narrow down the problem as precisely as possible. Which printers
are affected? Are all users affected or just the one with the problem? Once you’ve
determined where the problem is, you can set about dealing with it.

If you’ve installed a printer but nothing prints on it, check the following items:

• Make sure you’re using the right kind of cable. Check the printer’s documenta-
tion for the manufacturer’s recommendations.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Troubleshooting Printers | 859

• Make sure the connections are good and that you’ve specified the right port in
the configuration file or commands. If you’re using a serial line, make sure the
line has been deactivated in /etc/ttytab, /etc/ttys, or /etc/inittab. Signal init to
reread its configuration file. Kill the getty process watching that line, if neces-
sary.

• Verify that its queue is set up correctly. Send a file to it and then make sure
something appears in the spool directory (use the -c option on the printing com-
mand under System V and AIX). If it doesn’t, the protection on the spooling
directories or files may be wrong. In particular, root may own something it
shouldn’t.

On System V systems, the spool directories located under /var/spool/lp/request
are usually owned by the user lp and are protected 755 (write access only for the
owner) or sometimes 770. The files in the spool directories are owned by group
and user lp and are protected 440.

Under BSD, the spool directories are traditionally owned by user daemon or lp
and group lp and also protected 755 (or more stringently).

Under AIX, pending requests are stored in /var/spool/lpd/qdir, owned by user
root and group printq and protected 660, and spooled files are stored in /var/
spool/qdaemon, owned by user bin and group printq, and protected 660.

• Removing and recreating the queue will sometimes fix things. This works when
the queue configuration looks okay but is actually messed up by an invisible
control character or another junk character somewhere. It also works when you
remember something you forgot the first time when you recreate the queue.

• When all else fails, check the log files. Error messages can appear in several
places: the general syslog error log, the syslog lpr facility error log, and the
queue’s own log file (when supported). Of course, if any of these are not defined,
error messages sent there will be lost.

If a printer suddenly stops working and its configuration hasn’t changed, try the
following:

• Is the daemon still running? If not, restart it. If it is, it may still be worth stop-
ping and restarting it if no other jobs are printing:

kill -9 pid-of-lpd-process BSD
/usr/lib/lpd

lpshut System V
/etc/init.d/lp start

enq -G AIX

• Has someone spooled a huge job? A very large bitmap may take over half an
hour to print on some slow PostScript printers. PostScript printers can also take
a very long time to print any complex graphics. If the Processing light is flash-
ing, things are probably still OK; when a job finally overwhelms the printer, the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

860 | Chapter 13: Printers and the Spooling Subsystem

printer usually prints an error page rather than just getting hung. Of course, your
patience and that of other waiting users may run out well before then.

• Aborting the current job may clear up the problem (the colloquial term for such
a job is wedged).

• Power-cycling the device will clear most device hang-ups, although you will
often lose the job that was printing at the time.

For problems with remote printing, try the following:

• Determine whether the printer is working locally.

• You can test remote job connectivity by creating a queue to a file and seeing if it
is spooled properly. In this way, you can determine if the problem is network
communications generally or something specifically related to the device. For
example, network delays can cause a queue or printer to time out.

• If the preceding test fails, try connecting to the remote server’s port 515 with
telnet. You should get a connection. You may then get an error message about
an improper “from address.” The latter is from the lpd process and is not signifi-
cant.

Network printers also generally support telnet for configuration purposes. Try
connecting to the printer with telnet (no port number needed). You can then
verify that the printer is accessible and also check its various settings for miscon-
figuration.

• Check the log file for further information. Note that you may need to check the
various log file locations on both the remote and local host, because the relevant
information can appear in any one of them depending on the particular problem.

Sharing Printers with Windows Systems
In this section, we’ll consider printing to and from Windows systems.

Printing to a Windows Printer from a Unix System
Like most System V–based Unix operating systems, Windows NT and Windows
2000 systems provide an LPD service to handle incoming remote print jobs from
non-Windows systems. The queues on the client Unix systems can be set up as nor-
mal for outgoing printing to a remote LPD server (as discussed earlier in this chap-
ter). On the Windows server, you will need to do the following:

• Install the LPD printing support software, if necessary. This is part of the Win-
dows TCP/IP implementation, but it is not selected by default at initial operat-
ing system installation. Under Windows NT 4, you can do this via the Services
tab of the Network Properties dialog.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Printers with Windows Systems | 861

Under Windows 2000, start the Add/Remove Programs control panel applet,
click Add/Remove Windows Components, and then select Other Network File
and Print Services. Click the Details button, and then choose Print Services for
Unix.

• Start the LPD service. Under Windows NT 4, execute the net start lpdsvc com-
mand to start the incoming print job server. You may want to add this com-
mand to the AutoExNT.Bat file if you have installed that facility.

Under Windows 2000, navigate to the Services and Applications ➝ Services
object in the Computer Management application. Then select the TCP/IP Print
Server entry and change the start up method to Automatic (as illustrated in
Figure 13-7).

Accepting Incoming Windows Print Jobs via Samba
The Samba facility can be used to make Unix printers visible to Windows clients as
normal shared printers (for Samba basics, see “Sharing Filesystems” in Chapter 10).

Sharing a printer can be accomplished in two ways: by creating a share entry for a
specific printer or by sharing all of the printers within a printcap file. Here is a Samba

Figure 13-7. Modifying the Windows 2000 LPD service

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

862 | Chapter 13: Printers and the Spooling Subsystem

configuration file entry corresponding to the first approach. It creates a share named
laser4:

[laser4]
 printable = yes Entry is a printer.
 comment = LW on dalton Browse description.
 public = yes
 postscript = yes Jobs will send PostScript files.
 printer name = laz4 Local printer queue name.
 printer driver = Windows-name Official Windows designation

The final field specifies the driver to be used on the Windows system when printing
to this printer. It must be set to the string that appears in the Add Printer Wizard’s
printer selection dialog’s Printers list, in other words, the descriptive name by which
Microsoft refers to it (e.g., “Apple LaserWriter II NTX-J v50.5”). This field does not
hold the path to the driver file.

If you want to store the printer driver files locally (rather than requiring them to be
on the Windows system), you can use the printer driver location setting as well and
set up a local share to hold them. This technique is discussed in detail in the Network
Printing book cited earlier.

Here are some sample entries that illustrate the second approach to sharing printers
with Samba:

[global] Add these to the global section.
 load printers = yes Share all printers in the printcap file.
 printcap name = /usr/local/samba/lib/printcap
 printing = bsd|sysv|aix|hpux|lprng Specify local print spooler type.

[printers] One entry for all printers.
 comment = Exported printers
 path = /var/spool/smb-print
 printable = yes
 guest ok = yes
 guest account = samba
 auto services = david monet Browseable printers.

This approach requires specifying several settings with the global section of the
Samba configuration file. In this example, they direct the Samba system to create
shares for all of the printers listed in the designated printcap file and also specify the
spooling system in use on the local system.

The printers entry completes the process of sharing printers. Our example specifies a
path used for scratch space and a list of printers to appear in browse lists.

Two observations are worth making at this point:

• You must define printers for export within a printcap-style file even if the local
spooling system is not LPD-based.

• Be aware that the auto services entry merely adds printer names to the browse
list. Any printer defined in the specified printcap file will be available to users

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sharing Printers with Windows Systems | 863

that know its name. Use a separate printcap file (as above) to make only a sub-
set of the system’s printers available via Samba.

Creating queues for the Samba printers under Windows

On the Windows system, you must create a queue for such remote printers, using
the Add Printer wizard as usual. Specify the printer type as local (not remote), and
then create an LPR port for it (if one doesn’t already exist); select New Port, provide
a port name, and then choose the LPR port type (illustrated in Figure 13-8). Then
enter the name of the remote system and printer into the resulting dialog, and go on
to complete the remainder of the Add Printer process as normal.

On Windows NT 4 systems, there can be occasional problems where PostScript or
PCL files are printed as text rather than having their instructions interpreted by the
printers as a program to be run. This happens because the job has somehow been
marked as text data rather than as raw data.

You can configure the printer to treat all jobs as raw data by accessing its Properties
and then choosing the Advanced tab and then the Print Processor button. In the
resulting dialog, choose the RAW setting (illustrated in Figure 13-9).

You can make this setting apply to the print spooler as a whole by setting the HKEY_
LOCAL_MACHINE\System\CurrentControlSet\Services\LPDSVC\Parameters\Sim-
ulatePassThrough registry key to 1.

Figure 13-8. Creating an LPR port under Windows 2000

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

864 | Chapter 13: Printers and the Spooling Subsystem

LPRng
The LPRng package is an enhanced version of the BSD LPD print spooling system. It
was initially developed in the early 1990s by Patrick Powell, first as a rewrite of the
LPD spooler that was free of the licensing problems of the original code. Very
quickly, however, it began to develop beyond the original LPD capabilities, and it is
now a feature-rich version of the original. LPRng is available for virtually any Unix
system. The home page for the project is http://www.lprng.com.

Using LPRng does require knowledge of the standard BSD printing
subsystem, so you’ll need to become familiar with it if your previous
experience is mostly with the System V and/or AIX version.

LPRng provides the usual BSD-style user commands: lpr, lpq, and lprm. In addition,
it provides versions of lp, lpstat, and cancel for compatibility. It uses the conven-
tional top-level spool directory, /var/spool/lpd.

The LPRng version of lpr is quite a bit smarter than the standard version. It is capa-
ble of submitting print jobs directly to a remote system, so there is no longer any
need to run the lpd daemon on hosts that are not also print servers themselves (elimi-
nating its modest system load).

Here is an lpr example, which spools a print job directly to the matisse queue on sys-
tem painters:

$ lpr -Pmatisse@painters files

Another nice feature of LPRng is that lpd may optionally be run as the daemon user
rather than root.

Figure 13-9. Forcing a printer into raw mode operation

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LPRng | 865

Installing LPRng is straightforward and well documented in both the LPRng-HOWTO
document and in the Network Printing book mentioned earlier, so I’ll simply outline
the steps here:

• Disable all queues, wait for any current jobs to finish, and stop the current print
daemon.

• Back up all current print subsystem components: configuration files, command
binaries, and so on.

• Rename or remove the old printing items.

• Install the LPRng package (building the software from source code in most
cases). If you want to run a less privileged lpd server, uncomment the --disable-
setuid setting in the configure.custom script and run that rather than the usual
configure script.

• Modify system startup scripts to support LPRng.

• Configure printers and queues within the new printing subsystem.

• Verify the new configuration with the package’s checkpc -f command, which
verifies printcap file entries, creates any needed spool directories, log files,
accounting files, and the like.

• Start the spool daemon, and test everything thoroughly.

• Give users access to the print queues.

The LPRng package provides scripts for some operating systems, which can accom-
plish some of these tasks. They have names of the form preremove.*.sh (to shut down
the printing subsystem before removing it), preinstall.*.sh (remove old printing sys-
tem components), postremove.*.sh (performs actions needed after the old printing
system is removed), and postinstall.*.sh (runs after the LPRng software is built and
installed; sets up initial configuration files, spooling directories and the like). The
middle component of each script name is the operating system name: e.g., solaris,
linux, etc. Check the LPRng package directory and the documentation for the scripts
applicable to your systems.

Enhancements to the lpc Command
The LPRng version of lpc provides many new subcommands. The most important
are summarized in Table 13-6.

Table 13-6. LPRng enhancements to the lpc command

Subcommand Purpose

hold queue [ids] Places the specified job or all jobs in the queue into a hold state, preventing them
from printing.

release queue [ids] Allow the specified held print job(s) to print.

holdall queue Place all new jobs entering the queue into the held state. Use noholdall to termi-
nate this behavior (held jobs will still need to be explicitly released).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

866 | Chapter 13: Printers and the Spooling Subsystem

In most cases, you can substitute the keyword all for a queue name in these lpc sub-
commands to apply the command to all print queues.

Print classes and job priorities

LPRng implements a very simple print job priority scheme. It is combined with its
support for print job classes: print jobs have a shared set of characteristics that
require specific special handling and/or printer capabilities. The most common use
for classes is for jobs requiring special paper.

A user can place a job into a specific class when submitting it using the -C option:

$ lpr -Ccheck -Plaser2 January

This job is placed into the class check on printer laser2.

The uppercased first letter of the class name is also used as the in-queue priority for
the job. Priorities levels run from A (high) to Z. Thus, the preceding job would be
assigned a priority level of C. The default value for jobs not specifying a specific class
is class and priority level A.

By default, a print queue allows jobs of any class to print, printing them in accord
with the priority scheme. To limit printing to a specific class, use an lpc command
like this one:

lpc class laser check

This will allow only jobs in class check to print; all others will be held. To allow any
job to print, use this command:

lpc class laser off

Using classes can be a bit tricky. For example, if you alternate between printing
checks and regular output on a printer, you probably don’t want to turn off class

move old-queue ids new-
queue

Transfer the specified print jobs between queues.

redirect old-queue new-
queue

Redirect jobs spooled to the old queue to the new queue. Specify off for the latter to
turn off redirection.

redo queue [id] Reprint the specified job.

kill queue Equivalent to abort plus start: kill the current job, and then restart the queue.

active printer[@host] Determine whether the specified spool daemon is active or not.

reread printer[@host] Forces the specified spool daemon to reread its configuration files.

class queue class-list Limit printing from the specified queue to jobs in the specified class(es), where class
is usually a comma-separated list of one or more class letters (see below). The key-
word off removes any current class restrictions in effect.a

a This parameter may also be used for pattern matching against print job characteristics (see the lpc manual page for details).

Table 13-6. LPRng enhancements to the lpc command (continued)

Subcommand Purpose

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LPRng | 867

check after all the checks are printed. Rather, you want check jobs to be held until
the proper paper is again in place in the printer. In this case, the following command
will be more effective:

lpc class laser A

This sets the allowed class to class A (the default), so jobs spooled in class check will
be held as desired.

Configuring LPRng
LPRng uses three configuration files (stored in /etc): printcap, lpd.conf, and lpd.perms,
which hold queue configuration, global spooler configuration and printer access
rules, respectively. The first of these is a modified version of the standard LPD print-
cap file. It uses a relaxed syntax: all fields use an equal sign to assign values rather
than having datatype-specific assignment characters (although the form name@ is
still used to turn off Boolean flags), multiple line entries do not require final back-
slash characters, and no terminal colon is needed to designate field boundaries.

Here are two simple entries from printcap:

hp: Example local printer.
 :lp=/dev/lp0
 :cm=HP Laser Jet printer Description for lpq command.
 :lf=/var/log/lpd.log
 :af=/var/adm/pacct
 :filter=/usr/local/lib/filters/ifhp
 :tc=.common Include the .common section.

laser: Example remote printer.
 :lp=painters@matisse
 :tc=.common Include the .common section.

.common: Named group of items.
 :sd=/var/spool/lpd/%P
 :mx=0

The first entry is for a local printer named hp on the first parallel port. This printcap
entry specifies a description for the printer, the name of its log and accounting files,
and a filter with which to process jobs. The final field, tc, provides an “include” fea-
ture within printcap entries. It takes a list of names as its argument. In this case, the
field says to include the settings in the printcap entry called .common within the cur-
rent entry. Thus, it has the effect of removing any length limits on print jobs to
printer hp and of specifying its spool directory as /var/spool/lpd/hp.

The second printcap entry creates a queue for a remote printer, matisse on host
painters, which also has no job length limits and uses the spool directory /var/spool/
lpd/laser. The last two items are again set using the tc include field.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

868 | Chapter 13: Printers and the Spooling Subsystem

The LPRng printcap file allows for variable expansion within printcap entries. We
saw an example of this in the sd field in the preceding example. The following vari-
ables are supported:

%P Printer name

%Q Queue name

%h Simple hostname

%H Fully-qualified hostname

%R Remote print queue name

%M Remote computer hostname

%D Current date

We will now go on to consider additional LPRng features and the printcap settings
that support them.

Separate client and server entries

By default, printcap entries apply both to spooling system clients—user programs
like lpr—and servers—the lpd daemon. However, you can specify that an entry
apply only to one of these contexts, as in these example entries:

laser:server Entry applies to the lpd daemon.
 :lp=/dev/lp0

laser: Entry applies to client programs.
 :lp=matisse@painters

The first entry defines the printer laser as the device on the first parallel port. The
server field indicates that the entry is active only when lpd is using the printcap file
(and not when it is accessed by programs like lpr). The second entry defines the
printer laser for client programs as a remote printer (matisse on painters). Clients will
be able to send jobs directly to this remote printer.

In this next example, clients are required to use the local print daemon in order to
print to the printer laser2:

laser2:force_localhost Force clients to use the local server.
laser2:server
 :lp=/dev/lp0
 :sd=/var/spool/lpd/%P

The force_localhost setting (a Boolean, which is off by default) tells clients accessing
this printcap entry to funnel jobs through the local lpd server process.

Using a common printcap file for many hosts

One of LPRng’s most powerful capabilities is the built-in features for constructing a
single central printcap file which can be copied to or shared among many hosts. This
flexibility comes from the on setting (for “on host”). Here is an example:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LPRng | 869

laser:
 :oh=*.ahania.com,!astarte.ahania.com
 :lp=/dev/lp0

This entry defines a printer named laser on every host in the domain ahania.com
except astarte. The printer will always be located on the first parallel port.

The following entry will define a printer named color on every host in the 10.0.0 sub-
net. For most hosts, the printer points to the color queue on 10.0.0.4, while for 10.0.
0.4 itself, it points to the device on the first parallel port.

color:
 :oh=10.0.0.0/24,!10.0.0.4 Host specification by IP address.
 :lp=%P@10.0.0.4
 :tc=.common

color:
 :oh=10.0.0.4
 :lp=/dev/lp0
 ...

The %P construct in the first entry’s lp setting is not really necessary here, but it would
be useful if this setting occurred in a named group of settings, as in this example:

color:tc=.common
laser:tc=.common
draft:tc=.common

.common:
 :oh=*.ahania.com,!astarte.ahania.com
 :lp=%P@astarte.ahania.com

These entries define the printers color, laser, and draft on every host in ahania.com
except astarte as the corresponding queue on astarte (which are defined elsewhere in
the printcap file).

Special-purpose queues

In this section, we examine how to set up queues for several more complex printing
scenarios.

Bounce queues. Here is a printcap entry for a simple store-and-forward queue (as
we’ve seen before):

laser:server
 :lp=matisse@painters
 :sd=/var/spool/lpd/%P

The queue laser collects jobs and sends them on to the queue matisse on host painters
as is. However, it is sometimes useful to process the jobs locally before sending them
on to be printed. This is accomplished via a bounce queue, as in this example:

blots:server
 :sd=/var/spool/lpd/%P

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

870 | Chapter 13: Printers and the Spooling Subsystem

 :filter=path and arguments
 :bq_format=l Binary jobs will be sent on.
 :bq=picasso@painters

This queue named blots accepts jobs, runs them through program specified in the
filter setting, and then sends them to queue picasso on host painters for printing.

Printer pools. LPRng allows you create a printer pool: a queue that feeds several print-
ing devices, as in this example:

scribes:server
 :sd=/var/spool/lpd/%P
 :sv=lp1,lp2,lp3

Here, the queue scribes sends jobs to queues lp1, lp2, and lp3 (which must be defined
elsewhere in the printcap file), as each queue becomes free (which, of course, occurs
when the associated device is free). This mechanism provides a very simple form of
load balancing.

Here is part of the printcap entry for lp1:

lp1:
 :sd=/var/spool/lpd/%P
 :ss=scribes

The ss setting specifies the controlling queue for this printer. Note that it does not
prevent jobs from being sent directly to queue lp1; the only effect of this setting
seems to be to make queue status listings more readable.

Print job destinations can also be determined on a dynamic basis. Here is an example:

smart:
 :sd=/var/spool/lpd/%P
 :destinations=matisse@printers,degas@france,laser
 :router=/usr/local/sbin/pick_printer

The program specified in the router setting is responsible for determining the desti-
nation for each submitted print job. The router program is a standard print filter pro-
gram. Its exit status determines what happens to the job (0 means print, 37 means
hold, and any other value says to delete the job), and it must write the queue destina-
tion and other information to standard output (where lpd obtains it). See the LPRng-
HOWTO document for full details on dynamic print job routing.

Filters

As we’ve noted before, print jobs are processed by filter programs before they are
sent to the printer device. Filters are responsible for initializing the device to a known
initial state, transforming the output into a form that it understood by the printer,
and ensuring that all output has been sent to the printer at the end of the job. The
first and third tasks are typically accomplished by adding internal printer commands
to the beginning and end of the print job. Filter programs are also responsible for
creating printer accounting records.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LPRng | 871

As the examples we’ve looked at have shown, LPRng provides the filter printcap set-
ting for specifying a default filter for all jobs in a particular queue. In addition, it sup-
ports many of the various output type–specific filter variables used in traditional
printcap entries (i.e., the *f settings).

The LPRng package often uses the ifhp filter program also written by Patrick Pow-
ell. It is suitable for use with a wide variety of current printers. The characteristics of
the various supported printers are stored in its configuration file, ifhp.conf (usually
stored in /etc). The following printcap entry illustrates settings related to its use:

lp:
 :sd=/var/spool/lpd/%P
 :filter=/usr/local/libexec/filters/ifhp
 :ifhp=model=default

The filter setting specifies the path to ifhp, and the ifhp setting specifies the appropri-
ate printer definition with its configuration file. In this case, we are using the default
settings, which work well with a wide variety of printers.

Sample Accounting Script

The LPRng facility includes an excellent Perl script that demonstrates
the method for getting page count information from modern printers.
It is called accounting.pl and is included with the source distribution.

Other printcap entry options

It is also possible to store printcap entries in forms other than a flat text file. For
example, they could be stored in an LDAP directory. LPRng allows for such possibili-
ties by allowing printcap entries to be fetched or created dynamically as needed. This
is accomplished by setting the printcap_path in the lpd.conf configuration file as a
pipe to a program rather than a path to a printcap file:

printcap_path=|program

Such an entry causes LPRng to execute the specified program whenever it needs a
printcap entry (the desired entry is passed to the program as its standard input). For
example, such a program could retrieve printcap information from an LDAP direc-
tory. See Chapter 11 of Network Printing for details and extended examples.

Global Print Spooler Settings
The lpd.conf configuration file holds a variety of settings relating to the print spooler
service. Among the most important are ones related to printer connection and time-
outs and to print job logging. Some of the most commonly used are listed in the
example configuration file below:

communication-related settings
connect_grace=3 Wait period between jobs (default=0).
network_connect_grace=3
connect_timeout=600 Cancel job after this interval (default=0).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

872 | Chapter 13: Printers and the Spooling Subsystem

send_try=2 Maximum number of retries (default is no limit).
max_servers_active=10 Max. # lpd child processes (default is half the

system process limit).

logging settings
max_log_file_size=256 Maximum file sizes in KB (default is no limit).
max_status_size=256
min_log_file_size=128 Keep this much data when the files are too big
min_status_size=64 (default is 25%).
max_status_line=80 Truncate entries to this length (default=no limit).

central logging server
logger_destination=scribe Destination for log file entries.
logger_pathname=/tmp/lprng.tmp Local temporary file to use.
logger_max_size=1024 Max. size of the temporary file (default=no limit).
logger_timeout=600 Wait time between connections to the remote

server (default is whenever data is generated).

Printer Access Control
The third LPRng configuration file, lpd.perms, is used to control access to the print
service and its printers. Each entry in the file provides a set of characteristics against
which potential print jobs are matched and also indicates whether such jobs should
be accepted. The first entry that applies to a specific print job will be used to deter-
mine its access. Accordingly, the order of entries within the file is important.

The syntax of the lpd.perms file is explained best by examining some examples. For
example, these entries allow users to remove their own print jobs and root to remove
any print job:

ACCEPT SERVICE=M SAMEUSER
ACCEPT SERVICE=M SERVER REMOTEUSER=root
REJECT SERVICE=M

The first keyword in an entry is always ACCEPT or REJECT, indicating whether
matching requests are to be performed. These entries all apply to the M service,
which corresponds to removing jobs with lprm. The various entries allow the com-
mand to succeed if the user executing and the user owning the print jobs are the
same (SAMEUSER), or if the user executing it is root (REMOTEUSER=root) on the
local system (SERVER). All other lprm requests are rejected.

Available SERVICE codes include C (control jobs with lpc), R (spool jobs with lpr),
M (remove jobs with lprm), Q (get status info with lpq), X (make connection to lpd),
and P (general printing). More than one code letter can be specified to SERVICE.

There are several keywords that are compared against the characteristics of the print
job and the command execution context:

USER, GROUP, HOST, PRINTER
These items are compared to the ownership and other characteristics of the print
job to which the desired command will be applied. In addition, the SERVER
keyword requires that the command be executed on the local server.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LPRng | 873

REMOTEUSER, REMOTEGROUP, REMOTEHOST
These items are compared to the user, group, and host where or with whom the
desired command originated. Note that the “remote” part of the name can be
misleading, because it need not refer to a remote user or host at all.

The preceding keywords all take a string or list of strings as their arguments.
These items are interpreted as patterns to be compared to the print job or com-
mand characteristics.

SAMEUSER, SAMEHOST
These keywords require that USER be the same as REMOTEUSER and HOST be
the same as REMOTEHOST, respectively. For example, the following entry lim-
its use of the lprm command to users’ own jobs and requires that the command
be run on the same host from which the print job was submitted:

ACCEPT SERVICE=M SAMEUSER SAMEHOST

We’ll now examine some additional lpd.perms entries. The following entry rejects all
connections to the lpd server that originate outside the ahania.com domain or from
the hosts dalton and hamlet:

REJECT SERVICE=X NOT REMOTEHOST=*.ahania.com
REJECT SERVICE=X REMOTEHOST=dalton,hamlet

Note that these entries could not be formulated as ACCEPTs. Hosts may be speci-
fied by hostname or by IP address.

The following entries allow only members of the group padmin to use the lpc com-
mand on the local host:

ACCEPT SERVICE=C SERVER REMOTEGROUP=padmin
REJECT SERVICE=C

The LPC keyword can be used to limit the lpc subcommands that can be executed.
For example, the following entry allows members of group printop to hold and
release individual print jobs and move them around within a queue:

ACCEPT SERVICE=C SERVER REMOTEGROUP=printop LPC=topq,hold,release

The following entries prevent anyone from printing to the printer test except user
chavez:

ACCEPT SERVICE=R,M,C REMOTEUSER=chavez PRINTER=test
REJECT SERVICE=* PRINTER=test

User chavez can also remove jobs from the queue and use lpc to control it.

The following command prevents print job forwarding on the local server:

REJECT SERVICE=R,C,M FORWARD

The DEFAULT keyword is used to specify a default action for all requests not match-
ing any other configuration file entry:

All everything that is not explicitly forbidden.
DEFAULT ACCEPT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

874 | Chapter 13: Printers and the Spooling Subsystem

The default access permissions in the absence of an lpd.perms file is to accept all
requests.

Other LPRng capabilities

LPRng has quite a few additional capabilities which space constraints prevent us
from considering, including the ability for more sophisticated user authentication
using a variety of mechanisms, including PGP and Kerberos. Consult the LPRng doc-
umentation for full details.

CUPS
The Common Unix Printing System (CUPS) is another project aimed at improving,
and ultimately superceding, the traditional printing subsystems. CUPS is distin-
guished by the fact that it was designed to address printing within a networking envi-
ronment from the beginning, rather than being focused on printing within a single
system. Accordingly, it has features designed to support both local and remote print-
ing, as well as printers directly attached to the network. We will take a brief look at
CUPS in this section. The homepage for the project is http://www.cups.org.

CUPS is implemented via the Internet Printing Protocol (IPP). This protocol is sup-
ported by most current printer manufacturers and operating systems. IPP is imple-
mented as a layer on top of HTTP, and it includes support for security-related
features such as access control, user authentication, and encryption. Given this struc-
ture, CUPS requires a web server on printer server systems.

Architecturally, CUPS separates the print job handling and device spooling func-
tions into distinct modules. Print jobs are given a identifier number and also have a
number of associated attributes: their destination, priority, media type, number of
copies, and so on. As with other spooling subsystems, filters may be specified for
print queues and/or devices in order to process print jobs. The CUPS system pro-
vides many of them. Finally, backend programs are responsible for sending print jobs
to the actual printing devices.

CUPS also supports printer classes: groups of equivalent printers fed by a single
queue (we’ve previously also referred to such entities as printer pools). CUPS extends
this construct by introducing what it calls “implicit classes.” Whenever distinct
printers and/or queues on different servers are given the same name, the CUPS sys-
tem treats the collection as a class, controlling the relevant entities as such. In other
words, multiple servers can send jobs to the same group of equivalent printers. In
this way, implicit classes may be used to prevent any individual printing device or
server system from becoming a single point of failure. Classes may be nested: a class
can been a member of another class.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

CUPS | 875

Printer Administration
CUPS supports the lpr, lpq, and lprm commands and the lp, lpstat, and cancel
commands from the BSD and System V printing systems, respectively. For queue and
printer administration, it offers two options: command-line utilities, including a ver-
sion of the System V lpadmin command, or a web-based interface. The latter is
accessed by pointing a browser at port 631: for example, http://localhost:631 for the
local system.

The following commands are available for managing and configuring print queues.
Note that all of them except lpinfo specify the desired printer as the argument to the
-p option:

lpstat
View queue status.

accept and reject
Allow/prevent jobs from being sent to the associated printing device.

enable and disable
Allow/prevent new print jobs from being submitted to the specified queue.

lpinfo
Display information about available printers (-v) or drivers (-m).

lpadmin
Configure print queues.

Here is an example lpadmin command, which adds a new printer:

lpadmin -plj4 -D"Finance LaserJet" -L"Room 2143-A" \
 -vsocket://192.168.9.23 -mlaserjet.ppd

This command add a printer named lj4 located on the network using the indicated IP
address. The printer driver to be used is laserjet.ppd (several are provided with the
CUPS software). The -D and -L options provide descriptions of the printer and its
location, respectively.

In general, the -v option specifies the printing device as well as the method used to
communicate with it. Its argument consists of two colon-separated parts: a connec-
tion-type keyword (which selects the appropriate backend module), followed by a
location address. Here are some syntax forms:

parallel:/dev/device Local parallel port
serial:/dev/device Local serial port
usb:/dev/usb/device Local USB port
ipp://address/port IPP-based network printer
lpd://address/DEVICE LPD-based network printer
socket://address[:port] Network printer using another protocol (e.g., JetDirect)

The CUPS version of lpadmin has several other useful options: -d to specify a system
default printer (as under System V), -c and -r to add/remove a printer from a class,
and -x to remove the print queue itself.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

876 | Chapter 13: Printers and the Spooling Subsystem

Under CUPS, printers need only be configured on the server(s) where the associated
queues are located. All clients on the local subnet will be able to see them once CUPS
is installed and running on each system.

CUPS configuration files

CUPS maintains several configuration files, stored in the /etc/cups directory. Most of
them are maintained by lpadmin or the web-based administrative interface. The one
exception, which you may need to modify manually, is the server’s main configura-
tion file, cupsd.conf.

Here are some sample annotated entries (all non-system-specific values are the
defaults):

ServerName painters.ahania.com Server name.
ServerAdmin root@ahania.com CUPS administrator's email address.
ErrorLog /var/log/cups/error_log Log file locations.
AccessLog /var/log/cups/access_log
PageLog /var/log/cups/page_log Printer accounting data.
LogLevel info Log detail (other levels: debug, warn, error).
MaxLogSize 1048571 Rotate log files when current is bigger than this.
PreserveJobFiles No Don't keep files after print job completes.
RequestRoot /var/spool/cups Spool directory.
User lp Server user and group owners.
Group sys
TempDir /var/spool/cups/tmp CUPS temporary directory.
MaxClients 100 Maximum client connections to this server.
Timeout 300 Printing timeout period in seconds.
Browsing On Let clients browse for printers.
ImplicitClasses On Implicit classes are enabled.

Readers familiar with the Apache facility will notice many similarities
to its main configuration file (httpd.conf).

Access control and authentication

Printer access control, user authentication, and encryption are also enabled and con-
figured in the cupsd.conf configuration file.*

Encryption is controlled by the Encryption entry:

Encryption IfRequested

The entry indicates whether or not to encrypt print requests (in order to use encryp-
tion, the OpenSSL library must be linked into the CUPS facility). The default is to
encrypt files if the server requests it; other values are Always and Never. Additional
keywords may be added as other encryption methods become available.

* These features are somewhat in flux as of this writing, so there may be additional capabilities in your version
of CUPS. Consult the CUPS documentation for details on the current state of things.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

CUPS | 877

There are two main entries related to user authentication:

AuthType
Source of authentication data, one of: None, Basic (use data in the Unix pass-
word and group file, transmitted Base64-encoded), and Digest (use the file
passwd.md5 in /etc/cupsd for authentication data). The last method offers a
medium level of security against network sniffing. The CUPS system provides
the lppasswd command for maintaining the passwd.md5 file.

AuthClass
Method of authentication. The default is Anonymous (perform no authentica-
tion). Other options are User (valid username and password are required),
System (user must also belong to the system group, which can be defined using
the SystemGroup entry), and Group (user must also belong to the group speci-
fied in the AuthGroupName entry).

The encryption- and user authentication–related entries are used to specify require-
ments for specific printers or printer classes. These are defined via stanzas like the
following in the configuration file:

<Location /item>
[Encryption entry] The ordering here is not significant.
[Authentication entries]
[Access control entries]
</Location>

The pseudo-HTML directives delimit the stanza, and the item specified in the open-
ing tag indicates the entities to which the stanza applies.* It can take one of the fol-
lowing forms:

/ Defaults for the CUPS system.
/printers Applies to all non-specified printers.
/printers/name Applies to a specific printer.
/classes Applies to all non-specified classes.
/classes/name Applies to the specified class.
/admin Applies to CUPS administrative functions.

Here a some example stanzas (which also introduce the access control directives):

<Location /> System defaults.
Order Deny,Allow Interpret Allow list as overrides to Deny list.
Deny From All Deny all access.. .
Allow From 127.0.0.1 . . .except from the local host.
</Location>

<Location /printers>
Order Allow,Deny Interpret Deny list as exceptions to Allow list.
Allow From .ahania.com Allow access from these domains...
Allow From .essadm.com

* Again, note the similarity to the Apache configuration file syntax.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

878 | Chapter 13: Printers and the Spooling Subsystem

Deny From 192.168.9.0/24 . . .but exclude this subnet.
</Location>

<Location /classes/checks> Applies to class named checks.
Encryption Always Always encrypt.
AuthType Digest Require valid user account and password.
AuthClass Group Restrict to members of the finance group.
AuthGroupName finance
Order Deny,Allow
Deny From All Deny all access.. .
Allow From 10.100.67.0/24 . . .except from this subnet.
</Location>

<Location /admin> Access for administrative functions.
AuthType Digest Require valid user account and password.
AuthClass System Limit to system group members.
Order Deny,Allow
Deny From All Restrict access to the local domain.
Allow From .ahania.com
</Location>

Consult the CUPS documentation for information about the facility’s other features
as well as its installation procedure.

Font Management Under X
On most current Unix systems, fonts are made available to applications via the X
Window system (although some application packages manage their own font infor-
mation). In this section, we will consider the main administrative tasks related to
managing fonts.

In an ideal world, fonts would be something that users took care of
themselves. However, in this world, font handling under X is cumber-
some enough that the system administrator often needs to get
involved.

In this section, we consider font management using the standard X11R6 tools, and
we refer to directory locations as defined by the normal installation of the package.
These facilities and locations are often significantly altered (and broken) in some
vendors’ implementations.

Font Basics
When you think of a font, you probably think of something like Times or Helvetica.
These names actually referred to font families containing a number of different type-
faces: for example, regular Times, italic Times, bold Times, bold italic Times, and so
on. At the moment, there are quite a few different formats for font files. The most

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Font Management Under X | 879

important distinction among them is between bitmap fonts and outline fonts. Bit-
map fonts store the information about the characters in a font as bitmap images,
while outline fonts define the characters in a font as a series of lines and curves, com-
prising in this way mathematical representations of the component characters.

From a practical point of view, the main difference between these two font types is
scalability. Outline fonts can be scaled up or down any arbitrary amount and look
equally good at all sizes. In contrast, bitmap fonts do not scale well, and they look
extremely jagged and primitive as they get larger. For this reason, outline fonts are
generally preferred to bitmap fonts.

To further complicate matters, there are two competing formats for outline fonts:
Adobe Type 1 and TrueType. In technical terms, the chief difference between them
consists of the kind of curves used to represent the characters: Bezier curves and b-
splines, respectively. The other major difference between the two formats is price,
with Type 1 fonts generally being significantly more expensive than TrueType fonts.

All of these different types of fonts are generally present under X. The most impor-
tant formats are listed in Table 13-7, along with their corresponding file extensions.

The PCF fonts are bitmap fonts (generally stored in compressed format) that come as
part of the XFree86 system, typically located in directories under /usr/X11R6/lib/X11/
fonts or /usr/lib/X11/fonts. The Speedo fonts were donated to the X Window system
by Bitstream and are located in the same place. The Ghostscript fonts are Type 1
fonts installed with that facility (using a slight variation in format). In addition, there
may be Type 1 and/or TrueType fonts present on the system.

Type 1 fonts consist of multiple files. The .pfa and .pfb files contain the actual font
outline representation, in ASCII and binary format, respectively, and the .afm file
contains font metrics information in ASCII format. Type 1 fonts on Unix systems
generally use the binary .pfb files (probably because they are smaller in size), but .pfa
files may also be used. The corresponding .afm file is also required in order to print.

The X window system uses a somewhat arcane naming convention for referring to
fonts. Here is its general syntax and an example for a font in the Octavian family:

-foundry-family-weight-slant-stretch-style-pixel-points-xres-yres-spacing-avgwidth-registry-encoding
-monotype-octavian mt-medium-i-normal--0-0-0-0-p-0-iso8859-1

Table 13-7. Common font file formats

Format Bitmap/outline Extension(s)

Portable Compiled Font bitmap .PCF.gz

Speedo bitmap .spd

Ghostscript font outline .gsf

Type 1 outline .pfa, .pfb, .afm

TrueType outline .ttf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

880 | Chapter 13: Printers and the Spooling Subsystem

The components have the following meanings. The foundry* is the organization
(often a commercial entity) that provided/sold the font, Monotype in our example.
The family indicates the overall grouping of typefaces to which this particular item
belongs (for example, Times or Helvetica); our example is from the Octavian MT
family (note that spaces commonly appear within the family name). The next few
items indicate which member of the family this one is: weight is a keyword indicat-
ing the relative darkness of this typefaces with respect to other family members
(medium, bold, light, black and so on), slant is a single character indicating whether
this typeface is upright (r for roman, i for italic or o for oblique), stretch is a keyword
indicating whether the typeface is expanded or compressed with respect to normal
lettering (normal, condensed, expanded and so on), and style is a keyword indicat-
ing any additional typographic style information relevant to this typeface (e.g.,
expert, ornaments, oldstylefigures, etc.). Our example typeface is Octavian Italic (not
bold, not condensed/expanded, and no additional style designation).

The remaining fields specify the default point size (points), the body size in pixels at
that point size (pixels), the typeface’s default horizontal and vertical resolution (xres
and yres), its spacing class (spacing: one of m for monospace/fixed width, c for char-
acter cell and p for proportional), a measure of the average width of the glyphs in the
font (avgwidth), and the character set use for coding the font (registry and encoding).
Most of the numeric fields tend to be set to zero for outline fonts, indicating the
font’s default value should be used—as they are in our example—and the three
remaining fields are generally set to the values shown in the example as well.

In most instances, you’ll never need to construct one of these names by hand.
Instead, you can use utilities which create them for you automatically for various
contexts. However, if you ever do need to generate one yourself, you can find all the
essential information by running the strings command on the (binary) font file and
looking at the information displayed at the beginning of its output (if you have an
ASCII font file, you can look at that file’s contents directly).

For more general information about fonts, consult the FAQ from the comp.fonts
newsgroup (version 2.1.5, dated August 1996, is the most recent, available at www.
nwalsh.com/comp.fonts/FAQ). For additional information about TrueType fonts,
consult the TrueType HowTo (available on the web at pobox.com/~brion/linux/
TrueType-HOWTO.html).

Managing Fonts under X
We now turn to the question of how X applications locate fonts they need. As we
noted previously, the fonts that come with the X window system conventionally
reside under /usr/X11R6/lib/X11/fonts. In fact, though, when an application needs a

* As one of the technical reviewers noted, this term comes “from the days of moveable set type where a iron
working foundry was responsible for manufacturing the type sets.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Font Management Under X | 881

font to display on the screen, it checks the current font path to find it. Traditionally,
the default font path is defined in the XF86Config configuration file (generally
located in /etc or /etc/X11, with several links to other places) via FontPath lines in the
Files section:

Section "Files"
 RgbPath "/usr/X11R6/lib/X11/rgb"
 FontPath "/usr/X11R6/lib/X11/fonts/misc"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi
 ...
EndSection

Each successive FontPath entry adds an additional directory to the font path.

On more recent systems, these lines have been replaced by one like this:

FontPath "tcp/localhost:7100"

This indicates that a font server is in use, listening for font requests on TCP port
7100 on the local machine.* Additional FontPath entries may again be present, speci-
fying either local directories or ports on other computers. The introduction of the
font server in X11R5 made life easier since it allowed files to be shared between sys-
tems. The font server process actually runs the xfs program.†

However the default font path is set up, and individual user can
always modify it via the xset command, using its fp option.

Adding Fonts to X
Adding fonts for use in screen display by the X Window system is very easy. For
Type 1 fonts, the procedure is as follows:

• Create a directory to hold the new fonts (if necessary) and copy the font files
there. Generally, you will need to put in both the .pfa or .pfb file and the .afm file
there.

• Generate the required configuration files, named fonts.dir and fonts.scale
(although, in fact, these two files are identical for the case of Type 1 fonts). This
can be done manually, or you can use a utility to do it for you; some versions of
the standard X mkfontdir command work well for this task, and the type1inst

* Note that on some systems running RedHat Linux, the entry appears like one of these:
FontPath "unix/:-1"
FontPath "unix/:7100"

This format indicates that the system is using the Red Hat–modified version of the X font server from which
networking capabilities have been removed.

† The font server may be enabled on any of the systems we are considering (it is often installed by default).
Doing so consists of installing the software, setting up its configuration file (discussed in brief a bit later),
and modifying the system boot scripts so that the server process is started automatically.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

882 | Chapter 13: Printers and the Spooling Subsystem

command is very reliable (available at http://sunsite.unc.edu/pub/Linux/X11/
xutils/). Both of them are run from within the directory holding the new fonts.

The entry in the files corresponding to our Octavian Italic typeface looks like this
(we’ve wrapped it to fit):

oci_____.pfb -monotype-octavian mt-medium-i-normal--0-0-0-0-p-0-iso8859-1

The first item is the filename dictating the Type 1 font (oci_____.pfb in this
case), and the second item is the standard X typeface designation.

• If you created a new font directory, add it to the font path. If you are not using a
font server, this is done by adding another FontPath entry to the XF86Config file.
If you are using a font server, then you must edit an entry in its configuration
file. The xfs font server typically stores its configuration file as /etc/X11/fs/config.
You’ll need to an additional component to the catalogue list:

catalogue = /usr/share/fonts/ISO8859-7/Type1,
 /usr/share/fonts/default/Type1,
 /usr/X11R6/lib/X11/fonts/misc,
 /usr/X11R6/lib/X11/fonts/Type1,
 /usr/X11R6/lib/X11/fonts/Speedo,
 /more/fonts/type1

Here we have added the /more/fonts/type directory as the final component of the
catalogue. Note that the various catalogue entries are separated by commas.

• Restart the font server (e.g., a command like /etc/init.d/xfs restart). Also
restart any current X session.

Once this is all complete, the new fonts should be available to any application that
uses the standard X font facilities. You can verify that the fonts are installed cor-
rectly using the X commands xfontsel and xfd; the gimp application provides another
very pleasant way of exploring the new fonts. The first two commands can also be
useful for exploring what fonts are available on the system and displaying all the
characters within a given typeface. However, the latter job is better handled by the
freely-available gfontview utility, whose output is displayed in Figure 13-10. This
facility allows you to view a single character, a short string, or a palette containing
every character within it (in the example display, I’ve been somewhat self-absorbed
in my choice of test character and character string). You can get this utility at http://
gfontview.sourceforge.net.

Printing support

Printing the newly installed fonts introduces a few additional wrinkles. In order to be
printed, Type 1 fonts must be rendered (technically, rasterized). Under X, this is usu-
ally handled by the Ghostscript facility (http://www.ghostscript.org), which must be
configured for any new fonts.

Ghostscript font configuration occurs via its Fontmap configuration file, located in
the /usr/share/ghostscript/n.nn directory, where the final component of the path cor-
responds to the package version (under FreeBSD, the path begins at /usr/local/share).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Font Management Under X | 883

Here are some sample entries from this file:

/NimbusRomNo9L-Regu (n021003l.pfb) ;
/NimbusRomNo9L-ReguItal (n021023l.pfb) ;
/Times-Roman /NimbusRomNo9L-Regu ;
/Times-Italic /NimbusRomNo9L-ReguItal ;

Each line contains three fields: a name preceded by a slash, a filename enclosed in
parentheses or another name, and finally a semicolon; spaces and/or tabs separate
the fields from one another. If the second field is a filename, print requests for the
correspondingly named font will use this font file. If the second field is another name
(indicated by an initial slash), then the first field becomes an alias—an alternate
name—for the same typeface. For example, the preceding entries will result in the
file n021003I.pfb being used when someone wants to print the Times-Roman font.*

In order to print our Octavian typeface, we need to add a line like the following to
this file:

/OctavianMT-Italic (oci_____.pfb) ;

The type1inst utility mentioned earlier creates a Fontmap file within the current
directory along with the fonts.dir and fonts.scale files, making it easy to add the
required entries to the actual Ghostscript font configuration file.

Figure 13-10. The gfontview font display utility

* Occasionally, you will need to create aliases for fonts in order to get them to print properly. The most com-
mon example occurs with “regular” typefaces that do not have “Roman” in their name. This can confuse
some environments and applications. In such cases, creating an alias in the expected format will often do the
trick. For example:
 /OctavianMT-Roman /OctavianMT ;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

884 | Chapter 13: Printers and the Spooling Subsystem

The filename field may contain either an absolute path or a simple file name. In the
latter case, the Ghostscript font path will be searched for that file. The default path is
set up when the facility is compiled and typically consists of subdirectories under /usr/
share/fonts/default (e.g., ghostscript and Type1). You can make fonts available to
Ghostscript by adding them to these existing locations (and modifying the current
fonts.dir and fonts.scale files accordingly), or by using a new location, which can be
added to the Ghostscript path by setting the GS_LIB environment variable.

Handling TrueType Fonts
With TrueType fonts, the fun really begins. Basically, the X font facilities and Ghost-
script were designed around bitmap and Type 1 fonts and PostScript printing. How-
ever, users tend to have access to lots of TrueType fonts, and they naturally want to
use them on Unix systems. Fortunately, support for TrueType fonts within tradi-
tional X facilities has become available.

The main facility that needs to understand TrueType fonts is the font server. Unfortu-
nately, many vanilla xfs programs do not. However, TrueType compatibility font
servers have been merged into the main XFree86 distribution as modules. See the
“Fonts in Xfree86” document at http://www.xfree.org for full details (currently, http://
www.xfree86.org/4.0.3/fonts.html) as well as the X TrueType Server Project home
page, http://x-tt.dsl.gr.jp, and the FreeType Project homepage, http://www.freetype.org.

The module based on the excellent xfsft server can be included by editing the
Modules section of the XF86Config file and adding a Load entry for the module
freetype.

Once you have a TrueType-capable font server, the procedure for adding new True-
Type fonts is almost identical to that for adding Type 1 fonts. The difference lies in
using the ttmkfdir utility instead of type1inst (available at http://www.joerg-
pommnitz.de/TrueType/xfsft.html; click on the link in the paragraph referring to the
“tool that creates the fonts.scale file”).

Here are three fonts.dir entries for TrueType fonts, Eras Light and Eras Bold:

eraslght.ttf -itc-Eras Light ITC-medium-r-normal--0-0-0-0-p-0-iso8859-1
erasbd.ttf -itc-Eras Bold ITC-medium-r-normal--0-0-0-0-p-0-iso8859-1
:2:mincho.ttc -misc-mincho-...

The final entry shows the method for referring to individual fonts with a TrueType
Collection file.

For printing TrueType fonts from general X applications the best option is to use a
version of Ghostscript which has been compiled with ttfont option, enabling True-
Type support with the facility (it must be a version 5 revision of Ghostscript). In this
case, you simply add entries as usual to the Fontmap file pointing to the TrueType
font files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

885

Chapter 14 CHAPTER 14

Automating Administrative Tasks

Although extensive programming experience is seldom a requirement for a system
administration position, writing shell scripts and other sorts of programs is neverthe-
less an important part of a system administrator’s job. There are two main types of
programs and scripts that you will be called upon to create:

• Those designed to make system administration easier or more efficient, often by
automating some process or job.

• Those that provide users with necessary or helpful tools that are not otherwise
available to them.

This chapter discusses scripts intended for both contexts.

In general, automation offers many advantages over performing such tasks by hand,
including the following:

Greater reliability
Tasks are performed in the same (correct) way every time. Once you have auto-
mated a task, its correct and complete performance no longer depends on how
alert you are or your memory.

Guaranteed regularity
Tasks can be performed according to whatever schedule seems appropriate and
need not depend on your availability or even your presence.

Enhanced system efficiency
Time-consuming or resource-intensive tasks can be performed during off hours,
freeing the system for users during their normal work hours.

We’ve already considered the cron facility, which runs commands and scripts
according to a preset schedule (see “Essential Administrative Techniques” in
Chapter 3). In this chapter, we’ll begin by looking at some example shell scripts and
then consider some additional programming/scripting languages and other automa-
tion tools.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

886 | Chapter 14: Automating Administrative Tasks

Creating Effective Shell Scripts
In this section, we’ll consider several different routine system administration tasks as
examples of creating and using administrative shell scripts. The discussions are
meant to consider not only these tasks in themselves but also the process of writing
scripts. Most of the shell script examples use the Bourne shell, but you can use any
shell you choose; it’s merely a Unix prejudice that “real shell programmers use the
Bourne/Korn/zsh shell,” however prevalent that attitude/article of faith may be.*

Password File Security
We discussed the various security issues surrounding the password file in “Detecting
Problems” in Chapter 7 and “Unix Users and Groups” in Chapter 6. The various
commands used to check it and its contents could be combined easily in a shell
script. Here is one version (named ckpwd):

#!/bin/sh
ckpwd - check password file (run as root)
#
requires a saved password file to compare against:
/usr/local/admin/old/opg
#
umask 077
PATH="/bin:/usr/bin"; export PATH

cd /usr/local/admin/old # stored passwd file location
echo ">>> Password file check for `date`"; echo ""

echo "*** Accounts without passwords:"
grep '^[^:]*::' /etc/passwd

Laziness Can Be a Virtue
Lazy people write shell scripts. Laziness is a very important system administrative vir-
tue when it motivates you to create new tools and utilities that make your job easier,
more efficient, or even just more pleasant. Ploddingly industrious people type the same
commands over and over, day after day; lethargic people write scripts to make the job
go faster; truly lazy people develop utilities and programs that make all kinds of jobs
go faster (including ones they weren’t even thinking about when they started).

Writing shell scripts, Perl scripts, Expect scripts, or C programs will also force you to
develop another of the seven system administrative virtues: patience (you’ll need it to
see a sometimes frustrating task through to its conclusion).

* Once upon a time, the C shell had bugs that made writing administrative C shell scripts somewhat dicey.
Although the versions of the C shell in current operating systems have fixed these bugs, the attitude that the
C shell is unreliable persists. In addition, the C shell is considered poorly designed by many scripting gurus.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Effective Shell Scripts | 887

if [$? -eq 1] # grep found no matches
then
 echo "None found."
fi
echo ""

Look for extra system accounts
echo "*** Non-root UID=0 or GID=0 accounts:"
grep ':00*:' /etc/passwd | \
awk -F: 'BEGIN {n=0}
 $1!="root" {print $0 ; n=1}
 END {if (n==0) print "None found."}'
echo ""

sort </etc/passwd >tmp1
sort <opg >tmp2 # opg is the previously saved copy
echo "*** Accounts added:"
comm -23 tmp[1-2] # lines only in /etc/passwd
echo ""
echo "*** Accounts deleted:"
comm -13 tmp[1-2] # lines only in ./opg
echo ""
rm -f tmp[1-2]

echo "*** Password file protection:"
echo "-rw-r--r-- 1 root wheel>>> correct values"
ls -l /etc/passwd

echo ""; echo ">>> End of report."; echo ""

The script surrounds each checking operation with echo and other commands
designed to make the output more readable so that it can be scanned quickly for
problems. For example, the grep command that looks for non-root UID 0 accounts is
preceded by an echo command that outputs a descriptive header. Similarly, the grep
command’s output is piped to an awk command that removes the root entry from its
output and displays the remaining accounts or the string “None found” if no other
UID or GID 0 accounts are present.

Instead of using diff to compare the current password file with the saved version,
the script uses comm twice, to present the added and deleted lines separately (entries
that have changed appear in both lists). The script ends with a simple ls command;
the administrator must manually compare its output to the string displayed by the
preceding echo command. However, this comparison also could be automated by
piping ls’s output to awk and explicitly comparing the relevant fields to their correct
values. (I’ll leave the implementation of the latter as an exercise for the reader.)

Here is some sample output from ckpwd:

>>> Password file check for Fri Jun 14 15:48:26 EDT 2002
*** Accounts without passwords:
None found.
*** Non-root UID=0 or GID=0 accounts:
badboy:lso9/.7sJUhhs:000:203:Bad Boy:/home/bb:/bin/csh

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

888 | Chapter 14: Automating Administrative Tasks

*** Accounts added:
chavez:9Sl.sd/i7snso:190:20:Rachel Chavez:/home/chavez:/bin/csh
wang:l9jsTHn7Hg./a:308:302:Rick Wang:/home/wang:/bin/sh
*** Accounts deleted:
chavez:Al9ddmL.3qX9o:190:20:Rachel Chavez:/home/chavez:/bin/csh
*** Password file protection:
-rw-r--r-- 1 root system >>> correct values
-rw-r--r-- 1 root system 1847 Jun 11 22:38 /etc/passwd
>>> End of report.

If you don’t like all the bells and whistles, the script needn’t be this fancy. For exam-
ple, its two sort, two comm, and five other commands in the section comparing the
current and saved password files could easily be replaced by the diff command we
looked at in “Detecting Problems” in Chapter 7 (and possibly one echo command to
print a header). In the extreme case, the entire script could consist of just the four
commands we looked at previously:

#!/bin/sh
minimalist version of ckpwd
/usr/bin/grep '^[^:]*::' /etc/passwd
/usr/bin/grep ':00*:' /etc/passwd
/usr/bin/diff /etc/passwd /usr/local/admin/old/opg
/usr/bin/ls -l /etc/passwd

How much complexity is used depends on your own taste and free time. More com-
plexity usually means it takes longer to debug.

Whatever approach you take, ckpwd needs to be run regularly to be effective (proba-
bly by cron).

Monitoring Disk Usage
It seems that no matter how much disk storage a system has, the users’ needs (or
wants) will eventually exceed it. As we discuss in “Monitoring and Managing Disk
Space Usage” in Chapter 15, keeping an eye on disk space is a very important part of
system management, and this monitoring task is well suited to automation via shell
scripts.

The script we’ll consider in this section—ckdsk—is designed to compare current
disk use with what it was yesterday and to save today’s data for comparison tomor-
row. We’ll build the script up gradually, starting with this simple version:

#!/bin/sh
ckdsk: compares current and saved disk usage
saved data is created with du_init script
#
PATH="/bin:/usr/bin"; export PATH

cd /usr/local/admin/ckdsk
if [! -s du.sav] ; then
 echo "ckdsk: Can't find old data file du.sav."
 echo " Recreate it with du_init and try again."

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Effective Shell Scripts | 889

 exit 1
fi
du -k /iago/home/harvey > du.log
cat du.log | xargs -n2 ../bin/cmp_size 40 100 du.sav
mv -f du.log du.sav

After making sure yesterday’s data is available, this script checks the disk usage
under the directory /iago/home/harvey using du, saving the output to the file du.log.
Each line of du.log is fed by xargs to another script, cmp_size*, which does the actual
comparison, passing it the arguments 40, 100, and “du.sav,” as well as the line from
the du command. Thus, the first invocation of cmp_size would look something like
this:

cmp_size 40 100 du.sav 876 /iago/home/harvey/bin
Output from du begins with argument 4.

ckdsk ends by replacing the old data file with the saved output from today’s du com-
mand, in preparation for being run again tomorrow.

This simple version of the ckdsk script is not very general because it works only on a
single directory. After looking at cmp_size in detail, we’ll consider ways of expand-
ing ckdsk’s usefulness. Here is cmp_size:

#!/bin/sh
cmp_size - compare old and new directory size
$1 (limit)=min. size for new dirs to be included in report
$2 (dlimit)=min. size change for old dirs to be included
$3 (sfile)=pathname for file with yesterday's data
$4 (csize)=current directory size
$5 (file)=pathname of directory
osize=previous size (extracted from sfile)
diff=size difference between yesterday & today
PATH="/bin:/usr/bin"; export PATH

if [$# -lt 5] ; then
 echo "Usage: cmp_size newlim oldlim data_file size dir"
 exit 1
fi

save initial parameters
limit=$1; dlimit=$2; sfile=$3; csize=$4; file=$5;

get yesterday's data
osize=`grep "$file\$" $sfile | awk '{print \$1}'`
if [-z "$osize"] ; then # it's a new directory
 if [$csize -ge $limit] ; then # report if size >= limit
 echo "new\t$csize\t$file"
 fi

 exit 0

* On some systems, cmp_size could be a function defined in ckdsk; on others, however, xargs won’t accept a
function as the command to run.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

890 | Chapter 14: Automating Administrative Tasks

fi
compute the size change from yesterday
if [$osize -eq $csize]
then
 exit 0
elif [$osize -gt $csize]
then
 diff=`expr $osize - $csize`
else
 diff=`expr $csize - $osize`
fi

report the size change if large enough
if [$diff -ge $dlimit] ; then
 echo "$osize\t$csize\t$file"
fi

cmp_size first checks to see that it was passed the right number of arguments. Then it
assigns its arguments to shell variables for readability. The first two parameters are
cutoff values for new and existing directories, respectively. These parameters allow
you to tell cmp_size how much of a change is too small to be interesting (because you
don’t necessarily care about minor disk usage changes). If the size of the directory
specified as the script’s fifth parameter has changed by an amount greater than the
cutoff value, cmp_size prints the directory name and old and new sizes; otherwise,
cmp_size returns silently.

cmp_size finds yesterday’s size by greping for the directory name in the data file spec-
ified as its third parameter (du.sav is what ckdsk passes it). If grep didn’t find the
directory in the data file, it’s a new one, and cmp_size then compares its size to the
new directory cutoff (passed in as its first argument) displaying its name and size if it
is large enough.

If grep returns anything, cmp_size then computes the size change for the directory by
subtracting the smaller of the old size (from the file and stored in the variable osize)
and the current size (passed in as the fourth parameter and stored in csize) from the
larger. cmp_size then compares the size difference to the old directory cutoff (passed
in as its second argument), and displays the old and new sizes if it is large enough.

cmp_size reports on directories that either increased or decreased in size by the
amount of the cutoff. If you are only interested in size increases, you could replace
the if statement that computes the value of the diff variable with a much simpler
one:

if [$osize -le $csize]
then
 exit 0 # only care if it's bigger
else
 diff=`expr $osize - $csize`
fi

Unlike the simple version of ckdsk, cmp_size is fairly general; it could also be used,
for example, to process output from the quot command.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Effective Shell Scripts | 891

One way to make ckdsk more useful is to enable it to check more than one starting
directory, with different cutoffs for each one. Here is a version that can do that:

#!/bin/sh
chkdsk2 - multiple directories & per-directory cutoffs
PATH="/bin:/usr/bin"; export PATH

du_it()
{
$1 = cutoff in blocks for new directories
$2 = cutoff as block change for old directories
$3 = starting directory
$4 = flags to du
abin="/usr/local/admin/bin"

du $4 $3 > du.tmp
cat du.tmp | xargs -n2 $abin/cmp_size $1 $2 du.sav
cat du.tmp >> du.log; rm du.tmp
}

umask 077
cd /usr/local/admin/ckdsk
rm -f du.log du.tmp 2>&1 >/dev/null
if [! -s du.sav] ; then
 echo "run_cmp: can't find old data file; run du_init."
 exit 1
fi

echo "Daily disk usage report for `date`"; echo ''
df
echo ''; echo "Old\tNew"
echo "Size\tSize\tDirectory Name"
echo "--"
du_it 40 100 /iago/home/harvey
du_it 1 1 /usr/lib
du_it 1 1000 /home/* -s
echo "--"
echo ''
mv -f du.log du.sav
exit 0

This script uses a function named du_it to perform the du command and pass its out-
put to cmp_size using xargs. The function takes four arguments: the cutoffs for old
and new directories (for cmp_size), the starting directory for the du command, and
any additional flags to pass to du (optional).

du_it saves du’s output into a temporary file, du.tmp, which it appends to the file du.
log afterwards; du.log thus accumulates the data from multiple directory checks and
eventually becomes the new saved data file, replacing yesterday’s version.

The script proper begins by removing any old temporary files from previous runs and
making sure its data file (still hardwired as du.sav) is available. It then runs df and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

892 | Chapter 14: Automating Administrative Tasks

prints some header lines for the output from cmp_size. This version of the script then
calls du_it three times:

du_it 40 100 /iago/home/harvey
du_it 1 1 /usr/lib
du_it 1 1000 /home/* -s

It will run du and compare its output to the saved data for the directories /iago/home/
harvey, /usr/lib, and all of the subdirectories of /home, passing the du command the -s
option in the last case. In the third command, the wildcard is passed through to the
actual du command line by quoting it to du_it. Different cutoffs are used for each call.
When checking /usr/lib, this version asks to be told about any change in the size of
any directory (size or size change greater than or equal to one). In contrast, when
checking the users’ home directories under /home, the report includes new directories
of any size but only existing directories that changed size by at least 1000 blocks.

ckdsk ends by moving the accumulated output file, du.log, on to the saved data file,
du.sav, saving the current data for future comparisons.

Here is some sample output from ckdsk:

Daily disk usage report for Tue Jun 11 09:52:46 EDT 2002

File system Kbytes used avail capacity Mounted-on
/dev/dsk/c1d1s0 81952 68848 13104 84% /
/dev/dsk/c1d1s2 373568 354632 18936 94% /home
/dev/dsk/c1d2s8 667883 438943 228940 66% /genome

Old New
Size Size Directory Name
--
348 48 /iago/home/harvey/g02
new 52 /iago/home/harvey/test
2000 1012 /iago/home/harvey
new 912 /usr/lib/acct/bio
355 356 /usr/lib/spell
34823 32797 /home/chavez
9834 3214 /home/ng
new 300 /home/park
--

The echo commands set off the output from cmp_size and make it easy to scan.

This version of ckdsk requires new du_it commands to be added by hand. The script
could be refined further by allowing this information to be external as well, replac-
ing the explicit du_it commands with a loop over the directories and parameters
listed in a data file:

cat du.dirs |
while read dir old new opts; do
default old and new cutoffs to 1
if ["$old" = ""]; then
 old=1; fi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Effective Shell Scripts | 893

if ["$new" = ""]; then
 new=1; fi
if [-n "$dir"]; then # ignore blank lines
 du_it $new $old $dir $opts
fi
done

This version also assigns default values to the cutoff parameters if they are omitted
from an entry in the data file.

Similarly, the script currently checks all users’ home directories. If only some of them
need to be checked, the final du_it command could be replaced by a loop like this
one:

for user in chavez havel harvey ng smith tedesco ; do
 du_it 1 1000 /home/$user -s
done

Alternatively, the user list could be read in from an external configuration file. We’ll
look at obtaining data from files in an upcoming example.

The cron facility is also the most sensible way to run ckdsk.

Root Filesystem Backups and System Snapshots
Backing up the root filesystem is a task for which the benefits don’t always seem
worth the trouble. Still, re-creating all of the changed system configuration files is
also very time-consuming, and can be very frustrating when you don’t immediately
recall which files you changed.

An alternative to backing up the entire root filesystem—and other separate system
filesystems like /usr and /var—is to write a script to copy only the few files that have
actually changed since the operating system was installed to a user filesystem, allow-
ing the changed files to be backed up as part of the regular system backup schedule
without any further effort on your part. Creating such a script is also a good way to
become thoroughly acquainted with all the configuration files on the system. When
selecting files to copy, include anything you might ever conceivably change, and err
on the side of too many rather than too few files.

Here is a C shell script that performs such a copy:

#!/bin/csh
bkup_sys - backup changed files from system partitions
unset path; setenv PATH "/bin:/usr/bin"

umask 077
if ("$1" != "") then
 set SAVE_DIR="$1"
else
 set SAVE_DIR="/save/`hostname`/sys_save"
endif

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

894 | Chapter 14: Automating Administrative Tasks

set dir_list=`cat /etc/bkup_dirs`
foreach dir ($dir_list)
 echo "Working on $dir ..."
 if (! -d $SAVE_DIR/$dir) mkdir -p $SAVE_DIR/$dir
 set files=`file $dir/{,.[a-zA-Z]}* | \
 egrep 'text|data' | awk -F: '{print $1}'`
 if ("$files" != "") cp -p $files $SAVE_DIR/$dir:t
end

echo "Backing up individual files ..."
foreach file (`cat /usr/local/admin/sysback/bkup_files`)
 if ("$file:h" == "$file:t") continue # not a full pathname
 if ("$file:t" == "") continue # no filename present
 if (! -d $SAVE_DIR/$file:h) mkdir -p $SAVE_DIR/$file:h
 cp -p $file $SAVE_DIR/$file:h
end
echo "All done."

This script performs the backup in two parts. First, it copies all text and binary data
files from a list of directories to a designated directory; file types are identified by the
file command, and the grep command selects ones likely to be configuration files
(some extra files will get copied, but this is better than missing something). The
default destination location is named for the current host and has a form like /save/
hamlet/sys_save; this location can be overridden by including an alternate location on
the bkup_sys command line. The directory list comes from the file /etc/bkup_dirs,
which would contain entries like /, /etc, /etc/defaults, /etc/mail, /var/cron, and so on.

The final section of the script copies the files listed in /usr/local/admin/sysback/bkup_
files, which holds the names of individual files that need to be saved (residing in
directories from which you don’t want to save every text and data file). It uses the C
shell :h and :t modifiers, which extract the head (directory portion) and tail (file-
name and extension), respectively, from the filename in the specified variable. The
first two lines in this section make sure that the entry looks reasonable before the
copy command is attempted.

In both cases, files are stored in the same relative location under the destination
directory as they are in the real filesystem (this makes them easy to restore to their
proper locations). Subdirectories are created as necessary under the destination
directory. The script uses cp -p to copy the files, which reproduces file ownership,
protections, and access and modification times.

Copying files in this way is a protection against serious damage to a system filesys-
tem (as well as against accidentally deleting or otherwise losing one of them). How-
ever, in order to completely restore the system, in the worst case, you’ll need to
reproduce the structure as well as the contents of damaged filesystems. To do the lat-
ter, you will need to know what the original configuration was. You can write a
script to document how a system is set up.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Effective Shell Scripts | 895

Here is an example from a FreeBSD system:

#!/bin/csh
doc_sys - document system configuration--FreeBSD version
unset path; setenv PATH "/sbin:/usr/sbin:/bin:/usr/bin"

if ("$1" != "") then
 set outfile="$1" # alternate output file
else
 set outfile="`hostname`_system.doc"
endif

echo "System Layout Documentation for `hostname`" > $outfile
date >> $outfile
echo "" >> $outfile

echo ">>>Physical Disks" >> $outfile
grep "ata[0-9]+-" /var/run/dmegs.boot >> $outfile # Assumes IDE disks.
echo "" >> $outfile

echo ">>>Paging Space Data" >> $outfile
pstat -s >> $outfile

echo "" >> $outfile
echo ">>>Links in /" >> $outfile
file /{,.[a-zA-Z]}* | grep link >> $outfile
echo "" >> $outfile

echo ">>>System Parameter Settings" >> $outfile
sysctl -a

The purpose of this script is to capture information that you would not otherwise
have (or have easy access to). Thus, commands such as df, which give information
easily obtained from configuration files, are not included (although they could be in
your version if you would find such data helpful). You may want to consider periodi-
cally printing out the results from such a script for every system you administer and
placing the resulting pages into a notebook.

As this script illustrates, the commands you need to include tend to be very operat-
ing-system-specific. Here is a version for an AIX system (the common sections have
been replaced with comments):

#!/bin/csh
doc_sys - document system configuration--AIX version
unset path; setenv PATH "/usr/sbin:/bin:/usr/bin"

set output file and write header line

echo ">>>Physical Disks" >> $outfile
lspv >> $outfile
echo "" >> $outfile

echo ">>>Paging Space Data" >> $outfile

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

896 | Chapter 14: Automating Administrative Tasks

lsps -a >> $outfile

echo "" >> $outfile
echo ">>>Volume Group Info" >> $outfile
loop over volume groups
foreach vg (`lsvg`)
 lsvg $vg >> $outfile
 echo "===Component logical volumes:" >> $outfile
 lsvg -l $vg | grep -v ":" >> $outfile
 echo "" >> $outfile
end
echo "" >> $outfile

echo ">>>Logical Volume Details" >> $outfile
loop over volume groups and then over the component LVs
foreach vg (`lsvg`)
foreach lv (`lsvg -l $vg | egrep -v ":|NAME" | awk '{print $1}'`)
 lslv $lv >> $outfile
 echo "===Physical Drive Placement" >> $outfile
 lslv -l $lv >> $outfile echo "" >> $outfile
 end
end
echo "" >> $outfile

echo ">>>Defined File systems" >> $outfile
lsfs >> $outfile echo "" >> $outfile

links in / listed here

echo ">>>System Parameter Settings" >> $outfile
lsattr -E -H -l sys0 >> $outfile
lslicense >> $outfile # number of licensed users

This version of the script also provides information about the volume group and logi-
cal volume layout on the system.

Table 14-1 lists commands that will provide similar information for the Unix ver-
sions we are considering:

Table 14-1. System information commands

Version Disk data Swap space data System parameters

AIX lspv lsps -a lsattr -E -H -l sys0

FreeBSD grep pat 'dmesg' pstat -s sysctl -a

HP-UX ioscan -f -n -C
disk

swapinfo -t -a -m /usr/lbin/sysadm/system_prep -s
system

Linux fdisk -l cat /proc/swaps cat /proc/sys/kernel/* (see script below)

Solaris getdev swap -l cat /etc/system

Tru64 dsfmgr -s swapon -s sysconfig (see script below)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Effective Shell Scripts | 897

See “From Disks to Filesystems” in Chapter 10 for the Logical Volume Manager
commands for the various systems.

Sometimes more than just a simple command is needed to complete one of these
tasks. For example, the following script displays all the system parameters under
Tru64:

#!/bin/csh
foreach s (`/sbin/sysconfig -m | /usr/bin/awk -F: '{print $1}'`)
 /sbin/sysconfig -q $s
 echo "--------------------------------------"
 end
exit 0

Similarly, the following script records the current Linux system parameters.

#!/bin/csh
foreach f (`find /proc/sys/kernel -type f`)
 echo "$f":
 cat $f
 echo ""
 end
exit 0

A Few More Tricks
The following script illustrates a couple of other useful tricks when writing shell
scripts. It polls various sites with which the local system communicates to exchange
mail and runs a few times a day via the cron facility:

#!/bin/sh
mail.hourly
PATH="/usr/bin:/bin"

cd /usr/local/admin/mail
for sys in (`cat ./mail_list`); do
 if [! -f /etc/.no_$sys]; then
 echo polling $sys

exchange mail ...
 touch last_$sys
 else
 echo skipping $sys
 fi
done
exit 0

This script loops over the list of hosts in the file mail_list in the current directory.
Let’s consider how it works when the current host is lucia. The if statement deter-
mines whether the file /etc/.no_lucia exists. If it does, the host lucia is not polled.
Using a file in this way is a very easy mechanism for creating script features that can
be turned on or off easily without having to change the script itself, the way it is
called from another script, any crontab entries using it, and so on. When I don’t
want lucia to be polled (usually because its owner has turned it off during an out-of-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

898 | Chapter 14: Automating Administrative Tasks

town trip, and I hate seeing dozens of failure messages piling up), I simply run the
command touch /etc/.no_lucia. Deleting the same file reinstates polling on a regu-
lar basis.

The second technique consists of using an empty file’s modification time to store a
date. In this script, the touch command in the if loop records when the most recent
poll of system lucia took place. The date it occurred can be quickly determined by
running:

$ ls -l /usr/local/admin/mail/last_lucia

Such time-stamp files can be used in a variety of contexts:

Backups

If you create a time-stamp file at the beginning of a backup operation, you can
use a -newer clause on a find command to find all files modified since then for a
subsequent backup.

Testing
When you want to find out what files a particular program modifies, create a
time-stamp file in /tmp, run the program, and then find files newer than the
time-stamp file once the program finishes (this assumes you are on an otherwise
idle system).

Files modified since an operating system installation or upgrade
Creating a time-stamp file at the end of an operating system installation or
upgrade will enable you easily to determine which files you have modified with
respect to the versions on the distribution media.

Testing and Debugging Scripts
The following list describes strategies for testing and debugging scripts:

Build the script up gradually. Start by getting a simple version running—without
arguments and handling only the easiest case—and then add the bells and whis-
tles. We’ve seen this strategy in action several times in this chapter already.

Test and debug the logic independently of the functionality if possible. One way to
do this is to place an “echo” in front of every substantive command in the script,
as in this fragment:

if [some condition]; then
 echo rm -rf /
else
 echo cp /tmp/junk /unix
fi

This will allow you to see what the script does in various cases in a completely
safe way. Similarly, you can replace entire functions with an echo command:

go_on
{
echo running function go_on

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Perl: An Alternate Administrative Language | 899

return
}

In general, inserting an echo command is a good way to see where you are in a
script, to track variable values, and so on. In some cases, a construct like the fol-
lowing will be helpful:

echo "===${variable}==="

This sort of technique is useful when you are having trouble with a variable that
may contain internal white space.

Use the shell’s -v option. This option displays each script line as it is executed, and
it will sometimes indicate how the flow of a script is proceeding.

Perform testing and debugging on local copies of system files. The script will mod-
ify the copied files rather than the real ones. For example, if the script you are
writing alters /etc/passwd, develop the script using a local copy of /etc/passwd
rather than the real thing.

Use small cases for initial tests. Operate on a single item at first, even if the script is
designed to work on a large collection of items. Once that version is working,
alter it to work for multiple items.

Don’t forget to test boundary conditions. For example, if a script is designed to
alter several user accounts, make sure it works for one user account, two user
accounts, zero user accounts, and many, many user accounts.

Assume things will go wrong. In general, include as much error-checking code in
the script as possible, making sure that the script does something reasonable
when errors occur.

Write for the general case. Not only will this give you more powerful tools and
meta-tools that you can use over and over, but it is also no harder than coming
up with a solution for one specific problem. In fact, if you take a little time to
step back from the specifics to consider the general task, it is often easier.

Perl: An Alternate Administrative Language
Perl* is a free programming language created by Larry Wall and currently developed
and maintained by a core group of talented programmers (see http://www.perl.org,
http://www.perl.com and http://www.cpan.org for more information). Perl has
become quite popular in recent years. It contains many features that make it very
well suited to writing scripts for system administrative tasks, including the following:

• It combines the short development time of traditional shell programming with
some of the best aspects of high-level languages such as C. For example, Perl

* The name has various meanings, official and otherwise. Two frequently cited by its author are Practical
Extraction and Report Language and Pathologically Eclectic Rubbish Lister.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

900 | Chapter 14: Automating Administrative Tasks

contains well-implemented arrays (unlike any shell) and an impressive range of
built-in functions, and it also includes the ability easily to run standard Unix
commands and use filename wildcards (as in a shell).

• It provides things that are missing from most or all shells, including string func-
tions, built-in arithmetic, and general regular expression support.

• Handling many simultaneous open files is a breeze.

• It offers enhanced security features over standard shells.

Perl features come from a variety of sources, including standard shells, C, Fortran,
Basic, Pascal, awk, and sed. I don’t think Larry’s managed to use any COBOL fea-
tures yet, but I’ve been wrong before.

To get started using Perl, I recommend the following books:

• Learning Perl, by Randall L. Schwartz and Tom Phoenix (O’Reilly & Associ-
ates), and Effective Perl Programming, by Joseph N. Hall with Randal L.
Schwartz (Addison-Wesley).

• If you are interested in incorporating a graphical interface into Perl scripts, con-
sult Learning Perl/Tk by Nancy Walsh (O’Reilly & Associates).

• For examples of using Perl for system administration tasks, see Perl for System
Administration by David N. Blank-Edelman (O’Reilly & Associates).

A Quick Introduction
The best way to see what Perl has to offer is to look at a few Perl programs. We’ll
begin with dr, a Perl script I wrote to make the AIX dosread command worth using.
By default, dosread copies a single file from a DOS diskette, and it requires that you
specify both the DOS filename and the local filename (and not just a target direc-
tory). Of course, what one often wants to do is to copy everything on a diskette; this
Perl script copies all the files on a diskette to the current directory, translating the
destination filenames to lowercase:*

#!/usr/bin/perl -w Executable location varies.
dr - copy all the files on a DOS diskette

store the list of files on the diskette
@files = `dosdir | egrep -v "^(Free|There)"`;

foreach $f (@files) { # loop over files
 chop $f; # remove newline char
 $g = $f;
 $g =~ tr/A-Z/a-z/; # translate to lowercase
 print $f,"*",$g,"\n";
 system("dosread -a -v $f ./$g");
 }

* One technical reviewer comments: “chomp is better. chop is so Perl 4.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Perl: An Alternate Administrative Language | 901

The first command looks almost like a C shell command. It runs the command in
back quotes and stores the output in the array @files (the AIX dosdir command lists
the files on a diskette, and the egrep command throws away the summary line).
Names of numerically indexed arrays begin with an @ sign when the entire array is
referenced as a whole. Note also that Perl statements end with a semicolon.

Perl scalar variable names always begin with a dollar sign, as the next few com-
mands illustrate; no special syntax is needed to dereference them. The remainder of
the script is a foreach loop; the commands within the loop are enclosed in curly
braces (as in C). The loop variable is $f, and $g eventually holds a lowercase version
of the name in $f.

The final two commands do the actual work. The print command displays a string
like the following for each file on the diskette:

PROPOSAL.TXT*proposal.txt

The purpose of this display is mostly to provide that warm-and-comfortable feeling
while AIX’s excruciatingly slow diskette commands run. The system command is
used to run a Unix command from Perl, in this case dosread.

This version of dr is leisurely paced and is designed to emphasize the similarities
between Perl and other languages. However, a native speaker might write it more like
this:

#!/usr/bin/perl
dr - terse version
foreach (`dosdir | egrep -v "Free|Total"`) {
chop;
system("dosread @ARGV $_ \L$_");
 }

The foreach statement is still intelligible, but the other commands require some
explanation. Perl provides a default variable that is used in commands where a vari-
able is needed but none is specified; the name of this variable is $_ (dollar-under-
score). $_ is being used as the loop variable and as the argument to chop.

The \L construct in the system command translates $_ to lowercase. This system
command is more general than the one in the previous version. It passes any argu-
ments specified to the script—stored in the array @ARGV—on to dosread and uses
$_ as both of dosread’s arguments; filenames on diskette aren’t case-sensitive, so this
works fine.

The two versions of dr illustrate an important Perl principle: there’s more than one
way to do it (the Perl slogan).

A Walking Tour of Perl
wgrep is a tool I wrote for some users still longing for the VMS Search command they
used years previously. wgrep stands for windowed grep, and the command searches

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

902 | Chapter 14: Automating Administrative Tasks

files for regular expression patterns, optionally displaying several lines of context
around each matching line. Like the command it was designed to imitate, some of its
options will strike some purists as excessive, but it will also demonstrate many of
Perl’s features in a more complex and extended context.

Here is the usage message for wgrep:

Usage: wgrep [-n] [-w[b][:a] | -W] [-d] [-p] [-s] [-m] regexp file(s)
-n = include line numbers
-s = indicate matched lines with stars
-wb:a = display b lines before and a lines after each matched
 line (both default to 3)
-W = suppress window; equivalent to -w0:0
-d = suppress separation lines between file sections
-m = suppress file name header lines
-p = plain mode; equivalent to -W -d
-h = print this help message and exit
Note: If present, -h prevails; otherwise, the rightmost option wins
 in the case of contradictions.

Here is a sample of wgrep’s most baroque output format, including line numbers and
asterisks indicating matched lines, in addition to headers indicating each file contain-
ing matches and separators between noncontiguous groups of lines within each file:

wgrep -n -s -w1:1 chavez /etc/passwd /etc/group
********** /etc/passwd **********
 00023 carnot:x:231:20:Hilda Carnot:/home/carnot:/bin/bash
* 00024 chavez:x:190:20:Rachel Chavez:/home/chavez:/bin/csh
 00025 claire:x:507:302:Theresa Claire:/home/claire:/bin/csh
********** /etc/group **********
* 00001 wheel:*:0:chavez,wang,wilson
 00002 other:*:1:

 00014 genome:*:202:
* 00015 dna:*:203:chavez
* 00016 mktg:*:490:chavez
 00017 sales:*:513:

After initializing several variables related to output formats, wgrep begins by dealing
with any options that the user has specified:

#!/usr/bin/perl -w
wgrep - windowed grep utility

$before = 3; $after = 3; # default window size
$show_stars = 0;
$show_nums = 0;
$sep = "**********\n";
$show_fname = 1;
$show_sep = 1;
loop until an argument doesn't begin with a "-"

while ($ARGV[0] =~ /^-(\w)(.*)/) {
 $arg = $1; # $arg holds the option letter

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Perl: An Alternate Administrative Language | 903

This while statement tests whether the first element of @ARGV (referred to as
$ARGV[0] because array element references begin with a $ sign)—the array holding
the command-line arguments—matches the pattern contained between the forward
slashes: ^-(\w)(.*). Most of the elements of the pattern are standard regular expres-
sion constructs; \w is a shorthand form for [a-zA-Z0-9_]. Within a regular expres-
sion, parentheses set off sections of the matched text that can be referred to later
using the variables $1 (for the first matched section), $2, and so on. The next line
copies the first matched section—the option letter—to the variable $arg.

The next portion of wgrep forms the remainder of the body of the while loop and pro-
cesses the available options:*

if ($arg eq "s") { $show_stars = 1; }
elsif ($arg eq "n") { $show_nums = 1; }
elsif ($arg eq "m") { $show_fname = 0; }
elsif ($arg eq "d") { $show_sep = 0; }
elsif ($arg eq "w") {
 # parse 2nd matched section at colon into default array @_
 split(/:/,$2);
 $before = $_[0] if $_[0] ne '';
 $after = $_[1] if $_[1] ne '';
 }
elsif ($arg eq "p") {
 $before = 0;
 $after = 0;
 $show_sep = 0; }
elsif ($arg eq "W") {
 $before = 0;
 $after = 0;
 }
elsif ($arg eq "h") { &usage(""); }
else { &usage("wgrep: invalid option: $ARGV[0]");
 } # end of if command
 shift; # go on to next argument
 } # end of foreach loop

The foreach loop contains a long if-then-else-if construct, illustrating Perl’s eclec-
tic nature. In general, conditions are enclosed in parentheses (as in the C shell), and
they are formed via Bourne shell–like operators (among other methods). No “then”
keyword is required because the commands comprising the if body are enclosed in
curly braces (even when there is just a single command). Most of the clauses in this
if statement set various flags and variables appropriately for the specified options.
The clause that processes the -w option illustrates a very nice Perl feature, condi-
tional assignment statements:

split(/:/,$2);
$before = $_[0] if $_[0] ne '';

* There are easier ways to parse lettered command options, but the point of this form is to illustrate some sim-
ple Perl. The Getopt module is one popular choice for this task.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

904 | Chapter 14: Automating Administrative Tasks

The split command breaks the second matched section of the option—indicated by
$2—into fields using a colon as a separator character (remember the syntax is, for
example, -w2:5), storing successive fields into the elements of the default array @_.
The following line sets the value of $before to the first element, provided that it is
not null: in other words, provided that the user specified a value for the window pre-
ceding a matched line.

The final else clause calls the usage subroutine when an unrecognized option is
encountered (the ampersand indicates a subroutine call). The shift command fol-
lowing the if statement works just as it does in standard shell, sliding the elements
of @ARGV down one position in the array.

The next section of wgrep processes the expression to search for:

&usage("missing regular expression") if ! $ARGV[0];
$regexp = $ARGV[0];
shift;
$regexp =~ s,/,\\/,g; # "/" --> "\/"

if no files are specified, use standard input
if (! $ARGV[0]) { $ARGV[0] = "STDIN"; }

If @ARGV is empty after processing the command options, the usage subroutine is
called again. Otherwise, its first element is assigned to the variable $regexp, and
another shift command is executed. The second assignment statement for $regexp
places backslashes in front of any forward slashes that the regular expression con-
tains (since the forward slashes are the usual Perl pattern delimiter characters), using
a syntax like that of sed or ex.

After processing the regular expression, wgrep handles the case where no filenames
are specified on the command line (using standard input instead). The next part of
the script forms wgrep’s main loop:

LOOP:
foreach $file (@ARGV) { # Loop over file list

if ($file ne "STDIN" && ! open(NEWFILE,$file)) {
 print STDERR "Can't open file $file; skipping it.\n";
 next LOOP; # Jump to LOOP label
 }
$fhandle = $file eq "STDIN" ? STDIN : NEWFILE;
$lnum = "00000";
$nbef = 0; $naft = 0;
$matched = 0; $matched2 = 0;
&clear_buf(0) if $before > 0;

This foreach loop runs over the remaining elements of @ARGV, and it begins by
attempting to open the first file to be searched. The open command opens the file
specified as its second argument, defining the file handle—a variable that can be
used to refer to that file in subsequent commands—specified as its first argument
(file handles are conventionally given uppercase names). open returns a nonzero value

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Perl: An Alternate Administrative Language | 905

on success. If the open fails, wgrep prints an error message to standard error (STDIN
and STDERR are the file handles for standard input and standard error, respectively)
and the file is simply skipped.

The variable $fhandle is set to “STDIN” or “NEWFILE”, depending on the value of
$file, using a C-style conditional expression statement (if the condition is true, the
value following the question mark is used; otherwise, the value following the colon is
used). This technique allows the user to specify STDIN on the command line any-
where within the file list.

Following a successful file open, some other variables are initialized, and the clear_
buf subroutine is called to initialize the array that will be used to hold the lines pre-
ceding a matched line. The call to clear_buf illustrates an alternate form of the if
statement:

&clear_buf(0) if $before > 0;

The file is actually searched using a while loop. It may be helpful to look at its logic
in the abstract before examining the code:

while there are lines in the file
 if we've found a match already
 if the current line matches too
 print it and reset the after window counter
 but if the current line doesn't match
 if we are still in the after window
 print the line anyway
 otherwise
 we're finally out of the match window, so reset all flags
 and save the current line in the before buffer

 otherwise we are still looking for a matching line
 if the current line matches
 print separators and the before window
 print the current line
 set the match flag
 but if the current line doesn't match
 save it in the before buffer
at the end of the file, continue on to the next file

Here is the part of the while loop that is executed once a matching line has been
found. The construct <$fhandle> returns each line in turn from the file correspond-
ing to the specified file handle:

while (<$fhandle>) { # loop over the lines in the file
 ++$lnum; # increment line number
 if ($matched) { # we're printing the match window
 if ($_ =~ /$regexp/) { # if current line matches pattern
 $naft = 0; # reset the after window count,
 &print_info(1); # print preliminary stuff,
 print $_; # and print the line
 }
 else { # current line does not match

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

906 | Chapter 14: Automating Administrative Tasks

 if ($after > 0 && ++$naft <= $after) {
 # print line anyway if still in the after window
 &print_info(0); print $_;
 }
 else { # after window is done
 $matched = 0; # no longer in a match
 $naft = 0; # reset the after window count
 # save line in before buffer for future matches
 push(@line_buf, $_); $nbef++;
 } # end else not in after window
 } # end else curr. line not a match
 } # end if we're in a match

The while loop runs over the lines in the file corresponding to the file handle in the
$fhandle variable; each line is processed in turn and is accessed using the $_ variable.
This section of the loop is executed when we’re in the midst of processing a match:
after a matching line has been found and before the window following the match has
been finished. This after window is printed after the final matched line that is found
within the window; in other words, if another matching line is found while the after
window is being displayed, it gets pushed down, past the new match. The $naft vari-
able holds the current line number within the after window; when it reaches the
value of $after, the window is complete.

The print_info subroutine prints any stars and/or line numbers preceding lines from
the file (or nothing if neither one is requested); an argument of 1 to print_info indi-
cates a matching line, and 0 indicates a nonmatching line.

Here is the rest of the while loop, which is executed when we are still looking for a
matching line (and therefore no lines are being printed):

 else { # we're still looking for a match
 if ($_ =~ /$regexp/) { # we found one
 $matched = 1; # so set match flag
 # print file and/or section separator(s)
 print $sep if $matched2 && $nbef > $before && $show_sep && $show_fname;
 print "********** $file **********\n" if ! $matched2++ && $show_fname;
 # print and clear out before buffer and reset before counter
 &clear_buf(1) if $before > 0; $nbef = 0;
 &print_info(1);
 print $_; # print current line
 }
 elsif ($before > 0) {
 # pop off oldest line in before buffer & add current line
 shift(@line_buf) if $nbef >= $before;
 push(@line_buf,$_); $nbef++;
 } # end elseif before window is nonzero
 } # end else not in a match
 } # end while loop over lines in this file
} # end foreach loop over list of files
exit; # end of script proper

Several of the print commands illustrate compound conditions in Perl. In this sec-
tion of the script, the variable $nbef holds the number of the current line within the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Perl: An Alternate Administrative Language | 907

before window; by comparing it to $before, we can determine whether the buffer
holding saved lines for the before window is full (there’s no point in saving more
lines than we need to print once a match is found). The array @line_buf holds these
saved lines, and the push command (which we saw earlier as well) adds an element to
the end of it. The immediately preceding shift(@line_buf) command shifts the ele-
ments of this array down, pushing off the oldest saved line, making room for the cur-
rent line (stored in $_).

Here is the subroutine print_info, which illustrates the basic structure of a Perl sub-
routine:

sub print_info {
 print $_[0] ? "* " : " " if $show_stars;
 print $lnum," " if $show_nums;
}

Any arguments passed to a subroutine are accessible via the default array @_. This
subroutine expects a zero or one as its argument, telling it whether the current line is
a match or not—and hence whether to print a star or all spaces at the beginning of
the line when $show_stars is true. The subroutine’s second statement prints line
numbers if appropriate.*

Subroutine clear_buf is responsible for printing the before window and clearing the
associated array, @line_buf:

sub clear_buf {
argument says whether to print before window or not
 $print_flag = $_[0];
 $i = 0; $j = 0;
 if ($print_flag) {
 # if we're printing line numbers, fiddle with the counter to
 # account for the before window
 if ($show_nums) {
 $target = $lnum - ($#line_buf + 1);
 }
 $lnum = "00000";
 # yes, we're really counting back up to the right number
 # to keep correct number format -- cycles are cheap
 while ($i++ < $target) { ++$lnum; } }
 while ($j <= $#line_buf) { # print before window
 &print_info(0);
 print $line_buf[$j++];
 $lnum++ if $show_nums;
 } # end while
 } # end if print_flag
 @line_buf = (); # clear line_buf array
} # end of subroutine

* Yes, this is an ugly kludge from my early Perl days. A more elegant solution is left as an exercise for the reader.
But don’t miss the lesson that scripts don’t have to be perfect to be effective.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

908 | Chapter 14: Automating Administrative Tasks

The final subroutine is usage. Its first line prints the error message passed to it as its
single argument (if any), and the remaining lines print the standard usage message
and then cause wgrep to terminate:

sub usage {
 print STDERR $_[0],"\n" if $_[0];
 print STDERR "Usage: wgrep [-n] ..."

many more print commands
 exit;
}

Perl Reports
Besides being a powerful programming language, Perl can also be used to generate
attractive reports. Here is a fairly simple example:

 Disk
Username (UID) Home Directory Space Security
--
lpd (104) / skipped
sanders (464) /home/sanders 725980K
stein (0) /chem/1/stein 4982K ** UID=0
swenson (508) /chem/1/Swenson deleted
vega (515) /home/vega 100K ** CK PASS
...

This report was produced using format specifiers, which state how records written
with the write command are to look. Here are the ones used for this report:

#!/usr/bin/perl -w
mon_users - monitor user accounts

header at the top of each page of the report
format top =

 Disk
Username (UID) Home Directory Space Security

.
format for each line written to file handle STDOUT
format STDOUT =
@<<<<<<<<<<<<< @<<<<<<<<<<<<<<<<< @>>>>>> @<<<<<<<<<
$uname, $home_dir $disk, $warn
.

The first format statement is the header printed at the top of each page, and the sec-
ond format statement is used for the lines of the report. Format specifications are ter-
minated with a single period on a line. The second format statement indicates that
the variables $uname, $home_dir, $disk, and $warn will be written on each output line,
in that order (the variables are defined elsewhere in the script). The line containing
the strings of greater-than and less-than signs indicates the starting positions,
lengths, and internal justification of the report’s fields (text within a field is justified
the way the angle bracket points).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Perl: An Alternate Administrative Language | 909

Here is the rest of the script used to produce the report:

open (PASSWD, "/etc/passwd") || die "Can't open passwd: $!\n";

USER:
while (<PASSWD>) { # loop over passwd file lines
 chop;
 # lists are enclosed in parentheses
 ($uname,$pass,$uid,$gid,$junk,$home_dir,$junk) = split(/:/);
 # remove newline, parse line, throw out uninteresting entries
 if ($uname eq "root" || $uname eq "nobody" ||
 substr($uname,0,2) eq "uu" ||
 ($uid <= 100 && $uid > 0)) { # Change UID cutoff if needed
 next USER;
 }
 # set flags on potential security problems
 $warn = ($uid == 0 && $uname ne "root") ? "** UID=0" : "";
 $warn = ($pass ne "!" && $pass ne "*") ? "** CK PASS" : $warn;
 # .= means string concatenation
 $uname .= " ($uid)"; # add UID to username string
 # run du on home directory & extract total size from output
 if (-d $home_dir && $home_dir ne "/") {
 $du = `du -s -k $home_dir`; chop($du);
 ($disk,$junk) = split(/\t/,$du); $disk .= "K";
 }
 else {
 $disk = $home_dir eq "/" ? "skipped" : "deleted";
 }
 write; # write out formatted line
 }
exit;

This script introduces a couple of new Perl constructs which are explained in its
comments.

Graphical Interfaces with Perl
Users greatly prefer graphical interfaces to traditional, text-based ones. Fortunately,
it is very easy to produce them with Perl using the Tk module. Here is a simple script
that illustrates the general method:

#!/usr/bin/perl -w
use Tk; # Use the Tk module.

Read message-of-the-day file.
open MOTD, "/usr/local/admin/motd.txt" || exit;
$first_line=1;
while (<MOTD>) {
 if ($first_line) { # Extract the date from line 1.
 chop;
 ($date,@junk)=split();
 $first_line=0;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

910 | Chapter 14: Automating Administrative Tasks

 else { $text_block .= $_; } # Concatenate into $text_block.
 }

my $main = new MainWindow; # Create a window.
Window title.
$label=$main->Label(-text => "Message of the Day");
$label->pack;

Window's text area.
$text=$main->Scrolled('Text', -relief => "sunken",
 -borderwidth => 2, -setgrid => "true");
$text->insert("1.0", "$text_block");
$text->pack(-side=>"top", -expand=>1, -fill=>"both");

Window's status area (bottom).
$status = $main->Label(-text=>"Last updated on $date",
 -relief=>"sunken", -borderwidth=>2,
 -anchor=>"w");
$status->pack(-side=>"top", -fill=>"x");
Add a Close button.

$button=$main->Button(-text => "Close Window",
 # exit when button is pushed:
 -command => sub{exit});
$button->pack;

MainLoop; # Main event loop: wait for user input.

The script has three main parts: processing the text file, creating and configuring the
window, and the event loop. The first section reads the text file containing the mes-
sage of the day, extracts the first field from the first line (assumed to hold the data
the file was last modified), and concatenates the rest of its contents into the variable
$text_block.

The next section first creates a new window (via the new MainWindow function call)
and then creates a label for it (assigning text to it), a text area in which text will be
automatically filled, a button (labeled “Close Window”), and a status area (again,
text is assigned to it). Each of these components is activated using the pack method
(function).

Finally, the third section, consisting only of the MainLoop command, displays the win-
dow and waits for user input. When the user presses the button, the routine speci-
fied to the button’s command attribute is called; here, it is the Perl exit command,
so the script exits when the button is pushed.

Figure 14-1 illustrates the resulting window.

Note that the fill algorithm used for a simple text area is imperfect.

More complex Perl/Tk programs, including ones accepting user input, are not funda-
mentally different from this one.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expect: Automating Interactive Programs | 911

Expect: Automating Interactive Programs
Don Libes describes his Expect package as “a software suite for automating interac-
tive tools.” Expect lets you drive interactive programs from a script. The shell lets
you do that too, but only to a very limited extent and not in any general way. Expect
lets a script feed input to commands and programs that demand their input from the
terminal—meaning /dev/tty. It also allows different things to happen depending on
the output it gets back, which goes far beyond what the shell offers. If this doesn’t
sound like any big deal—and it didn’t to me, at first—read on and consider some of
the examples in this section. Expect is actually quite addictive once you begin to fig-
ure out what it’s good for.

For more information on Expect, see its home page at http://expect.nist.gov. The
book Exploring Expect, by Don Libes (O’Reilly & Associates) is also very helpful.

Conceptually, Expect is a chat script* generalized to the entire Unix universe. Struc-
turally, Expect is actually an extension to another programming language called Tcl.
This means that Expect adds commands—and functionality—to the Tcl language.
It also means that to build and use Expect, you must also obtain and build Tcl.

Figure 14-1. Example Perl/Tk output

* Traditionally, a chat script defines the login conversation that occurs between two computers when they
connect, and it is made up of a series of expect-send pairs, as in this example:
 ogin: remote ssword: guesswho

This one means, “Wait for the string ‘ogin:’, then send ‘remote’, then wait for ‘ssword:’, then send ‘guess-
who’.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

912 | Chapter 14: Automating Administrative Tasks

A First Example: Testing User Environments
The following Expect script illustrates many of the facility’s basic features. It is used
to run the /usr/local/sbin/test_user script from a user’s account. This shell script tests
various security-related features of the user’s runtime environment, and it needs to
be run as the relevant user. This Expect script allows it to be run by the system
administrator:

#!/usr/local/bin/expect Executable location may vary.
run_test_user - check security of user acct

set user [lindex $argv 0] # set user to first argument
spawn /bin/sh # start a conversation
expect "#"
send "su - $user\r"
expect -re "..* $"
send "/usr/local/sbin/test_user >> /tmp/results\r"
expect -re "..* $"
send "exit\r"
expect "#"
close # end the conversation

The first command stores the username specified as the Expect script’s argument in
the variable user. Arguments are stored automatically in the array argv, and the
lindex Tcl function extracts the first element from the array (numbering begins at
zero). In Tcl, square brackets are used to evaluate a function or command and use its
return value in another command.

The spawn command begins a conversation; the command specified as its argument is
started in a subshell—in this case, the command itself is just a shell—and the
Expect script interacts with it via expect and send commands.

expect commands search the output of the spawned command for the first match of
a pattern or a regular expression (the latter is indicated by its -re option). When a
match is found, the script goes on to the next command; put another way, the script
blocks until the desired string is encountered.

send commands provide input to a spawned process (enclosed in quotation marks
and usually ending with \r, indicating a carriage return). send commands can include
dereferenced variables (as in the first one in the preceding script, whose string con-
tains $user).

Thus, the first expect command waits for a sharp sign (#) to appear (the root
prompt, since the script will be run by root). The following send command transmits
a command like su - chavez to the spawned shell. Similarly, the next expect com-
mand waits for at least one character and then the end of the output (the latter is
denoted by the dollar sign), and the following send command runs the script. Once
the next prompt is received, the script sends an exit command to the shell created by
the su command; when the root prompt reappears, indicating that the sub-subshell

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expect: Automating Interactive Programs | 913

has exited, the script executes the close command, which terminates the spawned
command.

This sort of staged conversation represents the simplest use of Expect, although this
script also illustrates that Expect can allow you to automate activities that are possi-
ble in no other way. Once an Expect script exists, it can be called from a normal shell
script just like any other command. For example, this C shell script could be used to
automate the testing of a group of user accounts:

#!/bin/csh
test_em_all - security-check user accounts
unset path; setenv PATH "/usr/bin:/bin"

foreach u (`cat /usr/local/admin/check_users`)
 /usr/local/sbin/run_test_user $u
end

A Timed Prompt
Here is a timed prompt function. It displays a prompt and waits for user input. If no
input is received within a set period of time, the function returns some default value:

#!/usr/local/bin/expect
timed_prompt - prompt with timeout
args: [prompt [default [timeout]]]

process arguments
set prompt [lindex $argv 0]
set response [lindex $argv 1]
set tout [lindex $argv 2]
if {"$prompt" == ""} {set prompt "Enter response"}
if {"$tout" == ""} {set tout 5}

set clean_up 1
send_tty "$prompt: "
set timeout $tout
expect "\n" {
 set response [string trimright "$expect_out(buffer)" "\n"]
 set clean_up 0
 }
if {$clean_up == 1} {send_tty "\n"}
send "$response"

The first section of the script processes it arguments, assigning them to variables and
applying default values. This section of the script is pure Tcl, and it illustrates the
language’s if statement—everything goes in curly braces. Both these if statements
have only a single command in their body, but we’ll see more complex examples a
bit later. The second if statement also illustrates one of the nicest features of Tcl: the
complete equivalence of integers and strings.

The second part of the script does the actual prompting. The send_tty command dis-
plays a string on the screen (regardless of any other current conversations), in this

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

914 | Chapter 14: Automating Administrative Tasks

case, the prompt string. The set timeout command specifies a timeout period for
subsequent expect commands (in seconds, with –1 indicating no timeout).

Given that Expect has built-in timeouts, all the expect command has to look for is a
newline (indicating that the user has pressed the return key, ending her input). If a
newline is found before the timeout period expires, the response variable is assigned
the value that the user typed in, minus the final carriage return (via the string Tcl
function); if not, then response retains its previous value (the default value specified
as the script’s second argument). The final command transmits the response (or
default value) to the calling script.

The clean_up variable is used to keep track of whether a response was entered; if not,
a newline is sent to the screen after the expect command times out to avoid a Unix
prompt running into the lingering script prompt in an ugly way.

Here is how timed_prompt might be used within a shell script:

ishell=`timed_prompt "Enter desired shell [/bin/sh]" "/bin/sh" 10`

Repeating a Command Over and Over
In this section, we’ll look at another task that is possible in a shell program but is
much easier in Expect. This script, loop, runs a command continuously until any
character is entered at the keyboard (in a shell script version, you’d have to use
CTRL-C to exit). Such a command is very useful for real-time monitoring of any sys-
tem phenomenon (general system performance, watching a particular process, fol-
lowing some security-related event, and so on).

Here is the script, loop:

#!/usr/local/bin/expect
loop - repeat command until a key is pressed
args: command [timeout]

set cmd [lindex $argv 0]
set timeo [lindex $argv 1]
if {"$cmd" == ""} {
 send "Usage: loop <command> \[interval]\n"
 exit
 }
if {"$timeo" == ""} {set timeo 3}

set timeout $timeo
set done ""
while {"$done" == ""} {
 system /usr/bin/clear # run the Unix clear commmand
 system /usr/bin/$cmd # run the specified command
 stty raw # put terminal in raw mode
 expect "?" { # wait for a character
 set done 1
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expect: Automating Interactive Programs | 915

 stty -raw # restore terminal to normal mode
 }
exit

The first section of the script again processes command-line arguments and sets the
timeout period to the default value of three seconds if necessary. In this case, this
means that the desired command will be run once every three seconds.

The second section of the script uses a while loop to run the command; as with the if
command, the condition and body of the loop are both enclosed in curly braces. The
first two lines within the loop use the system command to run a Unix command with-
out starting a conversation (in contrast to spawn), in this case, the clear command,
followed by the desired command. The latter command is assumed to be in /usr/bin,
but you could modify the script to allow any command to be run. However, should
you choose to do so, make sure that a full pathname is included for the command.

The stty raw command puts the terminal in raw mode, so that the subsequent
expect command will be able to match any single character. When a match is found,
the variable done is assigned the value 1, which causes the while loop to terminate
after the terminal has been restored to its normal mode (contrast this with placing
the exit command in the body of the expect statement).

Automating Configuration File Distribution
The script we’ll look at in this section will illustrate Expect’s ability to take different
actions depending on what is “said” in the course of a conversation. This script dis-
tributes the /etc/hosts and /etc/shosts.equiv files to the systems specified as the script’s
command line arguments.*

Here is the first part of the script, which obtains the root password:

#!/usr/local/bin/expect
hostdist - distribute hosts and shosts.equiv files

set timeout -1
get the root password (once!)
stty -echo # turn off echoing
send_user "# " # prompt for password
expect_user -re "(.*)\n" # get and remember it
assign password to variable
send_user "\n"
set passwd $expect_out(1,string)
stty echo # turn echo back on

* This script executes in an isolated and trusted network. The actions it performs may or may not make sense
in your environment. However, the Expect concepts will still be useful to you. Note that you could also use
the rdist facility to perform this function.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

916 | Chapter 14: Automating Administrative Tasks

The first command turns off expect timeouts, and then the stty command disables
echoing while the root password is entered. The expect command, which consumes
the entered password, places parentheses around part of the regular expression.
These have no effect on whether it is matched in this case, but it does allow what-
ever matches the enclosed portion of the regular expression to be accessed as a unit
later on. This is done two lines later, in the set command, which assigns the saved
password to the variable passwd (expect_out is an array that contains the results
from the most recent expect command). Once the root password has been obtained,
echoing is turned back on.

The next section of the script sets up a loop over the hosts to be updated:

set num [llength $argv] # number of hosts
incr num -1 # account for 0-based counting
for {set index 0} {$index <= $num} {incr index} {
 set host [lindex $argv $index]
 spawn /usr/bin/ssh $host
 expect {
 -re "(timed out)|(timeout)" { # ssh failed
 continue # just go on to next host
 }
 -re ".*> *$" {} # got a prompt
 }

The llength Tcl function returns the length of a list—in this case, this is equivalent
to the number of elements in the array argv, and the incr command adds a number
to a variable (by default, 1), so after the first two commands, the variable num holds
one less than the number of hosts specified on the command line.

The for loop that begins on the next line makes up the better part of the hostdist
script. A Tcl for command has the following general form:

for {initialize} {condition} {update} {
body of the loop

}

(Its structure is very like the C for loop.) The initialize clause holds commands to be
run before the loop’s first iteration, and it usually serves to initialize the loop vari-
able (as it does in our example). The condition clause contains a test that determines
whether the loop should continue with the next iteration; the update clause is run
after each loop iteration (and before the next test of the condition) and is used to
increment the loop variable index in our loop.

The first few commands within the body of the loop assign the next hostname in
argv to the variable host and then execute a spawn command running rlogin to that
host. The subsequent expect command is a bit more complex than those we’ve seen
before in that it contains two patterns rather than just one (all enclosed within a pair
of curly braces). The first pattern looks for a TCP/IP timeout error message, which
would indicate that the ssh command failed; in this case, the continue command
causes the script to jump immediately to the next loop iteration. The second pattern

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Expect: Automating Interactive Programs | 917

searches for a prompt string, which is assumed to end with a greater-than sign (as is
true on my systems).

When multiple patterns are included within a single expect command in this way,
the first one that matches is used. If more than one pattern matches, the one that
occurs earliest in the list is used.

The next section of the script copies the two files from system iago to /tmp on the
current remote host. These commands are executed as the user running hostdist
because the systems don’t trust remote root users:

 # copy the files
 send "/usr/bin/rcp iago:/etc/hosts /tmp\r"
 expect -re ".*> *$" # wait for prompt
 send "/usr/bin/rcp iago:/etc/shosts.equiv /tmp\r"
 expect -re ".*> *$" # wait for prompt
 send "/bin/su\r"
 expect "assword:"
 send "$passwd\r"

Once the two rcp commands complete, an su command is given, and the saved root
password is sent in response to the password prompt.

The next expect command handles commands that are executed as root:

 expect {
 -re "# $" { # got a root prompt
 # install new files
 send "/usr/bin/cp /tmp/hosts /etc/hosts\r"
 expect "# $"
 send "/usr/bin/cp /tmp/shosts.equiv /etc/shosts.equiv\r"
 expect "# $"
 send "/usr/bin/chmod 644 /etc/shosts.equiv\r"
 expect "# $"
 send "/usr/bin/rm -f /tmp/hosts /tmp/shosts.equiv\r"
 expect "# $"
 send "exit\r" # exit su shell
 expect ".*> *$" # wait for prompt
 }

 -re ".*> *$" {} # regular prompt: su failed
 }

The first pattern will match a normal root prompt. When this is received, the script
runs the commands that copy the files in /tmp to /etc, set their permissions correctly,
and remove the originals from /tmp are executed. Afterwards, the script uses an exit
command to end the su shell.

The second pattern in the first expect command matches the normal shell prompt. If
it is matched, the su command failed for some reason, and no action is taken (indi-
cated by the empty curly braces following the pattern).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

918 | Chapter 14: Automating Administrative Tasks

Here is the remainder of the script:

 send "logout\r" # all done with this host
 expect "?" # accept anything
 close # terminate spawn command
 } # end for loop
exit

Once the su shell has terminated (if it ever started), the script sends a logout com-
mand to the ssh shell, waits for its output, and terminates the current conversation
via the close command.

Keep Trying Until It Works
As our final Expect example, we’ll consider a script that repeatedly attempts an oper-
ation until it succeeds—a canonical use of Expect. In this case, the operation is to
repeatedly dial an electronic mail forwarding service until a successful connection is
made.

Here is the script, pester:

#!/usr/local/bin/expect
pester - keep calling until we get through

set done 0 # did we get through yet?
for {set index 1} {$index <= 2000} {incr index} {
 system "call-command" # call ISP
 while {$done == 0} { # continuously check status
 spawn /usr/local/admin/isp_stat
 expect { # branch depending on results
 -re "(SENDING)|(RECEIVING)" {
 set done 1 # success, so set done to 1
 }
 -re "NO DEV" {
 sleep 120 # line in use; wait a bit
 break
 }
 -re "FAILED" {
 break # poll failed so try again
 }
 } # end expect
 } # end while

 if {$done == 1} {break}
 # if we succeeded, end the for loop
 } # end for
exit

This script actually calls the ISP site only 2000 times before giving up, which is a bit
of a hack, but it offers another example of a for loop. The system command executes
the appropriate command to initiate the connection, and the subsequent while loop
runs a status script—which provides a snapshot of current activity—continuously

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

When Only C Will Do | 919

until a connection is established. The expect command contains three slightly com-
plex regular expressions designed to match the different possible output that the sta-
tus script can produce (it functions similarly to a case construct).

The break command breaks out of the innermost construct in which it is embedded
(i.e., currently in effect). Thus, the break commands in the expect command bodies
jump out of the while loop, while the final break command (making up the if body)
ends the for loop.

When Only C Will Do
There are some system administrative tasks that cannot be done from a shell script or
even from Perl. In such cases, it will be necessary to write a program in a program-
ming language such as C (or whatever you like). However, many of the program-
ming principles we’ve considered so far still apply.

As a first example, consider this small program, which is a version of the yes com-
mand created for a system that lacks it:

/* yes.c */
#include <stdio.h>

main(argc,argv)
int argc;
char *argv[];
{
while(1) /* repeat forever */
 if(argc>=2) /* if there was an argument */
 puts(argv[1]); /* repeat it */
 else
 puts(argv[0]); /* otherwise use command's name */
}

This command works a little differently than the standard yes command in that if no
argument is given to the command, it repeats the name it was invoked under rather
than “y” by default (if an argument is given, that argument is repeated indefinitely).
This allows multiple hard links to be made to the same executable file: yes and no,
for example. In virtually every case, repeating “yes” is equivalent to repeating “y”.

This version of yes illustrates that C programming need not be incredibly complex
and time-consuming, and the program made users on this system quite happy. This
program could have been written in Perl, but C is actually easier and more straight-
forward.

The next C program, designed for an AIX system, illustrates an operation that is best
performed in C. This program, setp, assigns a fixed (unvarying) priority to a process
(why you might want to do so is discussed in “Monitoring and Controlling Pro-
cesses” in Chapter 15). Here is a simple version, suitable for a single system adminis-
trator’s own use:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

920 | Chapter 14: Automating Administrative Tasks

/* setp.c - assign process a fixed priority */
#include <sys/sched.h>
#include <stdio.h>

main(argc,argv)
char *argv[];
int argc;
{
 pid_t pid;
 int p;

 pid=(pid_t)(atoi(*++argv));/* 1st arg is the PID */
 p=atoi(*++argv);/* 2nd arg is the priority */
 setpri(pid,p);/* set it */
 printf("Setting priority of process %d to %d.\n",(int)pid,p);
}

The program converts its two arguments to integers with the atoi function and then
invokes the AIX setpri system call to actually set the priority. The final print state-
ment is really superfluous in this minimalist version.

The preceding version of setp is fine as an ad hoc tool created by a system adminis-
trator for herself. However, if she wants to share it with other members of the sys-
tem administration staff, it is a little sloppy. Here is a better version (the most
important changes are highlighted):

/* set_fprio - more careful fixed priority setting utility */
#include <sys/sched.h>
#include <stdio.h>

#include <sys/types.h>
#include <unistd.h>
main(argc,argv)
char *argv[];
int argc;
{
pid_t pid;
int p, old;
/* make sure root is running this */
if (getuid() != (uid_t)0) {
 printf("You must be root to run setp.\n");
 exit(1);
 }

/* check for the right number of arguments */
if (argc < 3) {
 printf("Usage: setp pid new-priority\n");
 exit(1);
 }

/* convert arguments to integers */
pid=(pid_t)(atoi(*++argv));
p=atoi(*++argv);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Automating Complex Configuration Tasks with Cfengine | 921

old=setpri(pid,p); /* save and check return value */
if (old==-1) {
 printf("Priority reset failed for process %d.\n",(int)pid);
 exit(1);
 }
else {
 printf("Changing priority of process %d from %d to %d.\n", (int)pid,old,p);

exit(0);
 }
}

These are the most important changes:

• The program first verifies that it is being run by root, because the setpri system
call only works for root. It displays an error message and then exits if someone
else tries to use it.

• The program makes sure that it has the proper number of arguments (by deter-
mining whether argc is less than three or not), again printing an error and exit-
ing if one or both of them is missing.

• The program saves the return value of the setpri system call into the variable
old. The purpose of this is not to use it in the final print statement—although it
is included there—but to determine whether the system call succeeded or not,
which is done by the if statement. Depending on setpri’s return value, an appro-
priate message is displayed, and the program terminates with a meaningful exit
value.

This is the level of care that needs to be taken when writing programs for general or
even limited system use. It is not difficult or tremendously time-consuming to do
things this way, but it is a bit boring.

Automating Complex Configuration
Tasks with Cfengine
Cfengine is a wonderful tool for configuring and maintaining Unix computer sys-
tems. Mark Burgess, the author of Cfengine, describes it as follows:

Cfengine, or the configuration engine, is an autonomous agent and a middle to high
level policy language for building expert systems which administrate and configure
large computer networks. Cfengine uses the idea of classes and a primitive intelligence
to define and automate the configuration and maintenance of system state, for small to
huge configurations.

What’d he say? Using Cfengine means that you’ll have to get used to some unfamil-
iar jargon, but it’s worth it. Basically, what Mark is saying is that Cfengine is a stan-
dalone tool (set of tools) that administers and configures computers according to the
instructions in its configuration files. The configuration files describe the desired
characteristics of various system components using a high-level language which is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

922 | Chapter 14: Automating Administrative Tasks

easy to learn and use (and involves no programming). In this way, Cfengine can
automatically bring one or a very large number of systems into line with each one’s
individually defined configuration specifications. It can also make sure they stay that
way by monitoring them and correcting them as needed on an ongoing basis.

In more practical terms, the following list will give you some idea of the breadth of
administration and configuration tasks that Cfengine can automate:

• Configure the network interface.

• Edit system configuration files and other text files.

• Create symbolic links.

• Check and correct the permissions and ownership of files.

• Delete unwanted files.

• Compress selected files.

• Distribute files within a network in a correct and secure manner.

• Automatically mount NFS filesystems.

• Verify the presence and integrity of important files and filesystems.

• Execute commands and scripts.

• Manage processes.

• Apply security-related patches and similar corrections.

Cfengine’s home page is http://www.cfengine.org.

About Cfengine
Cfengine includes the following components:

cfagent
The main utility that applies a configuration file to the local system.

cfrun
A utility that applies a configuration file to remote systems

cfservd
A server process that supports cfrun; it enables the Cfengine agent functionality
to be invoked from a remote system

cfexecd
Another daemon that automates job scheduling and reporting

cfenvd
An anomaly-detection daemon

cfkey
A security key-generation utility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Automating Complex Configuration Tasks with Cfengine | 923

Cfengine uses several configuration files (generally stored in /var/cfengine/inputs).
The central configuration file is cfagent.conf, which specifies the characteristics of the
system that Cfengine is to establish and maintain. Note that in genera,l cfagent.conf
defines the final desired state of the system; it does not define the steps to take to
achieve it.

The best way to introduce this file is with a simple example:

control:
 domain = (ahania.com) Specify local domain.
 access = (chavez root) Who can run cfagent.
 actionsequence = (links tidy) Actions to carry out, in this order.
 maxage = (7) Define a variable for later use.

groups: Define a list of hosts.
 HaveNoBin = (blake yeats bogan toi robin)

tidy: Action: remove unwanted files.
 /tmp pattern=* age=$(maxage) recurse=inf
 /home pattern=*~ recurse=inf

links: Action: maintain symbolic links.
 /logs -> /var/log Create this link if needed.

 HaveNoBin:: Create this link only on these hosts.
 /bin -> /usr/bin

This file contains four sections, each headed by a keyword followed by a colon. The
first section, control, is used to specify general settings for the file, to define vari-
ables, and for other similar purposes. In this case, it specifies a list of users who are
allowed to run cfagent using this file as input, specifies the sequence of actions that
should be carried out when the file is invoked, and defines a variable named max-
age, setting its value to 7.

Assignment statements use the syntax illustrated in the example, using parentheses
as delimiters:

name = (value)

Actions are operations that Cfengine knows how to perform, and they are referred to
by keywords. Here, we specify that the tidy action be performed first, followed by
the links action. Each referenced action must have a section defining it somewhere in
the configuration file.

The next section, groups, defines a list of groups which we’ve named HaveNoBin.
This list will be used in the links section.

The next section in the file is the tidy section, which specifies unwanted files that
Cfengine is to remove. These entries have the following general syntax:

start-dir [pattern=pattern] [recurse=n] options

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

924 | Chapter 14: Automating Administrative Tasks

start-dir is the directory in which to start searching, pattern is a pattern against which
to match filenames (possibly containing wildcards), n indicates how many levels of
recursion are wanted (inf means infinite), and options are additional options further
specifying the files to be selected for removal.

In this case, files under /home ending with a tilde (and not starting with a period) are
chosen (emacs backup files), as are files under /tmp last modified more than seven
days ago. Note that the parameter to the age option is specified using the maxage
variable.

The final section in the file is the links section, which specifies symbolic links that
Cfengine is to maintain. In this case, two such links are listed, using the format:

link -> target

Here, we specify that the /var/log directory should be linked to /logs and also that /bin
should be a link to /usr/bin. When run, Cfengine checks whether these links exist, cre-
ating them if necessary. However, the latter link applies only to hosts in the list
HaveNoBin. This is specified by preceding the link specification with a class designa-
tion (indicated by the double colons). In this case, the class is defined by the host
group name, but much more complex classes are possible (as we’ll see).

Actions are performed in the order specified in actionsequence; the
ordering of their sections within the configuration file has no effect on
their execution order. Thus, in this case, tidy will still be carried out
after links even though its section precedes the links section in the
configuration file.

Table 14-2 lists the most important Cfengine actions. We’ll look at examples of sev-
eral of them in the next subsection.

Table 14-2. Useful Cfengine actions

Action Purpose

links Create/maintain symbolic and hard links.

tidy Remove unwanted files.

files Set file ownership and protection, and/or check for modification.

directories Set directory ownership, protection.

disks Verify that filesystems are available and contain sufficient free space.

disable Rename undesirable files to name.cfengine.

copy Copy local or remote files to the local system.

editfiles Edit ASCII text files.

binservers
mailserver
homeservers

Specify servers for automatic NFS filesystem mounting by Cfengine.

mountables Specify local filesystems available for NFS mounting by Cfengine.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Automating Complex Configuration Tasks with Cfengine | 925

Actions
We’ll begin with a slightly more complicated tidy example:

control:
 split = (" ")
 dirlist = ("tmp var/tmp 1/scratch 2/scratch")

tidy:
 /$(dirlist) pattern=* age=3 recurse=inf

The control section specifies the list separator character and then defines the vari-
able dirlist as a list of four directories. This variable is then used in the tidy specifica-
tion, and the three options apply to each directory in turn.

The files action is used to specify various desired characteristics and corrective
actions for files. Here is an example section:

files:
 /etc/security mode=600 owner=root group=0 recurse=inf action=fixall
 /home recurse=inf include=*.dat action=compress
 /var/log/messages owner=root mode=644 action=create

The first entry specifies the required ownership and protection of the directory /etc/
security and everything under it. By default, Cfengine checks whether the current set-
tings conform to these specifications. Here, however, action=fixall tells Cfengine to
modify the current settings if necessary to match the specified ones.

The second entry causes all files with an extension of .dat under /home to be com-
pressed. The third entry creates the file /var/log/messages if it does not exist.

The files action can also be used to verify the integrity of system executables in /usr/
bin:

control:
 ChecksumDatabase = (/usr/local/admin/cfengine/cksums)

files:
 /usr/bin checksum=md5 exclude=*.sav action=warnall

miscmounts
1unmount

Specify filesystems to mount or unmount by Cfengine.

processes Verify the existence of and control processes.

interfaces Specify characteristics of network interfaces.

resolve Maintain /etc/resolv.conf.

defaultroute Specify the static default gateway.

shellcommands Execute arbitrary shell commands from within Cfengine.

module:name Use an add-on module.

Table 14-2. Useful Cfengine actions (continued)

Action Purpose

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

926 | Chapter 14: Automating Administrative Tasks

The database file used to store the correct checksums for files is specified in the
control section, and the checksum option in the files entry specifies that the com-
parison be made. A warning will be issued for each incorrect checksum.

On Solaris systems, Cfengine can also specify ACLs for files:

acl: Define an ACL.
 { secure1
 method:overwrite Replace current ACL (default is “append”).
 fstype:posix
 default_user:*:=rwx
 default_group:chem:=rwx
 default_other:*:=
 user:chavez:=rwx
 user:mark:+rx
 user:toreo:=r
 mask:*:rwx
 }
files:
 /private acl=secure1 action=fixall

The acl section defines one or more named ACLs, which can then be specified for
files (see “Protecting Files and the Filesystem” in Chapter 7 for more information
about access control lists).

The disable action causes Cfengine to rename files which ought not to be present on
this system:

disable:
 /etc/hosts.equiv
 home/.rhosts inform=true
 /var/log/messages rotate=6

The first two entries cause Cfengine to rename the indicated files if they exist, add-
ing the extension .cfengine. In the second case, the special directory keyword home is
used to refer to all user home directories. In this case, Cfengine also issues a warning
message when such files are found.

The third entry illustrates another use for the disable section: log file rotation. The
entry tells Cfengine to maintain six old copies of the /var/log/messages file. As with
other log rotation facilities, the saved files are given the extensions .1 through .6.

The following actions specify the default gateway and name server list for the system:

defaultroute: Specify default gateway.
 192.168.20.44
resolve: Name server list.
 192.168.1.1
 192.168.10.24

Cfengine adds a static route for the specified default gateway if one does not already
exist. Similarly, the servers listed in the resolve section are added to /etc/resolv.conf if
necessary, and the resulting server list are ordered as indicated in the resolve section
of cfagent.conf.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Automating Complex Configuration Tasks with Cfengine | 927

The processes action may be used to tell Cfengine to verify that important processes
are running, restarting them if necessary, as well as to have Cfengine signal pro-
cesses:

processes:
 "sendmail" restart "/usr/sbin/sendmail" useshell=false inform=true
 "inetd" signal=hup
 "kudzu" signal=kill
 "g02" matches<=2 signal=suspend action=bymatch inform=true

The first field in each entry is a pattern that is matched against the output of the ps
command.* In general, Cfengine will apply the entry’s specifications to each match-
ing process.

The first entry causes Cfengine to determine if there is a sendmail daemon running. If
not, one is started using the specified command. The useshell options says not to
use a subshell when restarting the daemon (see the Cfengine documentation for the
rationale and implementation details).

The next two entries specify signals to be sent to the inetd and kudzu processes if
they are present.

The final entry causes Cfengine to search for processes matching the string “g02”,
and it will count the number of such processes. The entry specifies that the desired
system state include no more than two such processes. The action=bymatch option
tells Cfengine to correct the situation when this condition is not met, according to
the directives of the other options. In this case, if there are more than two such
processes—i.e., if the desired condition specified by matches=<2 is not met—it sus-
pends all of them (signal=suspend) and outputs a message indicating this.

The editfiles action can be used to make changes to ASCII text files. It is very use-
ful for maintaining certain system configuration files. For example, the following sec-
tion tells Cfengine to disable some inetd-based unwanted services:

editfiles:
 { /etc/inetd.conf
 HashCommentLinesContaining "rlogin"
 HashCommentLinesContaining "rexec"
 HashCommentLinesContaining "finger"
 HashCommentLinesContaining "tftp"
 }

Similarly, the following section tells Cfengine to add a line to existing user .login
scripts if it is not already present:

editfiles:
 { home/.login
 AppendIfNoSuchLine "/usr/local/bin/motd.pl"
 }

* More specifically, ps aux on BSD-like systems, and ps -ef on System V–based systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

928 | Chapter 14: Automating Administrative Tasks

See the Cfengine documentation for full details on the capabilities of this action.

The copy action is used to tell Cfengine to copy local or remote files to the local sys-
tem, as in these simple examples:

copy:
 /aux/save/etc/ntp.drift dest=/etc/ntp.drift mode=644
 /aux/save/etc/shells dest=/etc/shells mode=644
 /masterfiles/etc/hosts.deny serverfilemaster
 dest=/etc/hosts.deny owner=root group=0 mode=644

The first two entries specify local files to be copied from the source—the first field—
to the destination location (dest= option). The third entry causes a file to be copied
from filemaster:/masterfiles/etc/hosts.deny to /etc/hosts.deny on the local system. The
copied file will be assigned the specified ownership and file protection mode.

Classes
Here is a more complex copy section, which also reintroduces Cfengine classes:

copy:
 linux::
 $(masteretc)/rc.config dest=/etc/rc.config o=root mode=644

 ShadowHosts::
 $(masteretc)/passwd server=$(pwdmaster) dest=/etc/passwd
 owner=0 group=0 mode=644 trustkey=true
 $(masteretc)/shadow server=$(pwdmaster) dest=/etc/shadow
 owner=0 group=0 mode=600 trustkey=true encrypt=true

The first copy operation will occur only on Linux systems, and it consists of copying
the file rc.config from the location specified in the masteretc variable (defined else-
where in the configuration file) to /etc and assigning the specified ownership and pro-
tection.

The second subsection applies only to the host group ShadowHosts, and it contains
two copy specifications. They tell Cfengine to update /etc/passwd and /etc/shadow
from master copies located on a remote host, specifying the required ownership and
permissions. In both cases, the copy operation must use the Cfengine trusted key
security mechanism (to ensure that the data is really coming from the source it pur-
ports to), and the shadow password file is transmitted in encrypted form.

The cfkey utility is used to set up trusted keys on systems using Cfengine. It must be
run before these features can be used.

cfkey requires a large amount of random data to function properly. If
your system does not provide /dev/random (or it does not work effec-
tively), you must run the cfenvd daemon for a week before you install
Cfengine to give it enough time to collect the required random data.
cfkey will fail with the error message “error: PRNG not seeded” unless
a sufficient amount of random data is available.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Automating Complex Configuration Tasks with Cfengine | 929

Cfengine classes are made up of one or more of the following components:

• An operating system keyword. These include: hpux, aix, solaris, freebsd, linux,
osf, and NT. The cfagent -p -v command shows keywords defined for the cur-
rent system.

• A host name.

• A host group name (as defined in the groups section)

• A name of a day of the week.

• An hour of the day, in the format Hrnn: Hr14 for 2:00 P.M.

• A minute of the hour, in the format Minnn: Min33 for 33 past the hour.

• A 5-minute interval, in the format Minn_n+5: Min00_05 for the first five min-
utes of the hour. Note that n must be divisible by 5.

• A quarter hour, in the format Qn: Q2 for the second quarter hour. This con-
struct can also be combined with an hour: e.g., Hr02_Q3 for 2:30-2:44 P.M.

• A day of the month, in the format Dayn: Day1 for the first.

• A month name.

• A year, in the format Yrnnnn: Yr2001 for 2001.

• A locally defined class name:
control:
 addclasses = (myclass)

The default class is any, which matches any host at any time. Unspecified time and
date classes default to all. Multiple classes are joined by periods (AND logic) or verti-
cal bars (OR logic).

Here are some examples:

Class specification Matches ...
solaris.Monday.Hr01:: Solaris systems on Mondays at 1:00 A.M.
aix|hp-ux:: AIX and HP-UX systems.
aix.!vader:: AIX systems except host vader.
December.Day31.Friday:: December 31 if it is a Friday.
Monday.$(fourtimes):: Four specified each hour times on Monday.

The final example uses a list of times defined earlier:

control:
 fourtimes = (Min03 Min18 Min34 Min49)

If both AND and OR joins are used, ANDs are evaluated first:

Class specificationMatches ...
solaris|aix.Monday.Hr01:: Solaris systems always;

AIX systems on Mondays at 1:00 A.M.

(solaris|aix).Monday.Hr01:: Solaris and AIX systems on Mondays at 1:00 A.M.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

930 | Chapter 14: Automating Administrative Tasks

Classes can be used in any context within the configuration file. In this example, they
are used to define a variable differently for different operating systems:

control:
 linux:: swaptest = (/usr/bin/free -m -o)
 aix:: swaptest = (/usr/sbin/lsps -a)
...
shellcommands:
 $(swaptest) > $(reportdir)/swap_report.out

Cfengine interprets unknown class names as hostnames. If no such host exists, the
class is ignored. This fact can be used to temporarily disable a section’s classes by
altering the associated class name (or adding one):

Xlinux::
Xany::

Real cfagent.conf files can become very large, so you may want to use the include file
mechanism, the import action. For example, the following configuration file consists
entirely of included files whose divisions are used to make each individual file more
manageable:

import:
 cf.groupdefs Always include these files.
 cf.common

 hpux: cf.hpux Operating system specific includes.
 aix: cf.aix
 linux: cf.linux

and so on

Configuring cfservd
The Cfengine server has its own configuration file. Here is a simple example:

cfservd.conf
control:
 domain = ahania.com
 cfrunCommand = ("/var/cfengine/bin/cfagent")
 IfElapsed = (1)
 ExpireAfter = (15)
 MaxConnections = (50)
 MultipleConnections = (true)
 LogAllConnections = (true)
 TrustKeysFrom = (192.168.10/24)
 DynamicAddresses = (192.168.10.100-200)
 topdir = (/aux/crengine/masterfiles)

grant: Grant access to files.
 $(topdir)/outgoing *.ahania.com

deny: Deny access to files.
 $(topdir)/outgoing maverick.ahania.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Automating Complex Configuration Tasks with Cfengine | 931

The daemon also requires an addition to /etc/services:

cfengine 5308/tcp

Finally, you must start the daemon at boot time by adding it to one of the system
boot scripts.

Running Cfengine
Once set up, Cfengine may be run manually on the local system with the cfagent
command. It has the following useful options:

-f file
Specify an alternate configuration file (the default configuration file is /var/
cfengine/inputs/cfagent.conf).

-v
Verbose output mode.

-n
Preview a Cfengine run: indicate what would be done, but don’t actually per-
form any actions.

-N class
Disable the specified user-defined class.

The cfrun utility is used to initiate Cfengine runs on remote systems. It has the fol-
lowing syntax:

cfrun [host-list] [local-options] [-- remote-options] [-- classes]

For example, the following command runs Cfengine on hosts smiley, toby, and percy
and provides verbose output on the local system:

cfrun smiley toby percy

The following command runs Cfengine on all hosts listed in the cfrun.conf configura-
tion file (see the documentation for details), although execution will occur only on
remote Linux and Solaris systems:

cfrun -v -- -- linux solaris

To automate Cfengine runs, use the cfexecd daemon (which you must also add to
the system startup scripts). Once it is running, you can configure when Cfengine
runs via a cfagent.conf entry like this one:

control:
 schedule = (Min00_05 Min15_20 Min30_35 Min45_50)

This example will cause Cfengine to run four times an hour.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

932 | Chapter 14: Automating Administrative Tasks

Stem: Simplified Creation of
Client-Server Applications
In this section, we’ll look at Stem, a package that makes it very easy to create sophis-
ticated client-server applications for administrative services. Stem is a relatively new
open source package developed by Uri Guttman. The project’s home page is http://
www.stemsystems.com. Stem can be used to create a variety of useful client-server
applications, including ones that are network-based. In essence, Stem allows you to
create complex applications with only script-level effort.

Running the Stem demonstration programs is a good way to get used
to Stem’s capabilities. The ones discussed in this section are available
from my website (http://www.aeleen.com).

Installing Stem is straightforward. Once installed, Stem provides you with the ability
to create communicating processes via simple configuration files and ordinary Unix
commands (or scripts). Stem handles all interprocess communication for you trans-
parently. As we’ll see, Stem can be used to create entirely new applications and can
also serve as the conduit that allows existing commands and programs to communi-
cate regardless of their individual interfaces.

To understand some Stem examples, we first need to define a few terms:

• A hub is a Stem daemon running on a computer system. Stem applications con-
sist of one or more interconnected hubs.

• A Stem cell is an object within a Stem hub. Cells provide the various parts of the
applications functionality. Stem cells are objects.* As such, they have unique
names, a list of attributes that can be set, and some defined methods (functions
that perform various operations on them).

Stem defines three kinds of cells: a class cell (a defined cell type), an object cell
(an actual instance of some class cell making up part of a hub), and a cloned cell
(the second and later instances of a cell type that allows for multiple cells to be
created from it).

• The communications between cells are called messages. Messages can consist of
any kind of data. Messages are addressed by a triple of hub:cell:target, where hub
and cell are the names of the hub and cell to which the message should be sent,
and target is sometimes used to further specify the message’s destination in some
cells.

* Stem uses many terms from object-oriented programming.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Stem: Simplified Creation of Client-Server Applications | 933

Let’s look at a simple Stem application which illustrates these items. It is shown in
Figure 14-2. This application creates a three-way chat. The three windows in the fig-
ure each represent one of the chatters. I’ve numbered the various lines in the chat to
indicate the order in which they were entered. If you look at the figure closely, you’ll
notice that this chat is somewhat unusual in that not all messages go to every win-
dow. In fact, messages from both A and C go only to the sender himself and to B,
while messages from B go to everyone..

This application was created without any programming. The main part of it is cre-
ated using this Stem configuration file, named chat1.stem (.stem is the extension used
for Stem configuration files):

simple chat
[
class => 'Stem::SockMsg',
name => 'A',
args => [
 port => 6666, # communications port for this cell

Figure 14-2. A simple Stem chat application

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

934 | Chapter 14: Automating Administrative Tasks

 server => 1, # listen for connections
 cell_attr => [
 'data_addr' => ':sw:x' # send input to cell to this address
], # end cell_attr
], # end args
], # end cell A
Cells B and C created here, using ports 6667 and 6668, and targets of y and z (respectively).
class => 'Stem::Switch',
name => 'sw',
args => [
 in_map => [# input map: multiplex input
 x => [qw(x y)],
 y => [qw(x y z)],
 z => [qw(y z)],
], # end in_map

 out_map => [# output map: set destination for inputs
 x => 'A',
 y => 'B',
 z => 'C',
], # end out_map
], # end args
], # end cell sw

Stem configuration files are formatted using Perl object syntax (which takes a bit of
getting used to when you first encounter it). When executed, this configuration file
creates five cells (although only three are shown above). It also implicitly creates a
Stem hub.

The syntax for creating a cell is can be deduced from this example. Each cell defini-
tion is enclosed within a pair of square brackets located in column 1. Defining a cell
involves specifying at least its cell class; often, a name and other attributes are also
specified (the latter via args). Each item for each cell is specified using the format:

attribute => value,

This is the Perl object attribute assignment syntax.

For example, the first definition in the preceding configuration file creates a cell of
type Stem::SockMsg (the type is specified via the class attribute). Note that Perl mod-
ule name syntax is used to specify the cell class, and all of the provided cell types
begin with “Stem::”. This cell type is a socket message cell, and it is used to interface
external programs to Stem. In this case, we will use it to interface a window to the
Stem hub. This cell is given the name A, and several attributes are defined via the
args list (enclosed in square brackets). The communications port the cell will use is
set, the cell is specified as a server (meaning that it will listen for communications on
the port), and the address for messages is specified via the data_addr attribute of the
cell_info element in the args list; note that each subordinate list is always enclosed in
square brackets. The address given here specifies the current hub (indicated by the
empty first field), the cell named sw, and the target x within that cell. Thus, all input
received by this cell will be sent to target x in cell sw.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Stem: Simplified Creation of Client-Server Applications | 935

The actual configuration file contains two more SockMsg cell specifications, for the
B and C chat windows. They are defined similarly, although they have different port
numbers and message addresses.

The final cell defined in the configuration file is a switch cell (class Stem::Switch)
named sw. This type of cell receives messages from other cells and routes them to
other cells based on the instructions in its two maps. The maps are specified using its
two arguments. The input map defines a list of targets that incoming messages can
reference. For each one, the map also defines the list of targets to which messages
designated for it should be sent. This is done via another Perl square-bracketed list.
The target names included in the list must be quoted, and the Perl qw function is
used to do so.

In this case, we see that messages coming in for target x will be sent to targets x and
y, those for target y will go to all three targets, and those for target z will go to tar-
gets y and z.

The output map associates switch targets with other cells. In this case, target x is
associated with cell A, y with B, and z with C (as expected). Taken with the input
map, this mapping results in the message display behavior we saw in the actual
application (see Figure 14-2).

Once the cells are defined, all that remains is to start the Stem process and attach
user processes to the ports to which the cells are listening. Here are the commands to
do so:

xterm -T Chat -n Chat -geometry 80x40+500+0 -e run_stem chat1
xterm -T A -n A -geometry 80x10+0+0 -e ssfe -prompt Chat: telnet localhost 6666
xterm -T B -n B -geometry 80x10+0+175 -e ssfe -prompt Chat: telnet localhost 6667
xterm -T C -n C -geometry 80x10+0+350 -e ssfe -prompt Chat: telnet localhost 6668

We use four xterm windows for this simple demonstration application. The first one
runs the run_stem script included with the Stem package. This creates a Stem hub
using the specified configuration file (here, chat1.stem). The other three commands
run ssfe, a program which provides an input prompt at the bottom of the window
while running a specified command (ssfe is included with Stem). Here, we use the
telnet command to attach to the ports we specified when creating the socket mes-
sage cells.

Note that I omitted the Stem hub windows from the previous figure. In fact, that
window is also active, and the addition of one additional cell to the configuration file
will allow you to interact directly with the hub:

[
class => 'Stem::TtyMsg',
args => [],
],

This cell is a TTY message cell, and it creates a command interface to a Stem hub.
For this cell, the args attribute is set to an empty list. You can use this command

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

936 | Chapter 14: Automating Administrative Tasks

interface to modify the functioning of the running application. For example, you can
redefine the switch maps on the fly.

The next logical step is to create a chat program where chatters can be on different
computer systems. This will involve a Stem hub on each system where someone is
chatting. This is the configuration file that could be used on a client system:

chat_cli.stem
[
class => 'Stem::Hub',
name => 'chat_client2',
args => [],
],

create a portal for communicating with other hubs
[
class => 'Stem::Portal',
args => [],
],

[
class => 'Stem::SockMsg',
name => 'B',
args => [
port => 6668,
 server => 1,
 cell_attr => [
 'data_addr' => 'chat_server:sw:z'
], # end cell_attr
], # end args
], # end cell B

In this example configuration file, we explicitly create the Stem hub, naming it chat_
client1. The second cell definition creates a portal: an object used for communica-
tion between distinct hubs. In this case, this hub will use it to send messages to the
Stem hub running the chat server. The final cell definition creates a cell named C,
and it uses port 6668 on the local host for communication, and specifies it message
destination address as sw:z (target z in cell sw on hub chat_server).

The following commands can be used to start the client application, including the
required windows:

xterm -T Chat -n Chat -geometry 80x40+500+0 -e run_stem chat_cli
xterm -T C -n C -geometry 80x10+0+350 -e ssfe -prompt Chat: telnet localhost 6668

These commands will create the hub process and one chat window.

Here is the configuration file for the chat server:

chat_serv.stem
[
class => 'Stem::Hub',
name => 'chat_server',
args => [],
],

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Stem: Simplified Creation of Client-Server Applications | 937

[
class => 'Stem::Portal',
args => [
 'server' => 1, # listen for messages from other hubs
 'host' => '' # accept messages from any host
],
],

[
class => 'Stem::SockMsg',
name => 'A',
args => [
 port => 6666,
 server => 1,
 cell_attr => [
 'data_addr' => ':sw:x'
],
],
],

[
 class => 'Stem::Switch',
 name => 'sw',
 args => [
 in_map => [# everybody sees everything
 x => [qw(x y z)],
 y => [qw(x y z)],
 z => [qw(x y z)],
],

 out_map => [
 x => 'chat_server:A',
 y => 'chat_client1:B',
 z => 'chat_client2:B',
],
],
],

The first two definitions create the hub (named chat_server) and a server portal that
will listen for messages from other hubs from any host (the latter is indicated by the
null host attribute). The next definition creates a chat cell on the local host (named
A), and the final definition defines a switch cell. In this case, all input received from
any target will be sent to every target.

The following commands will start the Stem processes used for the chat server:

xterm -T Chat -n Chat -geometry 80x40+500+0 -e run_stem chat_serv
xterm -T A -n A -geometry 80x10+0+0 -e ssfe -prompt Chat: telnet localhost 6666

Note that we do not have to specify the host names where the Stem hubs are run-
ning anywhere in this configuration. Stem automatically handles that for us.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

938 | Chapter 14: Automating Administrative Tasks

Lots of different kinds of tasks can be performed using this same basic structure. For
example, we’ll now consider a simple monitoring application that is very similar in
stucture to the preceding chat application. Here is the client configuration file:

mon_cli.stem
[
class => 'Stem::Hub',
name => 'collecting',
args => [],
],
[
class => 'Stem::Portal',
args => [],
],

[
class => 'Stem::Proc',
name => 'do_it',
args => [
 path => '/usr/local/sbin/my_mon',
 cell_attr => [
 'data_addr' => 'monitoring:A:A',
 'send_data_on_close' => 1,
],
],
],

The first three cell definitions create the hub and portal. The final section of the con-
figuration file creates a process cell named do_it. Process cells can create and control
processes. The path attribute specifies the path to the command or program to be
run. In this case, a simple system monitoring script is selected. The cell_attr attribute
once again specifies the message destination address where all input received by the
cell will be sent. In this case, the cell’s input consists of the output from the created
process. The final attribute, send_data_on_close, tells the cell to transmit all remain-
ing input when the process ends. It is used to avoid message delays due to data buff-
ering on the local host.

The server portion of the application is created using this configuration file:

mon_serv
[
class => 'Stem::Hub',
name => 'monitoring',
args => [],
],
[
class => 'Stem::Portal',
args => ['server' => 1, 'host' => ''],
],
[
class => 'Stem::SockMsg',
name => 'A',

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Stem: Simplified Creation of Client-Server Applications | 939

args => [
 port => 6666,
 server => 1,
 cell_attr => [
 'data_addr' => 'monitoring:A:A',
],
],
],

Note the similarities to the chat server configuration file. This file creates a hub, por-
tal (as a server portal), a TTY interface to the hub, and a single socket message cell.
No switch is needed in this case, as we just want the monitoring output from the cli-
ent hub to be displayed in a window by the server hub.

So how does this work? The following commands will start the required processes:

On the client
xterm -T Client -n Client -geometry 80x40+500+0 -e run_stem mon_cli

On the server
xterm -T Trigger -n Trigger -geometry 80x40+500+0 -e run_stem mon_serv
xterm -T Monitor -n Monitor -geometry 80x10+0+0 -e telnet localhost 6666

Then, in the Stem hub window on the server (Trigger), enter the command:

Stem> collecting:do_it cell_trigger

This will cause the process cell do_it on the client hub to be triggered.* It will then
run its associated process and return the appropriate message(s) to the server hub.
The messages will then be displayed in the window labeled Monitor. Each one will
look like the following:

date: Wed Jul 24 01:33:40 EDT 2002
load average: 5.07
total processes: 294
free memory: 4404

This is the output of the script my_mon. Note that a similar command to the server
hub could be used to perform the same task on a different client system.

This application can easily be made more automated. For example, this implementa-
tion assumes that the Stem client processes are already running on the client. How-
ever, the boot_stem script which is part of the Stem package can be used instead to
start the remote client processes instead. In addition, the triggering command to the
Stem server hub can also be automated via a script. More complex monitoring appli-
cations are also possible with a little more work.

Stem includes a variety of useful predefined cell types. Some of the most useful are
listed below:

* Technically, this command initiates a message that causes the do_it cell’s cell_trigger method to be invoked.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

940 | Chapter 14: Automating Administrative Tasks

Stem::Log
Writes to and manages external log files. Entry formats can be specified via the
cell attributes, and the data can be filtered according to a variety of criteria.

Stem::Log::Tail
Monitors external log files for additions. Newly found data can be sent into the
Stem application on demand or according to a schedule.

Stem::Cron
Creates and manages scheduled messages transmissions. We’ve considered only
information messages in this section, but in fact Stem messages are actually
much more powerful than that. They can be used to initiate any valid operation
within any Stem cell.

Stem::AsyncIO
Manages buffered I/O for other cells.

We’ll return to the chat application for our final example, which will illustrate creat-
ing a simple custom Stem cell type. We will create a cell which receives input,
prepends a label to it, and then sends it on to another cell. We will interpose this cell
between the chat socket message cells and the switch cell in order to label chat text
with its originating window.

Stem cell classes are defined in Perl modules. Here is the Perl code that corresponds
to the new cell type (stored as Stem/ChatLabel.pm with respect to the location of the
chat configuration files):

package Stem::ChatLabel;
use strict;

define cell attributes
my $attr_spec = [
 { 'name' => 'sw_addr', }, # target switch cell
 { 'name' => 'hub_addr', 'default' => '', }, # target hub
 { 'name' => 'sbefore', 'default' => '', }, # label string
];

called when the cell is created (boilerplate code)
sub new {
 my($class) = shift ;
 my $self = Stem::Class::parse_args($attr_spec, @_);
 return $self unless ref $self ;
 return $self ;
 }

called whenever data is received by the cell
sub data_in {
 my ($self, $msg) = @_;
 # get message data
 my $data = $msg->data();

 # add the label prefix to the current message (if any)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Stem: Simplified Creation of Client-Server Applications | 941

 substr($$data, 0, 0, $msg->from_cell() . ': ') ;
 substr($$data, 0, 0, $self->{'sbefore'} . '_') if $self->{'sbefore'};

 # create and send modified message
 $msg->data($data) ;
 $msg->to_cell($self->{'sw_addr'}) ;
 $msg->to_hub($self->{'hub_addr'}) if $self->{'hub_addr'};
 $msg->dispatch() ;
 }

1 ; # module exit

After the initial module definition and use strict statements, the file defines the
attributes this cell class will use (in addition to ones used by all cells). This is accom-
plished by defining $attr_spec. This cell will have three additional attributes: the
name of the switch cell where the modified messages should be sent, the hub name
where that switch is located (default to the current hub), and the string that should
be prepended to the message text (defaults to a null string, but see below).

The next section of the file defines the new() method for this cell. This is the con-
structor method called when a cell of this type is created. The code here is that typi-
cally used for Stem cells, and it was simply copied from the module for another cell.

The final function creates the data_in method for this cell type. This method is
invoked whenever a cell of this type receives a message. In this case, the function
extracts the current string using the message’s data() method. Next, it adds the pre-
fix string if one was defined, using the originating cell name if none was specified in
the configuration file. Finally, the data_in method modifies the message’s address,
substituting its own hub and switch selections for the current ones, and then the
message is dispatched.

Here are the relevant portions of the client configuration file showing how this cell
can be used:

[
class => 'Stem::SockMsg',
name => 'A',
args => [
 port => 6666,
 server => 1,
 cell_attr => [
 'data_addr' => ':lab:a' # destination cell = ChatLabel cell
],],],

[
class => 'Stem::ChatLabel',
name => 'lab',
args => [
 sw_addr => 'sw', # switch cell name
 hub_addr => 'chat_srv', # chat server hub name
],],

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

942 | Chapter 14: Automating Administrative Tasks

The socket message cell’s message destination cell is changed to the label cell. The
label cell itself specifies the server hub name and the switch cell name on that hub.
The rest of the configuration file is unchanged.

In this case, messages will be labeled with the name of the socket message cell that
received them (since no message prefix attribute was specified for the ChatLabel
cell), as in this example:

A: Pizza is ok for lunch as long as it is vegetarian.

This overview has introduced you only to Stem’s most basic capabilities. For more
information about Stem and what it can do, consult the package documentation and
its home page. As I said before, experimenting with its demo programs and these
examples is a good way to become familiar with the package and how it works.

Adding Local man Pages
There’s an old and somewhat scatological saying about a job not being finished until
the paperwork is done.* In the case of creating scripts and programs, this means writ-
ing some sort of documentation. Tools you create can be documented in many dif-
ferent ways, but the usual Unix practice is to produce an online manual page. We’ll
conclude this chapter with a brief look at creating manual pages for the tools you
develop.

Manual-page files are named for the command or utility that they describe, and they
are given an extension that matches the number or letter of the man subdirectory in
which they reside. For example, a manual-page file for the wgrep command placed
into man1 subdirectory would be named wgrep.1.†

The simplest possible manual page is just a text file describing a command or topic.
However, if you’d like to create something a bit more elaborate, and more like the
other manual pages typically found on Unix systems, it is very easy to do so. Manual-
page source files are designed for the nroff text formatting system,‡ and they com-
bine the text of the manual page with nroff directives specifying how to format the
text. (Not all Unix versions provide the text formatting utilities by default or at all.)

The best way to figure out what the various nroff directives do is to see them in con-
text. In general, they are placed at the beginning of a line and start with a period.
Here is a brief manual page source file for the wgrep command, which can also serve
as a template for manual pages you might create:

* Imagine how it applies to writing a book.

† Perl programs are traditionally documented with POD, a scheme for embedding the documentation in the
Perl source. Ugh.

‡ Or the GNU equivalent, groff.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding Local man Pages | 943

.TH wgrep l

.SH NAME
wgrep - windowed grep utility
.SH SYNOPSIS
wgrep [options] regexp file(s)
.SH DESCRIPTION
.B wgrep
is a
.B grep
utility which prints a window of lines surrounding
each matching line that it finds in the list of files.
By default, the window is three lines before and after
each matching line.
.PP
.B wgrep
has many options which control how its output looks.
It can range from plain to painfully excessive.
.SH OPTIONS
.TP 5
.B -w
Specifies the window size in the form
.B before:after Either one can be omitted.
.TP 5
.B -n
Include line numbers before each printed line.
.TP 5
.B -s
Include asterisks in front of matching lines.
.PP
.SH BUGS
None of course.
.SH SEE ALSO
egrep(1), VMS SEARCH command

Here is how the formatted version might look:

wgrep(l) wgrep(l)
NAME
 wgrep - windowed grep utility

SYNOPSIS
 wgrep [options] regexp file(s)

DESCRIPTION
 wgrep is a grep utility which prints a window of lines surrounding each
 matching line that it finds in the list of files. By default, the window is
 three lines before and after each matching line.
 wgrep has many options which control how its output looks. It can range from
 plain to painfully excessive.

OPTIONS
 -w Specifies the window size in the form before:after.
 Either one can be omitted.
 -n Include line numbers before each printed line.
 -s Include asterisks in front of matching lines.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

944 | Chapter 14: Automating Administrative Tasks

BUGS
 None, of course.

SEE ALSO
 egrep(1), VMS SEARCH command

Table 14-3 lists the nroff directives used in the sample manual page along with other
related and useful directives.

You can simulate a man command for a manual page you are developing with a com-
mand like this one:

$ nroff -man file | more

If you want a printed version of this (or any other) manual page, you’ll need to use
the troff command as well as other printing-related typesetting utilities provided on
the system.

Table 14-3. Useful nroff constructs

Directive Explanation

.TH name section Title heading.

.SH NAME Section heading (names are uppercase by convention).

.TP [n] Tagged paragraph: use hanging indent (of n spaces if specified).

.PP Start new filled paragraph.

.IP Indented paragraph.

.nf Stop text filling (adjusting words on lines).

.fi Start text filling.

.B text Use bold type for text given as its argument.

.I text Italicize text given as its argument.

.R text Use roman type for text given as its argument.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

945

Chapter 15 CHAPTER 15

Managing System Resources

This chapter describes the tools and facilities Unix offers for monitoring and manag-
ing the system’s CPU, memory, disk and network resources, including some of the
limitations inherent in the Unix approach. The first part of the chapter provides an
overview of system performance considerations and then discusses Unix processes.
The chapter then goes on to consider managing the various sytem resources—CPU,
memory, local and network I/O, disk space—in detail.

A large part of managing any system resource is knowing how to measure and inter-
pret its current state, and so we’ll spend some time looking at ways to monitor
resources and to track their use over time.

This chapter provides a detailed introduction to performance monitoring and tun-
ing. For more detailed information about tuning Unix systems, I recommend these
books:

• System Performance Tuning by Gian-Paolo D. Musameci and Mike Loukides
(O’Reilly). This work focuses on Solaris and Linux systems.

• AIX Performance Tuning by Frank Waters (Prentice Hall).

• HP-UX Tuning and Performance by Robert F. Sauers and Peter S. Weygant
(Hewlett-Packard Professional Books).

• Solaris Internals by Jim Mauro and Richard McDougall (Prentice Hall).

• NFS and NIS by Hal Stern, Mike Eisler, and Ricardo Labiaga (O’Reilly).

Thinking About System Performance
Why is the system so slow? is probably second on any system administrator’s things-I-
least-want-to-hear list (right after Why did the system crash again?!). Like system reli-
ability, system performance is a topic that comes up only when there is a problem.
Unfortunately, no one is likely to compliment or thank you for getting the most out
of the system’s resources.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

946 | Chapter 15: Managing System Resources

System performance–related complaints can take on a variety of forms, ranging from
sluggish interactive response time, to a job that takes too long to complete or is
unable to run at all because of insufficient resources.

In general, system performance depends on how efficiently a system’s resources are
applied to the current demand for them by various jobs in the system. The most
important system resources from a performance perspective are CPU, memory, and
disk and network I/O, although sometimes other device I/O can also be relevant.
How well a system performs at any given moment is the result of both the total
demand for the various system resources and how well the competition among pro-
cesses* for them is being managed. Accordingly, performance problems can arise
from a number of causes, including both a lack of needed resources and ineffective
control over them. Addressing a performance problem involves identifying what
these resources are and figuring out how to manage them more effectively.

Know What Normal Is

As with most of life, performance tuning is much harder when you
have to guess what normal is. If you don’t know what the various sys-
tem performance metrics usually show when performance is accept-
able, it will be very hard to figure out what is wrong when
performance degrades. Accordingly, it is essential to do routine sys-
tem monitoring and to maintain records of performance-related statis-
tics over time.

When the lack of a critical resource is the source of a performance problem, there are
a limited number of approaches to improving the situation. Put simply, when you
don’t have enough of something, there are only a few options: get more, use less,
eliminate inefficiency and waste to make the most of what you have, or ration what
you have. In the case of a system resource, this can mean obtaining more of it (if that
is possible), reducing job or system requirements to desire less of it, having its various
consumers share the amount that is available by dividing it between them, having
them take turns using it, or otherwise changing the way it is allocated or controlled.

For example, if your system is short of CPU resources, your options for improving
things may include some or all of the following:

• Adding more CPU capacity by upgrading the processor.

• Adding additional processors to allow different parts of the work load to pro-
ceed in parallel.

• Taking advantage of currently unused CPU capacity by scheduling some jobs to
run during times when the CPU is lightly loaded or even idle.

* On many modern systems, processes have been replaced by threads as the fundamental execution entity.
However, in uniprocessor environments at least, threads and processes are conceptually similar at a system
administration level, so I will continue to speak of “processes” throughout this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thinking About System Performance | 947

• Reducing demands for CPU cycles by eliminating some of the jobs that are con-
tending for them (or moving them to another computer).

• Using process priorities to allocate CPU time explicitly among processes that
want it, favoring some over the others.

• Employing a batch system to ensure that only a reasonable number of jobs run at
the same time, making others wait.

• Changing the behavior of the operating system’s job scheduler to affect how the
CPU is divided among multiple jobs.

Naturally, not all potential solutions will necessarily be possible on any given com-
puter system or within any given operating system.

It is often necessary to distinguish between raw system resources like CPU and mem-
ory and the control mechanisms by which they are accessed and allocated. For exam-
ple, in the case of the system’s CPU, you don’t have the ability to allocate or control
this resource as such (unless you count taking the system down). Rather, you must
use features like nice numbers and scheduler parameters to control usage.

Table 15-1 lists the most important control mechanisms associated with CPU, mem-
ory, and disk and network I/O performance.

The Tuning Process
The following process offers the most effective approach to addressing system perfor-
mance issues.

Table 15-1. system resource control mechanisms

Resource Control mechanisms

CPU Nice numbers

Process priorities

Batch queues

Scheduler parameters

Memory Process resource limits

Memory management-related parameters

Paging (swap) space

Disk I/O Filesystem organization across physical

disks and controllers

File placement on disk

I/O-related parameters

Network I/O Network memory buffers

Network-related parameters

Network infrastructure

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

948 | Chapter 15: Managing System Resources

1. Define the problem in as much detail as you can.

The more specific you can be about what is wrong (or less than optimal) with the
way things are currently, the more likely it is you can find ways to improve them.
Ideally, you’d like to move from an initial problem description like this one:

System response time is slow.

to one like this:

Interactive users running X experience significant delays opening new windows
and switching between windows.

A good description of the current performance issues will also implicitly state your
performance goals. For example, in this case, the performance goal is clearly to
improve interactive response time for users running under X. It is important to
understand such goals clearly, even if it is not always possible to reach them (in
which case, they are really wishes more than goals).

2. Determine what’s causing the problem.

To do so, you’ll need to answer questions like these:

• What is running on the system (or, when the performance of a single job or pro-
cess is the issue, what else is running)? You may also need to consider the
sources of the other processes (for example, local users, remote users, the cron
subsystem, and so on).

• When or under what conditions does the problem occur? For example, does it
only occur at certain, predictable times of the day or when remote NFS mounts
of local disks have reached a certain level? Are all users affected or only some or
even one of them?

• Has anything about the system changed that could have introduced or exacer-
bated the problem?

• What is the critical resource that is adversely affecting performance? Answering
this question will involve finding the performance bottleneck for the job(s) in
which you are interested (or for this type of system workload). Later sections of
this chapter will discuss tools and utilities that enable you to determine this.

For example, if we examined the system with the X windows performance problems,
we might find that the response-time problems occurred only when more than one
simulation job and/or large compilation job is running. By watching what happens
when a user tries to switch windows under those conditions, we could also figure out
that the critical resource is system memory and that the system is paging (we’ll have
more to say about this later in this chapter).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Thinking About System Performance | 949

3. Formulate explicit performance improvement goals.

This step involves transforming the implicit goals (wishes) that were part of the prob-
lem description into concrete, measurable goals. Again, being as precise and detailed
as possible will make your job easier.

In many cases, tuning goals will need to be developed in conjunction with the users
affected by the performance problems, and possibly with other users and manage-
ment personnel as well. System performance is almost always a matter of compro-
mises and tradeoffs, because it inevitably involves deciding how to apply and
apportion the finite available resources. Tuning is easiest and most successful where
there is a clear agreement about the relative priority and importance of the various
competing activities on the system.

To continue with our example, setting achievable tuning goals will be difficult unless
it is decided whose performance is more important. In other words, it is probably
necessary to choose between snappy interactive response time for X users and fast
completeion times for simulation and compilation jobs (remember that the status
quo has already been demonstrated not to work). Decided one way, the tuning goal
could become something like this:

Improve interactive response time for X users as much as possible without
making simulation jobs take any longer to complete. Compilations can be
delayed somewhat in order to keep the system from paging.

Not all performance goals that can be formulated can be met. You
often must choose between the alternatives that are actually possible.
Thus, in the preceding example, you will not be able to meet all three
CPU requirements simultaneously on the current system.

4. Design and implement modifications to the
system and applications to achieve those goals.

Figuring out what to do is, of course, the trickiest part of tuning a system. We’ll look
at what the options are for various types of problems in the upcoming sections of this
chapter.

It is important to tune the system as a whole. Focusing only on part of the system
workload will give you a distorted picture of the problem, because system perfor-
mance is ultimately the result of the interactions among everything on the system.

5. Monitor the system to determine how well the changes worked.

The purpose here is to evaluate the system status after the change is made and deter-
mine whether or not the change has improved things as expected or desired. The
most successful tuning method introduces small changes to the system, one at a
time, allowing you to thoroughly test each one and judge its effectiveness—and to
back it out again if it makes things worse instead of better.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

950 | Chapter 15: Managing System Resources

6. Return to the first step and begin again.

System performance tuning is inevitably an iterative process, because even a success-
ful change will often reveal new interactions to understand and new problems to
address. Similarly, once the bottleneck caused by one system resource is relieved, a
new one centered around a different resource may very well arise. In fact, the initial
performance problem can often be just a secondary symptom of the real, more seri-
ous underlying problem (e.g., a CPU shortage can be a symptom of serious memory
shortfalls).

Spend Money If You Have It, but Spend Wisely

Not all problems in life can be solved with money, but many perfor-
mance issues can. If you have definitively identified the resource that is
in short supply and you can afford to buy more of it (or upgrade it), do
so. This approach is often the best and fastest way to address a perfor-
mance problem. On the other hand, buying hardware in the hope that
will alleviate a performance problem is likely to be both wasteful and
frustrating.

Most operating systems provide specialized tools for performance tuning. These are
the primary tuning tools and procedures for each of the various operating systems we
are considering:

We’ll discuss using these tools at the appropriate points within this chapter.

Some systems also provide additional performance monitoring and tuning tools as
add-on packages.

Some Tuning Caveats
I’ll close this section with two important notes about system performance tuning.

First, be aware of the experimenter effect. The term refers to the realization that
merely watching something happen can change the thing that is happening in signifi-
cant ways. In anthropology, this means that the a researcher observing the customs
and behaviors of another culture inevitably has an effect on what is observed; people
behave differently when they know they are being watched, especially by outsiders.
For performance monitoring, running the monitoring tools can also have an effect on
the system, and this fact needs to be taken into account when interpreting the data
they collect. Ideally, performance data collection should be decoupled from data
analysis (and the latter can take place on a different system).

AIX schedtune, vmtune, no
FreeBSD sysctl, /etc/sysctl.conf
HP-UX ndd, kmtune
Linux files under /proc/sys
Solaris dispadmin, ndd, /etc/system
Tru64 sysconfig, /etc/sysconfigtab, dxkerneltuner

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Controlling Processes | 951

Second, consider this advice from IBM’s AIX Versions 3.2 and 4.1 Performance Tun-
ing Guide:

The analyst must resist the temptation to tune what is measurable rather than what is
important.

Its overly formal language aside, this maxim reminds us that the tools Unix provides
for observing system behavior offer one way of looking at the system, but not the
only way. What is actually important to watch and tune on your system may or may
not be trivially accessible to either monitoring or modification.

At the same time, it is also necessary to keep this important corollary in mind:

Resist the temptation to tune something just because it is tunable.

This is, of course, really just another way of saying:

If it ain’t broke, don’t fix it.

Monitoring and Controlling Processes
Unix provides the ability to monitor process execution and, to a limited extent, spec-
ify execution priorities. By doing so, you can control how CPU time is allocated and
(indirectly) how memory is used. For example, you can expedite certain jobs at the
expense of all others, or you can maintain interactive response times by forcing large
jobs to run at lowered priority. This section discusses Unix processes and the tools
available for monitoring and controlling process execution.

The uptime command gives you a rough estimate of the system load:

% uptime
3:24pm up 2 days, 2:41, 16 users, load average: 1.90, 1.43, 1.33

uptime reports the current time, how long the system has been up, and three load
average figures. The load average is a rough measure of CPU use. These three figures
report the average number of processes active during the last minute, the last five
minutes, and the last 15 minutes. High load averages usually mean that the system is
being used heavily and the response time is correspondingly slow. Note that the sys-
tem’s load average does not take into account the priorities of the processes that are
running.

What’s high? As usual, that depends on your system. Ideally, you’d like a load aver-
age under about 3–5 (per CPU), but that’s not always possible given the workload
that some systems are required to handle. Ultimately, “high” means high enough
that you don’t need uptime to tell you that the system is overloaded—you can tell
from its response time.

Furthermore, different systems behave differently under the same load average. For
example, on some workstations, running a single CPU-bound background job at the
same time as X Windows will bring interactive response to a crawl even though the
load average remains quite low. A low load average is no guarantee of a fast response

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

952 | Chapter 15: Managing System Resources

time, because CPU availability is just one factor affecting overall system perfor-
mance. You can generally expect to see higher typical load averages on server sys-
tems than on single-user workstations.

The ps Command
The ps command gives a more complete picture of system activity. This utility pro-
duces a report summarizing execution statistics for current processes. The com-
mand’s options control which processes are listed and what information is displayed
about each one. The format of the command differs considerably between the BSD
and System V forms.

To obtain an overall view of current system activity, the most useful form of the BSD-
style command is ps aux, which produces a table of all processes, arranged in order of
decreasing CPU usage at the moment when the ps command was executed.* It is
often useful to pipe this output to head, which displays the most active processes:

% ps aux | head -5
USER PID %CPU %MEM SZ RSS TTY STAT TIME COMMAND
harvey 12923 74.2 22.5 223 376 p5 R 2:12 f77 -o test test.F
chavez 16725 10.9 50.8 1146 1826 p6 R N 56:04 g04 HgO.dat
wang 17026 3.5 1.2 354 240 co I 0:19 vi benzene.txt
marj 7997 0.2 0.3 142 46 p3 S 0:04 csh

The meanings of the fields in this output (as well as others displayed by the -l option
to ps) are given in Table 15-2.

The first line in the previous example shows that user harvey is running a Fortran
compilation. This process has PID 12923 and is currently running or runnable. User
chavez’s process (PID 16725), executing the program g04, is also running or runna-
ble, though at a lowered priority. From this display, it’s obvious who is using the
most system resources at this instant: harvey and chavez have about 85% of the CPU
and 73% of the memory between them. However, although it does display total CPU
time, ps does not average the %CPU or %MEM values over time in any way.†

* Linux, FreeBSD, AIX, and Tru64 provide the BSD form of ps. Under AIX and Tru64, the ps command sup-
ports both BSD and System V options. The BSD options are not preceded by a hyphen (which is a legal syn-
tax variation under BSD), and the System V options do include a hyphen. Thus, for these Unix versions, ps
–au does not equal ps au.

Even in this mode, however, the AIX command is the System V version, even if its output is displayed with
BSD column headings. Thus, ps aux output is displayed in PID rather than %CPU order. Solaris also pro-
vides a somewhat BSD-like ps command in /usr/ucb (which uses System V column headings).

† This describes the true BSD definition for these fields. However, many System V–based operating systems
fudge them even when they provide a BSD-compatible ps command. Under Linux, AIX, and Solaris, the
%CPU column has a different meaning: it indicates the ratio of CPU time to elapsed time for the entire life-
time of each process, a very different statistic than current CPU usage.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Controlling Processes | 953

A vaguely similar listing is produced by the System V ps -ef command:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 0 0 0 09:36:35 ? 0:00 sched
root 1 0 0 09:36:35 ? 0:02 /etc/init
...
marj 7997 1 10 09:49:32 ttyp3 0:04 csh
harvey 12923 11324 9 10:19:49 ttyp5 56:12 f77 -o test test.F

Table 15-2. ps command output

Column Contents

USER (BSD)
UID (System V)

Username of process owner.

PID Process ID.

%CPU Estimated fraction of CPU consumed (FreeBSD and Tru64); CPUtime/elapsed time (AIX, Solaris, and
Linux)

%MEM Estimated fraction of system memory consumed (BSD-style); the estimates are sometimes quite poor

SZ Virtual memory used in KB (BSD) or pages (System V)

RSS Physical memory used (in same units as SZ)

TT, TTY TTY associated with process.

STAT (BSD)
S (System V)

Current process state; one (or more, under BSD) of the following:

R Running or runnable.
S Sleeping
I Idle (BSD); Intermediate state (System V)
T Stopped
Z Zombie process
D (BSD) Disk wait
X (System V) Growing: waiting for memory
K (AIX) Available kernel process
W (BSD) Swapped out
N (BSD) Niced: execution priority lowered
< (BSD) Niced: execution priority artificially raised
TIME Total CPU time used

COMMAND Command line being executed (truncated).

STIME (System V)
STARTED (BSD)

Time or date process started.

F Flags associated with process (see the ps manual page).

PPID Parent’s PID.

NI Process nice number.

C (System V)
CP (BSD)

Short term CPU-use factor; used by scheduler for computing the execution priority (PRI).

PRI Actual execution priority (recomputed dynamically).

WCHAN Specifies the event the process is waiting for.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

954 | Chapter 15: Managing System Resources

chavez 16725 16652 15 17:02:43 ttyp6 10:04 g04 HgO.dat
wang 17026 17012 14 17:23:12 console 0:19 vi benzene.txt

The columns hold the username, process ID, parent’s PID (the PID of the process
that created it), the current scheduler value, the time the process started, its associ-
ated terminal, its accumulated CPU time, and the command it is running. Note that
the ordering is by PID, not resource usage. This form of ps is supported under
Solaris, HP-UX, AIX, and Tru64. ps is also useful in pipes; a common use is:

% ps aux | grep chavez

This command lists the processes user chavez currently has running.

You can use the sort command in conjunction with the System V version of ps to
extract performance-related data from its process listings. For example, the follow-
ing command finds processes using large amounts of memory (shown in the SZ
field):

$ ps -el | head -1 ; ps -el | sort -nkr10 | head -5
 F S UID PID PPID C PRI NI SZ ... TIME CMD
 240001 A 603 630828 483460 240 120 20 9711568 29530:42 l703.exe
 240001 A 603 573616 540786 240 120 20 9710404 29516:30 l802.exe
 240001 A 0 221240 139322 0 60 20 6140 25:50 X
 240001 A 0 303204 270428 0 60 20 2004 0:32 sendmail
 240001 A 0 458898 270428 0 60 20 1996 0:07 IBM.Errmd

Some columns have been removed from this output for space reasons.

Other Process Listing Utilities
There are several useful, free system monitoring tools. In this section, we’ll look at
pstree and top.

pstree displays system processes in a tree-like structure, and it is accordingly useful
for illuminating the relationships between processes and for a quick, pictorial snap-
shot of what is running on the system. pstree was written by Werner Almesberger. It
can be found by itself on many network sites and as part of the psmisc package (ftp://
sunsite.unc.edu/pub/Linux/system/status/ps). It is included by default on Linux, and
FreeBSD includes it among the additional packages on the installation CDs.*

Here is an example of its output:

$ pstree
init-+-alarmd
 |-anacron
 |-apmd
 |-atd
 |-crond
 |-gpm

* Solaris has a vaguely similar utility named ptree.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Controlling Processes | 955

 |-inetd-+-in.rlogind---bash---vi Two remote users.
 | `-in.rlogind---bash---mkps---gbmat-+-grops
 | |-gtbl
 | `-gtroff
 |-kapm-idled
 |-7*[kdeinit]
 |-kdeinit-+-kdeinitKDE clients.
 | `-kdeinit---bash-+-pstree
 | |-xclock
 | |-xterm---tcsh---ls
 | `-2*[xterm---rlogin]
 |-kdeinit---cat
 |-keventd
 |-khubd
 |-kjournald
 |-klogd
 |-login---bash---startx---xinit-+-X X windows main processes.
 | `-startkde---ksmserver
 |-mdrecoveryd
 |-5*[mingetty]
 |-portmap
 |-rpc.statd
 |-sendmail
 |-sshd
 |-syslogd
 |-vmware-guestd
 |-xfs
 `-xinetd---fam

In general, all processes are listed by command name, and child processes appear to
the right of their parent process. Thus, init appears at the extreme left of the dis-
play, appropriately, because it is the ultimate parent of every other process. The
notation:

n*[command]

indicates that there are n processes running command. The sample output shows five
mingetty processes.

On this system, there are three groups of user processes:

• A local user running X and several clients: the KDE window manager, xclock;
two xterm windows onto remote systems, and a local xterm window running the
tcsh shell. These processes are displayed on the second and third annotated
groups of lines in the output.

• A remote user running the bash shell and this pstree command (the annotated
line headed by “inetd”).

• Another remote user running three GNU text processing utilities (the three lines
making up the second branch “in.rlogind” under “inetd”).

The remainder of the lines in the display are the usual system processes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

956 | Chapter 15: Managing System Resources

The top utility provides a continuous display of the system status and most active
processes, which it automatically updates every few seconds. Versions of top are
included with FreeBSD, HP-UX, Linux, and Tru64. The utility was written by Will-
iam LeFebvre and is available from http://www.groupsys.com/top/.

Here is a snapshot of the display from a Linux system:

6:19pm up 13 days, 23:42, 1 user, load average: 0.03, 0.03, 0.00
28 processes: 27 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 7.7% user, 14.7% system, 0.0% nice, 77.6% idle
Mem: 6952K av, 6480K used, 472K free, 3996K shrd, 2368K buff
Swap: 16468K av, 2064K used, 14404K free
 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
 1215 chavez 14 0 8908 8908 7940 S 1.1 9.4 0:03 kdeinit
 1106 chavez 14 -1 12748 9420 1692 S < 0.9 9.9 0:14 X
 1262 chavez 16 0 1040 1040 836 R 0.9 1.1 0:00 top
 1201 chavez 9 0 10096 9.9M 9024 S 0.1 10.6 0:02 kdeinit
 1 root 8 0 520 520 452 S 0.0 0.5 0:04 init
 2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
 ...

The first five lines give general system information: uptime statistics, overall number
of processes statistics, and current CPU, memory, and swap space usage. The rest of
the display consists of output similar to that provided by various options to ps (with
similar column headings), arranged in order of decreasing current CPU usage. In top
displays, the %CPU column indicates very recent CPU consumption for each pro-
cess (over the last minute or less of elapsed time).

The HP-UX version of top is display-only. By default, the top display is updated
every five seconds. You can change that interval using these command forms:

All of these examples set the update interval to eight seconds. top runs continuously
until you press the q key.

Most versions of top also allow you to interact with the processes that are being dis-
played. Pressing the k and r keys allow you to kill and renice a process, respectively
(these actions are discussed in detail later in this chapter). In both cases, top will
prompt you for the PID of the process that you want to affect.

The /proc Filesystem
All of the Unix versions we are considering except HP-UX support the /proc filesys-
tem. This is a pseudo filesystem whose files are actually views into parts of kernel
memory and its data structures.

FreeBSD top -s 8
Linux top d8
HP-UX top -s 8
Tru64 top -s 8

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Controlling Processes | 957

On most systems, the /proc filesystem consists entirely of numbered files or subdirec-
tories under /proc, each named for the corresponding process’s PID. When these
items are subdirectories, the available information about each process is divided
among several files located within it. Here is an example from a Linux system:

$ ls /proc/1234
cmdline cwd environ exe fd maps mem root stat statm status

The per-process information contained in the /proc filesystem is generally available in
other ways (e.g., via the ps command).

Linux systems extend the /proc filesystem to include many other files and subdirecto-
ries that hold a great many system settings and current system data. For example, the
cpuinfo file contains information about the processor on the computer:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 7
model name : Pentium III (Katmai)
stepping : 3
cpu MHz : 497.847
cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep
 mtrr pge mca cmov pat pse36 mmx fxsr sse
bogomips : 992.87

These are some of the most useful files under /proc:

devices
Major and minor device number.

filesystems
Filesystems supported by the current kernel.

meminfo
Memory usage and configuration statistics.

modules
Loaded kernel modules.

pci
List of detected PCI devices and their configurations.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

958 | Chapter 15: Managing System Resources

scsi/scsi
List of detected SCSI devices and their configurations.

version
Linux version of the currently running kernel (long version). The file /proc/sys/
kernel/oslevel lists only the numeric Linux kernel version string.

There are many, many more files in the /proc tree. However, I consider many of them
to be of marginal use to those who are not programmers or script writers, because
their information is available in a more convenient, prettier form via standard Unix
commands.

In addition, the sys subdirectory tree provides access to kernel variables. Some of
these files can be modified to change the corresponding system value. For example,
the file kernel/panic holds the number of seconds to wait before rebooting after a ker-
nel panic. These commands change the default value of 0 (immediately) to 60 sec-
onds:

cd /proc/sys/kernel
cat panic
0
echo "60" > panic

Changing kernel variables always carries associated risk. Experiment
on nonproduction systems.

Such changes do not persist across boots, so you’ll need to place such commands
into a boot script to make them permanent.

Kernel Idle Processes
Occasionally, you may see processes that seem to have accumulated a staggering
amount of both CPU time and short-term CPU usage, as in these examples:

AIX
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 516 99.2 0.0 20 20 - A Mar 18 6028:47 kproc

Tru64
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 0 0.0 7.7 396M 17M ?? R Jan 23 49:46.53 [kernel idle]

Both listed processes are kernel idle processes, which indicate how much idle time—
available CPU cycles that went unused—has accumulated since the last system
reboot. On AIX systems, there are usually multiple kproc processes (and not all of
them are necessarily idle). In any case, such processes are no cause for concern.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Controlling Processes | 959

Process Resource Limits
Unix provides very simple process resource limits. These are the limits that may be
defined:

• Total accumulated CPU time

• Largest file that may be created (whether created from scratch or by extending
an existing file)

• Maximum size of the data segment of the process

• Maximum size of the stack segment of the process

• Maximum size of a core file (created when a program bombs)

• Maximum amount of memory that may be used by the process

Resource limits are divided into two types: soft and hard. Soft limits are resource use
limits currently applied by default when a new process is created. A user may
increase these values up to the systemwide hard limits, beyond which only the
superuser may extend them. Hard limits are thus defined as absolute ceilings on
resource use.

The C shell and tcsh have two built-in commands for displaying and setting resource
limits. The limit command displays current resource limits. The hard limits may be
displayed by including the -h option on the limit command:

% limit % limit -h
cputime 1:00:00 cputime unlimited
filesize 1048575 kbytes filesize unlimited
datasize 65536 kbytes datasize 3686336 kbytes
stacksize 4096 kbytes stacksize 262144 kbytes
coredumpsize 1024 kbytes coredumpsize unlimited
memoryuse 32768 kbytes memoryuse 54528 kbytes

The bash and ksh equivalent command is ulimit (also supported in some Bourne
shells). The -a and -Ha options will display the current soft and hard limits respec-
tively; for example:

$ ulimit -a $ ulimit -Ha
time(seconds) 3600 time(seconds) unlimited
file(blocks) 2097151 file(blocks) 2097151
data(kbytes) 65536 data(kbytes) 257532
stack(kbytes) 4096 stack(kbytes) 196092
memory(kbytes) 32768 memory(kbytes) unlimited
coredump(blocks) 1024 coredump(blocks) unlimited

Table 15-3 lists the commands that set the values of resource limits. They would usu-
ally be placed in users’ login initialization files.*

* There is also a PAM module for setting limits.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

960 | Chapter 15: Managing System Resources

For example, the following commands increase the current CPU time limit to its
maximum value and increase the memory use limit to 64 MB:

Now for the bad news. On most Unix systems, resource limits are poorly imple-
mented from an administrative standpoint, for several reasons. First, the hard limits
are often hard-wired into the kernel and cannot be changed by the system administra-
tor. Second, users can always change their own soft limits. All an administrator can do
is place the desired commands into users’ .profile or .cshrc files and hope. Third, the
limits are on a per-process basis. Unfortunately, many real jobs consist of many pro-
cesses, not just one. There is currently no way to impose limits on a parent process
and all its children. Finally, in many cases, limits are not even enforced; this is most
often true of the ones you probably care about the most: CPU time and memory use.
You’ll need to experiment to find out which ones are enforced on your system.

FreeBSD is an exception, and limits can be effectively set via login
classes (/etc/login.conf). See “Managing User Accounts” in Chapter 6
for details.

However, one limit which it is often worth setting in user login initialization files is
the core file size limit. If the users on your system will have little use for core files, set
the limit to 0, preventing their creation.

Process Resource Limits Under AIX
AIX includes the structure for a more elaborate version of these limits, via the file /
etc/security/limits (which may be modified directly or by the chuser command). It has
stanzas of the form:

Table 15-3. Setting per-process resource limits

Resource csh and tcsh bash and ksh

CPU time limit cputime secs ulimit -t secs

Maximum file size limit filesize KB ulimit -f KB

Maximum process data segment limit datasize KB ulimit -d KB

Maximum process stack size limit stacksize KB ulimit -s KB

Maximum amount of physical memory limit memory KB ulimit -m KB

Maximum core file size limit coredumpsize KB ulimit -c KB

Maximum number of processesa

a bash only.

ulimit -u n

Maximum amount of virtual memorya ulimit -v KB

bash and ksh
$ ulimit -t unlimited
$ ulimit -m 65536

C shell and tcsh
% limit cputime unlimited
% limit memory 65536

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Controlling Processes | 961

chavez:
 fsize = 2097151 Maximum file size.
 core = 0 Maximum core file size.
 cpu = 3600 Maximum CPU seconds.
 data = 131072 Maximum process data segment.
 rss = 65536 Maximum amount of physical memory.
 stack = 8192 Maximum process stack size.

Each stanza specifies the resource usage limits for the username that labels the
stanza. These settings specify absolute limits on resource usage, and they cannot be
overridden by the user.

To change chavez’s memory use limit, use a command like this one:

chuser rss=102400 chavez

This command sets chavez’s default memory use limit to 100 MB by modifying or
adding the rss line for chavez in /etc/security/limits. As usual, the limits set in the
default stanza are applied for any user without specific settings of her own. Setting a
limit to a value of –1 will allow unlimited use of that system resource.

You can also use SMIT to specify user per-process resource limits. The dialog is illus-
trated in Figure 15-1, and it displays the appropriate fields from the user account
addition/modification screen.

Figure 15-1. Setting per-process Resource Limits with SMIT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

962 | Chapter 15: Managing System Resources

Signaling and Killing Processes
Sometimes it’s necessary to eliminate a process entirely; this is the purpose of the
kill command. The syntax of the kill command, which is actually a general pur-
pose process signaling utility, is as follows:

kill [-signal] pids

pid is the process’s identification number (or a space-separated list of process num-
bers), and signal is the (optional) signal to send to the process. The default signal is
number 15, the TERM signal, which asks the process to terminate.* In general, either
the signal number or its symbolic name may be used (although on a few older Sys-
tem V systems, the signal must be specified numerically). You must be the superuser
in order to kill someone else’s process.

Sometimes, a process may still exist after a kill command. If this happens, execute
the kill command with the -9 option, which sends the process signal number 9,
appropriately named KILL. This almost always guarantees that the process will be
destroyed. However, it does not allow the dying process to clean up before terminat-
ing and therefore may leave the process’ files in an inconsistent state.

Suspended processes must be resumed before they can be killed.

Killing multiple processes with killall

Although you can use the kill command to kill more than one process at the same
time, many systems provide a killall command to make this process slightly easier.
This command began life as part of the System V system shutdown procedures. In its
simplest form, it kills all processes in the same process group as the process that
invoked it (but not the calling process itself); thus, when invoked by init as part of a
system shutdown, it will kill all processes running on the system. Like kill, killall
optionally takes a signal name or number as its argument. This form of killall may
also be useful in administrative scripts, and it is provided by Tru64, AIX, HP-UX,
and Solaris.†

Linux and FreeBSD offer an enhanced form of killall, which accepts a second argu-
ment: the name of a command. In this form, killall kills all processes running the

* This signal number happens to be the same in System V and BSD. Be aware that this is not always the case.
Signals are defined in the /usr/include/signal.h file (or /usr/include/sys/signal.h), and the command kill -l
may be used to generate a quick list of their symbolic names.

† Some older Unix operating systems also have a killall command, but it has a completely different function.
Check the manual page to be safe before using it under an unfamiliar operating system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 963

specified command. For example, the following command sends a KILL signal to all
processes running the find command:

killall -KILL find

Processes that won’t die

Occasionally, processes will not die even after being sent the KILL signal. The vast
majority of such processes fall into one of three categories:

• A process in the zombie state (displayed as Z status in BSD ps displays and as
<defunct> under System V). When a process is exiting, the kernel informs its
parent, and the latter must respond to that message. A zombie process results
when the parent process does not respond. Usually, init handles terminating
such processes when the parent is gone, but on occasion this fails to happen.
Zombies are always cleared the next time the system is booted and rarely affect
system performance adversely.

• Processes waiting for unavailable NFS resources (for example, trying to write to
a remote file on a system that has crashed) will not die if sent a KILL signal. Use
the QUIT signal (3) or the INT (interrupt) signal (2) to kill such processes. See
“Sharing Filesystems” in Chapter 10 for full details.

• Processes waiting for a device to complete an I/O operation before exiting may
not die even when sent a KILL signal. For example, a process might be waiting
for a tape to finish rewinding.

Pausing and restarting processes

The signals STOP and CONT may be used to suspend and then resume a running
process. They use the same mechanism as the Ctrl-Z facility within user shells, but
these signals may be sent by the superuser to any running process.

Managing CPU Resources
CPU usage is usually the first factor that I consider when I am tracking down a per-
formance problem or just trying to assess the current system state in general.*

Nice Numbers and Process Priorities
Most Unix systems use a priority-based round-robin scheduling algorithm to distrib-
ute CPU resources among multiple competing processes. All processes have an exe-
cution priority assigned to them, an integer value that is dynamically computed and

* Some people recommend checking memory use first, because CPU shortages are occasionally secondary
effects of memory shortages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

964 | Chapter 15: Managing System Resources

updated on the basis of several factors. Whenever the CPU is free, the scheduler
selects the most favored process to begin or resume executing; this usually corre-
sponds to the process with the lowest priority number, because lower numbers are
defined as more favored than higher ones in typical implementations.

Although there may be a multitude of processes simultaneously present on the sys-
tem, only one process actually uses the CPU processor at any given time (assuming
the system has only a single CPU). Once a process begins running, it continues to
execute until it needs to wait for an I/O operation to complete, receives an interrupt
from the kernel, or otherwise gives up control of the CPU, or until it exhausts the
maximum execution time slice (or quantum) defined on that system (10 milliseconds
is a common value). Once the current process stops executing, the scheduler again
selects the most favored process on the system and starts or resumes it. The process
of changing the current running process is called a context switch.

Multiple runnable processes at the same priority level are placed into the run queue
for that priority level. Whenever the CPU is free, the scheduler starts the processes at
the head of the lowest-numbered, nonempty run queue. When the process at the top
of a run queue stops executing, it goes to the end of the line, and the next process
moves to the front.

A Unix process has two priority numbers associated with it:

• Its nice number, which is its requested execution priority with respect to other
processes. This value is settable by the process’ owner and by root. The nice
number appears in the NI column in ps -l listings.

• Its current (actual) execution priority, which is computed and dynamically
updated by the operating system (in a system-dependent way), often taking into
account factors such as the process’s nice number, how much CPU time it has
had recently, what other processes are runnable and their priorities, and other
factors. This value appears in the PRI column in ps -l listings.*

Under BSD, nice numbers range from –20 and 20, with –20 the most favored prior-
ity (the default priority is 0); under System V, nice numbers range from 0 to 39 (the
default is 20), with lower numbers again indicating higher priority and more rapid
execution. For Unix, less is truly more. Interactive shells usually run at the default
level (0 for BSD and 20 for System V). Only the superuser can specify nice numbers
lower than the default.

Many systems provide a special nice number that can be assigned to processes that
you want to run only when nothing else wants the CPU. On Solaris systems, this
number is 19, and on Tru64, HP-UX, and Linux systems, it is 20.

* See the section on the AIX scheduler later in this chapter for a concrete example of how process priorities are
calculated.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 965

On AIX systems, a similar effect can be accomplished by setting a process to the
fixed priority level 121 (using the setpri system call—see “When Only C Will Do”
in Chapter 14 for a sample program calling this function). Because varying priorities
always remain at or below 120, a job in the priority range of 121 to 126 will run only
when no lower-priority process wants the CPU. Note that once you have assigned a
process a fixed priority, it cannot return to having a varying priority.

Any user can be nice and decrease the priority of a process he owns by increasing its
nice number. Only the superuser can decrease the nice number of a process. This
prevents users from increasing their own priorities and thereby using more than their
share of the system’s resources.

There are several ways to specify a job’s execution priority. First, there are two com-
mands to initiate a process at lowered priority: the nice command, built into some
shells, and the general Unix command nice, usually stored in /bin or /usr/bin. These
commands both work the same way, but have slightly different syntaxes:

% nice [+|- n] command
$ /bin/nice - [[-] n] command

In the built-in C shell version of nice, if an explicitly signed number is given as its
first argument, it specifies the amount the command’s priority will differ from the
default nice number; if no number is specified, the default offset is +4. With /bin/
nice, the offset from the default nice number is specified as its argument and so is
preceded by a hyphen; the default offset is +10, and positive numbers need not
include a plus sign. Thus, the following commands are equivalent, despite looking
very different:

% nice +6 bigjob
$ /bin/nice -6 bigjob

Both commands result in bigjob having a nice number of 6 under BSD and 26 under
System V. Similarly, the following commands both raise bigjob’s priority five steps
above the default level (to –5 under BSD and 15 under System V):

nice -5 bigjob
/bin/nice --5 bigjob

Thus, BSD and System V nice numbers always differ by 20, but identical commands
have equivalent effects on the two systems.

The -l option to ps (either format—the output varies only slightly) may be used to
display a process’s nice number and current execution priority. Here is some exam-
ple output from a Linux system:

% ps l
 F UID PID PPID PRI NI VSZ RSS WCHAN COMMAND
8201 371 8390 8219 1 0 3233 672 wait4 ... rlogin iago
8201 371 8391 8219 3 4 3487 1196 do_sig ... big_cmd
8201 0 8394 1 15 -5 2134 1400 - ... imp_cmd

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

966 | Chapter 15: Managing System Resources

The column headed NI displays each process’s nice number. The column to its
immediate left, labeled PRI, shows the process’s current actual execution priority.

Some Unix implementations automatically reduce the priority of pro-
cesses that consume more than 10 minutes of user CPU time. Because
the ps command reports total CPU time (user time plus system time),
its display often indicates a total CPU time of more than 10 minutes at
the moment this occurs.

Processes inherit the priority of their parent when they are created. However, chang-
ing the priority of the parent process does not change the priorities of its children.
Therefore, increasing a process’s priority number may have no effect if this process
has created one or more subprocesses. Accordingly, if the parent process spends
most of its time waiting for its children, changing the parent’s priority will have little
or no effect on the system’s performance.

Monitoring CPU Usage
There are many ways of obtaining a quick snapshot of current overall CPU activity.
For example, the vmstat command includes CPU activity among the many system
statistics that it displays. Its most useful mode uses this syntax:

$ vmstat interval [count]

where interval is the number of seconds between reports, and count is the total num-
ber of reports to generate. If count is omitted, vmstat runs until you terminate it.

Here is an example of the output* from vmstat:

$ vmstat 5 4
procs memory page disk faults cpu
r b w avm fre re at pi po fr de sr d0 d1 d2 d3 in sy cs us sy id
1 0 0 61312 9280 0 0 24 1 2 0 0 4 1 1 12 35 66 16 63 11 26
3 2 0 71936 3616 3 0 96 0 0 0 2 18 0 0 0 23 89 34 72 28 0
5 1 0 76320 3424 0 0 0 0 0 0 0 26 0 0 0 24 92 39 63 37 0
4 1 0 63616 3008 1 1 0 0 0 0 0 21 0 0 0 23 80 33 78 22 0

The first line of every vmstat report displays average values for each statistic since
boot time; it should be ignored. If you forget this, you can be misled by vmstat’s out-
put. At the moment, we are interested in these columns of the report:

r Number of runnable processes that are waiting for the CPU

cs Number of context switches

us Percentage of CPU cycles spent as user time (i.e., running the heart of user appli-
cations)

* vmstat’s output varies somewhat from system to system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 967

sy Percentage of CPU cycles spent as system time, both as part of the overhead
involved in running user programs (e.g. handling I/O requests) and in providing
general operating system services

id Idle time: percentage of CPU cycles that went unused during the interval

During the period covered by the vmstat report, this system’s CPU was used to
capacity: there was no idle time at all.* You’ll need to use ps in conjunction with
vmstat to determine the specific jobs that are consuming the system’s CPU resources.
Under AIX, the tprof command can also be used for this purpose.

Recognizing a CPU shortage

High levels of CPU usage are not a bad thing in themselves (quite the contrary, in
fact: they might mean that the system is accomplishing a lot of useful work). How-
ever, if you are tracking down a system performance problem, and you see such lev-
els of CPU use consistently over a significant period of time, a shortage of CPU cycles
is one factor that might be contributing to that problem (it may not be the total
problem, however, as we’ll see).

Short-term CPU usage spikes are normal.

In general, one or more of the following symptoms may suggest a shortage of CPU
resources when they appear regularly and/or persist for a significant period of time:

• Higher than normal load averages.

• Total processor usage (us+sy) that is higher than normal. You might start think-
ing about future CPU requirements when the total load increases over time and
exceeds 80%–90%.

• A large number of waiting runnable processes (r). This indicates that these pro-
cesses are ready to run but can’t get any CPU cycles. I start looking into things
when this value gets above about 3–6 (per CPU).

• Ideally, most of the CPU usage should be spent in user time—performing actual
work—and not in system time. Sustained abnormally high levels of system time,
especially in conjunction with a large number of context switches, can indicate
too many processes contending for the CPU,† even when the total CPU usage is
not an issue. I like the system time to be a fraction of the user time, about a third
or less (applies only when the total time used is nontrivial).

* The method for determining whether a single job is CPU-limited or not is somewhat different. When there
is a significant difference between the CPU time and the elapsed time taken for a job to complete on an oth-
erwise idle system, some factor(s) other than a lack of CPU cycles are degrading its performance.

† A high system time percentage can also indicate a memory shortage, as we’ll see.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

968 | Chapter 15: Managing System Resources

• When an overcommitment of CPU resources is the source of a performance bot-
tleneck, there are several options for addressing the situation:

— If you want to favor some jobs over others, you can explicitly divide up the
CPU resources via process priorities.

— If there is simply more demand for the CPU resources than can be met,
you’ll need to reduce consumption in some way: move some of the load to a
different (presumably less heavily loaded) system, execute some jobs at a
later time (during off-hours via a batch system, for example), and the like.*

— If the operating system supports it, you can change its scheduling procedure
to allocate CPU resources to those jobs and in the manner that you deem
appropriate.

We’ll look at each of these options in turn in the remainder of this section.

Changing a Process’s Nice Number
When the system’s load is high, you may wish to force CPU-intensive processes to
run at a lower priority. This reduces the CPU contention for interactive jobs such as
editing, and generally keeps users happy. Alternatively, you may wish to devote most
of the system’s time to a few critical processes, letting others finish when they will.
The renice command may be used to change the priority of running processes. Intro-
duced in BSD, renice is now also supported on most System V systems. Only root
may use renice to increase the priority of a process (i.e., lower its nice number).

renice’s traditional syntax is:

renice new-nice-number pid

new-nice-number is a valid nice number, and pid is a process identification number.
For example, the following command sets the nice number of process 8201 to 5, low-
ering its priority by five steps.

renice 5 8201

Giving a process an extremely high priority may interfere with the
operating system’s own operation. Let common sense reign.

renice under AIX, HP-UX, and Tru64

AIX and HP-UX use a modified form of the renice command. This form requires
that the -n option precede the new nice number, as in this example:

$ renice -n 12 8201

* It is also possible to reduce CPU consumption by making the application programs themselves more effi-
cient. Such techniques are beyond the scope of this book; consult High Performance Computing by Kevin
Dowd (O’Reilly & Associates) for detailed information about the code tuning process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 969

Tru64 supports both forms of the renice command.

Note that AIX uses the System V–style priority system, running from 0 (high) to 40
(low). For renice under AIX, the new nice number is still specified on a scale from –20
to 20; it is translated internally into the 0–40 scheme actually used. This can make for
some slightly strange output at times:

renice -n 10 3769
3769: old priority 0, new priority 10
ps -l -p 3769
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIMECMD
200801 S 371 3769 8570 0 70 30 2aca 84 1d79098 pts/1 0:00 c12

The renice command reports its action in terms of BSD nice numbers, but the ps dis-
play shows the real nice number.

Changing process priorities under Solaris

System V.4 changed the standard System V priority scheme as part of its support for
real-time processes. By default, V.4, and hence Solaris, internally use time-sharing
priority numbers ranging from –20 to 20, with 20 as the highest priority (the default
is 0). V.4 also supports the BSD renice command, mapping BSD nice numbers to the
corresponding time-sharing priority number; similarly, the ps command continues to
display nice numbers in the V.3 format. Solaris has incorporated this scheme as part
of its V.4 base.

Solaris also uses another command to modify process priorities (again, primarily
intended for real-time processes): priocntl. The priocntl form to change the prior-
ity for a single process is:

priocntl -s -p new-pri -i pid proc-id

where new-pri is the new priority for the process and proc-id is the process ID of the
desired process. For example, the following command sets the priority level for pro-
cess 8733 to –5:

priocntl -s -p -5 -i pid 8733

The following form may be used to set the priority (nice number) for every process
created by a given parent process:

priocntl -s -p -5 -i ppid 8720

This command sets the priority of process 8720 and all of its children.

The priocntl command has many other capabilities and uses, as we’ll see in the
course of this chapter (you may also want to consult its manual page).

Setting a user’s default nice numbers under Tru64

Tru64 allows you to specify the default nice number for a user’s login shell (which
will be inherited by all processes that she subsequently creates), via the u_priority

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

970 | Chapter 15: Managing System Resources

field in the user’s protected password database entry. This field takes a numeric
value and defaults to 0 (the usual default nice number). For example, the following
form would set the user’s nice value to 5:

u_priority#5

A systemwide default nice value may also be set in /etc/auth/system/default.

Configuring the System Scheduler
AIX and Solaris provide substantial facilities for configuring the functioning of the
system scheduler. Tru64 also offers a few relevant kernel parameters. We’ll consider
these facilities in this section. The other operating systems offer little of practical use
for CPU performance tuning.

These operations require care and thought and should initially be tried
on nonproduction systems.

The AIX scheduler

On AIX systems, dynamic process priorities range from 0 to 127, with lower num-
bers more favorable. The current value for each process appears in the column
labeled PRI in ps -l displays. Normally, process execution priorities change over
time (in contrast to nice numbers), according to the following formula:

new_priority = min + nice + (frac * recent)

min is the minimum process priority level, normally 40; nice is the process’ nice num-
ber; recent is a number indicating how much CPU time the process has received
recently (it is displayed in the column labeled C in ps -l output). By default, the
parameter frac is 0.5; it specifies how much of the recent CPU usage is taken into
account (how large the penalty for recent CPU cycles is).

For a new process, recent starts out at 0; it can reach a maximum value of 120. By
default, at the end of each 10-millisecond time slice (equivalent to one clock tick),
the scheduler increases recent by one for the process currently in control of the CPU.
In addition, once a second, the scheduler reduces recent for all processes, multiply-
ing it by a reduction factor that defaults to 0.5 (i.e., recent is divided by 2 by default).
The effect of this procedure is to penalize processes that have received CPU resources
most recently by increasing their execution priority value, and gradually lowering the
execution priority value for processes that have had to wait, to the minimum level
arising from their nice number.

The result of this scheduling policy is that CPU resources are more or less evenly
divided among (compute-bound) jobs at the same nice level. When there are jobs
ready to run at both normal and raised nice levels, the normal-priority jobs will get
more time than the others, but even the niced jobs will get some CPU time. For long-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 971

running processes, the distinction between normal priority and niced processes even-
tually becomes quite blurred because normal priority processes that have gotten a
significant amount of CPU time can easily rise in priority above that of waiting niced
processes.

The schedtune utility is used to modify scheduler and other operating system param-
eters. The schedtune executable is provided in /usr/samples/kernel.

For normal processes, you can alter two scheduler parameters with this utility: the
fraction of the short-term CPU usage value used in computing the current execution
priority (-r) and how much the short-term CPU usage number is reduced at the end
of each one second interval (-d). Each value is divided by 32 to compute the actual
multiplier that is used (e.g., frac in the preceding equation is equal to -r/32). Both
values default to 16, resulting in factors of one half in both cases.

For example, the following command makes slight alterations to these two
parameters:

schedtune -r 15 -d 15

The -r option determines how quickly recent CPU usage raises a process’s execution
priority (lowering its likelihood of resumed execution). For example, giving -r a
value of 10 causes the respective priorities of normal and niced processes to equalize
more slowly than under the default conditions, allocating a large fraction of the total
CPU capacity to the more favored jobs.

Decreasing the value even more intensifies this effect; if the option is set to 4, for
example, only one eighth of the recent CPU usage number will be used in calculat-
ing the execution priority (instead of one half). This means that this component will
never contribute more than 15 to the execution priority (120 * 4/32), so a process
that has a nice number greater than 15 will never interfere with the running of a nor-
mal process.

Setting -r to 0 makes nice numbers the sole determinant of process execution priori-
ties by removing recent CPU usage from the calculation (literally, multiplying it by
0). Under these conditions, process execution priorities will remain static over time
for all processes (unless they are explicitly reniced by hand).

Setting the -d option to a value other than 16 changes what constitutes recent CPU
usage. A smaller value means that CPU usage affects the execution priority less than
under the default conditions, effectively making the definition of “recent” shorter.
On the other hand, a larger value causes CPU usage to affect execution priorities for
a longer period of time. In the extreme case, -d 32 means that CPU usage simply
accumulates (the divisor every second is 1), so long-running processes will always be
less favored than ones that have used less CPU time because every process’s recent
CPU usage number will eventually rise to the maximum value of 120 and stay there
(provided they run long enough). Newer processes will always be favored over those
that have already received at least 120 time slices. Their relative nice numbers will

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

972 | Chapter 15: Managing System Resources

determine the execution order for all processes over this threshold, and one at the
same nice level will take turns via the usual run queue mechanism.

schedtune’s -t option may be used to change the length of the maximum time slice
allotted to a process. This option takes the number of 10-millisecond clock ticks by
which to increase the length of the default time slice as its argument. For example,
this command doubles the length of the time slice, setting it to 20 milliseconds:

schedtune -t 1

Note that this change applies only to fixed-priority processes (the priority must be
set with the setpri system call). Such processes’ priority do not change over time (as
described above), but rather remain fixed for their entire lifetimes.

schedtune’s modifications to the scheduling parameters remain in effect only until
the system is rebooted; you’ll need to place the appropriate command in one of the
system initialization scripts or in /etc/inittab if you decide that a permanent change is
desirable. schedtune -D may be used to restore the default values for all parameters
managed by this utility at any point (including ones unrelated to the system sched-
uler). Executing the command without any options will display the current values of
all tunable parameters, and the -? option will display a manual page for the com-
mand (use a backslash before the question mark in the C shell).

The Solaris scheduler

System V.4 also introduced administrator-configurable process scheduling, which is
now part of Solaris. One purpose of this facility is to support real-time processes: pro-
cesses designed to work in application areas where nearly immediate responses to
events are required (say, processing raw radar data in a vehicle in motion, control-
ling a manufacturing process making extensive use of robotics, or starting up the
backup cooling system on a nuclear reactor). Operating systems handle such needs
by defining a class of processes as real-time processes, giving them virtually complete
access to all system resources when they are running. Under such instances, normal
time-sharing processes will receive little or no CPU time. Solaris allows a system to
be configured to allow both normal time-sharing and real-time processes (although
actual real-time systems using other operating systems have seldom actually done
this). Alternatively, a system may be configured without real-time processes.

This section serves as an introductory overview to this facility. Obviously, the pro-
cess scheduler facility is something to play with on a test system first, not something
to try on your main production system three days before an important deadline.

Solaris defines various process classes: real-time, time-sharing, interactive, system
and interrupts. The latter class is used for kernel processes (such as the paging dae-
mon). For scheduling table definition purposes, each process class has its own set of
priority numbers. For example, real-time process priorities run from 0 to 59 (higher
is better). Time-sharing processes use priority numbers from 0 to 59 by default.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 973

However, these priority number sets are all mapped to a single set of internal prior-
ity numbers running from 0 to 169, as defined in Table 15-4.

As the table indicates, a real-time process will always run before either a system or
time-sharing process, because real-time process global priorities—which are actually
used by the process scheduler—are all greater than system and time-sharing global
priorities. The definitions of each real-time and time-sharing global priority level are
stored in the kernel and, if they have been customized, are usually located by one of
the system initialization scripts at boot time. The current definitions may be retrieved
with the dispadmin -g command. Here is an example:

$ dispadmin -g -c TS
Time Sharing Dispatcher Configuration
RES=1000
ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY LEVEL
 1000 0 10 5 10 # 0
 1000 0 11 5 11 # 1
 1000 1 12 5 12 # 2
 1000 1 13 5 13 # 3
 ...
 100 47 58 5 58 # 57
 100 48 59 5 59 # 58
 100 49 59 5 59 # 59

Each line of the table defines the characteristics of a different priority level, num-
bered consecutively from 0. The RES= line defines the time units used in the table. It
says how many parts each second is divided into; each defined fraction of a second
becomes one unit. Thus, in this file, the time units are milliseconds.

The fields have the following meanings:

ts_quantum
The maximum amount of time that a process at this priority level can run with-
out interruption.

ts_tqexp
New priority given to a process running at this priority level that gets the entire
maximum run interval. In the preceding example, this has the effect of lowering
its priority.

Table 15-4. Solaris priority classes

Class Relative priorities Absolute priorities

Time-sharing/interactive 0–59 0–59

Kernel 0–39 60–99

Real-time 0–59 100–159

Interrupt 0–9 160–169a

a The interrupt class uses 100–109 if the real time class is not in use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

974 | Chapter 15: Managing System Resources

ts_slpret
New priority given to a process at this priority level when it returns from a sleep.

ts_maxwait
Maximum amount of time a process at this level can remain runnable without
actually executing before having its priority changed to the value in the ts_lwait
column. This setting affects processes that are ready to run but aren’t getting any
CPU time. After this interval, their priority will be increased with the preceding
scheduler table.

ts_lwait
New priority given to a process that is runnable and whose maximum wait time
has expired. In the preceding example, this usually increases its priority some-
what.

All text after number signs is ignored. Thus, the PRIORITY LEVEL columns are
really comments designed to make the table easier to read.

From the preceding example, it is evident how process priorities would change under
various circumstances. For example, consider a level 57 process (2 steps short of the
most favored priority). If a process at this level runs for its full 100 milliseconds, it
will then drop down to priority level 47, giving up the CPU to any higher priority
processes. If, on the other hand, it waits for 5 milliseconds after being ready to run,
its priority level is raised to 58, making it more likely to be executed sooner.

Here is a rather different time sharing scheduling table:

Time Sharing Dispatcher Configuration
RES=1000
ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY LEVEL
 200 0 59 0 50 # 0
 200 0 59 0 50 # 1
 200 0 59 0 50 # 2
 200 0 59 0 50 # 3
 ...
 160 0 59 0 51 # 10
 160 1 59 0 51 # 11
 ...
 120 10 59 0 52 # 20
 120 11 59 0 52 # 21
 ...
 80 20 59 0 53 # 30
 80 21 59 0 53 # 31
 ...
 40 30 59 0 55 # 40
 ...
 40 47 59 0 59 # 57
 40 48 59 0 59 # 58
 40 49 59 0 59 # 59

This table has the effect of conflating the large number of processes down to a few
distinct values when processes have to wait to gain access to the CPU. Because ts_
maxwait is always 0 and ts_lwait ranges only between 50 and 59, any runnable

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 975

process that has to wait gets its priority changed to a value in this range. In addition,
when a process returns from a sleep, its priority is set to 59, the highest available
value. Note also that processes with high priorities get short time slices compared to
the previous table (as little as 40 milliseconds).

You can dynamically install a new scheduler table with the dispadmin command’s -s
option. For example, this command installs the table contained in the file /etc/ts_
sched.new into memory:

dispadmin -c TS -s /etc/ts_sched.new

The table format in the specified file must be the same as that displayed by dispadmin
-g, and it must contain the same number of priority levels as the one currently in use.
Permanent changes may be made by running such a command at boot time or by
creating a loadable module with a new scheduler table (see the ts_dptbl manual page
for the latter procedure).

The priocntl command allows a priority level ceiling to be imposed upon a time-
sharing process, which specifies the maximum priority level it can attain. This pre-
vents a low priority process from becoming runnable and eventually marching up to
the top priority level (as would happen under the first scheduler table we looked at)
when you really want that process to run only when nothing else is around. Setting a
limit can keep it below the range of normal processes. For example, the following
command sets the maximum priority for process 27163 to –5:

priocntl -s -m -5 27163

Note that the command uses external priority numbers (not the scheduler table
values).

Tru64

Tru64 provides many kernel parameters that control various aspects of the kernel’s
functioning. On Tru64 systems, kernel parameters may be altered using the
sysconfig and dxkerneltuner utilities (text-based and GUI, respectively), although
most values are alterable only at boot time.

sysconfig can also be used to display the current and configured values of kernel
variables. For example, the following commands display information about the
autonice_penalty parameter:

sysconfig -m proc Is the proc subsystem static or dynamic?
proc: static
sysconfig -q proc autonice_penalty Display current value.
proc:
autonice_penalty = 4
sysconfig -Q proc autonice_penalty Display parameter attributes.
proc:
autonice_penalty - type=INT op=CQ min_val=0 max_val=20

The command takes a subsystem name and (optionally) a parameter name as its
arguments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

976 | Chapter 15: Managing System Resources

The following command form will modify a current value:

sysconfig -r proc autonice_penalty=6

Another useful sysconfig argument is -d; it displays the values set in the kernel ini-
tialization file, /etc/sysconfigtab, which are set at boot time. The majority of this file
specifies device configuration; local modifications to standard kernel parameter val-
ues come at the end.

Here are some sample entries from this file:

generic: General settings.
 memberid = 0
 new_vers_high = 1445655480385976064
 new_vers_low = 51480
ipc:
 shm_max = 67108864 Max. shared memory (default: 4 MB).
 shm_mni = 1024 Max. shared regions (default: 128).
 shm_seg = 256 Max. regions/process (default: 32).
proc: CPU-related settings.
 max_per_proc_stack_size = 41943040
 autonice = 1
 autonice_penalty = 10

Each stanza is introduced by the subsystem name. In this example, we configure the
generic (general), ipc shared memory* and proc (CPU/process) subsystems.

The proc subsystem is the most relevant to CPU performance. The following param-
eters may be useful in some circumstances:

• max_per_proc_address_space and max_per_process_data_size may need to be
increased from their defaults of 4 GB and 1 GB (respectively) to accommodate
very large jobs.

• By default, the Tru64 scheduler gives a priority boost to jobs returning from a
block I/O wait (in an effort to expedite interactive response). You can disable
this by setting give_boost to 0.

• The scheduler can be configured to automatically nice processes that have used
more than 600 seconds of CPU time (this is disabled by default). Setting
autonice to 1 enables it, and you can specify the amount to nice by with the
autonice_penalty parameter (the default is 4).

• The round_robin_switch_rate can be used to modify the time slice. It does so in
an indirect manner. Its default value is 0, which is also equivalent to its maxi-
mum value of 100. This setting specifies how many time-slice expiration context
switches occur in a second, and the time slice is computed by dividing the CPU
clock rate by this value. Thus, setting it to 50 has the effect of doubling the time
slice length (because the divisor changes from 100 to 50). Such a modification

* These example settings are useful for running large jobs on multiprocessor systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing CPU Resources | 977

should be considered only for systems designed for running long jobs, with little
or no interactive activity (or where you’ve decided to favor computation over
interactive activity).

Unix Batch-Processing Facilities
Manually monitoring and altering processes’ execution priorities is a crude way to
handle CPU time allocation, but unfortunately it’s the only method that standard
Unix offers. It is adequate for the conditions under which Unix was developed: sys-
tems with lots of small interactive jobs. But if a system runs some large jobs as well,
it quickly breaks down.

Another way of dividing the available CPU resources on a busy system among multi-
ple competing processes is to run jobs at different times, including some at times
when the system would otherwise be idle. Standard Unix has a limited facility for
doing so via the at and batch commands. Under the default configuration, at allows
a command to be executed at a specified time, and batch provides a queue from
which jobs may be run sequentially in a batch-like mode. For example, if all large
jobs are run via batch from its default queue, it can ensure that only one is ever run-
ning at a time (provided users cooperate, of course).

In most implementations, system administrators may define additional queues in the
queuedefs file, found in various locations on different systems:

This file defines queues whose names consist of a single letter (either case is valid).
Conventionally, queue a is used for at, queue b is used for batch, and on many newer
systems, queue c is used by cron. Tru64 and AIX define queues e and f for at jobs
using the Korn shell and C shell, respectively (submitted using the at command’s -k
and -c options).

Queues are defined by lines in this format:

q.xjynzw

q is a letter, x indicates the number of simultaneous jobs that may run from that
queue, y specifies the nice value for processes started from that queue, and z says
how long to wait before trying to start a new job when the maximum number for
that queue or the facility are already running. The default values are 100 jobs, a nice
value of 2 (where 0 is the default nice number), and 60 seconds.

AIX /var/adm/cron
FreeBSD not used
HP-UX /var/adm/cron
Linux not used
Solaris /etc/cron.d
Tru64 /var/adm/cron

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

978 | Chapter 15: Managing System Resources

The first two of the following queuedefs entries show typical definitions for the at
and batch queues. The third entry defines the h queue, which can run one or two
simultaneous jobs, niced to level 10, and waits for five minutes between job initia-
tion attempts after starting one has failed:

a.4j1n
b.2j2n90w
h.2j10n300w

The desired queue is selected with the -q option to the at command. Jobs waiting in
the facility’s queues may be listed and removed from a queue using the -l and -r
options, respectively.*

If simple batch-processing facilities like these are sufficient for your system’s needs,
at and batch may be of some use, but if any sort of queue priority features are
required, these commands will probably prove insufficient. The manual page for at
found on many Linux systems is the most honest about its deficiencies:

at and batch as presently implemented are not suitable when users are competing for
resources.

A true batch system supports multiple queues; queues that receive jobs from and
send jobs to a configurable set of network hosts, including the ability to select hosts
based on load-leveling criteria and to allow the administrator to set in-queue priori-
ties (for ordering pending jobs within a queue); queue execution priorities and
resource limits (the priority and limits automatically assigned to jobs started from
that queue); queue permissions (which users can submit jobs to each queue); and
other parameters on a queue-by-queue basis. AIX has adapted its print-spooling sub-
system to provide a very simple batch system (see “The AIX Spooling Facility” in
Chapter 13), allowing for different job priorities within a queue and multiple batch
queues, but it is still missing most important features of a modern batch system.
Some vendors offer batch-processing features as an optional feature at additional
cost.

There are also a variety of open source queueing systems, including:

• Distributed Queueing System (DQS): http://www.scri.fsu.edu/~pasko/dqs.html

• Portable Batch System: http://pbs.mrj.com

Managing Memory
Memory resources have at least as much effect on overall system performance as the
distribution of CPU resources. To perform well, a system needs to have adequate

* The BSD form of the at facility provided the atq and atrm commands for these functions, but they are obso-
lete forms. Also, only the implementations found on FreeBSD and Linux systems continue to require that
the atrun command be executed periodically from within cron to enable the at facility (every 10 minutes was
a typical interval).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 979

memory not just for the largest jobs it will run, but also for the overall mix of jobs
typical of its everyday use. For example, the amount of memory that is sufficient for
the one or two big jobs that run overnight might provide only a mediocre response
time under the heavy daytime interactive use. On the other hand, an amount of
memory that supports a system’s normal interactive use might result in quite poor
performance when larger jobs are run. Thus, both sets of needs should be taken into
consideration when planning for and evaluating system memory requirements.

Paging and swapping are the means by which Unix distributes available memory
among current processes when their total memory needs exceed the amount of phys-
ical memory. Technically, swapping refers to writing an entire process to disk,
thereby freeing all of the physical memory it had occupied. A swapped-out process
must then be reread into memory when execution resumes. Paging involves moving
sections of a process’s memory—in units called pages—to disk, to free up physical
memory needed by some process. A page fault occurs when a process needs a page of
memory that is not resident and must be (re)read in from disk. On virtual memory
systems, true swapping occurs rarely if at all* and usually indicates a serious memory
shortage, so the two terms are used synonymously by most people.

Despite the strong negative connotations the term has acquired, paging is not always
a bad thing. In the most general sense, paging is what makes virtual memory possi-
ble, allowing a process’ memory requirements to greatly exceed the actual amount of
physical memory. A process’ total memory requirement includes the sum of the size
of its executable image† (known as its text segment) and the amount of memory it
uses for data.

To run on systems without virtual memory, the process requires an amount of physi-
cal memory equal to its current text and data requirements. Virtual memory systems
take advantage of the fact that most of this memory isn’t actually needed all the time.
Pieces of the process image on disk are read in only as needed. The system automati-
cally maps their virtual addresses (relative address with respect to the beginning of
the process’s image) to real physical memory locations. When the process accesses a
part of its executable image or its data that is not currently in physical memory, the
kernel reads in—pages in—what is needed from disk, sometimes replacing other
pages that the process no longer needs.

For a large program that spends most of its time in two routines, for example, only
the part of its executable image containing the routines needs to be in memory while
they are running, freeing up for other uses the memory the rest of the program’s text

* Some systems swap out idle processes to free memory. The swapping I refer to here is the forced swapping
of active processes due to a memory shortage.

† An exception occurs for executables that can be partially or totally shared by more than one process. In this
case, only one copy of the image is in memory regardless of how many processes are executing it. The total
memory used by the shared portions in these cases is divided among all processes using them in the output
from commands like ps.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

980 | Chapter 15: Managing System Resources

segment would occupy on a nonvirtual memory computer. This is true whether the
two routines are close together or far apart in the process’ virtual address space. Sim-
ilarly, if a program uses a very large data area, all of it needn’t be resident in memory
simultaneously if the program doesn’t access it all at once. On many modern sys-
tems, program execution also always begins with a page fault as the operating sys-
tem takes advantage of the kernel’s virtual memory management facility to read
enough of the executable image to get it started.

The problem with paging comes when there is not enough physical memory on the
system for all of the processes currently running. In this case, the kernel will appor-
tion the total memory among them dynamically. When a process needs a new page
read in and there are no free or reusable pages, the operating system must steal a
page that is being used by some other process. In this case, an existing page in mem-
ory is paged out. For volatile data, this results in the page being written to a paging
area on disk; for executable pages or unmodified pages read in from file, the page is
simply freed. In either case, however, when that page is again required, it must be
paged back in, possibly forcing out another page.

When available physical memory is low, an appreciable portion of the available CPU
time can be spent handling page faulting, and all processes will execute much less
efficiently. In the worst kind of such thrashing conditions, the system spends all of its
time managing virtual memory, and no real work gets done at all (no CPU cycles are
actually used to advance the execution of any process). Accordingly, total CPU usage
can remain low under these conditions.

You might think that changing the execution priorities for some of the jobs would
solve a thrashing problem. Unfortunately, this isn’t always the case. For example,
consider two large processes on a system with only a modest amount of physical
memory. If the jobs have the same execution priority, they will probably cause each
other to page continuously if they run at the same time. This is a case where swap-
ping is actually preferable to paging. If one job is swapped out, the other might run
without page faulting, and after some amount of time, the situation can be reversed.
Both jobs finish much sooner this way than they do under continuous paging.

Logically, lowering the priority of one of the jobs should cause it to wait to execute
until the other one pauses (e.g., for an I/O operation) or completes. However, except
for the special, low-priority levels we considered earlier, low-priority processes do
occasionally get some execution time even when higher-priority processes are runna-
ble. This happens to prevent a low-priority process from monopolizing a critical
resource and thereby creating an overall system bottleneck or deadlock (this concern
is indicative of a scheduling algorithm designed for lots of small interactive jobs).
Thus, running both jobs at once, regardless of their priorities, will result in some exe-
cution degradation (even for the higher priority job) due to paging. In such cases,
you need to either buy more memory or not run both jobs at the same time.

In fact, the virtual memory managers in modern operating systems work very hard to
prevent such situations from occurring by using techniques for using memory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 981

efficiently. They also try to keep a certain amount of free memory all the time to min-
imize the risk of thrashing. These are some of the most common practices used to
maximize the efficiency of the system’s memory resources:

Demand paging
Pages are loaded into memory only when a page fault occurs. When a page is
read in, a few pages surrounding the faulted page are typically loaded as well in
the same I/O operation in an effort to head off future page faults.

Copy-on-write page protection
Whenever possible, only a single copy of identical pages in use by multiple pro-
cesses is kept in memory. Duplicate, process-private copies of a page are created
only if one of the processes modifies it.

Page reclaims
When memory is short, the virtual memory manager takes memory pages being
used by current processes. However, such pages are simply initially marked as
free and are not replaced with new data until the last possible moment. In this
way, the owning process can reclaim them without a disk read operation if their
original contents are still in memory when the pages are required again.

The next section discusses commands you can use to monitor memory use and pag-
ing activity on your system and get a picture of how well the system is performing.
Later sections discuss managing the system paging areas.

Monitoring Memory Use and Paging Activity
The vmstat command is the best tool for monitoring system memory use; it is avail-
able on all of the systems we are considering. The most important statistics in this
context are the number of running processes and the number of page-outs* and
swaps. You can use this information to determine whether the system is paging
excessively. As you gather data with these commands, you’ll also need to run the ps
command so that you know what programs are causing the memory behavior you’re
seeing.

The following sections discuss the memory monitoring commands and show how to
interpret their output. They provide examples of output from systems under heavy
loads. It’s important to keep in mind, though, that all systems from time to time have
memory shortages and consequent increases in paging activity. Thus, you can expect
to see similar output on your system periodically. Such activity is significant only if it
is persistent. Some deviation from what is normal for your system is to be expected,
but consistent and sustained paging activity does indicate a memory shortage that
you’ll need to deal with.

* Because of the way that AIX keeps its paging statistics, page-ins are better indicators, because a page-in
always means that a page was previously paged out.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

982 | Chapter 15: Managing System Resources

Determining the amount of physical memory

The following commands can be used to quickly determine the amount of physical
memory on a system:

Some Unix versions (including FreeBSD, AIX, Solaris, and Tru64) also support the
pagesize command, which displays the size of a memory page:

$ pagesize
4096

Typical values are 4 KB and 8 KB.

Monitoring memory use

Overall memory usage levels are very useful indicators of the general state of the vir-
tual memory subsystem. They can be obtained from many sources, including the top
command we considered earlier. Here is the relevant part of the output:

CPU states: 3.5% user, 9.4% system, 13.0% nice, 87.0% idle
Mem: 63212K av, 62440K used, 772K free, 21924K shrd, 316K buff
Swap: 98748K av, 6060K used, 92688K free 2612K cached

Graphical system state monitors can also provide overall memory use data.
Figure 15-2 illustrates the KDE System Guard (ksysguard) utility’s display. It pre-
sents both a graphical view of ongoing CPU and memory usage, as well as the cur-
rent numerical data in the status area at the bottom of the window.

Linux also provides the free command, which lists current memory usage statistics:

$ free -m -o
 total used free shared buffers cached
Mem: 249 231 18 0 11 75
Swap: 255 2 252

The command’s options specify display units of MB (-m) and to omit buffer cache
data (-o).

The most detailed memory subsystem data is given by vmstat. As we’ve seen, vmstat
provides a number of statistics about current CPU and memory use. vmstat output
varies somewhat between implementations. Here is an example of typical vmstat
output:*

AIX lsattr -HE -l sys0 -a realmem
FreeBSD grep memory /var/run/dmesg.boot
HP-UX dmesg | grep Phys
Linux free
Solaris dmesg | grep mem
Tru64 vmstat -P | grep ’^Total’

* vmstat’s output varies somewhat from system to system, as we’ll see.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 983

$ vmstat 5 4
 procs memory page disk faults cpu
 r b w swap free re mf pi po fr de sr s0 s6 s7 s8 in sy cs us sy id
 0 0 0 1642648 759600 98 257 212 10 10 0 0 0 0 1 4 199 121 92 8 3 88
 0 0 0 1484544 695816 0 1 0 0 0 0 0 0 0 0 0 113 35 46 0 1 99
 0 0 0 1484544 695816 0 0 0 0 0 0 0 0 0 0 0 113 65 45 0 1 99
 0 0 0 1484544 695816 0 0 0 0 0 0 0 0 0 0 0 111 72 44 0 1 99

The first line of every vmstat report is an average since boot time; it can be ignored
for our purposes, and I’ll be omitting it from future displays.*

The report is organized into sections as follows:

procs or kthr
Statistics about active processes. Together, the first three columns tell you how
many processes are currently active.

memory
Memory use and availability data.

page or swap
Paging activity.

io or disk
Per-device I/O operations.

faults or system or intr
Overall system interrupt and context switching rates.

Figure 15-2. Overall system performance statistics

* You can define an alias to take care of this automatically. Here’s an example for the C shell:
alias vm "/usr/bin/vmstat \!:* | awk 'NR!=4'"

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

984 | Chapter 15: Managing System Resources

cpu
Percentage of CPU devoted to system time, user time, and time the CPU
remained idle. AIX adds an additional column showing CPU time spent in idle
mode while jobs are waiting for pending I/O operations.

Not all versions of vmstat contain all sections.

Table 15-5 lists the most important columns in vmstat’s report.

Here are examples of the output format for each of our systems:

AIX
kthr memory page faults cpu
----- ------------- ---------------------- ------------- -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 149367 847219 0 0 0 0 0 0 109 258 11 18 7 72 3

HP-UX
 procs memory page faults cpu
r b w avm free re at pi po fr de sr in sy cs us sy id
2 0 0 228488 120499 1 0 0 0 10 0 0 1021 44 29 14 1 86

Linux

 procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
1 0 0 0 4280 5960 48296 0 0 5 1 101 123 1 0 99

Table 15-5. vmstat report contents

Label(s) Meaning

r Number of runnable processes.

b Number of blocked processes (idle because they are waiting for I/O).

w Number of swapped-out runnable processes (should be 0).

avm, act, swpd Number of active virtual memory pages (a snapshot at the current instant). For vmstat, a page is usually 1
KB, regardless of the system’s actual page size. However, under AIX and HP-UX, a vmstat page is 4 KB.

fre, free Number of memory pages on the free list.

re Number of page reclaims: pages placed on the free list but reclaimed by their owner before the page was
actually reused.

pi, si, pin Number of pages paged in (usually includes process startup).

po, so, pout Number of pages paged out (if greater than zero, the system is paging).

fr Memory pages freed by the virtual memory management facility during this interval.

dn Disk operations per second on disk n. Sometimes, the columns are named for the various disk devices rather
than in this generic way (e.g., adn under FreeBSD). Not all versions of vmstat include disk data.

cs Number of context switches.

us Percentage of total CPU time spent on user processes.

sy Percentage of total CPU time spent as system overhead.

id Idle time percentage (percentage of CPU time not used).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 985

FreeBSD
procs memory page disks faults cpu
r b w avm fre flt re pi po fr sr ad0 ad1 in sy cs us sy id
0 0 0 5392 32500 1 0 0 0 1 0 0 0 229 9 3 0 1 99

Solaris
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr dd f0 s0 -- in sy cs us sy id
0 0 0 695496 187920 0 1 1 0 0 0 1 0 0 0 0 402 34 45 0 0 100

Tru64
Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
r w u act free wire fault cow zero react pin pout in sy cs us sy id
3 135 31 15K 10K 5439 110M 8M 52M 637K 42M 63K 4 953 1K 2 0 98

Note that some versions have additional columns.

We’ll look at interpreting vmstat output in the next subsection.

Recognizing memory problems

You can expect memory usage to vary quite a lot in the course of normal system
operations. Short-term memory usage spikes are normal and to be expected. In gen-
eral, one or more of the following symptoms may suggest a significant shortage of
memory resources when they appear regularly and/or persist for a significant period
of time:

• Available memory drops below some acceptable threshold. On an interactive
system this may be 5%–15%. However, on a system designed for computation, a
steady free memory amount of 5% may be fine.

• Significant paging activity. The most significant metrics in this case are writes to
the page file (page-outs) and reads from the page file (although most systems
don’t provide the latter statistic).

• The system regularly thrashes, even if only for short periods of time.

• The page file gradually increases in size or remains at a high usage level under
normal operations. This can indicate that additional paging space is needed or
that memory itself is in low supply.

In practical terms, let’s consider specific parts of the vmstat output:

• In general, the number in the w column should be 0, indicating no runnable
swapped-out processes; if it isn’t, the system has a serious memory shortage.

• The po column is the most important in terms of paging: it indicates the number
of page-outs and should ideally be very close to zero. If it isn’t, processes are
contending for the available memory and the system is paging. Paging activity is
also reflected in significant decreases in the amount of free memory (fre) and in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

986 | Chapter 15: Managing System Resources

the number of page reclaims (re)—memory pages taken away from one process
because another one needs them even though the first process needs them too.

• High numbers in the page-ins column (pi) are not always significant because
starting up a process involves paging in its executable image and data.* When a
new process starts, this column will jump up but then quickly level off again.

The following is an example of the effect mentioned in the final bullet:

$ vmstat 5 Output is edited.
procs memory page
r b w avm fre re pi po
0 1 0 81152 17864 0 0 0
1 1 0 98496 15624 0 192 0
2 0 0 84160 11648 0 320 0
2 0 0 74784 9600 0 320 0
2 0 0 74464 5984 0 64 0
2 0 0 78688 5472 0 0 0
1 1 0 60480 16032 0 0 0
^C

At the second data line, a compile job starts executing. There is a jump in the num-
ber of page-ins, and the available memory (fre) drops sharply. Once the job gets
going, the page-ins drop back to zero, although the free list size stays small. When
the job ends, its memory returns to the free list (final line). Check your system’s doc-
umentation to determine whether process startup paging is included in vmstat’s pag-
ing data.

Here is some output from a system briefly under distress:

$ vmstat 5 Some columns omitted.
procs memory page ... cpu
r b w avm fre re pi po us sy id
1 1 0 43232 31296 0 0 0 3 0 97
1 2 0 46560 32512 0 0 0 5 0 95
5 0 0 82496 2848 2 384 608 5 37 58
2 3 0 81568 2304 2 384 448 4 63 43
4 1 0 72480 2144 0 96 96 6 71 23
5 1 0 72640 2112 0 64 32 12 76 12
4 1 0 73280 3328 0 0 0 23 26 51
2 1 0 54176 19552 0 32 0 34 1 65
^C

At the beginning of this report, this system was running well, with no paging activity
at all. Then several new processes start up (line 5), both page-in and page-out activ-
ity increases, and the free list shrinks. This system doesn’t have enough memory for
all the jobs that want to run at this point, which is also reflected in the size of the free
list. By the end of this report, however, things are beginning to calm down again as
these processes finish.

* The AIX version of vmstat limits pi to page-ins from paging space.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 987

The filesystem cache

Most current Unix implementations use any free memory as a data cache for disk I/O
operations in an effort to maximize I/O performance. Recently accessed data is kept in
memory for a time in case it is needed again, as long as there is sufficient memory to
do so. However, this is the first memory to be freed if more memory is needed. This
tactic improves the performance of local processes and network system access opera-
tions. However, on systems designed for computation, such memory may be better
used for user jobs.

On many systems, you can configure the amount of memory that is used in this way,
as we’ll see.

Configuring the Virtual Memory Manager
Some Unix variations allow you to specify some of the parameters that control the
way the virtual memory manager operates. We consider each Unix version individu-
ally in the sections that follow.

These operations require care and thought and should be initially tried
on nonproduction systems. Recklessness and carelessness will be
punished.

AIX

AIX provides commands for customizing some aspects of the Virtual Memory Man-
ager. You need to be cautious when modifying any of the system parameters dis-
cussed in this section, because it is quite possible to make the system unusable or
even crash if you give invalid values. Fortunately, changes made with the commands
in the section last only until the system is rebooted.

AIX’s schedtune command (introduced in the previous section of this chapter) can be
used to set the values of various Virtual Memory Manager (VMM) parameters that
control how the VMM responds to thrashing conditions. In general, its goal is to
detect such conditions and deal with them before they get completely out of hand
(for example, a temporary spike in memory usage can result in thrashing for many
minutes if nothing is done about it).

The VMM decides that the system is thrashing when the fraction of page steals (pages
grabbed while they were still in use) that are actually paged out to disk* exceeds some
threshold value. When this happens, the VMM begins suspending processes until
thrashing stops.† It tries to select processes to suspend that are both having an effect

* Computed as po/fr, using the vmstat display fields.

† Suspended processes still consume memory, but they stop paging.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

988 | Chapter 15: Managing System Resources

on memory performance and whose absence will actually cause conditions to
improve. It chooses processes based on their own repage rates: when the fraction of
its page faults are for pages that have been previously paged out rises above a certain
value—by default, one fourth—a process becomes a candidate for suspension. Sus-
pended processes are resumed once system conditions have improved and remained
stable for a certain period of time (by default, 1 second).

Without any arguments, schedtune displays the current values of all of the parame-
ters under its control, including those related to memory load management. Here is
an example of its output:

schedtune
 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 0 4 2 1 2 10 16 16 1 16384

CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL
 100 7 4 0

Table 15-6 summarizes the meanings of the thrashing-related parameters.

Currently, the AIX thrashing recovery mechanisms are disabled by default. In gen-
eral, it is better to prevent memory overuse problems than to recover from them.
However, this is not always possible, so you may find this feature useful on very
busy, heavily loaded systems. To enable it, set the value of -h to 6 (the previous AIX
default value).

For most systems, it is not necessary to change the default values of the other thrash-
ing control parameters. However, if you have clear evidence that the VMM is system-
atically behaving either too aggressively or not aggressively enough in deciding
whether memory has become overcommitted, you might want to experiment with
small changes, beginning with -h or -p. In some cases, increasing the value of -w may
be beneficial on systems running a large number of processes. I don’t recommend
changing the value of -m.

Table 15-6. AIX VMM parameters

Option Label Meaning

-h SYS Memory is defined as overcommitted when page writes/total page steals > 1/-h. Setting this value to
0 disables the thrash recovery mechanisms (which is the default).

-p PROC A process may be suspended during thrashing conditions when its repages/page faults > 1/-p. This
parameter defines when an individual process is thrashing. The default is 4.

-m MULTI Minimum number of processes to remain running even when the system is thrashing. The default is 2.

-w WAIT Number of seconds to wait after thrashing ends (as defined by -h) before any reactivating suspended
processes. The default is 1.

-e GRACE Number of seconds after reactivation before a process may be suspended again. The default is 2.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 989

The vmtune command allows the system administrator to customize some aspects of
the behavior of the VMM’s page replacement algorithm. vmtune is located in the
same directory as schedtune: /usr/samples/kernel. Without options, the command dis-
plays the values of various memory management parameters:

vmtune
vmtune: current values:
 -p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
 209507 838028 2 8 120 128 524288 0

 -M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps
838849 4096 1024 1 196 192 9 131072 1

 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm
 0 0 0 0 0 0

 -t
maxclient
 838028

number of valid memory pages = 1048561 maxperm=79.9% of real memory
maximum pinable=80.0% of real memory minperm=20.0% of real memory
number of file memory pages = 42582 numperm=4.1% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 46950 numclient=4.5% of real memory
of remote pgs sched-pageout = 0 maxclient=79.9% of real memory

These are vmtune’s most useful options for memory management:

-f minfree
Minimum size of the free list—a set of memory pages set aside for new pages
required by processes (used to satisfy page faults). When the free list falls below
this threshold, the VMM must steal pages from running processes to replenish
the free list. The default is 120 pages.

-F maxfree
Page stealing stops when the free list reaches or exceeds this size. The default is
128 pages.

-p minperm
Threshold value that forces both computational and file pages to be stolen
(expressed as a percentage of the system’s total physical memory). The default is
18%–20% (depending on memory size).

-P maxperm
Threshold value that forces only file pages to be stolen (expressed as a percent-
age of the system’s total physical memory). The default is 75%–80%.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

990 | Chapter 15: Managing System Resources

The second pair of parameters determine to a certain extent which sorts of memory
pages are stolen when the free list needs to be replenished. AIX distinguishes
between computational memory pages, which consist of program working storage
(non-file-based data) and program text segments (the executable’s in-memory
image). File pages are all other kinds of memory pages (all of which are backed by
disk files). By default, the VMM attempts to slightly favor computational pages over
file pages when selecting pages to steal, according to the following scheme:

Both types
%file < minperm OR file-repaging ≥ computational-repaging

File pages only
(minperm < %file < maxperm AND file-repaging < computational-repaging) OR
%file > maxperm

%file is the percentage of pages which are file pages. Repage rates are the fraction of
page faults that reference stolen or replaced memory pages rather than new pages
(determined from the VMM’s limited history of pages that have recently been
present in memory). It may make sense to reduce maxperm on computationally-ori-
ented systems.

FreeBSD

On FreeBSD systems, kernel variables may be displayed and modified with the
sysctl command (and set at boot time via its configuration file /etc/sysctl.conf). For
example, the following commands display and then reduce the value for the maxi-
mum number of simultaneous processes allowed per user:

sysctl kern.maxprocperuid
kern.maxprocperuid: 531
sysctl kern.maxprocperuid=64
kern.maxprocperuid: 531 -> 64

Such a step might make sense on systems where users need to be prevented from
overusing/abusing system resources (although, in itself, this step would not solve
such a problem).

The following line in /etc/sysctl.conf performs the same function:

kern.maxprocperuid=64

Figure 15-3 lists the kernel variables related to paging activity and the interrelation-
ships among them.

Normally, the memory manager tries to maintain at least vm.v_free_target free pages.
The pageout daemon, which suspends processes when memory is short, wakes up
when free memory drops below the level specified by vm.v_free_reserved (it sleeps
otherwise). When it runs, it tries to achieve the total number of free pages specified
by vm.v_inactive_target.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 991

The default values of these parameters depend on the amount of physical memory in
the system. On a 98 MB system, they have the following settings:

vm.v_inactive_target: 1524 Units are pages.
vm.v_free_target: 1016
vm.v_free_min: 226
vm.v_free_reserved: 112
vm.v_pageout_free_min: 34

Finally, the variables vm.v_cache_min and vm.v_cache_max specify the minimum
and maximum sizes of the filesystem buffer cache (the defaults are 1016 and 2032
pages, respectively, on a 98 MB system). The cache can grow dynamically between
these limits if free memory permits. If the cache size falls significantly below the min-
imum size, the pageout daemon is awakened. You may decide to increase one or
both of these values if you want to favor the cache over user processes in memory
allocation. Increase the maximum first; changing the minimum level requires great
care and understanding of the memory manager internals.

HP-UX

On HP-UX systems, kernel parameters are set with the kmtune command.

Paging is controlled by three variables, in the following way:

free memory ≥ lotsfree
Page stealing stops.

desfree ≤ free memory < lotsfree
Page stealing occurs.

minfree ≤ free memory < desfree
Anti-thrashing measures taken, including process deactivation (in addition to
page stealing).

Figure 15-3. FreeBSD memory management levels

Process suspension stops
vm.v_inactive_target

No page stealing needed

vm.v_free_target

Page stealing occurs
Suspend processes waiting for free memory

vm.v_free_min

Page stealing occurs
Suspend processes needing more memory

vm.v_free_reserve

Page stealing occurs
Very serious memory shortage

vm.v_pageout_free_min

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

992 | Chapter 15: Managing System Resources

The default values for these variables are set by HP-UX and depend on the amount of
physical memory in the system (in pages). The documentation strongly discourages
modifying them.

HP-UX can use either a statically or dynamically sized buffer cache (the latter is the
default and is recommended). A dynamic cache is used when the variables nbuf and
bufpages are both set to 0. In this case, you can specify the minimum and maximum
percentage of memory used for the cache via the variables dbc_min_pct and dbc_
max_pct, which default to 5% and 50%, respectively. Depending on the extent to
which you want to favor the cache or user processes in allocating memory, modify-
ing the maximum value may make sense.

Linux

On Linux systems, modifying kernel parameters is done by changing the values
within files in /proc/sys and its subdirectories (as we’ve seen previously). For mem-
ory management, the relevant files are located in the vm subdirectory. These are the
most important of them:

freepages
This file contains three values specifying a minimum free page level, a low free
page level, and a desired free page level. When there are fewer than the mini-
mum number, user processes are denied additional memory. Between the mini-
mum and low levels, aggressive paging (page stealing) takes place, while between
the low and desired levels, “gentle” paging occurs. Above the desired (highest)
level, page stealing stops.

The default values (in pages) depend on the amount of physical memory in the
system, but they scale as x, 2x, and 3x (more or less). Successfully modifying
these values requires a thorough knowledge of both the Linux memory sub-
system and the system workload, and doing so is not recommended for the faint
of heart.

buffermem
Specifies the amount of memory to be used for the filesystem buffer cache. The
three values specify the minimum amount, the borrow percentage, and the maxi-
mum amount. They default to 2%, 10%, and 60%, respectively. When memory
is short and the size of the buffer cache exceeds the borrow percentage level,
pages will be stolen from the buffer cache until its size drops below this size.

If you want to favor the buffer cache over processes in allocating memory,
increasing the borrow and/or maximum levels may make sense. On the other
hand, if you want to favor processes, reducing the maximum and setting the bor-
row level close to it makes more sense.

overcommit_memory
Setting the value in this file to 1 allows processes to allocate amounts of memory
larger than can actually be accommodated (the default is 0). Some application

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 993

programs allocate huge amounts of memory that they never actually use, and
they may run successfully if this setting is enabled.

Changing parameter values is accomplished by modifying the values in these values.
For example, the following command changes the settings related to the buffer
cache:

echo "5 33 80" > /proc/sys/vm/buffermem

Solaris

On Solaris systems, you can view the values of system parameters via the kstat com-
mand. For example, the following command displays system parameters related to
paging behavior, including their default values on a system with 1 GB of physical
memory:

kstat -m unix -n system_pages | grep 'free '
 cachefree 1966 Units are pages.
 lotsfree 1966
 desfree 983
 minfree 491
 ...

Figure 15-4 illustrates the meanings and interrelationships of these memory levels.

As the figure indicates, setting cachefree to a value greater than lotsfree provides a
way of favoring processes’ memory over the buffer cache (by default, no distinction
is made between them because lotsfree is equal to cachefree). In order to do so, you
should decrease lotsfree to some point between its current level and desfree (rather
than increasing cachefree).

Solaris 9 has changed its virtual memory manager and has eliminated
the cachefree variable.

Figure 15-4. Solaris paging and swapping memory lLevels

cachefree

Steal cache pages first

lots free

Page stealing occurs

desfree

Swapping occurs

minfree

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

994 | Chapter 15: Managing System Resources

Tru64

Tru64 memory management is controlled by parameters in the sysconfig vm sub-
system. These are the most useful parameters:

• vm_aggressive_swap: Enable/disable aggressive swapping out of idle processes (0
by default). Enabling this can provide some memory management improve-
ments on heavily loaded systems, but it is not a substitute for reducing excess
consumption.

• There are several parameters that control the conditions under which the mem-
ory manager steals pages from active processes and/or swaps out idle processes
in an effort to maintain sufficient free memory. They are listed in Figure 15-5
along with their interrelationships and effects.

• The default for vm_page_free_min is 20 pages. The value of vm_page_free_target
varies with the memory size; for a system with 1 GB of physical memory, it
defaults to 512 pages. The reserved value is always 10 pages.

The other variables are computed from these values. vm_page_free_swap (and
the equivalent vm_page_free_optimal) is set to the point halfway between the
minimum and the target, and vm_page_free_hardswap is set to about 16 times
the target value.

• Several parameters relate to the size of the buffer cache. vm_minpercent specifies
the percentage of memory initially used for the buffer cache (the default is 10%).
The buffer cache size will increase if memory is available. The parameter ubc_
maxpercent specifies the maximum amount of memory that it may use (the
default is 100%). When memory is short and the size of the cache corresponds
to ubc_borrowpercent or larger, pages will be returned to the general pool until

Figure 15-5. Tru64 paging and swapping memory levels

No page stealing or idle process swapping
vm_page_free_hardswap

Idle process swapping occurs

vm_page_free_target

Page stealing occurs
Idle process swapping occurs

vm_page_free_swap

Page stealing occurs

vm_page_free_min

Page stealing occurs
Severe memory shortage

vm_page_free_reserved

Only the kernel can allocate additional memory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 995

the cache drops below this level (and process memory page stealing does not
occur). The default for the borrow level is 20% of physical memory.

On file servers, it will often make sense to increase one or both of the minimum
and borrow percentages (to favor the cache over local processes in memory allo-
cation). On a database server, though, you will probably want to reduce these
sizes.

Managing Paging Space
Specially designated areas of disk are used for paging. On most Unix systems, dis-
tinct, dedicated disk partitions—called swap partitions—are used to hold pages writ-
ten out from memory. In some recent Unix implementations, paging can also go to
special page files stored in a regular Unix filesystem.*

Many discussions of setting up paging space advise using multiple
paging areas, spread across different physical disk drives. Paging I/O
performance will generally improve the closer you come to this ideal.

However, regular disk I/O also benefits from careful disk placement. It
is not always possible to separate both paging space and important
filesystems. Before you decide which to do, you must determine which
kind of I/O you want to favor and then provide the improvements
appropriate for that kind.

In my experience, paging I/O is best avoided rather than optimized,
and other kinds of disk I/O deserve far more attention than paging
space placement.

How much paging space?

There are as many answers to this question as there are people to ask. The correct
answer is, of course, “It depends.” What it depends on is the type of jobs your sys-
tem typically executes. A single-user workstation might find a paging area of one to
two times the size of physical memory adequate if all the system is used for is editing
and small compilations. On the other hand, real production environments running
programs with very large memory requirements might need two or even three times
the amount of physical memory. Keep in mind that some processes will be killed if
all available paging space is ever exhausted (and new processes will not be able to
start).

One factor that can have a large effect on paging space requirements is the way that
the operating system assigns paging space to virtual memory pages implicitly created
when programs allocate large amounts of memory (which may not all be needed in

* Despite their names, both swap partitions and page files can be used for paging and for swapping (on systems
supporting virtual memory).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

996 | Chapter 15: Managing System Resources

any individual run). Many recent systems don’t allocate paging space for such pages
until each page is actually accessed; this practice tends to minimize per-process
memory requirements and stretch a given amount of physical memory as far as possi-
ble. However, other systems assign paging space to the entire block of memory as
soon as it is allocated. Obviously, under the latter scheme, the system will need more
page file space than under the former.

Other factors that will tend to increase your page file space needs include:

• Jobs requiring large amounts of memory, especially if the system must run more
than one at a time.

• Jobs with virtual address spaces significantly larger than the amount of physical
memory.

• Programs that are themselves very large (i.e., have large executables). This often
implies the item above, but not vice versa.

• A very, very large number of simultaneously running jobs, even if each individ-
ual job is fairly small.

Listing paging areas

Most systems provide commands to determine the locations of paging areas and how
much of the total space is currently in use:

Here is some output from a Solaris system:

swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 136,1 16 1049312 1049312

The Solaris swap command also has a -s option, which lists statistics about current
overall paging space usage:

total: 22240k bytes allocated + 6728k reserved = 28968k used,
 691568k available

Under AIX, the command to list the paging space information is lsps -a:

$ lsps -a
Page Space Phys. Volume Volume Group Size %Used Active Auto
hd6 hdisk0 rootvg 200MB 76 yes yes
paging00 hdisk3 uservg 128MB 34 yes yes

List paging areas Show current usage
AIX lsps -a lsps -a
FreeBSD pstat -s pstat -s
HP-UX swapinfo -t -a -m swapinfo -t -a -m
Linux cat /proc/swaps swapon -s or free -m -o
Solaris swap -l swap -l or -s
Tru64 swapon -s swapon -s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 997

The output lists the paging space name, the physical disk it resides on, the volume
group it is part of, its size, how much of it is currently in use, whether it is currently
active, and whether it is activated automatically at boot time. This system has two
paging spaces totaling about 328 MB; total system swap space is currently about
60% full.

Here is some output from an HP-UX system:

swapinfo -tam
 Mb Mb Mb PCT START/ Mb
TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 192 34 158 18% 0 - 1 /dev/vg00/lvol2
reserve - 98 -98
memory 65 32 33 49%
total 257 164 93 64% - 0 -

The first three lines of the output provide details about the system swap configura-
tion. The first line (dev) shows that 34 MB is currently in use within the paging area at
/dev/vg00/lvol2 (its total size is 192 MB). The next line indicates that another 98 MB
has been reserved within this paging area but is not yet in use.

The third line of the display is present when pseudo-swap has been enabled on the
system. This is accomplished by setting the swapmem_on kernel variable to 1 (in fact,
this is the default). Pseudo-swap allows applications to reserve more swap space than
physically exists on the system. It is important to emphasize that pseudo-swap does
not itself take up any memory, up to a limit of seven eighths of physical memory.
Line 3 indicates that there is 164 MB of memory overcommitment capacity remain-
ing for applications to use (32 MB is in use).

The final line (total) is a summary line. In this case, it indicates that there is 257 MB
of total swap space on this system. 164 MB of it is currently either reserved or allo-
cated: the 34 MB allocated from the paging area plus 98 MB reserved in the paging
area plus 32 MB of the pseudo-swap capacity.

Activating paging areas

Normally, paging areas are activated automatically at boot time. On many systems,
swap partitions are listed in the filesystem configuration file, usually /etc/fstab. The
format of the filesystem configuration file is discussed in detail in “Managing Filesys-
tems” in Chapter 10, although some example entries will be given here:

/dev/ad0s2b none swap sw 0 0 FreeBSD
/dev/vg01/swap ... swap pri=0 0 0 HP-UX
/dev/hda1 swap swap defaults 0 0 Linux

This entry says that the first partition on disk 1 is a swap partition. This basic form is
used for all swap partitions.

Solaris systems similarly place swap areas into /etc/vfstab:

/dev/dsk/c0t0d0s1 - - swap - no -

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

998 | Chapter 15: Managing System Resources

Tru64 systems lists swap areas within the vm section of /etc/sysconfigtab:

vm:
 swapdevice = /dev/disk/dsk0b

On FreeBSD, HP-UX, Tru64, and Linux systems, all defined swap partitions are acti-
vated automatically at boot time with a command like the following:

swapon -a > /dev/console 2>&1

The swapon -a command says to activate all swap partitions. This command may
also be issued manually when adding a new partition. Solaris provides the swapadd
tool to perform the same function during boots.

Under AIX, paging areas are listed in the file /etc/swapspaces:

hd6:
 dev = /dev/hd6
paging00:
 dev = /dev/paging00

Each stanza lists the name of the paging space and its associated special file (the
stanza name and the filename in /dev are always the same). All paging logical vol-
umes listed in /etc/swapspaces are activated at boot time by a swapon -a command in /
etc/rc. Paging logical volumes can also be activated when they are created or by man-
ually executing the swapon -a command.

Creating new paging areas

As we’ve noted, paging requires dedicated disk space, which is used to store paged-
out data. Making a new swap partition on an existing disk without free space is a
painful process, involving these steps:

• Performing a full backup of all filesystems currently on the device and verifying
that the tapes are readable.

• Restructuring the physical disk organization (partition sizes and layout), if neces-
sary.

• Creating new filesystems on the disk. At this point, you are treating the old disk
as if it were a brand new one.

• Restoring files to the new filesystems.

• Activating the new swapping area and adding it to the appropriate configuration
files.

Most of these steps are covered in detail in other chapters. A better approach is the
subject of the next subsection.

Filesystem paging

Many modern Unix operating systems offer a great deal more flexibility by support-
ing filesystem paging—paging to designated files within normal filesystems. Page files

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Memory | 999

can be created or deleted as needs change, albeit at a modest increase in paging oper-
ating system overhead.

Under Solaris, the mkfile command creates new page files. For example, the follow-
ing command will create the file /chem/page_1 as a 50 MB file:

mkfile 50m /chem/page_1
swap -a /chem/page_1 0 102400

The mkfile command creates a 50 MB page file with the specified pathname. The
argument specifying the size of the file is interpreted as bytes unless a k (KB) or m
(MB) suffix is appended to it. The regular swap command is then used to designate an
existing file as a page file by substituting its pathname for the special filename.

On HP-UX systems, filesystem paging is initiated by designating a directory as the
swap device to the swapon command. In this mode, it has the following basic syntax:

swapon [-m min] [-l limit] [-r reserve] dir

min is the minimum number of filesystem blocks to be used for paging (the block
size is as defined when the filesystem was created: 4096 or 8192), limit is the maxi-
mum number of filesystem blocks to be used for paging space, and reserve is the
amount of space reserved for files beyond that currently in use which may never be
used for paging space. For example, the following command initiates paging to the /
chem filesystem, limiting the size of the page file to 5000 blocks and reserving 10000
blocks for future filesystem expansion:

swapon -l 5000 -r 10000 /chem

You can also create a new logical volume as an additional paging space under HP-UX.
For example, the following commands create and activate a 125 MB swap logical vol-
ume named swap2:

lvcreate -l 125 -n swap2 -C y -r n /dev/vg01
swapon /dev/vg01/swap2

The logical volume uses a contiguous allocation policy and has bad block relocation
disabled (-C and -r, respectively). Note that no filesystem is built on the logical vol-
ume.

On Linux systems, a page file may be created with commands like these:

dd if=/dev/zero of=/swap1 bs=1024 count=8192 Create 8MB file.
mkswap /swap1 8192 Make file a swap device.
sync; sync
swapon /swap1 Activate page file.

On FreeBSD systems, a page file is created as follows:

dd if=/dev/zero of=/swap1 bs=1024 count=8192 Create 8MB file.
vnconfig -e vnc0 /swap1 swap Create pseudo disk /dev/vn0c

and enable swapping.

The vnconfig command configures the paging area and activates it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1000 | Chapter 15: Managing System Resources

Under AIX, paging space is organized as special paging logical volumes. Like normal
logical volumes, paging spaces may be increased in size as desired as long as there are
unallocated logical partitions in their volume group.

You can use the mkps command to create a new paging space or the chps command
to enlarge an existing one. For example, the following command creates a 200 MB
paging space in the volume group chemvg:

mkps -a -n -s 50 chemvg

The paging space will be assigned a name like pagingnn where nn is a number:
paging01, for example. The -a option says to activate the paging space automatically
on system boots (its name is entered into /etc/swapspaces). The -n option says to acti-
vate the paging space immediately after it is created. The -s option specifies the pag-
ing space’s size, in logical partitions (whose default size is 4 MB). The volume group
name appears as the final item on the command line.

The size of an existing paging space may be increased with the chps command. Here
the -s option specifies the number of additional logical partitions to be added:

chps -s 10 paging01

This command adds 40 MB to the size of paging space paging01.

FreeBSD does not support filesystem paging, although you can use a
logical volume for swapping in either environment. The latter makes it
much easier to add an additional paging space without adding a new
disk.

Linux and HP-UX paging space priorities

HP-UX and Linux allow you to specify a preferred usage order for multiple paging
spaces via a priority system. The -p option to swapon may be used to assign a priority
number to a swap partition or other paging area when it is activated. Priority num-
bers run from 0 to 10 under HP-UX, with lower numbered areas being used first; the
default value is 1.

On Linux systems, priorities go from 0 to 32767, with higher numbered areas being
used first, and they default to 0. It is usually preferable to give dedicated swap parti-
tions a higher usage priority than filesystem paging areas.

Removing paging areas

Paging spaces may be removed if they are no longer needed, unless they’re on the
root disk. To remove a swap partition or filesystem page file in a BSD-style imple-
mentation—FreeBSD, Linux, HP-UX, and Tru64—remove the corresponding line
from the appropriate system configuration file. Once the system is rebooted, the
swap partition will be deactivated (rebooting is necessary to ensure that there are no
active references to the partition or page file). Page files may then be removed nor-
mally with rm.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Disk I/O Performance Issues | 1001

Under Solaris, the -d option to the swap command deactivates a swap area. Here are
some examples:

swap -d /dev/dsk/c1d1s1 0
swap -d /chem/page_1 0

Once the swap -d command is executed, no new paging will be done to that area,
and the kernel will attempt to free areas in it that are still in use, if possible. How-
ever, the file will not actually be removed until no processes are using it.

Under AIX, paging spaces may be removed with rmps once they are deactivated:

chps -a n paging01
rmps paging01

The chps command removes paging01 from the list to be activated at boot time (in
/etc/swapspaces). The rmps command actually removes the paging space.

Disk I/O Performance Issues
Disk I/O is the third major performance bottleneck that can affect a system or indi-
vidual job. This section will look first at the tools for monitoring disk I/O and then
consider some of the factors that can affect disk I/O performance.

Monitoring Disk I/O Performance
Unfortunately, Unix tools for monitoring disk I/O data are few and rather poor.
BSD-like systems provide the iostat command (all but Linux have some version of

Administrative Virtues: Persistence
Monitoring system activity levels and tuning system performance both rely on the
same system administrative virtue: persistence. These tasks naturally must be per-
formed over an extended period of time, and they are also inherently cyclical (or even
recursive). You’ll need persistence most at two points:

• When you are just getting started and don’t have any idea what is wrong with
the system and what to try to improve the situation.

• After the euphoria from your early successes has worn off and you have to spend
more time to achieve smaller improvements.

System performance tuning—and system performance itself—both follow the 80/20
rule: getting the last 20% done takes 80% of the time. (System administration itself
often follows another variation of the rule: 20% of the people do 80% of the work.)
Keep in mind the law of diminishing returns, and don’t waste any time trying to eke
out that last 5% or 10%.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1002 | Chapter 15: Managing System Resources

it). Here is an example of its output from a FreeBSD system experiencing moderate
usage on one of its two disks:

$ iostat 6
 tty ad0 ad1 cd0 cpu
 tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id
 0 13 31.10 71 2.16 0.00 0 0.00 0.00 0 0.00 0 0 11 2 87
 0 13 62.67 46 2.80 0.00 0 0.00 0.00 0 0.00 0 0 10 2 88
 0 13 9.03 64 0.56 0.00 0 0.00 0.00 0 0.00 1 0 7 1 91
 0 13 1.91 63 0.12 0.00 0 0.00 0.00 0 0.00 2 0 4 2 92
 0 13 2.29 64 0.14 0.00 0 0.00 0.00 0 0.00 2 0 5 1 92

The command parameter specifies the interval between reports (and we’ve omitted
the first, summary one, as usual). The columns headed by disk names are the most
useful for our present purposes. They show current disk usage as the number of
transfers/sec (tps) and MB/sec.

System V–based systems offer the sar command, and it can be used to monitor disk
I/O. Its syntax in this mode is:

$ sar -d interval [count]

interval is the number of seconds between reports, and count is the total number of
reports to produce (the default is one). In general, sar’s options specify what data to
include in its report. sar is available for AIX, HP-UX, Linux, and Solaris. However, it
requires that process accounting be set up before it will return any data.

This report shows the current disk usage on a Linux system:

$ sar -d 5 10
Linux 2.4.7-10 (dalton) 05/29/2002

07:59:34 PM DEV tps blks/s
07:59:39 PM dev3-0 9.00 70.80
07:59:39 PM dev22-0 0.40 1.60

07:59:39 PM DEV tps blks/s
07:59:44 PM dev3-0 61.80 494.40
07:59:44 PM dev22-0 10.80 43.20

07:59:44 PM DEV tps blks/s
07:59:49 PM dev3-0 96.60 772.80
07:59:49 PM dev22-0 0.00 0.00

Average: DEV tps blks/s
Average: dev3-0 78.90 671.80
Average: dev22-0 1.12 4.48

The first column of every sar report is a time-stamp. The other columns give the
transfer operations per second and blocks transferred per second for each disk. Note
that devices are specified by their major and minor device numbers; in this case, we
are examining two hard disks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Disk I/O Performance Issues | 1003

Getting the Most From the Disk Subsystem
Disk performance is something that more effectively results from installation-time
planning and configuration than from after-the-fact tuning. Different techniques are
most effective for optimizing different kinds of I/O. This means that you’ll need to
understand the I/O performed by the applications/typical workload on the system.

There are two sorts of disk I/O:

Sequential access
Data from disk is read in disk block order, one block after another. After the ini-
tial seek (head movement) to the starting point, the speed of this sort of I/O is
limited by disk transfer rates.

Random access
Data is read in no particular order. This means that the disk head will have to
move frequently to reach the proper data. In this case, seek time is an important
factor in overall I/O performance, and you will want to minimize it to the extent
possible.

Three major factors affect disk I/O performance in general:

• Disk hardware

• Data distribution across the system’s disks

• Data placement on the physical disk

Disk hardware

In general, the best advice is to choose the best hardware you can afford when disk I/
O performance is an important consideration. Remember that the best SCSI disks are
many times faster than the fastest EIDE ones, and also many times more expensive.

These are some other points to keep in mind:

• When evaluating the performance of individual disks, consider factors such as its
local cache in addition to quoted peak transfer rates.

• Be aware that actual disk throughput will seldom if ever achieve the advertised
peak transfer rates. Consider the latter merely as relative numbers useful in com-
paring different disks.

• Musameci and Loukides suggest using the following formula to estimate actual
disk speeds: (sectors-per-track * RPM * 512)/60,000,000. This yields an estimate
of the disk’s internal transfer rate in MB. However, even this rate will only be
achievable via sequential access (and rarely even then).

When random access performance is important, you can estimate the number of
I/O operations per second as 1000/(average-seek-time + 30000/rpm)

• Don’t neglect to consider the disk controller speed and other characteristics when
choosing hardware. Fast disks won’t perform as well on a mediocre controller.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1004 | Chapter 15: Managing System Resources

• Don’t overload disk controllers. Placing disks on multiple disk controllers is one
way to improve I/O throughput rates. In configuring a system, be sure to com-
pare the maximum transfer rate for each disk adapter with the sum of the maxi-
mum transfer rates for all the disks it will control; obviously, placing too large a
load on a disk controller will do nothing but degrade performance. A more con-
servative view states that you should limit total maximum disk transfer rates to
85%–90% of the top controller speed.

Similarly, don’t overload system busses. For example, a 32-bit/33MHz PCI bus
has a peak transfer rate of 132 MB/sec, less than what an Ultra3 SCSI controller
is capable of.

Distributing the data among the available disks

The next issue to consider after a system’s hardware configuration is planning data
distribution among the available disks: in other words, what files will go on which
disk. The basic principle to take into account in such planning is to distribute the
anticipated disk I/O across controllers and disks as evenly as possible (in an attempt
to prevent any one resource from becoming a performance bottleneck). In its sim-
plest form, this means spreading the files with the highest activity across two or more
disks.

Here are some example scenarios that illustrate this principle:

• If you expect most of a system’s I/O to come from user processes, distributing
the files they are likely to use across multiple disks usually works better than
putting everything on a single disk.

• A system intended to support multiple processes with large I/O requirements
will benefit from placing the data for different programs or jobs on different
disks (and ideally on separate controllers). This minimizes the extent to which
the jobs interfere with one another.

• For a system running a large transaction-oriented database, ideally you will want
to place each of the following item pairs on different disks:

• Tables and their indexes.

• Database data and transaction logs.

• Large, heavily used tables accessed simultaneously.

Given the constraints of an actual system, you may have to decide which of these
separations is the most important.

Of course, placing heavily accessed files on network rather than local drives is almost
always a guarantee of poor performance. Finally, it is also almost always a good idea
to use a separate disk for the operating system filesystem(s) (provided you can afford
to do so) to isolate the effects of the operating system’s own I/O operations from
user processes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Disk I/O Performance Issues | 1005

Data placement on disk

The final disk I/O performance factor that we will consider is the physical placement
of files on disk. The following general considerations apply to the relationship
between file access patterns, physical disk location, and disk I/O performance:

• Sequential access of large files (i.e., reading or writing, starting at the beginning
and moving steadily toward the end) is most efficient when the files are contigu-
ous: made up of a single, continuous chunk of space on disk. Again, it may be
necessary to rebuild a filesystem to create a large amount of contiguous disk
space.* Sequential access performance is highest at the outer edge of the disk (i.e.,
beginning at 0) because the platter is the widest at that point (head movement is
minimized).

• Disk I/O to large sequential files also benefits from software disk striping, pro-
vided an appropriate stripe size is selected (see “From Disks to Filesystems” in
Chapter 10). Ideally, each read should result in one I/O operation (or less) to the
striped disk.

• Placing large, randomly accessed files in the center portions of disk drives (rather
than out at the edges) will yield the best performance. Random data access is
dominated by seek times—the time taken to move the disk heads to the correct
location—and seek times are minimized when the data is in the middle of the
disk and increases at the inner and outer edges. AIX allows you to specify the
preferred on-disk location when you create a logical volume (see “From Disks to
Filesystems” in Chapter 10). With other Unix versions, you accomplish this by
defining physical disk partitions appropriately.

• Disk striping is also effective for processes performing a large number of I/O
operations.

• Filesystem fragmentation degrades I/O performance. Fragmentation results
when the free space within a filesystem is made of many small chunks of space
(rather than fewer large ones of the same aggregate size). This means that files
themselves become fragmented (noncontiguous), and access times to reach them
become correspondingly longer. If you observe degrading I/O performance on a
very full filesystem, fragmentation may be the cause.

Filesystem fragmentation tends to increase over time. Eventually, it may be nec-
essary or desirable to use a defragmenting utility. If none is available, you will
need to rebuild the filesystem to reduce fragmentation; the procedure for doing
so is discussed in “From Disks to Filesystems” in Chapter 10.

* Unfortunately, some disks are too smart for their own good. Disks are free to do all kinds of remapping to
improve their concept of disk organization and to mask bad blocks. Thus, there is no guarantee that what
look like sequential blocks to the operating system are actually sequential on the disk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1006 | Chapter 15: Managing System Resources

Tuning Disk I/O Performance
Some systems offer a few hooks for tuning disk I/O performance. We’ll look at the
most useful of them in this subsection.

Sequential read-ahead

Some operating systems attempt to determine when a process is accessing data files
in a sequential manner. When it decides that this is the access pattern being used, it
attempts to aid the process by performing read-ahead operations: reading more pages
from the file than the process has actually requested. For example, it might begin by
retrieving two pages instead of one. As long as sequential access of the file contin-
ues, the operating system might double the number of pages read with each opera-
tion before settling at some maximum value.

The advantage of this heuristic is that data has often already been read in from disk
at the time the process asks for it, and so much of the process’s I/O wait time is elim-
inated because no physical disk operation need take place.

AIX. AIX provides this functionality. You can alter the default threshold value of 2
and 8 pages using these vmtune options:

-r minpgahead
Starting number of pages for sequential read aheads.

-R maxpgahead
Maximum number of pages to read ahead. You will want to increase this param-
eter for striped filesystems. Good values to try are 8–16 times the number of
component drives.

Both parameters must be a power of 2.

Linux. Linux provides some kernel parameters related to read-ahead behavior. They
may be accessed via these files in /proc/sys/vm:

page-cluster
Determines the number of pages read in by a single read operation. The actual
number is computed as 2 raised to this power. The default setting is 4, resulting
in a page cluster size of 16. Large sequential I/O operations may benefit from
increasing this value.

min-readahead and max-readahead
Specify the minimum and maximum pages used for read-ahead. They default to
3 and 31, respectively.

Finally, the Linux Logical Volume Manager allows you to specify the read-ahead size
when you create a logical volume with lvcreate, via its -r option. For example, this

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Managing Disk Space Usage | 1007

command specifies a read-ahead size of 8 sectors and also creates a contiguous logi-
cal volume:

lvcreate -L 800M -n bio_lv -r 8 -C y vg1

The valid range for -r is 2 to 120.

Disk I/O pacing

AIX also provides a facility designed to prevent general system interactive perfor-
mance from being adversely affected by large I/O operations. By default, write
requests are serviced by the operating system in the order in which they are made
(queued). A very large I/O operation can generate many pending I/O requests, and
users needing disk access can be forced to wait for them to complete. This occurs most
frequently when an application computes a large amount of new data to be written to
disk (rather than processing a data set by reading it in and then writing it back out).

You can experience this effect by copying a large file—32MB or more—in the back-
ground and then running an ls command on any random directory you have not
accessed recently on the same physical disk. You’ll notice an appreciable wait time
before the ls output appears.

Disk I/O pacing is designed to prevent large I/O operations from degrading interac-
tive performance. It is disabled by default. Consider enabling it only under circum-
stances like those described.

This feature may be activated by changing the values of the minpout and maxpout
system parameters using the chdev command. When these parameters are nonzero, if
a process tries to write to a file for which there are already maxpout or more pending
write operations, the process is suspended until the number of pending requests falls
below minpout.

maxpout must be one more than a multiple of 4: 5, 9, 13, and so on (i.e., of the form
4x+1). minpout must be a multiple of 4 and at least 4 less than maxpout. The AIX
documentation suggests starting with values of 33 and 16, respectively, and observ-
ing the effects. The following command will set them to these values:

chdev -l sys0 -a maxpout=33 -a minpout=16

If interactive performance is still not as rapid as you want it to be, try decreasing
these parameters; on the other hand, if the performance of the job doing the large
write operation suffers more than you want it to, increase them. Note that their val-
ues do persist across boot because they are stored in the ODM.

Monitoring and Managing Disk Space Usage
This section looks at the tools available to monitor and track disk space usage. It
then goes on to discuss ways of approaching a perennial administrative challenge:
getting users to reduce their disk use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1008 | Chapter 15: Managing System Resources

Where Did It All Go?
The df -k command produces a report that describes all the filesystems, their total
capacities, and the amount of free space available on each one (reporting sizes in
KB). Here is the output from a Linux system:

File system Kbytes used avail capacity Mounted on
/dev/sd0a 7608 6369 478 93% /
/dev/sd0g 49155 45224 0 102% /corp

This output reports the status of two filesystems: /dev/sd0a, the root disk, and /dev/
sd0g, the disk mounted at corp (containing all files and subdirectories underneath
/corp). Each line of the report shows the filesystem’s name, the total number of kilo-
bytes on the disk, the number of kilobytes in use, the number of kilobytes available,
and the percentage of the filesystem’s storage that is in use. It is evident that both
filesystems are heavily used. In fact, the /corp filesystem appears to be overfull.

As we’ve noted earlier, the operating system generally holds back some amount of
space in each filesystem, allocatable only by the superuser (usually 10%, although
Linux uses 5% by default). A filesystem may appear to use over 100% of the avail-
able space when it has tapped into this reserve.

The du -k command reports the amount of disk space used by all files and subdirec-
tories underneath one or more specified directories, listed on a per-subdirectory basis
(amounts are given in KB).

A typical du report looks like this:

$ du -k /home/chavez
50 /home/chavez/bin
114 /home/chavez/src
...
34823 /home/chavez

This report states that in the directory /home/chavez, the subdirectory bin occupies
50 blocks of disk space, and the subdirectory src occupies 114 blocks. Using the du
command on users’ home directories and on directories where ongoing develop-
ment is taking place is one way to determine who is using the system’s disk space.

The report from du can be inordinately long and tedious. By using the -s option, you
eliminate most of the data; du -s reports the total amount of disk space that a direc-
tory and its contents occupies, but it does not report the storage requirements of
each subdirectory. For example:

$ du -k -s /home/chavez
34823 /home/chavez

In many cases, this may be all the information you care about.

To generate a list of the system’s directories in order of size, execute the command:

$ du -k / | sort -rn

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Managing Disk Space Usage | 1009

This command starts at the root filesystem, lists the storage required for each direc-
tory, and pipes its output to sort. With the -rn options (reverse sort order, sort by
numeric first field), sort orders these directories according to the amount of storage
they occupy, placing the largest first.

If the directory specified as its parameter is large or has a large number of subdirecto-
ries, du can take quite a while to execute. It is thus a prime candidate for automation
via scripts and after-hours execution via cron.

The quot command breaks down disk space usage within a single filesystem by user.
This command is available on all of the systems we are considering except Linux.*

quot has the following syntax:

quot file-system

quot reports the number of kilobytes used by each user in the specified filesystem. It
is run as root (to access the disk special files). Here’s a typical example:

quot /
/dev/sd0a (/):
6472 root
5234 bin
62 sys
2 adm

This report indicates that on the root disk, 6472 kilobytes are owned by the user
root, 5234 kilobytes are owned by user bin, and so on. This command can help you
spot users who are consuming excessive amounts of disk space, especially in areas
other than their home directories. Like du, quot must access the entire disk and so
can take an appreciable amount of time to execute.

Handling Disk Shortage Problems
The commands and scripts we’ve just looked at will let you know when you have a
disk space shortage and where the available space went, but you’ll still have to solve
the problem and free up the needed space somehow. There is a large range of
approaches to solving disk space problems, including the following:

• Buy another disk. This is the ideal solution, but it’s not always practical.

• Mount a remote disk that has some free space on it. This solution assumes that
such a disk is available, that mounting it on your system presents no security
problems, and that adding additional data to it won’t cause problems on its
home system.

• Eliminate unnecessary files. For example, in a pinch, you can remove the prefor-
matted versions of the manual pages provided that the source files are also avail-
able on your system.

* Linux does provide it for xfs filesystems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1010 | Chapter 15: Managing System Resources

• Compress large, infrequently accessed files.

• Convince or cajole users into deleting unneeded files and backing up and then
deleting old files they are no longer using. If you are successful, a great deal of
free disk space usually results. At the same time, you should check the system for
log files that can be reduced in size (discussed later in this section).

When gentle pressure on users doesn’t work, sometimes peer pressure will. The
system administrator on one system I worked on used to mail a list of the top
five “disk hogs”—essentially the output of the quot command—whenever disk
space was short. I recommend this approach only if you have both a thick skin
and a good-natured user community.

• Some sites automatically archive and then delete user files that haven’t been
accessed in a certain period of time (often two or three months). If a user wants a
file back, he can send a message to the system administration staff, who will
restore it. This approach is the most brutal and should only be taken when abso-
lutely necessary. It is fairly common in university environments, but rarely used
elsewhere. It’s also easy to circumvent by touching all your files every month,
and performing system backups may also reset access times on inactive files.

These, then, are some of the alternatives.* In most cases, though, when you can’t add
any disks to the system, the most effective way to solve a disk space problem is to
convince users to reduce their storage requirements by deleting old, useless, and sel-
dom (if ever) used files (after backing them up first). Junk files abound on all sys-
tems. For example, many text editors create checkpoint and backup files as
protection against a user error or a system failure. If these accumulate, they can con-
sume a lot of disk space. In addition, users often keep many versions of files around
(noticed most often in the case of program source files), frequently not even remem-
bering what the differences are between them.

The system scratch directory /tmp also needs to be cleared out periodically (as well as
any other directories serving a similar function). If your system doesn’t get rebooted
very often, you’ll need to do this by hand. You should also keep an eye on the vari-
ous system spooling directories under /usr/spool or /var/spool because files can often
become stagnant there.

Unix itself has a number of accounting and logging files that, if left unattended, will
grow without bound. As administrator, you are responsible for extracting the rele-
vant data from these files periodically and then truncating them. We’ll look at deal-
ing with these sources of wasted space in the following sections.

* There is another way to limit users’ disk usage on some systems: disk quotas (discussed later in this section).
However, quotas won’t help you once the disks are already too full.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Managing Disk Space Usage | 1011

Under some circumstances, a filesystem’s performance can begin to
degrade when a filesystem is more than 80%–90% full. Therefore, it is
a good idea to take any corrective action before your filesystems reach
this level, rather than waiting until they are completely full.

Using find to locate or remove wasted space

The find command may be used to locate potential candidates for archival and dele-
tion (or just deletion) in the event of a disk space shortage. For example, the follow-
ing command prints all files with names beginning with .BAK. or ending with a tilde,
the formats for backup files from two popular text editors:

$ find / -name ".BAK.*" -o -name "*~" -print

As we’ve seen, find can also delete files automatically. For example, the following
command deletes all editor backup files over one week old:

find / /bio /corp -atime +7 \(-name ".BAK.*" \
 -o -name "*~" \) -type f -xdev -exec rm -f {} \;

When using find for automatic deletion, it pays to be cautious. That is why the pre-
vious command includes the -type and -xdev options and lists each filesystem sepa-
rately. With the cron facility, you can use find to produce a list of files subject to
deletion nightly (or to delete them automatically).

Another tactic is to search the filesystem for duplicate files. This will require writing
a script, but you’ll be amazed at how many you’ll find.

Limiting the growth of log files

The system administrator is responsible for reaping any data needed from log files
and keeping them to a reasonable size. The major offenders include these files:

• The various system log files in /usr/adm or /var/adm, which may include sulog,
messages, and other files set up via /etc/syslog.conf.

• Accounting files in /usr/adm or /var/adm, especially wtmp and acct (BSD) or
pacct (System V). Also, under System V, the space consumed by the cumulative
summary files and ASCII reports in /var/adm/acct/sum and /var/adm/acct/fiscal
are worth monitoring.

• Subsystem log files: many Unix facilities, such as cron, the mail system, and the
printing system, keep their own log files.

• Under AIX, the files smit.log and smit.script in users’ home directories are
appended to every time someone runs SMIT. They become large very quickly.
You should watch the ones in your own and root’s home directories (if you su to
root, the files still go into your own home directory). Alternatively, you could
run the smit command with the -l and -s options (which specify the log and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1012 | Chapter 15: Managing System Resources

script filenames respectively) and set both filenames to /dev/null. Defining an
alias is the easy way to do so:

alias smit="smit -l /dev/null -s /dev/null" bash/ksh
alias smit "smit -l /dev/null -s /dev/null" csh/tcsh

There are several approaches to controlling the growth of system log files. The easi-
est is to truncate them by hand when they become large. This is advisable only for
ASCII (text) log files. To reduce a file to zero length, use a command such as:

cat /dev/null > /var/adm/sulog

Copying from the null device into the file is preferable to deleting the file, because in
some cases the subsystem won’t recreate the log file if it doesn’t exist. It’s also prefer-
able to rm followed by touch because the file ownerships and permissions remain cor-
rect and also because it releases the disk space immediately.

To retain a small part of the current logging information, use tail, as in this example:

cd /var/adm
tail -100 sulog >tmp
cat tmp > sulog

A third approach is to keep several old versions of a log file on the system by periodi-
cally deleting the oldest one, renaming the current one, and then recreating it. This
technique is described in “Essential Administrative Techniques” in Chapter 3.

AIX provides the skulker script (stored in /usr/sbin) to perform some of these filesys-
tem cleanup operations, including the following:

• Clearing the queueing system spooling areas of old, junk files.

• Clearing /tmp and /var/tmp of all files over one day old.

• Deleting old news files (over 45 days old).

• Deleting a variety of editor backup files, core dump files, and random executa-
bles (named a.out). You may want to add to the list of file types.

The system comes set up to run skulker every day at 3 A.M. via cron, but the crontab
entry is commented out. If you want to run skulker, you’ll need to remove the com-
ment character from the skulker line in root’s crontab file.

Controlling Disk Usage with Disk Quotas
Disk space shortages are a perennial problem on all computers. For systems where
direct control over how much disk space each user uses is essential, disk quotas may
provide a solution.

The disk quota system allows an administrator to limit the amount of filesystem stor-
age that any user can consume. If quotas are enabled, the operating system will
maintain separate quotas for each user’s disk space and inode consumption (equiva-
lent to the total number of files he owns) on each filesystem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Managing Disk Space Usage | 1013

There are two distinct kinds of quota: a hard limit and a soft limit. A user is never
allowed to exceed his hard limit, under any circumstances. When a user reaches his
hard limit, he’ll get a message that he has exceeded his quota, and the operating sys-
tem will refuse to allocate any more storage. A user may exceed the soft limit for a
limited period of time; in such cases, he gets a warning message, and the operating
system grants the request for additional storage. If his disk usage still exceeds this
soft limit at the next login, the message will be repeated. He’ll continue to receive
warnings at each successive login until either:

• He reduces his disk usage to below the soft limit, or

• He’s been warned a fixed number of times (or for a specified period of time,
depending on the implementation). At this point, the operating system will
refuse to allocate any more storage until the user deletes enough files that his
disk usage again falls below his soft limit.

The disk quota system has been designed to let users have large temporary files, pro-
vided that in the long term, they obey a much stricter limit. For example, consider a
user with a hard limit of 15,000 blocks and a soft limit of 10,000 blocks. If this user’s
storage ever exceeds 15,000 blocks, the operating system will refuse to allocate any
more storage immediately; he will need to free some storage before he can save any
more files. If this user’s storage exceeds 10,000 blocks, he’ll get a warning but
requests for more disk space will still be honored. However, if this user does not
reduce his storage below 10,000 blocks, the operating system will eventually refuse
to allocate any additional storage until it does fall below 10,000 blocks.

If you decide to implement a quota system, you must determine which filesystems
need quotas. In most situations, the filesystems containing user home directories are
appropriate candidates for quotas. Filesystems that are reserved for public files (for
example, the root filesystem) probably shouldn’t use quotas. The /tmp filesystem
doesn’t usually have quotas because it’s designed to provide temporary scratch space.

Many operating systems require quotas to be enabled in the kernel,
and many kernels do not include them by default. Check your kernel
configuration before attempting to use quotas.

Preparing filesystems for quotas

After deciding which filesystems will have quotas, you’ll need to edit the filesystem
entries in the filesystem configuration file (usually /etc/fstab) to indicate that quotas
are in use by editing the options field, as in these examples:*

FreeBSD
/dev/ad1s1a /1 ufs rw,userquota 1 1

* There are two versions of the Linux disk quota facility. This discussion describes Version 1 because Version
2 is relatively new.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1014 | Chapter 15: Managing System Resources

Linux
/dev/sdb2 /1 reiserfs usrquota,grpquota 1 1

HP-UX
/dev/vg01/lvol3 /1 vxfs rw,quota 0 1

Tru64
chem_domain#one /1 advfs rq 0 1

Solaris
/dev/dsk/c0t3d0s0 ... /1 ufs 2 yes rw,logging,quota

See “Managing Filesystems” in Chapter 10 for full details on the filesystem configu-
ration file on the various systems.

On AIX systems, add a line like the following to the filesystem’s stanza in /etc/filesys-
tems:

quota = userquota,groupquota

Include the userquota keyword for standard disk quotas and the groupquota key-
word for group-based disk quotas (described in the final part of this section).

Next, make sure that there is a file named quotas in the top-level directory of each
filesystem for which you want to establish quotas. If the file does not exist, create it
with the touch command:*

cd /chem
touch quotas
chmod 600 quotas

The file must be writable by root and no one else.

Setting users’ quota limits

Use the edquota command to establish filesystem quotas for individual users. This
command can be invoked to edit the quotas for a single user:

edquota username(s)

When you execute this command, edquota creates a temporary file containing the
hard and soft limits on each filesystem for each user. After creating the file, edquota
invokes an editor so you can modify it (by default, vi; you can use the environment
variable EDITOR to specify your favorite editor). Each line in this file describes one
filesystem. The format varies somewhat; here is an example:

/chem: blocks in use: 13420, limits (soft=20000, hard=30000)
 inodes in use: 824, limits (soft=0, hard=0)

This entry specifies quotas for the /chem filesystem; by editing it, you can add hard
and soft limits for this user’s total disk space and inode space (total number of files).

* This is not always required by recent quota system implementations, but it won’t hurt either.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Monitoring and Managing Disk Space Usage | 1015

Setting a quota to 0 disables that quota. The example specifies a soft quota of 20,000
disk blocks, a hard quota of 30,000 disk blocks, and no quotas on inodes. Note that
the entry in the temporary file does not indicate anything about the user(s) to which
these quotas apply; quotas apply to the user specified when you execute the edquota
command. When you list more than one user on the command line, you will edit a
file for each one of them in turn.

After you save the temporary quota file and exit the editor (using whatever com-
mands are appropriate for the editor you are using), edquota modifies the quotas files
themselves. These files cannot be edited directly.

The -p option to edquota lets you copy quota settings between users. For example,
the following command applies chavez’s quota settings to users wang and harvey:

edquota -p chavez wang harvey

Setting the soft limit expiration period

edquota’s -t option is used to specify the system-wide time limit for soft quotas. Exe-
cuting edquota -t also starts an editor session something like this one:

Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for groups:
/chem: block grace period: 3 days, file grace period: 0 days

A value of zero days indicates the default value is in effect (usually seven days). You
can specify the time period in other units by changing days to one of the other listed
keywords. Some implementations allow you to specify the grace period in months as
well, but then one would have to start to wonder what the point of using disk quo-
tas was in the first place.

Enabling quota checking

The quotaon command is used to activate the quota system and enable quota check-
ing:

quotaon filesystem
quotaon -a

The first command enables the quota system for the specified filesystem. The latter
enables quotas on all filesystems listed with quotas in the filesystem configuration
file. For example, the following command enables quotas for the /chem filesystem:

quotaon /chem

Similarly, the command quotaoff disables quotas. It can be used with the -a option
to disable all quotas, or with a list of filesystem names.

Quota consistency checking

The quotacheck command checks the consistency of the quotas file for the filesystem
specified as its argument. It verifies that the quota files are consistent with current

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1016 | Chapter 15: Managing System Resources

actual disk usage. This command should be executed after you install or modify the
quota system. If used with the option -a, quotacheck checks all filesystems desig-
nated as using quotas in the filesystem configuration file.

quotacheck -a and quotaon -a also need to be run at boot time (in this order). You
may need to add them to one of the system boot scripts on AIX systems. The other
Unix versions run them automatically, via these boot scripts:

Disk quota reports

The repquota command reports the current quotas for one or more specified filesys-
tem(s). Here is an example of the reports generated by repquota:

repquota -v /chem
*** Report for user quotas on /chem (/dev/sd1d)
 Block limits File limits
User used soft hard grace used soft hard grace
chavez -- 13420 20000 25000 824 0 0
chen +- 2436 2000 3000 2days 8 0 0

The plus sign in the entry for user chen indicates that he has exceeded his disk quota.

Users can use the quota command to determine where their current disk usage falls
with respect to their disk quotas.

Group-based quotas (AIX, FreeBSD, Tru64 and Linux)

AIX, FreeBSD, Tru64, and Linux extend standard disk quotas to Unix groups as well
as individual users. Specifying the -g option to edquota causes names on the com-
mand line to be interpreted as group names rather than as usernames. Similarly,
edquota -t -g allows you to specify the soft limit timeout period for group quotas.

By default, the quotaon, quotaoff, quotacheck, and repquota commands operate on
both user and group quotas. You can specify the -u and -g options to limit their
scope to only user quotas or only group quotas, respectively. Users must use the fol-
lowing form of the quota command to determine the current status of group quotas:

$ quota -g chem

For example, this command will report the disk quota status for group chem. Users
may query the disk quota status only for groups of which they are a member.

FreeBSD /etc/rc (if check_quotas="yes" in /etc/rc.conf)
HP-UX /sbin/init.d/localmount
Linux /etc/init.d/quota

(SuSE 7: if START_QUOTA="yes" in /etc/rc.config)
Solaris /etc/init.d/MOUNTFS and ufs_quota
Tru64 /sbin/init.d/quota if QUOTA_CONFIG="yes" in /etc/rc.config

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Performance | 1017

Network Performance
This section concludes our look at performance monitoring and tuning on Unix sys-
tems. It contains a brief introduction to network performance, a very large topic
whose full treatment is beyond the scope of this book. Consult the work by Musa-
meci and Loukides for further information.

Basic Network Performance Monitoring
The netstat -s command is a good place to start when examining network perfor-
mance. It displays network statistics. You can limit the display to a single network
protocol via the -p option, as in this example from an HP-UX system:

$ netstat -s -p tcp Output shortened.
tcp:
 178182 packets sent
 111822 data packets (35681757 bytes)

30 data packets (3836 bytes) retransmitted
 66363 ack-only packets (4332 delayed)
 337753 packets received
 89709 acks (for 35680557 bytes)

349 duplicate acks
 0 acks for unsent data
 284726 packets (287618947 bytes) received in-sequence

0 completely duplicate packets (0 bytes)
3 packets with some dup, data (832 bytes duped)
11 out of order packets (544 bytes)
5 packets received after close
11 out of order packets (544 bytes)

The output gives statistics since the last boot.*

Network operations are proceeding nicely on this system. The highlighted lines are
among those that would indicate transmission problems if the values in them rose to
appreciable percentages of the total network traffic.

More detailed network performance data can be determined via the various network
monitoring tools we considered in “Monitoring the Network” in Chapter 8.

General TCP/IP Network Performance Principles
Good network performance depends on a combination of several components work-
ing properly and efficiently. Performance problems can arise in many places and take
many forms. These are among the most common:

• Network interface problems, including insufficient speed and high error rates
due to failing or misconfigured hardware. This sort of problem shows up as poor
performance and/or many errors on a particular host.

* Or most recent counter reset, if supported.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1018 | Chapter 15: Managing System Resources

Network adapters, hubs, switches, and network devices in general seldom fail all
at once, but rather produce increasing error rates and/or degrading performance
over time. These metrics should be monitored regularly to spot problems before
they become severe. Degradation can also occur due to aging drop cables.

Hardware device setup errors, including half/full duplex mismatches, cause high
error and collision rates and result in hideous performance.

• Overloaded servers can also produce poor network response. Servers can have
several kinds of shortfalls: too much traffic for its interface to handle, too little
memory for the network workload (or an incorrect configuration), and insuffi-
cient disk I/O bandwidth. The server’s performance will need to be investigated
to determine which of these are relevant (and hence where the most attention to
the problem should be paid).

• Insufficient network bandwidth for the workload. You can recognize such situa-
tions by the presence of slow response and/or significant timeouts on systems
throughout the local network, which is not alleviated by the addition of another
server system. The best solution to such problems is to use high-performance
switches. If this is not possible, another, much less desirable, solution is to
divide the network into multiple subnets that separate systems requiring distinct
network resources from one another.

All of these problem types are best addressed via by correcting or replacing hard-
ware and/or reallocating resources rather than configuration-level tuning.

Two TCP parameters

TCP operations are controlled by a very large number of parameters. Most of them
should not be modified by nonexperts. In this subsection, we’ll consider two that are
most likely to produce significant improvements with little risk.

• The maximum segment size (MSS) determines the largest “packet” size that the
TCP protocol will transmit across the network. (The actual size will be 40 bytes
larger due to the IP and TCP headers.) Larger segments result in fewer transmis-
sions to transfer a given amount of data and usually provide correspondingly
better performance on Ethernet networks.* For Ethernet networks, the maxi-
mum allowed size, 1460 bytes (1500 minus 40), is usually appropriate.†

* Note that this will often not be the case for slow network links, especially for applications that are very sen-
sitive to network transmission latencies.

† When is it inappropriate? When the headers are larger than the minimum and using a size this large causes
packet fragmentation and its resultant overhead. For example, a value of 1200–1300 is more appropriate
when, say, the PPP over Ethernet protocol is used, as would be the case on a web server accessed by cable
modem users.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Performance | 1019

• Socket buffer sizes. When an application sends data across the network via the
TCP protocol, it is first placed in a buffer. From there, the protocol will divide it
as needed and create segments for transmission. Once the buffer is full, the
application generally must wait for the entire buffer to be transmitted and
acknowledged before it is allowed to queue additional data.

On faster networks, a larger buffer size can improve application performance.
The tradeoff here is that each buffer consumes memory, so the system must have
sufficient available memory resources to accommodate all of the buffers for (at
least) the usual network load. For example, using read and write socket buffers
of 32 KB for each of 500 network connections would require approximately 32
MB of memory on the network server (32 × 2 × 500). This would not be a prob-
lem on a dedicated network server but might be an issue on busy, general-
purpose systems.

On current systems with reasonable memory sizes and no other applications
with significant memory requirements, socket buffer sizes of 48 to 64 KB are
usually reasonable.

Table 15-7 lists the relevant parameters for each of our Unix versions, along with the
commands that may be used to modify them.

The remaining sections will consider performance issues associated with two impor-
tant network subsystems: DNS and NFS.

Table 15-7. Important TCP parameters

Version Command Socket Buffers [default in KB] MSS [default in bytes]

AIX no -o param=value tcp_sendspace [16]
tcp_recvspace [16]

tcp_mssdflt [512]

FreeBSD sysctl param=value
(also /etc/sysctl.conf)

net.inet.tcp.sendspace [32]
net.inet.tcp.recvspace [64]

net.inet.tcp.mssdflt [512]

HP-UX ndd -set /dev/tcp param value
(also /etc/rc.config.d/nddconf)

tcp_recv_hiwater_def [32]
tcp_xmit_hiwater_def [32]

tcp_mss_def [536]

Linux
2.4 kernel

echo "value" >
 /proc/sys/net/core/file
echo "values" >
 /proc/sys/net/ipv4/file
(holds 3 values: min, default, max)

rmem_max [64]
wmem_max [64]
tcp_rmem [~85]
tcp_wmem [16]

not tunable

Solaris ndd -set /dev/tcp param value tcp_recv_hiwat [48]
rcp_xmit_hiwat [48]

tcp_mss_def_ipv4 [512]

Tru64 sysconfig -r inet param=value
(also /etc/sysconfigtab)

tcp_sendspace [60]
tcp_recvspace [60]

tcp_mssdflt [536]

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1020 | Chapter 15: Managing System Resources

DNS Performance
DNS performance is another item that is easiest to affect at the planning stage. The
key issues with DNS are:

• Sufficient server capacity to service all of the clients

• Balancing the load among the available servers

At the moment, the latter is best accomplished by specifying different name server
orderings within the /etc/resolv.conf files on groups of client systems. It is also help-
ful to provide at least one DNS server on each side of slow links.

Careful placement of forwarders can also be beneficial. At larger sites, a two-tiered
forwarding hierarchy may help to channel external queries through specific hosts
and reduce the load on other internal servers.

Finally, use separate servers for handling internal and external DNS queries. Not
only will there be performance benefits for internal users, it is also the best security
practice.

DNS itself can also provide a very crude sort of load balancing via the use of multi-
ple A records in a zone file, as in this example:

docsrv IN A 192.168.10.1
 IN A 192.168.10.2
 IN A 192.168.10.3

These records define three servers with the hostname docsrv. Successive queries for
this name will receive each IP address in turn.*

This technique is most effective when the operations that are requested from the
servers are all essentially equivalent, and so a simple round robin distribution of
them is appropriate. It will be less successful when requests can vary greatly in size or
resource requirements. In such cases, manual assigning servers to the various clients
will work better. You can do so by editing the nameserver entries in /etc/resolv.conf.

NFS Performance
The Network File System is a very important Unix network service, so we’ll com-
plete our discussion of performance by considering some of its performance issues.

Monitoring NFS-specific network traffic and performance is done via the nfsstat
command. For example, the following command lists NFS client statistics:

$ nfsstat -rc

Client rpc:

* Actually, each query will receive each IP address as the first entry in the list that is returned. Most clients pay
attention only to the top entry.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Performance | 1021

tcp: calls badxids badverfs timeouts newcreds
 0 0 0 0 0
 ...
udp: calls badxids badverfs timeouts newcreds retrans
 302241 7 0 3 0 0
 badcalls timers waits
 7 22 0

This system performs NFS operations using the UDP protocol (the traditional
method), so the TCP values are all 0. The most important items to consider in this
report are the following:

timeouts
Operations that failed because the server failed to respond in time. Such opera-
tions must be repeated.

badxids
Duplicate replies received for operations that were retransmitted (indicating a
“false positive” timeout).

If either of these values is appreciable, there is probably an NFS bottleneck some-
where. If badxids is within a factor of, say, 6–7 of timeouts, the responsiveness the
remote NFS server is the source of the client’s performance problems. On the other
hand, if there are many more timeouts than badxids, then general network conges-
tion is to blame.

The nfsstat command’s -s option is used to obtain NFS server statistics:

$ nfsstat -s

Server nfs:
 calls badcalls badprog badproc badvers badargs
 59077 0 0 0 0 0
 unprivport weakauth
 0 0

Server nfs V2: (54231 out of 59077 calls)
 null getattr setattr root lookup readlink read
 0 0% 30 0% 12 0% 0 0% 68 0% 0 0% 30223 55%
 wrcache write create remove rename link symlink
 0 0% 23776 43% 4 0% 4 0% 0 0% 0 0% 0 0%
 mkdir rmdir readdir statfs
 1 0% 0 0% 42 0% 71 0%

Server nfs V3: (4846 out of 59077 calls)
 null getattr setattr lookup access readlink read
 0 0% 366 7% 0 0% 3096 63% 711 14% 0 0% 0 0%
 write create mkdir symlink mknod remove rmdir
 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
 rename link readdir readdir+ fsstat fsinfo pathconf
 0 0% 0 0% 47 0% 345 7% 166 3% 12 0% 103 2%
 commit
 0 0%

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1022 | Chapter 15: Managing System Resources

The first section of the report gives overall NFS server statistics. The remainder of the
report serves to break down NFS operations by type. This server supports both NFS
Versions 2 and 3, so we see values in both of the final two sections of the report.

NFS Version 3 performance improvements

Many Unix systems are now providing NFS Version 3 instead of or in addition to
Version 2. NFS Version 3 has many benefits in several areas; reliability, security, per-
formance are among them. The following are the most important improvements pro-
vided by NFS Version 3:

• TCP versus UDP: Traditionally, NFS uses the UDP transport protocol. NFS Ver-
sion 3 uses TCP as its default transport protocol.* Doing so provides NFS opera-
tions with both flow control and packet-level retransmission. By contrast, when
using UDP, any network failure requires that the entire operation be repeated.
Thus, using TCP often results in smaller performance hits when there are
problems.

• Two-phase writes: Previously, NFS write operations were performed synchro-
nously, meaning that a client had to wait for each write operation to be com-
pleted before starting another one. Under NFS Version 3, write operations are
performed in two parts:

— The client queues a write request, which the server acknowledges immedi-
ately. Additional write operations can be queued once the acknowledge-
ment is received.

— The client commits the write operation (possibly after some intermediate
modifications), and the server commits it to disk (or requests its retransmis-
sion if the data is no longer available (e.g., if there was an intervening sys-
tem crash).

• The maximum data block size is increased (the previous limit was 8 KB). The
actual maximum value is determined by transport protocol; for TCP, it is 32 KB.
In addition to reducing the number of packets, a larger block size can result in
fewer disks seeks and faster sequential file access. The effect is especially notice-
able with high-speed networks.

NFS performance principles

The following points are important to keep in mind with respect to NFS server per-
formance, especially in the planning stages:

• Mounting NFS filesystems in the background (i.e., with the bg option) will speed
up boots.

* Some NFS Version 2 implementations can also optionally use TCP instead of UDP.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Network Performance | 1023

• Use an appropriate number of NFS daemon processes. The rule of thumb is 2
per expected simultaneous client process. In contrast, if there are idle NFS dae-
mons on a server, you can reduce the number and release their (albeit small)
memory resources.

• Very busy NFS servers will benefit from a multiprocessor computer. CPU
resources are almost never an issue for NFS, but the context switches generated
by very large numbers of clients can be significant.

• Don’t neglect the usual system memory and disk I/O performance consider-
ations, including the size of the buffer cache, filesystem fragmentation, and data
distribution across disks.

• NFS searches remote directories sequentially, entry by entry, so avoid remote
directories with large numbers of files.

• Remember that not every task is appropriate for remote files. For example, com-
piling a program such that the object files are written to a remote filesystem will
run very slowly indeed. In general, source files may be remote, but object files
and executables should be created on the local system. In general, for best net-
work performance, avoid writing large amounts of data to remote files (although
you may to sacrifice disk and network I/O performance in order to use the CPU
resources of a fast remote system).

Resources for You
After all of this discussion of system resources, it’s worth spending a little time consid-
ering ones for yourself. Resources for system administrators come in many varieties:
books and magazines, web sites and news groups, conferences and professional orga-
nizations, and humor and fun (all work and no play won’t do anything positive for
your performance).

Here are some of my favorites:

• An excellent Unix internals book: UNIX Internals: The New Frontier by Uresh
Vahalia (Prentice-Hall).

• Sys Admin magazine, http://www.sysadminmag.com

• Useful web sites: http://www.ugu.com, http://www.lwn.net, http://www.slashdot.
com (the last for news and rumors).

• LISA: an annual conference for system administrators run by Usenix and Sage
(see http://www.usenix.org/events).

• UNIX Hater’s Handbook, ed. Simson Garfinkel, Daniel Weise, and Steve Strass-
mann (IDG Books) This is still the funniest book I’ve read in a long time. You
can expect to waste a few hours at work if you start reading it there because you
won’t be able to put it down.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1024

Chapter 16CHAPTER 16

Configuring and Building Kernels

As we’ve noted many times before, the kernel is the heart of the Unix operating sys-
tem. It is the core program, always running while the operating system is up, provid-
ing and overseeing the system environment. The kernel is responsible for all aspects
of system functioning, including:

• Process creation, termination and scheduling

• Virtual memory management (including paging)

• Device I/O (via interfaces with device drivers: modules that perform the actual
low-level communication with physical devices such as disk controllers, serial
ports, and network adapters)

• Interprocess communication (both local and network)

• Enforcing access control and other security mechanisms

Traditionally, the Unix kernel is a single, monolithic program. On more recent sys-
tems, however, the trend has been toward modularized kernels: small core execut-
able programs to which additional, separate object or executable files—modules—
can be loaded and/or unloaded as needed. Modules provide a convenient way to pro-
vide support for a new device type or add specific new functionality to an existing
kernel.

In many instances, the standard kernel program provided with the operating system
works perfectly well for the system’s needs. There are a few circumstances, however,
where it is necessary to create a custom kernel (or perform equivalent customization
activities) to meet the special needs of a particular system or environment. Some of
the most common are:

• To add capabilities to the kernel (e.g., support for disk quotas or a new filesys-
tem type)

• To add support for new devices

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring and Building Kernels | 1025

• To remove unwanted capabilities/features from the kernel to reduce its size and
resource consumption (mostly memory) and thereby presumably improve sys-
tem performance

• To change the values of hardwired kernel parameters that cannot be modified
dynamically

How often you have to build a new kernel depends greatly on which system you are
administering. On some older systems (mid-1990s versions of SCO Unix come to
mind), you had to build a new kernel any time you added even the smallest, most
insignificant new device or capability to the system. On most current systems, such
as FreeBSD and Tru64, you build a kernel only when you want to significantly alter
the system configuration. And on a few systems, like Solaris and especially AIX, you
may never have to do so.

In this chapter, we’ll look at the process of building a customized kernel, and we’ll
also examine administering kernel modules. There are many reasons you might want
to alter the standard kernel: addressing performance issues, supporting a device and
subsystem, removing features the system doesn’t use (in an effort to make the kernel
smaller), adjusting the operating system’s behavior and resource limits, and so on.
We won’t be able to go into every possible change you might make on each of the
systems we are considering. Instead, we’ll look at the general process you go through
to make a kernel, including how to install it and boot from it and how to back out
your changes should they prove unsatisfactory.

Custom kernel building and reconfiguration is not for the faint-
hearted, the careless or the ignorant. Know what you’re doing, and
why, to avoid inadvertently making your system unusable.

In general, building a custom kernel consists of these steps:

• Installing the kernel source code package (if necessary)

• Applying any patches, adding new device driver code, and/or making any other
source code changes you may require

• Saving the current kernel and its associated configuration files

• Modifying the current system configuration as needed

• Building a new kernel executable image

• Building any associated kernel modules (if applicable)

• Installing and testing the new kernel

Table 16-1 lists the kernel locations and kernel build directories for the operating
systems we are considering.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1026 | Chapter 16: Configuring and Building Kernels

We’ll begin with the kernel build process on FreeBSD and Tru64 systems (which are
very similar) and then consider each of the other environments in turn. In each case,
we will also consider other mechanisms for configuring the kernel and/or kernel
modules that are available.

It is possible on many systems to change some kernel parameters while
the system is running. We’ll look at those mechanisms in this chapter
as well. You will also want to review the discussion of the /proc filesys-
tem in “Monitoring and Controlling Processes” in Chapter 15.

FreeBSD and Tru64
Tru64 and FreeBSD use an almost identical process for building a customized kernel.
They rely on a configuration file for specifying which capabilities to include within the
kernel and setting the values of various system parameters. The configuration file is
located in /usr/sys/conf on Tru64 systems and in /usr/src/sys/arch/conf under FreeBSD,
where arch is an architecture-specific subdirectory (we’ll use i386 as an example).

Configuration filenames are conventionally all uppercase, and the directory typically
contains several different configuration files. The one used to build the current ker-
nel is usually indicated in the /etc/motd file. For example, the GENERIC file was used
to build the kernel on this FreeBSD system:

FreeBSD 4.3-RELEASE (GENERIC) #0: Sat Apr 21 10:54:49 GMT 2001

Default Tru64 configuration files are often named GENERIC or sometimes ALPHA.

On FreeBSD systems, you will first need to install the kernel sources if you have not
already done so:

FreeBSD
cd /
mkdir -p /usr/src/sys If not already present.
mount /cdrom
cat /cdrom/src/ssys.[a-d]* | tar xzvf -

Table 16-1. Standard kernel image and build directory locations

Kernel Configuration or build directory

AIX /unix none

FreeBSD /kernel /usr/src/sys/i386/confa

a This component is architecture-specific; i386 is the generic subdirectory for Intel-based PCs. If you’re running on a more recent CPU type,
building a kernel for that specific processor may improve the operating system’s performance.

HP-UX /stand/vmunix /stand/build

Linux /boot/vmlinuz /usr/src/linux

Solaris /kernel/unix (or genunixb)

b The gen forms are the generic, hardware-independent versions of the kernel.

none

Tru64 /vmunix or /genvmunixb /usr/sys/conf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

FreeBSD and Tru64 | 1027

To add a device to a Tru64 system, you must boot the generic kernel, /genvmunix, to
force the system to recognize and create configuration information for the new
device:

Tru64
shutdown -r now
...
>>> boot -fi /genvmunix
...
bcheckrc or lsmbstartup
sizer -n NEWDEVS

On both systems, the first step in configuring and building a kernel is to save a copy
of the old configuration file and then make any necessary changes to it:

The GENERIC configuration file is the standard, hardware-independent version pro-
vided with the operating system. If you have already customized the kernel, you
would start with the corresponding configuration file instead.

While editing the new configuration file, add (or activate) lines for new devices or
features, disable or comment out lines for services you don’t want to include, and
specify the values for any applicable kernel parameters. In general, it’s unlikely that
you’ll need to modify the contents of hardware device–related entries. The one
exception is the ident entry, which assigns a name to the configuration. You should
change it so its value corresponds to the name you have selected:

ident NEWKERN

You may also occasionally remove unneeded subsystems by commenting out the cor-
responding option’s entry, as in this example, which disables disk quotas:

#options QUOTA Tru64

On Tru64 systems, you will need to merge in any new device lines from the file cre-
ated by the sizer command (placed into /tmp), indicated by the optional second
parameter to the Tru64 emacs command above. One way to locate these device lines
is to diff that file against your current kernel configuration file or the GENERIC file.

The FreeBSD configuration file contains a large number of settings, most of them
corresponding to hardware devices and their characteristics. In addition, there are
several entries specifying the values of various kernel parameters that might need to
be altered in some circumstances. For example:

FreeBSD
options MAXCONS=4
options MAXDSIZ="(256*1024*1024)"
device usb USB device support.
device ugen

FreeBSD
cd /usr/src/sys/i386/conf
cp GENERIC NEWKERN
chmod +w NEWKERN
emacs NEWKERN

Tru64
cd /usr/sys/conf
cp GENERIC NEWKERN
chmod +w NEWKERN
emacs NEWKERN [/tmp/NEWDEVS]

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1028 | Chapter 16: Configuring and Building Kernels

device ohci
device uhci
device uhid Human interface support (needed for mouse).
device ums USB mouse.

These entries specify the maximum number of virtual consoles and the maximum
individual process address space and also select support for a USB mouse. (Note that
these lines come from various points in the configuration file.)*

You can examine the LINT or NOTES configuration file for documentation on most
available parameters.

The next step in the kernel build process is to run the command that creates a cus-
tom build area for the new configuration:

doconfig and config create the NEWKERN subdirectory, where the new kernel is
actually built. Once the make commands complete, the new kernel may be installed in
the root directory and tested.

If there are problems building the new kernel, you can boot the saved version with
these commands:

Changing FreeBSD Kernel Parameters
FreeBSD also allows many kernel parameters to be changed dynamically. The sysctl
command can be used to list all kernel parameters along with their current values:

sysctl -a
kern.ostype: FreeBSD
kern.osrelease: 4.3-RELEASE
kern.osrevision: 199506
kern.maxvnodes: 6322
kern.maxproc: 532
kern.maxfiles: 1066
...

* Many kernel parameters can also be modified via the sysctl command and its initialization file (see “Man-
aging Memory” in Chapter 15).

FreeBSD
config NEWKERN
cd ../../compile/NEWKERN
make depend
make
mv /kernel /kernel.save
make install

Tru64
doconfig -c NEWKERN
cd ../NEWKERN
make depend
make vmunix
mv /vmunix /vmunix.save
cp ./vmunix /

FreeBSD
disk1s1a:> unload
disk1s1a:> load kernel.save
disk1s1a:> boot

Tru64
>>> boot -fi vmunix.save

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

FreeBSD and Tru64 | 1029

The sysctl manual page indicates which parameters may be modified.

You can use this command form to modify a parameter value:

sysctl kern.maxfiles=1066
kern.maxfiles: 1064 -> 1066

Such changes do not persist across boots, so they must be repeated each time your
system starts. You can also place the desired settings—the string given to -w—into
the file /etc/sysctl.conf to have them automatically applied at boot time. Alterna-
tively, you can rebuild the kernel after setting the corresponding options in the ker-
nel configuration files.

FreeBSD Kernel Modules
FreeBSD also provides support for kernel modules; you can compile them via the
corresponding subdirectories in /usr/src/sys/modules. The kldstat -v command dis-
plays a list of currently-loaded kernel modules. Virtually all are used for supporting
devices or filesystem types. You can load and unload kernel modules manually with
the kldload and kldunload commands.

The file /boot/loader.conf specifies modules that should be loaded at boot time:

userconfig_script_load="YES" Line created by sysinstall.
usb_load="YES" Load USB modules.
ums_load="YES"
umass_load="YES"

Of course, you need to create the required modules before they can be autoloaded.

Installing the FreeBSD Boot Loader
Generally, the FreeBSD boot loader is installed by default in the Master Boot Record
(MBR) of the system disk. However, should you ever need to, you can install it man-
ually with this command:

boot0cfg -B /dev/ad0

The -B option says to leave the partition table unaltered.

You can also use this command’s -m option to prevent certain partitions from
appearing in the boot menu. This option takes a hexadecimal integer as its argu-
ment. The value is interpreted as a bit mask that includes (bit is on) or excludes (bit
is off) each partition from the menu (provided that it is a BSD partition in the first
place). The ones bit in the mask corresponds to the first partition, and so on.

For example, the following command enables only partition 3 to be listed in the
menu:

boot0cfg -B -m 0x4 /dev/ad0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1030 | Chapter 16: Configuring and Building Kernels

The disklabel -B command can be used to install the boot program into the boot
portion of a FreeBSD subpartition within a physical disk partition, as in this exam-
ple, which installs the boot program into the first subpartition in the first partition:

disklabel -B /dev/ad0s1

Tru64 Dynamic Kernel Configuration
Tru64 also supports two sorts of kernel reconfiguration without needing to build a
new kernel: subsystem loading and unloading and kernel parameter modifications.

A very few subsystems may be dynamically loaded and unloaded into the Tru64 ker-
nel. You can list all configured subsystems using the sysconfig command:

sysconfig -s
cm: loaded and configured
hs: loaded and configured
ksm: loaded and configured
...

Subsystems can be loaded or unloaded. The -m option displays whether each one is
dynamic (loadable and unloadable with a running kernel) or static:

sysconfig -m | grep dynamic
hwautoconfig: dynamic
envmon: dynamic
lat: dynamic

On this system, only three subsystems are dynamic. For these modules, you can use
the sysconfig -c and -u options to load and unload them, respectively.

Static and dynamic subsystems can also have settable kernel parameters associated
with them. You can view the list of available parameters with a command like this
one:

sysconfig -Q lsm Parameters for the Logical Storage Manager
lsm:
Module_Name - type=STRING op=Q min_len=3 max_len=30
lsm_rootdev_is_volume - type=INT op=CQ min_val=0 max_val=2
Enable_LSM_Stats - type=INT op=CRQ min_val=0 max_val=1

The display lists the parameter name, its data type, allowed operations, and valid
range of values. The operations are specified via a series of code letters: Q means can
be queried, C means the change occurs after reboot, R means the change occurs on a
running system.

In our example, the first parameter (the name of the module) can be queried but not
modified; the second parameter (whether the root filesystem is a logical volume) can
be modified, but the new value won’t take effect until the system reboots; and the
third parameter (whether subsystem statistics are recorded) takes effect as soon as it
is changed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

HP-UX | 1031

You use the -q option to display the current value of a parameter and the -r option
to change its value:

sysconfig -q lsm Enable_LSM_Stats
lsm:
Enable_LSM_Stats = 0
sysconfig -r lsm Enable_LSM_Stats=1
Enable_LSM_Stats: reconfigured

The /etc/sysconfigtab file can be used to set kernel parameters at boot time (see
“Managing Memory” in Chapter 15).

If you prefer a graphical interface, the dxkerneltuner utility can also be used to view
and modify the values of kernel parameters. The sys_attrs manual page provides
descriptions of kernel parameters and their meanings.

HP-UX
SAM is still the easiest way to build a new kernel under HP-UX. However, you can
build one manually if you prefer:*

cd /stand Move to kernel directory.
mv vmunix vmunix.save Save current kernel.
cd build Move to build subdirectory.
/usr/lbin/sysadm/system_prep -v -s system Extract system file.
kmtune -s var=value -S /stand/build/system Modify kernel parameters.
 ...
mk_kernel -s ./system -o ./vmunix_new Build new kernel.
kmupdate /stand/build/vmunix_new Schedule kernel install.
mv /stand/system /stand/system.prev Save old system file.
mv /stand/build/system /stand/system Install new system file.

The system_prep script creates a new system configuration file by extracting the infor-
mation from the running kernel. The kmtune command(s) specify the values of kernel
variables for the new kernel.

The mk_kernel script calls the config command and initiates the make process auto-
matically. Once the kernel is built, you use the kmupdate command to schedule its
installation at the next reboot. You can then reboot to activate it.

If there is a problem with the new kernel, you can boot the saved kernel with a com-
mand like the following:

ISL> hpux /stand/vmunix.save

To determine what kernel object files are available, use the following command to
list the contents of the /stand directory:

ISL> hpux ll /stand

* This command is also useful for simply listing the modified variables in the current kernel.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1032 | Chapter 16: Configuring and Building Kernels

The system file contains information about system devices and settings for various
kernel parameters. Here are some examples of the latter:

maxfiles_lim 1024 Maximum open files per process.
maxusers 250 Number of users/processes to assume when sizing kernel data structures.
nproc 512

You can also use SAM to configure these parameters and then rebuild the kernel.
Figure 16-1 illustrates using SAM to modify a kernel parameter (in this case, the
length of the time slice: the maximum period for which a process can execute before
being interrupted by the scheduler).

The SAM interface also provides descriptions of the available parameters (illustrated
in Figure 16-2).

Figure 16-1. Configuring an HP-UX kernel via SAM

Figure 16-2. SAM Help for kernel parameters

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux | 1033

You can build the new kernel by selecting the Actions ➝ Process New Kernel menu
option.

HP also provides various sets of kernel parameters for specific system uses. You can
access them via the Actions ➝ Apply Tuned Parameter Set menu option. Selecting it
results in a list of available sets. For example, the CAE/ME/General Eng. Worksta-
tion 64-Bit Kernel is a good choice for any systems whose workload will be domi-
nated by high-performance, compute-intensive 64-bit applications. Once you have
selected a set, you can modify the parameters further or simply build a new kernel.

A few kernel parameters can be modified dynamically, most easily via SAM. You can
also use the sysdef command to view the system parameters:

sysdef
NAME VALUE BOOT MIN-MAX UNITS FLAGS
acctresume 4 - -100-100 -
acctsuspend 2 - -100-100 -
maxdsiz 503808 - 0-655360 Pages -
maxfiles 1024 - 30-2048 -
maxuprc 75 - 3- -
nbuf 262598 - 0- -
timeslice 10 - -1-2147483648 Ticks -

(This output includes only selected parameters.) The output columns display the
parameter name, current value, the value when the system was booted (only if the
value has been altered since then), the valid range of values, the units in which the
value was measured, and a flag indicating whether the parameter can be modified on
a running system (M means it is modifiable).

Linux
There was a time when changes to the Linux kernel came out on a daily basis, and
the hardest part about building a Linux kernel was knowing how to stop. These
days, the production kernel tree is much more stable, but there are still significant
kernel updates released on a regular basis.

One way to take advantage of these updates is to download and install the kernel
update packages made available in conjunction with the Linux distribution you are
using. The advantage of this method is that the changes are merged into the actual
distribution’s kernel source code—in other words, the source code as modified by
the distribution’s creators—a process that can be daunting and difficult for anyone
else.

However, you may still decide to build your own custom kernel, probably beginning
from a standard source-code package. If you decide to go this route, be sure that you
understand any changes that may be required to support distribution-specific fea-
tures that you may be using.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1034 | Chapter 16: Configuring and Building Kernels

The following commands illustrate the basic procedure for building a Linux kernel
(the conservative way, not the kernel hacker’s way). By way of illustration, they
apply patches to bring the source code package to the current revision level before
building the kernel.

The first steps are to save the old kernel and unpack the kernel source code, if
necessary:

cp /boot/vmlinuz /boot/vmlinuz.save Save current kernel.
cd /usr/src Change to source code area.
bzip2 -dc linux-2.4.x.tar.bz2 | tar xvf - Unpack starting kernel.

You may choose to install a source-code RPM from your distribution instead of the
standard tar archive (the latter is available from http://www.kernel.org).

Once you have the Linux kernel source code installed, you start the process here:

for p in patch-list; do Apply any patches to kernel.
> bzip2 -dc /tmp/patch$p.bz2 | patch -p0
> done
cd /usr/src/linux Change to build directory.
cp arch/i386/config.in{,.save} Save configuration file.
cp .config .config.save If it exists.
make mrproper Clean build area.
make xconfig Select kernel options.

The final command starts an X-based kernel configuration editor (illustrated in
Figure 16-3). This utility allows you to specify a huge number of kernel parameters
and select the features that you want to include.

The utility divides the available settings into a series of categories accessible from its
main window (uppermost in the figure). In the bottom window, we see the settings
related to filesystem support, and we have just enabled support for disk quotas by
clicking the y button in the first item. In this case, we can choose only whether to
enable or disable support for the item, and the capability will be included in or
excluded from the kernel according to our choice. For other items, however, there is
a third option, corresponding to the middle check mark (labeled m:), which is used
to enable support for the feature via a loadable module. In our example, kernel sup-
port for the automounter is provided in this way.

If you are not running X, you may use a text-based menu configuration utility by
running make menuconfig instead. In the last resort, you may run the make config
command, which allows you to specify kernel parameters and other settings by
answering a series of (seemingly) hundreds of prompts.

On SuSE Linux systems, the configuration of the currently running
kernel can be found in /proc/config.gz. This functionality is not avail-
able in the standard Linux kernel but was added by SuSE for conve-
nience.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux | 1035

After completing the kernel configuration, we next verify that certain include-file
directory links are present and point to the correct places: the asm and linux include
subdirectories of /usr/include point to the source tree, and the source tree’s include/
asm subdirectory points to the correct architecture-specific subdirectory:

ls -ld /usr/include/{linux,asm}
lrwxrwxrwx 1 root system 26 Apr 25 16:03 /usr/include/asm ->
 /usr/src/linux/include/asm
lrwxrwxrwx 1 root system 26 Dec 23 21:01 /usr/include/linux ->
 /usr/src/linux/include/linux
ls -ld include
include/:
total 10
lrwxrwxrwx 1 root system 8 Mar 8 17:40 asm -> asm-i386
drwxr-xr-x 2 root system 1024 Apr 25 16:01 asm-alpha
drwxr-xr-x 2 root system 1024 Dec 29 02:04 asm-generic
drwxr-xr-x 2 root system 1024 Apr 25 16:01 asm-i386
drwxr-xr-x 2 root system 1024 Dec 6 04:47 asm-m68k
drwxr-xr-x 2 root system 1024 Apr 25 16:01 asm-mips

Figure 16-3. The Linux make xconfig utility

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1036 | Chapter 16: Configuring and Building Kernels

drwxr-xr-x 2 root system 1024 Apr 25 16:01 asm-ppc
drwxr-xr-x 2 root system 1024 Apr 25 16:01 asm-sparc
...

Next, we perform some additional preparatory steps:

make dep
make clean
emacs Makefile

The purpose of editing the Makefile is simply to specify a name for this configura-
tion by modifying the EXTRAVERSION line near the top:

EXTRAVERSION="-new_2-4-666"

This variable specifies a suffix that is added to the new kernel executable image file
and related file (e.g., vmlinuz-new_2-4-666 in the example above).

Now, we are ready to begin the actual build process:

make bzImage
make install

The final command installs the kernel and associated files into the proper locations.

If you are using kernel modules (discussed in a bit), you must run these commands
as well:

make modules
make modules_install

If you are using a SCSI adapter, you will also need to update the initial RAM disk
image used to load the appropriate module:

mkinitrd /boot/initrd-suffix suffix

suffix is the suffix you defined to identify the new kernel; in this case, it also identi-
fies the subdirectory of /lib/modules to use in building the new initrd file.

The final step of the build process is to reconfigure and update the Linux boot
loader, lilo, which is the subject of the next section. Alternatively, you can use the
newer grub loader (which is discussed after lilo) for which reconfiguration is
optional.

Using lilo
As we noted in Chapter 4, the boot process on a microcomputer has three stages: the
system’s master boot record (MBR) contains the primary boot program that starts
the boot process and loads a secondary boot program from the boot blocks of the
active partition; this second boot program is what loads the actual kernel.

For Intel-based systems, Linux provides lilo, the Linux Loader, and most distribu-
tions install lilo into the MBR when Linux is installed. You can also install it manu-
ally with a command like this one:

lilo -C /etc/lilo.conf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux | 1037

The -C option specifies the location of lilo’s configuration file; the location in the
preceding command is in fact the default location, so this -C clause is redundant.

The lilo.conf file specifies lilo’s behavior for certain aspects of the boot process and
also defines the kernels and operating systems that it can boot. The following sam-
ple lilo.config file lists the most important entries and the ones that you are most
likely to want or need to modify:

global parameters section: apply to all choices
prompt Allow user to enter a boot command.
timeout=100 Wait 10 seconds, then boot default entry.
install=/boot/boot.b Second stage boot loader.
boot=/dev/hda Where to install lilo (no partition=>MBR).
message = /boot/boot.message Text file displayed before boot prompt.
default = linux Default image label.

first boot selection
image = /boot/vmlinuz Path to kernel.
label = linux Boot prompt response to boot this entry.
root = /dev/hda2 Partition holding the root directory.
read-only Initial mount is read-only.
kernel argument for ancient Sony CD-ROM
append = "cdu31a=0x340,0," Specifies parameters to pass to kernel

(changes device’s compiled-in I/O address).
another Linux boot selection
image = /boot/vmlinuz-safe An alternate Linux kernel.
label = safe Corresponding prompt response.
alias = aok Another label for this entry.
root = /dev/hda2
read-only

a Windows 2000 selection
other = /dev/hda3 Some other operating system.
label = win2k
table = /dev/hda Use this partition table.

Generally, lilo gets installed into the MBR area of the system disk using a boot con-
figuration file entry like the one above, which references only the disk as a whole
(here, /dev/hda), not any specific partition. However, you can also install the utility
into the boot sector of a single disk partition by running a lilo command using the
same configuration file and its -b option (which replaces the boot entry in the config-
uration file). For example, this command loads lilo into the boot sector of the first
partition on the first hard disk:

lilo -b /dev/hda1 -C /etc/lilo.conf

I tend to install lilo in both the MBR and the Linux partition for maximum flexibil-
ity. This way, if I decide to remove lilo from the MBR, I’ll be all set to switch over to
the Linux partition version.

Booting a Linux partition on the second hard drive is handled in the same basic way.
For this to work, lilo must be installed in the MBR of the system’s boot disk, as well
as in the boot sector of the Linux partition itself on the second disk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1038 | Chapter 16: Configuring and Building Kernels

You will need to rerun the lilo command to reinstall it every time you
rebuild the kernel or change any relevant aspect of the disk partition-
ing scheme, because it relies on this information when booting. If you
forget to do this, the system will not boot and you’ll have to boot from
a floppy. You will also need to rerun lilo if you change the text of the
boot.message file.

Using a graphical message screen

Recent versions of lilo provide support for a graphical boot menu screen. The most
recent versions of SuSE Linux use this feature, which is defined via configuration file
entries like these:

message=/boot/message Image file location.
menu-title="Linux System"
menu-scheme=Wg:kw:Wg:wg Menu lettering color scheme.

The binary image file is created with the mkbootmsg utility (it is part of the gfxboot-
devel package). The colon-separated subfields of the menu-scheme entry specify col-
ors for the menu’s text, highlight bar, border and title text; see the lilo.conf manual
page for details on specify colors.

lilo and Windows

The final section (stanza) of the sample lilo.conf file illustrates the format for booting
a Windows partition on the first hard disk. The entry for a Windows operating sys-
tem on the second hard drive (i.e., D:) is more complicated and looks something like
this:

other = /dev/hdb1 A different operating system.
map-drive=0x80 “Swap” C: and D:.
 to=0x81
map-drive=0x81
 to=0x80
table = /dev/hdb Use this partition table.
label = w2ksrv Corresponding prompt response.

The map-drive commands tricks the BIOS thinking the second disk is the system (C:)
drive.

You can also boot Linux from the Windows 2000/XP boot menu. You need to be
sure that lilo is installed into the partition boot sector. Then you need to extract that
boot sector by booting off alternate media and running a dd command like this one:

dd if=/dev/hda2 of=linux.ldr bs=512 count=1

Then copy the output file to the Windows system disk’s root directory and add an
entry like the following to the Boot.Ini file:

multi(0)disk(0)rdisk(0)partition(1)\linux.ldr="Linux"

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux | 1039

The specified path is to the Windows partition. This causes the Windows boot
loader to start the Linux boot loader from its root directory, and the latter is config-
ured to boot Linux from the proper partition.

More complex booting scenarios

It is also possible to boot a Linux partition on each of two disks. The procedure for
doing so is the following:

• Decide which partition will be the usual Linux boot partition and set up lilo to
boot it and any other non-Linux operating systems on both disks. Create an
entry like the following for the second Linux partition:

other = /dev/hdb2
label=eviltwin
unsafe

• Create a boot.message file that tells you which Linux will be booted when you
select the default option. Install this configuration into the MBR on the C: drive.

• Create (or retain) another lilo configuration to be used on the Linux partition
on the second disk. Make sure that this partition’s boot.message file also lets you
know where you are. Install this configuration into the Linux partition only;
make sure that the boot entry specifies the partition and not the disk as a whole.
(If you want, you can also include an unsafe entry for the Linux partition on the
first disk within this second lilo.conf file. lilo must be installed into that parti-
tion’s boot sector as well for this to work).

To summarize, we have configuration 1 installed into the MBR on the first hard disk
(and possibly into the boot sector of the Linux partition as well), and we have config-
uration 2 installed in the boot sector of the Linux partition on the second hard disk.

The boot sequence might then go something like this:

Welcome to gallant.
Boot choices: linux (default; on C:),
 win2k,
 eviltwin (Linux on D:),

boot: eviltwin

Welcome to goofus.
Boot choices: test (default; on D:),
 goodtwin (Linux on C:)

boot: Return
Loading test...

Given these selections, Linux will boot from the D: drive. The lilo from the MBR on
drive C: has run first, and it has then started the boot program on the Linux parti-
tion on the D: drive—which is again lilo. That (second) lilo then loads the kernel

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1040 | Chapter 16: Configuring and Building Kernels

from the D: drive. (Note that if you wanted to, you could just keep popping back
and forth between the lilo programs on C: and D: ad infinitum.)

If you think this is pretty silly, omit the prompt keyword from the lilo configuration
file for the D: drive (as well as its image section for the Linux partition on the C:
drive), resulting in a simple lilo.conf file on the D: drive:

install=/boot/boot.b
boot=/dev/hdb2
root=/dev/hdb2
map=/boot/map
image=/boot/vmlinuz
label=linux

Once this is installed, selecting eviltwin at the initial boot prompt immediately boots
the Linux partition on the second hard disk.

lilo’s -r option

Sometimes it is useful to be able to run lilo for a disk partition mounted somewhere
other than /. For example, if you have another Linux root filesystem mounted at /mnt,
you might want to run lilo to install the kernel (currently) at /mnt/boot/vmlinuz, using
the configuration file /mnt/etc/lilo.conf. lilo’s -r option is designed for such a pur-
pose. It sets the root directory location for the lilo operation to the directory speci-
fied as its argument and looks for all files relative to that point. Thus, for the scenario
we’ve been discussing, the correct command is:

lilo -r /mnt

The boot.message file

The boot.message file is displayed before the boot prompt is issued. Here is an exam-
ple boot.message file:

Welcome to JAG
Property of the Linc Guerrilla Hackers Association
Computational science is not for the faint hearted!

Our current boot offerings include:
 * linux (smaller test kernel--2.4.666 currently)
 * safe (SuSE distribution 2.4.something)
 * hacked (do you feel lucky?)
 * windog - guess what ... (on D:)

An effective file will list all the defined choices (but it needn’t be this eccentric).

The Grub Boot Loader
grub is the Grand Unified Bootloader (sic) from the GNU project (see http://www.
gnu.org/software/grub/), originally written by Erich Boleyn and currently maintained
by Gordon Matzigkeit and Okuji Yoshinori. It is designed to be operating system–
independent and more flexible than previous programs of this type. Among its

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux | 1041

advantages is that it functions as a boot-time shell from which you can type any boot
commands that may be appropriate, allowing you to specify a different configura-
tion or kernel without prior preparation.

When it starts, grub displays an initial splash screen and a menu of boot choices. You
can customize both of these items via its configuration file, grub.conf, usually stored
in /boot/grub under Linux.

Here is an annotated example configuration file, illustrating methods for booting a
variety of operating systems. We begin with the general section, which applies to all
entries:

general section
splashimage (hd0,0)/grub/splash.xpm.gz
default 0 Default boot entry (numbering starts at 0).
timeout 30 Menu timeout period in seconds.
password -md5 xxxxxxx Use the grub-md5-crypt command to encode.

grub uses a simple method for referring to disks and partitions: (hdn,m) refers to par-
tition m on disk n, where both sets of numbers start at 0. Thus, the image file dis-
played behind the menu is located in the grub subdirectory on the first partition on
the first disk.

Here are entries used to boot Linux:

title Linux Boot menu label.
root (hd0,0) Base partition for future references.
kernel /vmlinuz ro root=/dev/hda2
initrd /initrd.img

title Test-Linux Second selection.
root (hd1,1) Different base partition.
kernel /boot/vmlinuz-test ro root=/dev/hdb2
initrd /boot/initrd.img-test

The first entry is used to boot a Linux installation whose root directory is the second
partition on the first disk (indicated via the root kernel parameter) but whose kernel
image and associated files are stored in a separate /boot partition (the first partition
on the first disk). The second entry boots a Linux installation on the second hard
disk whose root and boot partitions are both on the second partition on that disk.

The following entries could be used to boot a Windows operating system on the
third partition of the first and second hard disk, respectively:

title Win2K
root (hd0,2) Specify partition.
makeactive Activate it.
chainloader +1 Hand off to local boot loader.

title WinXP
map (hd0) (hd1) “Swap” the two drives.
map (hd1) (hd0)
root (hd0,2)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1042 | Chapter 16: Configuring and Building Kernels

makeactive
chainloader +1

Here is an entry which may be used to boot FreeBSD:

title FreeBSD
use the 1st BSD subpartition in disk 1 partition 3
root (hd0,2,a)
kernel /boot/loader

This entry follows the documentation’s recommendation to boot FreeBSD using the
FreeBSD final-stage boot loader rather than directly invoking the FreeBSD kernel.

grub also has the nice feature of remembering what you booted each time and mak-
ing it the default for the next time. To enable this capability, set the default entry to
saved and add a savedefault directive to the end of each stanza:

default saved

title Linux
...
savedefault

Installing grub itself is straightforward. Once you have built it, you can use the grub-
install program to install it, as in these examples:

grub-install '(hd0)'
grub-install -root-directory /boot '(hd0)'

The first example installs grub into the MBR on the first hard disk. The second com-
mand does the same thing, but it lets grub know that the kernel images are in a sepa-
rate partition mounted at /boot.

Booting a Linux System with syslinux
Once in a while, you’ll run across a system where lilo just will not work. These sys-
tems have unusual hardware configurations that are basically not supported by this
boot loader. At the moment, I have one such system. It is an older, Intel-based PC
with two IDE controllers on the motherboard, one of which does not work. To com-
pensate, the vendor installed another standalone IDE controller into a PCI slot. (No,
I didn’t know this when I accepted delivery).

The CD-ROM and Zip drive are connected to the motherboard controller, and the
system disk uses the separate secondary controller. This is the only configuration
that works at all (I’ve tried all the others), but it confuses every operating system I’ve
wanted to run on this computer. In the case of Linux, lilo just balks at the configu-
ration and hangs on boots.

A good solution for unusual cases like these is to use syslinux, a simple boot loader
that runs off a floppy disk (FAT format). To create such a boot floppy, use com-
mands like these:

mount -t msdos /dev/fd0 /floppy Mount floppy.
cp /boot/vmlinuz /floppy Copy kernel.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux | 1043

rdev /floppy/vmlinuz /dev/hda2 Set kernel root directory.
umount /floppy
syslinux /dev/fd0 Add loader program to floppy.

Finally, you must create a configuration file for the boot floppy named syslinux.cfg.
Here is a simple one:

label linux
kernel vmlinuz

This file specifies the path to the kernel on the floppy and a label for the entry. If
required, you can specify kernel parameters (the append keyword), an initial RAM
disk (initrd), and other items. Consult the package’s documentation for informa-
tion about all the available configuration-file features.

Once you have finished, booting from this floppy disk automatically boots the ker-
nel on it, using /dev/hda2 as the root partition.

Restoring the DOS Master Boot Program
Should you ever need to, here is the procedure for restoring the standard (“DOS”)
master boot program:

1. Boot from a bootable DOS floppy.

2. Run the command fdisk /MBR.

You can also perform the same task under Windows 2000 (and follow-ons):

1. Boot into the Recovery Console, either from the distribution CD-ROM or from
disk if you installed it.

2. Run its fixmbr command.

Booting Alpha Linux Systems
Alpha Linux systems have different BIOSes than Intel-based systems, and the boot
process differs. There are three boot loaders in use at the moment: the MILO boot
loaders (used with ARC firmware), the APB boot loader (used with UP1000 sys-
tems), and the ABOOT boot loader (used with SRM console systems).

Compaq Alpha systems generally use the latter. As we saw in Chapter 4, commands
like these can be used to initiate a boot:

aboot> p 2 Select the second partition to boot from.
aboot> 0 Boot predefined configuration 0.

The following command can be used to boot Linux from the second hard disk parti-
tion:

aboot> 2/vmlinux.gz root=/dev/hda2

You can configure the ABOOT loader using the /etc/aboot.conf configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1044 | Chapter 16: Configuring and Building Kernels

The swriteboot command is used to install a configuration. Here is a sample entry
from this file:

0:2/vmlinux.gz ro root=/dev/hda2

The boot command is preceded by a configuration number and a colon. Thus, this
entry defines configuration 0.

To boot from CD-ROM, first use the show dev command to determine the device
name for the CD-ROM drive, then enter a command like this one:

> boot dqb1 -fl 0

The first argument is the device name for the CD-ROM drive.

Linux Loadable Modules
The Linux kernel has supported loadable modules since Version 1.2. In this scheme,
you build a minimal kernel and dynamically load modules providing additional func-
tionality as required. Such an approach has the advantage that many types of system
changes no longer require a kernel rebuild; it also has the potential to significantly
decrease the size of the kernel executable. The modutils package provides utilities for
building, installing and loading kernel modules.

Running make modules after building a kernel creates the loadable modules files, and
make modules_install installs them into a subdirectory of /lib/modules whose name
corresponds to the kernel release level and/or any assigned build suffix.

The lsmod command lists currently loaded modules:

Module Size Used by
sg 21216 0 (autoclean) (unused)
smbfs 32144 2 (autoclean)
nls_iso8859-1 2848 1 (autoclean)
ipv6 117744 -1 (autoclean)
mousedev 3968 0 (unused)
hid 11744 0 (unused)
input 3104 0 [mousedev hid]
printer 4832 0 (unused)
usb-uhci 21712 0 (unused)
usbcore 46480 1 [hid printer usb-uhci]
3c59x 22912 1 (autoclean)

The output shows the module name, size, number of current users, and other mod-
ules that use it. For example, we see that the smbfs module (Samba-based support for
mounting remote filesystems) has a current use count of 2.

You can get information about a specific module with the modinfo command:

modinfo -d 3c59x Description
3Com 3c59x/3c90x/3c575 series Vortex/Boomerang/Cyclone driver
modinfo -a 3c59x Author
Donald Becker <becker@scyld.com>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Linux | 1045

modinfo -n 3c59x Corresponding file
/lib/modules/2.4.2-2/kernel/drivers/net/3c59x.o

The configuration file /etc/modules.conf lists various configuration parameters for
installed modules. Here are some sample entries to illustrate the type of information
stored in this file:

map generic Ethernet interface to the specific device type
alias eth0 3c59x
alias eth1 off Disabled.

set options for the parallel port (passed when loaded)
options parport_pc io=0x378 irq=none,none

sound subsystem configuration
alias sound-slot-0 es1371
command to run after insertion/activation
post-install sound-slot-0 /bin/aumix-minimal
 -f /etc/.aumixrc -L >/dev/null 2>&1 || :
command to run before removal/deactivation
pre-remove sound-slot-0 /bin/aumix-minimal
 -f /etc/.aumixrc -S >/dev/null 2>&1 || :

These days, the modules facility is well integrated into general Linux development,
and most packages perform any module configuration and bookkeeping activities
themselves, so editing this file is seldom necessary.

Similarly, manual loading or unloading of modules is a rare event because these
actions generally occur on demand. However, the following utilities can be used to
manually manipulate modules:

depmod
Determines dependencies among modules. The command creates the file
modules.dep in the relevant subdirectory of /lib/modules. This utility may be run
automatically at boot time; you may occasionally need to execute it manually
after building modules.

modprobe
Loads a module as well as all modules that it depends on (usually used to load
modules automatically at boot time). It can also be used to generate a modules.
conf file from the current system configuration (use the -c option).

lsmod
Lists the currently loaded modules.

insmod
Loads a module interactively.

rmmod
Unloads a loaded module from the kernel (provided the module is not in use).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1046 | Chapter 16: Configuring and Building Kernels

Solaris
The Solaris kernel is stored in /kernel/unix. It is structured around loadable modules:
executables that add capabilities and functionality to the system. Modules add flexi-
bility in that they can be installed and uninstalled as needed. The operating system
probes the hardware each time the system boots and loads the needed modules.
Modules are stored in the subdirectories of /kernel.

The following commands display information about the current system configura-
tion (in voluminous quantities):

modinfo
Display loadable modules.

prtconf
Show system hardware configuration (peripheral devices).

sysdef
Display loadable modules, hardware configuration, and the values of some tun-
able kernel parameters.

In general, little kernel configuration is required on Solaris systems, other than add-
ing modules or drivers to support new devices when they are installed.

Vendors generally provide installation instructions and associated drivers along with
their hardware. Device drivers can also be manually loaded and unloaded with add_
drv and rem_drv, respectively, and other modules can be loaded and unloaded with
modload and modunload.

The /etc/system configuration file allows you to specify what modules are and are not
loaded and to specify the values of system parameters. The latter occurs in the sec-
tion headed by these comment lines:

* set: Set an integer variable in the kernel or a module
* to a new value.
*
set scsi_options=0x58
set TS:ts_maxupri=69
set TS:ts_maxkmdpri=39

The sample set entries illustrate the format for specifying parameter values. The first
command sets a flag for the SCSI subsystem. The following two commands set
parameters within the TS module (corresponding to the time-sharing scheduler
table), specifying the sizes of the user and kernel priority portions of the general
scheduler table. These parameters must be specified when you install a custom
scheduler table that is a different size than the default table.*

* The ts_dptbl manual page details the process for doing this, which involves creating a source file, ts_dptbl.
c, compiling and linking, and installing the resulting module in /kernel/sched.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

AIX System Parameters | 1047

Exercise care in editing /etc/system because it is possible to create a file that leaves the
system unbootable (and always save a copy of the current, working file before modi-
fying it). For such cases, Solaris systems provide an interactive boot mode in which
you are prompted for the paths to the system and kernel files. The following com-
mand may be used to boot interactively:

> b -a

AIX System Parameters
On AIX systems, you never need to rebuild a kernel because system parameters may
be changed on a running system. The current values of AIX system parameters may
be displayed with the lsattr command:

lsattr -EHl sys0 Final option letter is a lowercase L.
attribute value description user_settable

keylock normal State of system keylock at boot time False
maxbuf 20 Maximum pages in block I/O BUFFER CACHE True
maxmbuf 2048 Maximum KB real memory allowed for MBUFSTrue
maxuproc 400 Maximum # PROCESSES allowed per user True
autorestart false Automatically REBOOT after a crash True
iostat false Continuously maintain DISK I/O history True
realmem 65536 Amount of usable physical memory (KB) False
conslogin enable System Console Login False
fwversion IBM,SPH01184 Firmware version,revision levels False
maxpout 0 HIGH water mark pending write I/Os/file True
minpout 0 LOW water mark pending write I/Os/file True
fullcore false Enable full CORE dump True
pre430core false Use pre-430 style CORE dump True
ncargs 6 ARG/ENV list size in 4KB blocks True
rtasversion 1 Open Firmware RTAS version False
modelname IBM,7044-270 Machine name False
systemid IBM,011000189 Hardware system identifier False
boottype disk N/A False
SW_dist_intr false Enable SW distribution of interrupts True
cpuguard disable CPU Guard True
frequency 93750000 System Bus Frequency False

The list includes parameters that can be modified and ones that can’t. Being able to
see, for example, the amount of physical memory present on the system and the cur-
rent setting of the front panel key (keylock) can be useful and convenient. The latter
item is especially useful when the CPU unit is positioned so that the physical key
position not readily visible.

The chdev command may be used to change many of these parameters. For example,
the following command raises the maximum number of simultaneous processes that
a user may run to 500:

chdev -l sys0 -a maxuproc=500

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1048 | Chapter 16: Configuring and Building Kernels

You can also use the smit chgsys command to modify several settings at the same
time.

Table 16-2 lists the most important AIX system parameters, along with their associ-
ated attribute names.

Table 16-2. AIX system parameters

Parameter Meaning

Maximum user processes
(maxuproc)

Maximum number of processes that any user can have at one time (the default is 200). Does
not apply to root. Increasing maxuproc takes immediate effect, but decreases wait until the
system is rebooted.

Block I/O buffer cache size
(maxbuf)

Size of the buffer cache for reads/writes to block special files. Normal file I/O doesn’t use the
buffer cache (nearly all physical memory is used as an I/O cache under AIX), so leave this one
at its default of 20 4K-pages. (I/O to a raw device—in other words, to a logical volume
without a filesystem—does use the buffer cache.)

Maximum memory used for
MBUFS (maxmbuf)

Maximum amount of memory to be used for MBUFS (TCP/IP and NFS in-memory data struc-
tures). This parameter is the same as the wall attribute tunable with the no command (the
default is 2048 KB).

Automatic reboot status
(autorestart)

Whether or not to reboot the system automatically after a crash (the default is false).

Disk I/O history (iostat) Whether or not to keep records of the I/O activity to the various disks on the system since
boot time (if available, this information is displayed as the first report from the iostat
command). This generally useless data is no loss, so turning off this parameter does no
harm, but it has little effect on system performance either way (default is on).

Disk I/O pacing parameters
(minpout and maxpout)

Pending I/O operation watermarks (the I/O pacing facility is discussed in $PERF). The
defaults are both 0, which disables the facility.

Full core dump (fullcore) Whether to include all of memory in a crash dump (by default, some types of data are
excluded).

Use pre-430 style CORE dump
(pre430core)

Whether to use the core file format used by AIX version 4.2 and earlier (the default is not to).

ARG/ENV list size in 4 KB
blocks (ncargs)

Maximum size of the argument list and environment variables for executables, in units of 4
KB. The default is 6 and the maximum is 128. Increase this value only if commands/applica-
tions have failed because of the default limitations.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1049

Chapter 17 CHAPTER 17

Accounting

Virtually all current Unix systems provide some form of user-based process account-
ing: the operating system tracks system usage by recording statistics about each pro-
cess that is run, including its UID. In addition, records are kept of the image that was
run by the process and the system resources (such as memory, CPU time, and I/O
operations) that it used.

The accounting system is designed for tracking system resource usage, primarily so
that users can be charged money. The data collected by the accounting system can
also be used for some types of system performance monitoring and security investi-
gations (see Chapter 15 and Chapter 7).

There are two distinct accounting systems in use, originating from the traditional
vanilla BSD and System V environments. Although they are quite different, they are
based on the same raw data. Hence, the sort of information that may be gleaned
from them is essentially identical, although output methods and formats are not.
They also suffer from the same limitations; for example, neither system provides for
project-based accounting in any straightforward way.

As with all accounting systems, the Unix accounting software places a small but
detectable load on the system. BSD-style accounting used to be enabled in new sys-
tems but is generally disabled these days; the process for enabling it is described later
in this chapter. System V–style accounting is always initially disabled and must be set
up by the system administrator.

On many systems, the accounting utilities are packaged as a separately installable
module that the system administrator may include or not, as appropriate. Since the
accounting system is also an important component of performance and system secu-
rity monitoring, I recommend always installing it, even if you don’t need accounting
features, because the disk requirements are quite modest.

Accounting capabilities also need to be present in the Unix kernel, and many systems
make this configurable as well (although they are usually present in default kernels).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1050 | Chapter 17: Accounting

Table 17-1 summarizes the main components of the accounting system for the Unix
versions we are considering.

Table 17-1. Unix accounting system components

Accounting component Location

Accounting system variant BSD: FreeBSD, Linux (extended); AIX, Tru64 (commands only)
System V: AIX, HP-UX, Solaris, Tru64

Primary accounting data file (default/conven-
tional location shown)

AIX: /var/adm/pacct
FreeBSD: /var/account/acct
HP-UX: /var/adm/acct/pacct
Linux: /var/log/pacct (Red Hat); /usr/account/pacct (SuSE)
Solaris: /var/adm/pacct
Tru64: /var/adm/pacct

wtmp data file location Usual: /var/adm
FreeBSD: /var/log
Linux: /var/log
Solaris: /var/adm/wtmpx

utmp data file location Usual: /etc
FreeBSD: /var/run
Linux: /var/run
Solaris: /var/adm/utmpx
Tru64: /var/adm

lastlog data file location Usual: /var/log
AIX: /etc/security
HP-UX: not used
Tru64: /var/adm

Accounting supplemental utilities directory AIX: /usr/sbin/acct, /usr/lib/sa
FreeBSD: none
HP-UX: /usr/sbin/acct
Linux: /usr/lib/sa
Solaris: /usr/lib/acct
Tru64: /usr/sbin/acct

Boot script that starts accounting AIX: Edit /etc/rc or other boot script
FreeBSD: /etc/rc
HP-UX: /sbin/init.d/acct
Linux: none provided (Red Hat); /etc/init.d/acct (SuSE)
Solaris: /etc/init.d/acct
Tru64: /sbin/init.d/acct

Boot script configuration file (and accounting-
enabling entry)

Usual: none used
FreeBSD: /etc/defaults/rc.conf or /etc/rc.conf (accounting_enable="YES”)
HP-UX: /etc/rc.config.d/acct (START_ACCT=1)
Linux: /etc/rc.config (SuSE 7) (START_ACCT="yes”)
Tru64: /etc/rc.config (ACCOUNTING="YES”)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Standard Accounting Files | 1051

A couple of the utilities we considered in the context of security moni-
toring, lastcomm and lastlog (in Chapter 7), are also useful for produc-
ing accounting reports. See the earlier discussion for details.

Standard Accounting Files
When accounting is enabled, the Unix kernel writes a record to a binary data file as
each process terminates. These files are traditionally stored in the home directory of
the standard user adm (/var/adm on most recent systems), although some current
systems no longer use that account and simply run the accounting software as root.
Nevertheless, for sentimental reasons, the examples in this chapter generally use /var/
adm as the location of the accounting data files.

Records written to the raw accounting file by the System V and BSD accounting sys-
tems contain the same data. It is only the ordering of the fields within each record that
varies between the flavors (consult the /usr/include/sys/acct.h file for details).* Account-
ing records contain the following data about each process that runs on the system:

• Image name (for example, grep)

• CPU time used (separated into user and system time)

• Elapsed time taken for the process to complete (sometimes called “wall clock
time”)

• Time the process began

• Associated user and group IDs

• Lifetime memory usage (in BSD, the average use of the process’ lifetime; in Sys-
tem V, the aggregate sum of the memory in use at each clock tick)

• Number of characters read and written

• Number of disk I/O blocks read and written

• Initiating TTY

Available printer accounting AIX: /usr/sbin/pac
FreeBSD: /usr/sbin/pac
HP-UX: none provided
Linux: lprng accounting.pl (Red Hat); /usr/sbin/pac (SuSE)
Solaris: none provided
Tru64: /usr/sbin/pac

* Linux uses a slight variation on the BSD form.

Table 17-1. Unix accounting system components (continued)

Accounting component Location

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1052 | Chapter 17: Accounting

• Accounting flags associated with the process

• Process’ exit status

Other binary data files store additional accounting data:

utmp
Contains data about each currently logged-in user. login enters a record for each
successful login, which is then cleared by init at logout.

wtmp
Logs each login and logout to/from the system.

lastlog
Records the date and time of the last login for each user.

BSD-Style Accounting: FreeBSD,
Linux, and AIX
Administering BSD-style accounting involves several tasks:

• Enabling the accounting system and arranging for it to be started automatically
at boot time.

• Periodically merging raw accounting records into the summary data files.

• Running accounting reports.

As indicated, BSD-style accounting uses some additional accounting summary files,
located in the same directory as the primary accounting file. These files store pro-
cessed, summarized versions of the accumulated raw accounting data. They are
maintained by the sa command and are useful in keeping the size of the accounting
file to a manageable level:

savacct
The standard accounting summary file

usracct
The user-based accounting summary file

A Thankless Job
There will be days when this tired old saying about system administration will seem
one thousand percent correct. On days like those, you’ll be battered from encounters
with the cynics among your users — the ones who know the price of everything but the
value of nothing. Don’t let them get you down. Having one’s worth be undervalued
may be an occupational hazard for a system administrator, but you don’t have to fall
into that particular trap yourself. Just keep in mind that anyone who can put up with
the Unix accounting system (in either variety) is worth their weight in gold.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

BSD-Style Accounting: FreeBSD, Linux, and AIX | 1053

Enabling and Disabling Accounting
The accton command controls the current state of a BSD-style accounting facility.
The command enables accounting when an accounting file is specified as its argu-
ment (its location in the filesystem varies). Without an argument, the command dis-
ables accounting. Once the command is executed, accounting records will be written
automatically to the accounting file.

The one tricky aspect of accton is that any raw accounting data file you specify must
already exist, because the command will not create it. Accordingly, commands such
as the following are used to start the accounting system from one of the system boot
scripts:

return="done"
echo -n "Starting process accounting: "
test -e /var/account/pacct || touch /var/adm/pacct
/usr/sbin/accton /var/adm/pacct || return="failed"
echo "$return"

These commands first check that the raw accounting data file exists, creating it if
necessary, and then start the accounting system via accton.

Once accounting is installed on FreeBSD and SuSE Linux systems, you can automati-
cally activate it at boot time by editing the appropriate setting in the system’s boot
script configuration file, as described in Table 17-1.

The current Red Hat Linux version of the accounting package does not include a
boot script. However, it is easy to create one from a boot script template (see
Chapter 4), using the commands above as a model for the script’s start function and
the bare accton command for the stop function. Once you’ve written the script, you
will need to place it into /etc/init.d and create links to the appropriate rcn.d directory
for it to be run at boot time.

Merging Accounting Records into the Summary Files
The accounting file will grow without bounds if allowed to do so. Its contents are
designed to be processed and merged into the accumulated accounting summary files
with the sa command. When invoked with its -s option, the sa command processes
raw accounting records and places condensed summary information into the sum-
mary files. Here is an example of its use:

cd /var/adm Move to accounting directory.
/usr/sbin/accton Briefly disable accounting.
mv pacct pacct.sav Rename raw accounting file.
cat /dev/null > pacct Recreate raw accounting file.
/usr/sbin/accton pacct Restart accounting.
sa -s pacct.sav > /dev/null Merge data into standard summary file.
rm -f pacct.sav Delete saved accounting records.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1054 | Chapter 17: Accounting

The accounting file is renamed prior to invoking sa so that processes that terminate
during processing are recorded. The output from sa is piped to /dev/null to discard
the report it generates. Alternatively, it could be sent to a file.

A script could be created to run these commands, so that they could be executed as
needed by the system administrator or automatically via the cron facility.

After a Crash
The accounting system is designed to handle system shutdowns and boots automati-
cally. However, special steps must be taken in the event of a system crash. For the
accounting system to process data for processes that were running when a system
crash occurred, the administrator must manually close their outstanding accounting
records. These records must be closed before accounting is started. If accounting is
started automatically in the system boot scripts (as it usually is), closing incomplete
accounting records needs to occur before the accounting startup scripts are exe-
cuted. The easy way to accomplish this is to boot to single-user mode after the crash.

The accounting file may be saved by renaming it using a mv command, as in the fol-
lowing example:

mv /var/adm/acct /var/adm/acct.sav
touch /var/adm/acct

The second command recreates the accounting file, readying it for new records when
accounting is started in /etc/rc.

At this point, the system may be booted multiuser. Once booting is complete, the
following commands close the accounting records that were pending at the time of
the crash:

sa -s /var/adm/acct.sav >/dev/null
rm -f /var/adm/acct.sav

These commands update the summary files and then delete the saved accounting file.

Image-Based Resource Use Reporting: sa
The sa utility produces system usage reports based on the image (command) that
was executed. That is, in most cases, its statistics are organized and presented by
image name, rather than by user or project. sa reads the raw accounting file and its
summary file (savacct) to accumulate its data. Without any options, sa produces a
report like the following (output has been shortened):

sa
11238 412355.91re 5017.62cp 14avio 148k login
4299 1782.32re 1000.28cp 122avio 73k ld
12648 1335.62re 639.28cp 12avio 26k as
6489 1121.66re 541.82cp 50avio 10k makemake.c
4 627.93re 258.43cp 3avio 0k splice
225 6623.90re 248.56cp 2545avio 8k find

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

BSD-Style Accounting: FreeBSD, Linux, and AIX | 1055

In this default output, the image name appears in the final (rightmost) column. The
numerical fields in sa’s output are identified by their suffixes, which have the follow-
ing meanings:

none
Number of times called

cp, cpu
CPU time (system + user) in minutes

re
Elapsed time in minutes

avio
Average number of I/O operations per execution

k
CPU time-averaged memory use in KB

k*sec
Aggregate memory use in KB-seconds

tio
Total I/O operations for all executions

s
System CPU time in minutes

u
User CPU time in minutes

Not all data items appear in every report. The first five items appear in the default
output. The other items appear in reports generated by some of sa’s many options.

sa’s output may be sorted in a number of different ways by selecting an appropriate
option:

-b Average total CPU time per execution

-d Average number of disk I/O operations

-D Total number of disk I/O operations

-k CPU time-averaged memory usage

-K CPU-storage integral

-n Number of calls

-r Reverse sorting order

The -D option produces a report containing the total I/O use by the command; lines
are sorted according to this total:

sa -D
225 6623.90re 248.56cp 572608tio 8k find
4299 1782.32re 1000.28cp 522580tio 73k ld
9205 58785.98re 188.08cp 497421tio 9k makenv

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1056 | Chapter 17: Accounting

56 9610.25re 80.79cp 495507tio 18k buildsystem
20 50.27re 14.79cp 369163tio 11k ncheck

Here is the output from the -b option, which sorts by average CPU time:

sa -b -r
3 3843.47re 7.91cp 47323avio 1k update*
2 8.75re 7.39cp 1055avio 2k code
11 294.67re 50.19cp 5961avio 14k fsck
4 6680.53re 162.02cp 26avio 20k timed*
4 627.93re 258.43cp 3avio 0k splice

As illustrated, the -r option may be used to reverse the order of the sort (low to high
instead of high to low).

The -m option produces a listing of the total number of processes and CPU time for
each user:

sa -m
root 247648 19318.90cpu 7698005tio 3793802k*sec
chavez 2 3.67cpu 0tio 1013391k*sec
harvey 4 7.33cpu 0tio 2024939k*sec
daemon 7799 2742.86cpu 1616886tio 488234k*sec
wang 6 2956.44cpu 1067648tio 406004k*sec

Use the -u option to dump out all accounting records in a user-based format.

The -l option may be used to separate user and system time in sa’s output:

sa -l
11238 412355.91re 4691.13u 326.49s 14avio 148k ccom7
4299 1782.32re 861.52u 138.76s 122avio 73k ld
12648 1335.62re 567.13u 72.15s 12avio 26k as
4 627.93re 252.13u 6.30s 3avio 0k splice

Include -c to show times as percentages of the total rather than raw values.

You can limit sa’s output to the most frequently run commands using its -v and -f
options. For example, the report from the following sa command will include only
those commands executed more that 100 times:

sa -f -v 100

Alternate summary files may be specified with the -S and -U options, where -S indi-
cates an alternative to savacct, and -U specifies an alternative to the per-user sum-
mary file usracct; both should be followed by a pathname. sa’s reports may be
limited to the raw accounting file with the -i option.

The Linux version of sa provides a few additional options. The most useful adds an
additional data sorting capability: --sort-real-time. This option sorts records based
on the elapsed time field.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

BSD-Style Accounting: FreeBSD, Linux, and AIX | 1057

Connect Time Reporting: ac
The ac utility reports on user connect time. It gets its data from the wtmp file, con-
taining records on user logins and logouts. Without any options, ac displays the total
connect time (in hours) for all users for the lifetime of the wtmp file:

ac
 total 5501.06

The command may also be followed by one or more usernames, in which case the
total for those users is displayed:

ac chavez wang fine
 total 1588.65

The -p option breaks down connect time by user:

ac -p
 ng 30.61
 chavez 685.25
 harvey 0.04
 wang 170.77
 sysadmin 44.84
 fine 732.78

Usernames may be specified with -p to limit ac’s scope:

ac -p chavez wang fine
 chavez 685.25
 wang 170.77
 fine 732.78
 total 1588.79

The -d option breaks down the connect time by date, summed over all specified
users (the default is everyone):

ac -d
Sep 1 total 77.32
Sep 2 total 228.78
Sep 3 total 260.82
ac -d chavez wang fine
Sep 1 total 11.83
Sep 2 total 20.36
Sep 3 total 41.00

Using -d and -p together produces a summary of login activity, broken down by user
and by date; from an accounting point of view, this is likely to be ac’s only useful
mode:

ac -d -p chavez wang
 chavez 16.07
 wang 4.55
Sep 1 total 20.62
 chavez 15.87
 wang 20.15
Sep 2 total 36.01
 chavez 22.82

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1058 | Chapter 17: Accounting

 wang 17.68
Sep 3 total 40.50

ac -d -p would produce a similar listing, including all users.

Connect times for an individual user might exceed 24 hours in a single day; this is
easily accounted for by the fact that users may be logged on more than once simulta-
neously, via multiple windows, terminal sessions, and the like. Indeed, the ubiqui-
tous prevalence of such practices makes connect-time accounting all but useless.

The Linux version of ac tries to be more careful about reconstructing connect-time
data when the raw records include orphan records caused by system crashes or
reboots, flaky data (which does occur from time to time), and the like. It provides the
--compatibility option, which causes the command to revert to the standard dubi-
ous behavior.

System V–Style Accounting: AIX,
HP-UX, and Solaris
The System V–style accounting scheme is much more elaborate than the BSD-style
variant. It is used by AIX, HP-UX, and Solaris systems.

This facility is a complex system of commands, shell scripts, and C programs, called
by one another in long sequences, all purported to be totally automated and requir-
ing little or no intervention. In reality, it’s a design only a fervent partisan could love
(although, to be fair, it does generally get the job done on stable systems). Older ver-
sions of the manual pages alternated between assuring the reader that the system was
robust, reliable, and trouble-free and describing convoluted procedures for patching
corrupted accounting data files. Most of the latter has been edited out at this point,
but be forewarned.

The main accounting file is named pacct, usually found in /var/adm. Other key sub-
directories used by the system are found under /var/adm/acct:

fiscal
Reports by fiscal period (usually month) and old binary fiscal period summary
files

nite
Daily binary summary file; daily processed accounting record; raw disk account-
ing records; and status, error log, and lock files

sum
Binary daily and current fiscal period cumulative summary files and daily reports

On AIX systems, these subdirectories have to be created by hand:

cd /var/adm/acct
mkdir -m 755 fiscal nite sum
chown adm.adm fiscal nite sum

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V–Style Accounting: AIX, HP-UX, and Solaris | 1059

In addition to the wtmp and pacct files discussed previously, there are some other
raw data files generated by this accounting system:

/var/adm/acct/nite/diskacct
Raw disk usage data.

/var/adm/fee
Administrator-entered additional charge records, using the chargefee com-
mand. chargefee allows an administrator to record charges for special services
not covered by the accounting system; these charges will automatically be incor-
porated into the accounting system. It takes two arguments: a username and the
number of units to be charged to that user. For example, the following com-
mand charges user chavez 10 units:

chargefee chavez 10

Figure 17-1 illustrates the general flow of data in the System V accounting system,
beginning with the raw data files discussed previously. Commands and the operat-
ing system enter data into the raw data files, which are processed by a series of utili-
ties, producing several intermediate binary summary files and culminating in ASCII
reports suitable for use by the system administrator. All of this processing is handled
automatically by cron once accounting is set up.

On Tru64 systems, the files and subdirectories in /var/adm are context-
dependent symbolic links (see “Files” in Chapter 2). Keep this in mind
if you need to create or recreate any accounting system components.

Setting Up Accounting
While accounting is not enabled by default under System V, it is, to a large extent,
already set up. The following steps are necessary to enable accounting:

• Verify that a script to start the accounting system is run at boot time. On HP-UX
and Solaris systems, you need to verify that the init.d/acct script is linked to files
in the appropriate rcn.d or /etc/rc3.d subdirectory. On AIX systems, you need to
add a command like the following to one of the system startup scripts (the same
one called on the other systems):

/bin/su - adm -c /usr/sbin/acct/startup

The startup script calls the accton command to initiate accounting.

The following command shuts down accounting:
/usr/lib/acct/shutacct

Under AIX, this command is included in /etc/shutdown by default.

• Add cron entries for various accounting utilities. Add the following entries (or a
variation of them) to the crontab file for user adm:

control accounting file size (3:30 a.m. daily)
0 * * * /usr/sbin/acct/ckpacct
process accounting raw data (4:30 a.m. daily)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1060 | Chapter 17: Accounting

30 4 * * * /usr/sbin/acct/runacct 2>
 /var/adm/acct/nite/fd2log
generate monthly reports (5:30 a.m. on the first)
30 5 1 * * /usr/sbin/acct/monacct

Note that the second entry is wrapped to fit the page.

Figure 17-1. System V–style accounting (simplified)

Raw
Data
Files

Daily
Summary
Files

Cumulative
Summary
Files

ASCII
Reports

login init UNIX
kernel dodisk chargefee

/var/adm/
acct/
nite/
diskacct

/var/adm/
fee

/var/adm/
pacct

/var/adm/
wtmp

/var/adm/
acct/
sum/
loginlog

/var/adm/
acct/
sum/
tacctmmdd

/var/adm/
acct/
sum/
daycms

/var/adm/
acct/
nite/
dayacct

acctmerg prdaily

/var/adm/
acct/
sum/
cms

/var/adm/
acct/
sum/
tacct

/var/adm/
acct/
sum/
rprtmmdd

/var/adm/
acct/
fiscal/
fiscrptmmdd

monacct

runacct
(and children)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V–Style Accounting: AIX, HP-UX, and Solaris | 1061

Similar entries may already be present on the system in an active or commented-
out form. Note that the accounting utilities directory is /usr/lib/acct on Solaris
systems.

• Add an entry like the following to the crontab file for root:
 # generate disk usage raw data
 # (10:30 p.m. on Saturdays and the 29th)
30 22 29 * 7 /usr/sbin/acct/dodisk

• Edit the /etc/acct/holidays data file to reflect prime and nonprime hours and holi-
days—days where all day is considered nonprime—at your site. Here is an
example of this file:

* Prime/Nonprime Table for Accounting System
*
* Curr Prime Non-Prime
* Year Start Start
2001 0900 2100
*
* Day of Calendar Holiday
* Year Date
 1 Jan 1 New Year's Day
 15 Jan 15 Martin Luther King Day
 149 May 29 Memorial Day
...

The first section consists of a single active line (comments are indicated by the
initial asterisk) listing the current year, the time at which prime (full price) time
starts and when it ends, using a 24-hour clock. The second section lists holidays
to be recognized by the accounting system. The fields in each line are the numer-
ical day of the year (Julian date), conventionally followed by a readable date and
a description; the accounting system uses only the first field.

• On AIX systems, you must enable accounting for each filesystem for which you
want to collect disk accounting data with chfs command, as in this example:

chfs -a accounting=true /chem

The resulting entry in /etc/filesystems will now look something like this:
/chem:
 dev= /dev/us00
 vfs= jfs
 log= /dev/logus00
 mount= true
 check= true
 options= rw
 account= true Accounting is enabled.

Once these steps are completed, accounting will begin at the next boot. It may be
started manually instead:

/bin/su - adm -c /usr/sbin/acct/startup

The startup script is located in /usr/lib/acct on Solaris systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1062 | Chapter 17: Accounting

Accounting Reports
Daily accounting reports are stored in files in the sum subdirectory, with names of
the form rprtmmdd, where mm and dd are the month and day, respectively. Each
report file contains five separate reports, covering these areas:

• Per-user usage

• Last login time for each user

• Command use, for the previous day and the previous month

• Terminal/pseudo-terminal activity

Here is a sample of the daily per-user usage report, the most useful section of the
daily report file from an accounting perspective:

March 7 10:43 2001 DAILY USAGE REPORT FOR hamlet Page 1

 LOGIN CPU (MINS) KCORE-MINS CONNECT(MINS) DISK # OF # OF # DISK FEE
UID NAME PRIME NPRIME PRIME NPRIME PRIME NPRIME BLOCKS PROCS SESS SAMPLES
0 TOTAL 40 101 9 34 393 124 0 1186 19 0 0
0 root 5 10 2 11 102 12 0 1129 10 0 0
473 wang 35 91 7 23 291 112 0 57 9 0 0

The resources used during prime and nonprime hours (as defined in the holidays file)
are totaled separately by the accounting system (to allow for different charge rates).

The first line of the report is a total line, giving total system usage. After that, there is
one line per UID. The fields have the following meanings:

UID
User’s UID.

LOGIN NAME
Username.

CPU (MINS)
Total CPU time for all of the user’s processes in minutes.

KCORE-MINS
Total memory used by running processes, in kilobyte-minutes. Basically, this
field relates to the product of the memory used times the length of use, summed
over all the user’s processes. It is an indication of how much memory the user’s
processes consumed, but it has little to do with the amount of memory that was
actually used.

CONNECT (MINS)
Total connect time (how long the user was logged in).

DISK BLOCKS
Average total amount of disk space used by the user.

OF PROCS
Total number of processes belonging to this user.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V–Style Accounting: AIX, HP-UX, and Solaris | 1063

OF SESS
Number of distinct login sessions.

DISK SAMPLES
Number of times dodisk was run during the accounting period, giving a measure
of how many values the DISK BLOCKS field is averaged over. If dodisk has not
been run, this field and the DISK BLOCKS field will contain a 0.

FEE
Total fees entered with chargefee.

The daily and monthly command-use reports in the same report file show system
resource usage by command name, including the number of times each command
was run and the total CPU time, memory use, and I/O transactions it consumed. The
terminal activity report shows the percentage of time each terminal line or pseudo-
terminal was in use over the accounting period, the total connect time accumulated
on it, and the number of distinct login sessions (not that useful a report anymore).
The last login report displays the date of the last login for each UID defined in the
password file.

The monthly accounting reports are stored in files named fiscrptmm, where mm indi-
cates the month. They are very similar to the daily reports just described.

Solaris Project-Based Extended Accounting
Solaris provides extended accounting for keeping track of system resource usage by
project. This facility is independent of the standard System V accounting system also
provided by Solaris.

Projects are defined in the /etc/project configuration file. Solaris provides several utili-
ties for defining projects and assigning users and groups to them, as illustrated in the
following examples.

The following command creates a new project called animate, assigns it a project ID
of 105, and assigns user chavez and groups grarts and design to it:

projadd -c "Animation Project" -U chavez -G grarts,design -p 105 animate

Similarly, the following command creates the cad project without assigning any
members and lets the system assign the next highest project ID:

projadd cad

The following commands replace the user list for the animate project and rename the
cad project to cae:

projmod -U chavez,wong animate
projmod -l cae cad

The following command removes the y2k project:

projdel y2k

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1064 | Chapter 17: Accounting

Here are the /etc/project file entries corresponding to the two projects we just created:

animate:105:Animation Project:chavez,wong:grarts,design:
cad:110::::

The contents of each field are obvious, with the exception of the last field, which can
be used to define project-specific attributes.

The projects command lists the projects to which the current user or a specified user
belongs:

projects chavez
default chemdev animate

The -v option lists project descriptions and their names.

At login, the user is placed into the default project or, if there is not default project,
into the first project of which she is a member. She can change the current project by
executing the newtask command:

$ newtask -p animate

The command also optionally takes a command as its final argument, allowing a user
to execute a single command for another project. The command also supports a -F
option to start a finalized task, one from which another task may not be started.

The new project option (-p) is not required. If it is omitted, a new task in the current
project is started. Extended accounting data can be collected on a per-task and/or
per-process basis. The newtask command would be used to delimit tasks if the former
is desired.

You enable collection of the additional accounting data (project and task settings)
using the acctadm command, as in these examples:

acctadm -e extended,host,mstate -f /var/adm/exact/task task
acctadm -e extended,host,mstate -f /var/adm/exact/pacct process

The two commands enable task-based (i.e., based on invocations of newtask) and per-
process accounting by project (the type is indicated by the final keyword). The -e
option specifies the data to be collected (we have enabled everything here), and the -f
option specifies the path to the raw accounting data file where records should be
written.

Without options, the acctadm command displays the current state of the extended
accounting system:

acctadm
 Task accounting: active
 Task accounting file: /var/adm/exacct/task
 Tracked task resources: extended,host,mstate
 Untracked task resources: none
 Process accounting: active
 Process accounting file: /var/adm/exacct/pacct
 Tracked process resources: extended,host,mstate
Untracked process resources: none

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

System V–Style Accounting: AIX, HP-UX, and Solaris | 1065

You must provide your own methods and tools for managing these raw accounting
files and processing the records within them.

The upacct Package
The upacct package, written by D. J. Nixon and available free of charge, provides a
way to merge the System V–style accounting data from multiple hosts into a single
repository. It provides a variety of commands and scripts related to these functions.
We will focus on a few of them here.

The upacct command is used to create host-based accounting data summary files and
to merge multiple such files together. For example, the following command creates a
host-based data file from the standard raw accounting data file:

upacct cmds.hamlet -p /var/adm/pact

This command creates the file cmds.hamlet in the current directory.

The following command merges several host-based data files into the file cmds.0:

upacct cmds.0 cmds.hamlet cmds.dalton cmds.garden

The command’s first argument indicates the output file. Additional data filenames
refer to files to be merged, and the -p option points to any raw accounting data file to
be included as well.

Conventionally, the host-based data files are given names of the form cmds.nnnn
where the extension is a four-digit number. However, you can use any names you
like, provided you modify the package’s shell scripts to reflect your choice.

The package includes two shell scripts that are useful for reporting on the collected
data: ucomm.sh and wcomm.sh. Both need to be edited prior to their initial use to
specify the path to the host-based data files on your system (and to reflect any non-
standard file name conventions). Here is an example of running ucomm.sh, which
takes a username whose data is to be retrieved as its argument:

ucomm.sh chavez
l510.exe -- 176.45 secs aurora Tue May 15 15:18:50 2001
 tail -- 270.12 secs hamlet Tue May 15 15:11:34 2001
 top -- 11.14 secs garden Tue May 15 15:11:21 2001

The fields in the display hold the command name, accounting flags, CPU time (in
seconds), host, and command start time (respectively). Given this sort of data, it is
quite easy to generate reports on per-user and per-system usage levels. We saw an
example script of this sort in Chapter 14.

The wcomm.sh command is very similar, differing only in that it takes a command
name as its argument and displays the username in the first column of its output.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1066 | Chapter 17: Accounting

Printing Accounting
Unix systems which use the BSD/lpd-style spooling subsystem also usually offer
printing accounting via the pac utility. Printer accounting is enabled with the af field
in its /etc/printcap entry. For example, this entry designates /var/adm/ps1_acct as the
accounting file for this printer:

laser|postscript|ps1:\
 :lp=/dev/lp:sd=/var/spool/ps1:if=/usr/local/sbin/filt:\
 :mx#0:af=/var/adm/ps1_acct:pw#132:pl#66:pc#100:\
 ...

For text printers, the pw and pl fields (page width and length, in characters and lines,
respectively) are used to generate accounting data. For other printer types, a more
sophisticated approach is required.

Under AIX, printing accounting is enabled by adding an acctfile keyword to the
queue definition stanza in /etc/qconfig:

laser:
device = dlas1,dlas2
header = group
trailer = never
acctfile = /var/adm/qacct
...

This line may be added with a text editor, by using the chque command, or by using
SMIT, but in any case, the queue should be stopped first (for example, with enq -D)
and then restarted after reconfiguration (see Chapter 13 for more information).

Merely defining the accounting file field will not in itself cause
accounting records to be created. The facility requires support for
accounting data from the filter(s) used to process the print jobs. There
are many filters available that include this functionality. See
Chapter 13 for more information about filters. Printing accounting,
including techniques for generating the required data for modern
printers, is also discussed in detail in Network Printing, by Todd Rad-
ermacher and Matthew Gast (O’Reilly & Associates).

By default, pac displays total usage of the current printer (as designated in an envi-
ronment variable or as the system default printer) for each user on each host over the
lifetime of the printer’s accounting files. The units are pages for printers and linear
feet for plotters and similar raster devices. You can combine all the host-specific
entries for each user by including -m, since you seldom care where print jobs were
spooled from.

You can specify what price to charge per unit with -p (the default is two cents, cheap
even for the mid-1970s), where a unit is one page or one foot of continuous output.
In addition, on systems using the printcap file, the pc entry can be used for the same

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing Accounting | 1067

purpose (its units are .01 cents). Thus, the example printcap entry at the beginning
of this section set a page charge of 10 cents.

For example, this command produces a report of printer usage for the listings printer
(specified as usual with -P), with one entry per user and a charge of 12 cents per
page:

pac -m -p0.12 -Plistings
 Login pages/feet runs price
chavez 132.00 50 USD 15.84
silk 114.00 9 USD 13.68
harvey 16.00 2 USD 1.92
...
total 5361.00 378 USD 643.32

A total line for all users appears at the bottom of the report. pac is quite picky about
its syntax, requiring options to follow the option letter immediately and not allow-
ing you to concatenate options behind a single minus sign.

You can limit the report to specific users by including one or more usernames at the
end of the pac command line. pac’s other report-related options are -c, which sorts
output by cost rather than username, and -r, which reverses the sort ordering in
either mode. It also has a -s option, which produces a summary file from the raw
data file; the summary file has the name of the raw data file with _sum appended to
it.

If you want date-based printer accounting reports, you’ll have to generate them your-
self. For example, the following script produces a printer-account report for the cur-
rent week (it is designed to be run via the cron facility):

#!/bin/sh
pracct - run printing accounting report
cd /var/adm
while [$# -gt 0]; do
 file="$1.`date +%m-%d-%y`"
 echo "Printing Usage Report for Printer $1" > $file
 echo "Covering the week ending `date +%m-%d-%y" >> $file
 /usr/sbin/pac -m -p0.12 -P$1 >> $file
 if [-s $1_lastweek]; then
 mv -f $1_lastweek $1_prevweek
 fi
 /usr/sbin/pac -s
 mv $1_sum $1_lastweek
done

The script saves pac’s output to a file named for the printer and the current date after
writing two header lines to it. It then creates a (smaller) summary file from the cur-
rent printer accounting file (assumed to be named the same as the printer), which it
renames, so that its data will not appear in future pac output (if a file is present, sum-
mary file data is included). This script arranges to save the summary files for the past
two weeks online by renaming last week’s file (if it exists) before creating the current
week’s summary file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1068 | Chapter 17: Accounting

Printer Accounting Under LPRng
LPRng uses the same field for specifying the accounting file as the LPD system: af. In
addition, it provides some additional flags:

• The flags la (enable local accounting) and ar (enable remote job transfer
accounting). The former is on by default.

• The as and ae fields specify a script to be run at the start and end of each print
job. Typically, these are used to record the beginning and ending page counts
and essential information about the print job. The LPRng package provides the
accounting.pl Perl script as an example.

Typical accounting records from the example program look something like this:

start -p100 -Fo -kjob ... Start of print request (-Fo); counter is 100.
start -p100 -Ff -kjob ... Start of first component file (-Ff).
end -p10 -q 110 -Ff -kjob ... End of first file (10 pages).
start -p110 -Ff -kjob ... Start of second component file.
end -p5 -q115 -Ff -kjob ... End of second job (5 pages).
end -p115 -Fo -kjob ... End of print request; counter is 115.

Each line displays the current print counter setting (-p in start lines and -q in end
lines), and a flag indicating whether the entry applies to a print request or an actual
printed file, and other information about the job (the job ID, submitting user and
host, and the like).

See the LPRng documentation for full details on its printer accounting capabilities.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1069

Chapter 18 AFTERWORD

The Profession of
System Administration

We’ll conclude this book as we began: by considering the system administrator’s job,
this time considering it as a profession.

I find system administrators to be a very interesting group of people. One of the rea-
son is that system administrators as a group tend to have diverse and varied back-
grounds. Many people come to system administration after being educated and/or
working in other areas. It’s only relatively recently that system administration has
been available as an “official” educational track and career path.

Whatever their backgrounds, though, system administrators are valuable technical
professionals, and they should be treated as such (and also should act accordingly).
Sadly, the contributions of system administrators are not always respected or even
noticed. The way to address this oversight lies in greater visibility for the profession
as a whole.

SAGE, the System Administrators Guild, is an organization that works very hard at
doing just that. It also provides many valuable services to the individual system
administrators that are its members.

SAGE: The System Administrators Guild
For almost a decade, SAGE has served the needs of system administrators around the
world.* One of SAGE’s main goals is the increase of visibility and recognition of sys-
tem administration as a profession. To this end, SAGE has published as series of
short topics handbooks. All of them are excellent. A good one to start with is Job
Descriptions for System Administrators (Revised and Expanded Edition), edited by
Tina Darmohray. This work provides detailed job descriptions for system adminis-
tration positions at various levels. As such, it is very useful for evaluating both your
skills and your present position in light of general practices.

* Thanks to Rob Kolstad, SAGE’s Executive Director, for most of the descriptive text in the SAGE section.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1070 | Chapter 18: The Profession of System Administration

Along the same lines, SAGE committees are currently working on the System Admin-
istration Book of Knowledge, which includes a listing of all the tasks a system admin-
istrator might encounter (but not how to do them), and they are also working on a
university curriculum for new system administrators. Complementing these is a ven-
dor-neutral certification program developed as a “career certification” instead of the
usual “product certification.”

Organized as a special technical group of USENIX, SAGE’s thousands of members
share information, technical tips, and white papers on SAGE’s website. Many of
SAGE’s services are available for no charge at the SAGE portal http://www.sage.org.
They include:

SAGEwire
An online discussion forum with daily updates of news for and about system
administration.

SAGEweb
Items of long-term interest, including SAGE’s activities, member services, and
organizational news.

SAGEnews
An email periodical with just the right amount of summarization on system
administration news.

SAGE co-sponsors many conferences, including the popular LISA conference for sys-
tem administrators. LISA, the Large Installation System Administration conference,
is excellent and very relevant to all system administrators, regardless of the size of
their site. Held annually, it is preceded by three days of optional, in-depth tutorials
on various system administration topics. The conference itself also runs three days
and includes a variety of technical sessions—including both well-known speakers
and ordinary system administrators sharing their experience—and social activities.
Overall, the conference is both informative and a lot of fun. For more information
about LISA, see http://www.usenix.org/events/.

All system administrators are welcome at SAGE. Check us out and see what SAGE
has to offer you.

Administrative Virtues
I’ll close this brief consideration of the profession and professionalism with the full
list of administrative virtues. This time, we’ll take a somewhat more humorous tack
than we have previously:

Flexibility
Being able to wriggle out of tight spots and escape when irate users seem to have
you cornered.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administrative Virtues | 1071

Ingenuity
Realizing that you can use syslog to send messages to your friend on another sys-
tem.

Patience
Remaining capable of waiting until the final sendmail configuration bug is fixed.

Persistence
The compulsion to try just-one-more-thing to fix a problem before going home.

Adherence to Routine
Insisting on real cream and sugar-in-the-raw in your coffee (which is Kona or
nothing).

Attention to Detail
Noticing that the clock on one of your systems is using Aleutian time, and
changing all the others to match.

Laziness
Writing a 250-line Perl script to avoid typing 15 characters.

What these alternative definitions are designed to highlight is the fact that system
administration is not only challenging and sometimes frustrating, but can also be
fun. In fact, this is my last piece of advice for you:

Don’t forget to have fun. Life is too short.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1073

Appendix A APPENDIX

Administrative Shell Programming

The purpose of this appendix is to review major Bourne shell (sh) programming fea-
tures. It is not intended as a comprehensive treatment of shell programming or of the
features of the various shells. Rather, it will enable you to understand and modify the
system administration scripts on your system, most of which are Bourne shell scripts
(although this is slowly changing).

In the course of this appendix, we will look at many examples drawn from actual sys-
tem scripts, as well as some other simple examples to illustrate basic features. Some
of the latter examples use shell commands executed at the command prompt
(although the corresponding commands could obviously appear just as easily in
scripts).*

With the exception of AIX and Linux, the Unix versions we are considering use the
Bourne shell for system scripts. AIX uses the Korn shell (ksh), and Linux uses the
Bourne-Again shell (bash). Linux system scripts also frequently use bash features that
are not part of the standard shell. Since they are extensions to sh, however, the most
important of these features are now described in this appendix.† When I mention
bash features here, I am doing so in a descriptive sense only—not in an historical
sense—in comparison to what is offered in the standard Bourne shell. The feature in
question may also be present in other shells and may very well have originated in a
shell other than bash.

The books UNIX in a Nutshell: System V Edition, by Arnold Robbins, and Learning
the bash Shell, by Cameron Newham and Bill Rosenblatt (both published by O’Reilly
& Associates) are excellent references for sh and bash, respectively.

Discussing Korn shell features is beyond the scope of this appendix; consult the book
Learning the Korn Shell by Bill Rosenblatt and Arnold Robbins (O’Reilly & Associ-
ates) for a detailed discussion of this shell.

* Not all examples will necessarily run in every sh implementation.

† This discussion covers bash Version 2.04 or later.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1074 | Appendix A: Administrative Shell Programming

As much as possible, the examples in this appendix come from actual
system scripts. Thus, while there are many useful techniques illus-
trated in the examples, they should not generally be viewed as recom-
mendations of shell programming style, and many readers may
quibble or disagree with them at some points.

Basic Syntax
This section reviews some basic syntactic features of the Bourne shell, in a some-
what arbitrary order.

Lines in shell scripts beginning with number signs are comments:

Start or stop the lp scheduler

In fact, comments can begin anywhere on a line:

grep ':00*:' /etc/passwd # Check for UID=0 accounts

The first line of a shell script usually looks like this:

#!/bin/sh

This identifies the shell that should run the script, in this case, the Bourne shell. The
path location can vary.

The best practice is to begin every shell script with a line identifying
the shell to be used to run it. If this line is not present, /bin/sh is
assumed.

The Bourne shell offers some syntactic flexibility over other shells. For example,
quotes remain in effect across physical lines, as in this example we looked at in
Chapter 7:

echo "*** Non-root UID=0 or GID=0 accounts:"
grep ':00*:' /etc/passwd | \
 awk -F: 'BEGIN {n=0}
 $1!="root" {print $0 ; n=1}
 END {if (n==0) print "None found."}'

Note that the arguments to the awk command extend across three lines, which is
much more readable than forcing them onto a single line.

I/O Redirection
Another construct you’ll see quite often is this redirection of standard output to a file
and of standard error to standard output (and thus to the same file):

/usr/lib/lpshut > /dev/null 2>&1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Basic Syntax | 1075

In this case the file is /dev/null, but the concept applies whether output goes to a real
disk file, to /dev/console, or gets thrown out.

Note that standard output and error can also be redirected to separate destinations:

/sbin/rc.local 1>> boot.log 2> /dev/console

In general, the form n> file redirects file descriptor n to the specified file; file may also
be replaced by a second file description, as in the form n1>&n2.

Some Bourne shells and bash support more complex I/O-redirection syntax. For
example, the following command redirects all future standard input and all output to
the system console (which is the target of the CONSOLE environment variable):

exec 0<> $CONSOLE 1>&0 2>&0

bash also offers additional I/O-redirection features. One of the most useful is illus-
trated in this example:

/etc/shutdown.local >| /var/adm/shutdown.log 2>&1

This command runs the specified script, placing all of its output into the indicated
file even if the file already exists and the noclobber shell variable, which inhibits acci-
dental overwriting of existing files, is set.

The dot Command
The so-called dot command—consisting of a single period—is used to run com-
mands from a file in the same shell as the script itself. The file specified as a dot com-
mand’s argument thus functions as an include file. For example, the following
command executes the contents of /etc/rc.config as if they were part of the calling
script:

. /etc/rc.config

Placing some commands in a separate file can have many purposes: isolating their
function, allowing them to be used in multiple scripts, and so on.

bash provides source as a synonym for the dot command. The return command may
be used to return to the calling script at any point within a script executed with the
dot command.

Return Codes and the exit Command
On Unix systems, commands return a value of zero when they terminate normally
and a nonzero value when they don’t. The exit command may be used in scripts to
return an explicit value; it takes the return value as its argument.

Here is a typical use of exit:

echo "configure network FAILED"
exit 1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1076 | Appendix A: Administrative Shell Programming

This command, from a TCP/IP startup file, terminates the script and returns a non-
zero value (indicating an error).

Compound Commands
The forms && and || are used to create conditional compound commands. When the
shell encounters one of these operators, it checks the exit value of the command on
the left of the operator before deciding whether to execute the command on the
right. For &&, the second command is executed only if the first one completed suc-
cessfully; for ||, the second command executes when the first one fails. Here is an
example with &&:

grep chavez /etc/passwd && grep chavez /etc/group

If the string “chavez” is found in the password file, the same string is searched for in
the group file; if it isn’t found, the second command doesn’t execute.

The two constructs can be used together:

/usr/local/cksecret && echo "Everything ok." || mail root < slog

If the script cksecret returns 0, a message is sent to standard output; otherwise, the
contents of the slog file are mailed to root. The && has to come before the || for this
to work correctly.

Command Substitution
Back quotes may be used to place the output of one command into a separate com-
mand. For example, this command defines the variable otty as the output of the stty
command:

otty=`stty -g`

bash and some Bourne shells also support the following more readable syntax:

otty=$(stty -g)

Argument Symbols and Other $ Abbreviations
Bourne shell scripts can be passed arguments like any Unix command. The first nine
arguments can be referred to by the abbreviations $1 through $9. The shift com-
mand is one way to access later arguments. Here is an example of how it works:

$ cat show_shift
#!/bin/sh
echo $1 $2 $3
shift
echo $1 $2 $3
$ show_shift a1 a2 a3 a4
a1 a2 a3
a2 a3 a4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Basic Syntax | 1077

After the shift command, all parameters are shifted one parameter position to the
left (or down, depending on how you want to look at it), and their parameter num-
bers are reduced by one.

bash provides a simplified syntax for accessing arguments beyond the ninth: ${n}.
Thus, echo ${12} would display the value of the twelfth argument.

$0 refers to the command or script name, as in this example:

restart)
 $0 stop && $0 start
 ;;

These lines are from a boot script. They are part of a case statement in which the var-
ious options correspond to possible arguments that may be passed to the script. In
this case, when the script argument is “restart”, it calls itself with the argument
“stop” and then calls itself again with the argument “start”, provided that the first
command was successful.

The form $# is a shorthand for the number of arguments. Thus, for the show_shift
command in the previous example, $# was 4 before the shift command was exe-
cuted and 3 afterwards.

There are two shorthand forms for all the arguments passed to a script: $@ and $*. $@
keeps the individual arguments as separate entities; $* merges them into a single
item. Quoting the two of them illustrates this clearly:

"$*" = "$1 $2 $3 $4 ... $n"
"$@" = "$1" "$2" "$3" "$4" ... "$n"

You’ll usually see the $@ form in system scripts.

There are a few other dollar-sign abbreviations that appear from time to time.
Although they’re not related to script arguments, I’ll list them here:

$?
Exit status of previous command

$$
PID of this shell’s process

$!
PID of the most recently started background job.

We’ll see examples of some of these later in this appendix.

Variable Substitution
Shell scripts can also define variables, using the same syntax as environment vari-
ables:

name=value No spaces allowed around the = sign.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1078 | Appendix A: Administrative Shell Programming

Variables are dereferenced by putting a dollar sign in front of their name: $name. The
variable name may be surrounded with braces to protect it from surrounding text.
For example:

$ cat braces
#!/bin/sh
item=aaaa
item1=bbbb
echo $item1 ${item}1
$ braces
bbbb aaaa1

The first command displays the value of the variable item1, while the second com-
mand displays the value of the variable item, followed by a 1.

There are more complex ways of conditionally substituting variable values. They are
summarized in Table A-1.

Here are some examples:

$ name=rachel Assign value to variable name.
$ echo ${name-tatiana} name is set, so use its value.
rachel
$ echo ${name2-tatiana} name2 is unset, so use “tatiana”.
tatiana
$ echo ${name=tatiana} name is set, so use it.
rachel
$ echo ${n2=tatiana}; echo $n2 n2 is unset, so use “tatiana”...
tatiana
tatiana . . .and give n2 that value too:
$ echo ${name+tatiana} name is set, so use “tatiana”.
tatiana
$ echo name3=${name3+tatiana} name3 is unset, so return nothing.
name3=
$ name4=${name3?"no name given"} name3 is unset, so display message...
name3: no name given
$ echo name4=$name4 . . .note name4 is not set.
name4=
$ dir=${name-`pwd`}; echo $dir name is set, so use it (pwd not run).
rachel
$ dir=${name3-`pwd`}; echo $dir name3 is unset, so set dir to `pwd`.
/home/chavez

Table A-1. Conditional variable substitution

Return Value (Action Taken)

Form If var is seta

a “Set” means “defined,” regardless of value (i.e., even if null).

If var is unset

${var-string} $var string

${var+string} string null

${var=string} $var string (set var=string)

${var?string} $var (display var:string only)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Basic Syntax | 1079

As the final two examples indicate, commands can be included in the string, and they
will be executed only if that portion of the construct is actually used.

bash variable substitution extensions

The bash shell and some Bourne shell implementations provide additional variable
substitution possibilities:

• Placing a colon before the operator character in the various items in Table A-1
tests whether the variable is set to a non-null value. Thus, echo ${var:-apple}
displays the value of variable var if it is set to something other than an empty
string (null value); it displays “apple” otherwise.

• The form ${var:offset:length} may be used to extract substrings from a vari-
able. offset indicates which character to start with (numbering begins at 0); if
offset is negative, character counting begins from the end of the string (e.g., –1
starts extracting at the penultimate character). length indicates how many char-
acters to extract, and it is optional; if it is omitted, all remaining characters are
extracted. It must be greater than zero.

Here are some examples:
$ names="applepearplum"
$ echo ${names:5}
pearplum
$ echo ${names:5:4}
pear
$ echo ${names:(-4):4} Negative numbers must be parenthesized to
plum avoid confusion with the :- operator.

• The form ${#var} may be used to determine the length of the specified variable’s
value. For example, ${#names} is 13.

• The form ${var#pattern} may be used to remove substrings from a variable,
returning the remaining string. The following commands illustrate its use:

$ names="applepearplum"
$ echo ${names#apple}
pearplum
$ echo ${names#a*p} The pattern can include wildcards.

 plepearplum
$ echo ${names#pear} Patterns only match the beginning of the string.
applepearplum

Note that the pattern must match the beginning of the string.

There are several variations on this form: ${var##pattern}, ${var%pattern} and
${var%%pattern}. The number sign says to match the beginning of the string, and
the percent sign says to match the end of the string. The single character forms
remove the shortest matching substring, and the double character forms remove
the longest matching substring, as in these examples:

$ echo ${names##a*p} Remove longest match.
 lum

$ echo ${names%%e*m}
appl

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1080 | Appendix A: Administrative Shell Programming

Here is a real-world example:
rex="[0-9][0-9]"
for i in $prerc/K${rex}*; do
 service=${i#*/K$rex} # extract service name
 ...
done

This loop runs over the K-file boot scripts in whatever directory prerc resolves to.
For each script, the variable service is set to the name of the facility being started
by removing the initial path and Knn portion from the variable i.

• The preceding syntax can be extended to perform general search-and-replace
operations within strings, using constructs of the form: ${var/pattern/repstr}.
This form replaces the longest string matching the pattern with repstr. If the ini-
tial slash is replaced by two slashes, all matching substrings are replaced. If
repstr is null, the matching substrings are simply deleted.

By default, matching occurs anywhere within the string. Precede the pattern with
a number sign or percent sign to force matches to be at the beginning/end of the
string.

Here are some examples:
$ names="applepearplum"
$ echo ${names/p/X}
aXplepearplum
$ echo ${names//p/X}
aXXleXearXlum
$ echo ${names/%plum/kumquat}
applepearkumquat

You can do such pattern matching and replacement on the script argument list
by using @ as the variable name.

Variable Double Dereferencing
It’s very common to come across code like this:

netdev="NETDEV_"
iconfig="IFCONFIG_"

Set up environment variables for each network device
. /etc/rc.config

num=0
while [$num -le $NUM_NETDEVS]; do
 curr_dev=`eval echo $netdev$num` # NETDEV_n
 eval device=\$$curr_dev # value of NETDEV_n
 if ["$device" != '']; then
 curr_opts=`eval echo $iconfig$num` # IFCONFIG_n
 eval options=\$$curr_opts # value of IFCONFIG_n
 /sbin/ifconfig $device $options up
 fi
 num=`expr $num + 1`
done

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The if Statement | 1081

This script fragment initializes all the network interfaces on a system. The device
names are stored in a series of environment variables named NETDEV_0, NETDEV_
1, and so on, and the corresponding ifconfig options are stored in IFCONFIG_n.
The while loop configures each interface in turn. The variable num holds the num-
ber of the current interface, and the variables netdev and iconfig hold the beginning
part of the environment variable names. The value of the proper environment vari-
able is extracted into the variables device and options (which are used in the ifconfig
command) via a two-step process: for the NETDEV case, the name of the environ-
ment variable is constructed first and saved in the variable curr_dev. Then curr_dev is
itself dereferenced, and its value—which is the value stored in NETDEV_n—is
assigned to the variable device. If you’ve ever wondered how to get to the value of the
value of variable, this is one way.

Here is a similar example from a Linux system:

. /etc/rc.config
locale_vars="\
 LANG \
 LC_ALL \
 ... \
 LC_MONETARY"

for var in $locale_vars; do Loop over locale-related environment variables.
 if eval test -z "\$$var" Is the variable's value undefined or null?
 then
 eval $var="\$RC_$var" If so, set its value to the same RC_ variable.
 export $var
 fi
done

Consider the first trip through the loop. The loop variable var is set to LANG. If the
LANG environment variable is not set, then LANG’s value is set to that of RC_
LANG variable (defined in /etc/rc.config) via the second eval command, and the envi-
ronment variable is exported.

The if Statement
In this section, we begin looking at Bourne shell control structures: programming
features seldom used on the command line. The first construct we will consider is if,
used for conditional command execution. Here is the simplest syntax of an if state-
ment and a simple if example:

if condition
then

commands
fi

if test -x /sbin/sendmail ; then
 /sbin/sendmail $SENDMAIL_OPTIONS
fi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1082 | Appendix A: Administrative Shell Programming

The if command runs the commands in condition. If they return a true value (zero
exit status), the commands are executed; on a false, nonzero status, the script jumps
to the command after fi.

The preceding example uses the test command to check for the file /sbin/sendmail
and starts the daemon if it’s present and executable. We’ll look at constructing con-
ditions more closely a little later. For now, notice the placement of the then com-
mand. then must appear to the shell as a separate command, or you’ll get an error.
So it must be on a new line after the if command, or it must be separated from the
if command by a semicolon. The same rules hold true for the fi command that ends
the if construct.

There are more complex forms of if:

strings /vmunix | grep Unix > /tmp/motd
i=`head -1 /etc/motd | grep -c Unix`
if [$i -eq 0]
then
 cat /etc/motd >>/tmp/motd
else
 tail +2 /etc/motd >>/tmp/motd
fi
mv /tmp/motd /etc/motd

This example illustrates the if-then-else construct. It updates the Unix version
string in the message-of-the-day file. First, it gets the current Unix version string out
of the kernel file /vmunix and puts it in the file /tmp/motd. Then, it checks whether
the string “Unix” appears in the first line of /etc/motd. If it doesn’t, the entire con-
tents of /etc/motd are appended to /tmp/motd by the tail command. Otherwise—
when “Unix” does appear in the first line of /etc/motd—all but its first two lines are
appended to /tmp/motd. Finally, the new message file replaces the current one.

Here is an example of the most complex form of if:

set `who -r` Determine previous run level.
if ["$9" = "S"] Previous level was single-user mode.
then
 echo "The system is coming up."
elif ["$7" = "2"]; then Target run level is level 2.
 echo "Changing to state 2."
else
 echo "Changing to state 3."
fi

The elif command allows if statements to be chained together. It functions as an
else for the current if and as the beginning of a new if. The final else covers the
case of all false conditions and ends the entire chain.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The if Statement | 1083

The test Command (a.k.a. [)
The most common way to construct a condition for an if command is with the test
command. It has two forms:

test condition
[condition]

test evaluates condition and returns 0 or 1, depending on whether the condition is
true (0) or false (1). (This polarity matches up with if’s sense of true and false.)

The open bracket ([) command is a link to test and works in exactly the same way.
It makes for more readable scripts, so you’ll seldom see test. If the [form is used, a
final closed bracket (]) is included to keep test from complaining. Note that there
must be spaces after [and before].

Table A-2 lists the various options and operators that may be used to construct con-
ditions with test and [. The shaded items are extensions available in only some shell
implementations.

Table A-2. Constructing conditions

Construct Meaning

-s file File has greater than 0 length.

-r file File is readable.

-w file File is writable.

-x file File/directory is executable.

-f file File exists and is a regular file.

-d file File is a directory.

-c file File is a character special file.

-b file File is a block special file.

-p file File is a named pipe.

-u file File has SETUID bit set.

-g file File has SETGID bit set.

-k file File has sticky bit set.

-t n File descriptor n refers to a terminal.

-e file File exists.

-O file You own the file.

-G file Your group owns the file.

-L file File is a symbolic link.

-S file File is a socket.

-N file File has been modified since it was last read.

file1 -ef file2 Files reside on the same device and refer to the same inode number.

file1 -ot file2 First file is older than second file.

file1 -nt file2 First file is newer than second file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1084 | Appendix A: Administrative Shell Programming

Many of the items in Table A-2 require quoting to protect them from the shell (as
we’ll see).

Here are some simple examples:

if ["$9" = "S"] If the 9th argument is S
if [-s /etc/ptmp] If /etc/ptmp is not empty
if [$# -lt 4] If the number of arguments is < 4
if [! -f /etc/.fsckask] If the plain file /etc/.fcskask does not exist
if [$? -eq 0] If the last command succeeded
if [$? -ne 0] If the last command failed

Here are some examples placed in context:

get pid of lpsched
pid=`/bin/ps -e | grep ' lpsched$' | sed -e 's/^ *//' -e 's/ .*//'`
if [$(pid) != ""] If we found an lpsched process ...
then
 /bin/kill $(pid) ... kill it.
fi

if [$lx = autobootx] If script argument was “autoboot”,
run fsck

fi

if [-d /etc/rc0.d] If there is a directory named /etc/rc0.d
then
 run the K files

-z string String’s length is 0.

-n string String’s length is greater than 0.

string1 = string2 The two strings are identical.

string1 != string2 The two strings are different.

string String is not null.

string1 > string2 First string is lexically before second string.

string1 < string2 First string is lexically after second string.

int1-eq int2 The two integers are equal.

int1 -ne int2 The two integers are not equal.

int1 -gt int2 int1 is greater than int2.

int1 -ge int2 int1 is greater than or equal to int2.

int1 -lt int2 int1 is less than int2.

int1 -le int2 int1 is less than or equal to int2.

! condition NOT logical operator: negates the condition.

cond1 -a cond2 AND logical operator: returns true only if both conditions are true.

cond1 -o cond2 OR logical operator: returns true if either condition is true.

() Used for grouping conditions.

Table A-2. Constructing conditions (continued)

Construct Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Other Control Structures | 1085

fi

if [-x /sbin/inetd]; then If the file /sbin/inetd is executable...
 /sbin/inetd . . .start the daemon
 echo inetd started
fi

if ["$(BOOT)" = "yes" -a -d /etc/rc0.d]
then If this is a boot and there is an rc0.d directory

Run the files in /etc/rc0.d
fi

Note that constructs such as the following are used to prevent errors from occurring
when a script’s expected argument turns out to be null:

if [$lx = autobootx]

There are, of course, other ways of handling this contingency, but this approach is
quite common in system scripts, especially older ones.

Here’s a tricky one; try to figure out what this does:

interface_names="`echo /etc/dhcp.*[0-9] 2>/dev/null`"
if ["$interface_names" != '/etc/dhcp.*[0-9]']; then

Configure the network interfaces with DHCP
fi

A common mistake to make is to think the interface_name must always be the same
as the filename string. The key here is to notice that the second operand to the not-
equal operator in the if condition is a literal value: specifically, a string of characters
and not a wildcarded filename. If there are any files of the form dhcp.xxxn in /etc
(where xxx is a string and n is a number), the echo command returns the list of file-
names. Otherwise, the literal string “/etc/dhcp.*[0-9]” is returned and becomes the
value of interface_names.

The if command figures out which of these has happened. If interface_names has
any value other than the literal wildcard string, the variable can be assumed to con-
tain a list of filenames to be processed. On the other hand, if the variable holds only
the wildcard string, then no files were found, and nothing needs to be done, so the
commands in the body of the if block are skipped.

Other Control Structures
This section describes other important Bourne shell and bash control structures.

The while and until Commands
The while statement is one way to create a loop. It has two forms:

while condition
do

commands
done

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1086 | Appendix A: Administrative Shell Programming

until condition
do

commands
done

In the while form, the commands are executed until the condition becomes false. In
the until form, they are executed until the condition becomes true. Here is an exam-
ple of while:

cat /etc/fstab |
while read DEVICE MOUNT_DIR READONLY FS DUMMY1 DUMMY2
do

fsck (if required) and mount the device
done

This loop takes each line of /etc/fstab in turn (sent to it via cat) and performs an
appropriate action for the corresponding device. The while loop will end when read
(described later) returns a nonzero status, indicating an end-of-file.

Here is another very similar example, taken from a recent Linux system:

while read des fs type rest; do
 case "$fs" in
 /) break;;
 *) ;;
 esac
done < /etc/fstab
if [-e "$des" -a "$type" != "resiserfs"]
then

run fsck
fi

Note that the input to the while loop is provided via I/O redirection following the
done statement.

The case Command
The case command is a way to perform a branching operation. Here is its syntax:

case str in
pattern_1)
commands

 ;;

pattern_2)
commands

 ;;
 ...

pattern_n)
commands

 ;;

 *)
commands

 ;;
esac

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Other Control Structures | 1087

The value in str is compared against each of the patterns. The corresponding com-
mands are executed for the first match that is found. The double semicolons are used
to end each section. Wildcards are allowed in the patterns, and a pattern consisting
of a single asterisk can serve as a default if no other pattern is matched; it must be
placed at the end of the case command.

Here is an example of the case command:

/etc/fsck -p >/dev/console
case $? in Select action based on fsck return value.
 0)
 date >/dev/console
 ;;
 2)
 exit 1
 ;;
 4)
 /sbin/reboot -n
 ;;
 *)
 echo "Unknown error in reboot" > /dev/console
 exit 1
 ;;
esac

In this example, different commands are run depending on the return value from
fsck.

Another typical use of case is found in the files in /etc/init.d on systems with
System V–style boot scripts. Here is an abbreviated example:

#! /bin/sh
Start or stop the lp scheduler

case "$1" in
 'start')
 /usr/lib/lpsched # and other commands
 ;;

 'stop')
 /usr/lib/lpshut > /dev/null 2>&1
 ;;

 'restart')
 $0 stop && $0 start
 ;;

 *)
 echo "usage: $0 {start|stop}"
 ;;
esac

This script takes different actions depending on the keyword specified as its argu-
ment. The argument it gets at boot time depends on whether it is invoked as an S-file
or a K-file (as we noted in Chapter 4).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1088 | Appendix A: Administrative Shell Programming

The for Command
The for command is another way to create loops. Here is its syntax:

for var [in list]
do

commands
done

If a list is included, the variable var is set to each value in turn, and the command in
the loop are executed. If no list of values is specified, $@ (all script arguments) is
used.

Here is an example:

for d in /tmp /usr/tmp /chem/tmp ; do
 find $d ! -name tmp -type d -exec rmdir {} \;
done

This loop removes empty subdirectories from under /tmp, /usr/tmp, and /chem/tmp in
turn, while not removing those directories themselves (via ! -name tmp—of course, it
won’t remove /tmp/tmp either).

The bash arithmetic for loop

bash also offers an arithmetic-style for loop, with the following syntax:

for ((start ; test ; incr)) ; do
commands

done

start is an expression evaluated when the loop starts, test is an expression evaluated
at the end of each loop iteration, and incr is an expression evaluated whenever the
test condition is false. The loop terminates when the test condition is true.

Here is a simple example:

for ((i=1 ; i<10 ; i++)); do
 echo $i
done

This loop displays the numbers 0 through 9.

The Null Command
Occasionally, you’ll run across a command consisting of just a colon:

:

This null command is typically used when all the work is done in the control state-
ment, and the body of the loop is empty.

Sometimes this command is used as a comment character (since its arguments will
be ignored), as in this ancient example:

: attempt to ship remaining files
uucico -r

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Input: The read Command | 1089

However, this practice is not recommended, because a line such as the following:

: Hourly cleanup script @(#)cleanup.hourly 2/4/90

(part of which was produced by a source-code control system) produces an error:

./cleanup.hourly: syntax error at line 2: `(' unexpected

This is because syntax checking is still done on the arguments to the null command.

Getting Input: The read Command
The read command reads one line from standard input and assigns the next word in
the line to each successive variable specified as its arguments; extra words are
assigned to its final argument. For example, these commands:

cat file.dat | \
while read x y z
do
 echo $x $y $z
done

produce output like this:

a b c
d e f
...

read can be used either for reading sequentially through a file (as in the earlier exam-
ple with while) or for getting runtime input from the user. Here is an example using
read for command input:

echo "fsck all disks? [y] \c"
read ans < /dev/console

The bash select command

bash provides the select command for prompting the user to select an item from a
menu, as in this example:

$ cat choose.bash
#!/bin/bash

PS3="Choose an operating system: "
select os in "aix" "hp-ux" "solaris" "tru64" "linux" "freebsd"
do Loop until a valid choice is entered.
 if [$os]; then
 echo You chose $os which was choice number $REPLY
 break
 else
 echo -e "\nInvalid choice -- try again.\n"
 fi
done
$ choose.bash
1) aix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1090 | Appendix A: Administrative Shell Programming

2) hp-ux
3) solaris
4) tru64
5) linux
6) freebsd
Choose an operating system: 2
You chose hp-ux which was choice number 2

This code fragment also illustrates the bash echo command’s -e option, which allows
you to include backslash escape sequences such as \n.

Other Useful Commands
This section briefly describes other commands that you may encounter in system
scripts.

set
The set command sets the values of $1 through $n to the words given as its argu-
ments. It is often used with a backquoted command to assign the argument identifi-
ers to the command’s output. Here is an example of its use:

$ who -r
. run-level 2 Aug 21 16:58 2 0 S
$ set `who -r`
$ echo $6
16:58

The unset command may be used to remove a defined variable.

eval
The eval command executes its argument as a shell command. It is used to execute
commands generated by multiple levels of indirection. Here is a silly example:

$ a=c; b=m; c=d; cmd=date
$ echo ab$c
cmd
$ eval $`echo ab$c`
Sun Jun 3 19:37:30 EDT 2001

Here is a real example that we looked at in Chapter 12:

$ eval `tset -sQ -m ":?vt100"`

This eval command runs the commands generated by tset -s. As we say, they are
used to set the TERM and TERMCAP environment variables.

The command eval resize provides a similar example for xterm windows.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Other Useful Commands | 1091

printf
The printf command is used to produce formatted output strings, and you will occa-
sionally see it used in system scripts. It takes two arguments: a format-specification
string and a list of items to be printed using that format. Here is an example com-
mand used to create a record in a printer accounting file:

pages=21; host=hamlet; user=chavez
printf '%7.2f\t%s:%s\n' "$pages" "$host" "$user"
 21.00 hamlet:chavez

This command creates a line in which the number of pages is printed as a floating
point number containing two decimal places, followed by a tab and then the host-
name and username joined by a colon.

Format specification strings are comprised of field definitions and literal characters,
and each successive item in the print list is formatted according to the corresponding
field in the format string. In our example, %7.2f and %s (twice) were the field defini-
tions, and the tab (\t), colon, and newline character (\n) were literal characters.

Field definitions always begin with a percent sign. Their simplest syntax is:

%n[.m]z

n indicates the minimum width of the field, m indicates the number of decimal
places (if applicable), and z is a code letter indicating the type of field data. The most
important codes are d for signed integer, f for floating point, c for the first character
of the argument, s for a character string and x or X for a hexadecimal number
(depending on whether you want the alphabetic digits to appear in lowercase or
uppercase). A percent sign is specified with %%.

At output time, field widths are automatically expanded when more space is needed,
and output that is smaller than the specified width is padded on the left.

The printf command also allows some optional flags to be placed between the per-
cent sign and the field width:

• The minus-sign flag tells the command to pad the output on the right rather
than the left (in other words, make the field left-aligned rather than right-
aligned).

• The plus-sign flag indicates that positive numbers should be preceded by an
explicit plus sign. The space flag similarly indicates that positive numbers should
be preceded by a space. These flags are useful for creating columns of aligned
numbers regardless of sign (the default is not to place any character in front of a
positive number). Note that this is an issue only when items are left-aligned.

• The 0 flag indicates that zeros should be used for padding instead of blanks.

Here are some examples illustrating some of these flags:

n=27; n1=-23
printf '*%7.1f* *%-7.1f* \n' $n $n

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1092 | Appendix A: Administrative Shell Programming

* 27.0* *27.0 *
printf '%-5.1f\n%-5.1f\n%-+5.1f\n%- 5.1f\n' $n $n1 $n $n
27.0
-23.0
+27.0
 27.0

expr
The expr command is used to evaluate various expressions. It has a lot of uses, but
one common one in shell scripts is integer arithmetic. Here is a very simple example
of its use in this mode:

$ cat count_to_5
#!/bin/sh
i=1
while [$i -le 5] ; do
 echo $i
 i=`expr $i + 1` # add one to i
done
$ count_to_5
1
2
3
4
5

See the manual page for full details on expr.

bash integer arithmetic

Integer arithmetic is included within the bash shell (so we can hope that construc-
tions like the preceding will eventually go away). Here are some simple examples:

$ echo $((5+8/2-1))
8
$ a='1+2'; echo $a
1+2
$ let a='1+2'; echo $a
3
$ declare -i a; a='1+2'; echo $a
3

The first command illustrates the $(()) operator, which forces the enclosed expres-
sion to be interpreted as integer arithmetic. Note that the usual operator precedence
rules apply.

The second command illustrates that simply constructing an integer expression is
not sufficient for it to be evaluated. You must use the $(()) operator, precede the
variable with let, or declare the variable to be of type integer (indicated by -i). The
declare command may also be used to specify other variable types (see the documen-
tation for details).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Other Useful Commands | 1093

Table A-3 lists the supported arithmetic operators.

A few notes on these operators:

• In general, the operators have the same meanings and precedence as they do in
C. Parentheses should be used for explicit grouping.

• The increment and decrement operators (++ and --) may either precede or fol-
low the variable to which they are applied: var++ or ++var. Their placement
determines whether the variable is modified before or after it is used.

• The conditional assignment operator tests the condition (c), returning the value t
if it is true or f if it is false.

• Finally, the unary and bitwise operators can precede the equal sign in an assign-
ment statement. For example, this statement adds three to the current value of
counter:

counter += 3

• Note that only integer values are returned by integer expressions. Thus, 5 / 10 = 0.

bash arrays

The bash shell also supports array variables. They are not very prevalent in system
scripts at present, so we will present just a brief overview of their use via some
examples:

$ a=(aaa bbb [5]=eee ddd) Define an array and some values.
$ echo ${a[4]} ${a[5]}
ddd eee
$ echo ${a[3]:-undefined}
undefined Arrays can have “holes”: undefined elements.
$ a=(x y z); echo ${a[4]:-undefined}
undefined Redefining an array replaces all elements.

Table A-3. bash integer operators

Math
operator Meaning

Bitwise
operator Meaning

Logical
operator Meaning

+ add >> shift right && logical AND

- subtract << shift left || logical OR

* multiply & bitwise AND == equals

/ divide | bitwise OR != not equals

% modulus ~ bitwise NOT <, <= less than (or =)

** exponentiation ^ bitwise XOR >, >= greater than (or =)

++ increment ! logical NOT

-- decrement

c?t:f conditional assign-
ment

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1094 | Appendix A: Administrative Shell Programming

$ for i in ${a[@]}; do Loop over array elements.
> echo $i; done
x
y
z
$ echo ${#a[@]} Number of non-null elements in array a.
3

See the bash documentation for more information about arrays.

Shell Functions
Bourne shell scripts can define functions. Functions have all the same syntactic fea-
tures as the scripts themselves, including their own arguments. Within a function,
the argument and other shorthand forms refer to its own arguments.

The basic function syntax is:

name ()
{

commands
}

Here is a sample function from an AIX system, followed by an example of its use:

sserv()
{
sserv: function to start a server
args: $1=daemon pathname; $2!="" means use startsrc
#
if [$# = 0] ; then
 echo "sserv: server name required."; return 1
fi
if [! -x $1] ; then return 1 ; fi
if [-n "$2"] ; then
 startsrc -s `basename $1`
else
$1
fi
}

...

sserv /sbin/syslogd $USE_SRC

The sserv function starts a server process on an AIX system, either conventionally
from the command line or via the startsrc command (which uses the system
resource controller subsystem, a general server management facility). The pathname
of the server to start is specified as sserv’s first argument, and whether to use
startsrc is specified by the second argument (any non-null value uses it).

The function begins by making sure it was passed one argument; the function exits
this is not the case. Note that return is used instead of exit in functions. Then the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Shell Functions | 1095

function makes sure the pathname it was passed is executable, and then finally it
starts the daemon.

The example invocation of sserv uses an environment variable USE_SRC as its sec-
ond argument. If USE_SRC is defined, then startsrc will be used; otherwise, only
one argument will be passed to sserv.

bash Local Variables
bash functions may define local variables—variables whose scope is limited to the
function and have no meaning in or effect on the script as a whole—via its local
command, which takes the desired variable names as its arguments. Note also that
any variables declared within a function are automatically local variables.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1097

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
/ (root directory), 33

A
A records, DNS, 428, 431
a2ps command, 816
AAAA records, DNS, 429, 433
a(ll) access, 40
ac command, 1057
accelerators in SysMan (Tru64), 26
accept command, 833
access agents, mail, 522, 537–542
access control

cron, 100
CUPS, 876
DNS, 441
files, 353
HylaFAX, 806
inetd, 378
LPRng, 872
NetSaint, 511
Net-SNMP, 495–496
OpenLDAP, 323–325
PAM and, 308
Postfix, 589–592
printers, 824, 843
sendmail, 562
serial lines, 796
shutdown command (HP-UX and

Linux), 171–172
system console, 796
TCP/IP services, 378
xinetd, 381

access control entry (ACE), 354, 357, 359
access control lists (see ACLs)
access, file, 36–37, 45

classes of, 37
types of, 36

access_db sendmail feature, 562
account level equivalence, 376
accounting

BSD vs. System V systems, 1049–1050
BSD-style, 1052–1058
crashes and, 1054
data file locations, 1050–1051
enabling, 1050
holidays, 1061
LPRng, 871, 1068
merging records from multiple

hosts, 1065
printing, 871, 1051, 1066–1068
process, 1049–1056, 1058–1063, 1065
project-based (Solaris), 1063–1065
reports, 1062
Solaris extended, 1063–1065
system monitoring and, 409
System V–style, 1058–1063
utilities directories, 1050

accounts (see user accounts)
acctadm command (Solaris), 1064
acctcom command, 409, 411
accton command, 1053
ACK, 192
acledit command (AIX), 356
aclget command (AIX), 356
aclput command (AIX), 356

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1098 | Index

ACLs, 353–362
AIX, 354–357
DNS, 441
features, 353
FreeBSD, 359
HP-UX, 357
implementations of, 353
Linux, 359
POSIX, 359
Solaris, 359
Tru64, 359

active SCSI terminators, 642
adding user accounts, 257
address match lists, DNS, 441
address resolution protocol, 188
addressing, mail, 525
adduser command (FreeBSD), 260
adherence to routine, 401
adm user, 73
administrative groups, 235
administrative virtues, 78, 401, 886, 1001

complete list, 1070
AdminSuite (Solaris), 22
admintool (Solaris), 22

package management, 117
printer configuration, 846
serial lines, 794

Advanced Maryland Automated Network
Disk Archive (see Amanda)

aging, password, 287–288
AIT tape, 718
AIX, 663

accounting, 1052, 1058
ACLs, 354–357
adding disks, 664
alog facility, 139
apply vs. commit, 119
boot log file, 139
boot scripts, 164
booting, 134
concurrent group set, 233, 355
DHCP, 209, 459
disabling services, 382
disk I/O, 1006–1007
Dynamic DNS updates, 460
error log file, 108
/etc/security directory, 242
filesystem types, 620
floppy disks, 900
kernel location, 129
logical volume manager, 663
mirrored volumes, 669

mkuser.sys script, 263
network interface name, 203
package management, 116, 119
password controls, 289–290
password history lists, 296
password triviality checks, 293
pre-expired passwords, 241
real group, 233
replacing failed disks, 667
resource limits, 250, 960
role-based access control, 368–370
routing, 455, 457
scheduler, 970, 972
secondary authentication programs, 344
security facilities, 339
sendmail and, 546
setpri system call, 965
SNMP, 498
software archives, 126
static routes, 217
striped volumes, 668
swap partitions, 630
syslog enhancements, 104
system parameters, tuning, 1047–1048
tape devices, 725
TCP/IP parameters, 1019
tuning tools, 950
user account attributes, 263
user account controls, 249
/usr/samples/kernel directory, 971
virtual memory manager, 987–988, 990

AIX commands
acledit, 356
aclget, 356
aclput, 356
backup, 731
chdev, 726, 1047
chgroup, 264
chgsys, 852
chps, 1000
chque, 856
chquedev, 856
chuser, 8, 254, 262, 289, 345
crfs, 666–667
dadmin, 461
dhcpsconf, 460
enq, 851
extendvg, 665
floppy disk, 690
group-related, 264
grpck, 392
installp, 116

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1099

ipreport, 484
iptrace, 484
logical volume manager, 665, 668
lsattr, 725, 1047
lsdev, 664, 856
lsfs, 668
lslpp, 116
lslv, 668
lsps, 896, 996
lspv, 668, 896
lssrc, 475
lsuser, 8, 290
lsvg, 663, 668
lsvirprt, 855
mirrorvg, 669
mkgroup, 264
mklv, 665, 669
mkps, 1000
mksysb, 760
mktcpip, 205
mkuser, 262–264
mkvg, 664
no, 1019
piomkpq, 855
pwdadm, 282
pwdck, 392
qadm, 851
qcan, 850
qchk, 849
qhld, 851
qmov, 850
RBAC-related, 370
restvg, 762
rmdev, 856
rmgroup, 264
rmps, 1001
rmque, 856
rmquedev, 856
rmuser, 264
savevg, 761
schedtune, 971, 987
setgroups, 233–234
smit, 17
smitty, 19
snap, 175
snmpinfo, 493
startsrc, 475
stopsrc, 475
user account related, 262
varyonvg, 664
vmtune, 989–990, 1006
wsm, 19

AIX configuration files
/etc/dhcpcd.ini, 209
/etc/dhcprs.cnf, 461
/etc/dhcpsd.cnf, 459
/etc/environment, 247
/etc/filesystems, 629, 698
/etc/netsvc.conf, 216
/etc/qconfig, 849, 852, 1066
/etc/security/environ, 245
/etc/security/group, 249
/etc/security/limits, 249–250, 960
/etc/security/login.cfg, 224, 249–250, 344
/etc/security/passwd, 226
/etc/security/roles, 368
/etc/security/user, 249, 289, 345
/etc/security/user.roles, 369
/etc/snmpd.conf, 498
/etc/swapspaces, 630, 998
/usr/lib/security/mkuser.default, 262

AIX spooling system, 848–857
adding printers, 857
backend program, 849
daemon, 848, 852
default queue, 849
devices, 851, 855
job priorities, 851
managing jobs, 849, 851
managing queues, 851
moving jobs between queues, 850
queues vs. devices, 851
remote printing, 857
starting and stopping, 852
virtual printers, 853

algorithms, routing, 453
aliases, 244
aliases, mail, 526, 545
Allen, Jeff, 517
Allman, Eric, 542, 561
allmasquerade sendmail feature, 551
Almesberger, Werner, 954
alog facility (AIX), 139
Alpha Linux, 136

booting, 1043
always_add_domain sendmail feature, 557
Amanda, 745–757

amanda.conf file, 754
backup strategy, 746, 748
client configuration, 751
components, 750
configuration files, 751, 754
daemons, 751
equations, 748, 750

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1100 | Index

Amanda (continued)
features, 745
holding disks, 754
incremental levels, 753
logging, 756
media and, 753
parameters, 746, 748, 750
reports, 756
restores, 757
server configuration, 752–754
tape drives and, 753
utilities, 751

amanda.conf configuration file, 754
anacron package (Red Hat Linux), 90
Angel Network Monitor package, 501–502
Anomy Sanitizer package, 609, 613
APR protocol, 188
archives, software, 126
area border routers, 454
armadillo, 8
arp command, 190
Asimov, Issac, 350
at command, 977
Atkins, E. Todd, 114
Atkinson, Randall, 341
Atomic Time PC Desktop Clock, 474
attention to detail, 401
attitudes, 3, 121, 292, 333, 521, 801
attributes, directory service, 315
auditing, 412–413
authentication, user

biometric devices, 340
dialup, 312
IMAP, 539
Kerberos, 307
one-time passwords, 342
OpenLDAP and, 319–322
PAM, 302
remote access and, 375
Samba, 705
secondary, 344
smart cards, 340
tokens, 340

authoritative name servers, DNS, 430
authoritative responses, DNS, 418
authoritative time, 469
authorizations

AIX, 368
Solaris, 370

auths command (Solaris), 373
automating tasks, 96, 885–942

benefits, 885

C, 919
cron, 90–100
Expect package, 911
interactive tools, 911
Perl package, 899
security monitoring, 399
system configuration, 921–931
user account creation, 275

automount daemon, 702
automounter, NFS, 701–702
autonomous systems, 453
awk command, 76

B
back doors, 331, 338, 353
background processes, 53
Backström, Karl, 463
backup command (AIX), 731

ACLs and, 357
backup group, 369
backups, 726–734

Amanda package, 745–757
commercial packages, 757
cpio and, 729
full, 711
incremental, 712, 729
by inode, 731
levels, 712, 733
log files, 113
media handling, 714–715
media types, 717–723
monitoring data and, 413
off-site, 715
open files and, 709
permanent, 716
planning, 707, 709–713
remote, 744
restoring from, 736, 741
schedule, 710
securing media, 337
security and, 339
storing, 714–715
system filesystems, 759–760
table of contents for, 742, 744
tar and, 727
types, 711–712
unattended, 713
verifying, 713

bacteria, 338
bad passwords, 277
balance, 3, 60, 292, 638
bare metal recovery, 759

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1101

base permissions (AIX), 354
bash, 244

initialization files, 241
invocation options, 244

batch command, 977
batch processes, 55
batch systems, 977–978

AIX, 857
Bellovin, Steven M., 374, 383
belt-and-suspenders firewall

configuration, 385
Berkeley Internet Name Domain (see BIND)
biff command, 614
big endian, 741
BIND, 417, 420, 422

Version 8, 422
Version 9, 422, 429, 438–439, 445, 446
versions, 420–421, 430

binlogd daemon (Tru64), 110
biod daemon, 696
biometric devices, 340
BIOS, 128
BITNET, 334
blacklist_recipients sendmail feature, 562
blacklists, electronic mail, 562, 589–590
block special files, 47, 63
Boleyn, Erich, 1040
boot process, 127

customizing, 165
disabling parts of, 166
DNS and, 423
failures, 175
from CD-ROM, 134–137
manual, 133
messages, 138
multiuser mode, 130
network interface configuration, 204
networking and, 148
phases of, 128, 130, 137
scripts, 131
single-user mode, 131
starting daemons, 146

boot program, 128
boot scripts, 131, 140

adding to, 165
AIX, 164
BSD-style, 151
directories for, 155
disabling, 166
Linux, 164
modifying, 168

rc*, 155, 159
S and K files, 160
Solaris, 163
starting daemons in, 146
System V–style, 152, 159
Tru64, 164

boot0cfg command (FreeBSD), 1029
/boot directory (Linux), 70
/boot/grub/grub.conf configuration file

(Linux), 1041
/boot/loader.conf configuration file

(FreeBSD), 1029
boot.message configuration file

(Linux), 1040
Borg designation, 315
bounds checking, 331
Bourne shell, 241

example scripts, 886–893, 897–898
Bourne-Again shell (see bash)
Braun, Rob, 380
breaches, security, 405
breakout box, 796
bridges, 201
broadcast addresses, 195
btcreate command (Tru64), 765
buffer cache, 987
buffer overflows, 331
bugs, 331, 373
bundles (HP-UX), 119
Burgess, Mark, 921
bzip2 package, 123

C
C programs, 919
C shell, 241

example scripts, 893–897
C2 security level, 227
cables, maximum length

network, 184
SCSI, 640

Cables to Go, 780
cache, DNS, 418
caching-only name servers, DNS, 419
caller ID, faxes and, 803
cancel command, 830, 833
canonical name records, DNS, 429
capabilities (Linux and FreeBSD), 367
capacity planning, backups, 710
cap_mkdb command (FreeBSD), 251
captive user accounts, 239
Carnegie Mellon University, 488, 539

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1102 | Index

carrier sense, 185
Carrier Sense Multiple Access/Collision

Detection (CSMA/CD), 185
category 5 cables, 182
catman command, 76
cbw package, 363
cd command, 37

symbolic links and, 49
CDE (Common Desktop Environment), 245
CD-ROM, 692, 694

as backup media, 719
mounting, 692

cdslinvchk command (Tru64), 51
CERT, 374
cesium-133, 470
cfagent command, 923
cfdisk command (Linux), 648
Cfengine, 921–931

actions, 924–926
automating, 931
capabilities, 922
classes, 928–930
commands, 922
configuration files, 923, 930
daemons, 930–931

cfexecd daemon, 931
cfrun command, 931
chacl command (HP-UX), 358
chage command (Linux), 282, 289–290
character special files, 47, 63
chargefee command, 1059
chdev command (AIX), 726, 788, 1047
checksums, 397

Tripwire and, 399
Cheswick, William R., 383
chgroup command (AIX), 264
chgrp command, 35
chgsys command (AIX), 852
child process, 57
chmod command, 36, 39

ACLs and, 357, 359
chown command, 35
chpass command (FreeBSD), 254, 262, 282,

290
chps command (AIX), 1000
chque command (AIX), 856
chquedev command (AIX), 856
chroot command, 88

Postfix, 593
sendmail and, 567

chsh command, 238

chuser command (AIX), 8, 254, 262, 289,
345

roles, assigning with, 369
CIDR (Classless Inter-Domain Routing), 197
CIFS protocol, 703
cksum command, 397
classes, user account (FreeBSD), 250, 261
Classless Inter-Domain Routing (see CIDR)
clock drift, 470
clocks, accurate, 469
CNAME hack, DNS, 434
CNAME records, DNS, 429, 431
COAST project, 399
coaxial cable, 182
coffee, 1071
cold boot, 127
collision detection, 185
collision rates, network, 477
commands

a2ps, 816
ac, 1057
accept, 833
acctadm (Solaris), 1064
acctcom, 409, 411
accton, 1053
acledit (AIX), 356
aclget (AIX), 356
aclput (AIX), 356
adduser (FreeBSD), 260
Amanda, 751
arp, 190
at, 977
auths (Solaris), 373
awk, 76
backup (AIX), 731
batch, 977
biff, 614
boot scripts, 140
boot0cfg (FreeBSD), 1029
btcreate (Tru64), 765
cancel, 830
cap_mkdb (FreeBSD), 251
catman, 76
cd, 37, 49
cdslinvchk (Tru64), 51
cfagent, 923
cfdisk (Linux), 648
Cfengine, 922
cfrun, 931
chacl (HP-UX), 358
chage (Linux), 282, 289–290
chargefee, 1059

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1103

chdev (AIX), 726, 1047
chgroup (AIX), 264
chgrp, 35
chgsys (AIX), 852
chmod, 36, 39
chown, 35
chpass (FreeBSD), 254, 262, 282, 290
chps (AIX), 1000
chque (AIX), 856
chquedev (AIX), 856
chroot, 88
chsh, 238
chuser (AIX), 8, 254, 262, 289, 345
cksum, 397
configure, 121
confining to a directory, 88
cp, 86
cpio, 86, 729
crfs (AIX), 666–667
crontab, 94
crypt, 362
dadmin (AIX), 461
dd, 735
depmod (Linux), 1045
df, 617, 1008
dhclient, 210
dhcpconf (Tru64), 212
dhcpsconf (AIX), 460
dia (Tru64), 111
diff, 86
dig, 452
dircmp, 86
disable, 834
disklabel (FreeBSD), 645, 685
dispadmin (Solaris), 973, 975
dmesg, 107, 139
dnskeygen, 443
dnssec-keygen, 443
dsfmgr (Tru64), 896
du, 617, 1008
dump, 731
dxaccounts (Tru64), 273
dxkerneltuner (Tru64), 975, 1031
e2fsadmin (Linux), 682
echo, 89
edauth (Tru64), 290
edquota, 1014–1015
eeprom (Solaris), 133
eject, 694
enable, 834
enq (AIX), 851
enscript, 816

exportfs, 700
extendvg (AIX), 665
fax2ps, 803
faxaddmodem, 799
faxadduser, 806
faxadeluser, 806
faxalter, 803
faxcron, 800
faxinfo, 803
faxqclean, 800
faxrm, 802
faxsetup, 799
faxstat, 802
fbackup (HP-UX), 734
fdformat (Solaris), 690
fdisk (FreeBSD), 645
fdisk (Linux), 896
file, 53
files and, 59
find, 79
floppy disks, 690
format (Solaris), 653–654
frecover (HP-UX), 741, 744
free (Linux), 982
from, 615
fsck, 141, 398, 631–632, 634
fstat (FreeBSD), 626
fuser, 625
fverify (Tru64), 116
getacl (Tru64), 361
getdev (Solaris), 896
getent, 322
getfacl (Linux), 361
getfacl (Solaris), 361
gfontview, 883
gnoprm (Linux), 117
gpasswd (Linux), 260
gpg, 364–365
gq, 328
grep, 76
group, 231
groupadd, 259
groupmod, 259
growfs (FreeBSD), 647
grpck (AIX), 392
grub-install, 1042
gv, 817
hostname, 190
hoststat, 569
HylaFAX, 799–803, 806
id, 232
ifconfig, 184, 203–204

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1104 | Index

commands (continued)
insmod (Linux), 1045
installp (AIX), 116
ioscan (HP-UX), 896
iostat, 1001
ipreport (AIX), 484
iptrace (AIX), 484
kill, 962
killall, 962
kldstat (FreeBSD), 1029
kmtune (HP-UX), 991
kmupdate (HP-UX), 1031
kstat (Solaris), 993
ksysguard, 982
ksysv (Linux), 167
kuser, 270
lanscan (HP-UX), 184
last, 409–410
lastcomm, 409–411
LDAP, 318
ldapadd, 318
ldapsearch, 318
limit, 959
ln, 48
logger, 107
lp, 830
lpadmin, 831, 835
lpalt (HP-UX), 837
lpana (HP-UX), 845
lpc, 819–820
lpfence (HP-UX), 837
lpget (Solaris), 842
lpmove, 833
lpq, 818
lpr, 818
lprm, 818
lprsetup (Tru64), 828
lpset (Solaris), 842
lpstat, 830–831
lptcontrol (FreeBSD), 827
lptest, 817
lpusers (Solaris), 838
ls, 34, 49, 52
lsacl (HP-UX), 357
lsattr (AIX), 725, 1047
lsdev (AIX), 664, 856
lsfs (AIX), 668
lslpp (AIX), 116
lslv (AIX), 668
lsmod (Linux), 1044
lsof (FreeBSD), 625
lsps (AIX), 896, 996

lspv (AIX), 668, 896
lssrc (AIX), 475
lsusb (Linux), 810
lsuser (AIX), 8, 290
lsvg (AIX), 663, 668
lsvirprt (AIX), 855
lvcreate (HP-UX), 670
lvcreate (Linux), 682
lvdisplay (HP-UX), 672
lvlnboot (HP-UX), 671
m4, 550
mailstats, 569
make xconfig (Linux), 1035
MAKEDEV, 644
makemap, 556
make_recovery (HP-UX), 763
makewhat (Solaris), 76
makewhatis, 76
man, 74
md5sum (GNU), 398
mesg, 13
metadb (Solaris), 677
metainit (Solaris), 677
metaparam (Solaris), 678
metareplace (Solaris), 679
metattach (Solaris), 678
mirrorvg (AIX), 669
mkdir, 84
mke2fs (Linux), 682
mkfile (Solaris), 999
mkfs (Linux), 649–650
mkgroup (AIX), 264
mk_kernel (HP-UX), 1031
mklv (AIX), 665, 669
mknod, 643–644
mkps (AIX), 1000
mkraid (Linux), 683
mkreiserfs (Linux), 652
mkswap (Linux), 999
mksysb (AIX), 760
mktcpip (AIX), 205
mkuser (AIX), 262–264
mkvg (AIX), 664
modinfo (Linux), 1044
modinfo (Solaris), 1046
modprobe (Linux), 1045
mount, 624, 630, 698
mpage, 817
mt, 735
mtools, 690
ndc, 450
ndd, 1019

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1105

net use (Windows), 703
netstat, 217, 1017
nettl (HP-UX), 484
newaliases, 528
newfs (FreeBSD), 646
newfs (HP-UX), 671
newfs (Solaris), 655–656
newgrp, 231
newtask (Solaris), 1064
nfsstat, 1020
ngrep, 327
nmap, 382
no (AIX), 1019
npasswd, 294
nslookup, 451
ntop, 479
ntpd, 473
ntpdate, 473
ntpdc, 472
ntpq, 472
OpenLDAP, 318, 322
opiekey, 342
opiepasswd, 341
pac, 1066–1067
pagesize, 982
passwd, 240, 254, 282, 289–290
pax, 730
periodic (FreeBSD), 97
pgp, 364–365
ping, 220, 479
piomkpq (AIX), 855
pkg_add (FreeBSD), 116
pkgadd (Solaris), 116
pkgchk (Solaris), 116
pkg_delete (FreeBSD), 117
pkg_info (FreeBSD), 116
pkginfo (Solaris), 116
pkgrm (Solaris), 117
plod, 31
pmadm (Solaris), 791–792
pmbpage, 817
Postfix, 582
pr, 817
printconfig (Tru64), 827
printing, 818
priocntl (Solaris), 969, 975
profiles (Solaris), 372
projadd (Solaris), 1063
projdel (Solaris), 1063
projects (Solaris), 1064
projmod (Solaris), 1063
prpwd (HP-UX and Tru64), 228

prtconf (Solaris), 1046
ps, 952, 965
pstat (FreeBSD), 896, 996
pstree, 954
ptree (Solaris), 954
pump (Linux), 211
pvcreate (HP-UX), 670
pvcreate (Linux), 681
pvdisplay (HP-UX), 672
pwck, 392
pwdadm (AIX), 282
pwdck (AIX), 392
qadm (AIX), 851
qcan (AIX), 850
qchk (AIX), 849
qhld (AIX), 851
qmov (AIX), 850
quot, 1009
quotacheck, 146, 1015
quotaoff, 1015
quotaon, 1015
raidstart (Linux), 683
raidstop (Linux), 683
reboot, 171
redhat-config (Red Hat Linux), 23
redhat-config-users (Red Hat Linux), 271
reject, 833
renice, 968
repeating, 83
repquota, 1016
resize2fs (Linux), 651
resize_reiserfs (Linux), 653
restore, 738
restvg (AIX), 762
rmdev (AIX), 856
rmgroup (AIX), 264
rmmod (Linux), 1045
rmps (AIX), 1001
rmque (AIX), 856
rmquedev (AIX), 856
rmuser (AIX), 264
rmuser (FreeBSD), 262
rndc, 450
roles (Solaris), 372
route, 216
rpm (Linux), 116
rrdtool, 513
sa, 1054–1056
sacadm (Solaris), 790
sam (HP-UX), 20
sar, 1002
savecore, 144

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1106 | Index

commands (continued)
savecrash (HP-UX), 144
savevg (AIX), 761
schedtune (AIX), 971, 987
scp, 377
search path and, 59
sendfax, 801
setacl (Tru64), 361
setfacl (Linux), 361
setfacl (Solaris), 361
setgroups (AIX), 233–234
setld (Tru64), 116
sftp, 377
showmount, 700
shutdown, 170–171
siggen, 400
smbclient, 705
smbstatus, 704
smit (AIX), 17
smitty (AIX), 19
SMTP and ESMTP
snap (AIX), 175
snmpconf, 495
snmpget, 491
snmpinfo (AIX), 493
snmp_request (Tru64), 493
snmpset, 492
snmptranslate, 490
snmptrap, 492
snmpwalk, 492
snoop (Solaris), 483
ssh, 376
startsrc (AIX), 475
stopsrc (AIX), 475
stty, 773, 775
sttydefs (Solaris), 793
su, 6, 253
swap (Solaris), 896, 996, 1001
swapinfo (HP-UX), 896, 996
swapon, 145, 896, 996
swinstall (HP-UX), 116
swlist (HP-UX), 116
swremove (HP-UX), 116
sync, 172
sysconfig (Tru64), 896, 975, 1019, 1030
sysctl (FreeBSD), 896, 990, 1019, 1029
sysdef (HP-UX), 1033
sysdef (Solaris), 1046
sysinstall (FreeBSD), 25
sysman (Tru64), 26
system information, 896
system_prep (HP-UX), 896, 1031

tail, 89
tape related, 735
tar, 85, 727
tcpdump, 481
telinit, 154
testparm, 704
top, 956
traceroute, 480
tripwire, 400
tset, 772
tty, 769
tune2fs (Linux), 650
tunefs (FreeBSD), 646
tuning, 950
ucomm.sh, 1065
ufsdump (Solaris), 732
ulimit, 959
umask, 42
umount, 624, 630
upacct, 1065
usbdevs (FreeBSD), 809
usbmodules (Linux), 810
useradd, 257
userdel, 259
usermod, 254, 258, 282, 289
vacation, 545, 614
varyonvg (AIX), 664
vgcreate (HP-UX), 670
vgcreate (Linux), 682
vgdisplay (HP-UX), 672
vgextend (HP-UX), 670
vgscan (Linux), 681
vigr (Linux), 230
vinum (FreeBSD), 685–687
vipw, 145, 225
visudo, 12
vmstat, 966, 982, 984–985
vmtune (AIX), 989–990, 1006
vnconfig (FreeBSD), 999
vncserver, 30
vncviewer, 30
volcheck (Solaris), 690
wall, 13
wcomm.sh, 1065
who, 154
write, 12
wsm (AIX), 19
xargs, 83
xbiff, 614
xferfaxstats, 802
xjoin (Tru64), 468
xlock, 7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1107

xprm (Linux), 117
xstm (HP-UX), 110
xwd, 817
yast2 (SuSE Linux), 24
yes, 919

Common Desktop Environment (CDE), 245
Common Internet File System (CIFS)

protocol, 703
common sense, 168, 225, 398, 421, 987
Common Unix Printing System (see CUPS)
community names, SNMP, 488
Computer Emergency Response Team

(CERT), 374
Computer Incident Advisory Capability

(CIAC), 374
comsat service, 614
concurrent group set (AIX), 233
confCON_EXPENSIVE macro, 571
confDEF_USER_ID macro, 565
confHOST_STATUS_DIRECTORY

macro, 569
configuration files

Amanda, 751
amanda.conf, 754
boot, 162
/boot/grub/grub.conf (Linux), 1041
/boot/loader.conf (FreeBSD), 1029
boot.message (Linux), 1040
crontab, 91
DHCP, 208, 458
DNS, 214–215, 423
/etc/adduser.conf (FreeBSD), 261
/etc/adduser.message (FreeBSD), 261
/etc/aliases, 526
/etc/binlog.conf (Tru64), 110
/etc/bootptab (HP-UX), 465
/etc/cron.allow and /etc/cron.deny, 100
/etc/cups/cupsd.conf, 876
/etc/default/dhcpagent (Solaris), 212
/etc/default/login (Solaris), 252
/etc/default/passwd (Solaris), 297
/etc/defaultrouter (Solaris), 219
/etc/default/su (Solaris), 8
/etc/default/sulogin (Solaris), 133
/etc/default/tar, 728
/etc/dfs/dfstab (Solaris), 700
/etc/dhclient (FreeBSD), 210
/etc/dhclient.conf (ISC DHCP), 210
/etc/dhcpcd.ini (AIX), 209
/etc/dhcpd.conf, 461
/etc/dhcprs.cnf (AIX), 461
/etc/dhcpsd.cnf (AIX), 459

/etc/dhcptab (HP-UX), 464
/etc/dialups, 343
/etc/d_passwd, 343
/etc/dumpdates, 732
/etc/environment (AIX), 247
/etc/exports, 698
/etc/filesystems (AIX), 629, 698
/etc/fstab, 626–628, 696–697, 706
/etc/gated.conf, 456
/etc/gateways, 455
/etc/gettydefs, 786
/etc/gettytab (FreeBSD), 784
/etc/group, 223, 229
/etc/gshadow (Linux), 223, 232
/etc/host.conf (FreeBSD), 215
/etc/hostname.* (Solaris), 206
/etc/hosts, 213
/etc/hosts.allow,deny, 378
/etc/hosts.equiv, 375
/etc/ifhp.conf, 871
/etc/inetd.conf, 378–379
/etc/inet/netmasks (Solaris), 204
/etc/inittab, 156
/etc/issue, 14, 307
/etc/join/client.pcy (Tru64), 212
/etc/join/dhcpcap (Tru64), 467
/etc/join/nets (Tru64), 467
/etc/join/server.pcy (Tru64), 467
/etc/login.access (FreeBSD), 250
/etc/login.conf (FreeBSD), 250, 294
/etc/login.defs (Linux), 252, 293, 296
/etc/logingroup (HP-UX), 233
/etc/logrotate (Linux), 114
/etc/lpd.conf, 867
/etc/lpd.perms, 867
/etc/mail/local-host-names, 550, 556
/etc/mail.rc, 533
/etc/manpath.config (Linux), 75
/etc/master.passwd (FreeBSD), 226–227,

289
/etc/modules.conf (Linux), 1045
/etc/motd, 14, 307
/etc/named.conf, 423
/etc/netsvc.conf (AIX), 216
/etc/newsyslog (FreeBSD), 113
/etc/nodename (Solaris), 206
/etc/nologin, 305
/etc/nsswitch, 215
/etc/ntp.conf, 471
/etc/ntp.keys, 472
/etc/openldap/ldap.conf, 322
/etc/openldap/slapd.conf, 316–317

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1108 | Index

configuration files (continued)
/etc/opieaccess, 342
/etc/pam.conf, 303
/etc/passwd, 223
/etc/printcap, 821–823, 1066
/etc/printers.conf (Solaris), 842
/etc/procmailrc, 601
/etc/project (Solaris), 1063
/etc/protocols, 189
/etc/qconfig (AIX), 849, 852, 1066
/etc/raidtab (Linux), 683
/etc/rc.conf (FreeBSD), 163
/etc/rc.config (SuSE Linux 7), 163
/etc/rc.config (Tru64), 133, 163
/etc/rc.config.d/netconf (HP-UX), 205
/etc/resolv.conf, 214
/etc/rmmount.conf (Solaris), 694
/etc/rmtab, 700
/etc/rndc.conf, 450
/etc/routes (Tru64), 219
/etc/saf/_sactab (Solaris), 789
/etc/sanitizer.cfg, 610
/etc/securetty, 309
/etc/security/auth_attr (Solaris), 370
/etc/security/environ (AIX), 245
/etc/security/exec_attr (Solaris), 372
/etc/security/group (AIX), 249
/etc/security/limits (AIX), 249–250, 960
/etc/security/login.cfg (AIX), 224,

249–250, 344
/etc/security/passwd (AIX), 226
/etc/security/prof_attr (Solaris), 370
/etc/security/roles (AIX), 368
/etc/security/user (AIX), 249, 289, 345
/etc/security/user.roles (AIX), 369
/etc/services, 189
/etc/shadow, 223, 225
/etc/shells, 224, 238, 529
/etc/shutdown.allow (HP-UX and

Linux), 171–172
/etc/SnmpAgent.d/snmpd.conf

(HP-UX), 497
/etc/snmp/conf (Solaris), 497
/etc/snmpd.conf (AIX), 498
/etc/snmpd.conf (Tru64), 499
/etc/ssh/sshd_config, 377
/etc/sudoers, 10
/etc/svc.conf (Tru64), 216
/etc/swapspaces (AIX), 630, 998
/etc/sysconfigtab (Tru64), 628
/etc/sysctl.conf (FreeBSD), 990
/etc/syslog.conf, 102

/etc/system (Solaris), 896, 1046
/etc/termcap, 769
/etc/tty (FreeBSD), 132
/etc/ttydefs (Solaris), 792
/etc/ttys, 796
/etc/ttys (FreeBSD), 782
/etc/usbd.conf (FreeBSD), 809
/etc/user_attr (Solaris), 372
/etc/vfstab (Solaris), 629, 696
/etc/vold.conf (Solaris), 693
/etc/xinetd, 380
filesystem, 626
Fontmap, 882
HylaFAX, 805–806
lilo.conf (Linux), 1037–1040
LPRng, 867–870
man command, 75–76
modifying, 5
name service switch, 215
Netsaint, 506
network interface, 205
NFS, 695
OpenLDAP, 314, 316–317, 322
PAM, 302–305, 312
Postfix, 583
printing, 816
queuedefs, 977
routing, 218–219
Samba, 703
sendmail, 546
sendmail.cf, 547
serial line, 782–788
smb.conf, 703
SNMP, 489
/stand/build/system (HP-UX), 1031
swatch package, 114
Tripwire, 400
/usr/lib/passwd/passwd.conf, 294
/usr/lib/security/mkuser.default

(AIX), 262
/usr/local/share/snmp/snmpd.conf, 494
/usr/share/man/man.cf (Solaris), 75
/var/adm/pacct, 1058
/var/cfengine/inputs/cfagent.conf, 923
/var/dhcp/dhcptab (Solaris), 465
/var/spool/hylafax/etc/hosts.hfaxd, 806
XF86Config, 809–810

configure utility, 121
confMAX_DAEMON_CHILDREN

macro, 570
confMAX_MESSAGE_SIZE macro, 571
confMIN_FREE_BLOCKS macro, 571

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1109

confMIN_QUEUE_AGE macro, 571
confPRIVACY_FLAGS macro, 566
confQUEUE_LA macro, 571
confREFUSE_LA macro, 571
confSAFE_FILE_ENV macro, 554
confSERVICE_SWITCH_FILE macro, 560
confTO_parameter macro, 571
CONNECTION_RATE_THROTTLE

macro, 570
connectors

8-pin mini DIN, 780
50-pin Centronics, 640
50-pin micro, 640
68-pin, 640
DB-25, 640, 780
DB-9, 780
Ethernet, 182
mini-micro, 640
RJ-12, 780
RJ-45, 182, 780
SCSI III, 640
USB, 780, 807

consistency checking, filesystem, 631
console, 767

access control, 796
limiting access to, 337

CONT signal, 963
context switches, 964
context-dependent symbolic links

(Tru64), 51
controller-drive-section identifiers, 64
convenience, 333
coolmail package, 614
Coordinated Universal Time (UTC), 470
Coppit, David, 615
COPS package, 401, 403
copy-on-write, 981
core files, limiting size of, 960
country code top-level domains, 416
cp command, 86
cpio command, 86, 729

restores, 736
CPU resources, 963–978
crack package, 299
cracking passwords, 291, 297–302

results, 301
crash dumps, 144, 175
crashes, handling, 174
creating user accounts, 257
creativity, 89
crfs command (AIX), 666–667

Cricket package, 517–519
components, 517
configuring, 518–519
output, 519
RRDtool and, 517
targets, 519

crises, handling, 4, 176
critical resources, 946
cron, 90–100, 977

access control, 100
BSD vs. System V, 91
configuring, 91
cron.allow and cron.deny files, 100
crontab file formats, 91
enabling, 91
enhancements (FreeBSD and Linux), 93
example crontab entries, 92
file locations, 90
log files, 91, 95
PID file, 91
security, 100

crontab command, 94
crypt command, 362
.cshrc files, 241

example, 244
CUPS, 874–878

access control, 876
architectture, 874
configuration file, 876
managing printers and queues, 875

customizing boot process, 165
cw file, sendmail, 550
cylinder groups, 618
cynics, 1052
Cyrus, 539, 552, 566

D
da Silva, James, 745
dadmin command (AIX), 461
daemons, 55

Amanda, 751
automount, 702
binlogd (Tru64), 110
biod, 696
cfexecd, 931
cfservd, 930
cron, 91
DHCP, 208, 458
dhcpd, 461
dhcrelay, 463
disabling, 381
DNS, 418

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1110 | Index

daemons (continued)
errdaemon (AIX), 108
faxgetty, 800
gated, 455
getty, 785
IMAP, 538
inetd, 377
init, 130
list of, 55
lockd, 695
lpd, 821
lpsched, 834
mgetty (Linux), 787
mountd, 696
named, 417, 422–451
netsaint, 503
network, 148–149, 189
NFS, 148, 695
nfsd, 696
nfsiod, 695
NTP, 472
PID files, 73
POP, 538
portmap, 695
Postfix, 580–581
qdaemon (AIX), 848
rmt, 744
routed, 454–455
rpc.lockd, 696
rpc.mountd, 695
rpc.nfsd, 695
rpc.statd, 696
sac (Solaris), 789
secure versions, 326
securing, 377
sendmail, 544, 546, 567
sftp-server, 377
slapd, 314, 326
smtpd, 524
smtpfwdd, 524
snmpd, 493
snmptrapd, 496
SRC and (AIX), 148
sshd, 376
started at boot time, 146
statd, 695
syslogd, 101
tcpd, 378
vold (Solaris), 690
xinetd, 380

Darmohray, Tina, 1069
Darrah, Byron C., 614

DAT tape, 717
data expiration period, DNS, 430
data incompatibilities, 741
database engines, 314

sendmail, 557
datagrams, 187
dd command, 735
DDS tape, 717
debug modes, 331
debugging (see troubleshooting)
default gateway, 216, 218
defaults

AIX user account, 250
class, user account (FreeBSD), 250
file mode, 42
filesystem types, 617, 620–621
gateway, 216, 218
local mailer program, sendmail, 552
login shell, 238
PAM, 306
password aging settings, 296
printer, 818, 831, 849
process priorities, 964
run level, 154
tape drive, 725
umask, 246
user account, 258

DeJong, Scott, 447
deleting pesky files, 87
delivery agents, mail, 522
demand paging, 981
denial-of-service attack, 332
depmod command (Linux), 1045
Deraison, Renaud, 405
Deri, Luca, 479
desktop initialization files, 245
detail, attention to, 401
detecting security problems, 391
/dev directory, 47, 68
device drivers, 61, 1024
device files, 47
devices, 61–67

CD-ROM, 692
detecting, 66
pseudo-terminal, 767
RAID, 661
SCSI, 639–640
serial, 776
system console, 767
tape drives, 723, 725

/devices directory (Solaris), 47
df command, 617, 1008

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1111

dhclient command, 210
DHCP, 206–212, 457–468

client configuration, 206–212
configuration files, 208, 458
daemons, 208, 458
Dynamic DNS updates, 438–440, 460,

463
enabling, 208, 459
exclusions, 458
Internet Software Consortium (ISC)

version, 210
ISC, 461
leases, 207
leases files, 208, 459
relay servers, 458, 461
reservations, 458
scopes, 457
server configuration, 457–468
server executables, 458
subnets and, 458

dhcpconf command (Tru64), 212
dhcpd daemon, 461
dhcpsconf command (AIX), 460
dhcrelay daemon, 463
dia command (Tru64), 111
dial-out modems, special files for, 768
dialup networking, 182
dialup passwords, 343

PPP and, 344
dictionary attacks, 278, 293
diff command, 86
dig command, 452
digital linear tape (DLT), 718
digital signatures, 364
dircmp command, 86
direct inward dial (DID), 803
direct number identification service

(DNIS), 803
directories, 47

administrative, 73
/boot (Linux), 70
boot script, 155, 160
comparing, 86
creating, 84
/dev, 47, 68
/devices (Solaris), 47
duplicating a tree, 85
/etc, 68
/etc/auth, 71
/etc/cron.* (Linux}, 100
/etc/default, 69
/etc/default (Solaris), 162–163

/etc/init.d, 68, 160
/etc/mail, 545
/etc/objrepos (AIX), 70
/etc/openldap, 314
/etc/openldap/schema, 316
/etc/pam.d, 302
/etc/periodic/security (FreeBSD), 339
/etc/postfix, 583
/etc/profile.d (Red Hat Linux), 247
/etc/rc.config.d (HP-UX), 163
/etc/rc*.d, 68, 155, 160
/etc/security (PAM), 303
/etc/security (AIX), 70, 242
/etc/skel, 242
/etc/sysconfig (Linux), 69, 163
/home, 70
home, 224, 241
kernel build, 1026
/kernel (Solaris), 70
/lib, 70
listing with echo, 89
log files, 73
/lost+found, 70
man pages, 72
/mnt, 70
/opt, 70
/proc, 70
/sbin, 68
/sbin/rc*.d, 155
schema, OpenLDAP, 316
setgid access and, 44
shared library, 70–71
source code, 73
spool, 524, 528
spooling, 73
/stand (FreeBSD), 70
sticky bit and, 44
/tcb, 71
terminfo, 769
/usr, 71
/usr/bin, 71
/usr/include, 71
/usr/lib, 71
/usr/lib/sendmail.d/bin, 553
/usr/lib/X11/fonts, 879
/usr/local, 71
/usr/lpp (AIX), 70
/usr/ports (FreeBSD), 73, 120
/usr/sbin, 68
/usr/share, 72
/usr/share/skel (FreeBSD), 242
/usr/skel (Tru64), 242

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1112 | Index

directories (continued)
/usr/src, 73
/usr/usb, 73
/var, 73
/var/adm, 73
/var/adm/crash (HP-UX), 144
/var/log, 73
/var/run, 73
/var/spool, 73
/var/spool/hylafax, 799
/var/spool/mqueue, 528
writable, security problems with, 350
X Window System, 71

directory services, 313, 315
directory tree, 33
disable command, 834
disabling messages, 13
disabling user accounts, 254
disk I/O

controllers, 1004
data placement and, 1005
disk striping, 1005
hardware and, 1003
I/O pacing, 1007
monitoring, 1001
multiple disks and, 1004
performance, 1001–1007
random access, 1003
read-ahead, 1006
sequential access, 1003
tuning, 1003–1007

disk mirroring, 661
disk partitions (see partitions)
disk quotas, 146, 1012–1016

on groups, 1016
hard vs. soft limits, 1013
reports, 1016

disk striping, 660
performance, 1005

disklabel command (FreeBSD), 645, 685
disks, 61

adding, 637–643
as backup media, 721
CD-ROM, 692
data placement and, 1004–1005
described, 635
floppy, 688
IDE vs. SCSI, 638
layouts, 636
logical volumes and, 657
magneto-optical, 719
managing space on, 112

managing usage levels, 1009–1016
parity, 662
SCSI, 64
slices, 645
syncing, 172

dismounting filesystems, 621–623
dispadmin command (Solaris), 973, 975
distance-vector routing algorithms, 453
distinguished name, 315
Distributed Queueing System (DQS), 978
distribution name servers, DNS, 419
DLT tape, 718
dmesg command, 107, 139
dnl, 548
DNS, 214–215, 414–452

A records, 428, 431
AAAA records, 429, 433
absolute hostnames, 429
ACLs, 441
address match lists, 441
authoritative name servers, 430
authoritative responses, 418
BIND, 417
cache, 418
caching-only name servers, 419
client configuration, 214
CNAME records, 429, 431, 434
common mistakes, 432–433
configuration files, 423
data expiration period, 430
directives, 429
distribution name servers, 419
DNSSEC, 445
domain name restrictions, 417
dynamic updates from DHCP, 438–440
enabling, 423
error messages, 448–449
forwarders, 419, 436
forward-only name servers, 419
$GENERATE directive, 435
glue records, 434
incremental zone transfers, 440–441
IPv6 addresses and, 429
logging, 426, 448–449
master name servers, 419, 424
MX records, 429
name server types, 418
name service switch file, 215
named daemon, 417
namespace, 415
negative query cache lifetime, 430
NS records, 428

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1113

performance, 1020
Postfix and, 585
primary name servers, 419
PTR records, 429, 432
recursive vs. nonrecursive queries, 418
refresh period, 430
resolver, 214–215
resource records, 428
retry interval, 430
reverse zone files, 432
root hints file, 427
secondary name servers, 419
secure, 443
security, 447
security futures, 445
sendmail and, 554
serial numbers, 430
server configuration, 422–451
slave name servers, 419, 425
SOA records, 428
split, 446
SRV records, 429, 431
stealth name servers, 419
stub name servers, 419
subdomains, 433–434
subnets and, 432
timeout period, 430
time-to-live value, 428
top-level domains, 415–416
troubleshooting, 451
$TTL directive, 429
updating slave servers, 437–438, 440–441
views, 446
zone files, 428
zone transfers, 437
zones, 418, 424

DNS Security Extensions (DNSSEC), 445
dnsbl sendmail feature, 562
dnskeygen command, 443
dnssec-keygen command, 443
documentation, 942
domain hierarchy, DNS, 415
DOMAIN macro, 549
domain name system (see DNS)
domain names, 417
DOS Master Boot Program (see MBR)
dsfmgr command (Tru64), 896
.dtprofile file, 245
du command, 617, 1008
dump command, 731–734

backup levels, 733
/etc/fstab and, 627

remote backups, 744
restores, 737
vendor versions, 731

DVDs
as backup media, 719
technologies for writing, 719–720

dxaccounts command (Tru64), 273
dxkerneltuner command (Tru64), 975, 1031
dynamic group membership, 231
dynamic host configuration protocol (see

DHCP)
dynamic IP addressing, 206
dynamic routing, 453
dynamic updates, DHCP to DNS, 438–440,

463
dynamically allocated ports, 189

E
e2fsadmin command (Linux), 682
echo command, 89
edauth command (Tru64), 290
EDITOR environment variable, 225
edquota command, 1014–1015
educating users, 335, 346
eeprom command (Solaris), 133
EGID (effective group ID), 57, 351
8 mm tape, 717
80-20 rule, 1001
Einarsson, Bjarni, 609
eject command, 694
electronic mail, 521–615

access agents, 522, 537–542
address mapping, 556
addressing, 525
aliases, 526, 545
blacklists, 562
delivery agents, 522
delivery process, 523, 530, 581
discarding automatically, 603
encrypting, 364, 535
filtering, 599
forwarding, 529–530
IMAP, 537–539
mailings lists, 528
masquerading, 551, 585
message stores, 522
MX records and, 525–526
overview, 521
PAM and, 308
PGP and, 535–536
policies, 531
POP, 537–539

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1114 | Index

electronic mail (continued)
queue directory, 528
redirecting, 558
relaying, 555, 561
retrieval agents, 522
retrieving, 596
shells and, 529
signing, digital, 364
SMTP proxy, 524
sorting, 602
spam suppression, 560, 589, 599,

607–609
spool directories, 524
submission agents, 532
transport agents, 521, 542–596
user agents, 521, 532–537
vacations and, 614
virtual domains, 559, 587–588

Elkins, Michael, 534
elm package, 532
emacs (GNU), 87
embedding words, 279
enable command, 834
encapsulation, 188
encryption, 339, 362–366

CUPS, 876
DNS and, 443
electronic mail, 535
NTP, 472
pass phrases, 366
public key, 363
public key servers, 363

enhanced C shell (tcsh), 241, 244
Enigma machine, 362
enq command (AIX), 851
enscript command, 816
entries, directory service, 315
environment variables

FAXSERVER, 801
LPDEST, 831
PAM, setting with, 307
PATH, 349
PRINTER, 818
TERM, 769, 772
TERMCAP, 772

environmental factors, 337
ephemeral ports, 189
epm package, 116
erase character, 775
errdemon daemon (AIX), 108
ESMTP (see SMTP)
espionage, 333

/etc directory, 68
/etc/adduser.conf configuration file

(FreeBSD), 261
/etc/adduser.message configuration file

(FreeBSD), 261
/etc/aliases configuration file, 526

files referenced in, 528
mailing lists in, 528

/etc/auth directory, 71
/etc/binlog.conf configuration file

(Tru64), 110
/etc/bootptab configuration file

(HP-UX), 465
/etc/cron.* directories (Linux), 100
/etc/cron.allow, 100
/etc/cron.deny configuration files, 100
/etc/cups/cupsd.conf configuration file, 876
/etc/default directory, 69

Solaris, 162–163
/etc/default/dhcpagent configuration file

(Solaris), 212
/etc/default/login configuration file

(Solaris), 252
/etc/default/passwd configuration file

(Solaris), 297
/etc/defaultrouter configuration file

(Solaris), 219
/etc/default/su configuration file (Solaris), 8
/etc/default/sulogin configuration file

(Solaris), 133
/etc/default/tar configuration file, 728
/etc/dfs/dfstab configuration file

(Solaris), 700
/etc/dhclient.conf configuration file

FreeBSD, 210
ISC DHCP, 210

/etc/dhcpcd.ini configuration file (AIX), 209
/etc/dhcpd.conf configuration file, 461
/etc/dhcprs.cnf configuration file (AIX), 461
/etc/dhcpsd.cnf configuration file (AIX), 459
/etc/dhcptab configuration file (HP-UX), 464
/etc/dialups configuration file, 343
/etc/d_passwd configuration file, 343
/etc/dumpdates configuration file, 732
/etc/environment configuration file

(AIX), 247
/etc/exports configuration file, 698
/etc/filesystems configuration file (AIX), 629

NFS entries, 698
quotas and, 1014

/etc/fstab configuration file, 626–628
NFS entries, 696–697

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1115

paging spaces in, 997
quotas and, 1013
SMB filesystem entries, 706

/etc/gated.conf configuration file, 456
/etc/gateways configuration file, 455
/etc/gettydefs configuration file, 786
/etc/gettytab configuration file

(FreeBSD), 784
/etc/group configuration file, 223, 229
/etc/gshadow configuration file (Linux), 223,

232
/etc/host.conf configuration file

(FreeBSD), 215
/etc/hostname.* configuration files

(Solaris), 206
/etc/hosts configuration file, 213

Solaris version, 214
/etc/hosts.allow configuration files, 378
/etc/hosts.deny, 378
/etc/hosts.equiv configuration file, 375
/etc/ifhp.conf configuration file, 871
/etc/inetd.conf configuration file, 378–379
/etc/inet/netmasks configuration file

(Solaris), 204
/etc/init.d directory, 68
/etc/inittab configuration file, 156

power failure entries, 175
serial line entries, 785

/etc/issue configuration file, 14, 307
/etc/join/client.pcy configuration file

(Tru64), 212
/etc/join/dhcpcap configuration file

(Tru64), 467
/etc/join/nets configuration file (Tru64), 467
/etc/join/server.pcy configuration file

(Tru64), 467
/etc/login.access configuration file

(FreeBSD), 250
/etc/login.conf configuration file

(FreeBSD), 250, 294
/etc/login.defs configuration file

(Linux), 252, 293, 296
/etc/logingroup configuration file

(HP-UX), 233
/etc/logrotate.conf configuration file

(Linux), 114
/etc/lpd.conf configuration file, 867
/etc/lpd.perms configuration file, 867,

872–874
/etc/mail directory, 545
/etc/mail/local-host-names configuration

file, 550, 556

/etc/mail.rc configuration file, 533
/etc/manpath.config configuration file

(Linux), 75
/etc/master.passwd configuration file

(FreeBSD), 226–227, 289
/etc/modules.conf configuration file

(Linux), 1045
/etc/motd configuration file, 14, 307
/etc/named.conf configuration file, 423

options list, 426–427
/etc/netsvc.conf configuration file (AIX), 216
/etc/newsyslog.conf configuration file

(FreeBSD), 113
/etc/nodename configuration file

(Solaris), 206
/etc/nologin configuration file, 305
/etc/nsswitch.conf configuration file, 215

OpenLDAP and, 321
/etc/ntp.conf configuration file, 471
/etc/ntp.keys configuration file, 472
/etc/objrepos directory (AIX), 70
/etc/openldap directory, 314
/etc/openldap/ldap.conf configuration

file, 322
/etc/openldap/schema directory, 316
/etc/openldap/slapd.conf configuration

file, 316–317
/etc/opieaccess configuration file, 342
/etc/pam.conf configuration file, 303
/etc/pam.d directory, 302
/etc/passwd configuration file, 223
/etc/periodic/security directory

(FreeBSD), 339
/etc/postfix directory, 583
/etc/printcap configuration file, 821–823

accounting and, 1066
LPRng version, 867–870

/etc/printers.conf configuration file
(Solaris), 842

/etc/procmailrc configuration file, 601
/etc/profile file, 246

example, 247
/etc/profile.d directory (Red Hat Linux), 247
/etc/project configuration file (Solaris), 1063
/etc/protocols configuration file, 189
/etc/qconfig configuration file (AIX), 849,

852, 854
accounting and, 1066

/etc/raidtab configuration file (Linux), 683
/etc/rc.conf configuration file

(FreeBSD), 163

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1116 | Index

/etc/rc.config configuration file
SuSE Linux 7, 163
Tru64, 133, 163

/etc/rc.config.d directory (HP-UX), 163
/etc/rc.config.d/netconf configuration file

(HP-UX), 205
/etc/rc*.d directories, 68
/etc/resolv.conf configuration file, 214

DNS performance and, 1020
/etc/rmmount.conf configuration file

(Solaris), 694
/etc/rmtab configuration file, 700
/etc/rndc.conf configuration file, 450
/etc/routes configuration file (Tru64), 219
/etc/saf/_sactab configuration file

(Solaris), 789
/etc/sanitizer.cfg configuration file, 610
/etc/securetty configuration file, 309
/etc/security directory

AIX, 70, 242
PAM, 303

/etc/security/auth_attr configuration file
(Solaris), 370

/etc/security/environ configuration file
(AIX), 245

/etc/security/exec_attr configuration file
(Solaris), 372

/etc/security/group configuration file
(AIX), 249

/etc/security/limits configuration file
(AIX), 249–250, 960

/etc/security/login.cfg configuration file
(AIX), 224, 249–250, 344

/etc/security/passwd configuration file
(AIX), 226

/etc/security/prof_attr configuration file
(Solaris), 370

/etc/security/roles configuration file
(AIX), 368

/etc/security/user configuration file
(AIX), 249, 289, 345

/etc/security/user.roles configuration file
(AIX), 369

/etc/services configuration file, 189
/etc/shadow configuration file, 223, 225
/etc/shells configuration file, 224, 238

electronic mail and, 529
/etc/shutdown.allow configuration file

(HP-UX and Linux), 171–172
/etc/skel directory, 242
/etc/SnmpAgent.d/snmpd.conf configuration

file (HP-UX), 497

/etc/snmp/conf configuration file
(Solaris), 497

/etc/snmpd.conf configuration file
(AIX), 498

/etc/snmpd.conf configuration file
(Tru64), 499

/etc/ssh/sshd_config configuration file, 377
/etc/sudoers configuration file, 10
/etc/svc.conf configuration file (Tru64), 216
/etc/swapspaces configuration file

(AIX), 630, 998
/etc/sysconfig directory (Linux), 163
/etc/sysconfigtab configuration file

(Tru64), 628
/etc/sysctl.conf configuration file

(FreeBSD), 990
/etc/syslog.conf configuration file, 102

cron and, 95
/etc/system configuration file (Solaris), 896,

1046
/etc/termcap configuration file, 769
/etc/ttydefs configuration file (Solaris), 792
/etc/ttys configuration file (FreeBSD), 132,

782, 796
/etc/usbd.conf configuration file

(FreeBSD), 809
/etc/user_attr configuration file (Solaris), 372
/etc/vfstab configuration file (Solaris), 629

NFS entries, 696
paging spaces in, 997

/etc/vold.conf configuration file
(Solaris), 693

/etc/xinetd configuration file, 380
Ethernet, 182, 185

cable connectors, 182
media characteristics, 183

ethics, 383, 532
EUID (effective user ID), 56, 351
event auditing, 412–413
exclusions, DHCP, 458
exec, fork and, 57
Expect, 911–919

examples, 474
experimenter effect, 950
expiration of user accounts, 289
exportfs command, 700
exporting filesystems, 698, 703
EXPOSED_USER macro, 551
ext3 filesystem (Linux), 649
extended permissions (AIX), 354
extendvg command (AIX), 665
extents, 658

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1117

F
facilities (syslog), 102
fake shutdowns, 172
Farmer, Dan, 374, 401, 403
Fast File System (FFS), 618

soft updates, 619–620
fastpaths in SMIT (AIX), 19
fax2ps command, 803
faxaddmodem command, 799
faxadduser command, 806
faxalter command, 803
faxcron command, 800
faxdeluser command, 806
faxes (see HylaFAX)
faxgetty daemon, 800
faxinfo command, 803
faxqclean command, 800
faxrm command, 802
FAXSERVER environment variable, 801
faxsetup command, 799
faxstat command, 802
fbackup command (HP-UX), 734
fdformat command (Solaris), 690
fdisk command

DOS, 1043
FreeBSD, 645
Linux, 896

FEATURE macros, 549
access_db, 562
allmasquerade, 551
always_add_domain, 557
blacklist_recipients, 562
dnsbl, 562
generics_entire_domain, 557
genericstable, 556
ldap_routing, 557
local_lmtp, 553
masquerade_envelope, 551
msp, 568
nocanonify, 554
nullclient, 555
redirect, 558
relay_entire_domain, 554
smrsh, 553
summary table, 576–578
use_cw_file, 550
virtusertable, 559

fetchmail package, 596–598
authentication, 597
configuration file, 598
configuring, 597

security, 597
syslog and, 597

.fetchmailrc configuration file, 598
fiber optic cable, 182–183
FIFOs, 52
file command, 53
file locking bit, 43
files, 33–53

access, 37
accounting, 1050, 1058
backing up, 113
boot scripts, 131
checksums, computing, 397
commands, relation to, 59
core, 960
deleting unusual, 87
DHCP leases, 208
font, 879
group, 223
group owner, 33
identifying types, 52
include, 71
inodes, 46
links, 48
locating, 79
log, 73, 112, 1011
modes, 36–37, 42–43
monitoring log, 114
named pipes, 52
open, 625
ownership, 33
paging, 998
password, 223, 234
PostScript, 817
protection, 36, 39, 348
rotating log, 114
shadow password, 223
skeleton initialization, 242
sockets, 51
special, 47, 65
static routes, 218–219
symbolic links, 48
systemwide login initialization, 246
types, 52
user account initialization, 241
user owner, 33
(see also configuration files)

filesystem paging, 998
filesystems, 141

administering, 616
backing up system, 759–760
backups of, 731

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1118 | Index

filesystems (continued)
configuration file, 626
default types, 620–621
expanding, 647, 651, 653, 678
exporting, 698, 703
ext3 (Linux), 649
fragmentation of, 1005
history, 617–619
inodes, 46
integrity, 172, 631–632, 634
journaled, 619
managing space in, 112
managing usage levels, 1009–1016
memory data cache, 987
monitoring, 394
mounting, 70
mounting and dismounting, 621–623
mounting remote, 696–697
NFS options, 697
open files and, 625
options, 627, 697
partitions and, 61
preparing during boot, 141
/proc, 956–958
quotas, 146, 1012–1016
rebuilding, 656
Reiser (Linux), 652
remote, 694
root, 33, 68
Samba and, 705
sharing, 694
SMB, 705
types, 617

filters, printing, 824
find command, 79

locating wasted disk space with, 1011
setuid/setgid files, locating, 396

firewalls, 383–386
configurations, 385
packet filtering and, 385

firmware, 128
password, 133

fixit floppy (FreeBSD), 762
flexibility, 78
floppy disks, 688–691

DOS format, 689
special files, 688

flow control, 777
Fontmap configuration file, 882
fonts

adding, 881
attributes, 880

displaying, 883
families, 878
managing, 878–884
overview of, 878
printing support, 882
types, 879

forced password changes, 282
forced perfect termination, 642
foreground processes, 53
fork and exec, 57
formail utility, 605
format command (Solaris), 653–654
.forward files, 529

procmail and, 600
protection requirements, 530

forwarders, DNS, 419, 436
forwarding, mail, 529

to files, 530
to programs, 530
shells and, 530

forward-only name servers, DNS, 419
foundry, 880
4 mm digital audio tape (DAT), 717
frames, 187
frecover command (HP-UX), 741, 744
free command (Linux), 982
FreeBSD

accounting, 1052
ACLs, 359
adding disks, 644
boot loader, 1029
booting, 134
buffer cache, 991
classes, 250, 261
cron enhancements, 93
DHCP, 210, 461
Dynamic DNS updates, 463
/etc/periodic/security directory, 339
filesystem types, 620
fixit floppy, 762
floppy disk, 690
kernel, building, 1026–1028
kernel location, 129
kernel parameters, tuning, 990, 1028
LDAP support, 314
logical volume manager, 684
LPD spooling system, 827
memory, as data cache, 991
mirrored volumes, 686
modules, kernel, 1029
network interface names, 203
newsyslog facility, 113

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1119

NTP, 473
package management, 116
PAM modules, 311
password controls, 289–290
password triviality checking, 294
periodic package, 90, 97
plexes, 684
ports, 120
RAID 5 volumes, 687
routing, 455
security facilities, 339
single-user mode password, 132
slices, 645
smbfs filesystem, 705
software archives, 126
source code directory, 73
static routes, 218
striped volumes, 686
subdisks, 684
syslog enhancements, 104
TCP/IP parameters, 1019
tuning tools, 950
USB devices, 808, 810
user account controls, 250
user-private groups, 231
/usr/share/skel directory, 242
Vinum Volume Manager, 684
virtual memory manager, 990–991

FreeBSD commands
adduser, 260
boot0cfg, 1029
cap_mkdb, 251
chpass, 254, 262, 282, 290
disklabel, 645, 685
fdisk, 645
from, 615
fstat, 626
growfs, 647
kldstat, 1029
lptcontrol, 827
lsof, 625
newfs, 646
pkg_add, 116
pkg_delete, 117
pkg_info, 116
pstat, 896, 996
rmuser, 262
sysctl, 896, 990, 1019, 1029
sysinstall, 25
tunefs, 646
usbdevs, 809

user account, 260–262
vinum, 685–687
vnconfig, 999

FreeBSD configuration files
/boot/loader.conf, 1029
/etc/adduser.conf, 261
/etc/adduser.message, 261
/etc/dhclient, 210
/etc/gettytab, 784
/etc/host.conf, 215
/etc/login.access, 250
/etc/login.conf, 250, 294
/etc/master.passwd, 226–227, 289
/etc/newsyslog.conf, 113
/etc/rc.conf, 163
/etc/sysctl.conf, 990
/etc/tty, 132
/etc/ttys, 782
/etc/usbd.conf, 809
network interface, 205

from command, 615
fsck command, 141, 631–632, 634

/etc/fstab and, 627
security uses, 398

fsdb utility, 398
fstat command (FreeBSD), 626
full backups, 711
funniest UNIX book I’ve read, 1023
fuser command, 625
fverify command (Tru64), 116

G
g(roup) access, 38, 44
games, 334
Ganger, Gregory, 619
Gant, Brandon, 516
gated daemon, 455
gateways, 182, 216, 218
gcc compiler, 124
GECOS password file field, 224

passwords and, 292
Gélinas, Jacques, 22
$GENERATE directive, DNS, 435
generic top-level domains, 415
GENERICS_DOMAIN_FILE macro, 556
generics_entire_domain sendmail

feature, 557
genericstable sendmail feature, 556
getacl command (Tru64), 361
getdev command (Solaris), 896
getent command, 322

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1120 | Index

getfacl command
Linux, 361
Solaris, 361

getty daemons, 785
faxgetty, 800
mgetty (Linux), 787

gfontview command, 883
Ghostscript facility, 882

font naming requirements, 883
Fontmap configuration file, 882

GID, 222, 224, 229
0, 8, 235
effective, 57, 351
real, 57

gimp graphics editing package, 817
glue records, DNS, 434
gnopm command (Linux), 117
GNU emacs, 87
GnuPG (Gnu Privacy Guard), 363, 366
good passwords, 277, 279
gpasswd command (Linux), 260
gpg command, 364–365
gq command, 328
Grand Unified Bootloader (see grub boot

loader)
Greenwich Mean Time (GMT), 470
grep command, 76
grepmail package, 615
groff package (GNU), 942
group ID (see GID)
group sets, 233

ACLs and (AIX), 355
groupadd command, 259
groupmod command, 259
groups, 222

administrators, 232, 249, 260
defining, 229
disk quotas for, 1016
dynamic membership, 231
effective use, 236
/etc/group file, 223
file ownership and, 34
GID 0, 8
maximum per user, 230
members of, 230, 233
names, 229
passwords, 229
primary, 231
shadow file (Linux), 223, 232
standard, 235
system, 235

user-private, 230–231
wheel, 8

groups command, 231
growfs command (FreeBSD), 647
grpck command (AIX), 392
grub boot loader, 133, 136

FreeBSD, 1041
Linux, 1040–1042
Windows 2000, 1041

grub-install command, 1042
GUI administration tools, 15
Guttman, Uri, 932
gv command, 817

H
habits, 4, 333, 401, 813
hackers, 330
handling crises, 4
handling security breaches, 405
handshaking, 778
hard links, 48
hardening, 387–391

SuSE Linux, 339
hardware

boot problems and, 176
error messages, 107, 110
incompatibilities, 178
network adapters, 182

hardware error messages, 110
having fun, 1023
help, 74
hierarchical directory structure, 33
history lists, password, 295
home directories, 224, 241

ownership, 248
PAM, creating with, 308
permissions on, 350
removing, 255, 259
sharing with Samba, 704

/home directory, 70
Hoover, Clyde, 294
horrors, 807
host level equivalence, 376
hostname command, 190
hostnames, 193

absolute (DNS), 429
aliases, 214
DNS aliases, 429
file specified in, 205

hoststat command, 569

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1121

HP-UX
accounting, 1058
ACLs, 357
booting, 135
buffer cache, 992
bundles, 119
DHCP, 211, 464
dialup passwords, 343
Dynamic DNS updates, 465
/etc/rc.config.d directory, 163
filesystem types, 620
hardware error messages, 110
Ignite-UX package, 763
kernel, building, 1031–1033
kernel location, 129
kernel parameters, tuning, 991
memory, as data cache, 992
mirrored volumes, 672
network interface name, 203
package management, 116, 119
PAM modules, 311
password controls, 289–290
password history lists, 296
printing features, 845
products, 119
protected password database, 227
routing, 455, 457
security facilities, 339
serial lines, 797
shutdown access control, 171
SNMP, 496
software archives, 126
static routes, 218
striped volumes, 672
subproducts, 119
system volume group (vg00), 669
TCP/IP parameters, 1019
tuning tools, 950
USB devices, 807
user account controls, 253
user account exclusion file, 267
/var/adm/crash directory, 144
virtual memory manager, 991–992

HP-UX commands
chacl, 358
fbackup, 734
floppy disk, 689
frecover, 741, 744
from, 615
ioscan, 896
kmtune, 991

kmupdate, 1031
lanscan, 184
logical volume manager, 670–672
lpalt, 837
lpana, 845
lpfence, 837
lsacl, 357
lvcreate, 670
lvdisplay, 672
lvlnboot, 671
make_recovery, 763
mk_kernel, 1031
nettl, 484
newfs, 671
prpwd, 228
pvcreate, 670
pvdisplay, 672
sam, 20
savecrash, 144
swapinfo, 896, 996
swinstall, 116
swlist, 116
swremove, 116
sysdef, 1033
system_prep, 896, 1031
vgcreate, 670
vgdisplay, 672
vgextend, 670
xstm, 110

HP-UX configuration files
/etc/bootptab, 465
/etc/dhcptab, 464
/etc/logingroup, 233
/etc/rc.config.d/netconf, 205
/etc/shutdown.allow, 171
/etc/SnmpAgent.d/snmpd.conf, 497
/stand/build/system, 1031

hubs, 200
.hushlogin file, 252
HylaFAX, 799–807

access control, 806
commands, 799–803, 806
configuration files, 805–806
enabling, 800
faxgetty, 800
managing faxes, 802
routing faxes to recipients, 803
sendmail and, 552
spool directories, 799

hysteria, 176

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1122 | Index

I
IBM, Thomas J. Watson Research

Center, 579
ICMP messages, 480
id command, 232
IDE disks, 639
identifying file types, 52
ifconfig command, 184, 203–204

boot-time arguments for, 205
Solaris versions, 204

ifhp filter, 871
IMAP, 537–539

Cyrus, 539
daemons, 538
securing, 542
user agents and, 541
user authentication, 539

inactivation, of user accounts, 289
in-addr.arpa domain, 418
include files, 71

acct.h, 1051
DNS, 427
/etc/aliases, 528
signal.h, 962

incremental backups, 712
inetd daemon, 148, 377

disabling subdaemons, 381
ingenuity, 78
init daemon

inittab configuration file, 156
signalling, 153
zombie process cleanup, 963

init process, 130, 140
initialization files

customizing systemwide, 247
desktop, 245
examples, 242
login, 242
skeleton, 242
systemwide, 246
user account, 241
X Windows, 245

inodes, 46
backups by, 731
monitoring, 397
unreferenced, 632

input bounds checking, 331
insmod command (Linux), 1045
installp command (AIX), 116
INT signal, 963
integrity checking, filesystem, 631

interacting with users, 4
interactive processes, 53
interfaces (network), common names

for, 148
interleaving, 279
International Atomic Time (TAI), 470
Internet

NTP servers, 470
passwords and, 285
software archives, 126

Internet Assigned Numbers Authority
(IANA), 488

Internet Message Access Protocol (see IMAP)
Internet Printing Protocol (IPP), 874
Internet protocol (IP), 188
Internet Software Consortium (ISC)

DHCP, 210, 461
DNS, 420

interprocess communication, 52
intruders, 413
investigating security problems, 406–413
ioscan command (HP-UX), 896
iostat command, 1001
IP addresses, 193

assigning with DHCP, 206
IPv6 format, 198, 429
mappings to hostnames, DNS, 428
multicast, 194
reserved ranges of, 195

IP spoofing, 373, 384
ipcalc.pl script, 198
IPL (initial program load), 127
ipreport command (AIX), 484
iptrace command (AIX), 484
IPv6 host addresses, 198

J
Jacobson, Van, 480–481
jail package (FreeBSD), 89
jails, chroot, 88
Jaz drives, 720
jitter, 469
job control, 53
john package, 297
John the Ripper (see john package)
journaled filesystems, 619
Journaling versus Soft Updates, 619
jove editor, 125
jukeboxes, 721

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1123

K
K files, 160
kcmdhcpd package, 463
KDE

ksysv command, 167
memory usage utility, 982
system administration tools, 26
user manager, 270

keeping, 374
Kerberos, 345–348

OpenLDAP and, 326
overview, 345
PAM and, 307
tickets, 348
time synchronization and, 469

kernel
build directories, 1026
building, 1024–1047
configuring, 1024–1047
functions of, 1024
listing parameters, 896
locations, 129
modularized, 1024
modules, 1024, 1029, 1036, 1044–1046
names of, 129

/kernel directory (Solaris), 70
key rings, 365
keyboard shifting, 280
keys, encryption

DNS, 443
public/private pairs, 363

kill command, 962
KILL signal, 963
killall command, 962
Kipling, 176
kldstat command (FreeBSD), 1029
Klingon, 278
kludges, 282, 907
Kmoch, David, 511
kmtune command (HP-UX), 991
kmupdate command (HP-UX), 1031
Knaff, Alain, 690
knowing what normal is, 391, 946
Kolstad, Rob, 1069
Kona coffee, 1071
Korn shell, 241, 244
.kshrc file, 241
kstat command (Solaris), 993
ksysguard command, 982
ksysv command (Linux), 167
kuser command, 270

L
Lamm, Holger, 536
LAN (local area network), 180
lanscan command (HP-UX), 184
last command, 409–410
lastcomm command, 409–411
layers, networking, 186
laziness, 886
LDAP, 313–328

attributes, 315
daemons, 314
data interchange format, 315
distinguished name, 315
email-related attributes, 558
entries, 315
LDIF, 315, 317
objectClass attribute, 315
Postfix and, 588
records, 315
schemas, 316
searching, 318
sendmail and, 557
terminology, 314–315
(see also OpenLDAP)

LDAP data interchange format (see LDIF)
ldapadd command, 318
LDAPMAP macro, 557
LDAP_ROUTE_DOMAIN macro, 557
ldap_routing sendmail feature, 557
ldapsearch command, 318
LDIF, 315, 317
leap seconds, 470
leases (DHCP), 207

files listing current, 208, 459
LeFebvre, William, 956
Leffler, Sam, 799
Leres, Craig, 481
/lib directory, 70
Libes, Don, 911
libpam_unix module (HP-UX), 312
libpam_updbe module (HP-UX), 312
libraries, media, 721
Lightweight Directory Access Protocol (see

LDAP)
lilo boot loader (Linux), 136, 1036–1040

password, 133
Windows 2000 partitions and, 1038

lilo.conf configuration file
(Linux), 1037–1040

limit command, 959
lines of defense, 336

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1124 | Index

links, 48
context-dependent symbolic (Tru64), 50

link-state routing algorithms, 453
Linux

accounting, 1052
ACLs, 359
adding disks, 647
Alpha, 1043
Alpha Linux, 136
boot floppy, 764
boot scripts, 164
booting, 136
buffer cache, 992
cron enhancements, 93
desktop selection, 245–246
DHCP, 211, 461
disk I/O, 1006
disk striping, 683
Dynamic DNS updates, 463
/etc/sysconfig directory, 163
filesystem types, 620
group administrators, 260
kernel, building, 1033–1036
kernel location, 129
kernel parameters, tuning, 992
LDAP support, 314
lilo boot loader, 136, 1036–1040
logical volume manager, 680
logrotate package, 114
LPD spooling system, 829
MD5 passwords, 311
memory, as data cache, 992
mirroring, 683
modules, kernel, 1036, 1044–1045
multiple mounts, 623
network interface name, 203
NFS, 700
package management, 116
PAM modules, 306–311
password controls, 289–290
password triviality checking, 293
RAID facility, 683
rescue disk, 764
routing, 455
sendmail and, 547
shutdown access control, 172
single-user mode password, 133
smbfs filesystem, 705
software archives, 126
source code directory, 73
static routes, 218

sulogin utility, 133
syslinux, booting with, 1042
syslog enhancements, 104
TCP/IP parameters, 1019
tuning tools, 950
USB devices, 810–811
user account controls, 252
user-private groups, 230
virtual memory manager, 992–993

Linux commands
cfdisk, 648
chage, 282, 289–290
depmod, 1045
e2fsadmin, 682
fdisk, 896
floppy disk, 690
free, 982
getfacl, 361
gnorpm, 117
gpasswd, 260
insmod, 1045
ksysv, 167
logical volume manager, 681
lsmod, 1044
lsusb, 810
lvcreate, 682
make xconfig, 1035
mke2fs, 682
mkfs, 649–650
mkraid, 683
mkreiserfs, 652
mkswap, 999
modinfo, 1044
modprobe, 1045
pump, 211
pvcreate, 681
raidstart, 683
raidstop, 683
resize2fs, 651
resize_reiserfs, 653
rmmod, 1045
rpm, 116
setfacl, 361
shutdown, 172–173
tune2fs, 650
usbmodules, 810
vgcreate, 682
vgscan, 681
vigr, 230
xrpm, 117
yast2 (SuSE), 24

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1125

Linux configuration files
/boot/grub/grub.conf, 1041
boot.message, 1040
DHCP, 211
/etc/exports, 700
/etc/gshadow, 223, 232
/etc/login.defs, 252, 293, 296
/etc/logrotate, 114
/etc/manpath.config, 75
/etc/modules.conf, 1045
/etc/raidtab, 683
/etc/rc.config (SuSE 7), 163
/etc/shutdown.allow, 172
lilo.conf, 1037–1040
mgetty, 787
network interface, 205
static routes, 218

Linuxconf, 22
Postfix and, 593
user account management, 267

LISA, 813, 1023, 1070
listen port monitor (Solaris), 789
little endian, 741
ln command, 48
load averages, 951
load balancing, 55
local area network (LAN), 180
local_lmtp sendmail feature, 553
LOCAL_MAILER macros, 553
LOCAL_RELAY macro, 556
lockd daemon, 695
locking user accounts, 254
logger command, 107
logging

Amanda, 756
backing up log files, 113
boot process, 139
cron, 91, 95
directory, log, 73
disk usage and, 1011
DNS, 426, 448–449
errors, 108
fetchmail, 597
firewalls and, 385
logins, most recent, 307
managing files, 112
monitoring log files, 114
Postfix, 595
procmail, 613
rotating files, 112–114
sendmail, 546, 571–572
su command, 104, 409

sudo package, 12
system message file, 101
TCP Wrappers and, 379

logical volume managers (see LVM)
logical volumes, 657
.login files, 241

example, 243
login controls, 248
login initialization files, 242
login shells, 224, 238

allowed list of, 224, 238
restricted, 239

logins
allowed hosts (OpenLDAP and

PAM), 323
allowed locations, 248, 250, 309
allowed times, 248, 253, 309–310

.logout files, 241
logrotate package (Linux), 114
loopback interface, 185, 203
/lost+found directory, 70
low-level formatting, disk, 637
lp command, 830
lpadmin command, 831, 835–838, 840,

843–844
lpalt command (HP-UX), 837, 845
lpana command (HP-UX), 845
lpc command, 819–820

LPRng, 865
lpd daemon, 821
LPD spooling system, 818–829

access control, 824
adding printers, 826–827
configuring queues, 821
daemon, 821
filters, 824
managing jobs, 818–819
managing queues, 819–820
remote printing, 826
spool directories, 824
user commands, 818
variations of, 827

LPDEST environment variable, 831
lpfence command (HP-UX), 837
lpget command (Solaris), 842
lpmove command, 833
lpq command, 818
lpr command, 818
lprm command, 818
LPRng, 864–874

access control, 872
accounting, 1068

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1126 | Index

LPRng (continued)
classes, printer, 866
configuration files, 867–870
converting to, 865
filters, 870
global settings, 871
lpc enhancements, 865
lpr enhancements, 864
printer pools, 870
priorities, 866
user commands, 864

lprsetup command (Tru64), 828
lpsched daemon, 834
lpset command (Solaris), 842
lpstat command, 830–831
lptcontrol command (FreeBSD), 827
lptest command, 817
lpusers command (Solaris), 838
ls command, 34, 49, 52
lsacl command (HP-UX), 357
lsattr command (AIX), 725, 1047
lsdev command (AIX), 664, 856
lsfs command (AIX), 668
lslpp command (AIX), 116
lslv command (AIX), 668
lsmod command (Linux), 1044
lsof command (FreeBSD), 625
lsps command (AIX), 896, 996
lspv command (AIX), 668, 896
lssrc command (AIX), 475
lsusb command (Linux), 810
lsuser command (AIX), 8, 290
lsvg command (AIX), 663, 668
lsvirprt command (AIX), 855
LUSER_RELAY macro, 561
lvcreate command (HP-UX), 670
lvcreate command (Linux), 682

read-ahead and, 1006
lvdisplay command (HP-UX), 672
lvlnboot command (HP-UX), 671
LVM, 657–688

mirroring, 661
RAID and, 661
striped volumes, 660
terminology, 659

M
m4 command, 550
m4 macro facility, 106, 547–548

dnl, 548
MAC address, 184

determining, 184

Macintosh, 780
macros, sendmail

confCON_EXPENSIVE, 571
confDEF_USER_ID, 565
confHOST_STATUS_DIRECTORY, 569
confMAX_DAEMON_CHILDREN, 570
confMAX_MESSAGE_SIZE, 571
confMIN_FREE_BLOCKS, 571
confMIN_QUEUE_AGE, 571
confPRIVACY_FLAGS, 566
confQUEUE_LA, 571
confREFUSE_LA, 571
confSAFE_FILE_ENV, 554
confSERVICE_SWITCH_FILE, 560
confTO_parameter, 571
CONNECTION_RATE_

THROTTLE, 570
define, 549
DOMAIN, 549
EXPOSED_USER, 551
FEATURE, 549
GENERICS_DOMAIN_FILE, 556
LDAPMAP, 557
LDAP_ROUTE_DOMAIN, 557
LOCAL_MAILER, 553
LOCAL_RELAY, 556
LUSER_RELAY, 561
MAILER, 549, 551
mailer_MAILER_MAX, 571
MAIL_HUB, 556
MASQUERADE_AS, 551
MASQUERADE_EXCEPTION, 551
MODIFY_MAILER_FLAGS, 554
OSTYPE, 549
QUEUE_DIR, 570
RELAY_DOMAIN, 561
RELAY_DOMAIN_FILE, 561
relaying, 555
SMART_HOST, 555
summary table, 576–578
undefine, 549
VIRTUSER_DOMAIN_FILE, 559
(see also FEATURE macros)

magnetic tape, 717
magneto-optical disks, 719
Mail Abuse Prevention System (MAPS), 562
mail exchange (MX) records, DNS, 429,

525–526
wildcards in, 433

mail hub configuration, 550, 555
mail (see electronic mail)
mail submission agents, 532

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1127

MAILER macro, 549
MAILER_* macros, 551
mailer_MAILER_MAX macro, 571
MAIL_HUB macro, 556
mailing lists, 528

security alert, 374
mail.local program, sendmail, 553
mailstats command, 569
maintenance mode, 131
maintenance, sendmail, 569
major numbers, for special files, 61
make xconfig command (Linux), 1035
MAKEDEV command, 644
makemap command, 556
make_recovery command (HP-UX), 763
makewhat command (Solaris), 76
makewhatis command, 76
Mammoth-2 tape, 718
man command, 74

configuration files, 75–76
section search order, 75

man pages
directory tree, 72
example source for, 942
index, creating, 76
printing, 944
sections, 72
writing, 942–944

Management Information Bases (see MIBs)
managing packages, 115–121
Manilow, Barry, 280
MASQUERADE_AS macro, 551
masquerade_envelope sendmail feature, 551
MASQUERADE_EXCEPTION macro, 551
masquerading, mail

Postfix, 585
sendmail, 551

master name servers, DNS, 419
configuring, 424

master password file (FreeBSD), 227
Matzigkeit, Gordon, 1040
maximum transmission unit (MTU), 188
MBR, restoring DOS, 1043
McCanne, Steven, 481
McDonald, Dan, 341
McGough, Nancy, 614
McKusick, Marshall Kirk, 619
MD5 passwords, 311
md5sum command (GNU), 398
Media Access Control (MAC) address, 184
media for backups, 717–723

capacities of, 722

comparing types, 722
cost, 722
lifetimes, 721–722
security of, 337

media libraries, 721
memory resources

data cache use, 987
determining amount of, 982
managing, 978, 987–995
page size, 982
recognizing shortages, 985–986

menu-based administration tools, 15
mesg command, 13
message of the day, 14
message stores, mail, 522
messages

boot, 138–139
disabling, 13, 252
hardware error, 107, 110
login, 14
pre-login, 14
suppressing, 252
system, 101

messages (network data unit), 187
metadata, 46, 70, 141, 619

update performance in file systems, 619
metadb command (Solaris), 677
metainit command (Solaris), 677
metaparam command (Solaris), 678
metareplace command (Solaris), 679
metattach command (Solaris), 678
Metz, Craig, 341
mgetty daemon (Linux), 787
mh package, 533
MIBs, 486

enterprise numbers, 488, 490
files, 489
MIB II, 486
RMON, 488
searching, 490

mice, USB, 808
migrate_passwd.pl script (OpenLDAP), 321
Mills, David L., 469
minimal routing, 453
minimum privilege, 352
minor numbers, for special files, 61
mirrored volumes, 661
mirrorvg command (AIX), 669
misspelling, 279
mistakes, common, 432–433
mkdir command, 84
mke2fs command (Linux), 682

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1128 | Index

mkfile command (Solaris), 999
mkfs command (Linux), 649–650
mkgroup command (AIX), 264
mk_kernel command (HP-UX), 1031
mklv command (AIX), 665, 669
mknod command, 643–644
mkpsmkps command (AIX), 1000
mkraid command (Linux), 683
mkreiserfs command (Linux), 652
mksmbpasswd.sh script (Samba), 705
mkswap command (Linux), 999
mksysb command (AIX), 760
mktcpip command (AIX), 205
mkuser command (AIX), 262–264
mkvg command (AIX), 664
/mnt directory, 70
modes, file, 36–37

default, 42
numeric, 42
octal, 42, 44
special purpose, 43

modifying configuration files, 5
modifying user accounts, 258
MODIFY_MAILER_FLAGS macro, 554
modinfo command

Linux, 1044
Solaris, 1046

modprobe command (Linux), 1045
modules, kernel, 1024

FreeBSD, 1029
Linux, 1036, 1044–1045
Solaris, 1046

modutils package (Linux), 1044
monitoring

accounting system and, 409
automating, 399
checksums, 397
CPU resources, 966–968
disk I/O, 1001
disk space usage, 1008–1009
filesystem, 394
graphs, 513–516
historical data, 512
inodes, 397
log files, 114
memory resources, 981–986
modification times, 397
network, 476–520
network performance, 1017
password file, 391–392, 394
Postfix, 594–595
processes, 951–963

restrospective data, 512
security, 391–413
sendmail, 568–570
setuid/setgid files, 396
vulnerability scanning, 401–405

Moore, James, 518
mount command, 624, 630, 698
mountd daemon, 696
mounting filesystems, 621–623

automatic, 630
remote, 696–697

mpage command, 817
msp sendmail feature, 568
mt command, 735
mtools package, 690
MTU (maximum transmission unit), 188
multicast addresses, 194
multiple access, 186
Multi-Router Traffic Grapher (MRTG), 512
multiuser mode, 130
mutt package, 532, 534

POP and IMAP with, 540
MVS, 32
MX records (see mail exchange records)

N
naivete, 334, 346
name resolution, 212
name server (NS) records, DNS, 428
name servers, DNS, 418

caching-only, 419
distribution, 419
forwarders, 419, 436
forward-only, 419
master, 419
primary, 419
secondary, 419
slave, 419, 437
stealth, 419
stub, 419

name service switch file, 215
named daemon, 417, 422–451

controlling, 450
securing, 447

named pipes, 52
NAT (network address translation), 195
National Health Service (Scotland), 416
ndc command, 450
ndd command, 1019
negative query cache lifetime, DNS, 430
Nessus package, 405
net use command (Windows 2000), 703

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1129

NetSaint package, 503–511
access control, 511
alerts, 511
components, 505
configuration files, 506
configuring, 506–511
daemon, 503
prerequisites, 503
services, 509
status maps utility, 511

Net-SNMP package, 488
access control, 495–496
client utilities, 490
configuration files, 494
trap daemon, 496

netstat command, 217, 1017
nettl command (HP-UX), 484
network address translation (NAT), 195
network addresses, reserved, 195
Network File System (see NFS)
Network Information Service (NIS), 328
Network Management Station (NMS), 485
network segment, 184
Network Time Protocol (see NTP)
network-based attacks, 373
networking

acknowledgments, 192
adapters, 184
backups and, 744
boot activities for, 148
collision rates, 477
configuring new hosts, 202
connectionless communication, 188
connectivity testing, 219, 480
daemons, 189
data unit names, 187
fragmentation, 188
hardware, 200
interface configuration, 205
interface names, 148, 203
layers, 186
management tools, 500
maximum cable lengths, 184
media, 182
monitoring, 327, 476–520
OSI reference model, 186
performance, 1017–1023
physical media, 182
ports, 189
protocols, 186
scripting with Stem, 932–942
security issues, 373–386

services, 189
sockets, 189
subnetting, 196
TCP/IP parameters, 1018–1019
testing, 219
time synchronization, 469
topologies, 185
traffic, 477–478
troubleshooting, 219
trust, 374

newaliases command, 528
newfs command (FreeBSD), 646
newfs command (HP-UX), 671
newfs command (Solaris), 655–656
newgrp command, 231

Linux version, 232
news media, 405
newsyslog package, 113
newtask command (Solaris), 1064
NFS, 695–702

automounter, 701–702
configuration files, 695
daemons, 148, 695
exporting filesystems, 698
hung processes and, 963
mount options, 697
mounting remote filesystems, 696–697
performance, 1020–1023
security issues, 699
TCP vs. UDP, 1022
Version 2 vs. 3, 1022

nfsd daemon, 696
nfsiod daemon, 695
nfsstat command, 1020
ngrep command, 327
nice numbers, 56, 964–965, 968, 970
Niemi, David, 690
NIS (Network Information Service), 328
Nixon, D. J., 1065
nmap package, 382
NMS (Network Management Station), 485
no command (AIX), 1019
nobody account, 235
nocanonify sendmail feature, 554
normal, recognizing, 391
npasswd command, 294–295
nroff text formatting system, 942, 944

directives, 944
nslookup command, 451
nss_ldap module, 321
ntop package, 479

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1130 | Index

NTP, 469–475
authentication, 472
clients, 471
concepts, 469
configuring, 471–473
daemon, 472
enabling, 472
huff ’n’ puff filter, 471
Internet server, 470
reference clocks, 472
servers, 469, 472–473

ntpd command, 473
ntpdate command, 473
ntpdc command, 472
ntpq command, 472
Nugent, Tony, 605
nullclient sendmail feature, 555
null-modem cables, 777
numeric file modes, 42, 44
NVRAM, 128

O
o(ther) access, 38
Object Data Manager (AIX), 67
octal, conversion to, 42
ODM (AIX), 67
Oetiker, Tobi, 512
offsite backup storage, 715
Okuji Yoshinori, 1040
Old Admirals, 280
one-time passwords (OTP), 341–343
Open Relay Behaviour-Modification System

(ORBS), 562
open relays, 561
Open Shortest Path First (OSPF)

protocol, 454
Open Systems Interconnection (OSI)

Reference Model, 186
OpenBSD team, 376
OpenLDAP, 314–328

access control, 323–325
configuration files, 314, 322
configuring, 317
conversion tools, 320
/etc/nsswitch file, 321
installing, 316
Kerberos and, 326
migration scripts, 321
name service switch file, 321
PAM and, 321
password file, converting, 320
prerequisites, 316

SASL and, 326
schema directory, 316
searching, 318
securing, 326
SSL and, 326
TLS and, 326
user accounts, converting, 320
user authentication via, 319–322

OpenSSH, 376
OPIE package, 341–343

configuration files, 342
PAM module, 342

opiekey command, 342
opiepasswd command, 341
/opt directory, 70
optimizating performance (see performance)
OSTYPE macro, 549
OTP (one-time passwords), 341–343
outline fonts, 879
ownership of files, 33

P
pac command, 1066–1067
packages, 463

Amanda, 745
anacron (Red Hat Linux), 90
Angel Network Monitor, 501
Anomy Sanitizer, 609
building from source code, 121–125
bzip2, 123
cbw, 363
Cfengine, 921
coolmail, 614
COPS, 401
crack, 299
Cricket, 517–519
elm, 532
epm, 116
Expect, 911
fetchmail, 596–598
grepmail, 615
grub, 136
HylaFAX, 799
install locations, 70–71, 73, 120
Internet archives, 126
ISC DHCP, 210
jail (FreeBSD), 89
john, 297
Linuxconf, 22
logrotate (Linux), 114
management utilities, 115
mh, 533

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1131

modutils (Linux), 1044
mtools, 690
mutt, 532, 534
NetSaint, 503–511
Net-SNMP, 488
newsyslog, 113
nmap, 382
npasswd, 294
ntop, 479
OpenLDAP, 314
OPIE, 341–343
periodic (FreeBSD), 90, 97
Perl, 899
pgp4pine, 536
pine, 534
plod, 31
Postfix, 579–596
procmail, mail filtering, 599
replacing vendor versions, 421
RRDtool, 512–516
RRGrapher, 516
Saint, 403
saintmap, 511
Samba, 703
sendmail, 542–578
Stem, 932–942
sudo, 9
swatch, 114
syslinux (Linux), 1042
system administration tools, 15
Tripwire, 399
ttmkfdir, 884
upacct, 1065
USB (Linux), 810
VNC, 29

packet filtering, 384–385
packets, 187

collecting, 484
maximum segment size, 1018
monitoring, 327
sniffers, 481–484

PADL software, 320
Paganini, Marco, 501
page faults, 979
pagesize command, 982
paging, 979–980

demand, 981
spaces, 145
undesirable, 980, 985

paging spaces, 995–1001
activating, 997–998
amount needed, 995–996

configuration files, entries for, 997–998
creating, 998
files, 998
listing, 896, 996
managing, 995–1001
page files, 995
priorities (Linux and HP-UX), 1000
removing, 1000–1001

PAM, 248, 302–313
account entries, 302
auth entries, 302
components, 302
configuration files, 302, 312
defaults, 306
entry types, 302
environment variables, setting, 307
/etc/pam.conf, 303
/etc/pam.d directory, 302
/etc/security directory, 303
examples, 303, 305
Kerberos and, 307
Linux modules, 306–311
MD5 passwords in, 311
modules, 302, 304, 306
OpenLDAP and, 321–322
optional keyword, 303
other service, 306
outcome keywords, 303
password entries, 302
required keyword, 303
requisite keyword, 303
resource limits, 307
services, 302–303
session entries, 302
sufficient keyword, 303

pam_access module, 306
pam_cleartext_pass_ok module

(FreeBSD), 312
pam_cracklib module, 307, 309–310
pam_deny module, 306
pam_dial_auth module (Solaris), 312
pam_env module, 307
pam_issue module, 307
pam_krb4 module, 307
pam_krb5 module, 307
pam_lastlog module, 307
pam_ldap module, 321–322
pam_limits module, 307
pam_listfile module, 308
pam_mail module, 308
pam_mkhomedir module, 308
pam_motd module, 307

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1132 | Index

pam_nologin module, 305, 308
pam_opie module, 342
pam_permit module, 306
pam_projects module (Solaris), 312
pam_pwcheck module, 307
pam_pwdb module, 306
pam_rhosts_auth module, 305, 309
pam_roles module (Solaris), 312, 373
pam_rootok module, 304, 309
pam_securetty module, 305, 309
pam_time module, 309–310
pam_unix module, 304–306, 311
pam_warn module, 306
pam_wheel module, 304, 309
paperwork, 942
parallel ports, 816
paranoia, 330, 398
parent process, 57
parity disks, 662
partitions, 634–637

disk, 61
DOS, 691
layouts and, 635
logical volumes and, 657
security and, 388
slices, 645
special files for, 63
swap, 63, 628

pass phrases, 366
passive SCSI terminators, 642
passwd command, 240, 254, 282, 289–290
password file, 223

converting to OpenLDAP, 320
disabling user accounts via, 254
monitoring, 391–392, 394
ownership, 393
permissions, 393
security of, 234

passwords
administering, 277–302
aging defaults, 296
aging settings, 287–288
algorithm-based selection, 283
assigned, 277
assigning, 240
bad, 291
boot loader, 133
changing, 7
checking for weaknesses, 291
controls, 287
cracking, 280, 291, 297–302
dialup, 343

disabling user accounts via, 254
effective, 277
firmware, 133
forced changes, 282
group, 229
history lists, 295
Internet, 285
large numbers of, managing, 282
lifetimes, 248, 287–288
maximum lengths, 241
MD5, 311
npasswd command, 294–295
one-time, 341–343
policies, 334
pre-expired (AIX), 241
protecting, 234
random, 277
remote access and, 375
required change times, 281
restrictions, 287
root, 7, 281, 283
security issues, 338
selecting, 283
selecting good, 277, 279
shadow file, 223, 225, 288
single-user mode, 132
SNMP community names, 488
testing, 297–302
triviality checking, 291, 297–302
web, 285

PATH environment variable, 246, 349
Pathologically Eclectic Rubbish Lister (see

Perl)
patience, 886
Patt, Yale, 619
pax command, 730

restores, 736
Payne, Jonathan, 125
Perchine, Denis, 270
performance

commands, 950
CPU, 963–978
disk I/O, 1001–1007
disk striping and, 1005
DNS, 1020
managing memory, 978–995
managing processes, 963–978
memory, 978–995
monitoring processes, 951–963
network, 1017–1023
NFS, 1020–1023
overview, 946

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1133

paging spaces, 995–1001
Postfix, 594–595
RAID and, 663
resource control mechanisms, 947
sendmail, 570–571
striped volumes and, 660
thrashing, 980
tuning process, 947–951

periodic package (FreeBSD), 90, 97
periodic program execution, 90
Perl, 899–910

documenting scripts, 942
graphical interfaces with, 909
POD, 942
reports with, 908
slogan, 901

Perl/Tk, 909–910
permissions, file (see protection, file)
persistence, 1001
PGP, 363, 366

electronic mail and, 535–536
pgp command, 364–365
pgp4pine package, 536
philosophy of system administration, 4
physical security, 336
physical volumes, 657
PID (process ID), 56
pine package, 534

IMAP and POP with, 541
ping command, 220, 479
ping of death, 480
piomkpq command (AIX), 855
pipes, named, 52
pkg_add command (FreeBSD), 116
pkgadd command (Solaris), 116
pkgchk command (Solaris), 116
pkg_delete command (FreeBSD), 117
pkg_info command (FreeBSD), 116
pkginfo command (Solaris), 116
pkgrm command (Solaris), 117
.plan files, 331
platters, disk, 635
plod package, 31
Plonka, Dave, 516
plotters, 814
pluggable authentication modules (see PAM)
pmadm command (Solaris), 791–792
pmbpage command, 817
policies

backup, 707
electronic mail, 531
security, 334

Pomeranz, Hal, 31
POP, 537–539

daemons, 538
user agents and, 541

pornography, 334
port monitors (Solaris), 789
port scanning, 382
Portable Batch System, 978
portmap daemon, 695
ports, assignments to services, 189–190
ports collection (FreeBSD), 120
POSIX ACLs, 359
Post Office Protocol (see POP)
Postfix, 579–596

access control, 589–592
address mapping, 586
blacklists, 589–590
canonical map, 586
client configuration, 584
commands, 582
components, 580–581
configuring, 583
daemons, 580–581
debugging, 595
delivery process, 581
DNS lookups and, 585
enabling, 581
goals, 579
installing, 582
LDAP and, 588
Linuxconf and, 593
local delivery agent, 585
logging, 595
mail hub configuration, 584
monitoring, 594–595
performance, 594–595
queues, 580
relaying, 585
relocated map, 587
security, 592–594
spam suppression, 589–590
SuSE Linux Version 7 and, 584
syslog and, 582
troubleshooting, 595
version, 579
virtual map, 587

PostScript
converting to, 816
previewing files, 817
printing, 817

Powell, Patrick, 864, 871
power failures, 175

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1134 | Index

pr command, 817
Practical Extraction and Report Language

(see Perl)
precautions, system script modification, 168
preening filesystems, 143
pre-login message, 14
Pretty Good Privacy (see PGP)
primary group, 231
primary name server, DNS, 419
printconfig command (Tru64), 827
PRINTER environment variable, 818
printers

access control, 824
adding, 826–827, 842, 857
default, 818, 831, 849
device classes, 836
interfaces, 836, 839
serial, 816
sharing with Windows 2000, 861
special files for, 816
starting and stopping, 820
testing, 817
USB, 808–809
virtual (AIX), 853

printing
accounting, 1051, 1066–1068
AIX (see AIX spooling system)
BSD style (see LPD spooling system)
configuration files, 816
enabling, 816
filters, 824
fonts and, 882
ifhp filter, 871
managing jobs, 818–819, 832, 849, 851
managing queues, 819–820, 833–834
remote, 816, 826, 840, 857
starting and stopping, 820
subsystem components, 815
System V style (see System V spooling

system)
troubleshooting, 858–860
user utilities, 817, 830
(see also CUPS; LPRng)

priocntl command (Solaris), 969, 975
priorities

paging spaces (Linux and HP-UX), 1000
process, 964–965, 968, 970

priority-based round-robin scheduling, 963
problems, detecting security, 391
problems (see troubleshooting)
/proc filesystem, 70, 956–958

Linux, 896, 957, 992

process accounting, 1049–1056, 1058–1063,
1065

system monitoring and, 409
process ID (PID), 56

files containing, 73
processes, 53–60

attributes of, 56
batch, 55
creation, 58
daemons, 55
foreground vs. background, 53
fork and exec, 57
getty, 785
idle, 958
init, 130
interactive, 53
killing, 962
life cycle, 57
managing, 963–978
monitoring, 951–963
network, 148
NFS hung, 963
nice numbers, 56, 964–965, 968, 970
paging, 979–980
parent, 57
priorities, 56, 964–965, 968, 970
/proc filesystem, 70
resource limits, 959, 961
run queues, 964
scheduling, 963–964, 970–977
server, 55
setuid/setgid access and, 58
signaling, 962
started at boot time, 146
types, 53
zombie, 963

procmail
avoiding loops, 605
configuring, 601
debugging, 613
discarding mail, 603
formail utility, 605
logging, 613
pipes and, 604
recipes, 601–602
security scanning, 609, 613
sendmail and, 552
sorting mail with, 602
spam suppression, 607–609
troubleshooting, 613

products (HP-UX), 119
professionalism, 1069

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1135

.profile files, 241
example, 243

profiles, authorizations and (Solaris), 370,
372

profiles command (Solaris), 372
projadd command (Solaris), 1063
projdel command (Solaris), 1063
.project files, 331
projects command (Solaris), 1064
projects (Solaris), 1063

PAM and, 312
projmod command (Solaris), 1063
promiscuous relaying, 561
protected password database (HP-UX and

Tru64), 227, 255, 289
protection, file, 36, 39, 348
protocols

ARP, 188
CIFS, 703
ICMP, 480
IMAP, 537–539
IP, 188
IPP, 874
networking, 186
NTP, 469
OSPF, 454
POP, 537–539
RIP, 454
routing, 453
SMTP, 524
SNMP, 484
SSH, 377
stacks, 186
statistics per, 478
TCP, 186, 188
UDP, 186, 188

prpwd command (HP-UX and Tru64), 228
prtconf command (Solaris), 1046
prudence, 421
ps command, 952, 965
pseudo users, 222
pseudo-terminal devices, 767
pstat command (FreeBSD), 896, 996
pstree command, 954
PTR records, DNS, 429, 432
ptree command (Solaris), 954
public key encryption, 363
public key servers, 363
pump command (Linux), 211
Purdue University, 399
pvcreate command

HP-UX, 670
Linux, 681

pvdisplay command (HP-UX), 672
pwck command, 392
pwdadm command (AIX), 282
pwdck command (AIX), 392

Q
qadm command (AIX), 851
qcan command (AIX), 850
qchk command (AIX), 849
qdaemon daemon (AIX), 848, 852
qhld command (AIX), 851
QIC tape, 717
qmov command (AIX), 850
quantum, 964
queuedefs configuration file, 977
QUEUE_DIR macro, 570
queues

HylaFAX, 799
Postfix, 580
printing, 821, 837, 849
process run, 964

QUIT signal, 963
quot command, 1009
quotacheck command, 146, 1015
quotaoff command, 1015
quotaon command, 1015
quotas, 146, 1012–1016
quotation marks, sendmail and, 548

R
rabbits, 338
r(ead) access, 36
RAID, 661

levels, 661
performance characteristics of, 663
RAID 0, 661
RAID 0+1, 662
RAID 1, 661
RAID 10, 662
RAID 3, 661
RAID 5, 661–662
RAID1+0, 662

raidstart command (Linux), 683
raidstop command (Linux), 683
Rand, Dave, 512
random passwords, 277
Raymond, Eric, 596
RBAC (role-based access control), 366–373
rc*.d boot script directories, 160
RCS (revision control system), 422
reachability information, routing, 453

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1136 | Index

real group (AIX), 233
Realtime Blackhole List, 562
reboot command, 171
rebooting the system, 171
recognizing normal, 946
records, directory service, 315
recursive queries, DNS, 418
Red Hat Linux

anacron package, 90
/etc/profile.d directory, 247
routing, 455
system administration tools, 23
user manager tool, 271
.wmstyle file, 245

redhat-config commands (Red Hat
Linux), 23

redhat-config-users command (Red Hat
Linux), 271

redirect sendmail feature, 558
reference clocks, NTP, 472
refresh period, DNS, 430
Reiser filesystem (Linux), 652
Reiser, Hans, 652
reject command, 833
RELAY macros, 555
relay servers, DHCP, 458
RELAY_DOMAIN macro, 561
RELAY_DOMAIN_FILE macro, 561
relay_entire_domain sendmail feature, 554
relaying, mail, 561
remote access, 375
remote printing, 826, 840, 857

Samba, 860
with Windows 2000, 860

remote system administration
AIX, 20
HP-UX, 21
Solaris, 22

removing user accounts, 255–256
renice command, 968
repeaters, 201
repquota command, 1016
rescue disk (Linux), 764
reservations, DHCP, 458
resize2fs command (Linux), 651
resize_reiserfs command (Linux), 653
resolver, 214, 417

configuration files, 215
resource limits, 248, 959, 961

PAM, 307
soft vs. hard, 959

resource management
control mechanisms, 947
CPU, 963–978
disk, 1009–1016
disk space, 112
memory, 978–995

resource records, DNS, 428
responsibilities, 1
restore command, 738–739, 741

interactive mode, 740
remote restores, 744

restores, 736, 741
remote, 744

restricted shells, 239, 553
restvg command (AIX), 762
retensioning tapes, 723
retiring user accounts, 255
retrieval agents, mail, 522
retrieving, mail, 596
retry interval, DNS, 430
reverse lookup zones, 418
reverse zone files, 432
reversibility, 4
revision control systems, 422
RG-11 coax, 183
RG-58 coax, 183
RGID (real group ID), 57
.rhosts files, 375
RIP (Routing Information Protocol), 454
RJ-45 connector, 182
rlogin command (PAM configuration

file), 305
rmdev command (AIX), 856
rmgroup command (AIX), 264
rmmod command (Linux), 1045
rmps command (AIX), 1001
rmque command (AIX), 856
rmquedev command (AIX), 856
rmt daemon, 744
rmuser command

AIX, 264
FreeBSD, 262

rndc command, 450
role-based access control (RBAC), 366–373

AIX, 368–370
Solaris, 370, 372–373

roles
AIX, 369
Solaris, 312, 370

roles command (Solaris), 372

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1137

root, 6, 235
history, command, 409
login location restrictions, 309
password, 7, 283
role-based access control and, 366
running one command as, 9
security and, 338
selective access to, 10
setuid to, 352
subdividing privileges of, 366

root directory (/), 33
root domain, 415
root hints file, DNS, 427
root volume group (rootvg), 663
rotating log files, 112–113
route command, 216

variations, 216–217
routed daemon, 454–455

enabling, 455
routers, 201

area border, 454
routine, adherence to, 401
routing

algorithms, 453
configuration files, 218–219
configuring, 454–457
dynamic, 216, 453
interior vs. exterior protocols, 453
minimal, 453
reachability information, 453
static, 216, 453
tables, 217, 479
types, 453

Routing Information Protocol (RIP), 454
RPC daemons, 148
rpc.lockd daemon, 696
rpc.mountd daemon, 695
rpc.nfsd daemon, 695
rpc.statd daemon, 696
rpm command (Linux), 116
rrdtool command, 513
RRDtool package, 512–516

Cricket and, 517
databases, 512
graphs, 513–516
round-robin archive data, 513

RRGrapher package, 516
RS-232 cables, 776
RS-232 standard, 776–777, 779–780
RUID (real user ID), 56

run levels, 153
changing, 154–155
default, 154

S
s access, 43–44
S files, 160
sa command, 1054–1056
sac daemon (Solaris), 789
sacadm command (Solaris), 790
SAGE, 1069
Saint package, 403–404
saintmap package, 511
Salmi, Timo, 609
sam command (HP-UX), 20
SAM (HP-UX), 20

DHCP, 465
kernel building with, 1031–1033
package management, 117
printing, 846
serial ports, 769
user account management, 266

Samba, 703–706
authentication, 705
configuration files, 703
daemons, 148
home directories and, 704
printcap files and, 861
printing with, 860–863
security, 705
shares, 704

sandboxing, 88
sendmail, 565

sanitizer.pl script, 610
sar command, 1002
SASL

OpenLDAP and, 326
sendmail and, 566

Satan, 403
save text mode, 43
savecore command, 144
savecrash command (HP-UX), 144
savevg command (AIX), 761
/sbin directory, 68
scanning, port, 382
schedtune command (AIX), 971–972, 987
scheduled command execution, 90
scheduler, 963–964, 970–977

AIX, 970, 972
Solaris, 972–973, 975
Tru64, 975–976

scheduling priorities, 56

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1138 | Index

schemas
LDAP, 316

user authentication, 319
SNMP MIBs, 486

scopes, DHCP, 457
Scotland, 416
scp command, 377
screen captures, 817
scripts

boot, 131, 140, 146
debugging, 898–899
examples, 886–898
Expect, 911–919
ipcalc.pl, 198
migrate_passwd.pl (OpenLDAP), 321
mkuser.sys (AIX), 263
Perl, 899–910
power failure, 175
precautions before modifying, 168
testing, 898–899
tricks in, 897–898
writing hints, 898
writing secure, 169

SCSI devices
controller changes and, 643
daisy chain, 642
differential, 639–640
maximum cable lengths, 640
terminators, 642
versions, 640
wide, 640

SCSI disks, 64, 639
search paths, 59, 349
second, definition of, 470
secondary authentication programs

(AIX), 344
secondary group memberships, 230
secondary name servers, DNS, 419
secure DNS, 443
secure shell, 376
Security Administrator’s Integrated Network

Tool (see Saint)
security facilities, 339
security group, 368
security issues

backup media, 337
backups, 413
boot-related, 145
checksums, 397
chroot, 88
common problem types, 331
convenience, 333

cron, 100
dialup access, 343
disk partitions, 388
DNS, 447
electronic mail, 528, 567, 609, 613
encryption, 362
encryption keys, 366
file access, 34, 348, 394
fsck, running, 398
group writable directories, 350
groups and, 34, 236
handling breaches, 405
hardening systems, 387–391
important files and directories, 394
inetd daemon, 378
investigating problems, 406–413
lines of defense, 336
media coverage of, 405
network, 373–386
NFS, 699
ongoing monitoring, 391–413
password file, 234, 338, 391
password quality, 277, 291
physical security, 336
Postfix, 592–594
removing user accounts, 256
Samba, 705
sandboxing, 88
SANS Top 20, 404
search paths, 349
sendmail, 565, 567
services, TCP/IP, 378
setuid/gid access, 56, 351–353
shell escapes, 11, 240, 352
single-user mode password, 132
smart cards, 340
SNMP, 499
system shutdown, 171–172
systemwide initialization files, 247
terminal lines, 784
user education, 335
vulnerability scanning, 401–405
world writable directories, 350
writing scripts and, 169

security mailing lists, 374
security policies, 334
segments, network, 184, 200, 478
segments (network data unit), 187

maximum size, 1018
Seltzer, Margo I., 619
sendfax command, 801

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1139

sendmail, 542–578
access control, 562
address mapping, 556
address translation mode, 574
addressing options, 556
blacklists and, 562
Build script, 550
client configuration, 548, 555
components, 544
configuration files, 546
configuring, 547–571
cw file, 550
daemon, 544, 546, 567
database engines, 557
debugging, 574–575
default user, 565
dnl, 548
DNS lookups and, 554
enabling, 544
/etc/mail/local-host-names file, 550
FEATUREs (see FEATURE macros)
LDAP and, 557
local mailers, 552
logging, 571–572
macros, 576–578
mail hub configuration, 550, 555
mailers, 552
mail.local program, 553
maintenance, 569
masquerading, 551
monitoring, 568–570
multiple queues, 570
null client, 555
performance, 570–571
PID file, 546
privacy options, 566
procmail and, 552
quotation marks, odd, 548
redirecting mail, 558
relaying, 561
SASL, 566
security, 565
services switch file, 560
smrsh program, 553
spam, suppressing, 560
split, 567
statistics, 569
submission agent, 567
syslog and, 546
timeouts, 571
troubleshooting, 571–576

versions, 543
virtual domains, 559

sendmail.cf configuration file, 547
building, 550

serial cables, 780
serial lines, 766–798

access control, 796
adding new devices, 776
configuration files, 782–788
configuring, 781
printers and, 816
root access to, 796
secure, 784
setting characteristics of, 773, 775
Solaris handling of, 789–794
special files for, 766–767
troubleshooting, 794

serial numbers, DNS, 430
Server Message Block (SMB) protocol, 703
server processes, 55
server selection (SRV) records, DNS, 431
servers (see daemons)
Service Access Facility (Solaris), 789–794

commands, 790
service advertisement (SRV) records,

DNS, 429
services

network, 189
port number assignments, 189

services, PAM, 302
setacl command (Tru64), 361
setfacl command

Linux, 361
Solaris, 361

setgid access
monitoring files for, 396
programs, 58, 351–353

writing secure, 352
setgid bit, 43

setgroups command (AIX), 233–234
setld command (Tru64), 116
setuid access

monitoring files for, 396
nosuid filesystem option, 627
programs, 58, 351–353

writing secure, 352
setuid bit, 43

severity levels (syslog), 102
Seward, Julian, 123
sftp command, 377
sftp-server daemon, 377
shadow group file (Linux), 223, 232

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1140 | Index

shadow password file, 223, 225, 288
security of, 234

shared libraries, 70–71
Sharpe, Randall K., 614
shell escapes, 11, 240, 352
shells, 238

initialization files, 241
prejudices about, 886
restricted, 239, 553
secure, 376

showmount command, 700
shutdown command, 170

aborting pending, 173
BSD vs. System V syntax, 170
BSD-style, 171
Linux version, 172
System V–style, 170

side effects, unintended, 331, 349
siggen command, 400
signals, 963

CONT, 963
INT, 963
KILL, 963
numbers of, 962
QUIT, 963
STOP, 963
TERM, 962

signatures, digital, 364
Silicon Graphics, 799
silos, 721
Simple Authentication and Security Layer

(SASL)
OpenLDAP and, 326
sendmail and, 566

Simple Mail Transport Protocol (see SMTP)
Simple Network Management Protocol (see

SNMP)
single-user mode, 131

password protection of, 132
run level for, 153

skeleton initialization files, 242
S/Key package, 341
slapd daemon, 314

configuration file, 316–317
securing, 326

slave name servers, DNS, 419
configuring, 425
updates to, 437–438, 440–441

slices, 645
slow convergence, RIP, 454
smart cards, 340
SMART_HOST macro, 555

SMB protocol, 703
smbclient command, 705
smb.conf configuration file, 703
smbstatus command, 704
SMC (Sun Management Console), 22

user account management, 272
SMIT (AIX), 19

disabling services with, 382
fastpaths, 19
package management, 117
printing configuration, 849
queue configuration, 855
role-based access control, 370
user account management, 265

smit command (AIX), 17
Smith, Keith A., 619
smitty command (AIX), 19
smrsh program, sendmail, 553

procmail and, 554
smrsh sendmail feature, 553
SMTP

commands, 572
proxies, 524
retrieving mail using, 596

smtpd daemon, 524
smtpfwdd daemon, 524
snap command (AIX), 175
SNMP, 484–500

agents, 493
community names, 488
concepts, 484
configuration files, 489
enabling, 489–490
implementations, 489
MIB files, 489
namespace, 486
Net-SNMP, 488
network management station, 485
NMS, 485
operations, 489
security and, 499
traps, 489, 492
versions, 485

snmpconf command, 495
snmpd daemon, 493
snmpget command, 491
snmpinfo command (AIX), 493
snmp_request command (Tru64), 493
snmpset command, 492
snmptranslate command, 490
snmptrap command, 492
snmptrapd daemon, 496

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1141

snmpwalk command, 492
snoop command (Solaris), 483
social engineering, 346
sockets, 51

TCP/IP, 189
sofficer role (Solaris), 372
soft updates, 619–620

enabling, 646
software packages (see packages)
Solaris

accounting, 1058
ACLs, 359
adding disks, 653
AdminSuite, 22
admintool, 22
boot images, location of, 764
boot scripts, 163
booting, 137
buffer cache, 993
CD-ROMs on, 694
concatenated volumes, 677
DHCP, 212, 465
dialup passwords, 343
/etc/default directory, 162–163
extended accounting, 1063–1065
failed disk, replacing, 679
filesystem types, 620
kernel location, 129
kernel parameters, tuning, 993
LDAP support, 314
listen port monitor, 789
logical volume manager, 677
media handling facility, 694
memory, as data cache, 993
mirrored volumes, 678
modules, kernel, 1046
network files, DHCP, 466
network interface names, 203
NFS, 700
package management, 116
PAM modules, 311
password controls, 289–290
port monitors, 789
Print Manager, 847
printing features, 843
priority classes, 973
profiles, 370
projects, 312, 1063–1065
RAID 5 volumes, 679
role-based access control, 370, 372–373
roles, 312
routing, 455

scheduler, 972–973, 975
security facilities, 339
serial lines, 789–794
single-user mode password, 133
SMC, 22
SNMP, 497
soft partitions, 677
software archives, 126
static routes, 219
striped volumes, 678
syslog enhancements, 106
TCP/IP parameters, 1019
ttymon port monitor, 789
tuning tools, 950
USB devices, 813
user account controls, 252
user account management, 272
virtual memory manager, 993

Solaris commands
acctadm, 1064
auths, 373
dispadmin, 973, 975
eeprom, 133
fdformat, 690
floppy disk, 690
format, 653–654
from, 615
getdev, 896
getfacl, 361
kstat, 993
logical volume manager, 677–680
lpget, 842
lpset, 842
lpusers, 838
makewhat, 76
metadb, 677
metainit, 677
metaparam, 678
metareplace, 679
metattach, 678
mkfile, 999
modinfo, 1046
newfs, 655–656
newtask, 1064
pkgadd, 116
pkgchk, 116
pkginfo, 116
pkgrm, 117
pmadm, 791–792
priocntl, 969, 975
profiles, 372
projadd, 1063

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1142 | Index

Solaris commands (continued)
projdel, 1063
projects, 1064
projmod, 1063
prtconf, 1046
ptree, 954
roles, 372
sacadm, 790
SAF, 790
setfacl, 361
snoop, 483
sttydefs, 793
swap, 896, 996, 1001
sysdef, 1046
ufsdump, 732
volcheck, 690

Solaris configuration files
/etc/default/dhcpagent, 212
/etc/default/login, 252
/etc/default/passwd, 297
/etc/defaultrouter, 219
/etc/default/su, 8
/etc/default/sulogin, 133
/etc/dfs/dfstab, 700
/etc/hostname.*, 206
/etc/inet/hosts, 214
/etc/inet/netmasks, 204
/etc/nodename, 206
/etc/printers.conf, 842
/etc/project, 1063
/etc/rmmount.conf, 694
/etc/saf/_sactab, 789
/etc/security/auth_attr, 370
/etc/security/exec_attr, 372
/etc/security/prof_attr, 370
/etc/snmp/conf, 497
/etc/system, 896, 1046
/etc/ttydefs, 792
/etc/user_attr, 372
/etc/vfstab, 629, 696
/etc/vold.conf, 693
network interface, 205
/usr/share/man/man.cf, 75
/var/dhcp/dhcptab, 465

song lyrics, 280
Soules, Craig A. N., 619
source code, 73

building packages from, 121–125
Spafford, Gene, 399
spam, suppressing, 560, 599

Postfix, 589–590
procmail and, 607–609

special files, 47
block vs. character, 63
common names, 65
creating, 643
disk partitions, 63
floppy disks, 689
major and minor numbers, 61, 644
parallel ports, 816
printers, 816
serial lines, 766–767
tapes, 723–725
USB devices, 807

Spell My Name with an S, 350
split DNS, 446
spool directories, 816

electronic mail, 524, 528
HylaFAX, 799
location, 73
printing, 824

spooling (see printing)
SRC (AIX), 148
ssh command, 376
SSH protocol 2, 377
sshd daemon, 376
stackers, 721
stacks, protocol, 186
/stand/build/system configuration file

(HP-UX), 1031
/stand directory (FreeBSD), 70
Star Trek, 279
start of authority (SOA) records, DNS, 428,

430
BIND 8 vs. 9, 430
serial numbers in, 430

startsrc command (AIX), 475
statd daemon, 695
static routes, 216

files defined in, 218–219
static routing, 453
stealth name servers, DNS, 419
Stein, Christopher A., 619
Stem, 932–942
Stewart, Al, 280
sticky bit, 43
Stokely, Celeste, 766
STOP signal, 963
stratum 1 servers, NTP, 469
streams, 187
striped volumes, 660

performance tips, 660
stty command, 773, 775
sttydefs command (Solaris), 793

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1143

stub name servers, DNS, 419
su command, 6, 9

log files, 104, 409
PAM configuration file, 303–304
testing user accounts with, 253

subdomains, DNS, 433–434
submission agents, mail, 532, 567
subnet masks, 196
subnets, 196

DHCP and, 458
subproducts (HP-UX), 119
sudo package, 9

configuration file, 10
sulogin utility (Linux), 133
Sun Management Console (SMC), 22
super daemon, TCP/IP, 377
supernets, 196
superuser (see root)
SuSE Linux

harden_suse command, 339
package management, 116
routing, 455
security facilities, 339
SuSEconfig, 24
WINDOWMANAGER environment

variable, 246
YAST2, 24

SuSEconfig script, 24
swap command (Solaris), 896, 996, 1001
swap partitions, 63, 145, 628, 995

crash dumps saved to, 144, 175
managing, 995–1001
placement of, 638
(see also paging spaces)

swapinfo command (HP-UX), 896, 996
swapon command, 145, 896, 996, 998–999
swapping, 979
swatch package, 114

TCP Wrappers and, 379
swinstall command (HP-UX), 116
switches, 201

full-duplex, 478
selecting, 202

swlist command (HP-UX), 116
swremove command (HP-UX), 116
symbolic file modes, 42
symbolic links, 48

automounter confusion, 701
context-dependent (Tru64), 50

sync command, 172
Sys Admin magazine, 447, 813, 1023
sys group, 235

sysconfig command (Tru64), 896, 975, 1019,
1030

sysctl command (FreeBSD), 896, 990, 1019,
1029

sysdef command (HP-UX), 1033
sysdef command (Solaris), 1046
sysinstall command (FreeBSD), 25
syslinux package (Linux), 1042
syslog, 101–108

boot messages and, 139
components, 101
configuration file, 102
cron and, 95
daemon, 101
enabling, 101
enhancements, 104, 106–107
facilities, 102
fetchmail and, 597
logger utility, 107
PID file, 101
Postfix and, 582
sendmail and, 546
severity levels, 102
SNMP traps and, 493
TCP Wrappers and, 379

SysMan (Tru64), 26
package management, 117

system administration tools, 15
admintool (Solaris), 22
DHCP, 208, 460, 463, 465, 468
Gnome, 26
KDE, 26
kernel building, 1031–1033
Linuxconf (Linux), 22
package management, 115
password aging settings, 290
printer configuration, 827, 829, 846, 849,

855
Red Hat Linux, 23
SAM (HP-UX), 20
SMC (Solaris), 22
SMIT (AIX), 17
SNMP, 490
sysinstall (FreeBSD), 25
SysMan (Tru64), 26
user account management, 256–275
VNC, 29
vulnerability scanning, 401–405
WSM (AIX), 19
Ximian setup tools, 27
YAST2 (SuSE Linux), 24, 812

system calls, insecure, 353

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1144 | Index

system console, 767
access control, 796
limiting access to, 337

system group, 235
system hardening, 387–391
system initialization scripts, 131
system integrity checking, 399
system messages, 101
System Resource Controller (AIX), 148

network daemons and, 475
system shutdowns, 169

fake, 172
system user accounts, 235
System V filesystem, 617
System V spooling system, 829–847

access control (Solaris), 843
adding printers, 842
classes, 836
daemon, 834
destinations, 831
device classes, 831, 836
filters (Solaris), 844
forms (Solaris), 844
interfaces, 836
managing print jobs, 832
managing printers, 835–836
managing queues, 833–834, 836
modifying pending jobs (HP-UX), 845
moving jobs between queues, 833
queue priorities, 837
remote printing, 840, 842
starting and stopping, 834
user commands, 831
variations, 840, 842

system_prep command (HP-UX), 896, 1031
systemwide initialization files, 246

customizing, 247

T
T junction, 183
t (save text) access, 43
TAI (International Atomic Time), 470
tail command, 89
tapes, 717–718

accessing via network, 744
data grade, 717
data incompatibilities, 741
default drive, 725
disadvantages of, 718
retensioning, 723
rewinding, 735
skipping files on, 735

special files for, 723–725
utilities, 735

tar command, 85, 727–729
GNU version, 729
restores, 736
Solaris enhancements to, 728

Taylor, David, 532
TCP Wrappers, 378, 381
tcpd daemon, 378–379
/tcb directory, 71
tcpdump command, 481
TCP/IP

layers, 186
maximum segment size (MSS), 1018
parameters, 1018–1019
sample conversation, 191
socket buffer size, 1018

tcsh, 244
initialization files, 241

telinit command, 154
temporary mount point (/mnt), 70
TERM environment variable, 769, 772
TERM signal, 962
termcap, 770
TERMCAP environment variable, 772
terminal type, setting, 242
terminals, 769

initializing, 772
resetting, 775
troubleshooting, 794

terminators
coaxial cable, 183
SCSI, 642

terminfo, 770–771
directories, 769

testparm command, 704
thankless job, 1052
theft, 337
There’s more than one way to do it, 901
Thinnet cable, 183
thrashing, 980
threats, 332
tickets, Kerberos, 348
time, authoritative, 469
time bombs, 338
time series data, 512
time slice, 964
time synchronization, 469
time tracking, 31
timeout period, DNS, 430
time-to-live value, DNS, 428
TLDs (top-level domains), 415–416

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1145

TLS
OpenLDAP and, 326
sendmail and, 566

tokens, 340
top command, 956

variations of, 956
top-level domains, 415–416
topologies, network, 185
traceroute command, 480
traffic, network, 477–478
transaction logs, filesystem, 619
transitive trust, 376
transmission control protocol (TCP), 188

(see also TCP/IP)
transmitting station identifier (fax), 803
transport agents, mail, 521, 542–596
trap doors, 338
traps, SNMP, 489, 492

syslog and, 493
tripwire command, 400
Tripwire package, 399–401

configuration file, 400
reports, 400

triviality checking, password, 291, 297–302
PAM, 307, 309–310

Troan, Eric, 114
troff text formatting system, 944
trojan horses, 338
troubleshooting

booting problems, 175
crashes, 174
DNS, 451
file access, 45
hardware problems, 176
networking, 219
Postfix, 595
printing, 858–860
procmail, 613
scripts, 898–899
sendmail, 571–576
serial lines, 794
software builds, 121
terminals, 794

Tru64
ACLs, 359, 362
adding disks, 672
AdvFS filesystem, 672
boot scripts, 164
booting, 137
buffer cache, 994
DHCP, 212, 467
disk group, 674

disk striping, 674
/etc/rc.config configuration file, 133
filesets, 673
filesystem types, 620
hardware error messages, 110
kernel, building, 1026–1028
kernel location, 129
kernel parameters, tuning, 975, 994,

1030–1031
Logical Storage Manager, 674–676
logical volume manager, 672
LPD spooling system, 827
memory, as data cache, 994
mirrored volumes, 676
network interface names, 203
NFS and, 700
package management, 116
password controls, 289–290
password history lists, 296
password triviality checks, 293
plex, 674
protected password database, 227
RAID 5 volumes, 676
routing, 455, 457
scheduler, 975–976
security facilities, 339
serial lines, 797
single-user mode password, 133
SNMP, 499
software archives, 126
static routes, 219
striped volumes, 676
subdisk, 674
swap partitions, 628
syslog enhancements, 107
TCP/IP parameters, 1019
tuning tools, 950
USB devices, 807
user account controls, 253
/usr/skel directory, 242
virtual memory manager, 994

Tru64 commands
btcreate, 765
cdslinvchk, 51
dhcpconf, 212
dia, 111
dsfmgr, 896
dxaccounts, 273
dxkerneltuner, 975, 1031
edauth, 290
fverify, 116
getacl, 361

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1146 | Index

Tru64 commands (continued)
logical storage manager, 675–677
lprsetup, 828
printconfig, 827
prpwd, 228
setacl, 361
setld, 116
snmp_request, 493
swapon, 896
sysconfig, 896, 975, 1019, 1030
sysman, 26
xjoin, 468

Tru64 configuration files
/etc/binlog.conf, 110
/etc/join/client.pcy, 212
/etc/join/dhcpcap, 467
/etc/join/nets, 467
/etc/join/server.pcy, 467
/etc/netsvc.conf, 216
/etc/rc.config, 163
/etc/routes, 219
/etc/snmpd.conf, 499
/etc/sysconfigtab, 628
network interface, 205

TrueType fonts, 879, 884
trust, network, 374

security issues with, 376
trusted computing base, 71, 227

integrity checking commands, 399
TrustedBSD project, 359, 367
tset command, 772
Tsirigotis, Panos, 380
$TTL directive, DNS, 429
ttmkfdir package, 884
tty command, 769
ttymon port monitor (Solaris), 789
tune2fs command (Linux), 650
tunefs command (FreeBSD), 646
tuning process, 947–951

caveats, 950
commands, 950
iterative nature, 950
temptations in, 951

tutelary deity, 55
tw.config configuration file, 400
twisted pair cable, 182
Type 1 fonts, 879

font files, 879
typical tasks, 1, 32, 521, 616

U
u(ser) access, 38, 44
U.C. Davis, 488
UCE (see spam, suppressing)
ucomm.sh command, 1065
UDP (User Datagram Protocol), 188
UFS filesystem, 618
ufsdump command (Solaris), 732
UID, 222–223

0, 235
assigning, 237
effective, 56, 351
real, 56
retired accounts, 255

ulimit command, 959
umask, 246
umask command, 42
umount command, 624, 630
unintended side effects, 331, 349
uninterruptable power supply (UPS), 175
Universal Serial Bus (see USB devices)
University of Delaware, 469
University of Maryland, 745
University of Michigan, 314
University of Washington, 534, 539
Unix domain sockets, 51
Unix filesystem layout, 68
UNIX Hater’s Handbook, 1023
unsolicited commercial email (see spam)
unusual capitalization, 279
upacct command, 1065
upacct package, 1065
UPS (uninterruptable power supply), 175
USB cables, 807

connectors, 780
USB devices, 807–813

special files for, 807
support for, 807

usbdevs command (FreeBSD), 809
usbmodules command (Linux), 810
usbutils package (Linux), 810
usbview package (Linux), 810
use_cw_file sendmail feature, 550
USENIX, 1070
user accounts

adding, 237, 257
attributes, 223, 248–253
automatic inactivation, 289
captive, 239
classes (FreeBSD), 250
controls, 248–253, 309
converting to OpenLDAP, 320

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1147

default attributes, 258
definition, 222
disabling, 254
dynamic group membership, 231
expiration dates, 289
GECOS field, 224
group memberships, 230
groups and, 222
home directories, 224, 241, 248, 308
initialization files, 241–242
locking, 254
login shells, 224, 238
maximum groups, 230
modifying, 258
nobody, 235
password file, 223
passwords, 240, 248, 277–302
primary group, 231
projects (Solaris), 1063
removing, 255–256, 259
resource limits, 248, 307
retiring, 255
root, 10
security issues, 338
standard, 235
system, 235
testing, 253
tools for managing, 256–275
user-private groups, 230–231

user agents, mail, 521, 532–537
IMAP and, 541
POP and, 541

user authentication (see authentication)
User Datagram Protocol (UDP), 188
useradd command, 257–258
userdel command, 259
usermod command, 254, 258, 282, 289
usernames, 222–223
user-private groups, 230–231
users

backups and, 731
communicating with, 12, 176
educating, 335, 346
electronic mail issues, 531
interacting with, 4
security awareness, 334–335
special requests, 830
when they leave, 281

/usr/bin directory, 71
/usr directory, 71
/usr/include directory, 71
/usr/lib directory, 71

/usr/lib/passwd/passwd.conf configuration
file, 294

/usr/lib/security/mkuser.default
configuration file (AIX), 262

/usr/lib/sendmail.d/bin directory, 553
/usr/lib/X11/fonts directory, 879
/usr/local directory, 71
/usr/local/share/snmp/snmpd.conf

configuration file, 494
/usr/lpp directory (AIX), 70
/usr/ports directory (FreeBSD), 120
/usr/sbin directory, 68
/usr/share directory, 72
/usr/share/man/man.cf configuration file

(Solaris), 75
/usr/share/skel directory (FreeBSD), 242
/usr/skel directory (Tru64), 242
/usr/src directory, 73
/usr/ucb directory, 73
UTC (Coordinated Universal Time), 470
utmp accounting file, 1052
UUCP, 552, 581

V
vacation command, 545, 614
van den Berg, Stephen, 599
vandalism, 332, 337
/var directory, 73
/var/adm/crash directory (HP-UX), 144
/var/adm directory, 73
/var/adm/pacct configuration file, 1058
/var/cfengine/inputs/cfagent.conf

configuration file, 923
/var/dhcp/dhcptab configuration file

(Solaris), 465
/var/log directory, 73
/var/log/lastlog file, 307
/var/run directory, 73
/var/spool directory, 73
/var/spool/hylafax directory, 799
/var/spool/hylafax/etc/FaxDispatch

configuration script, 804
/var/spool/hylafax/etc/hosts.hfaxd

configuration file, 806
/var/spool/mqueue directory, 528
varyonvg command (AIX), 664
Venema, Wietse, 374, 579
verifying, 141
verifying backups, 713
vgcreate command (HP-UX), 670
vgcreate command (Linux), 682
vgdisplay command (HP-UX), 672

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1148 | Index

vgextend command (HP-UX), 670
vgscan command (Linux), 681
views, DNS, 446
vigr command (Linux), 230
vinum command (FreeBSD), 685–687
vipw command, 145, 225
virtual domains, mail

Postfix, 587–588
sendmail, 559

virtual memory, 979–980
virtual memory manager, 987–995

AIX, 987–988, 990
FreeBSD, 990–991
HP-UX, 991–992
Linux, 992–993
Solaris, 993
Tru64, 994

virtues, 78, 401, 886, 1001
list of, 1070

VIRTUSER_DOMAIN_FILE macro, 559
virtusertable sendmail feature, 559
viruses, 338

electronic mail, 609, 613
visudo command, 12
Vixie, Paul, 93, 562
VMailer (see Postfix)
VMS, 32

search command, 901
vmstat command, 966, 982, 984–985
vmtune command (AIX), 989–990, 1006
VNC package, 29
vnconfig command (FreeBSD), 999
vncserver command, 30
vncviewer command, 30
volcheck command (Solaris), 690
vold daemon (Solaris), 690, 694
volume groups, 657
vulnerability scanning, 401–405

W
w(rite) access, 36–37
wall command, 13
Wall, Larry, 899
WAN (wide area network), 180
wander, 469
War Games, 330
warm boot, 127
wcomm.sh command, 1065
well-known ports, 189
wgrep utility, 901
wheel group, 8, 235
who command, 154

wide area network (WAN), 180
WINDOWMANAGER environment variable

(SuSE Linux), 246
Windows 2000, 431

fixmbr recovery console command, 1043
grub and, 1041
lilo and, 1038
net use command, 703
restoring the MBR, 1043
sharing filesystems with, 703
sharing printers with, 860–863

.wm_style file (Red Hat Linux), 245
World Wide Web, passwords and, 285
worms, 338
write command, 12
WSM (AIX), 19
wsm command (AIX), 19
wtmp accounting file, 1052

X
X Window System, 71

adding fonts to, 881
font management, 878
font path, 881
initialization files, 245
TrueType fonts and, 884
USB mice, 809–810

x (execute) access, 36
xargs command, 83
xbiff command, 614
XF86Config configuration file, 809–810, 881
xferfaxstats command, 802
xfs font server, 882
xfsft font server, 884
Ximian setup tools, 27
xinetd daemon, 380–381

TCP Wrappers and, 381
.xinitrc file, 245–246
xjoin command (Tru64), 468
xlock command, 7
xrpm command (Linux), 117
xstm command (HP-UX), 110
xwd command, 817
xyzzy, 278
X access, 41

Y
yast2 command (SuSE Linux), 24

package management, 117
Yeats, William Butler, 55

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1149

yes command, 919
Ylönen,Tatu, 376

Z
Zimmerman, Phil, 363
Zip drives, 640

as backup devices, 720
USB, 808

zombie processes, 963

zone files, DNS, 428
reverse, 432
serial numbers, 430
subnets and, 432

zone transfers, DNS, 437
incremental, 440–441

zones, DNS, 418
defining, 424

About the Author
Æleen Frisch has been a system administrator for over 20 years, tending a plethora
of VMS, Unix, and Windows systems over the years. Her current system administra-
tion responsibilities center on looking after a very heterogeneous network of Unix
and Windows NT/2000/XP systems. She is also a writer, lecturer, teacher, marketing
consultant, and occasional database programmer. She has written eight books,
including Essential System Administration (now in its third edition), Essential
Windows NT System Administration, and the Windows 2000 Commands Pocket
Reference (all from O’Reilly & Associates), and Exploring Chemistry with Electronic
Structure Methods (Gaussian, Inc.). Currently, she writes the “Guru Guidance”
column for Linux Magazine. She also writes poetry and is working on her first novel.

Æleen is a native Californian living in exile in Connecticut with her partner Mike and
her cats Daphne, Susan, Lyta, and Talia. She has a B.S. in Literature from Caltech
and a Ph.D. in Cultural Studies from Pitt. When she’s not writing technical books
and articles, marketing literature, or computer programs, she enjoys watercolor
painting and creating murder mystery games.

Æleen can be reached by email at aefrisch@lorentzian.com. Her home page is
http://www.aeleen.com. If you'd like to receive the free ESA3 newsletter, you can sign
up at http://www.aeleen.com/esa3_news.htm.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal featured on the cover of Essential System Administration, Third Edition,
is an armadillo. This insect-eating mammal is native to South America and has
spread through the southern United States. Unlike most insectivores, the armadillo
has teeth—rootless pegs set far back in its mouth. These teeth allow it to supple-
ment its diet of termites, scorpions, and other insects with snakes, poultry, fruit, and
eggs.

The armadillo’s name, “little armored thing,” was given to it by the Spanish when
they invaded the New World. This “armor” is an outer layer consisting of numerous
bony plates with a horny covering. This shell is hinged at the middle of the back,
allowing the front and hind sections freedom of movement. In some species, this
covering extends over the face and tail as well as the torso and limbs.

Armadillos range in size from the great armadillo, at 5 feet in length, to the fairy
armadillo, at 5 inches. The most common of the armadillos, the 9-banded armadillo,
is about the size of a house cat.

Leanne Soylemez was the production editor and copyeditor for Essential System
Administration , Third Edition. Sheryl Avruch, Jane Ellin, Colleen Gorman, and
Darren Kelly provided quality control. Æleen Frisch wrote the index.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe’s ITC Gara-
mond font.

David Futato designed the interior layout. This book was converted to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls,
and Mike Sierra that uses Perl and XML technologies. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is Lucas-
Font’s TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The note and warning icons were drawn by Christopher Bing.

The book also still benefits from the work that Sheryl Avruch, Nicole Gipson, Seth
Maislin, Kismet McDonough, Lenny Muellner, Kiersten Nauman, Dominic New-
man, Clairemarie Fisher O’Leary, Chris Reilley, Mike Sierra, Ellen Siever, Mary Anne
Weeks Mayo, Norm Walsh, and Frank Willison did on the second edition, and that
Kismet McDonough and Ellie Cutler performed on the first edition. Edie Freedman
designed the cover of the book, forever linking system administration and armadillos.

	Table of Contents
	Preface
	The Unix Universe
	Unix Versions Discussed in This Book

	Audience
	Organization
	Chapter Descriptions

	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Introduction to System Administration
	Thinking About System Administration
	Becoming Superuser
	Controlling Access to the Superuser Account
	Running a Single Command as root
	sudo: Selective Access to Superuser Commands

	Communicating with Users
	Sending a Message
	Sending a Message to All Users
	The Message of the Day
	Specifying the Pre-Login Message

	About Menus and GUIs
	Ups and Downs
	AIX: SMIT and WSM
	HP-UX: SAM
	Solaris: admintool and Sun Management Console
	Linux: Linuxconf
	Red Hat Linux: redhat-config-*
	SuSE Linux: YaST2
	FreeBSD: sysinstall
	Tru64: SysMan
	Other Freely Available Administration Tools
	The Ximian Setup Tools

	VNC

	Where Does the Time Go?

	The Unix Way
	Files
	File Ownership
	Displaying file ownership
	Who owns new files?
	Changing file ownership

	File Protection
	Types of file and directory access
	Access classes
	Setting file protection
	Beyond the basics
	Specifying numeric file modes
	Specifying the default file mode
	Special-purpose access modes
	Save-text access on directories
	Setgid access on directories
	Numerical equivalents for special access modes

	How to Recognize a File Access Problem
	Mapping Files to Disks
	Regular files
	Directories
	Special files: character and block device files
	Links
	Sockets
	Named pipes
	Using ls to identify file types

	Processes
	Interactive Processes
	Batch Processes
	Daemons
	Process Attributes
	The life cycle of a process
	Setuid and setgid file access and process execution
	The relationship between commands and files

	Devices
	An In-Depth Device Example: Disks
	Fixed-disk special files

	Special Files for Other Devices
	Commands for listing the devices on a system
	The AIX Object Data Manager

	The Unix Filesystem Layout
	The Root Directory
	The /usr Directory
	The /var Directory

	Essential Administrative Tools and Techniques
	Getting the Most from Common Commands
	Getting Help
	Changing the search order
	Setting up man –k

	Piping into grep and awk
	Finding Files
	Repeating Commands
	Creating Several Directory Levels at Once
	Duplicating an Entire Directory Tree
	Comparing Directories
	Deleting Pesky Files
	Putting a Command in a Cage
	Starting at the End
	Be Creative

	Essential Administrative Techniques
	Periodic Program Execution: The cron Facility
	crontab files
	Adding crontab entries
	cron log files
	Using cron to automate system administration
	cron security issues

	System Messages
	The syslog facility
	Configuring syslog
	Enhancements to syslog.conf
	The logger utility

	Hardware Error Messages
	The AIX error log

	Administering Log Files
	Managing log file disk requirements
	Monitoring log file contents

	Managing Software Packages
	HP-UX: Bundles, products, and subproducts
	AIX: Apply versus commit
	FreeBSD ports

	Building Software Packages from Source Code
	mtools: Using configure and accepting imperfections
	bzip2: Converting Linux-based make procedures
	jove: Configuration via make file settings
	Internet software archives

	Startup and Shutdown
	About the Unix Boot Process
	From Power On to Loading the Kernel
	Booting to Multiuser Mode
	Booting to Single-User Mode
	Password protection for single-user mode
	Firmware passwords

	Starting a Manual Boot
	AIX
	FreeBSD
	HP-UX
	Linux
	Tru64
	Solaris
	Booting from alternate media

	Boot Activities in Detail
	Boot messages
	Saved boot log files
	General considerations
	Preliminaries
	Preparing filesystems
	Checking and mounting the root filesystem
	Preparing other local filesystems
	Saving a crash dump
	Starting paging
	Security-related activities
	Checking disk quotas
	Starting servers and initializing local subsystems
	Connecting to the network
	Housekeeping activities
	Allowing users onto the system

	Initialization Files and Boot Scripts
	Initialization Files Under FreeBSD
	Initialization Files on System V Systems
	System V run levels
	Using the telinit command to change run levels
	Initialization files overview
	The init configuration file
	The rcn initialization scripts
	Boot script configuration files
	File location summary
	Solaris initialization scripts
	Tru64 initialization scripts
	Linux initialization scripts
	AIX: Making System V work like BSD

	Customizing the Boot Process
	Adding to the boot scripts
	Eliminating certain boot-time activities
	Modifying standard scripts
	Guidelines for writing initialization scripts

	Shutting Down a Unix System
	The System V shutdown Command
	HP-UX shutdown security

	The BSD-Style shutdown Command
	The Linux shutdown Command
	Ensuring Disk Accuracy with the sync Command
	Aborting a Shutdown

	Troubleshooting: Handling Crashes and Boot Failures
	Power-Failure Scripts
	When the System Won’t Boot
	Bad or flaky hardware
	Unreadable filesystems on working disks
	Damage to non-filesystem areas of a disk
	Incompatible hardware
	System configuration errors

	TCP/IP Networking
	Understanding TCP/IP Networking
	Media and Topologies
	Identifying network adapters

	Protocols and Layers
	Ports, Services, and Daemons
	Administrative Commands
	A Sample TCP/IP Conversation
	Names and Addresses
	Subnets and Supernets
	Introducing IPv6 host addresses

	Connecting Network Segments

	Adding a New Network Host
	Configuring the Network Interface with ifconfig
	Ethernet interface names
	Other uses of ifconfig
	ifconfig on Solaris systems
	Interface configuration at boot time

	Dynamic IP Address Assignment with DHCP
	AIX
	FreeBSD
	HP-UX
	Linux
	Solaris
	Tru64

	Name Resolution Options
	The /etc/hosts file
	Configuring a DNS client
	The name service switch file

	Routing Options
	AIX
	FreeBSD
	HP-UX
	Linux
	Solaris
	Tru64

	Network Testing and Troubleshooting

	Managing Users and Groups
	Unix Users and Groups
	The Password File, /etc/passwd
	The Shadow Password File, /etc/shadow
	The FreeBSD /etc/ master.passwd file
	The protected password database under HP-UX and Tru64

	The Group File, /etc/group
	User-private groups

	Dynamic Group Memberships
	The Linux group shadow file, /etc/gshadow
	The HP-UX /etc/logingroup file
	AIX group sets

	User Account Database File Protections
	Standard Unix Users and Groups
	Using Groups Effectively

	Managing User Accounts
	Adding a New User Account
	Defining a New User Account
	Assigning a Shell
	Captive accounts

	Assigning a Password
	Creating a Home Directory
	User Environment Initialization Files
	Sample login initialization files
	Sample shell initialization files
	The AIX /etc/security/environ file
	Desktop environment initialization files
	Systemwide initialization files

	Setting File Ownership
	Adding the User to Other System Facilities
	Specifying Other User Account Controls
	AIX user account controls
	FreeBSD user account controls
	Linux user account controls
	Solaris login process settings
	Specifying login time restrictions under HP-UX and Tru64

	Testing the New Account
	Using su to re-create a user’s environment

	Disabling and Removing User Accounts
	Removing a user account

	Administrative Tools for Managing User Accounts
	Command-Line Utilities
	The useradd command: HP-UX, Linux, Solaris, and Tru64
	Commands for managing groups
	The Linux gpasswd command
	The FreeBSD user account utilities
	The AIX user account utilities

	Graphical User Account Managers
	Managing users with SMIT under AIX
	Managing users with SAM under HP-UX
	Linux graphical user managers
	Solaris GUI tools for managing user accounts
	Managing user accounts with dxaccounts under Tru64

	Automation You Have to Do Yourself

	Administering User Passwords
	Selecting Effective Passwords
	Forcing a password change
	Managing dozens of passwords

	Educating Users About Selecting Effective Passwords
	Password advice in the age of the Internet

	Setting Password Restrictions
	Password aging
	Password triviality checks
	The freely available npasswd command
	Password history lists
	Password settings default values

	Testing User Passwords for Weaknesses
	John the Ripper
	Using Crack to find poorly chosen passwords
	How well do they do?

	User Authentication with PAM
	PAM Defaults
	PAM Modules Under Linux
	Checking passwords at selection time
	Specifying allowed times and locations for system access
	MD5 passwords

	PAM Modules Provided by Other Unix Systems
	More Complex PAM Configuration

	LDAP: Using a Directory Service for User Authentication
	About LDAP
	LDAP Directories
	About schemas

	Installing and Configuring OpenLDAP: An Overview
	More about LDAP searching

	Using OpenLDAP for User Authentication
	Select an appropriate schema
	Convert existing user account data
	Specify the name service search order
	Configure directory access control
	OpenLDAP access control

	Securing OpenLDAP Authentication
	Wither NIS?

	Security
	Prelude: What’s Wrong with This Picture?
	Thinking About Security
	Security Policies and Plans
	Security policies
	Security plans

	Unix Lines of Defense
	Physical security
	Firewalls and network filters
	Passwords
	Encrypting data
	Backups

	Version-Specific Security Facilities

	User Authentication Revisited
	Smart Cards
	One-Time Passwords
	Solaris and HP-UX Dialup Passwords
	AIX Secondary Authentication Programs
	Better Network Authentication: Kerberos

	Protecting Files and the Filesystem
	Search Path Issues
	Small Mistakes Compound into Large Holes
	The setuid and setgid Access Modes
	Writing setuid/setgid programs

	Access Control Lists
	Introducing access control lists
	Manipulating AIX ACLs
	HP-UX ACLs
	POSIX access control lists: Linux, Solaris, and Tru64

	Encryption
	The crypt command
	Public key encryption: PGP and GnuPG
	Selecting passphrases

	Role-Based Access Control
	AIX Roles
	Solaris Role-Based Access Control

	Network Security
	Establishing Trust
	The implications of trust

	The Secure Shell
	Securing Network Daemons
	TCP Wrappers: Better inetd access control and logging
	xinetd
	Disable what you don’t need

	Port Scanning
	Defending the Border: Firewalls and Packet Filtering

	Hardening Unix Systems
	Plan Before Acting
	Secure the Physical System
	Install the Operating System
	Secure Local Filesystems
	Securing Services
	Restrict root Access
	Configure User Authentication and Account Defaults
	Set up Remote Authentication
	Install and Configure Ongoing Monitoring
	Backup
	Other Activities

	Detecting Problems
	Password File Issues
	Monitoring the Filesystem
	Checking file ownership and protection
	Looking for setuid and setgid files
	Checking modification dates and inode numbers
	Computing checksums
	Run fsck occasionally

	Automating Security Monitoring
	Trusted computing base checking
	System integrity checking with Tripwire
	Vulnerability scanning
	Scanning for network vulnerabilities

	What to Do if You Find a Problem
	Investigating System Activity
	Monitoring unsuccessful login attempts
	su log files
	History on the root account
	Tracking user activities
	Event-auditing systems

	Intruders Can Read

	Managing Network Services
	Managing DNS Servers
	Zones
	Name Server Types
	About BIND
	Configuring named
	The master configuration file: named.conf
	The root hints file
	Zone files
	Common mistakes to avoid
	Using subdomains
	Forwarders
	Slave name server notifications
	Dynamic updates
	Incremental zone transfers
	Access control
	Securing DNS communications
	BIND 9 views
	Securing the named process
	Configuring logging

	Name Server Maintenance and Troubleshooting
	Controlling the named server process
	Using the nslookup and dig utilities

	Routing Daemons
	Routing Concepts and Protocols
	Configuring routed
	Configuring gated

	Configuring a DHCP Server
	AIX
	ISC DHCP: FreeBSD and Linux
	HP-UX
	Solaris
	Tru64

	Time Synchronization with NTP
	How NTP Works
	Setting Up NTP
	Enabling ntpd under FreeBSD

	A Simple Authentic Time Option

	Managing Network Daemons under AIX
	Monitoring the Network
	Standard Networking Utilities
	Packet Sniffers
	The Solaris snoop command
	Packet collecting under AIX and HP-UX

	The Simple Network Management Protocol
	SNMP concepts and constructs
	SNMP implementations
	Net-SNMP client utilities
	Configuring SNMP agents
	SNMP and security

	Network Management Packages
	Proactive network monitoring
	Identifying trends over time

	Electronic Mail
	About Electronic Mail
	Mail Addressing and Delivery
	DNS MX records
	Mail aliases
	Mail forwarding
	Putting it all together

	Electronic Mail Policies

	Configuring User Mail Programs
	Automated Email Message Encryption

	Configuring Access Agents
	Setting Up User Agents to Use POP and IMAP

	Configuring the Transport Agent
	sendmail
	Configuring sendmail
	Getting started: A sample mail client configuration
	Building sendmail.cf
	Configuring the mail hub
	Selecting mailers
	Some client and mail hub variations
	More addressing options
	Virtual hosting
	The services switch file
	Spam suppression
	Public blacklists and the access database
	sendmail security
	Monitoring ongoing operation
	Performance
	Debugging techniques
	Macro summary

	Postfix
	Installing Postfix
	Configuring Postfix
	Access control and spam suppression
	Postfix security
	Monitoring and performance
	Debugging

	Retrieving Mail Messages
	Mail Filtering with procmail
	Configuring procmail
	Other procmail disposition options
	Using procmail to discard spam
	Using procmail for security scanning
	Debugging procmail
	Additional information

	A Few Final Tools

	Filesystems and Disks
	Filesystem Types
	About Unix Filesystems: Moments from History
	Journaled filesystems
	BSD soft updates

	Default Local Filesystems

	Managing Filesystems
	Mounting and Dismounting Filesystems
	Disk Special File Naming Conventions
	The mount and umount Commands
	Figuring Out Who’s Using a File
	The Filesystem Configuration File
	Solaris: /etc/vfstab
	AIX: /etc/filesystems and /etc/swapspaces

	Automatic Filesystem Mounting
	Using fsck to Validate a Filesystem
	After fsck

	From Disks to Filesystems
	Defining Disk Partitions
	Adding Disks
	Preparing and connecting the disk
	Making special files
	FreeBSD
	Linux
	Solaris
	AIX, HP-UX, and Tru64
	Remaking an existing filesystem

	Logical Volume Managers
	Disks, volume groups, and logical volumes
	Disk striping
	Disk mirroring and RAID
	AIX
	HP-UX
	Tru64
	Solaris
	Linux
	FreeBSD

	Floppy Disks
	Floppy disk special files
	Using DOS disks on Unix systems
	The Mtools utilities
	Stupid DOS partition tricks

	CD-ROM Devices
	CD-ROM drives under AIX
	The Solaris media-handling daemon

	Sharing Filesystems
	NFS
	Mounting remote directories
	Exporting local filesystems

	The NFS Automounter
	Samba
	Samba authentication

	Backup and Restore
	Planning for Disasters and Everyday Needs
	Backup Capacity Planning
	Backup Strategies
	Unattended backups
	Data verification
	Storing backup media
	Off-site and long-term storage

	Backup Media
	Magnetic tape
	Magneto-optical disks
	CDs and DVDs
	Removable disks: Zip and Jaz
	Floppy disks
	Hard disks
	Stackers, jukeboxes, and similar devices
	Media Lifetime
	Comparing Backup Media
	Tape Special Files
	AIX tape device attributes

	Backing Up Files and Filesystems
	When tar or cpio Is Enough
	The tar command
	The cpio command
	Incremental backups with tar and cpio
	pax: Detente between tar and cpio

	Backing Up Individual Filesystems with dump
	The HP-UX fbackup utility

	Related Tape Utilities
	Data copying and conversion with dd
	Tape manipulation with mt

	Restoring Files from Backups
	Restores from tar and cpio Archives
	Restoring from dump Archives
	The restore utility’s interactive mode
	The HP-UX frecover utility

	Moving Data Between Systems

	Making Table of Contents Files
	Network Backup Systems
	Remote Backups and Restores
	The Amanda Facility
	About Amanda
	How Amanda works
	Doing the math
	Configuring Amanda
	Amanda reports and logs
	Restoring files from an Amanda backup

	Commercial Backup Packages

	Backing Up and Restoring the System Filesystems
	AIX: mksysb and savevg
	Restoring individual files from a mksysb tape
	Saving and restoring AIX user volume groups

	FreeBSD
	HP-UX: make_recovery
	Linux
	Solaris
	Tru64: btcreate

	Serial Lines and Devices
	About Serial Lines
	Device Files for Serial Lines
	The tty Command

	Specifying Terminal Characteristics
	termcap and terminfo
	termcap entries
	terminfo entries
	Modifying entries

	The tset Command
	The stty Command

	Adding a New Serial Device
	Making the Physical Connection
	Hardware handshaking and flow control

	Terminal Line Configuration
	FreeBSD configuration files
	System V configuration files

	Starting the Terminal Line
	Terminal Handling Under Solaris
	Structure of the Service Access Facility
	Port monitors
	Creating port monitors with pmadm
	The ttydefs file
	Using admintool to configure serial lines

	Troubleshooting Terminal Problems
	Controlling Access to Serial Lines
	HP-UX and Tru64 Terminal Line Attributes
	The HylaFAX Fax Service
	Sending Faxes
	Managing Faxes
	HylaFAX Configuration Files
	Controlling Access to HylaFAX

	USB Devices
	FreeBSD USB Support
	Linux USB Support
	Solaris USB Support

	Printers and the Spooling Subsystem
	The BSD Spooling Facility
	User Commands
	Manipulating Print Jobs
	Managing Queues
	The Spooling Daemon
	Configuring Queues: The printcap File
	Spooling directories
	Restricting printer access
	A filter program

	Remote Printing
	Adding a New Printer
	LPD Variations
	FreeBSD
	Tru64
	Linux

	System V Printing
	User Commands
	The system default printer
	Device classes
	Getting status information

	Manipulating Individual Print Requests
	Managing Queues
	Starting and Stopping the Print Service
	Managing Printers and Destination Classes
	Defining or modifying a printer
	Deleting printers
	Managing device classes
	In-queue priorities
	Printer interface programs

	Remote Printing
	HP-UX remote printing
	Solaris remote printing

	Adding a New Printer
	System V Spooling System Variations
	Solaris: Additional configuration files
	Solaris: Controlling printer access
	Solaris: Forms and filters
	HP-UX: Altering pending print jobs
	HP-UX: Analyzing printer usage
	Graphical administration tools

	The AIX Spooling Facility
	Manipulating Print Jobs
	Job numbers
	The default print queue under AIX
	Displaying job and queue status information
	Deleting print jobs
	Moving jobs between queues
	Suspending print jobs
	Print job priorities

	Managing Queues and Devices
	The qdaemon Server Process
	Configuring Queues: The /etc/qconfig File
	Creating and modifying print queues

	Remote Printing
	Adding a New Printer
	Using the Queueing System as a Batch Service

	Troubleshooting Printers
	Sharing Printers with Windows Systems
	Printing to a Windows Printer from a Unix System
	Accepting Incoming Windows Print Jobs via Samba
	Creating queues for the Samba printers under Windows

	LPRng
	Enhancements to the lpc Command
	Print classes and job priorities

	Configuring LPRng
	Separate client and server entries
	Using a common printcap file for many hosts
	Special-purpose queues
	Filters
	Other printcap entry options

	Global Print Spooler Settings
	Printer Access Control
	Other LPRng capabilities

	CUPS
	Printer Administration
	CUPS configuration files
	Access control and authentication

	Font Management Under X
	Font Basics
	Managing Fonts under X
	Adding Fonts to X
	Printing support

	Handling TrueType Fonts

	Automating Administrative Tasks
	Creating Effective Shell Scripts
	Password File Security
	Monitoring Disk Usage
	Root Filesystem Backups and System Snapshots
	A Few More Tricks
	Testing and Debugging Scripts

	Perl: An Alternate Administrative Language
	A Quick Introduction
	A Walking Tour of Perl
	Perl Reports
	Graphical Interfaces with Perl

	Expect: Automating Interactive Programs
	A First Example: Testing User Environments
	A Timed Prompt
	Repeating a Command Over and Over
	Automating Configuration File Distribution
	Keep Trying Until It Works

	When Only C Will Do
	Automating Complex Configuration Tasks with Cfengine
	About Cfengine
	Actions
	Classes
	Configuring cfservd
	Running Cfengine

	Stem: Simplified Creation of Client-Server Applications
	Adding Local man Pages

	Managing System Resources
	Thinking About System Performance
	The Tuning Process
	1. Define the problem in as much detail as you can.
	2. Determine what’s causing the problem.
	3. Formulate explicit performance improvement goals.
	4. Design and implement modifications to the system and applications to achieve those goals.
	5. Monitor the system to determine how well the changes worked.
	6. Return to the first step and begin again.

	Some Tuning Caveats

	Monitoring and Controlling Processes
	The ps Command
	Other Process Listing Utilities
	The /proc Filesystem
	Kernel Idle Processes
	Process Resource Limits
	Process Resource Limits Under AIX
	Signaling and Killing Processes
	Killing multiple processes with killall
	Processes that won’t die
	Pausing and restarting processes

	Managing CPU Resources
	Nice Numbers and Process Priorities
	Monitoring CPU Usage
	Recognizing a CPU shortage

	Changing a Process’s Nice Number
	renice under AIX, HP-UX, and Tru64
	Changing process priorities under Solaris
	Setting a user’s default nice numbers under Tru64

	Configuring the System Scheduler
	The AIX scheduler
	The Solaris scheduler
	Tru64

	Unix Batch-Processing Facilities

	Managing Memory
	Monitoring Memory Use and Paging Activity
	Determining the amount of physical memory
	Monitoring memory use
	Recognizing memory problems
	The filesystem cache

	Configuring the Virtual Memory Manager
	AIX
	FreeBSD
	HP-UX
	Linux
	Solaris
	Tru64

	Managing Paging Space
	How much paging space?
	Listing paging areas
	Activating paging areas
	Creating new paging areas
	Filesystem paging
	Linux and HP-UX paging space priorities
	Removing paging areas

	Disk I/O Performance Issues
	Monitoring Disk I/O Performance
	Getting the Most From the Disk Subsystem
	Disk hardware
	Distributing the data among the available disks
	Data placement on disk

	Tuning Disk I/O Performance
	Sequential read-ahead
	Disk I/O pacing

	Monitoring and Managing Disk Space Usage
	Where Did It All Go?
	Handling Disk Shortage Problems
	Using find to locate or remove wasted space
	Limiting the growth of log files

	Controlling Disk Usage with Disk Quotas
	Preparing filesystems for quotas
	Setting users’ quota limits
	Setting the soft limit expiration period
	Enabling quota checking
	Quota consistency checking
	Disk quota reports
	Group-based quotas (AIX, FreeBSD, Tru64 and Linux)

	Network Performance
	Basic Network Performance Monitoring
	General TCP/IP Network Performance Principles
	Two TCP parameters

	DNS Performance
	NFS Performance
	NFS Version 3 performance improvements
	NFS performance principles

	Configuring and Building Kernels
	FreeBSD and Tru64
	Changing FreeBSD Kernel Parameters
	FreeBSD Kernel Modules
	Installing the FreeBSD Boot Loader
	Tru64 Dynamic Kernel Configuration

	HP-UX
	Linux
	Using lilo
	Using a graphical message screen
	lilo and Windows
	More complex booting scenarios
	lilo’s -r option
	The boot.message file

	The Grub Boot Loader
	Booting a Linux System with syslinux
	Restoring the DOS Master Boot Program
	Booting Alpha Linux Systems
	Linux Loadable Modules

	Solaris
	AIX System Parameters

	Accounting
	Standard Accounting Files
	BSD-Style Accounting: FreeBSD, Linux, and AIX
	Enabling and Disabling Accounting
	Merging Accounting Records into the Summary Files
	After a Crash
	Image-Based Resource Use Reporting: sa
	Connect Time Reporting: ac

	System V–Style Accounting: AIX, HP-UX, and Solaris
	Setting Up Accounting
	Accounting Reports
	Solaris Project-Based Extended Accounting
	The upacct Package

	Printing Accounting
	Printer Accounting Under LPRng

	The Profession of System Administration
	SAGE: The System Administrators Guild
	Administrative Virtues

	Administrative Shell Programming
	Basic Syntax
	I/O Redirection
	The dot Command
	Return Codes and the exit Command
	Compound Commands
	Command Substitution
	Argument Symbols and Other $ Abbreviations
	Variable Substitution
	bash variable substitution extensions

	Variable Double Dereferencing

	The if Statement
	The test Command (a.k.a. [)

	Other Control Structures
	The while and until Commands
	The case Command
	The for Command
	The bash arithmetic for loop

	The Null Command

	Getting Input: The read Command
	The bash select command

	Other Useful Commands
	set
	eval
	printf
	expr
	bash integer arithmetic
	bash arrays

	Shell Functions
	bash Local Variables

	Index

