
Dennis Ogbe Home About Research Blog

Extending your X11 Desktop using VNC
I love mul�head setups and I am a thri�y grad student. Today, this

combina�on lead to an interes�ng and fun Saturday morning project. I

figured out how to add an addi�onal monitor to my dual-monitor set-

up, which is already a li�le convoluted.

Let me clear things up: My main setup currently consists of a Thinkpad

with its lid closed connected to two monitors (one over VGA, one over

DisplayPort). Since my laptop has no third physical display connector, I

had to get crea�ve in order to add a third physical monitor to my set-

up.

I use a cheap DisplayLink adapter at home for exactly this reason, but

unfortunately the official dirvers are buggy and the whole set-up is

generally very unreliable. So, with me being the thri�y grad student

that I am, I did not want to shell out another $30 for a piece of hard-

ware that doesn't even really work.

What I ended up doing is pre�y neat.

The high-level descrip�on of my set-up is the following: I have a desk-

top machine that I was using headless un�l today. It is now connected

to my third monitor and runs the TightVNC client, which is being

served by x11vnc. In other words, I'm using xrandr to create a virtual

output device on my laptop, I make it available for "remote" viewing

using x11vnc, and use the TightVNC client on my desktop machine to

view it over the network. My desktop machine and my laptop are con-

nected via a small switch behind my desk, which means that the con-

nec�on is fast enough to even watch YouTube videos on my net-

worked monitor.

I was heavily inspired by this post on the arch forums and added some

tricks of my own to make this set-up comfortable.

For this blog post, I will follow along the lines of the forum post above

and describe how this can be replicated. I have most of the code be-

low si�ng in a bash script, which I invoke whenever I get to the office

in the morning.

Step 1: Create a temporary
directory to hold PIDs and logs

This is mostly for debugging purposes and will hold most of the rele-

vant informa�on for my SSH tunnel and the VNC server.

TMPD=/tmp/extra_screen

if ! [[-d $TMPD]]; then

 mkdir -p $TMPD

fi

Step 2: Force XRandR to connect
the VIRTUAL1 device to our X11
desktop

The below part is s�ll a li�le messy, but it gets the job done for now.

I'm using the new monitor in a portrait orienta�on, so I'm crea�ng a

output of dimension 1024x1280. I'm also telling xrandr to put this out-

put to the right of the output DP2.

the local virtual xrandr device

DEVICE="VIRTUAL1"

get the modeline from

gtf 1024 1280 60 | sed -n 's/.*Modeline "\([^"]\+\)" \(.*\)/\1 \2/p'

MODELINE="1024x1280_60.00 110.66 1024 1096 1208 1392 1280 1281 1284 1325 -HS

NAME="1024x1280_60.00"

FIXME get rid of error messages

xrandr --delmode "$DEVICE" "${NAME}"

xrandr --rmmode "${NAME}"

xrandr --newmode ${MODELINE}

xrandr --addmode "$DEVICE" "${NAME}"

xrandr --output $DEVICE --mode $NAME --right-of DP2

The above commands extend my desktop over a—as of right now—in-

visible area of 1024x1280 pixels. We could theore�cally drag windows

in this area. Next, I'm using VNC to make this area available to a client

on my desktop machine.

Step 3: Generate a random VNC
password and store it on the
desktop machine

From now on, any reference to $REMOTE should be replaced with SSH

username and hostname, e.g. foo@bar.baz.

PW=$(openssl rand -hex 50 | vncpasswd -f | tee $TMPD/vncpw)

scp $TMPD/vncpw $REMOTE:~/.ava_vncpw

Step 4: Create a reverse SSH
tunnel to the desktop machine

Since this is the 21st century, we want to encrypt any traffic that we

send through a network. Here, we set up a reverse SSH Tunnel, which

forwards port 5900 on my laptop to port 5900 on my desktop machine

through an encrypted pipe. I'm also using the nohup command to

send the process in the background and have it persist even a�er I

close my terminal.

PORT=5900

nohup ssh -2tnNv -R $PORT:localhost:$PORT $REMOTE > $TMPD

echo -n $! > $TMPD/tunnel_pid # write the pid of the sshtunnel to kill later

Step 5: Launch x11vnc, clipped to
the invisible region

x11vnc has a bunch of configura�on op�ons and I spent a significant

amount of �me reading tweaking its configura�on to get the best per-

formance.

CLIP=$(xrandr | grep "^$DEVICE.*$" | grep -o '[0-9]*x[0-9]*+[0-9]*+[0-9]*'

nohup x11vnc -clip $CLIP -noxinerama -noxrandr \

 -repeat -localhost -nevershared -forever \

 -rfbauth $TMPD/vncpw \

 -nowf -noncache -wait 1 -defer 1 > $TMPD/x11vnc_log.log 2>&1 &

echo -n $! > $TMPD/x11vnc_pid # write the pid of x11vnc to kill later

-clip defines the area which is exported. This coincides with the

area of the output created using the mode line above

Extending your X11 Desktop using VNC h�ps://ogbe.net/blog/moar_monitors.html

1 of 2 25/03/2021, 02:34

RSS

I had to set -noxinerama to get rid of some nasty le�erboxing

Without se�ng -repeat, I couldn't enter a le�er more than once

by long-pressing a key on the keyboard. That was annoying

-localhost lets x11vnc only accept connec�ons from localhost,

which is fine since we're using a SSH tunnel.

-forever makes x11vnc not quit a�er the first client quits

without the -noncache switch, x11vnc exported a much larger

area filled with mostly black pixels

Step 4: Be lazy and write a script
to kill x11vnc and the SSH tunnel

This saves a few keystrokes during debugging.

KILL=$TMPD/kill.sh

echo "#!/bin/sh" > $KILL

echo -n "kill $(cat $TMPD/tunnel_pid) && " >> $KILL

echo -n "kill $(cat $TMPD/x11vnc_pid) && " >> $KILL

echo "echo \"Killed x11vnc and SSH.\"" >> $KILL

chmod +x $KILL

Step 5: Start a VNC client on the
desktop machine

Since I'm not doing anything else on this machine other than running

the VNC client, I have an infinite loop in my .xinitrc file which a�-

�empts to restart the client if it is not running.

rotate the display

xrandr --output DVI-0 --rotate left

disable screen sleep

xset s off

xset -dpms

unclutter removes the local mouse pointer

unclutter &

force reloading of the vnc viewer to simulate plug & play

while true; do

if ! ps aux | grep -v grep | grep -q vncviewer; then

 vncviewer localhost:0 -passwd ~/.ava_vncpw -viewonly -fullscreen -en

else

 sleep 0.5

fi

done

Step 6: Celebrate!

This was fun. I hope this inspires someone to do their own thri�y grad

student mul�head set-up.

License: CC BY-SA 4.0

Extending your X11 Desktop using VNC h�ps://ogbe.net/blog/moar_monitors.html

2 of 2 25/03/2021, 02:34

