

24Hours

Coding with
Roblox Lua

in

The Official

Guide

Coding with Roblox Lua in 24 Hours: The Official Roblox Guide
Copyright © 2022 by Roblox Corporation. “Roblox,” the Roblox logo, and “Powering Imagination”
are among the Roblox registered and unregistered trademarks in the U.S. and other countries. All
rights reserved.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/
permissions/. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-682942-3
ISBN-10: 0-13-682942-2

Library of Congress Control Number: 2021948694

ScoutAutomatedPrintCode
Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Pearson cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Editor-in-Chief

Debra Williams
Cauley

Acquisitions Editor

Kim Spenceley

Editorial Services

The Wordsmithery
LLC

Managing Editor

Sandra Schroeder

Senior Project

Editor

Tonya Simpson

Copy Editor

Charlotte Kughen

Indexer

Cheryl Lenser

Proofreader

Sarah Kearns

Editorial Assistant

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

Bronkella
Publishing LLC

Graphics

Processing

TJ Graham Art

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Pearson’s Commitment to
Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.

We embrace the many dimensions of diversity, including but not limited to race, ethnic-

ity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political

beliefs.

Education is a powerful force for equity and change in our world. It has the potential to

deliver opportunities that improve lives and enable economic mobility. As we work with

authors to create content for every product and service, we acknowledge our responsibility

to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve

their potential through learning. As the world’s leading learning company, we have a duty

to help drive change and live up to our purpose to help more people create a better life for

themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

 Everyone has an equitable and lifelong opportunity to succeed through learning.

 Our educational products and services are inclusive and represent the rich diversity of

learners.

 Our educational content accurately reflects the histories and experiences of the

learners we serve.

 Our educational content prompts deeper discussions with learners and motivates

them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any con-

cerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/

report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

Contents at a Glance

 Hour 1 Coding Your First Project . 1

 2 Properties and Variables . 17

 3 Creating and Using Functions . 31

 4 Working with Parameters and Arguments . 43

 5 Conditional Structures . 57

 6 Debouncing and Debugging . 73

 7 while Loops . 91

 8 for Loops . 101

 9 Working with Arrays . 113

 10 Working with Dictionaries . 127

 11 Client Versus Server . 145

 12 Remote Events: One-Way Communication . 161

 13 Using ModuleScripts . 173

 14 Coding in 3D World Space . 187

 15 Smoothly Animating Objects . 199

 16 Solving Problems with Algorithms . 209

 17 Saving Data . 219

 18 Creating a Game Loop . 229

 19 Monetization: One-Time Purchases . 243

 20 Object-Oriented Programming . 259

 21 Inheritance . 271

 22 Raycasting . 287

 23 Plopping Objects in an Experience: Part 1 . 297

 24 Plopping Objects in an Experience: Part 2 . 313

 Appendix A Roblox Basics . 321

 Index . 355

Table of Contents

HOUR 1: Coding Your First Project 1

Installing Roblox Studio . 1

Let’s Take a Tour . 2

Opening the Output Window . 5

Writing Your First Script. 6

Error Messages . 11

Leaving Yourself Comments . 12

HOUR 2: Properties and Variables 17

Object Hierarchy . 18

Keywords . 19

Properties . 20

Finding Properties and Data Types . 22

Creating Variables . 22

Changing the Color Property . 25

Instances . 26

HOUR 3: Creating and Using Functions 31

Creating and Calling Functions . 31

Understanding Scope . 33

Using Events to Call Functions . 33

Understanding Order and Placement . 36

HOUR 4: Working with Parameters and Arguments 43

Giving Functions Information to Use . 43

Working with Multiple Parameters and Arguments . 45

Returning Values from Functions. 49

Returning Multiple Values . 50

Returning Nil . 51

Dealing with Mismatched Arguments and Parameters . 51

Working with Anonymous Functions . 52

vi Coding with Roblox Lua in 24 Hours

HOUR 5: Conditional Structures 57

if/then Statements . 58

elseif . 62

Logical Operators . 62

else . 63

HOUR 6: Debouncing and Debugging 73

Don’t Destroy, Debounce . 73

Figuring Out Where Things Go Wrong . 82

HOUR 7: while Loops 91

Repeat Forever, while true do . 91

Some Things to Keep in Mind. 92

while Loops and Scope . 98

HOUR 8: for Loops 101

How for Loops Work . 102

Nested Loops . 109

Breaking Out of Loops . 110

HOUR 9: Working with Arrays 113

What Are Arrays? . 113

Adding Items Later . 114

Getting Information from a Specific Index . 114

Printing an Entire List with ipairs() . 115

Folders and ipairs() . 116

Finding a Value on the List and Printing the Index . 121

Removing Values from an Array . 122

Numeric for Loops and Arrays . 123

HOUR 10: Working with Dictionaries 127

Intro to Dictionaries . 127

Adding and Removing from Dictionaries . 130

Removing Key-Value Pairs . 130

Working with Dictionaries and Pairs . 132

Returning Values from Tables . 133

Contents vii

HOUR 11: Client Versus Server 145

Understanding the Client and the Server . 145

Working with GUIs . 146

Understanding RemoteFunctions . 149

Using RemoteFunctions . 149

HOUR 12: Remote Events: One-Way Communication 161

Remote Events: A One-Way Street . 161

Communicating from the Server to All Clients . 162

Communicating from the Client to the Server . 165

Communicating from the Server to One Client . 170

Communicating from Client to Client . 171

HOUR 13: Using ModuleScripts 173

Coding Things Just Once . 173

Placing ModuleScripts . 174

Understanding How ModuleScripts Work . 174

Naming ModuleScripts . 174

Adding Functions and Variables . 175

Understanding Scope in ModuleScripts . 176

Using Modules in Other Scripts . 177

Don’t Repeat Yourself . 183

Dealing in Abstractions . 183

HOUR 14: Coding in 3D World Space 187

Understanding X, Y, and Z Coordinates . 187

Refining Placement with CFrame Coordinates . 189

Offsetting CFrames . 191

Adding Rotations to CFrames . 191

Working with Models . 192

Understanding World Coordinates and Local Object Coordinates 193

HOUR 15: Smoothly Animating Objects 199

Understanding Tweens . 199

Setting TweenInfo Parameters . 201

Chaining Tweens Together . 205

viii Coding with Roblox Lua in 24 Hours

HOUR 16: Solving Problems with Algorithms 209

Defining Algorithms . 209

Sorting an Array . 210

Sorting in Descending Order . 212

Sorting a Dictionary . 213

Sorting by Multiple Pieces of Information . 216

HOUR 17: Saving Data 219

Enabling Data Stores . 219

Creating a Data Store . 220

Using Data in the Store . 220

Limiting the Number of Calls . 225

Protecting Your Data . 225

Saving Player Data . 226

Using UpdateAsync to Update a Data Store . 226

HOUR 18: Creating a Game Loop 229

Setting Up Game Loops . 229

Working with BindableEvents . 230

HOUR 19: Monetization: One-Time Purchases 243

Adding Passes to Your Experience . 243

Configuring the Pass . 246

Prompting In-Game Purchases . 247

HOUR 20: Object-Oriented Programming 259

What Is OOP? . 259

Organizing Code and Projects . 259

Making a New Class . 260

Adding Class Properties . 261

Using Class Functions . 263

HOUR 21: Inheritance 271

Setting Up Inheritance . 272

Inheriting Properties . 274

Working with Multiple Child Classes . 277

Contents ix

Inheriting Functions . 278

Understanding Polymorphism . 278

Calling Parent Functions . 282

HOUR 22: Raycasting 287

Setting Up the Function to Raycast . 287

3D Math Trick: Getting the Direction . 289

Setting Raycast Parameters . 290

3D Math Trick: Limit Direction . 293

HOUR 23: Plopping Objects in an Experience: Part 1 297

Setting Up the Object . 298

Creating a Plop Button . 302

Tracking Mouse Movements . 303

Previewing the Object . 307

HOUR 24: Plopping Objects in an Experience: Part 2 313

Detecting Mouse Input . 314

Sending a Message to the Server . 316

Getting the Message . 317

APPENDIX A: Roblox Basics 321

Keywords . 322

DataType Index . 322

Operators . 324

Naming Conventions . 325

Animation Easing . 325

Possible Solutions to Exercises . 326

Index 355

About the Author

Genevieve Johnson is the senior instructional designer for Roblox, the

world’s largest user-generated social platform for play. In her role, she

oversees creation of educational content and advises educators world-

wide on how to use Roblox in STEAM-based learning programs. Her work

empowers students to pursue careers as entrepreneurs, engineers, and

designers. Prior to Roblox, Johnson was educational content manager for

iD Tech, a nationwide tech education program that reaches more than

50,000 students yearly, ages 6-18. While at iD Tech, she helped launch a successful all-girls

STEAM program, and her team developed educational content for more than 60 technology-

related courses, teaching a variety of subjects from coding to robotics and game design.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write to let us know what you did or didn’t like about this book—as well

as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you email, please be sure to include this book’s title and author as well as your

name, email address, and phone number. We will carefully review your comments and

share them with the author and editors who worked on the book.

Email: community@informit.com

Reader Services

Register your copy of Roblox Game Development in 24 Hours at www.informit.com/register for

convenient access to downloads, updates, and corrections as they become available. To start

the registration process, go to informit.com/register and log in or create an account.* Enter

the product ISBN (9780136829423) and click Submit.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts

on future editions of this product.

mailto:community@informit.com
http://www.informit.com/register
http://informit.com/register

This page intentionally left blank

 HOUR 1
 Coding Your First Project

What You’ll Learn in This Hour:

 Why Roblox and Lua are a perfect combination

 What Roblox Studio’s main windows are

 How to say “Hello” to the world with your first code

 How to make a part explode

 How to check for errors

 How to leave a comment

Roblox is the world’s most popular game development platform. All types of people come

together to create amazing virtual experiences: artists, musicians, and—you guessed it—coders.

Coding is what allows players to interact with the world that they see.

In Roblox, the coding language used is Lua. Lua is one of the easiest coding languages to learn,

and when used with Roblox Studio, you can see the results of your code fast. For example, want

to create an enormous explosion with a massive blast radius? You can do that with just a couple

of lines of Lua.

Roblox Studio is the tool in which all Roblox games are created, and when paired with Lua, it

offers seamless access to multiplayer servers, physics and lighting systems, world-building tools,

monetization systems, and more. And even though Roblox provides the environment in which

your program runs, you control the vision. You are the creator and artist. Roblox gives you the

canvas and paints, and Lua the brushes and actions. But you, with some well-placed dabs of

code, get to create your masterpiece. This first hour covers how to set up Roblox Studio, make

your first script, and test your code.

Installing Roblox Studio
Before you get started, make sure you have Roblox Studio installed. It runs on Windows and

MacOS, and you can grab a copy at https://roblox.com/create. Click Start Creating to begin.

You’ll need to create a Roblox account if you don’t yet have one (see Figure 1.1).

https://roblox.com/create

2 HOUR 1: Coding Your First Project

FIGURE 1.1
You need an account to use Roblox Studio. It’s free and just a quick sign-up away.

Let’s Take a Tour
Roblox Studio provides everything you need to create games. It includes assets such as character

models, items to put in the world, graphics for the sky, soundtracks, and more.

Go ahead and launch Roblox Studio to see the window shown in Figure 1.2. Enter the login infor-

mation for the account you created when you signed up on the Roblox website and click Log In.

FIGURE 1.2
Enter your normal Roblox account information.

Let’s Take a Tour 3

When you first open up Studio, you see templates. These are starting places you can use for your

experiences. The simplest starting point for any project is the Baseplate template. Click on the

Baseplate template, as shown in Figure 1.3.

FIGURE 1.3
Studio offers template places you can use as starting points.

Let’s start with a quick overview of the main parts of the screen in Figure 1.4, and then move

straight into your first line of code:

 1. The offerings in the Toolbar ribbon change according to the menu tab you’ve selected.

 2. The Toolbox contains existing assets to add to your game. You can also create your own

assets through a 3D modeling program such as Blender3D, and Studio includes a set of

mesh-editing tools to customize the 3D models already available.

 3. The 3D Editor provides a view of the world. Hold your right mouse button to turn the view,

and use the WASD keys to reposition the camera. Table 1.1 describes the different controls

to move the camera.

 4. The Explorer window provides convenient access to every key asset or system in the game.

You use this to insert objects into your experience.

 5. Use the Properties window to make changes to objects in the game, such as color, scale,

value, and attributes. Select an object in the Explorer to see available properties.

4 HOUR 1: Coding Your First Project

FIGURE 1.4
There are a number of panels, buttons, and lists in the Studio, and you’ll quickly become familiar with them.

TABLE 1.1 Camera Controls

Key Movement

W A S D Move the camera up, left, down, or right

E Move the camera

Q Lower the camera down

Shift Move the camera slower

Right mouse button (hold and drag mouse) Turn the camera

Middle mouse button Drag the camera

Mouse scroll wheel Zoom the camera in or out

F Focus on selected object

There are numerous ways to configure this main screen, including hiding different sections,

rearranging their positioning to be more convenient, and changing their size.

Roblox Studio is a very complete game development environment that goes well beyond Lua. It’s

a big topic on its own, so you may want to check out our other book, Roblox Game Development in

24 Hours, for help.

Opening the Output Window 5

Opening the Output Window
The Output window in Studio isn’t open by default, but you need this before you continue so

that you can see errors and messages that are related to your code.

Use the following steps to display the Output window:

 1. Click the View tab (see Figure 1.5). If you ever close a window and need to reopen it, you

can find it here.

FIGURE 1.5
Use the View tab to control which windows are open.

 2. Click Output (see Figure 1.6) to display the Output window at the bottom of your screen, as

shown in Figure 1.7.

FIGURE 1.6
Click the Output option to open the Output window.

FIGURE 1.7
The Output window opens beneath the 3D Editor.

6 HOUR 1: Coding Your First Project

Writing Your First Script
On to coding! You need something to hold your code, and that’s a script. You can insert scripts

directly into objects within the world. In this case, you’re inserting a s cript into a part.

Insert a Script into a Part
A part is the basic building block of Roblox. Parts can range in size from very tiny to extremely

large. They can be different shapes such as a sphere or wedge, or they can be combined into

more complex shapes.

 1. Return to the Home tab and click Part (see Figure 1.8). The part appears in the 3D Editor at

the center of your camera view.

FIGURE 1.8
Click Part on the Home tab to insert a part.

 2. To add a script, in Explorer, hover over the part and click the + symbol, and then select

Script from the drop-down menu (see Figure 1.9).

FIGURE 1.9
You use Explorer to insert a script into the part.

Writing Your First Script 7

TIP

Finding Items Quickly
Typing the first letter (S, in this case) or two of the items you are adding filters the l ist so you can
locate that item quickly.

The script automatically opens. At the top, you see words familiar to any coder: "Hello

world!" (see Figure 1.10).

FIGURE 1.10
The wi ndow shows the default script and code.

Writing Some Code
Since the 1970s, "Hello World!" has been one of the first pieces of code people have learned.

Here it’s being used in the print function. Functions are chunks of code that serve a specific pur-

pose. As you learn to code, you’ll use prebuilt functions like print(), which displays messages

in the Output window. You will, of course, also learn how to create functions of your own.

print() displays a string, which is a type of data usually used with letters and numbers that

need to stay together. In this case, you’re printing "Hello world!":

 1. Make this code your own by changing the message inside of the quotation marks to what

you want for dinner tonight. Here’s an example:

print("I want lots of pasta")

 2. To test the code, in the Home tab, click Play (see Figure 1.11).

8 HOUR 1: Coding Your First Project

FIGURE 1.11
Click Play to test your script.

 Your avatar will fall into the world, and you can see your dinner dreams displayed in the

Output window, along with a note about which script that message came from (see Figure

1.12).

FIGURE 1.12
The string is displayed in Output.

 3. To stop the playtest, click the Stop button (see Figure 1.13).

FIGURE 1.13
Click Stop to quit the playtest.

 4. Return to your script by clicking on the tab above the 3D Editor, as shown in Figure 1.14.

Writing Your First Script 9

FIGURE 1.14
Click Script to return to the window where your script is visible.

Code an Explosion
Code of course can do more than just display messages to the output window. It can completely

change how players interact with the world and make it come alive. Let’s take a slightly longer

piece of code and make the block in the Baseplate template destroy anything it touches:

 1. Use the Move tool (see Figure 1.15) to move the block off the ground and away from the

spawn point. The code you’re going to write will destroy anything it touches, and you

don’t want it to go off prematurely.

FIGURE 1.15
Move the part up and away from the spawn.

10 HOUR 1: Coding Your First Project

 2. In the Properties window, scroll to Behavior and make sure Anchored (see Figure 1.16) is

selected so the block doesn’t fall when you click Play.

FIGURE 1.16
Check Anchored to keep the blocks from falling.

 3. In the script, below the print function, add the following code:

print("I want lots of pasta!")

-- Destroys whatever touches the part

local trap = script.Parent

local function onTouch(partTouched)

 partTouched:Destroy()

end

trap.Touched:Connect(onTouch)

NOTE

Code Boxes
Code boxes for this book will be presented in light mode, unless specifically calling attention to
Studio UX.

 4. Click Play and run up and touch the part.

The result should be that your character breaks or parts of your avatar are destroyed. You may

notice that this code only destroys what touches it directly, such as your feet. Try jumping on top

Error Messages 11

of the block or brushing against it with just a hand. You’ll see only that part of your avatar is

destroyed.

The reason is that code only does what you tell it, and you told the part to destroy only what it

touches and nothing more. You have to tell it how to destroy the rest of the player. Throughout

this book, you’ll learn how to write additional instructions so that the code can handle more

scenarios like this one. In Hour 4 , “Parameters and Arguments,” you’ll learn how to make sure it

destroys the entire player character.

Error Messages
What if the code didn’t work? The truth is, all engineers make mistakes in their code. It’s no big

deal, and the editor and the output window can help you spot mistakes and fix them. Try mak-

ing a couple of mistakes to learn how to better spot them later:

 1. Delete the second parenthesis from the print function. A red line appears under local.

(See Figure 1.17.) In the editor, red lines indicate a problem.

FIGURE 1.17
A red line indicates Studio has spotted an error.

 2. Hover over the red line, and the editor gives you a clue about what’s gone wrong, as

shown in Figure 1.18. But don’t fix the mistake quite yet.

12 HOUR 1: Coding Your First Project

FIGURE 1.18
An error message displays when you hover over the red line.

 3. Click Play, which causes an error message to display in the Output window, as shown in

Figure 1.19. Click the red error, and Studio takes you to where it thinks the problem is.

FIGURE 1.19
The error shows up as a clickable red message in the Output window.

 Stop the playtest and fix the issue.

TIP

Changes Made While Playtesting Aren’t Permanent
Be careful about making changes while in a playtest because the wo rk you’ve do ne is not automati-
cally saved. If you do make changes, be sure to click Preserve Changes when you stop the playtest.

Leaving Yourself Comments
In the previous code, you may notice the sentence -- Destroys whatever touches the

part. This is a comment. Comments begin with two dashes. Anything on the same line as the

dashes doesn’t affect the script.

Q&A 13

Coders use comments to leave notes to themselves and others about what the code does. Trust

us: When you haven’t looked at a piece of code in months, it’s very easy to forget what it does.

The following code shows what it might look like to add a comment at the top of the script you

wrote earlier in this hour:

-- What do I want for dinner?

print("I want lots of pasta!")

Summary
In just one hour, you’ve come a long way, particularly if this happened to be your first time cod-

ing or using Roblox Studio. This hour covered creating an account and opening Roblox for the

first time. By using the + button, you were able to insert a script into a part, and then you added

code that turned the part into a trap for anyone who happened to touch it.

In addition, you learned how to test code using the Play button and use the built-in error detec-

tion within the script editor and Output window to help you troubleshoot when something goes

wrong.

Finally, you learned about comments, which are only readable in the script editor and can be

used to leave notes about the purpose of the code.

Q&A
 Q. Can you use Studio on a Chromebook?

 A. To create, Studio must be run on a MacOS or Windows machine. Once a game has been
published, it’s available to be played on Android, Apple, Mac, PC, Chrome, and potentially
even XBox Live.

 Q. How do I reopen a script if I close it?

 A. If you close out of the script editor, you can reopen it by double-clicking the script object in
Explorer.

 Q. How do I save my work?

 A. Go to File, Publish to Roblox to save to the cloud, which makes your game accessible from
any computer.

 Q. Where do I go if I want addition al information about how Roblox Studio works?

 A. You can visit developer.roblox.com to find documentation on all of Studio’s features and
API.

http://developer.roblox.com

14 HOUR 1: Coding Your First Project

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. Roblox uses the _________ coding language.

 2. Aspects of an object such as color, rotation, and anchored can be found in the ______
window.

 3. Game objects are found in the _________ window.

 4. To enable the Output window, which displays code messages and errors, enable it in the
________ tab.

 5. True or false: Comments change the code to enable new functionality.

 6. To force parts to stay in place, they need to be _______.

Answers
 1. Lua

 2. Properties

 3. Explorer

 4. View

 5. False. Comments do not affect the code and are used to leave notes to yourself and other
coders as to the purpose of the script.

 5. Anchored

Exercise
Before moving on, take a moment to experiment with the creation tools by creating a mini obsta-
cle course. It could be individual parts the player has to avoid, or it could be a lava floor like the
one shown in Figure 1.20.

Exercise 15

FIGURE 1.20
Use what you’ve learned so far to create a lava obstacle course.

Tips
 Create more parts and manipulate them with the Move, Translate, and Scale tools found on

the Home tab (see Figure 1.21). You can also change the parts’ appearance with Material
and Color.

FIGURE 1.21
The Home tab has the tools you need to create and manipulate parts.

 Use a single large part and insert a script as you did earlier to turn it into lava.

 Additional models can be found in the Toolbox; just be aware that some models may
already have scripts in them.

 Don’t forget to anchor all parts and models.

 If you know how to use the terrain tools, you can work that into your obstacle course as
 well.

This page intentionally left blank

 HOUR 2
 Properties and Variables

What You’ll Learn in This Hour:

 About the parent/child relationship of objects in the Explorer

 How to make changes to an object’s properties

 How to create variables

 How to assign values to variables

 Which types of data variables can hold

 How to create instances of objects

In this hour, you learn how to find the objects you want to make changes to in the hierarchy

and create an adorable NPC (Non Playable Character) guide like the one in Figure 2.1 that can

warn players of upcoming danger. To create the guide, you use code to update a part’s appear-

ance and behavior .

FIGURE 2.1
An NPC warns players of upcoming dange r.

18 HOUR 2: Properties and Variables

Object Hierarchy
If you want to affect objects with code, you have to be able to say where those objects are within

the game’s hierarchy. As you look in the Explorer, you can see some game objects are nested

inside of others. For example, in Figure 2.2, you can see that the Baseplate object is nested inside

of Workspace. This makes Baseplate a child of Workspace, which makes Workspace the parent

object. And even though you can’t see it in Explorer, Workspace is a child of Game.

FIGURE 2.2
Baseplate is a child of Workspace.

In code, you can navigate the hierarchy of the game using the dot operator—for example,

game.Workspace.Baseplate.

This is how you give directions in the script to tell the code what object to work with.

▼ TRY IT YOURSELF

Search and Destroy

Use the dot operator to search within Workspace for the baseplate and use Destroy(), which
was also used in Hour 1 to get rid of the baseplate.

 1. Insert a new script into Baseplate. Rename the script DestroyBaseplate by double-click-
ing it or pressing F2 (see Figure 2.3).

TIP

Rename Scripts and Objects
Renaming scripts and objects in your project is important for staying organized.

Keywords 19

Keywords
Now let’s talk about keywords. Keywords can be thought of as the words that make up a coding

language. Each keyword serves a special purpose. Lua has fewer keywords than most coding lan-

guages, which makes it one of the easiest to learn. Some keywords are built into Lua automati-

cally, and some have been added by Roblox to make things easier.

One keyword in Roblox Lua is workspace, lowercased, because game.Workspace was typed so

much, the thoughtful Roblox engineers decided to supply a keyword to shorten it.

▼TRY IT YOURSELF

Use the workspace Keyword

Update the code you just wrote with the keyword workspace in place of game.Workspace.

 1. In your prior code, replace game.Works pace with workspace.

TIP

Correct Capitalization Is Important
Keywords are case-sensitive, so make sure workspace is lowercased.

 2. Playtest and verify the code still works.

▼

FIGURE 2.3
You can rename a script.

 2. In the script, type game.Workspace.Baseplate:Destroy().

 3. Playtest the game, and the baseplate will be destroyed, possibly even before your charac-
ter loads.

20 HOUR 2: Properties and Variables

Now back to hierarchy. Not only can the children of objects be accessed with the dot operator,

but so can parent objects. This time, use the keyword script, which always represents the Script

object no matter what the object is named, and use the dot operator to access the parent.

▼ TRY IT YOURSELF

Shorten the Code

You can actually shorten the code even more and get rid of the baseplate by using Destroy()
with script.Parent:

 1. In the same script as before, replace your code wit h script.Parent:Destroy().

TIP

Take Advantage of Autocomplete
As you type, you may see suggested code appear. You can accept the suggestion by pressing Enter.
This will save time on typing and minimize the risk of making typos.

 2. Playtest and verify your code.

You can find a complete list of keywor ds in the appendix at the back of the book.

Properties
In addition to navigating the hierarchy, the dot operator also allows you access to the properties

of an object. So what are properties? I’ll explain with an example: Take a look at the flower in

Figure 2.4. How would you describe it to someone?

Maybe you would start off saying that it’s a plant. When pressed for more information, you

might say that it’s a green plant with yellow petals. An engineer might add additional details

like it’s a green plant with yellow petals, three units tall and two units wide. Someone else might

mention it’s on fire (see Figure 2.5).

Properties 21

FIGURE 2.4
How would you describe this flower?

FIGURE 2.5
The flower is also flammable.

A ll of the ways you describe an object are its properties.

22 HOUR 2: Properties and Variables

Finding Properties and Data Types
When you click an object in Explorer, the aptly named Properties window populates with differ-

ent properties of the object that are changeable. The different formats in which properties track

values are data types. Some important data types to start off with are the following:

 Number: Any real number—for example, 11.9.

 String: A collection of letters and/or numbers sandwiched within quotation marks.

Good for storing readable information. print() accepts string values—for example, "99

bananas".

 Boolean: The values true and false. Properties that have states like on/off or checked/

unchecked are often booleans.

 Tables: A set of information—for example, {Am y, Bill, Cathleen}.

For a larger list of data types, see the appendix.

Creating Variables
Now that you have an understanding of how to find objects in the hierarchy and how each

property has its own specific value format called a data type, you can begin making variables.

Variables are placeholders for information. They can be used to keep track of objects and data

types for use in your code. Once created, some variables can only be used in specific scripts or

chunks of code. These are called local variables. Other variables are designed so that they can be

used more broadly across scripts. Those are called global variables.

Unless you have a good reason, you almost always want to use local variables. Your code runs

faster with local variables, and you’re less likely to end up with clashing variable names in your

code. Almost all of the variables you create in this book will be local variables.

To create a local variable, type local and then the desired name of the variable, for example:

local baseplate

Once the variable is created, you can assign, or set, the value of the variable using the equal

sign, for example:

local baseplate = script.Parent

In your head, you can think of the equal sign as the word is. So, the prior variable would read

basePlate is script.Parent. Once the variable is created, you can access the information being held

as many times as you want with just the name, for example:

local basePlate = script.Parent

basePlate.Transparency = 0.5

Creating Variables 23

Variables can be updated as often as you want. So if you’re keeping score in a game, every time

the player scores a new point, you can keep using the same variable and assign it the updated

score, like so:

local playerScore = 10

print("playerScore is " .. playerScore)

local playerScore = playerScore + 1 -- Add one to current player score

print("new playerScore is " .. playerScore)

In Output, you should see print messages similar to Figure 2.6.

FIGURE 2.6
First, the original va lue of playerScore is printed, and then the updated playerScore prints.

TIP

Combining Strings and Variables
print() can accept both strings and variables, but the y need to be combined with two dots.
Combining values is called concatenation.

▼TRY IT YOURSELF

Create an NPC

With just the knowledge you have so far, you can create an NPC guide that delivers a warning
about the upcoming lava field to the player. This exercise will help you practice navigating hierar-
chy and properties using the dot operator, as well as using variables and data types.

First, you need to create the NPC:

 1. Use the Part drop-down menu to create a sphere or any other type of part.

 2. Rename the part to GuideNPC.

 3. Insert a script into the sphere and rename it.

24 HOUR 2: Properties and Variables

▼
 4. Insert a Dialog object into GuideNPC. Do not rename it. (See Figure 2.7.)

FIGURE 2.7
The NPC hierarchy includes a Script and a Dialog.

Code the Script
For this example, you create two different variables. The first variable navigates to the parent
part, and the second variable holds the message that the spirit guide greets the player with when
first prompted. You also add a bit of code to customize the appearance of the NPC.

 1. Replace the default code in NPCScript with a new local vari able named guideNPC that
points at the script’s parent.

local guide = script.Parent

TIP

Object Naming Conventions
For consistency, in-game objects are named using CamelCase with the first letter in uppercase, and
variables named after them are pascalCased, with the first letter in lowercase.

 2. Create a second variable holding the guide’s message with a string value. The message
can be anything you like as long as it’s a string.

local guideNPC = script.Parent

local message = "Danger ahead, stay on the rocks!"

 3. Make the NPC more ghostly by accessing its properties and setting Transparency to 0.5.

local guideNPC = script.Parent

local message = "Danger ahead, stay on the rocks!"

guideNPC.Transparency = 0.5

Changing the Color Property 25

Changing the Color Property
A property commonly changed in code is an object’s color property. To change the color, you need

to understand how light works. Every color on your screen is actually a product of just three types

of light; red, green, and blue. The strength of each color ranges from 0 to 255. All three colors at

full strength (255 , 255, 255) appear white onscreen. Each band turned all the way down (0, 0, 0)

is black. Pure red is (255, 0, 0), and pure green is (0, 255, 0). So what do you think pure blue is?

Turn your NPC purple by mixing a little red with a lot of blue:

guideNPC.Color = Color3.fromRGB(40, 0, 160)

TIP

Use the Color Picker to Find the Right Values
As you type, a small color wheel will appear (see Figure 2.8). If you click it, you can select the color
you want, and click OK to automatically set the correc t RGB value.

FIGURE 2.8
Click the color wheel to bring up the RGB color selector.

▼ 4. Access the child Dialog object and its property InitialPrompt. Set InitialPrompt to message.

local guideNPC= script.Parent

local message = "Danger ahead, stay on the rocks!"

guideNPC.Transparency = 0.5

guideNPC.Dialog.InitialPrompt = message

Playtest and click the question mark above the NPC’s head to see the message.

26 HOUR 2: Properties and Variables

Instances
The last topic for this hour is instances. Instances are copies of game objects like parts, scripts,

and sparkles.

Rather than using the + button like you have so far, instances can instead be created with the

function Instance.new(), as shown here:

local part = Instance.new("Part")

Once you’ve created a part, you can access all of its properties like normal. Make any desired

changes, and then parent it to the workspace.

▼ TRY IT YOURSELF

Create a New Part Instance

Instead of inserting a part directly into Explorer, use code to create the part, change the part’s
color, and then place it in workspace where it can be seen.

 1. In ServerScriptService, add a new script.

 2. Create an instance of a part; then set the color and finally the parent:

local part = Instance.new("Part")

part.Color = Color3.fromRGB(40, 0, 160)

part.Parent = workspace

You can even take this one step further by creating instances inside of instances:
local part = Instance.new("Part")

local particles = Instance.new("ParticleEmitter")

part.Color = Color3.fromRGB(40, 0, 160)

particle.Parent = part

part.Parent = workspace

TIP

New Part Instance Appears at the World’s Center
When new parts are created via code, they appear at the very center of the world, where the d efault
spawn point is. If you can’t see your part when testing, try moving the spawn point and then testing again.

Summary
Every object in a game has properties like Color, Scale, and Transparency that determine how the

object looks and behaves in game. Each property uses values formatted in a specific way called a

data type. A few common data types are strings, booleans, and numbers.

Q&A 27

Within code, dot notation is used to access properties of an object, as well as to find the object in

the Explorer hierarchy.

Once you understand an object’s properties and how to access them in the game’s hierarchy,

you can begin making changes using code.

Variables can be used as placeholders for information that you want the script to work with.

There are two main types of variables, global and local. Of the two, local variables should

always be used unless there is a specific reason not to.

Game objects such as Parts, Scripts, Dialogs, and ParticleEmitter s can be created in a running script

by using the function Instance.new(), which accepts the name of the object type as a string.

Q&A
 Q. How do you know what data type a property accepts?

 A. You can look up a game object, its properties, and their corresponding types on
developer.Roblox.com. For example, in a search engine, type Roblox Dialog Properties and
look for API results on the Roblox domain.

 In Figure 2.9, you can see a portion of the Dialog API page. It has a short description and a
list of properties with their matching data types. You can click each property and data type
to learn more about how to use it.

FIGURE 2.9
This snippet of the API page for Dialog shows a short description of properties and matching data types.

http://Roblox.com

28 HOUR 2: Properties and Variables

 Q. Why should you not set a variable to include the property you want to change? Like local
partCo lor = workspace.Part.Color?

 A. The hierarchy information and the property information are two different types of data and
can’t be mixed.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What type of data type only accepts the values true or false?

 2. Variables are _____ for information.

 3. If I were storing a player’s name, which would be a good data type: a string, a boolean, an
enum, or a float?

 4. To access the script’s parent, use _______.

 5. A Dialog object inserted into a part is a _____ of the part?

 6. The process of com bining values for use by print() is called _____.

Answers
 1. Booleans

 2. Placeholders

 3. String

 4. script.Parent

 5. Child

 6. Concatenation

Exercises
A face would make your NPC much more personable. One can easily be added on by inserting a
decal. For the texture, you can use the one in the link provided or upload your own.

Tips
 Give the spirit a face (see Figure 2.10) by inserting a decal instance and updat-

ing the texture property with the following string: "http://www.roblox.com/
asset?id=494290547"

http://www.roblox.com/asset?id=494290547
http://www.roblox.com/asset?id=494290547

Exercises 29

 You may have to rotate the NPC to get it to face the right way. Or you can try updating the
decal’s face property to change the placemen t of the decal.

 Find the code solution in the appendix.

FIGURE 2.10
The NPC now has a face, making it feel more alive to players.

 For the second exercise, see if you can create the spirit guide from start to finish only using
code.

Tips
 Insert a new Script object into ServerScriptService to write your code in.

 Use Instance.new() to create the part that will act as the guide’s body, the Dialog
object.

 Don’t forget to anchor the part. Anchored accepts boolean data types.

 Make all changes to the part, including adding the children objects before finally parenting
the guide to the workspace.

 The NPC appears at the dead center of the world as a cube. In Hour 14, “Coding in 3D
World Space,” you learn how to work with the coordinate system to move objects to exactly
where you would like them.

 See the appendix for an example code snippet.

This page intentionally left blank

HOUR 3
 Creating and Using Functions

What You’ll Learn in This Hour:

 How to create functions in Lua

 How to call functions to make them run

 How to use events to call functions

 How scope works

In Hours 1 and 2, you used the prebuilt functions print(), destroy(), and new(). This hour

talks more about what functions actually are, how to create your own functions, and how to get

your functions to run using events that happen in the world.

The second half of the hour talks a little bit about how code is organized so you can better

understand how placement in a script matters when making sure that code will run.

Creating and Calling Functions
Functions are packaged bits of code designed for specific purposes that can be used when needed,

as often as needed.

The code that you used in the last hour to create your NPC ran as soon as the playtest session

started. But what if you don’t want the code to run right away? Say if you only want the NPC to

appear after the player clicks a button or completes a quest. Or what if you want to create mul-

tiple NPCs, but don’t want to write all the same code again. These types of scenarios are great for

functions. You can write the code the same as you did, package it in a function, and have it run

whenever you want.

 1. To create a function, type local function nameofFunction.

 2. Press Enter to automatically close the function with end. Your code will look like this:

local function nameOfFunction()

end

32 HOUR 3: Creating and Using Functions

 3. Inside the function, add your code on an indented line. In this case, we used print() just

for testing purposes. All of the code for the function must be typed before end:

local function nameOfFunction()

 print("Function Test")

e nd

TIP

Indent Your Code
The code will work if not properly indented. Even so, proper indentation makes code a lot easier for
you and other people to read, so we highly recommend that you use indentation in your code.

 4. Once the function is created, all that’s left is to tell it to run. To do this, you have to call

the function by typing the function name followed by a parenthesis:

local function nameOfFunction()

 print("Function Test")

end

 nameOfFunction()

If you don’t call the function, it won’t run.

 5. The function will run as many times as you call it. Try calling it a few more times:

local function nameOfFunction()

 print("Function Test")

end

 nameOfFunction()

 nameOfFunction()

 nameOfFunction()

The name of the function can be whatever you like, as long as it’s followed by (), but let’s take

a second to think about properly naming functions. Here are some guidelines to follow:

 Names should tell you what the function does. For example, destroy() clearly destroys

things.

 Function names in Lua are typically pascalCased. They begin lowercase, and each new

word is capitalized.

 Do not include spaces or special characters in function names. This will ca use errors.

Using Events to Call Functions 33

TIP

Method: Another Name for Function
Functions that are prebuilt or belonging to existing world objects such as print(), wait(), and
destroy() are often referred to as methods in other coding languages. Lua users tend to just say
function regardless of whether it could be referred to as a method .

Understanding Scope
Just mentioned was that any code not between the first and last lines of a function won’t run

when the function is called. Code that is outside a function is out of scope. Scope is the informa-

tion that a particular chunk of code, such as a function, can see and access.

If you run the following code, the print function inside of the function will run three times, and

the print function on the outside will run only once:

local function scopeTest()

 print("This is in scope")

end

print("This is out of scope")

scopeTest()

scopeTes t()

scopeTest()

Using Events to Call Functions
Just typing the name of a function is one way to call it, and that works well when you want it

to be called at a particular point in the script. Sometimes, however, you don’t know in advance

when the function should be called. You want the function to run when something in particular

happens in the experience. Here are some examples:

 Giving a user a sword when they click on a loot chest

 Assigning a player to a team when they’ve joined a game

 Destroying a piece of a bridge when a player has touched it

For these sorts of scenarios, you don’t know in advance when they’ll happen, but you do know

what code you want to run when they do. What you’re waiting for is a specific event. When the

event happens, a signal is fired that can be used to tell code to run. To call a function whenever

an event has been fired, use Connect() and pass in the name of the function to run, but leave

off the ().

34 HOUR 3: Creating and Using Functions

Here’s an example:

partName.Touched:Connect(functionName)

The Touched event is built into parts, so it can be accessed using the dot operator like other chil-

dren. The colon is then used to access the function named Connect().

▼ TRY IT YOURSELF

Create a Vanishing Bridge

Part objects have several built-in events, one of the most useful being Touched. The Touched
event fires whenever its parent part has been collided with. Let’s use the Touched event to
create a bridge where the pieces become transparent half a second after being touched by an
explorer:

 1. Create a bridge piece (see Figure 3.1) using parts or models. Make sure to anchor the part
in place.

FIGURE 3.1
Use a model or a part to act as part of a bridge.

 2. Insert a script into the part, and rename the script BridgeScript (see Figure 3.2).

Using Events to Call Functions 35

▼

FIGURE 3.2
Insert a script into BridgePiece.

 3. Assign the parent part to a local variable: local bridgePart = script.Parent.

 4. Create a new local function named onTouch:

local bridgePart = script.Parent

local function onTouch()

end

TIP

Naming Functions Used With Events
A common naming pattern for functions that are called with events is onBlank, where Blank is
the name of the event. Just another way of making your own code easy to read when you have to
update it after a year.

 5. Connect the function to the part’s Touched event. Once that’s done, you can use
print() to test your code so far:

local bridgePart = script.Parent

local function onTouch()

 print("Touch event fired!")

end

bridgePart.Touched:Connect(onTouch)

36 HOUR 3: Creating and Using Functions

Understanding Order and Placement
When creating variables and functions, it’s important to remember that where they are located

in the script matters. Scripts run code line by line, starting from the top and working to the

bottom.

So if you try to use a variable or a function before it’s been created in the script, you’ll run into

problems (see Figure 3.3 and Figure 3.4). Take a look at the BridgeScript you just completed:

local bridgePart = script.Parent

local function onTouch()

 bridgePart.Transparency = 0.5

 wait(0.5)

 bridgePart.CanCollide = false

end

bridgePart.Touched:Connect(onTouch)

If you move the first line to the bottom, then the previous mentions of the variable now show

errors.

▼
 6. Inside of the function, add the code that should run when the event fires. Here, the part

will turn transparent, and in 0.5 seconds, anyone standing on the bridge will be dropped. If
you added a print statement in the last step, go ahead and delete it:

local bridgePart = script.Parent

local function onTouch()

 bridgePart.Transparency = 0.5

 wait(0.5)

 bridgePart.CanCollide = false

end

bridgePart.Touched:Connect(onTouch)

TIP

Using Booleans
CanCollide is a boolean. When true, that object can interact with things in the world. When false, it
can’t. So in this case, when false, t he bridge no longer supports the user.

Understanding Order and Placement 37

FIGURE 3.3
Moving the creation of bridgePart to the bottom causes errors due to the unknown variable.

FIGURE 3.4
Calling a function before it’s assigned also causes issues.

In both of these examples, errors are caused because the script is trying to call something that

isn’t there yet.

Now that you know that order matters, let’s talk about variables that are created inside of a func-

tion. Start with this basic set of three variables: one before the function, one inside, and one below:

local above = "above"

local function scopePractice()

 local inside = "inside"

end

local below = "below"

At the bottom of the script, try to print all three variables. What happens? inside will error (see

Figure 3.5) despite having been assigned previously. That’s because local variables inside of a

function can’t be accessed from the outside.

FIGURE 3.5
Local variables inside of a function can’t be accessed outside of the function.

38 HOUR 3: Creating and Using Functions

To understand why this doesn’t work, you need to understand that a script is a series of nested

blocks of code. Each time you create a new function, you’re creating a new block. Figure 3.6

illustrates how those blocks can overlap. The first block, block A, is the script itself. Inside is a

function, shown as block B.

FIGURE 3.6
Functions create a new block of code within the script.

Within the function can be more blocks, created by conditional statements and other things that

you’ll learn about in a couple of hours. Each block can access local variables/functions in its par-

ent block, but not those in any child blocks:

 Block B can access the local variable in block A.

 Block C can access the local function/variables in blocks A and B.

 Block A cannot access the local function/var iables in blocks B or C.

 Block B cannot access the local variable in block C.

▼ TRY IT YOURSELF

Reactivate the Bridge

One thing to remember about Roblox experiences is that they are on live servers and are inher-
ently multiuser, which means that lots of people can be in the same server at the same time.
For that reason, you don’t want a broken bridge like the one in Figure 3.7 permanently in your
experience once a player has gone across it. Keep in mind what you’ve learned about scope and
create a second function that reactivates the bridge.

Understanding Order and Placement 39

▼

FIGURE 3.7
The bridge needs to be reset so users can cross it again.

 1. In the same script you used in the earlier Try It Yourself, create a new function called
activateBridge() above the onTouch function:

local bridgePart = script.Parent

local function activateBridge()

end

local function onTouch()

 bridgePart.Transparency = 0.5

 wait(0.5)

 bridgePart.CanCollide = false

end

bridgePart.Touched:Connect(onTouch)

 2. In activateBridge(), reverse the changes to CanCollide and Transparency:

local function activateBridge()

 bridgePart.Transparency = 0

 bridgePart.CanCollide = true

end

40 HOUR 3: Creating and Using Functions

Summary
Functions are reusable chunks of code that you can use again and again and again. Once

defined, they can be called by simply typing functionName(). Or alternatively, if you don’t

know exactly when the function will be needed, you can connect them to an event. That way,

the function will be called each time the event fires.

When creating a script, it’s important to keep in mind what information a chunk of code has

access to. Variables and functions need to be within the scope of a code chunk to be used. Code

chunks can access information within their own chunk and within their parent chunk. Trying to

access information that’s out of scope results in errors in the script.

A good way to practice scope is take a piece of code that you have w orking, like the bridge script,

and move around functions and variables to see when things break.

▼
 3. Inside of onTouch(), call activateBridge() after a short amount of time:

local bridgePart = script.Parent

local function activateBridge()

 bridgePart.Transparency = 0

 bridgePart.CanCollide = true

end

local function onTouch()

 bridgePart.Transparency = 0.5

 wait(0.5)

 bridgePart.CanCollide = false

 wait(3.0)

 activateBridge()

end

bridge Part.Touched:Connect(onTouch)

TIP

Pay Attention to the Order of You r Functions
ac tivateBridge() needed to come before onTouch() in order to keep it in scope.

Workshop 41

Q&A
 Q. Can you create a variable without assigning it a value if you don’t know it yet?

 A. Yes, the variable can be created earlier and then later assigned a value.

 Q. Can you have more than one function with a script?

 A. Yes, you’ll quite often have multiple functions created within a script.

 Q. Why not make everything global and not worry about scope?

 A. In addition to global variables running slower than local variables, there’s a lot of time you’ll
have to create multiple functions within the same script. These functions will all need their
own variables. If you don’t make yo ur variables local, it’s very easy to accidentally overwrite
a variable when you meant to make a new one.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What’s another word for telling a function to run?

 2. What function is used to run a function when an event is fired?

 3. An object’s events are accessed using ___________.

 4. What are two reasons for using local variables instead of global variables?

 5. True or false: If a local variable is inside of a function, it can be accessed by all functions
further down the script.

 6. What symbol is used to run a function associated with an object? Hint, think of how
Connect() and Destroy() were used.

Answers
 1. Call

 2. Connect()

 3. Dot notation

 4. Local variables run faster and prevent accidentally overwriting values in the case of dupli-
cate names.

 5. False. Variables are only accessible within their own code block and chil d code blocks.

 6. A colon is used to call a function associated with an object—for example, part:Destroy().

42 HOUR 3: Creating and Using Functions

Exercise
Instead of having the bridge collapse after being touched, try creating a bridge or track piece that
solidifies after a player touches a button and then resets. Create one function that activates the
bridge when touched and a second function that deactivates the bridge (see Figure 3.8).

FIGURE 3.8
Users need to touch the buttons to activate the missing bridge piece.

Tips
 It’ll be easier to use a single bridge part rather than multiple parts.

 Place the script in the button to take advantage of the Touched event.

 Use wait() to control how long the bridge is active.

 Turn the button green whi le the bridge is active.

 Make sure the bridge piece starts off disabled so that it can be enabled by the script.

The code solution is in the appendix.

 HOUR 4
 Working with Parameters and

Arguments

What You’ll Learn in This Hour:

 How to use parameters

 How to use multiple parameters and arguments

 How to return values from functions

 How to use anonymous functions

Functions can not only perform tasks; they can perform like little factory machines that take

things in, transform them, and then gives back the results. This hour covers the information that

goes inside of the parentheses—parameters and arguments—and what a function can do with

that info.

Giving Functions Information to Use
Functions don’t have to be stand-alone chunks of code; they can actually take in information

from the outside to use. You’ve seen this done with print("Hello"), which takes in messages

to display, and wait(3) which takes in a number of seconds to pause a script.

The values that get passed into a function through the parentheses are called arguments. When

creating your own functions where information will get passed in, you need to create placehold-

ers for the arguments. Those placeholders are called parameters.

To create your own parameters, add a variable name within the parentheses when you define

the function, like so:

local function functionName(parameterName)

end

The parameter can then be used within the function just like any other variable.

44 HOUR 4: Working with Parameters and Arguments

▼ TRY IT YOURSELF

Create a Painting Function

The side of the building in Figure 4.1 will be changed by creating a new function named paint(),
which will have a parameter for taking in what color the wall should be repainted. Instead of using a
building like this, you can practice with a regular old part or an untextured model.

FIGURE 4.1
Use a function to repaint part of the building.

 1. Inside of a part or model, add a new script named Paint.

 2. Create a new local variable assigned to the parent part, and then a new local function
named paint():

local wall = script.Parent

local function paint()

end

 3. Create a parameter named paintColor that will act as a placeholder for what color to
paint the wall with:

local wall = script.Parent

local function paint(paintColor)

end

Working with Multiple Parameters and Arguments 45

▼ 4. Inside the function, set the color of the wall to the paintColor placeholder:

local wall = script.Parent

local function paint(paintColor)

 wall.Color = paintColor

end

 5. Add a variable or two with different RGB colors you might want to paint the wall:

local wall = script.Parent

local blue = Color3.fromRGB(29, 121, 160)

local yellow = Color3.fromRGB(219, 223, 128)

local function paint(paintColor)

 wall.Color = paintColor

end

TIP

Variable Placement
You may have already noticed, but variables usually go at the top of the script or the code chunk
they belong to.

 6. Call the paint function and pass in one of the color variables:

local wall = script.Parent

local blue = Color3.fromRGB(29, 121, 160)

local yellow = Color3.fromRGB(219, 223, 128)

local function paint(paintColor)

 wall.Color = paintColor

end

paint(blue)

Test it out, and whatever part you painted will be the color you picked!

Working with Multiple Parameters and
Arguments
The previous Try It Yourself let you pass in the colors you wanted to paint with, but the object

to be painted was hard-coded in. In other words, the code would only work with that particular

object.

46 HOUR 4: Working with Parameters and Arguments

Hard-coding really limits the use of the function unless you plan on changing the color of that

one wall a lot. Luckily, you can pass more than one argument into a function. All you have to

do is create more than one parameter.

Multiple parameter names can be separated with a comma when defining the function, as

shown here:

local function functionName(firstParameter,secondParameter)

 print(firstParameter .." and ".. secondParameter)

end

TIP

How Many Is Too Many?
There’s no technical limit to how many parameters you can have, but most people agree that no
more than three is a good rule of thumb.

The arguments that get passed in always fill up the parameters in order. The first argument

always goes through the first parameter, and the second argument always goes through the sec-

ond parameter:

local first = "first"

local second = "second"

local function practice(firstParameter,secondParameter)

 print(firstParameter .. " and " .. secondParameter)

end

practice(first, second) -- Prints "first and second"

practice(second, first) -- Prints "seco nd and first"

▼ TRY IT YOURSELF

Pass in What Color and What Object

Make the paint function more useful by creating a variable that takes in both an object to paint
and a color to paint with. Figure 4.2 shows a car and a building currently painted white, which is
incredibly boring and doesn’t match the scene. Take the same painter code as before but make
it so you can pass in the object you want to paint. That way, the code can be used on both the
building and the car:

Working with Multiple Parameters and Arguments 47

▼

FIGURE 4.2
A function with two parameters can be used to designate both what object to paint and what color to use.

 1. In ServerScriptService, create a new script.

 2. Assign variables for two different colors and two different objects:

-- Available colors

local red = Color3.fromRGB(170, 0, 0)

local olive = Color3.fromRGB(151, 15, 156)

-- Objects to paint

local car = workspace.Car

local resta urant = workspace.Buildings.Restaurant

TIP

Finding Embedded Objects
Note that for the second object in the example, the restaurant was in a folder, so dot notation was
used to navigate one more step down the hierarchy.

 3. Create a function that has a parameter to take in an object to paint and the color to paint
it:

-- Paints objects

local function painter(objectToPaint, paintColor)

 objectToPaint.Color = paintColor

end

48 HOUR 4: Working with Parameters and Arguments

▼
 4. Call the function and pass in which object should be painted and what color:

-- Available colors

local red = Color3.fromRGB(170, 0, 0)

local olive = Color3.fromRGB(151, 15, 156)

-- Objects to paint

local car = workspace.Car

local restaurant = workspace.Buildings.Restaurant

-- Paints objects

local function painter(objectToPaint, paintColor)

 objectToPaint.Color = paintColor

end

painter(restaurant, olive)

painter(car, red)

 5. Test your code. Instead of Play, in the drop-down menu, select Run (see Figure 4.3) if you
want to see the changes to the world without playing the experience.

FIGURE 4.3
Use Run to test code without loading a character avatar.

Figure 4.4 shows the finished car and building, which are no longer startlingly white.

Returning Values from Functions 49

Returning Values from Functions
Not only can values be passed into a function, but they can also be passed back. A classic exam-

ple is a calculator, just like the one on your phone. Values go in, and the result is returned. In

the following code example, a function is assigned to a variable. When the variable is used, the

function runs, and the result is sent back using the keyword return:

-- Adds any two numbers together

local function add(firstNumber, secondNumber)

 local sum = firstNumber + secondNumber

 return sum -- Sends sum back to where the function was called

end

-- Some numbers to use

local rent = 3500

local electricity = 128

-- Use add() to add rent and electricity and return the result

local costOfLiving = add(rent, electricity)

print("Rent in New York is " .. costOfLiving)

▼

FIGURE 4.4
Once the script runs , both the bui lding and the car have had their color changed.

50 HOUR 4: Working with Parameters and Arguments

Returning Multiple Values
Sometimes you may want multiple values returned from a function. An example may be return-

ing how many wins, losses, and ties a user has. To return m ultiple values, use return as normal

and separate the values with a comma.

▼ TRY IT YOURSELF

Return Player’s Wins, Losses, and Ties

Follow the steps to create a custom function which, when called, returns a player’s wins, losses,
and ties. Assign the returned values to a variable:

 1. Create a custom function with variables for wins, losses, and ties.

 2. Type return followed by the desired variable. Use a comma to separate them:

local function getWinRate()

local wins = 4

local losses = 0

local ties = 1

return wins, losses, ties

end

 3. Rather than creating variables for each received value on separate lines, create them
on the same line as in the following example. They’ll be filled in order with the returned
values:

local function getWinRate()

local wins = 4

local losses = 0

local ties = 1

return wins, losses, ties

end

local userWins, userLosses, userTies = getWinRate()

 4. Print the variables to see the results.

local function getWinRate()

local wins = 4

local losses = 0

local ties = 1

return wins, losses, ties

end

local userWins, userLosses, userTies = getWinRate()

print("Your win s, losses, and ties are: " .. userWins .. " , " .. userLosses
.. " , " .. userTies)

Dealing with Mismatched Arguments and Parameters 51

Returning Nil
Nil means something can’t be found or doesn’t exist. If you see nil printed instead of the

expected output, do the following:

 Check that the number of values received is the same as those returned.

 Verify that values returned and received are separated by commas.

 Confirm nothing else is wrong with the function.

▼TRY IT YOURSELF

Returning Something That Doesn’t Exist

If you try to use a variable or function that doesn’t exist, you can see the keyword nil displayed in
Output, as well as where the error occurred.

 1. In any script, pass a fake variable name like doesntExist into print().

 2. Run the code and check Output. You should see the nil alongside the name of the script
and the line number of where the variable couldn’t be found, such as the error shown in
Figure 4.5.

FIGURE 4.5
The err or message shows that a value couldn’t be found at line 1 of the script named NilTest.

Dealing with Mismatched Arguments and
Parameters
It’s important to be aware of what will happen if the wrong number of values are passed into a

function or are returned. Having the wrong number can cause your code to error and freeze.

52 HOUR 4: Working with Parameters and Arguments

If insufficient arguments are passed into a function, an error occurs when the function reaches

the nil value:

local function whoWon(first, second)

 print("First place is " .. first .. "Second place is ")

end

whoWon("AngelicaIsTheBest") -- Will error because there is not a second value

If more values are passed back than there are available variables, the values fill up in order, and

any variables left over will be dropped and lost. In this example, three values are passed back,

but there are only spaces for two:

local function giveBack()

 local a = "Apple"

local b = "Banana"

local c = "Carrot"

return a, b, c

end

local a, b = giveBack() -- c is lost

print(a, b, c) -- Will print Apple, Banana, nil

"Carrot" only exis ts within the scope of the function and is never returned, so nil is printed for

the third value.

Working with Anonymous Functions
Anonymous functions are, as the name implies, functions. What makes them special is that

when they are first defined, they go unnamed. This means they can be defined in the same place

as they are called. Compare the following two code samples for our familiar simple trap con-

nected to the Touched event. The Touched event returns the name of the triggering part, which

is then destroyed.

First, here is the script where a named function is created and then called whenever the Touched

event is fired:

Named Function Example

local trap = script.Parent

local function onTouch(otherPart)

 otherPart:Destroy()

end

trap.Touched:Connect(onTouch)

Summary 53

Now here is code that does the same thing, but the function is created in the same place where

it’s being called:

Anonymous Function Example

local part = script.Parent

part.Touched:Connect(function(otherPart)otherPart:Destroy() end)

If you were to run both pieces of code, they do the exact same thing: destroy anything that

touches the script’s parent. So why wouldn’t you use an anonymous function? The table shows

some pros and cons for unnamed functions.

Pros Cons

Faster to type. More difficult to read.

Can be used with functions that don’t return
values otherwise.

Trickier to update and reuse.

Can’t be called from elsewhere, because they
don’t have a name to call them by.

TIP

Named Functions Makes Collaborating Easier
The Roblox Lua Style Guide discourages the use of anonymous functions when not necessary
because most projects will have multiple coders, and anonymous functions make code much more
difficult to read and upda te.

Summary
Functions can be used and reused in a lot of different ways. They can be used to create some-

thing, like the NPC in Hour 2. They can be used to make changes to an object by updating prop-

erties or even destroying them altogether, as with a trap part. To do so, they can take in values

from outside of the function by passing those values through parameters. The actual chunks of

information that get passed through parameters are called arguments.

When the function completes its work, information can be passed back and used by the script.

A classic example of information being returned is the calculator on your phone. If you use the

calculator to add two numbers, it’ll pass back the answer. Another example we’ve seen is when-

ever the Touched event is fired, Touched passes back the name of the object that caused it to

fire.

54 HOUR 4: Working with Parameters and Arguments

Sometimes, if there’s nothing to return, you might use an anonymous function and create the

function in the same place as it’s called. This can be convenient, but it also makes your code a

lot harder to read, which possibly means slowing down teammates who are working with the

script. It can even make it more challenging for yourself if you want to make updates to the code

late r.

Q&A
 Q. Is there a maximum amount of parameters a function can have?

 A. There’s not a strict maximum, but most of the time, you’ll want to limit it to just three. The
more parameters you have, the harder it becomes to remember what each one is for, and
easier to mess up the o rder.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. Handing information from outside of a function to the inside is called ______.

 2. What keyword allows values to be handed back when a function is done?

 3. The placeholder for values that will later be used by a function are called _______.

 4. The actual values used by functions are called ______.

 5. The keyword that is used when values can’t be found or don’t exist is ____.

Answers
 1. Passing

 2. return

 3. Parameters

 4. Arguments

 5. 0bnil

Exercise 55

Exercise
All coders will at times research how other people have made something. However, the code you
find online might not do exactly what you want or be formatted in a way that makes it easy for
your team members to read. It’s important that you take the time to examine borrowed code and
make improvements where you can. In this exercise, practice by taking an anonymous function
and trying to reformat it as a named function:

script.Parent.Touched:Connect(function(otherPart) local fire = Instance.new"Fire"
fire.Parent = otherPart end)

See the appendix for the solution.

This page intentionally left blank

HOUR 5
Conditional Structures

What You’ll Learn in This Hour:

 How to use if/then statements

 How to work with operators

 How to use multiple conditions with elseif and else

 How to find the Humanoid

Have you ever told someone you would do something—on one condition? For example, you’ll

help them move to a new place, but they have to help you study for finals. That’s a conditional

structure. You’ll do something if something else happens.

The same thing can happen in scripts. You can set up code so that it’ll run only if something else

is true. Figure 5.1 shows a flowchart of how a conditional structure works.

Do that

No

Do this

Thing to check

Is it true?
Yes

FIGURE 5.1
The code decides which option to take based on whether something is true or false.

This hour explores the world of conditional structures in which code runs only if certain condi-

tions are met.

58 HOUR 5: Conditional Structures

if/then Statements
The most common conditional structure is probably an if/then statement. If something is true,

then the code will do something.

Here are a few examples:

 If a key is found, then a new area can be explored.

 If a quest is completed, then the user will receive a free pet.

 If someone says happy birthday in chat, then make a burst of balloons on screen.

In code, it looks like this:

if somethingIsTrue then

-- Do something

 print("It's true!")

end

If the first line is true, then the print command in the indented code will run.

Conditional statements can use operators to evaluate if something is true. Operators are symbols

that give directions about how to evaluate something. Table 5.1 shows some of the most com-

mon operators. For a complete list, refer to the appendix.

TABLE 5.1 Common Operators

Operator Description Examples of Being True

== Is equal If 3 == 3 then

+ Addition If 3 + 3 == 6 then

– Subtraction If 3 - 3 == 0 then

* Multiplication If 3 * 3 == 9 then

Pay close attention to the double equal sign used as an operator as compared to a single equal

sign used to assign a value to a variable. A double equal sign == is used to check if something is

equal.

if/then Statements 59

The following evaluates as true, and the code will run:

local health = 10

if health == 10 then

 print("You're at full health")

end

The following evaluates as false, and the code won’t run:

local health = 5

if health == 10 then

 print("You're at full health")

end

What if the player has temporary bonus health? You can check for that with the operator for

greater than or equal to (>=):

local health = 12

if health >= 10 then

 print("You're at full health")

end

You can also check for the presence of a value if no operator is used. The following code snippet

checks to see if a roof is on fire:

local roof = script.Parent

local fire = roof:FindFirstChildWhichIsA("Fire")

if fire then -- Checks if fire is not nil

 print("The roof is on fire!")

 fire:Destroy()

end

It uses FindFirstChildWhichIsA() to see if any of the roof’s children objects are Fire objects.

FindFirstChildWhichIsA()only gets the first object it finds that matches its search.

▼TRY IT YOURSELF

Introducing Humanoids

The lava in Hour 1 had a major flaw: It only destroyed whatever touched it directly, which means
that users could possibly be running around without feet or hands if they managed only to brush
against the trap, as in Figure 5.2.

60 HOUR 5: Conditional Structures

▼

FIGURE 5.2
This person has lost their feet.

To reset the user completely, you need to find the object that controls the user’s health. In
Roblox, by default that’s the Humanoid object. If you use the Humanoid to set the user’s health
to 0, they’ll be forced to respawn—legs, feet, hands, and all.

 1. Create a part and insert a new script. You can use your lava from Hour 1 as long as you
delete the old script.

 2. Create a variable assigned to the trap part itself.

 3. Start a function named onTouch with a parameter for otherPart.

 4. Inside of the function, create a variable named character to find otherPart’s parent,
if it has one:

local trap = script.Parent

local function onTouch(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

end

if/then Statements 61

▼ 5. The next step is to check whether the character has a Humanoid. If it does, it’s most likely
a user or an NPC:

local trap = script.Parent

local function onTouch(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

end

end

 6. Set the user’s health to 0:

local trap = script.Parent

local function onTouch(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

 humanoid.Health = 0

end

end

 7. Connect onTouch to the trap’s Touched event:

local trap = script.Parent

local function onTouch(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

 humanoid.Health = 0

end

end

trap.Touched:Connect(onTouch)

You can find the API page for Humanoids at https://developer.roblox.com/api-reference/class/
Humanoid.

https://developer.roblox.com/api-reference/class/Humanoid
https://developer.roblox.com/api-reference/class/Humanoid

62 HOUR 5: Conditional Structures

elseif
OK, but what if you want the code to check for more than one scenario? For example, you want

the code to do one thing if the user’s health is full, but a different thing if the user’s health is not

full. In these scenarios, add a second conditional called with the keyword elseif:

local health = 5

if health >= 10 then

 print ("You're at full health")

elseif health < 10 then -- Check if health is less than 10

 print("Find something to eat to regain health!")

end

The elseif is still part of the same code block as if/then. It does not have its own end.

Logical Operators
A few special operators aren’t symbols; instead, logical operators are the words and, or, and not.

and and or allow you to check against multiple conditions at the same time. not lets you make

sure something isn’t something else. Table 5.2 explains how these operators are evaluated.

TABLE 5.2 Logical Operators

Operator Description

and Evaluates as true only if both conditions are true.

or Evaluates as true if either condition is true.

not Evaluates as the opposite of the condition.

These operators consider both false and nil as “false” and anything else as “true.”

In the following snippet, and is used to check for a range rather than a single value. In this sce-

nario, we imagine the user has a maximum of 10 health, and at 0 health respawns. So the user

needs to eat only if they are less than full health:

local health = 1

ssssssssss

if health >= 10 then

 print ("You're at full health")

elseif health >= 1 and health < 10 then -- Check if health is in a specific range

 print("Find something to eat to regain health!")

end

else 63

You can keep creating code for specific scenarios as needed with additional elseif statements:

local health = 1

if health >= 10 then

 print ("You're at full health") -- Runs if health is 10 or higher

elseif health >= 5 and health < 10 then -- Runs if health is 5 - 9

 print("Find something to eat to regain health!")

elseif health >= 1 and health <= 4 then -- Runs if health is 1 - 4

 print("You are very hungry, better eat soon!")

end

else
Finally, it’s always wise to tell the script what to do if none of the other contingencies are met.

Use the keyword else to mark what should be done if no other conditions are met:

local health = 0

if health >= 10 then

 print ("You're at full health") -- Runs if health is 10 or higher

elseif health >= 5 and health < 10 then -- Runs if health is 5 - 9

 print("Find something to eat to regain health!")

elseif health >= 1 and health <= 4 then -- Runs if health is 1 - 4

 print("You are very hungry, better eat soon!")

else -- Runs if none of the conditions have been true.

 print("You ran out of food, you'll need to restart")

end

Once again, else is not its own code block; the entire conditional should only use the keyword

end once.

▼TRY IT YOURSELF

Make a Portal with Attributes and Services

Practice using if/then and elseif statements by creating a portal that only allows players
to pass into the tunnels on the other side if they’ve activated a special keystone nearby. (See
Figure 5.3.) To create the portal, you get to learn about the ProximityPromptService and custom
attributes.

64 HOUR 5: Conditional Structures

▼

FIGURE 5.3
A keystone (left) that needs to be activated before people can use the portal (right).

First, you need to set up the portal and keystone using either parts or models. In Figure 5.3, a
model was used for the portal arch, but the portal itself is just a black part acting as a barrier.
The arch is just for show.

Both the portal and keystone will need a new attribute to make the script work. Attributes are
 custom properties that you can name and set a value type for. An attribute named Activated
will be created for each part to track whether the key has been found and if the portal can be
used:

 1. Set up parts or meshes named Portal and KeyStone.

 2. Select Portal, and insert a ProximityPrompt (see Figure 5.4). ProximityPrompts enable users
to click and interact with parts instead of only being able to run up and touch them.

FIGURE 5.4
Insert a ProximityPrompt object.

 3. With Portal still selected, in Properties, scroll all the way down and click Add Attribute (see
Figure 5.5).

else 65

▼

FIGURE 5.5
Click Add Attribute.

 4. Name the attribute Activated, set the type to boolean, and then click Save (see Figure
5.6).

FIGURE 5.6
Name the attribute Activated and set the type to boolean.

 5. Select KeyStone, create another new attribute named Activated, and set the type to
boolean.

66 HOUR 5: Conditional Structures

▼ WARNING

Leave the New Attributes Unchecked
Make sure to leave both new attributes disabled, as in not checked. Enabled/checked attributes
and properties are true, whereas disabled/unchecked are false.

Next, you create two scripts: one for the key and one for the portal.

Getting Attributes in the KeyStone Script
The KeyStone’s attribute, Activated, should currently be false. As long as the key isn’t acti-
vated, the portal doesn’t allow people to pass through. The KeyStone’s script is used to turn on
the key when touched, and set Activated to true:

 1. Select KeyStone and insert a new script.

 2. Create a variable to reference the script’s parent and a function named onTouch con-
nected to the KeyStone’s Touched Event. Include a parameter for the touching part.

 3. Check to see if a person has touched the part by looking for a Humanoid. You don’t want
the code to be triggered by a touching baseplate or something similar. Refer to the code
earlier in the hour if you can’t remember how.

 4. Inside the function, use SetAttribute() to pass in Activated and change the value
to true as shown:

local keyStone = script.Parent

local function onTouch(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

 keyStone:SetAttribute("Activated", true)

 end

end

keyStone.Touched:Connect(onTouch)

 5. Change the KeyStone’s material to Neon to show the user that the KeyStone has been
activated:

local keyStone = script.Parent

local function onTouch(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

else 67

▼if humanoid then

 keyStone:SetAttribute("Activated", true)

 keyStone.Material = Enum.Material.Neon

 end

end

keyStone.Touched:Connect(onTouch)

TIP

Alternatives for Textured Parts
If your part has a texture, changes to materials and color won’t show up. You can delete the texture
so these properties show or enable a particle when activated. The important thing here is to always
show users when they have an interaction with a part.

 6. Test and make sure the part changes to neon, as shown in Figure 5.7.

FIGURE 5.7
The KeyStone (left) glows neon blue (right) after it’s activated so users know it’s working.

Portal Script
Back to the portal itself: When the user walks up to the portal, the ProximityPrompt displays a
message showing the barrier can be interacted with, as shown in Figure 5.8.

68 HOUR 5: Conditional Structures

▼

FIGURE 5.8
A ProximityPrompt’s default message is shown to users when they get close enough.

ProximityPrompts have a number of associated functions that can be used, but they aren’t auto-
matically included with the functions normally available in a script. We can make these functions
available to us by adding the ProximityPromptService to the script. Services are optional sets of
code that provide additional functions for your script to use. These code sets can be made avail-
able for use by assigning them to a variable with GetService(). Here’s an example:

local ProximityPromptService= game:GetService("ProximityPromptService")

TIP

Using Colons with Methods
As a reminder, when accessing methods—that is, functions associated with an object—you use
colons. Here, GetService() is associated with the top-level object, game:

 1. Select Portal and insert a new script.

 2. Create a variable to get ProximityPromptService.

 3. Create variables to reference Portal, KeyStone, and ProximityPrompt.

 4. Create a new function named onPromptTriggered:

local ProximityPromptService = game:GetService("ProximityPromptService")

local portal = script.Parent

local keyStone = workspace.KeyStone

else 69

▼local proximityPrompt = portal.ProximityPrompt

local function onPromptTriggered()

end

TIP

Naming Functions
You may have noticed that the formula of on and the name of the event is a common way to name
functions.

 5. Connect the function to the PromptTriggered event that comes with
ProximityPromptService:

local function onPromptTriggered()

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 6. Inside of the function, get the current value of the KeyStone’s attribute, Activated:

local function onPromptTriggered()

 local KeyActivated = keyStone:GetAttribute("Activated")

end

 7. If KeyStone is Activated, make the part transparent and disable CanCollide:

local function onPromptTriggered()

 local KeyActivated = keyStone:GetAttribute("Activated")

 if KeyActivated == true then

 portal.Transparency = 0.8

 portal.CanCollide = false

 print("Come on through")

 end

end

 8. Otherwise, make the door blink red:

local ProximityPromptService = game:GetService("ProximityPromptService")

local portal = script.Parent

local keyStone = workspace.KeyStone

local proximityPrompt = portal.ProximityPrompt
local originalColor = portal.Color

local function onPromptTriggered()

 local KeyActivated = keyStone:GetAttribute("Activated")

70 HOUR 5: Conditional Structures

▼ if KeyActivated == true then

 portal.Transparency = 0.8

 portal.CanCollide = false

 print("Come on through")

 else

 portal.Color = Color3.fromRGB(255, 0, 0)

 wait(1)

 portal.Color = originalColor

 print("Activate the key stone to pass through the portal")

 end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

TIP

Taking into Account Multiple Player Interactions
A variable is used to get the portal’s original color at the top of the script instead of in the function.
Otherwise, if you spam the interaction, the function might start while the portal is still red. The vari-
able would then be assigned red instead of the original color.

The script is finished! Test it out and make sure people can use the portal. In the Property win-
dow, you can even customize the text of the ProximityPrompt (see Figure 5.9) and how far away
players have to be.

FIGURE 5.9
You can customize the ProximityPrompt text.

Workshop 71

Summary
Using conditional statements can really make your world start to come to life, allowing you to

set up cause-and-effect reactions in the world. If people touch something dangerous, then they

lose health. If they touch something else, magical powers can be given or new doors can open.

The keywords if/then, elseif, and else are what allow you to create the flowchart for what

code should run under what circumstances. The script checks each condition starting from the

top, and if the condition is true, the code for that section is run. The rest of the code in the if/

then statement is skipped. If nothing is true, an else can be used to say what the code should

do.

While setting up these interactions, always think of the people who will be experiencing the

world you’re creating. Include visual clues such as color changes or special effects to make sure

the user understands an object is working as intended.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. A double equal sign (==) means ___ _____.

 2. What’s wrong with the following code snippet?

local health = 5

if health >= 10 then

 print ("You're at full health")

 elseif health < 10 then

 print("Find something to eat to regain health!")

 end

end

 3. Make additional sets of code available in your script with ______.

 4. What operator means less than or equal to?

 5. Operators that are not symbols are called ______.

 6. What does the operator or do?

Answers
 1. Is equal

 2. elseif shouldn’t be its own code chunk. It should be on the same indent level as if, and
there should only be one end.

72 HOUR 5: Conditional Structures

 3. GetService()

 4. <=

 5. Logical operators

 6. Evaluates as true if either condition is true.

Exercise
Give a player super powers by making them go fast when they touch a speed booster! A
Humanoid’s default WalkSpeed property is set to 16. Not so bad, but it’d be a lot cooler to go a
lot faster. Make a part that temporarily allows a user to go way faster and then returns them to
their original speed after a few seconds.

To do so, you can use the onTouch pattern you’ve been working with and some if/then state-
ments. As an added twist, use a ParticleEmitter object to stream sparkles behind them while
they’re powered up (see Figure 5.10).

Tips
 ParticleEmitters can be stored in ServerStorage.

 Get ServerStorage using GetService().

 Use if/then to check for a Humanoid.

 Change the Humanoid’s WalkSpeed property from the default value of 16 to 50.

 Use the method Clone() to make a copy of the particle and then parent it to the runner.

 After a few seconds, reset WalkSpeed to 16, and destroy the ParticleEmitter.

FIGURE 5.10
Stars stream behind this running ninja while they’re powered up.

You can find the code solution in the appendix.

 HOUR 6
 Debouncing and Debugging

What You’ll Learn in This Hour:

 How to create debounce systems

 What string debugging is

 How to pull out values for easier testing

 How to create image and text labels

Now that you know what a humanoid is, and how to check for one using if, you can start cre-

ating code that doesn’t just destroy things or set a user’s health all the way to 0. Instead, you can

start making things happen incrementally—that is, only by a certain amount at a time. Instead

of taking a user’s health all the way to 0, you can make it go down only part way, or a user’s

wealth can go up by one gold every time they mine a piece of ore.

The second half of this hour shows methods for checking and improving existing code. You’ll use

string statements to check where your code might have gone wrong, see how to set up systems

that prevent individual users from spamming interactions, and find out how to start bringing

more of the design process into your coding.

Don’t Destroy, Debounce
Let’s explore setting up a trap that removes 10 health points from a user at a time. A human-

oid’s default max health is 100. Using what you know, the easiest way to set up a trap that takes

the player’s current health and subtracts 10 might be as follows:

local trap = script.Parent

local function damageUser(otherPart)

 local partParent = otherPart.Parent

 local humanoid = partParent:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

 humanoid.Health = humanoid.Health - 10

print("Ouch! Current health is " .. humanoid.Health)

end

end

trap.Touched:Connect(damageUser)

74 HOUR 6: Debouncing and Debugging

The problem is that—because of how the physics engine handles collisions—the code will trigger

multiple near-simultaneous events and cause more damage than intended. In Figure 6.1, you

can see from the time stamp on the left that the person’s current health went down very quickly.

FIGURE 6.1
The output message shows the trap was activated more often than anticipated.

We don’t want the code to run so many times so fast. We want to make sure it runs only once

and doesn’t run again until we say it can. Ensuring that an action is triggered only once when it

would otherwise be triggered multiple times is known as debouncing.

Here’s the previous code snippet but with a debounce system that deactivates the trap for a set

amount of time:

local trap = script.Parent

local RESET_SECONDS = 1 -- How long the trap will be disabled

local enabled = true -- Needs to be true to damage user

local function damageUser(otherPart)

 local partParent = otherPart.Parent

 local humanoid = partParent:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

 if enabled == true then -- Check that trap is currently enabled

 enabled = false -- Set variable to false to disable the trap

 humanoid.Health = humanoid.Health - 10

 print("OUCH!")

 wait(RESET_SECONDS) -- Wait for reset time duration

 enabled = true -- Re-arms trap

 end

 end

end

trap.Touched:Connect(damageUser)

Don’t Destroy, Debounce 75

▼TRY IT YOURSELF

Mining Simulator

An excellent example of when you don’t want code to run more often than intended is when
giving users gold or points. Here you create a mining simulator where users get gold every time
they mine a pile of ore like the one in Figure 6.2. This Try It Yourself uses ProximityPrompts for
the mining mechanic and a leaderboard where people can see how much gold they’ve collected
so far.

FIGURE 6.2
Sparkling gold ore, just waiting to be mined.

Set Up the Scoreboard
You’re going to use the leaderboard that’s built into Roblox. This is the leaderboard you see in
the top right of many Roblox games (see Figure 6.3). It can be used to keep track of more than
just scores. It can also be used to track what level a player is on, how many resources they
have, or what team they’re on.

With this system, the player will only be harmed if enabled is equal to true.

76 HOUR 6: Debouncing and Debugging

▼

FIGURE 6.3
The leaderboard in the top-right corner shows people’s names and how much gold they’ve collected so far.

Whenever a player enters the game, they should be added to the leaderboard. This can be done
as follows:

 1. In ServerScriptService, add a new script. (See Figure 6.4.)

FIGURE 6.4
The Leaderboard script should be placed in ServerScriptService.

 2. Get the Players service and connect a function to the PlayerAdded event:

local Players = game:GetService("Players")

local function leaderboardSetup(player)

end

-- Connect the "leaderboardSetup()" function to the "PlayerAdded" event

Players.PlayerAdded:Connect(leaderboardSetup)

Don’t Destroy, Debounce 77

▼ 3. Inside the connected function, create a new Folder instance, name it leaderstats, and
parent it to the player:

local function leaderboardSetup(player)

local leaderstats = Instance.new("Folder")

 leaderstats.Name = "leaderstats"

 leaderstats.Parent = player

end

TIP

Make Sure the Name Is leaderstats
It’s really important that the folder is named leaderstats (all lowercase). Roblox won’t add the
player to the leaderboard if any other name variation is used.

 4. Set up the actual stat that you see in the corner of the screen. Do your best to follow the
steps without looking at the code box:

 a. Use a local variable named gold to create a new IntValue instance.

 b. Name the IntValue Gold. What you type here is exactly what will be shown to users.

 c. Set the IntValue’s Value property to 0.

d. Parent the IntValue to leaderstats.

local Players = game:GetService("Players")

local function leaderboardSetup(player)

 local leaderstats = Instance.new("Folder")

 leaderstats.Name = "leaderstats"

 leaderstats.Parent = player

local gold = Instance.new("IntValue")

 gold.Name = "Gold"

 gold.Value = 0

 gold.Parent = leaderstats

end

Players.PlayerAdded:Connect(leaderboardSetup)

TIP

IntValue O bjects Can Help Track Values
IntValues are special objects that only accept integers—that is, whole numbers. That way, you don’t
accidentally end up with something like 6.7 points.

78 HOUR 6: Debouncing and Debugging

▼ Set Up the Gold Ore Object
For the gold ore, you can use a part or mesh. Remember, you can always copy meshes that you
see in any of Roblox Studio’s templates and paste them into your file. As with the portal from the
last hour, you use a ProximityPrompt to allow people to interact with the ore, and a new attribute
is created. One of the cool things about ProximityPrompts is that you can modify them to include
their own debounce by increasing the HoldDuration property:

 1. Pick a part or a mesh to act as the gold ore deposit.

 2. Insert a ProximityPrompt.

 3. Name the ProximityPrompt GoldOre. This is important because we’re going to use the
name to check whether we have the right proximity prompt.

 4. In ProximityPrompt’s properties, change the following, as shown in Figure 6.5:

 ActionText: Mine

 HoldDuration: 1 (This is the amount of time users need to hold the interaction to
mine the ore.)

 ObjectText: Gold Ore

FIGURE 6.5
Modify the ActionText, HoldDuration, and ObjectText properties.

Don’t Destroy, Debounce 79

▼ 5. Select the gold ore part, and add a new attribute named ResourceType, set to string.

 6. Set ResourceType to Gold, as shown in Figure 6.6.

TIP

Attributes Can Make Your Code Reusable
Using an attribute to tag the ResourceType means you can use this same script for other collectible
objects.

FIGURE 6.6
Add a new attribute named Resource with its value set to Gold.

Set Up the Gold Ore Script
The next step is to set up the interactivity for the ProximityPrompt, but this time you’re going to
put the script into ServerScriptService. This will let you have lots of gold mines that all use the
same script.

With the PromptTriggered event, you can tell if the player has held the button the required
amount of time:

 1. Insert a new script into ServerScriptService.

 2. At the top of the script, get ProximityPromptService. Then, create a variable for how
long the prompt will be disabled once it is used. See if you can remember how to do it
without referring to the code example in step 3.

80 HOUR 6: Debouncing and Debugging

▼
 3. Create a new function connected to the PromptTriggered event with parameters for prompt

and for player, in that order. This way, you know when the user is done holding the
button:

local Players = game:GetService("Players")

local ProximityPromptService = game:GetService("ProximityPromptService")

local isEnabled = true -- Debounce variable

local DISABLED_DURATION = 4

local function onPromptTriggered(prompt, player)

end

Proxim ityPromptService.PromptTriggered:Connect(onPromptTriggered)

TIP

You Need to Account for Both Arguments
When the prompt is triggered, both the specific prompt that triggered it and the player who triggers
it is returned. You only need to know the player, but remember that returned values are always
returned in order. So if you want the second returned value, you need two placeholders.

 4. There can be lots of proximity prompts in your game, so find the prompt’s parent and see
if it has an attribute named ResourceType:

local ProximityPromptService = game:GetService("ProximityPromptService")

local DISABLED_DURATION = 4

local function onPromptTriggered(prompt, player)

 local node = prompt.Parent

 local resourceType = node:GetAttribute("ResourceType")

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 5. If there is a resourceType, and prompt.Enabled is equal to true, disable the prompt:

local function onPromptTriggered(prompt, player)

 local node = prompt.Parent

 local resourceType = node:GetAttribute("ResourceType")

 if resourceType and prompt.Enabled then

 prompt.Enabled = false

end

end

Don’t Destroy, Debounce 81

▼ 6. Find the player’s leaderstats and then use the resourceType to update the leaderboard
stats as shown:

local function onPromptTriggered(prompt, player)

 local node = prompt.Parent

 local resourceType = node:GetAttribute("ResourceType")

 if resourceType and prompt.Enabled then

 prompt.Enabled = false

local leaderstats = player.leaderstats

 local resourceStat = leaderstats:FindFirstChild(resourceType)

 resourceStat.Value += 1

end

end

 7. After a certain amount of time has passed, re-enable the prompt so that it can be used
again:

local ProximityPromptService = game:GetService("ProximityPromptService")

local DISABLED_DURATION = 4

local function onPromptTriggered(prompt, player)

 local node = prompt.Parent

 local resourceType = node:GetAttribute("ResourceType")

 if resourceType and prompt.Enabled then

 prompt.Enabled = false

 local leaderstats = player.leaderstats

 local resourceStat = leaderstats:FindFirstChild(resourceType)

 resourceStat.Value += 1

 wait(DISABLED_DURATION)

 prompt.Enabled = true

end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

You’ve finished! Add some visual indicators when the ore is disabled, like changing the transpar-
ency or color of the ore. (See Figure 6.7.) When it’s working as you like, go ahead and duplicate
the ore as many times as you want.

The cool thing is that because you just have the single script in ServerScriptService, if you need
to make changes to the script later, it’s really easy no matter how many copies of the ore you
add to your game.

82 HOUR 6: Debouncing and Debugging

▼

FIGURE 6.7
Now you have a dark disabled gold ore in the foreground and an enabled bright gold ore in the background.

TIP

Saving Player Data
With the code you have so far, the user has to start over every time they join the game. H our 17
explores how to save users’ data between sessions.

Figuring Out Where Things Go Wrong
We all make mistakes. Even pro Roblox developers who have been coding for years make mis-

takes every day. The key is to develop a detectivelike attitude toward both what went wrong with

your code and how your code might encounter unexpected situations when users interact with it

in the experience you build. The second half of this hour covers some techniques you can use to

test your code and ite rate on it to make a better experience for the people who visit your Roblox

worlds.

Using String Debugging
As your coding skill grows and you continue to challenge yourself, you’ll quite often not be sure

why your code didn’t run on the first try. The most obvious thing to check for first is underlined

errors in the editor and Output window. Sometimes, though, that’s not enough.

Figuring Out Where Things Go Wrong 83

The next step in figuring out where things went wrong is trying to find where the code didn’t

run as expected. Maybe a function wasn’t actually called or the given values weren’t what you’d

expect. One way to narrow things down is combining print statements with your knowledge of

scope. Use print statements to verify variables are what you expect and code is running when

you would expect.

For example, if you want to make sure a function was called, put a print statement right at the

beginning of the function:

local speedBoost = script.Parent

local function onTouch(otherPart)

 print("onTouch was called!")

 -- Code Body

end

speedBoost.Touched:Connect(onTouch)

If for some reason you don’t see "onTouch was called!" in the output window, you know

the function was never called. Maybe the event didn’t fire, or it’s not connected to the function.

If you do see the message, you need to check whether the problem was with the next code chunk

and verify if code chunks are running when expected. The following code snippet is for creating

a speed boost. The code can be placed within a script inserted into a part.

A print statement is used to verify the user’s walk speed before the conditional, when the walk

speed is supposed to have been changed, and after it’s set back to normal.

This way, you can verify the code is running, and WalkSpeed is changing as you would expect:

local speedBoost = script.Parent

local function onTouch(otherPart)

 print("onTouch was called!")

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

 if humanoid and humanoid.WalkSpeed <= 16 then

-- Checks for Humanoid without speed boost

 print("Original walk speed is " .. humanoid.WalkSpeed)

 humanoid.WalkSpeed = 30

 print("New walk speed is " .. humanoid.WalkSpeed)

 wait(1) -- Duration of boost

 humanoid.WalkSpeed = 16

 print("Walk speed is returned to " .. humanoid.WalkSpeed)

 end

end

speedBoost.Touched:Connect(onTouch)

84 HOUR 6: Debouncing and Debugging

Once you’re done testing your code, always go back and delete all unnecessary print state-

ments. Every line of code that runs makes the script just a little bit slower because there is more

for the script to do. Deleting unnecessary code keeps things running as quickly as possible.

Moving Values for Easier Testing
Even if your code runs perfectly, you may still need to tweak things. Maybe in the last code snip-

pet, you’re not exactly sure how fast you want the player to run or how long the buff should

last. It’s a great practice to move important variables that affect user experience to the top of the

script, making it easier for you and team members to tweak as needed.

This code snippet does the same thing as the previous snippet, but variables have been created

at the top for how fast players will go, and for how long the boost will last:

local speedBoost = script.Parent

local BOOSTED_SPEED = 20

local BOOST_DURATION = 1

local function onTouch(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

 if humanoid and humanoid.WalkSpeed <= 16 then

 print("Original walk speed is " .. humanoid.WalkSpeed)

 humanoid.WalkSpeed = BOOSTED_SPEED

 print("New walk speed is " .. humanoid.WalkSpeed)

 wait(BOOST_DURATION) -- Duration of boost

 humanoid.WalkSpeed = 16

 print("Walk speed is returned to " .. humanoid.WalkSpeed)

 end

end

speedBoost.Touched:Connect(onTouch)

In a very long script, this saves you a lot of time with updating while experimenting to find just

the right value to use—particularly if the same value is used in multiple places.

Variables like the ones created for NEW_SPEED and BOOST_DURATION, which never change

value throughout the entirety of a script, are called constants. Unlike no rmal variables, they are

typed in ALL_CAPS with words separated by an underscore (_).

Figuring Out Where Things Go Wrong 85

Checking Attribute Values
Most variable values can be printed, but attributes behave a little bit differently. You need to

assign the attribute’s value to a variable first:

local activated Value = weapon:GetAttribute("Activated")

print(activatedValue)

Keep this in mind while confirming attribute values.

▼TRY IT YOURSELF

Tweak the SpeedBoost

Take the previous code snippet and adjust the values until you feel like the speed and duration
are just right. One technique you can use while experimenting with values is doubling and halving.
It’s particularly good if you’re not sure what a great number to use is.

 1. Add a new part or mesh and insert a script into it, as shown in Figure 6.8.

FIGURE 6.8
Insert a new script into a mesh or part.

 2. Give people a temporary speed boost after having touched the part. You can use the code
snippets from earlier in this chapter, or if you did the Try It Yourself in Hour 5, use that and
modify the code to use constants.

 3. Experiment with the values for BOOSTED_SPEED and BOOST_DURATION by doubling the
values for both BOOSTED_SPEED and BOOST_DURATION.

 4. Test and see the results. If it doesn’t seem fast enough or boosted for lo ng enough, dou-
ble the amount again. If it feels like too much, subtract half of what you added.

86 HOUR 6: Debouncing and Debugging

Getting the Right Types of Values
You also need to be careful with what types of values are being passed back into the functions.

Good code takes into account that errors happen when incorrect value types are passed in. If you

were to try to pass a string into wait(), the string is ignored, and a built-in default value of a

thirtieth of a second is used:

local part = script .Parent

wait("twenty") -- Will use default value because strings aren't accepted

part.Color = Color3.fromRGB(170, 0, 255)

Summary
There are a lot of ways to make sure your code runs only once using different types of debounce

systems. One way you may have used before is deleting a part as soon as something touches

it. Two other ways used in this hour are setting up a debounce variable and using a proximity

prompt with a long hold. No matter what way is used, always think about how your choices will

affect your end user.

A big part of being a coder is thinking about all the possible scenarios that might come up and

trying to create code that won’t break while still giving your users the best possible experience. It

is, of course, totally normal for things to go wrong. It happens to the very best coders—even the

ones who make your favorite Roblox experiences.

If things aren’t going as anticipated, you can use your knowledge of scope, functions, and events

to narrow down the problem. A few well-placed print statements can help you verify whether

your functions are called and if values are what you expect.

Q&A
 Q. In leaderboards, can you use values other than IntValues?

 A. Yes, you can create other types of values. For example, in Figure 6.9, a StringValue was
used to display the faction name of the character.

Workshop 87

FIGURE 6.9
The leaderboard at the top right uses strings to display faction names and integers to display owned gold.

 Q. Is there a maximum amount of stats that can be displayed?

 A. A maximum of four stats can be displayed, although additional stats can still be tracked.

 Q. Can you create your own custom leaderboards?

 A. You can! In later hours, you learn more about how to display information to individual peo-
ple and to everyone in the server as a whole.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What is it called when you make sure code can only be triggered once and not multiple

times?

 2. What’s a name for variables whose values don’t change as the script runs?

 3. How are the variables in the preceding question formatted compared to other variables?

 4. What’s an easy technique for figu ring out what value numbers to use when tweaking code
for a better user experience?

 5. How do you print the value of an attribute?

88 HOUR 6: Debouncing and Debugging

Answers
 1. Debouncing

 2. Constants

 3. ALL_CAPS, with an underscore (_) between words

 4. Doubling and halving

 5. You need to first assign the attribute to a variable, and then print the variable:

local armorValue = Helm:GetAttribute("Armor")

print(armorValue)

Exercises
A large part of any engineer’s job is thinking about both what can go wrong and how to make things
better. Think about the code you’ve created in all of the hours up until now, and for this first exer-
cise, write down at least three ways in which the code could be better. It might be things that can
go wrong with the code, or features that would enable people to better enjoy your experience.

You might not be able to code the solutions ju st yet, but you should get in the habit of being criti-
cal of the code you’re creating.

You can find possible answers in the appendix.

For the second exercise, make two pickups: one that makes you smaller and one that makes you
larger (see Figure 6.10). Instead of setting three specific sizes, use a multiplier to change the
avatar’s current scale.

FIGURE 6.10
A giant mech avatar strolls through a city after being enlarged.

Exercises 89

Remember to create a debounce variable to control how fast the person is allowed to grow and
shrink. This is one case where if the function is triggered more often than intended, your experi-
ence will crash.

Tips
 You can modify the user’s default scale with the following properties:

 Humanoid.HeadScale: Scale of the avatar’s head.

 Humanoid.BodyDepthScale: Scale of the body’s depth.

 Humanoid.BodyWidthScale: Scale of the body’s width.

 Humanoid.BodyHeightScale: Scale of the body’s height.

 Set up a simple debounce before experimenting with the avatar’s scale to avoid crashes.

 Save your work before testing! If the avatar’s scale gets too big, it will crash your
 experience.

This page intentionally left blank

HOUR 7

 while Loops

What You’ll Learn in This Hour:

 What a while loop is

 How to make tasks repeat forever and ever

 How to create a fire that requires fuel to stay burning

 How to plan for scope with while loops.

Do you ever feel like you’re stuck in a loop where you just keep doing the same thing over and

over and over and over? Get up, eat breakfast, work hard, go back to bed, and then the same

thing all over again the next day. We see loops throughout our world. The minutes on our clocks

loop through 60 minutes, and the hours loop 24 times to create a day.

Scripts have loops as well. When they’re inside of the loop, they keep doing the same task until

something makes them stop. This hour covers just one kind of loop that can be found in code:

while loops.

Repeat Forever, while true do
The first kind of loop in this hour is a while loop. These loops are typically used to check on the

state of something and run indefinitely until a condition is met. They can even run forever! The

following code snippet shows you how a while loop is formatted:

local isHungry = true

while isHungry == true do

 print("I should eat something")

 wait(2.0)

end

The main keywords here are while and do. In the middle of those keywords is the condition for

the while loop to check against. As long as that condition is true, the code keeps running. In

fact, if you want the code to run forever, you can simply set the condition to true:

while true do

 print(count)

92 HOUR 7: while Loops

 count = count + 1

 wait(1.0)

end

The preceding example would count every second and display the result in the output until you

stop the playt est.

Some Things to Keep in Mind
There’s a couple of things to keep in mind when working with while loops. One is that every

while loop should include a wait function. If you don’t, there’s a good chance the loop will run

so quickly that your experience will end up either slowing down or crashing. The other thing to

keep in mind is that the next loop is started as soon as the previous loop finishes.

▼ TRY IT YOURSELF

Create a Disco Dance Floor

Take a quick example where you’re creating a disco dance floor, and you want the floor pieces to
loop through a series of specific colors—in this case, a pattern of blue and orange:

 1. Use a part to act as a section of the floor and insert a script with the following code:

local discoPiece = script.Parent

while true do

 discoPiece.Color = Color3.fromRGB(0, 0, 255)

 wait(1.0)

 discoPiece.Color = Color3.fromRGB(255, 170, 0)

end

 2. Run the code. The only color you see while the code runs is blue. Because the next loop
starts immediately, the orange blinks so fast it’s not even visible.

 3. Fix this by adding a second wait function after the color change:

local discoPiece = script.Parent

while true do

 discoPiece.Color = Color3.fromRGB(0, 0, 255)

 wait(1.0)

 discoPiece.Color = Color3.fromRGB(255, 170, 0)

 wa it(1.0)

end

Some Things to Keep in Mind 93

If the entire loop only needs a single wait function, it can be worked into the condition. This is

demonstrated in the following code chunk that assigns a new random color every second for a

floor like the one in Figure 7.1:

local discoPiece = script.Parent

while wait(1.0) do

-- Get random values for RGB

local red = math.random(0, 255)

 local green = math.random(0, 255)

 local blue = math.random(0, 255)

 -- Assigns color values

 discoPiece.Color = Color3.fromRGB(red, green, blue)

end

FIGURE 7.1
A while loop and random number generation are used to create an ever-changing disco floor.

▼TRY IT YOURSELF

Keep the Campfire Burning

This Try It uses a while loop to keep track of how many fuel logs are on the fire. The fire is dis-
abled until someone uses the ProximityPrompt to add fuel. Then the fire burns for a little while
before going out again. (See Figure 7.2.)

94 HOUR 7: while Loops

▼

FIGURE 7.2
A fire where fuel will be spent over time using a while loop.

Set Up
First, set up the fire and the ProximityPrompt. Once everything is scripted, the fire can be copied
into any environment or model you please:

 1. Use an invisible part to hold your fire.

 2. Add a new attribute to the CampFire part:

 Name: Fuel

 Type: Number

 3. Insert a Particle Emitter named Fire, and a ProximityPrompt named AddFuel. (See Figure
7.3.)

FIGURE 7.3
Use an invisible part with a ParticleEmitter and ProximityPrompt inserted.

TIP

Designing a Fire
For the fire particles, setting the Texture property to 4797593940 and Speed to 0 will help you get a
particle like the one shown in the example. After that, try playing with the c olor, drag, and lifetime values.

Some Things to Keep in Mind 95

▼ 4. In the ParticleEmitter’s properties, uncheck Enabled because it’ll be turned on within the
script.

 5. In the ProximityPrompt’s properties, change HoldDuration to 2.

The Script
When the ProximityPrompt is triggered, fuel is added to the fire, and the fire is enabled. A while
loop spends fuel every second, and when the fuel reaches 0, the fire is disabled:

 1. In ServerScriptService, add a new script.

 2. Get ProximityPromptService and set up a function that is called when the prompt is
triggered. Inside, make sure the prompt is enabled and confirm that the triggering prompt
is "AddFuel":

local ProximityPromptService = game:GetService("ProximityPromptService")

local BURN_DURATION = 3

local function onPromptTriggered(prompt, player)

 if prompt.Enabled and prompt.Name == "AddFuel" then

 end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 3. Create a constant to control how long the fire will burn; inside the if statement, create
variables for the campfire part and the fire particles:

local ProximityPromptService = game:GetService("ProximityPromptService")

local BURN_DURATION = 3

local function onPromptTriggered(prompt, player)

 if prompt.Enabled and prompt.Name == "AddFuel" then

local campfire = prompt.Parent

 local fire = campfire.Fire -- This should be the particle emitter

 end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 4. Get the current value of the Fuel attribute, and add 1:

local function onPromptTriggered(prompt, player)

 if prompt.Enabled and prompt.Name == "AddFuel" then

local campfire = prompt.Parent

 local fire = campfire.Fire -- This should be the particle emitter

96 HOUR 7: while Loops

▼ local currentFuel = campfire:GetAttribute("Fuel")

 campfire:SetAttribute("Fuel", currentFuel + 1)

 end

end

 5. Use another if to check whether the particles are off, and if so, turn the particles on:

local function onPromptTriggered(prompt, player)

 if prompt.Enabled and prompt.Name == "AddFuel" then

local campfire = prompt.Parent

 local fire = campfire.Fire -- This should be the particle emitter

local currentFuel = campfire:GetAttribute("Fuel")

 campfire:SetAttribute("Fuel", currentFuel + 1)

 if not fire.Enabled then

 fire.Enabled = true

 end

 end

end

 6. Burn off one piece of fuel at a time with a while loop, and then disable the particles:

local ProximityPromptService = game:GetService("ProximityPromptService")

local BURN_DURATION = 3

local function onPromptTriggered(prompt, player)

 if prompt.Enabled and prompt.Name == "AddFuel" then

local campfire = prompt.Parent

 local fire = campfire.Fire -- This should be the particle emitter

local currentFuel = campfire:GetAttribute("Fuel")

 campfire:SetAttribute("Fuel", currentFuel + 1)

 if not fire.Enabled then

 fire.Enabled = true

while campfire:GetAttribute("Fuel") > 0 do

local currentFuel = campfire:GetAttribute("Fuel")

 campfire:SetAttribute("Fuel", currentFuel - 1)

 wait(BURN_DURATION)

 end

 fire.Enabled = false

 end

 end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

Some Things to Keep in Mind 97

▼Check your work. If the UI is getting in the way of seeing the fire, you can move it higher in the
prompt’s properties by using the UIOffset (see Figure 7.4).

FIGURE 7.4
The prompt’s UIOffset property can be used to move it out of the way.

Once you know the campfire works as intended, you can add it to fancier environments like those
shown in Figure 7.5.

FIGURE 7.5
Fire inserted into a great chalice on the left and a hearth on the right.

If you want to expand on this, you could have players collect wood from nea rby trees befo re being
able to light the fire.

98 HOUR 7: while Loops

while Loops and Scope
One last thing you have to know about while loops is that any code beneath a while loop will

never run unless the loop is broken:

print("The loop hasn't started yet") -- Will run once

while wait(1.0) do

 print("while loop has looped") -- Will run until the server stops

end

print("T he while loop has stopped looping ") -- Will never run

Summary
As you create more experiences, you’ll find more instances of when you want code to keep

repeating forever or under certain circumstances. Some loops will be small and quick, like a loop

creating a flickering light. Other loops will be longer and control the entire flow of a game—for

example, the loops found in round-based games where people wait in a lobby for a certain

amount of time and then are transported to wherever the action is. At the end of the round,

everything is cleaned up, people are sent back to the lobby, and then the loop starts over again.

Of course, there are things to keep in mind when using while loops. Because a while loop runs

forever, code beneath the loop will never be reached unless the loop stops. It’s also its own code

chunk, so you need to keep in mind how that affects scope.

If you don’t want the loop to begin as soon as the server is launched, you can always wrap the

while loop in a function if you want to control when it starts.

Q&A
 Q. What if you want a piece of code to repeat only a certain number of times?

 A. If you want a piece of code to repeat a certain number of times—for example, if you want
to create exactly ten trees—you can use what’s called a for loop. for loops are covered
in Hour 8.

 Q. What if you want a loop to run while something is false instead of while true?

 A. If you want a piece of code to run while a condition is false, you have a couple of options.
The first is that you can set a condition such as while NumberOfPlayers ~= 0
do. Here, a piece of code runs as long as the number of players is not equal to zero.
Alternatively, you can use repeat action until(condition), which instructs a piece
of code to repeat indefinitely until a condition becomes true.

Workshop 99

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. How long will a while loop run?

 2. What must always be included in a while loop and why?

 3. How often will the following loop print hello?

while wait(1.0) do

 print("hello")

 wait(1.0)

end

 4. How many colors will the discoFloor referred to in this code turn?

local discoFloor = script.Parent

while wait(2.0) do

 print("hello")

end

while true do

 discofloor.Color = Color3.fromRGB(0, 0, 255) -- Blue

 wait(1.0)

 discofloor.Color = Color3.fromRGB(255, 255, 0) -- Yellow

e nd

discofloor.Color = Color3.fromRGB(255, 0, 127) -- Pink

Answers
 1. Until the given condition is false.

 2. A wait function must always be included; otherwise, the code loop will run faster than the
engine can handle and crash.

 3. Hello will print every 2 seconds. There’s a one-second wait in the condition, and a one-
second wait in the loop. The second wait isn’t needed, however. It could just be a two-sec-
ond wait in the condition.

 4. The floor will never change colors. The first loop prevents the second loop from ever run-
ning. If that wasn’t there, however, it would appear blue. Yellow would flash by too quickly
to see, and pink is outside the scope of the loop.

100 HOUR 7: while Loops

Exercises
In this first exercise, modify the code so that people have to collect wood for the fire rather than
being able to simply walk up to a fire and light it (see Figure 7.6).

FIGURE 7.6
Logs can be collected from the tree and used to fuel the campfire.

Tips
 Use the leaderboard to track how much wood the player has.

 You can use nearly the exact code and set up that was used for ore in the last hour to
collect the logs.

 Modify the campfi re script so that it takes logs from the player to use as fuel.

A universal truth to coding and design is that you’re going to find yourself wanting to update
things later. The more copies you have of something in your game, the harder making updates
becomes, whether scripts, particles, or models. For the second exercise, try updating the fire
script so that instead of enabling an existing particle emitter, it inserts a cloned particle emitter
into the campfire.

Tips
 You still need a part to hold the ProximityPrompt.

 See if you can remember how to clone things out of ReplicatedStorage.

HOUR 8

for Loops

What You’ll Learn in This Hour:

 How to repeat tasks with for loops

 How to use nested loops

 How to exit nested loops

 How to create displays for information

 How to do damage over time

So far, we’ve covered one type of loop—the while loop, which can go forever and ever and ever

if that’s what you want it to do.

If you want to make sure that code updates only a certain number of times, you use a different

kind of loop: a for loop. Unlike while loops, for loops repeat themselves a certain number of

times until a goal is reached.

Figure 8.1 shows a for loop being used to count down until an expected meteor collision.

FIGURE 8.1
A clock uses a for loop to show three seconds until impact.

102 HOUR 8: for Loops

How for Loops Work
A for loop uses three values to control how many times it runs, which are formatted as shown

in Figure 8.3:

▼ TRY IT YOURSELF

Create a Countdown

Test out this simple for loop that counts down to 0. The individual parts of the code will be
explained in the next section:

 1. In any script, copy the following:

for countDown = 10, 0, -1 do

 print(countDown)

 wait(1.0)

end

 2. Run the code. In the Output window, you should see a countdown like the one in Figure
8.2.

FIGURE 8.2
Numbers count down one by one from 10 to 0.

How for Loops Work 103

 Control variable: Tracks the current value. The assigned value marks the starting place. A

control variable can be any acceptable variable name. Like other variable names, a con-

trol variable name should be clear and descriptive about what the for loop is doing.

 End or goal value: The value at which the loop should stop running. The script checks the

control variable against the end value before starting the next loop.

 Increment value: The amount by which the control variable changes every time. Positive

increment values count up; negative increment values count down.

FIGURE 8.3
The three values that control how many times a for loop runs are the control value, the end value, and the
increment value.

Beginning at the initial value of the control variable, the for loop counts toward the ending

goal value, stopping once the goal value is reached:

 1. The for loop compares the control variable with the end value. (See Figure 8.4.)

Start loop

No

Do stuff

Has the control variable
passed the end value?

FIGURE 8.4
Before executing the code in the loop, the control variable is checked against the goal value.

 2. After running the code, the increment value is added to the control variable. The loop then

checks the control variable and starts over. (See Figure 8.5.)

104 HOUR 8: for Loops

Start loop

No

Do stuff

Has the control variable
passed the end value?

Add increment
to control
variable

FIGURE 8.5
At the end of the loop, the increment value is added to the control variable.

 3. Once the control variable passes the end value, the loop will stop. For example, if a loop

has an end value of 10, once the control variable has passed 10, the for loop will stop (see

Figure 8.6).

Start loop

Yes No

Do stuffEnd loop

Has the control variable
passed the end value?

Add increment
to control
variable

FIGURE 8.6
This is the flow of a complete for loop process.

Let’s take another look at the Output shown in the Try It Yourself, displayed in Figure 8.7.

How for Loops Work 105

FIGURE 8.7
This output of a for loop counts down every second.

The loop that ran each time a number was printed is called an iteration. An iteration is the com-

plete process of checking the control value, running code, and updating the increment value.

Since the count started at 0 and ended after 10, the code actually went through eleven iterations.

Keep this in mind as you design your loops. If it’s important for a count to go a specific number

of times, you’ll probably want the starting value to be 1 instead of 0.

Increments Are Optional
If an increment value isn’t included, the default value of 1 is used. The code snippet begins at 0

and counts upward to 10:

for countUp = 0, 10 do

 print(countUp)

 wait(1.0)

end

Different for Loop Examples
Changing the values of the control variable, end goal, and increment changes how the loop

functions. The for loop you just wrote could instead count up to 10 or count down in odd num-

bers. The following are examples of for loops with different start, end, and increment values.

106 HOUR 8: for Loops

Counting Up by One

for count = 0, 5, 1 do

print(count)

wait(1.0)

end

Counting Up in Even Numbers

for count = 0, 10, 2 do

print(count)

wait(1.0)

end

Be careful not to reverse the starting and goal values, like so:

for count = 10, 0, 1 do

print(count)

wait(1.0)

end

If the control variable starts out beyond the end value, like in the earlier example, the for loop

doesn’t run at all. In this case, the for loop is counting up and checking if count is greater

than 0. When the for loop does its first check, it sees that 10 is greater than 0, so it stops the

loop without printing anything.

▼ TRY IT YOURSELF

In-World Countdown

So far, messages have only been displayed within the Output window. Now it’s time to start com-
municating information to people in your environments. In this Try It Yourself, you use a graphical
user interface (GUI) to display information where everyone can see it. GUIs are like sticker labels
that can be used to display information within the world.

Setup
For the setup, you create a SurfaceGui and TextLabel and size them to the part to display the
countdown. Since this is a coding book, we won’t get too much into how these work. If you want
to know more, you can find more detailed explanations on the Roblox Developer Hub:

 1. Create a new part.

 2. Insert a SurfaceGui object into the part. Nothing obvious happens, but SurfaceGUI objects
act as containers for anything you want to display.

How for Loops Work 107

▼ 3. Select SurfaceGui and insert a TextLabel object. This displays the actual text. (See Figure
8.8.)

FIGURE 8.8
The TextLabel is added on the front of a part.

TIP

Finding the TextLabel
If you can’t see the TextLabel, it probably appeared on a different side of the part. You can rotate
the part or change the SurfaceGui’s Face property to fix it.

 4. Select the TextLabel. In Properties, expand Size. For X Scale, type 1, and in Offset, type 0.
Do the same for Y. This should make the TextLabel take up the entire side of the part. (See
Figure 8.9.)

108 HOUR 8: for Loops

▼

FIGURE 8.9
The TextLabel takes up the entirety of the side.

 5. Still in TextLabel’s properties, scroll almost to the bottom to TextScaled and enable it. This
sizes the font to fit as shown in Figure 8.10.

FIGURE 8.10
The text is automatically scaled to fit the entire TextLabel.

Nested Loops 109

▼Code the Countdown
You use a script to change what the TextLabel displays:

 1. Select the sign part and insert a new script.

 2. Use variables to reference the script’s parent and the TextLabel. Hint: You can go down the
hierarchy a couple of times.

 3. Create a new for loop that counts down every second:

local sign = script.Parent

local textLabel = sign.SurfaceGui.TextLabel

for countDown = 10, 1, -1 do

 print(countDown)

 wait(1.0)

end

 4. Within the loop, set the TextLabel’s Text property to the current value of the countdown:

local sign = script.Parent

local textLabel = sign.SurfaceGui.TextLabel

for countDown = 10, 1, -1 do

 textLabel.Text = countDown

 print(countDown)

 wait(1.0)

end

 5. Test your code.

TIP

A Note on Load Times
You may notice that sometimes the count seems to start in the middle. That’s because the script
started before your character and camera loaded all the way in. You can verify that the countdown
ran correctly by using a print statement or delay the beginning of the count with a small pause at
the beginning of the script. As you create more scripts, you begin having to take into account load
times more often.

Nested Loops
Loops can be used within loops. One of the most common ways you see this done is placing a

for loop inside of a while loop. This way, you can repeat events that repeat every so often,

such as firework shows:

while true do

for countDown = 10, 1, -1 do

110 HOUR 8: for Loops

 textLabel.Text = countDown

 print(countDown)

 wait(1.0)

 end

 print("Launch the rockets!")

 wait(2.0)

end

When loops are nested, the script starts from the top line and works its way down. When a new

loop is reached, that loop runs to completion before continuing with the next lines of code.

Breaking Out of Loops
If for some reason you need to leave a loop, use the keyword break:

local goodToGo = true

while wait(1.0) do

if goodToGo == true then

 print("Keep going")

 else

break -- will stop loop if goodToGo changes to false

end

end

Summary
Loops are everywhere in code. They can run forever or a set amount of times; it just depends

on what type of loop you use. while loops keep running unless the initial condition becomes

false or the keyword break is used. This type of loop gets used for things like a day/night

cycle, which only ends when the world ends.

On the other hand, for loops are best used when you’re trying to reach a specific value, like

counting down to midnight on New Year’s Eve.

Exercises 111

Q&A
 Q. Why do some people just type i?

 A. There’s a bit of controversy over exactly what i stands for, but a common theory is that it
originally stood for integer. i was first used as a stand in for unknown numbers by ancient
mathematicians and then by early computer programmers who had to keep their code very,
very brief. In short, it’s just a common control variable name, which is why you might some-
times see for loops that look like this:

for i = 1, 10 do

print(i)

end

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. How long will a for loop run?

 2. What is an increment?

 3. How many times will this code loop (backward starting values)?

for count = 10, 0, 1 do

 print(count)

end

 4. True or false: Increment values are optional.

Answers
 1. Until the given condition is reached.

 2. The amount by which a value changes.

 3. Zero times. The starting value of 10 is greater than the goal value of 0.

 4. True. The default value of 1 is used if no increment value is given.

Exercises
The concept of Damage Over Time (DoT) is used in lots of experiences. With DoT, people take
ongoing damage for a certain amount of time rather than taking it all at once. Common examples
include encountering poison or taking burn damage after touching a fire.

112 HOUR 8: for Loops

Because you already have a fire from an earlier Try It Yourself, for this first exercise, use the
same model to temporarily inflict burn damage to anyone who happens to touch it.

Tips
 Use the same fire you created previously or use a part to act as a stand-in.

 Insert a new invisible part named HitBox. Scale it to encompass the fire. (See Figure 8.11.)

 If somebody touches HitBox, use a for loop to inflict 10 points of damage every second for
three seconds.

FIGURE 8.11
An invisible box is used to mark the boundaries of the fire.

For the second exercise, take a moment to think of at least five other ways that you can use
for loops and while loops in your 3D Experiences. Don’t worry about whether you know how to
create the code. The important thing here is to be able to start recognizing where they might be
found.

Solutions for the exercises are in the back of the book.

HOUR 9
 Working with Arrays

What You’ll Learn in This Hour:

 How to create and use arrays

 How to loop through arrays with ipairs

 How to make changes to arrays

Now it’s time to work with multiple objects at once so you can do things like give every member

of the team a shiny new weapon or modify every item in a folder. You handle tasks like this

with tables. Tables allow you to organize multiple pieces of data or objects into groups, such as

groups of players or a list of item requirements for a recipe.

This hour covers the first of two different table types: arrays. You’ll learn how to make changes

to a whole folder full of objects by turning on multiple lights at once rather than making people

turn them on individual ly.

What Are Arrays?
Arrays create a numbered list of items that can be used to keep track of information, such as

who’s in first place or a folder full of different parts.

Every item on the list has a specific number assigned to it, called an index. If you had a grocery

list, it might look something like the following table:

GroceryList

Index 1 2 3

Value Apples Bananas Carrots

Creating an array is the same as creating other variables; the only difference is it gets assigned

curly brackets, like so:

local myArray = {}

114 HOUR 9: Working with Arrays

The curly brackets are what make it a table data type. Items can be added to the array by listing

them within the brackets, although you need to be sure to separate values with commas. The

index number is assigned automatically in the order in which the values are added. Here’s an

example of three-item array:

local groceryList = {"Apples", "Bananas", "Carrots"}

Arrays can hold any value type—even other arrays. The third array in the following example

contains the first two arrays, and a fourth unnamed array is assigned to index 3:

local firstArray = {1, 2, 3}

local secondArray = {"first", "second", "third"}

local thirdArray = {firstArray, secondArray, {"unnamed array "}}

Adding Items Later
You can add an item to an already-created array by using table.insert(array, valueTo-

Insert). So, adding a new item to the previous array looks like this:

local groceryList = {"Apples", "Bananas", "Carrots"}

table.insert(groceryList, "Mangos")

print(groceryList)

New items get added to the end of the array.

Getting Information from a Specific Index
You can test the list by printing out a few indexed values. To use a value at a specific index, add

the index after the array’s name without any spaces, like arrayName[1]:

local groceryList = {"Apples", "Bananas", "Carrots"}

table.insert(groceryList, "Mangos")

print(groceryList[1], groceryList[4], groceryList[5])

As you can see in Figure 9.1, the value at index 1—and the value at index 4, which was added

to the table later—were both printed. No value was found at index 5, so nil was returned.

Printing an Entire List with ipairs() 115

FIGURE 9.1
The first two array values are displayed, but the third value is nil because it doesn’t exist.

Printing an Entire List with ipairs()
The easiest way to print out the entirety of the list is with a special type of for loop that uses the

function ipairs(). The pattern looks like this:

for index, value in ipairs(arrayName) do

-- Do something

end

The components of the pattern are as follows:

 index: This references the current index the loop is working through. It can be any valid

variable name. People often just use the lowercase letter i.

 value: References the value of the current index. This can also be any valid variable

name.

 in ipairs(arrayName): in is a keyword and can’t be changed. ipairs() takes in the

name of the array you want to work with.

So, if you have a list of player names, and you want to print them out in order, it might look

like this:

local players = {"Ali", "Ben", "Cammy"}

for playerIndex, playerName in ipairs(players) do

 print(playerIndex .. " is " .. playerName)

end

TIP

Generic Loops
Sometimes you’ll see this type of loop referred to as a generic loop.

116 HOUR 9: Working with Arrays

Folders and ipairs()
A really handy way to use ipairs() is to modify everything in a folder. You can get a list of

every object in a folder, in order, using GetChildren(), which returns an array.

Let’s say you have a folder full of parts, and you want every part in that folder to turn a different

color. You can use something like this code snippet:

local folder = workspace.Folder -- Make sure to use the name of your folder

local arrayTest = folder:GetChildren() -- GetChildren() returns an array

for index, value in ipairs(arrayTest) do

if value:IsA("BasePart") then -- checks to see it's a part

 value.Color = Color3.fromRGB(0, 0, 255)

 print("Object " .. index .. " is now blue")

 end

end

▼ TRY IT YOURSELF

Turn On the Kitchen Lights

In this Try It Yourself, you have a number of lights in a kitchen (see Figure 9.2) that should all
turn on using the same switch. You’ve learned before that putting a script into every single one
of these lights gets messy and makes things difficult to update. You could put a proximity prompt
into each light, but then people would have to go around and turn all the lights on one-by-one.

One way to organize objects is to put them into a folder and use a for loop to update everything
in that folder at once when somebody flips the switch.

FIGURE 9.2
A kitchen scene softly lit with track lighting. All the lights are controlled by a single switch.

Folders and ipairs() 117

▼1. Find a part to act as a light. In Figure 9.3, a small glass cylinder part is acting as a prop
for the lens of the light. Insert a SpotLight into the part.

TIP

SpotLights
SpotLights shine a cone of light, like a flashlight.

FIGURE 9.3
A tiny one-stud-wide glass disk that can be used as a light source.

2. To modify which direction the SpotLight shines, in Properties > Face, use the drop-down
menu to select the correct face that makes the light appear to shine downward. For this
example, that’s Left. (See Figure 9.4.) Yours may be different.

118 HOUR 9: Working with Arrays

▼

FIGURE 9.4
Use SpotLight’s Face property to control which direction the light shines in.

3. With SpotLight still selected, in Properties, increase Brightness and Range until it’s right
for the scene. (See Figure 9.5.)

FIGURE 9.5
Increase the Brightness of the SpotLight to make it brighter and the Range to make the light reach farther.

4. Duplicate the light around your scene. You can even use different models. In Figure 9.6,
the disk has been copied into track lighting around the ceiling of this kitchen.

Folders and ipairs() 119

▼

FIGURE 9.6
Light props have been placed into track lighting within a kitchen scene.

5. Create a new folder called Lights, and move all of the lightbulbs into the folder. (See Figure
9.7.)

FIGURE 9.7
All of the lightbulbs have been moved into a single folder.

120 HOUR 9: Working with Arrays

▼ Turn the Lights On and Off
This script goes through each object in the Lights folder and checks to see if it has a spotlight. If
it finds a spotlight, the script turns it on or off.

 1. In ServerScriptService, create a new script.

 2. Create a new variable that references the Lights folder.

 3. Create a second variable to get an array of all of the folder’s children:

local lightsFolder = workspace.Lights

local lights = lightsFolder:GetChildren()

 4. Create a new for loop using ipairs() and pass in the array:

local lightsFolder = workspace.Lights

local lights = LightsFolder:GetChildren()

for index, lightBulb in ipairs(lights) do

end

 5. Inside of the for loop, use FindFirstChildWhichIsA() to find the SpotLight nested
inside of the lightbulb:

local lightsFolder = workspace.Lights

local lights = LightsFolder:GetChildren()

for index, lightBulb in ipairs(lights) do

local spotLight = lightBulb:FindFirstChildWhichIsA("SpotLight")

end

 6. Set up the following three conditions:

 a. If the spotlight is found and the light is off, enable the SpotLight.

TIP

Glowing Spotlight
If you’re using a part, you can also change the material to neon to make it appear to be glowing.

 b. If the spotlight is found, and the light is on, disable the SpotLight.

 c. If the loop finds something in the folder that does not have a SpotLight, print “Not a
lightbulb.”

Finding a Value on the List and Printing the Index 121

Finding a Value on the List and Printing the
Index
Say you have a bunch of customers in line waiting for their table. One of them walks up and

wants to know their place in line. You know the customer’s name, but not their number. In this

case, the waiting list is just another array. You can use ipairs again to look up the customer’s

place by checking for the matching value:

local waitingList = {"Ana", "Bruce", "Casey"}

-- Let's find Casey's place in line

for placeInLine, customer in ipairs(waitingLi st) do

if customer == "Casey" then

 print(customer .. " is " .. placeInLine)

 end

end

▼Try to do this on your own before looking at the following code:

local lightsFolder = workspace.Lights

local lights = LightsFolder:GetChildren()

for index, lightBulb in ipairs(lights) do

local spotLight = lightBulb:FindFirstChildWhichIsA("SpotLight")

 if spotLight and not spotLight.Enabled then

 spotLight.Enabled = true

 lightBulb.Material = Enum.Material.Neon -- Makes it look glowy

elseif spotLight and spotLight.Enabled then

 lightBulb.Material = Enum.Material.Glass

 spotLight.Enabled = false

 else

 print ("Not a light")

 end

end

Test your code by turning on some of the lights, disabling others, and throwing a random part
into the Lights folder. If it works as intended, place your code inside of a function to be run when
somebody interacts with a proximity prompt, as shown in the last few hours. If you’v e forgotten
ho w, look at your previous code, or look in the appendix at the end of the book.

122 HOUR 9: Working with Arrays

Removing Values from an Array
To remove a value, like if a player used an item or someone in a list of active players leaves a

game, use table.remove(arrayName, index). This function either removes the last value of

a table or removes it at a specific index depending on whether both parameters are used.

local playerInventory = {}

table.insert(playerInventory, "Health Pack")

table.insert(playerInventory, "Stamina Booster")

table.insert(playerInventory, "Cell Key")

table.remove(playerInventory) -- No index, so last item will be removed

table.remove(playerInventory, 2) -- Will remove the second item

The second parameter for table.remove() only accepts a numerical index. Typing something

like table.remove(playerItems, "Health Pack") returns an error. You can try printing

the results of the table to confirm everything works as expected.

When an item is removed from an array, the rest of the values will shift to fill in the gap. You

can test this by printing the array before and after the item is removed. Of course, we don’t want

to type the code for printing an array more than once, so in the following code snippet, it’s part

of a function that can be called as often as you want:

local function printArray(arrayToPrint)

for index, value in ipairs(arrayToPrint) do

 print("Index " .. index .. " is " .. value)

 end

end

local playerInventory = {"Health Pack", "Stamina Booster", "Cell Key"}

printArray(playerInventory)

table.remove(playerInventory, 2) -- Will remove the second item

printArray(playerInventory)

In Figure 9.8, you can s ee that originally index 2 is Stamina Booster, but once the value is

removed, index 2 becomes Cell Key.

FIGURE 9.8
First, the original array prints. Then, the updated array without Stamina Booster prints.

Numeric for Loops and Arrays 123

Numeric for Loops and Arrays
Mentioned earlier was that one name of a loop using ipairs() is a generic for loop. The type

of for loop you used in Hour 8 is called a numeric for loop. If it helps you remember which is

which, remember that numeric for loops use numbers to control when t o start and stop.

Numeric for loops can easily be used with arrays as well. Let’s go through a couple of

examples.

Finding and Removing All of a Value with a for Loop
While the previous code could only remove the first instance of a value found, this code snippet

will find and remove all occurrences of a value from an array.

Remember, removing items causes later indexes to shift. Instead of starting at the beginning of

the array, start at the end to avoid accidentally skipping values. By starting at the last index,

you won’t change the indexes of the values before it.

The size of the array can be found using #arrayName and used as the starting index number:

local playerInventory = {"Gold Coin", "Health Pack", "Stamina Booster", "Cell Key",
"Gold Coin", "Gold Coin"}

for index = #playerInventory, 1, -1 do

if play erInventory[index] == "Gold Coin" then

table.remove(playerInventory, index)

end

end

print(playerInventory)

Searching Only a Section of an Array
Another time you probably want to use a numeric for loop is when you only want to go over

part of an array. Say you need to find the names of the first three ships to cross the finish line in

a space race:

local shipsRaced = {"A Bucket of Bolts", "Blue Moon", "Cats In Space",
"DarkAvenger12"}

local fastestThree = {}

for index = 1, 3 do

 table.insert(fastestThree, shipsRaced[index])

en d

print(fastestThree)

124 HOUR 9: Working with Arrays

The preceding code snippet takes the first three values of shipsRaced and adds them to

fastestThree.

Summary
Tables, of which arrays are one type, let you organize your experience. With arrays, you can

make a list of every player in your game and give each of them a new avatar item or weapon.

You can also use arrays to create a list of every item in a folder that needs to have changes

made to it.

Once you have all the items you want in an array, you can use a for loop to iterate over the

array for whatever purpose you would like. You could print the names in the list, you could

update the color of every object in the array, or execute much more complicated code. There are

two types of for loops that can be used with an array. The for loop you used in the last hour

is called a numeric for loop. It’s good at times when you want to make changes to only a por-

tion of the array or are working with very large arrays. The second type of for loop is called a

generic for. In this case, ipairs() is used to go over the complete array, in order.

Q&A
 Q. What are some other reasons for using a numeric for loop?

 A. Over a very long lists of objects, numeric for loops run slightly faster. If you need to iterate
through hundreds and hundreds of parts, it’s worth keeping in mind.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. Arrays are a type of _______.

 2. The number assigned to an item on an array is an _____ number.

 3. In Lua, th e index starts at the number ___.

 4. GetChildren() returns an ___.

 5. Is ipairs() used to create a ge neric loop or a numeric loop?

Exercises 125

Answers
 1. Table

 2. Index

 3. One. Other coding languages may start at 0 instead.

 4. Array

 5. Generic

Exercises
One way developers make their experiences feel more tied to the real world is by updating assets
as seasons go by. In this first exercise, see if you can figure out how to make the pine tree in
Figure 9.9 go from a summery green to a wintery white.

FIGURE 9.9
Updating your world to match the seasons makes your world feel more alive.

Tips
 This pine tree can easily be found in the ToolBox (see Figure 9.10). Search tree if you don’t

see it. We picked it for this exercise because it’s a known good model made out of several
parts, so you don’t have to worry about swapping textures or it having extra scripts inside.

126 HOUR 9: Working with Arrays

FIGURE 9.10
A pine tree with the endorsed model logo. The model is made out of base parts, so you’ll easily be able to
update the color of each leaf.

 Assume there’s a whole forest of trees in your game.

 You’re going to need more than one loop.

You can find the code solution in the appendix at the end of the book.

HOUR 10
 Working with Dictionaries

What You’ll Learn in This Hour:

How to create a dictionary

Run through dictionaries with pairs()

How to return values from tables

Test code designed for multiple participants

Create a voting simulator

The second type of table you’ll learn about in this book is dictionaries. This type of table enables

you to gather information into groups and tag individual entries with something other than just

a number, which opens up a whole world of possibilities. This hour covers creating dictionaries,

adding and removing values, and iterating through dictionaries using pairs().

One way you’ll use dictionaries this hour is to keep track of who has the most votes in a voting

simulator. The person with the most votes will be kicked off the island. This will give you practice

using both arrays and dictionaries to keep track of participants, and what their votes are .

Intro to Dictionaries
Dictionaries are table objects that use a key to identify values instead of numbered indexes. The

key can be a person’s ID number, properties like Health or Stamina, or any valid data type. The

following table is what a dictionary of player names and their respective scores might look like.

activePlayer Dictionary

Player’s name as a key Agatha Billie Mary Sue

Score as a value 1000 150 1200

128 HOUR 10: Working with Dictionaries

In dictionary form, the same table might look like this:

local activePlayer = {

 Agatha = 1000,

 Billie = 150,

 ["Mary Sue"] = 1200,

}

Use dictionaries when you need to label values, not just list them in a specific order as an array

does.

Coding a Dictionary
Like arrays, dictionaries are created with curly brackets ({}).

When you’re constructing a new dictionary, you’ll often see the brackets separated so that people

can tell it apart from arrays, as shown in the following snippet:

local newDictionary = {

}

Key-value pairs are stored on separate lines followed by a comma. Keys and values can be any

data type, including strings, numbers, instances, and other tables. The following dictionary uses

strings as keys:

local inventory = {

 Batteries = 4,

["Ammo Packs"] = 1,

["Emergency Rations"] = 0,

}

Formatting Keys
How a key is formatted depends on if it is a string, instance, or something else. If strings are used

as the key, they don’t need to be in brackets unless there are spaces in the string. Then they must

be enclosed in quotation marks and brackets:

local seedInventory = {

-- String keys with no spaces

Wheat = 1,

Rice = 4,

 -- String key with spaces

 ["Sweet Potatoes"] = 3,

}

Intro to Dictionaries 129

However, if the keys are an instance such as a part or someone in the game, then brackets

should be used to mark that. In the following example, a dictionary uses boolean values to track

whether all of the required portalStones are activated before opening the master portal:

local eastStone = workspace.EastStone

local westStone = workspace.WestStone

local northStone = workspace.NorthStone

local southStone = workspace.SouthStone

-- Each portal stone is an instance of a part, so it's marked in brackets

local requiredPortalStones = {

 [eastStone] = true,

 [westStone] = true,

 [northStone] = true,

 [southStone] = false,

}

Dictionaries are often used for organizing information for a character or object where they’re

used to label properties like name or level. In this case, neither the brackets nor the quotation

marks are needed.

The following example uses a dictionary to track a character’s name and level:

local hero = {

 Name = "Maria",

 Level = 1000,

}

WARNING

Don’t Mix Keys and Indexes
Once you create a table, be consistent with using either key-value pairs or indexed values. Never
use both within the same table. Combining keys and indexes in the same table can lead to err ors.

Using Dictionary Values
To use individual dictionary values in code, type the name of the dictionary followed by the key

in brackets, just like you did with arrays—for example, dictionaryName[key]. Or, if you’re

working with strings, you can also use dot notation:

local hero = {

 Name = "Maria",

 Level = 1000,

}

-- Remember that Name is a string and can be accessed with brackets

print ("The hero's name is " .. hero["Name"])

130 HOUR 10: Working with Dictionaries

-- Or you can use dot notation

print ("The hero's nam e is " .. hero.Name)

TIP

Dot Notation Only Works with String Keys
Once again, dot notation only works with strings, but it’s something you’ll see quite a bit.

Use Unique Keys
Lua won’t stop you from trying to reuse the same key. Keep this in mind as you code. In the fol-

lowing example, the original value for the key Name will be overwritten, and the second value

given for the key Name will be printed:

local hero = {

 Name = "Maria",

 Level = 1000,

 Name = "Aya",

}

-- Will print Aya. The first value has been overwritten.

print ("The her o's name is " .. hero.Name)

Adding and Removing from Dictionaries
To add a key-value pair to an existing dictionary, the formula is:

dictionaryName[key] = value

Or if working with strings:

dictionaryName.String = value

Adding players to a dictionary when they join the game, and then starting them off with 0

points, might look like: playerPoints.Points = 0

Be careful! As mentioned earlier, if the key already exists, the exis ting value will be overwritten.

Removing Key-Value Pairs
To remove a key-value pair from a dictionary, set the key’s value to nil. This deletes the key:

local lightBulb = model.SpotLight

local flashLight = {

Removing Key-Value Pairs 131

 Brightness = 6,

 [lightBulb] = "Enabled",

}

-- Remove string keys

flashLight.Brightness = nil

-- Remove other keys

flashLight[lightBulb] = nil

This also means if you are ever trying to get a value from a dictionary, and you only get nil,

that means you’re look ing for something that d oesn’t exist.

▼TRY IT YOURSELF

Add New Players to a Dictionary

In this Try It Yourself, you add a player’s name to a dictionary when they join and then assign
them to a team. If you’re using a key-value pair that hasn’t been added previously, it’ll be added
automatically.

 1. In ServerScriptService, create a new script.

 2. Get the Players service and create an empty dictionary:

Players = game:GetService("Players")

-- Empty dictionary

local teams= {

}

 3. Add a new function for assigning teams and include a parameter for a new player. Connect
the function to the Players.PlayerAdded event:

Players = game:GetService("Players")

local teams= {

}

-- Assign player to "Red" team

local function assignTeam(newPlayer)

end

Players.PlayerAdded:Connect(assignTeam)

 4. In the function, add a variable to get the player’s name:

-- Assign player to "Red" team

local function assignTeam(newPlayer)

local name = newPlayer.Name

end

Players.PlayerAdded:Connect(assignTeam)

132 HOUR 10: Working with Dictionaries

Working with Dictionaries and Pairs
pairs() can be used to work with a dictionary element’s key, value, or both. In the following

for loop, the first variable is the key. The second variable is the value. The dictionary that you

want to work with is passed into pairs():

local inventory = {

["Gold Bricks"] = 43,

 Carrots = 3,

 Torches = 2,

}

print("You have:")

for itemName, itemValue in pairs (inventory) do

print(itemValue, itemName)

end

TIP

Comma Instead of Dots
If just printing two variables, yo u can use a comma instead of two dots.

▼
 5. Insert the name into the teamAssignments dictionary as a key, and set the value to

"Red":

-- Assign player to "Red" team

local function assignTeam(newPlayer)

local name = newPlayer.Name

 teams.name = "Red"

end

Players.PlayerAdded:Connect(assignTeam)

 6. Use name to print the name of the player and teamAssignment[name] to print the value
of the key:

Players = game:GetService("Players")

local teams = {

}

-- Assign player to "Red" team

local function assignTeam(newPlayer)

local name = newPlayer.Name

 teams.name = "Red"

print(name .. " is on " .. teams.name .. " team. ")

end

Players .PlayerAdded:Connect(assignTeam)

Returning Values from Tables 133

Returning Values from Tables
You can search a table using pairs() or ipairs() for half of any table element, such as the

key or value, to find and return the other half. The following code snippet searches a dictionary

of names to find the spy among them:

local friendOrSpy = {

 Angel = "Friend",

 Beth = "Spy",

 Cai = "Friend",

 Danny = "Friend",

}

-- Searches a given dictionary to find the spy

local function findTheSpy(dictionaryName)

 for name, loyalty in pairs(dictionaryName) do

if loyalty == "Spy" then

return name

 end

end

end

local spyName = findTheSpy(friendOrSpy)

print("The spy is " .. spyName)

▼TRY IT YOURSELF

Vote Them Off the Island!

In this Try It Yourself, you’re going to pretend to vote somebody off an island. The end goal of
this exercise is to take the name of every player in the experience and then create a way every-
one can vote on who should be kicked off the imaginary island.

To start, begin mentally breaking down the problems you need to solve to create this script. As
you start working on longer scripts, a to-do list of what needs to be done can be helpful.

Here are some problems to solve for:

 There needs to be enough time for all of the players to join before voting.

 Each player’s name needs to be represented in some way that players can interact with.

 The votes for each person need to be kept track of.

 The results need to be shown at the end of voting.

There are other things you could possibly solve for, but this is enough of a list to work with for
now.

134 HOUR 10: Working with Dictionaries

▼ Set Up
The first problem will be solved by allowing players to click a button when they’re ready to begin
voting. In a more complex experience, the voting might happen after a series of mini-games or
something like that. To solve the second problem, once the voting starts, a new set of buttons
representing each player will appear. (See Figure 10.1.)

FIGURE 10.1
One button will start the vote, and then more buttons will be created to represent everyone on the island.

For this example, the names of the ProximityPrompts are important. Differently named prompts
will be used to do different things:

 1. Set up a part to act as the first button that starts the voting:

 a. Insert a ProximityPrompt named StartVote.

 b. Set HoldDuration to 1.

 2. Set up a second part to act as the button that will hold the player’s name:

 a. Insert a ProximityPrompt named AddVote.

 b. Set HoldDuration to 0.5.

 c. Once set up, move the button to ServerStorage where copies can be made. (See
Figure 10.2.) Do not move the StartVote button; that needs to be where people can
see it.

Returning Values from Tables 135

▼

FIGURE 10.2
The button to start the vote stays in Workspace, whereas the button with AddVote goes into ServerStorage.

Coding the Script
As you work through this exercise, you use multiple tables, both arrays and dictionaries.
Newcomers to the experience will be added to an array named activePlayers. Once voting starts,
anyone who receives a vote will be added to a dictionary along with how many votes they have.

Set Up the Buttons
Remember the different problems mentioned earlier that need to be solved for? As you start
working on larger scripts, it’s better to break the script into sections with individual functions
designed to solve unique problems. You start out by getting the names of all the players and cre-
ating buttons for each player:

 1. In ServerScriptService, add a new script.

136 HOUR 10: Working with Dictionaries

▼
 2. Create variables for the following:

 a. ServerStorage

 b. ProximityPromptService

 c. Players service

 d. Amount of time players have to cast their votes

 e. An array to hold all of the active players

 f. A dictionary to hold the votes cast

local ServerStorage = game:GetService("ServerStorage")

local ProximityPromptService = game:GetService("ProximityPromptService")

local PlayersService = game:GetService("Players")

local VOTING_DURATION = 30

local activePlayers = {}

local votes = {

}

 3. At this point, you start breaking your code into smaller solutions. Create a new function
that adds players to the activePlayers array when they are added to the experience.
Use the PlayerAdded event to call the function:

local function onPlayerAdded(player)

 table.insert(activePlayers, player)

end

PlayersService.PlayerAdded:Connect(onPlayerAdded)

 4. Create a new function that creates a button for each player instance in the active-
Players array. This function is called later in the script with the StartVote prompt:

local function onPlayerAdded(player)

 table.insert(activePlayers, player)

end

local function makeButtons()

 for index, player in pairs(activePlayers) do

 -- Use the name of your button in the next line

local newBooth = ServerStorage.Button:Clone()

 newBooth.Parent = workspace

 end

end

PlayersService.PlayerAdded:Connect(onPlayerAdded)

Returning Values from Tables 137

▼ 5. Find the ProximityPrompt within the button, and set ActionText to match the player’s
name:

local function makeButtons()

 for index, player in pairs(activePlayers) do

local newBooth = ServerStorage.VotingBooth:Clone()

 local proximityPrompt =
 newBooth:FindFirstChildWhichIsA("ProximityPrompt")

 local playerName = player.Name

 proximityPrompt.ActionText = playerName

 newBooth.Parent = workspace

 end

end

 6. Add the highlighted code additions to space the buttons apart a little. You learn more
about positioning objects in Hour 14, “Coding in 3D World Space”:

local function makeButtons()

 local position = Vector3.new(0,1,0)

 local DISTANCE_APART = Vector3.new(0,0,5)

 for index, player in pairs(activePlayers) do

local newBooth = ServerStorage.Button:Clone()

 local proximityPrompt =
 newBooth:FindFirstChildWhichIsA("ProximityPrompt")

 local playerName = player.Name

 proximityPrompt.ActionText = playerName

 position = position + DISTANCE_APART

 newBooth.Position = position

 newBooth.Parent = workspace

 end

end

 7. Add a third function connected to the PromptTriggered event. Inside, use the StartVote
proximity prompt to call makeButtons():

local function makeButtons()

 -- Earlier code

end

local function onPromptTriggered(prompt, player)

 if prompt.Name == "StartVote" then

 makeButtons()

138 HOUR 10: Working with Dictionaries

▼ end

end

PlayersService.PlayerAdded:Connect(onPlayerAdd ed)

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

TIP

Keep Event Connections Together When Possible
Notice that all of the event connections are at the bottom of the script. This keeps everything
organized.

Testing for Multiple People
When testing code that’s meant to be used for multiple players, you need to use Network
Simulator instead of just Play or Play Here. Network Simulator enables you to set up as many
fake people as you want, which you can then control to test your game:

 1. In the Test tab, find the section titled Clients and Servers.

 2. Set the bottom drop-down menu to two or more players, as shown in Figure 10.3.

FIGURE 10.3
Use the drop-down menu to select at least two players.

 3. Clicking Start will bring up a new Studio instance representing the server and an additional
window for each pretend player. Player windows have a blue outline (see Figure 10.4),
whereas the Server window has a green outline.

 4. Click any of the blue windows to control that dummy character. While testing, any errors
and printed messages show up in the Server Output window.

 5. Interact with StartVote and make sure that a button is spawned for each test player.

Returning Values from Tables 139

▼

FIGURE 10.4
The blue outline indicates this is one of the player instances.

TIP

Positioning Objects
The buttons should appear just slightly above the center of your experience, 0,0,0. Later in the
book, you’ll learn how to control the position of objects when added to the workspace.

 6. To stop the test, click Cleanup. (See Figure 10.5.)

FIGURE 10.5
Click the red X to close the extra Studio instances.

140 HOUR 10: Working with Dictionaries

▼ Adding and Counting Votes
Once the voting buttons are up and running, the votes need to be tracked and the results shown
when the voting is done. In this example, you give a set amount of time that players are allowed
to vote and then show the results:

 1. In the same script, above onPromptTriggered(), create a new function called
showVotes that prints all the values in the votes dictionary:

local function showVotes()

 for playerName, value in pairs(votes) do

 print(playerName .. " has " .. value .. " votes.")

 end

end

 2. In onPromptTriggered(), begin a countdown once voting starts, and call showVotes
when it’s done:

local function onPromptTriggered(prompt, player)

 if prompt.Name == "StartVote" then

 makeButtons()

for countdown = VOTING_DURATION, 0, -1 do

 print(c ountdown .. " seconds left")

 wait(1.0)

 end

 showVotes()

end

end

TIP

Further Code Organization
If you wanted to, you could make the countdown its own function as well. That would allow it to be
called by other means than just a prompt.

 3. Also in onPromptTriggered(), add a second condition that listens for Proximity Prompts
named AddVote:

local function onPromptTriggered(prompt, player)

 if prompt.Name == "StartVote" then

 makeButtons()

-- Countdown code

 showVotes()

elseif prompt.Name == "AddVote" then

end

end

Returning Values from Tables 141

▼ 4. Get the name of the player who was voted for from ActionText, where it was used to
label the button:

local function onPromptTriggered(prompt, player)

if prompt.Name == "StartVote" then

 makeButtons()

-- Countdown code

 showVotes()

 elseif prompt.Name == "AddVote" then

local chosenPlayer = prompt.ActionText

 end

end

 5. If the votes dictionary doesn’t already have an entry by that name, add the player’s name
as a key and set their points to 1. If a key does exist, take the current value and add one
to it:

local function onPromptTriggered(prompt, player)

 if prompt.Name == "StartVote" then

 makeButtons()

for countdown = VOTING_DURATION, 0, -1 do

 print(countdown .. " seconds left")

 wait(1.0)

 end

 showVotes()

elseif prompt.Name == "AddVote" then

local chosenPlayer = prompt.ActionText

 print("A vote for " .. chosenPlayer)

 if not votes[chosenPlayer] then

 votes[chosenPlayer] = 1

else

 votes[chosenPlayer] = votes[chosenPlayer] + 1

end

 -- Optional check for debugging purposes

 else

 print("Prompt not found")

 end

end

142 HOUR 10: Working with Dictionaries

Summary
In all Roblox experiences, tables are behind the scenes tracking information. Arrays are used

to create lists of objects, and the information stored will always be in order. While dictionaries

are used to track information about objects and properties, and unlike arrays, the entries within

aren’t guaranteed to stay in any particular order.

To iterate through a dictionary, you want to use pairs() i nstead of ipairs(). The two func-

tions are very similar, but ipairs() only works with arrays.

Q&A
 Q. I’ve seen pairs() used with arrays, so why not just use pairs() with both arrays and dic-

tionaries?

 A. One of the benefits of using arrays is that it stores things in order. pairs() is not guaran-
teed to return every object in order, whereas ipairs() is.

 Q. If pairs() can technically work with arrays, why can’t pairs() work with dictionaries?

 A. ipairs() requires an ordered index to work. Dictionaries don’t have that. On the other
hand, pairs accept any valid datatype as a key, including indexes.

Workshop
Now t hat you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. Instead of using indexes, dictionaries use ___.

 2. True or false: Dictionaries store information in a particular order.

▼ TIP

If All Else Fails
Included are a couple of print statements and an else that can be used for testing the code. A final
else that runs if no other condition proves true can be quite helpful for making sure that the func-
tion was called as expected.

 6. Use Network Si mulator with a t least two players to test the code, and look for the results
in the Server Output.

Exercise 143

 3. To iterate through a dictionary, use the ____ functions.

 4. If an instance is being used as a key, does it need to have brackets or quotation marks?

 5. To remove a key-value pa ir from a dictionary, set the value to ___.

 6. Why does showVotes() have to be above onPromptTriggered()?

Answers
 1. Keys

 2. False. Although dictionaries might sometimes return values in the order in which they were
stored, it’s by no means guaranteed.

 3. pairs()

 4. If an instance is being used as a key, it only needs the brackets.

 5. Nil

 6. Because code is read from top to bottom, showVotes() needs to be created before it’s
called in onPromptTriggered().

Exercise
Earlier in this hour, a person was assigned to the "Red" team upon joining the experience.
For this exercise, can you figure out how to alternate team assignments between "Red" and
"Blue"? Print the members of each team.

Tips
 Test using Network Simulator.

 Instances can’t concatenate with strings, but the name of the instance will.

This page intentionally left blank

HOUR 11
Client Versus Server

What You’ll Learn in This Hour:

What the server/client divide is

How to set up serverwide messages

How to create player-specific messages with GUIs

How to test code

How to use RemoteFunctions for two-way communication between the server and client

There are two sides to every Roblox experience. One side is where people interact with the experi-

ence, and the other side is in the cloud, controlling everything. This hour covers how these two

sides work together and how messages are sent between them. At the end of the hour, you create

a shop where players can click a button to buy firewood for the resource game created in Hour 9.

Understanding the Client and the Server
The first side, the side where people and players are interacting with the world, is the client side.

A client is the individual device somebody uses to join a game, whether it’s a Mac, PC, phone,

tablet, or even a VR console.

Some things about the experience are calculated on the individual client device, whereas other

things are taken care of by super powerful Roblox hardware called the server. The server and the

client are always talking to each other. The server tells the client what the overall world is like,

and the client tells the server what a person is doing within the world.

Typically, you want important information like scores, in-game money, and progress levels to

be handled by the server. The server is more secure than the client and is harder to hack into.

Meanwhile, the client handles things that apply only to the particular person using the device or

for when it’s important to have the least amount of lag possible, such as for showing them their

own score or when controlling the camera.

146 HOUR 11: Client Versus Server

Working with GUIs
So far, we’ve only worked with server-side code typed within Script objects, and everyone in the

world sees the same thing. The next step is to start creating code that shows the person on each

client information that only they can see, like their current score, quest progress, health level,

and how much money they have. Information like this is displayed in what’s called a Graphical

User Interface or GUI, like the one shown on the left in Figure 11.1.

FIGURE 11.1
In World//Zero by Red Manta Studio, returning players are greeted by GUI showing their characters’ levels
and current locations. Additional GUI elements allow for customization and deletion, and a big green button
starts the game.

With GUIs, you can also create onscreen buttons that allow you to build out things like shops.

The majority of GUI items that can only be seen by the local client should be placed in Starter-

GUI , and you type the code into a LocalScript object instead of a Script object. Anything in

StarterGUI is duplicated to anyone who joins the experience.

▼ TRY IT YOURSELF

Create a GUI with the Player’s Name

To show you what it can look like when everyone in the server sees information custom tailored
just for them, in this Try It Yourself, you create a GUI with the player’s name.

Set Up
 1. In Explorer, select StarterGUI.

 2. Insert a new ScreenGui (see Figure 11.2). This will be the container for any buttons and
labels you want to create.

Working with GUIs 147

▼

FIGURE 11.2
Insert a ScreenGui object into StarterGui.

 3. Inside of ScreenGui, add a TextLabel. Rename the TextLabel PlayerName, as shown in
Figure 11.3.

FIGURE 11.3
Insert a TextLabel into the ScreenGui just created.

TIP

Customizing GUIs
To learn about customizing the appearance and placements of ScreenGuis, check out the compan-
ion book Roblox Game Development in 24 Hours or look up Intro to ScreenGuis on the Developer
Hub.

148 HOUR 11: Client Versus Server

▼ Script
You use a LocalScript instead of the normal Script object. The Script object is for server-side
code:

 1. With the ScreenGui selected, insert a new LocalScript object (see Figure 11.4).

FIGURE 11.4
LocalScripts are for client-side code.

TIP

GUI Script Placement
GUI scripts must be inside of StarterGUI. ServerScriptService can only access server Script objects.

 2. Within the LocalScript, create variables for the Players service and the ScreenGui.

 3. Create a new variable for the TextLabel:

local Players = game:GetService("Players")

local screenGui = script.Parent

local textLabel = screenGui.PlayerName

 4. Get the local player. In LocalScripts, this can easily be done with Players.LocalPlayer:

local Players = game:GetService("Players")

local screenGui = script.Parent

local textLabel = screenGui.PlayerName

local localPlayer = Players.LocalPlayer

 5. Set TextLabel’s Text property to the name of the local player:

local Players = game:GetService("Players")

local screenGui = script.Parent

local textLabel = screenGui.PlayerName

local localPlayer = Players.LocalPlayer

textLabel.Text = localPlayer.Name

 6. Use the Network Simulator to test your code. You’ll see that each person’s name is dis-
played on screen.

Using RemoteFunctions 149

Understanding RemoteFunctions
One thing to keep in mind is that the server and the client don’t have access to the same infor-

mation. There are certain folders that the client can’t access, and vice versa. Here are a few

examples:

Object Server Client

Workspace yes yes

ServerScriptService yes no

ServerStorage yes no

ReplicatedStorage yes yes

Also, the server and the client don’t share information. Some people call this the server/client

divide, but you can just imagine it as if there was a wall between the two environments keeping

them separate.

To get information from one side to the other, special objects are used to toss information over

the wall. This can be done through RemoteEvent and RemoteFunction objects that both Scripts

and LocalScripts can use to communicate with each other. In this hour, RemoteFunctions are

covered, and the next hour gets into the different types of RemoteEvents.

Using RemoteFunctions
As stated earlier, RemoteFunctions are designed to send a request across the server-client

boundary.

What makes RemoteFunctions special is that they can also wait for a response from the other

side acting as a messenger between the client and the server. Usually this is a request from the

local client for the server to do something, and then the server sends the results back.

RemoteFunctions must be created where both clients and the server can access it—for instance,

ReplicatedStorage (see Figure 11.5).

Meanwhile, you have a normal server Script in ServerScriptService and a LocalScript in Starter-

PlayerScripts, as shown in Figure 11.6.

150 HOUR 11: Client Versus Server

FIGURE 11.5
RemoteFunctions must be placed someplace like ReplicatedStorage, which both the client and server can
access.

FIGURE 11.6
LocalScript in StarterPlayerScripts and server Script in ServerScriptService.

Get a message from the server, and print it locally: On the server side, set up a function that returns

a simple string to print. Bind the function to the RemoteFunction object, as highlighted here:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local remoteFunction = ReplicatedStorage:WaitForChild("RemoteFunction")

local function sayHello()

 local serverMessage = "Hello from the server"

return serverMessage

end

remoteFunction.OnServerInvoke = sayHello

RemoteFunctions can only have one function bound to them at a time. On the local side, the

code to invoke (indirectly call) the server would look like this:

Using RemoteFunctions 151

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local remoteFunction = ReplicatedStorage:WaitForChild("RemoteFunction")

local messageFromServer = remoteFunction:InvokeServer()

print(messageFromServer)

Server to Client
It is possible to go the other direction—from server to client to server. However, it’s quite risky

and won’t be covered within this book for the following reasons:

 If the client throws an error, the server will throw the error, too.

 If the client disconnects while it’s being invoked, the InvokeClient() call will error.

 If the client never returns a value, the server will hang forever.

▼TRY IT YOURSELF

Make a Store

A good example of when you might need to double-check with the server and wait for a response
is if someone wants to buy something. A client clicks a button to buy something, and then the
server checks whether the client actually has enough money and confirms the purchase.

For the purposes of this Try It Yourself, you take the leaderboard system you’ve worked with before
and modify it to allow players to spend gold to buy more logs to burn for the fires (see Figure 11.7).

FIGURE 11.7
The end result will allow people to buy logs for the fire.

152 HOUR 11: Client Versus Server

▼ Set Up
For the sake of speed, use the leaderboard system for fuel and fire you previously set up. If you
don’t have it, you can use the code in the Hour 11 section of the appendix to quickly set it up.

 1. In ServerScriptService, PlayerStats, give people a starting gold amount of 10 to make test-
ing easier:

local gold = Instance.new("IntValue")

gold.Name = "Gold"

gold.Value = 10

gold.Parent = leaderstats

 2. In ReplicatedStorage, add a new RemoteFunction instance named CheckPurchase (see
Figure 11.8).

FIGURE 11.8
Add a RemoteFunction named CheckPurchase.

 3. In ServerStorage, add a new folder named ShopItems (see Figure 11.9).

FIGURE 11.9
Add a folder named ShopItems.

 4. In ShopItems, add a Folder object named 3Logs and add the three attributes shown on
the right in Figure 11.10. You’ll use these names and values in the script.

Using RemoteFunctions 153

▼

FIGURE 11.10
A new folder with custom attributes for NumberToGive, Price, and StatName.

TIP

Future Proofing the Shop
In a more advanced shop, the folder can also be used to hold mesh models, image icons, and
more.

 5. In StarterGUI, add

 A new ScreenGui named ShopGui.

 In ShopGui, add a new TextButton named Buy3Logs (see Figure 11.11).

FIGURE 11.11
Set up for the GUIs.

154 HOUR 11: Client Versus Server

▼ TIP

Moving GUIs
To move the GUIs around, you can select the GUI objects in Explorer and then move and scale
them.

 6. Select Buy3Logs and add an attribute, as shown in Figure 11.12:

 Name: PurchaseType

 Value: 3Logs

 Type: String

FIGURE 11.12
An attribute for Buy3Logs.

LocalScript
LocalScripts for GUI buttons need to be a direct child of the button they affect. In the LocalScript,
you set up the code to invoke the server and tell the person if their purchase was successful or
if they need more gold:

 1. In the Buy3Logs button, add a LocalScript.

 2. Get the information you need for the RemoteFunction, CheckPurchase:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local checkPurchase= ReplicatedStorage:WaitForChild("CheckPurchase")

 3. For the button, you need to get the PurchaseType attribute:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local checkPurchase= ReplicatedStorage:WaitForChild("CheckPurchase")

local button = script.Parent

local purchaseType = button:GetAttribute("PurchaseType")

 4. Use the PurchaseType to create and assign default text for the button and then set up a
cooldown for how long the button will be deactivated between purchases:

local defaultText = "Buy " .. purchaseType

button.Text = defaultText

local COOLDOWN = 2.0

Using RemoteFunctions 155

▼TIP

Make Sure to Assign Default Property Values
You’ll be changing the Text property several times, so you want to make sure you have a default
message assigned in the beginning of the script.

 5. Create a new function to be called when the button is activated:

local function onButtonActivated()

end

button.Activated:Connect(onButtonActivated)

 6. Create a variable to invoke the server to send the purchaseType and hold the returned
purchase confirmation:

local function onButtonActivated()

 local confirmationText = checkPurchase:InvokeServer(purchaseType)

end

 7. Display the confirmation text while disabling the button and then return the button to
 normal:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local checkPurchase = ReplicatedStorage:WaitForChild("CheckPurchase")

local button = script.Parent

local purchaseType = button:GetAttribute("PurchaseType")

local defaultText = "Buy ".. purchaseType

button.Text = defaultText

local COOLDOWN = 2.0

local function onButtonActivated()

local confirmationText = checkPurchase:InvokeServer(purchaseType)

 button.Text = confirmationText

 button.Selectable = false

 wait(COOLDOWN)

 button.Text = defaultText

 button.Selectable = true

end

button.Activated:Connect(onButtonActivated)

156 HOUR 11: Client Versus Server

▼ Server Script
The server side is where you want to do all the heavy lifting of checking and updating stats.
Once the client sends over what the user wants to purchase, the server checks whether the user
has enough gold. If they do, the purchase will be made, and the button text will say Purchase
Successful! If they don’t have enough gold, then the server will send back a message saying
Not enough gold.

 1. In ServerScriptService, add a new script.

 2. Think about what your script needs to do and make the references you think it will need.
Compare your work to the following snippet:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

local checkPurchase = ReplicatedStorage:WaitForChild("CheckPurchase")

local shopItems = ServerStorage.ShopItems

 3. Create a function named confirmPurchase with parameters to pass in player and
purchaseType. Bind confirmPurchase to the RemoteFunction:

local function confirmPurchase(player, purchaseType)

end

checkPurchase.OnServerInvoke = confirmPurchase

 4. Inside of confirmPurchase, get how much gold the person has:

local function confirmPurchase(player, purchaseType)

 local leaderstats = player.leaderstats

 local currentGold = leaderstats:FindFirstChild("Gold")

end

 5. Use the passed in purchaseType to find the item they want to buy. Get the resource stat
that will be updated on the leaderboard, the item’s price, and how many of the resource
will be received:

local function confirmPurchase(player, purchaseType)

 local leaderstats = player.leaderstats

 local currentGold = leaderstats:FindFirstChild("Gold")

 local purchaseType = shopItems:FindFirstChild(purchaseType)

 local resourceStat =
 leaderstats:FindFirstChild(purchaseType:GetAttribute("StatName"))

 local price = purchaseType:GetAttribute("Price")

 local numberToGive = purchaseType:GetAttribute("NumberToGive")

end

Using RemoteFunctions 157

▼TIP

Check Your Work
You should have four variables here. Notice how purchaseType:GetAttribute("StatName")
is passed into shopItems:FindFirstChild().

 6. Set up a variable for the server message that will be sent back once everything is checked:

local function confirmPurchase(player, purchaseType)

 local leaderstats = player.leaderstats

 local currentGold = leaderstats:FindFirstChild("Gold")

 local purchaseType = shopItems:FindFirstChild(purchaseType)

 local resourceStat =
 leaderstats:FindFirstChild(purchaseType:GetAttribute("StatName"))

 local price = purchaseType:GetAttribute("Price")

 local numberToGive = purchaseType:GetAttribute("NumberToGive")

 local serverMessage = nil

 return serverMessage

end

TIP

Set Undetermined Values to nil
In this code, the value of serverMessage will be determined in the next step. Rather than just
leaving the variable without a value for now, set it to nil so it’s clear that a value was not mistak-
enly left out.

 7. Set up conditionals to check how much gold the person has and whether they can buy
the item. Depending on the results, send back an appropriate message to the client and
update the leaderboard. Here’s the completed script:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

local checkPurchase = ReplicatedStorage:WaitForChild("CheckPurchase")

local shopItems = ServerStorage.ShopItems

local function confirmPurchase(player, purchaseType)

 local leaderstats = player.leaderstats

 local currentGold = leaderstats:FindFirstChild("Gold")

158 HOUR 11: Client Versus Server

▼ local purchaseType = shopItems:FindFirstChild(purchaseType)

 local resourceStat =
 leaderstats:FindFirstChild(purchaseType:GetAttribute("StatName"))

 local price = purchaseType:GetAttribute("Price")

 local numberToGive = purchaseType:GetAttribute("NumberToGive")

 local serverMessage = nil

 if currentGold.Value >= price then

 currentGold.Value = currentGold.Value - price

 resourceStat.Value += numberToGive

 serverMessage = ("Purchase Successful!")

 elseif currentGold.Value < price then

 serverMessage = ("Not enough Gold")

 else

 serverMessage = ("Didn't find necessary info")

 end

return serverMessage

end

checkPurchase.OnServerInvoke = confirmPurchase

 8. Test everything out! You can make the store prettier by adding images for the items and
styling the look and font of the text and buttons.

Summary
Every Roblox experience has two sides that come together to make the world users see. The first

side is the local client, which is the device such as a computer or phone where people are inter-

acting with Roblox. The second side is the server, which is making sure that everyone is going

through the experience in mostly the same way.

Generally, you want to make sure as much of the code that you create stays on the server side

of things where it’s more secure. The last thing you want is people taking advantage of the local

client to make unauthorized purchases or updates to their stats.

Some things, however, are specific to a client. If one person opens a shop window or makes a

purchase, you don’t want everyone in the experience to have to look at the shop window until

they’re done. So, shops are an example of something you would want done locally.

Workshop 159

Q&A
 Q. Can anything other than a function be bound to a RemoteFunction?

 A. RemoteFunctions expect a function; trying to bind something like a variable will cause an
error.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. The device somebody uses to join a Roblox experience is the____.

 2. The super powerful hardware running most of a Roblox experience is the ____.

 3. Code that only makes changes to what a client sees is typed into a _____ object.

 4. A RemoteFunction is

 A. A type of event

 B. An object

 C. A data type

 5. RemoteFunctions can be used for ____-way communication between the server and the
client.

 6. What does it mean to invoke something?

Answers
 1. Local client

 2. Server

 3. LocalScript

 4. An object

 5. Two

 6. Invoke means to call something indirectly.

160 HOUR 11: Client Versus Server

Exercises
One problem with the current shop is that the price of the items aren’t listed. However, remem-
ber that only one function can be bound to a RemoteFunction at a time. Create a second
RemoteFunction and use it to display not only the name of items people can purchase, but also
the cost. (See Figure 11.13.) Be sure to test your code with multiple items for sale.

FIGURE 11.13
Extend the shop code so that it can retrieve the price for each item in the shop.

HOUR 12
 Remote Events: One-Way

Communication

What You’ll Learn in This Hour:

How to use remote events

How to send a message to all clients

How to create player-specific messages

How to send a message from the client to the server

How to create a GUI countdown

Hour 11 covers the differences between the local client and the server living on Roblox hardware.

It also covers one way of communicating across the divide. This hour covers a second way to

send messages.

Remote Events: A One-Way Street
Sometimes you just need to send a message from the client to the server or vice versa without

needing a response. If that’s the case, instead of using a RemoteFunction, you should instead use

a RemoteEvent.

As a reminder, a RemoteEvent is an object that you can insert instances of into Workspace, typi-

cally within ReplicatedStorage where both the client and server can access it (see Figure 12.1).

There are three major ways in which RemoteEvents can be used to send a signal:

 From the server to a specific client

 From the server to all of the joined clients

 From a client to the server

162 HOUR 12: Remote Events: One-Way Communication

FIGURE 12.1
RemoteEvent should be in ReplicatedStorage to be accessed by both the client and server.

Communicating from the Server to All Clients
The basic formula for sending a message from the server to all clients is as follows:

remoteEventName:FireAllClients(variableName)

Information needing to be sent to the client is passed into FireAllClients(informationHere).

On the client side, you set up one or more functions to call when the event gets fired:

local function firstFunction(incomingInfo)

 -- Do stuff

end

local function secondFunction(incomingInfo)

 -- Do different stuff

end

-- Connect both functions to onClientEvent

remoteEventName.OnClientEvent:Connect(firstFunction)

remoteEventName.OnClientEvent:Connect(secondFunction)

▼ TRY IT YOURSELF

Quick Countdown

Let’s start off with something familiar to demonstrate: a countdown. This is a good example
because the server needs to get information to everyone in the server, but it doesn’t need any
information back.

Communicating from the Server to All Clients 163

▼So far, we’ve demonstrated a countdown in two ways. The first was simply in Output where the
client can’t see it. The second was displayed on a 3D GUI in the game space. The problem with
that is that people can walk away from it and not see it. If you want to be sure everyone in the
experience sees the countdown, as shown in Figure 12.2, using a RemoteEvent is the way to
do it.

FIGURE 12.2
A TextLabel displays a countdown until the next round.

 1. In ReplicatedStorage, add a RemoteEvent named CountdownEvent. (See Figure 12.3.)

FIGURE 12.3
Insert a RemoteEvent into ReplicatedStorage.

164 HOUR 12: Remote Events: One-Way Communication

▼
 2. In ServerScriptService, add a script. Create references for ReplicatedStorage and the

RemoteEvent:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local countdownEvent = ReplicatedStorage:WaitForChild("CountdownEvent")

 3. Create a countdown using a for loop. On every iteration, fire the event and pass back the
current countdown:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local countdownEvent = ReplicatedStorage:WaitForChild("CountdownEvent")

local secondsRemaining = 20

for count = secondsRemaining, 1, -1 do

 countdownEvent:FireAllClients(count)

 wait(1.0)

end

 4. Get the client side going; in StarterGui, add a new ScreenGui (see Figure 12.4) and a
TextLabel. This is where you’ll display the countdown.

FIGURE 12.4
Set up the GUI to be seen by everyone.

 5. In ScreenGui, add a LocalScript. This is where you’ll put the code that you want to run
whenever the event is fired. In the example shown in Figure 12.5, it’s been named
DisplayManager.

FIGURE 12.5
Add a new LocalScript to StarterPlayerScripts.

Communicating from the Client to the Server 165

Communicating from the Client to the Server
Now it’s time to find out how to go the opposite direction—sending information from the cli-

ent to the server. Remember, in this case, you don’t need a response from the server. If a client

needs to make a change that affects the entire server, the client can send a remote request to the

server.

In this case, the client side would fire the RemoteEvent:

remoteEvent:FireServer(infoToPass)

And functions would be connected on the server side:

local function functionName(player, passedInfo)

 print(player.Name)

 -- Stuff to do

end

remoteEvent.OnServerEvent:Connect(functionName)

▼ 6. Set up your references; then create a new function to be called when the event is fired:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local countdownEvent = ReplicatedStorage:WaitForChild("CountdownEvent")

-- Get the ScreenGui and the TextLabel

local screenGui = script.Parent

local countDisplay = screenGui.ShowCountdown

local function onTimerUpdate(count)

-- Set the TextLabel to match the incoming count

 countDisplay.Text = count

end

-- Call "onTimerUpdate()" when the server fires the remote event

countd ownEvent.OnClientEvent:Connect(onTimerUpdate)

TIP

Checking Your Code
The first thing to check is your references. Make sure that the name of your events, instances, and
GUI elements matches what’s being referenced in your code. It’s okay if they’re different from the
example code as long as you’re paying attention. Secondly, it’s always a good idea to check all of
your code using the network sim ulator and on a live published game.

166 HOUR 12: Remote Events: One-Way Communication

Take a look at the example function in the preceding code. The player that triggered the event

was passed in automatically. The first parameter will always hav e to take that into account.

▼ TRY IT YOURSELF

Pick a Map, Any Map

One way to create variety within your experience is to allow for different map choices. The world
in Figure 12.6 has a map picker where a person can choose between three different locations.
Depending on your experience, people might be teleported to that location or that map might
then be loaded up. For this example, instead of teleporting people, you’ll create the chosen map
by cloning it out of ServerStorage.

FIGURE 12.6
This GUI has three different map choices.

Set Up
All of the buildings and props of a map can be grouped into a single model. In this section, you
set up a few simple models to practice with, and create the GUI buttons:

 1. In ServerStorage, add a new folder named Maps.

 2. Place three different models into the Maps folder (see Figure 12.7). Make sure each model
has a unique name. To group parts into a model, select all desired parts; then right-click
and select Group (Cmd+G or Ctrl+G).

Communicating from the Client to the Server 167

▼

FIGURE 12.7
Three models holding all the parts for three different maps.

TIP

Practice with Simple Models
For the sa ke of this Try It Yourself, it’s OK if the models consist of just a part or two.

 3. In ReplicatedStorage, add a RemoteEvent named MapPicked. (See Figure 12.8.)

FIGURE 12.8
Add a new RemoteEvent within ReplicatedStorage.

 4. In StarterGui, add a newScreenGui, and within that, add a frame named MapSelection.
(See Figure 12.9.) Frames allow you to group different GUI elements together.

FIGURE 12.9
A new GUI frame holds the buttons.

 5. Select the frame, and insert three TextButtons (see Figure 12.10). Make sure each but-
ton’s name matches the maps in ServerStorage (refer to Figure 12.8). You’ll use the name
to clone the correct map.

168 HOUR 12: Remote Events: One-Way Communication

▼

FIGURE 12.10
Three buttons have names matching the map models.

Client Side
The buttons appear on the client, which makes it possible for the map to be chosen and a
message sent to the server:

 1. Select one of the buttons and insert a LocalScript.

 2. Set up your references for the RemoteEvent, the button, and the frame:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local mapPicked = ReplicatedStorage:WaitForChild("MapPicked")

local button = script.Parent

local frame = button.Parent

 3. Create a new function connected to the button’s Activated event:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local mapPicked = ReplicatedStorage:WaitForChild("MapPicked")

local button = script.Parent

local frame = button.Parent

local function onButtonActivated()

end

button.Activated:Connect(onButtonActivated)

 4. Inside, use FireServer() to send the name of the button that was picked and then
make the frame invisible:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local mapPicked = ReplicatedStorage:WaitForChild("MapPicked")

local button = script.Parent

local frame = button.Parent

local function onButtonActivated()

Communicating from the Client to the Server 169

▼ mapPicked:FireServ er(button.Name)

 frame.Visible = false

end

button.Activated:Connect(onButtonActivated)

ServerSide
On the server side, the selected map will be cloned from ServerStorage:

 1. In ServerScriptService, add a new script.

 2. Set up the references for the RemoteEvent, ServerStorage, and the Maps folder:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local mapPicked = ReplicatedStorage:WaitForChild("MapPicked")

local ServerStorage = game:GetService("ServerStorage")

local mapsFolder = ServerStorage:WaitForChild("Maps")

 3. Add one more reference that will be used for the current map. Set it to nil for now. You’ll
use this variable to delete the old map when a new one is made so they aren’t stacked on
top of each other:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local mapPicked = ReplicatedStorage:WaitForChild("MapPicked")

local ServerStorage = game:GetService("ServerStorage")

local mapsFolder = ServerStorage:WaitForChild("Maps")

local currentMap = nil

 4. Create a new function and connect it to the RemoteEvent’s event named OnServerEvent:

local function onMapPicked(player, chosenMap)

end

mapPicked.OnServerEvent:Connect(onMapPicked)

 5. Find the chosen map within the Maps folder:

local function onMapPicked(player, chosenMap)

 local mapChoice = mapsFolder:FindFirstChild(chosenMap)

end

 6. Check to make sure the chosen map was found; then destroy the old map and make a
copy of the new one:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local mapPicked = ReplicatedStorage:WaitForChild("MapPicked")

local ServerStorage = game:GetService("ServerStorage")

170 HOUR 12: Remote Events: One-Way Communication

Communicating from the Server to One Client
If you need to pass information to a specific player, like maybe if they were randomly chosen to

be the hunter or “it” in a game, things are a little different. You need to make sure that you send

along the player when the server fires the RemoteEvent, before you pass along any additional

information.

Server side:

remoteEvent:FireClient(player, additionalInfo)

▼ local mapsFolder = ServerStorage:WaitForChild("Maps")

local currentMap = nil

local function onMapPicked(player, chosenMap)

 local mapChoice = mapsFolder:FindFirstChild(chosenMap)

 if mapChoice then

-- Check for the old map and destroy it

if currentMap then

 currentMap:Destroy()

end

-- Make a copy of the new map

 currentMap = mapChoice:Clone()

 currentMap.Parent = workspace

 else

 print("Map choice not found")

 end

end

mapPicked.OnServerEvent:Connect(onMapPicked)

 7. Test it out! If it works, place copies of the LocalScript within the other two buttons.

TIP

Troubleshooting Tip
If the scripts don’t work as expected, make sure you’re testing the correct button. If the buttons are
on top of each other, or you try the wrong button, nothing will happen.

Workshop 171

Client side:

local function onServerEvent(player, additionalInfo)

 -- Whatever you want to happen

end

remoteEvent.OnClientEvent:Connect(onServerEvent)

Even if you don’t plan to use the player argument, it still needs to be sent and accounted for on

the local side. It’s just a quirk of the RemoteEvent needing to know specifically who to send a

message to.

Communicating from Client to Client
The fourth and final way to use RemoteEvents is from client to client. Clients can’t communicate

directly with each other; they have to go through the server, so you actually use a combination

of the three previous methods.

The client would use FireServer(infoToPass), and from there, the server would pass the

information back to one or all of the clients.

Summary
RemoteEvents are a really versatile way to send information between the server and the client

because you can connect several functions to the same event. Since the information goes only

one way, the RemoveEvents don’t have to wait for a response, and are generally faster and easier

to use than RemoteFunctions whenever a response isn’t required.

Worksh op
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. True or false: RemoteEvents can send information to the server, and return a response to

the client.

 2. True or false: RemoteEvents can only have one function bound to them at a time.

 3. To send a message from a client to a server, you would use the funct ion ____.

 4. True or false: The server automatically receives the name of the client that fired the
RemoteEvent.

172 HOUR 12: Remote Events: One-Way Communication

Answers
 1. False. RemoteEvents can only send information in one direction. They can’t wait for a

response.

 2. False. Instead of binding a single function to a RemoteEvent, as many functions as you
want can be connected. This is one of their benefits over RemoteFunctions.

 3. To send a message from a client to a server, use FireServer()—for example,
mapPicked:FireServer(button.Name).

 4. True , which is why you need to account for the incoming player argument when connecting
functions to the RemoteEvent.

Exercise
Once the map is picked, be sure to announce the map choice to everyone in the server, as shown
in Figure 12.11.

FIGURE 12.11
The map choice i s announced.

Tips
 Remember that clients can’t talk directly to other clients.

 You don’t need another RemoteEvent.

HOUR 13
 Using ModuleScripts

What You’ll Learn in This Hour:

What ModuleScripts are

How to create with ModuleScripts

How to create a jump pad

What abstractions are

 How to avoid repeating yourself

There’s a good chance your experience will have a lot of things in it: a lot of buttons, a lot of

things to touch, a lot of things to pick up. As much as possible, you want to make sure you’re

not ending up with lots of duplicate code in your world for handling all of these objects. Having

multiple copies of scripts everywhere is hard to manage and hard to update. Imagine making

the same change to dozens of item pickup scripts or going trap by individual trap to change how

much damage they do.

This hour explains ModuleScripts, another tool in your belt for keeping your code centralized

and easy to update. It also covers a little bit more about the general principle of Don’t Repeat

Yourself—also known as DRY—coding and how to organize your code to make it easier to tweak

and update.

Coding Things Just Once
ModuleScripts are a unique script object that allows you to store functions and variables that can

then be used by both scripts and LocalScripts. This way, you can create a main source of infor-

mation for things like gold pickups, monster stats, and even button behavior. Instead of having

a dozen or even a hundred scripts to update if a change needs to be made, you only have to

update the ModuleScript.

Scripts and LocalScripts will still be needed for accessing the module script, but the code within

them can be kept to the bare minimum.

174 HOUR 13: Using ModuleScripts

Placing ModuleScripts
Where you place ModuleScripts depends on how you plan on using them. If they will only be

used by server scripts, you should put them in ServerStorage, where they’re better protected. If

client-side LocalScripts need to use the ModuleScripts, you can put them in ReplicatedStorage.

(See Figure 13.1.)

FIGURE 13.1
ModuleScripts in ServerStorage (on left) can only be accessed by scripts. ReplicatedStorage (on right) can be
used by both scripts and Loca lScripts.

Understanding How ModuleScripts Work
By default, every ModuleScript starts out with this code:

local module = {}

return module

These should always be the first and last lines of code for the ModuleScript. Notice the curly

brackets? All of the code within the ModuleScript is placed into a table and then returned on the

last line. Within the table, all of the module’s shared functions and variables are stored.

Naming ModuleScripts
The first thing you’ll need to do with the table is update the name to match that of the script,

as shown in the following code and Figure 13.2. The name should match the purpose of all the

shared functions, such as ShopManager, TrapManager, or PetManager.

Adding Functions and Variables 175

TIP

Script Naming
The word Manager is pretty commonly used to mark a script that tells something else what to do. So
ButtonManager can be interpreted as “Tells the bu tton what to do.”

local TrapManager = {}

function TrapManager.modifyHealth(player, amount)

 -- Code

end

return TrapManager

FIGURE 13.2
The name of the ModuleScript and the table name match exactly.

Notice that the names of both the ModuleScript and the internal table shown in Figure 13.2 are

in PascalCase—the first letter of each word is capitalized. If you want to learn more about com-

mon naming conventions in Roblox, some style guide rules can be fou nd in the appendix.

Adding Functions and Variables
To add a new function or variable to the module table, use dot notation similar to how you have

worked with dictionaries before, as shown here:

local ModuleName = {}

-- Add a variable

ModuleName.variableName = 100

-- Adds a function

176 HOUR 13: Using ModuleScripts

function ModuleName.functionName(parameter)

-- Code goes here

end

return ModuleName

Remember, anything added to the module table must be typed between local ModuleNa me =

{} and return ModuleName.

Understanding Scope in ModuleScripts
If you look back at the last code snippet, you’ll notice the keyword local isn’t used for the

added function and variable:

-- The keyword 'local' isn't used

function ModuleName.functionName(parameter)

-- Code goes here

end

Typing local in front of variables and functions means they are usable only by that code

chunk. Usually that’s what we want, but ModuleScripts are different. The whole point is to make

the code shareable:

local ScoreManager= {}

-- The shareable function is not local

function ScoreManager.scoreCalculator(originalScore, newPoints)

 local newScore = originalScore + newPoints

 return newScore

end

return ScoreManager

However, variables only used by the ModuleScript, like variables within a function, should still be

local:

local ScoreManager= {}

function ScoreManager.scoreCalculator(originalScore, newPoints)

 -- This variable doesn't need to be shared outside the function

 local newScore = originalScore + newPoints

 return newScore

end

return ScoreManager

Using Modules in Other Scripts 177

Using Modules in Other Scripts
ModuleScripts don’t run code on their own. Instead, the variables and functions are accessed by

other scripts and run from there.

Within a script or LocalScript, use require() and pass in the ModuleScript’s location:

Script example:

local ServerStorage = game:GetService("ServerStorage")

local ModuleName = require(ServerStorage.ModuleName)

The script will load in the module table, making the module’s variables and functions available

for use.

To use a variable or a function from the module, use the ModuleScript’s name, followed by the

name of what you need. The following code sample has a practice variable with the value of 7

within a ModuleScript. The snippet after that demonstrates that variable being accessed from a

normal Script object. Figure 13.3 shows the results in Output.

ModuleScript code in ServerStorage

local PracticeModuleScript = {}

PracticeModuleScript.practiceVariable = 7

function PracticeModuleScript.practiceFunction ()

 print("This came from the practice ModuleScript")

end

return PracticeModuleScript

Script code in ServerScriptService

local Serverstorage = game:GetService("ServerStorage")

local PracticeModuleScript = require(Serverstorage.PracticeModuleScript)

-- This should print '7'

print(PracticeModuleScript.practiceVariable)

-- This should print the message within practiceFunction()

PracticeModuleScript.practiceFunction()

The resulting output looks like Figure 13.3. Notice that the source for the printed statement on

the first line is the script, whereas the source for the second line is the ModuleScript.

178 HOUR 13: Using ModuleScripts

FIGURE 13.3
The printed results are shown in Output.

Make sure you match the names of the ModuleScript, functions, and variables exactly; otherwise,

they won’t work. There’s nothing wrong with copying and pasting to make sure things are the

same.

Also, be sure not to make any changes to the ModuleScript while the experience is running. The

table can’t be refreshed. Once the module table is loaded, using require() again will only

return the same table.

▼ TRY IT YOURSELF

Create a Jump Pad

Jump pads (see Figure 13.4) are always a crowd pleaser because they let people in your
experience reach areas they couldn’t have otherwise. In this Try It Yourself, you’re going to make
a jump pad that will have a script handling only the most basic code that’s not likely to need
updating.

FIGURE 13.4
The blue pad allows people to reach places they couldn’t otherwise, like the roof of this house.

Using Modules in Other Scripts 179

▼Set Up
Set up the script objects and the jump pad; in the next section, you’ll work on the code.

 1. Add a part or a mesh. The jump pad in Figure 13.4 is just a neon blue base part.

 2. Insert a script into the jump pad.

 3. In ServerStorage, create a new ModuleScript named JumpPadManager.

ModuleScript
You’ll start with setting up the ModuleScript. The ModuleScript will handle how high and how long
the player will jump. To do so, you need to get the character’s HumanoidRootPart, which handles
the basic motion of a person. A VectorForce object will be added to the HumanoidRootPart, which
will cause the person to shoot up for as long as the VectorForce exists. You may not be very
familiar with some of the concepts used yet, but you’ll use them more in upcoming hours.

All of the heavy lifting for the script will be done here, leaving only a few lines of code to create
in the script:

 1. Rename the table JumpPadManager:

local JumpPadManager = {}

return JumpPadManager

 2. Create a local constant for how long the jump will last:

local JumpPadManager = {}

-- Local variable because they're not needed outside of this ModuleScript

local JUMP_DURATION = 1.0

return JumpPadManager

 3. Create a second local constant for jump direction like the one shown next. VectorForce
requires X, Y, Z coordinates to know which way to send things. The middle number, Y,
makes things go upward:

local JumpPadManager = {}

local JUMP_DURATION = 1.0

local JUMP_DIRECTION = Vector3.new(0, 6000, 0)

return JumpPadManager

180 HOUR 13: Using ModuleScripts

▼ TIP

Moving and Animating Objects
You’ll learn more about Vector3, X, Y, Z coordinates, and how to move and animate objects, in the
next hour. If you’re feeling brave, you can experiment with the X and Z values for front-and-back and
side-to-side force.

 4. Add a new function to the table:

local JumpPadManager = {}

local JUMP_DURATION = 1.0

local JUMP_DIRECTION = Vector3.new(0, 6000, 0)

-- Not local because the jump pads need these functions

function JumpPadManager.jump(part)

end

return JumpPadManager

 5. This part is similar to making a trap. Find the part’s parent and use that to search for a
humanoid. If it finds Humanoid, then search for the HumanoidRootPart:

-- Top of ModuleScript

function JumpPadManager.jump(part)

 local character = part.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

 local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 end

end

return JumpPadManager

 6. Search for a VectorForce instance, even though it won’t exist until you add one. You’ll need
this for the debounce in the next step:

-- Top of ModuleScript

function JumpPadManager.jump(part)

 local character = part.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

 local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 local vectorForce = humanoidRootPart:FindFirstChild("VectorForce")

Using Modules in Other Scripts 181

▼end

end

return JumpPadManager

 7. If there’s not a VectorForce, add one. This makes sure there is only ever one VectorForce
applied:

local JumpPadManager = {}

-- Top of ModuleScript

function JumpPadManager.jump(part)

 local character = part.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 local vectorForce = humanoidRootPart:FindFirstChild("VectorForce")

 if not vectorForce then

 vectorForce = Instance.new("VectorForce")

 end

end

end

return JumpPadManager

 8. Set the Force property to JUMP_DIRECTION and then attach and parent it to the
HumanoidRootPart, as shown here:

-- Top of ModuleScript

function JumpPadManager.jump(part)

 local character = part.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 local vectorForce = humanoidRootPart:FindFirstChild("VectorForce")

 if not vectorForce then

 vectorForce = Instance.new("VectorForce")

 vectorForce.Force = JUMP_DIRECTION

 vectorForce.Attachment0 = humanoidRootPart.RootRigAttachment

 vectorForce.Parent = humanoidRootPart

 end

end

end

ret urn JumpPadManager

182 HOUR 13: Using ModuleScripts

▼ TIP

Keeping VectorForce and HumanoidRootPart Together
The attachment makes sure that the VectorForce instance doesn’t become separated from the
HumanoidRootPart.

 9. Finally, wait for JUMP_DURATION before destroying the BodyVelocity:

local JumpPadManager = {}

-- Local because they're not needed outside of this ModuleScript

local JUMP_DURATION = 1.0

local JUMP_DIRECTION = Vector3.new(0, 6000, 0)

-- Not local because the jump pads need these functions

function JumpPadManager.jump(part)

 local character = part.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 local vectorForce = humanoidRootPart:FindFirstChild("VectorForce")

 if not vectorForce then

 vectorForce = Instance.new("VectorForce")

 vectorForce.Force = JUMP_DIRECTION

 vectorForce.Attachment0 = humanoidRootPart.RootRigAttachment

 vectorForce.Parent = humanoidRootPart

 wait(JUMP_DURATION)

 vectorForce:Destroy()

 end

end

end

return JumpPadManager

Script
On the script side, we want only the bare minimum of code. All it will do is load the ModuleScript
and call JumpPadManager.jump(otherPart) whenever something touches the part:

 1. Load JumpPadManager into the script:

local ServerStorage = game:GetService("ServerStorage")

local JumpPadManager = require(ServerStorage.JumpPadManager)

 2. Connect a function to the Touched event, and inside, pass the touching part to the
ModuleScript:

local ServerStorage = game:GetService("ServerStorage")

local JumpPadManager = require(ServerStorage.JumpPadManager)

Dealing in Abstractions 183

Don’t Repeat Yourself
As you’ve followed along in hours, more and more we said to centralize your code or to write

your code in a way that can be reused.

Think of the resource items like gold and logs in Hour 9. Instead of having different scripts for

gold and logs, they both use the same set of scripts, but the code allows for differing information

to be processed. This is part of the general practice of DRY coding. DRY stands for Don’t Repeat

Yourself, and it’s a concept that applies to all coding and coding languages—not just Lua and

Roblox Studio.

The opposite, WET (Write Everything Twice), is genera lly considered to be a bad thing and is

used to mean you have a lot of duplicate code in your scripts.

Dealing in Abstractions
A key part of DRY coding is abstractions. Abstraction is the process of pulling out the most impor-

tant information, and hiding everything that you don’t need to deal with right now.

A lot of things in Roblox Studio are abstracted for you. Think of all the functions or methods

where you only have to call the function and pass information in. The functions are reusable

abstractions. When called, users get the benefits of the function without having to rewrite or

even look at the rest of the code.

A common example in coding languages is print(). Most of its code is hidden, so the coder

can focus on what needs to be printed and not on how to get individual pixels to show up on the

screen.

ModuleScripts also allow you to set up the abstractions necessary for good DRY coding practices.

ModuleScripts can act as a Single Source of Truth (SSOT), meaning that information and func-

tions needed by multiple scripts can all be kept in the one ModuleScript.

▼local jumpPad = script.Parent

local function onTouch(otherPart)

 JumpPadManager.jump(otherPart)

end

jumpPad.Touched:Connect(onTouch)

Test everything out! If you get nil errors, there’s a good chance it’s due to a miss pelling some-
where. Make sure all your naming and capitalization matches exactly.

184 HOUR 13: Using ModuleScripts

A good way to know if you need to set up an abstraction is if you think you’ll need to use a

variable or function in three or more places. So in the resource game example, there was a

good chance that you would want people to collect not just logs and g old but potentially other

resource types as well—maybe eventually things like iron, berries, or wool, too.

Summary
Abstractions provide a simplified representation of something larger by leaving out details.

When deciding whether to create an abstraction, look for code that is often reused but with small

changes each time. For example, a generic item like a backpack can be abstracted to a reusable

function that looks up price and capacity.

Taking time to plan and structure code with abstractions helps coders focus on what’s important.

This investment in time keeps programs better organized and makes updating them easier.

Q&A
Q. Why not just always leave out local and make most variables and functions shareable?

 A. Making variables local is usually best practice. It makes your code run a bit faster and elim-
inates the chances for errors and accidentally overwritten information. Nonlocal variables,
such as in ModuleScripts, should always be the exception, not the rule.

 Q. Can you go overboard with abstractions and DRY coding?

 A. You can definitely go overboard with creating abstractions. Generally, though, if you can
think of a future where yo u might want to use the same piece of code more than two or
three times, abstractions are worth the effort.

Work shop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. My ModuleScript is named RoundManager. What should the first and last lines of my

ModuleScript look like?

 2. Functions can be added to a ModuleScript using ____.

 3. If a ModuleScript needs to be used by a LocalScript, where should it be placed?

 4. If a ModuleScript only needs to be used by scripts, where should it be placed?

Exercise 185

 5. If a Mod uleScript needs to be used by both LocalScripts and scripts, where should it be
placed?

 6. What does DRY stand for?

Answers
 1. If your ModuleScript is named RoundManager, the first and last lines of code should be

local RoundManager = {}

-- Code

return RoundManager

 2. Dot notation, such as function MyModule.myfunction()

 3. In ReplicatedStorage

 4. In ServerStorage

 5. In ReplicatedStorage

 6. Don’t Repeat Yourself

Exercise
Practice creating a module script by using code you’re familiar with. Make a series of trap parts
people need to avoid if they don’t want to lose all their health. Figure 13.5 shows an example.

FIGURE 13.5
Red traps in a basement hallway maze

This page intentionally left blank

HOUR 14
 Coding in 3D World Space

What You’ll Learn in This Hour:

How to work with XYZ coordinates

How to place objects where you want them with CFrames

What is the difference between world and local objects

How to control where a character jumps with RelativeTo

In the last hour, you used a module script to create a jump pad that shot people straight up in

the air. This hour covers how objects are placed in 3D space and how you can make parts spawn

anywhere you want in the world.

Understanding X, Y, and Z Coordinates
Before you get coding, you need to understand how objects are placed and rotated within 3D

space. Within the 3D world, every object can be positioned on a grid controlled by the three

axes, X, Y, and Z. Up and down is controlled by the Y axis, whereas front-and-back and side-to-

side are controlled by X and Z, respectively. In Figure 14.1, the green arrow represents the Y axis,

the red arrows are the X axis, and the blue arrow is the Z axis.

If you don’t already have it showing, turn on the View Selector (see Figure 14.2) using View >

Actions > View Selector to allow you to see which way in the world your camera is facing.

188 HOUR 14: Coding in 3D World Space

FIGURE 14.1
A zoomed-out view of an entire piece of terrain. The world axes are marked with red, green, and blue arrows.

FIGURE 14.2
If the View Selector is enabled, you can see the axes represented there.

When you select an object with the Move tool, you can see the three axes represented with red

(X), green (Y), and blue (Z) arrows. Dragging an object within the world space will update the X,

Y, and Z position values in the Property window (see Figure 14.3). If you were to place an object

at the center of the world, its X, Y, and Z position would be 0, 0, 0.

Refining Placement with CFrame Coordinates 189

FIGURE 14.3
When you drag a part around, you can see the X, Y, and Z values updated in the Property window.

Refining Placement with CFrame Coordinates
If you want to place an object or a player in a specific place, you need to understand CFrames.

With Cframes, you can place them exactly where you want them instead of only spawning

objects at the center of the world.

CFrame stands for Coordinate Frame. Every object in the 3D space has one. The default value of

a CFrame is 0, 0, 0—which is why new objects appear at the center of the world. To update an

object’s position, assign a new CFrame value using CFrame.new():

Example:

local part = script.Parent

part.CFrame = CFrame.new(1, 4, 1)

You can set the X, Y, and Z positions individually, as shown in the preceding code, or you can

pass in Vector3 data, as shown here:

local vector3 = Vector3.new(1, 4, 1)

part.CFrame = CFrame.new(vector3)

190 HOUR 14: Coding in 3D World Space

▼ TRY IT YOURSELF

Place an Object Where Something Else Is

There are a number of ways to find the coordinates to use for a new CFrame position. One way
is to find another part that’s already where you want the part to go. Basic parts have a property
named Position that uses Vector3 values. For this quick Try It Yourself, use the Position property
of one part to set the CFrame of a brand-new part.

 1. Create a part somewhere in your world. Name it something distinct like Marker and create
a reference for it:

local marker = workspace.Marker

 2. Create a new part instance. By default, new parts are unanchored, so make sure to anchor
it in place:

local marker = workspace.Marker

local newPart = Instance.new("Part")

newPart.Anchored = true

 3. Get the new part’s CFrame and set it to CFrame.new():

local marker = workspace.Marker

local newPart = Instance.new("Part")

newPart.Anchored = true

newPart.CFrame = CFrame.new()

 4. Pass in the marker’s position and then parent the new part to the workspace. Test your
code; you should end up with two parts in the same place:

local marker = workspace.Marker

local newPart = Instance.new("Part")

newPart.Anchored = true

newPart.CFrame = CFrame.new(marker.Position)

newPart.Parent = workspace

You might be asking yourself why you wouldn’t always use the Position property? The answer is
because Position only works with parts and not with models. We cover that mo re in a bit.

Adding Rotations to CFrames 191

Offsetting CFrames
Quite often, you don’t want to place something exactly in the same place; instead, you want to

place it above or a little to the side. You can combine CFrame and Vector3 values to make that

happen. In the following example, a Vector3 adds four studs to the Y value that was passed

into CFrame.new:

local marker = workspace.Marker

local newPart = Instance.new("Part")

newPart.Anchored = true

-- Will place the new part 4 studs above Marker

newPart.CFrame = CFrame.new(marker.Position) + Vect or3.new(0, 4, 0)

newPart.Parent = workspace

Adding Rotations to CFrames
You can add rotation values to CFrames. To rotate an existing object, take the current CFrame

and multiply it by the number of degrees you want it to rotate using CFrame.Angles():

local spinner = script.Parent

local ROTATION_AMOUNT = CFrame.Angles(0, math.rad(45), 0)

while wait(0.5) do

-- Take spinner's current CFrame and rotate it.

 spinner.CFrame = spinner.CFrame * ROTATION_AMOUNT

end

CFrame.Angles also takes in three values for X, Y, and Z. The preceding snippet rotates spin-

ner on the Y axis. One thing to note is that it does not operate using degrees. It uses radians.

Radians are a math concept used when working with the arc of a circle. Luckily, you don’t need

to know how to use radians. Instead, math.rad() can convert from degrees to radians for you.

So, if you want a part to rotate 20 degrees on the X axis, it would look like this:

local ROTATION_AMOUNT = CFrame.Angles(math.rad (20), 0, 0)

part.CFrame = part.CFrame * ROTATION_AMOUNT

192 HOUR 14: Coding in 3D World Space

Working with Models
As mentioned earlier, individual base parts have a property called Position. However, models

do not. To move the position of a model, you need to get the PrimaryPart of the model. To dem-

onstrate, we’ve taken a very simple cloud model made from spheres that have been grouped

together, as shown in Figure 14.4.

FIGURE 14.4
The cloud model is made from several parts. In Properties, you can see PrimaryPart is set to BigSphere.

TIP

Grouping Parts into a Model
To group pa rts into a model, right-click a selection of parts and select Group.

This cloud model cannot be moved using the earlier method. You need to use

SetPrimaryPartCFrame() and then pass in the new CFrame:

local cloud = workspace.Cloud

cloud:SetPrimaryPartCFrame(CFrame.new(0, 20, 0))

Understanding World Coordinates and Local Object Coordinates 193

TIP

Setting the Primary Part
You can set the PrimaryPart of a model in Properties. Click PrimaryPart; then in Exp lorer, click the
part you want to designate as the main part of the model.

Understanding World Coordinates and Local
Object Coordinates
In a 3D experience, there’s actually two sets of coordinates you need to think about. The first is

the world coordinate, as we’ve been talking about so far—how something is placed and rotated

according to the X, Y, and Z axis of the entire 3D space.

The other is the local object axis—how an object is positioned and rotated relative to itself. The

X, Y, and Z of an individual object might not line up with the world. In Figure 14.5, you see the

world axis on the left and the box’s own local axis shown on the right.

FIGURE 14.5
The image on the left shows the object in relation to the world axis. Each object has its own separate X, Y,
and Z that might not line up with the world, as shown on the right.

Think of it this way. The world you walk around in has global compass directions (north, south,

east, west) that don’t change no matter which way you face. But your personal left, right, for-

ward, and back moves and rotates as you do.

You can change your scale and rotate tools to see world or local coordinates by pressing Cmd/

Ctrl + L. You can tell you’re in local mode if you see a little L in the corner along the red X axis,

as shown in Figure 14.6.

194 HOUR 14: Coding in 3D World Space

FIGUR E 14.6
The Move tool and Rotation tools are in local mode.

▼ TRY IT YOURSELF

Super Jump Relative to the Player

The current jump pad uses global coordinates. Whenever somebody steps on the pad, they
are always shot in the same direction, no matter which way they (or the jump pad) are facing.
In this Try It Yourself, you tweak the code so that it uses which way the player is facing using
relativeto().

Use the code from Hour 13 to make slight changes:

 1. In JumpPadManager, find the JUMP_DIRECTION constant. Change the Z value to -6000:

local JumpPadManager = {}

-- Local because they're not needed outside of this ModuleScript

local JUMP_DURATION = 0.5

local JUMP_DIRECTION = Vector3.new(0, 6000, -6000)

 2. Set the RelativeTo property of the VectorForce to
Enum.ActuatorRelativeTo.Attachment0:

local JumpPadManager = {}

-- Local because they're not needed outside of this ModuleScript

local JUMP_DURATION = 0.5

local JUMP_DIRECTION = Vector3.new(0, 6000, -6000)

Understanding World Coordinates and Local Object Coordinates 195

▼-- Not local because the jump pads need these functions

function JumpPadManager.jump(part)

 local character = part.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 local vectorForce = humanoidRootPart:FindFirstChild("VectorForce")

 if not vectorForce then

 vectorForce = Instance.new("VectorForce")

 vectorForce.Force = JUMP_DIRECTION

 vectorForce.Attachment0 = humanoidRootPart.RootRigAttachment

 vectorForce.RelativeTo = Enum.ActuatorRelativeTo.Attachment0

 vectorForce.Parent = humanoidRootPart

 wait(JUMP_DURATION)

 vectorForce:Destroy()

 end

end

end

return JumpPadManager

TIP

VectorForce Is Relative to an Attachment
This will set it so the Vecto rForce is relative to Attachment0, which in this case is connected to the
HumanoidRootPart.

 3. Test it out. Your character should be boosted in the local direction they are facing instead
of being boosted along the world axis.

TIP

Different Avatars Weigh Different Amounts
Just like people in real life, an avatar’s weight depends on its size an d type of accessories. How
high an avatar is boosted will vary based on the weight.

Summary
Congratulations! You now have the power to place objects anywhere in the world. And not just

parts, you can also teleport people around. Everything in the 3D world space, including people’s

charac ters, has coordinates that can be found along the X (red), Y (green), and Z (blue) of the

world.

196 HOUR 14: Coding in 3D World Space

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What axis is up in Roblox Studio world space?

 2. If you want to create a new Cframe from Vector3 information, use the function ______.

 3. To rotate a CFrame, use the function _____.

 4. To convert degrees to radians, use ________.

 5. To rotate an object, you ________ the position CFrame and CFrame.Angles().

 6. To place a n object to the side or above an object, you would ____ the position CFrame and
a new Vector3.

Answers
 1. The green Y axis is up.

 2. CFrame.New()

 3. CFrame.Angles()

 4. math .rad()

 5. Multiply

 6. Add the desired CFrame position and how much you want to offset it by.

Exercise
People can be teleported from place to place within a world by updating their character’s CFrame
information. This might be so that players can cross a canyon like the one shown in Figure 14.7,
or it could be teleporting participants from a lobby to an arena. For this exercise, create a part
that teleports players to another part.

Exercise 197

FIGURE 14.7
People can use the purple parts to teleport across the gap.

Tips
 For the sake of practice, you only need to worry about teleporting the player in one

direction.

 You can find the PrimaryPart within a person’s character.

This page intentionally left blank

HOUR 15
 Smoothly Animating Objects

What You’ll Learn in This Hour:

What tweening properties are

How to move parts smoothly over time

How to use the completed event

CFrames allow you to suddenly move things from one place to another in the blip of an eye.

But what if you don’t want things to blip? Maybe you’d instead like them to transition smoothly

between two points or change from one color to another. That’s where tweens come in. In this

hour, you use tweens to smoothly change the position and color of a block, but the same prin-

ciples also apply to working with GUIs,

Understanding Tweens
Tweens take a starting point, like a position on a map, or a certain color, and smoothly change

to an end point over time. To use tweens, you need to get TweenService, as shown here:

local TweenService = game:GetService("TweenService")

▼TRY IT YOURSELF

Tween the Color of a Part

Tweens are one of those things that make more sense if you see them demonstrated. Follow
these steps to set up a simple tween that changes the color of a part over time:

 1. Create a new part and attach a script.

 2. Within the script, get the tween service and create a variable that points to the target part:

local TweenService = game:GetService("TweenService")

local part = script.Parent

200 HOUR 15: Smoothly Animating Objects

▼
 3. A TweenInfo controls how the transition is handled. Create a new TweenInfo and pass

in 5.0 so that the transition to the new color will take 5 seconds:

local TweenService = game:GetService("TweenService")

local part = script.Parent

local tweenInfo = TweenInfo.new(5.0)

 4. The TweenService needs a table to hold the goal values for each property to be
changed—in this case, the final color of the part:

local TweenService = game:GetService("TweenService")

local part = script.Parent

local tweenInfo = TweenInfo.new(5.0)

local goal = {}

goal.Color = Color3.fromRGB(11, 141 , 255)

TIP

Use Any RGB Value
This color happens to be bright blue.

 5. Use TweenService:Create() to bring together the target part, TweenInfo, and the
goal table:

local goal = {}

goal.Color = Color3.fromRGB(11, 141, 255)

-- Put together the target part, TweenInfo, and goal values

local tween = TweenService:Create(part, tweenInfo, goal)

 6. Give a smidge of time to let the experience load, and then tell the tween to play:

local TweenService = game:GetService("TweenService")

local part = script.Parent

local goal = {}

goal.Color = Color3.fromRGB(11, 141, 255)

local tweenInfo = TweenInfo.new(5.0)

local tween = TweenService:Create(part, tweenInfo, goal)

-- Delay to give things time to load properly

wait(2.0)

-- Tell the tween to play

tween:Play()

Setting TweenInfo Parameters 201

Setting TweenInfo Parameters
You can tween as many properties of an object as you like; you just have to add them to the

table. Additionally, there’s a lot more you can do to customize how the tween behaves as it inter-

polates, meaning transitions, to the goal values.

Table 15.1 lists all of TweenInfo’s parameters.

TABLE 15.1 TweenInfo’s Parameters

Parameter What It Does

Time [number, seconds] Determines how long it takes for the tween to reach its goals

EasingStyle [Enum] Determines how the tween behaves toward its goal

EasingDirection [Enum] Establishes the direction of the EasingStyle functions

RepeatCount [number] Establishes the number of times the tween executes after
its initial run

Reverses [Bool] Designates whether the tween runs the reverse tween fol-
lowing its initial run

DelayTime [number, seconds] Determines the elapsed time before the tween executes

The code looks like this:

local tweenInfo = TweenInfo.new(

 2.0, -- Time

 Enum.EasingStyle.Linear, -- EasingStyle

 Enum.EasingDirection.Out, -- EasingDirection

 -1, -- RepeatCount (when less than zero the tween will loop indefinitely)

true, -- Reverses (tween will reverse once reaching its goal)

0.0 -- DelayTime

)

▼TIP

Trans ition Time
If you don’t add the wait(), you’ll probably miss the beginning of the transition. If it’s a short tran-
sition time or a long load time, you might miss it altogether. If this tween were to be played after an
event is fired, wait() wouldn’t be needed.

202 HOUR 15: Smoothly Animating Objects

This is a rare case where all the arguments are usually put on their own line just to make them

easier to read. Not everything needs to be filled in, but you can’t skip arguments. You can see a

full list of EasingStyles and EasingDirections in the appendix.

Also notice that since TweenInfo is not a table, you don’t put a comma after the last argument.

▼ Create Elevator Doors

Practice using more of the TweenInfo parameters by setting up a sliding door that can be used
by something like an elevator or a fancy office building, like the one shown in Figure 15.1.

FIGURE 15.1
Fancy office buildings might have equally fancy sliding doors on an elevator.

After sliding the door open, the tween will pause and then reverse direction.

Set Up
You just need a part for this Try It Yourself. Keep in mind that if you use a model, you need to
make sure to account for that in the code later.

 1. Use a glass part somewhere to act as a sliding door.

 2. Insert a ProximityPrompt named SlidingDoorPrompt.

 3. Set HoldDurati on to 0.5.

Script
This script uses the first three parameters of TweenInfo to create a part that moves smoothly
over a certain distance.

 1. In ServerScriptService, create a new script.

 2. Get the necessary service for the ProximityPrompt and the Tween Service:

local ProximityPromptService = game:GetService("ProximityPromptService")

local TweenService = game:GetService("TweenService")

Setting TweenInfo Parameters 203

▼ 3. Set up a new function and connect it to the ProximityPrompt’s PromptTriggered event.
Remember to add a check for which ProximityPrompt was triggered:

local ProximityPromptService = game:GetService("ProximityPromptService")

local TweenService = game:GetService("TweenService")

local function onPromptTriggered(prompt, player)

 if prompt.Name == "SlidingDoorPrompt" then

end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 4. Determine the target:

local ProximityPromptService = game:GetService("ProximityPromptService")

local TweenService = game:GetService("TweenService")

local function onPromptTriggered(prompt, player)

 if prompt.Name == "SlidingDoorPrompt" then

local door = prompt.Parent

 end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 5. Create a table with the goal CFrame values for when the door opens. Your values may
differ:

if prompt.Name == "SlidingDoorPrompt" then

local door = prompt.Parent

 local goal = {}

 goal.CFrame = door.CFrame + Vector3.new(0, 0, 5)

end

TIP

Your Vector3 Information May Be Different
For the sake of simplicity, this code is just moving the door along the Z axis. You may need to use
a different axis. If you were to use this code with several doors rotated in different directions, you
may even want to experiment with relative coordinates.

204 HOUR 15: Smoothly Animating Objects

▼
 6. Create a new TweenInfo and set the duration to 1 second, the easing style to Linear, and

the easing direction to In:

if prompt.Name == "SlidingDoorPrompt" then

local door = prompt.Parent

 local goal = {}

 goal.CFrame = door.CFrame + Vector3.new(0, 0, 5)

 local tweenInfo = TweenInfo.new(

 1.0,

 Enum.EasingStyle.Linear,

 Enum.EasingDirection.In

)

end

TIP

Tween Info Isn’t a Table
Keep in mind TweenInfo isn’t a table, so it doesn’t need a comma after the last argument.

TIP

Autocomplete
As you’re typing the Enums, notice that the autocomplete (see Figure 15.2) and IDE hints (see
Figure 15.3) can help you out quite a bit.

FIGURE 15.2
Use the autocomplete to make filling out the TweenInfo easier.

FIGURE 15.3
Also pay attention to the IDE hints to keep track of the parameter order.

Chaining Tweens Together 205

▼ 7. Put it all together using TweenService:Create():

if prompt.Name == "SlidingDoorPrompt" then

local door = prompt.Parent

 local goal = {}

 goal.CFrame = door.CFrame + Vector3.new(0, 0, 5)

 local tweenInfo = TweenInfo.new(

 1.0,

 Enum.EasingStyle.Linear,

 Enum.EasingDirection.In

)

 local openDoor = TweenService:Create(door, tweenInfo, goal)

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 8. Play the tween:

local ProximityPromptService = game:GetService("ProximityPromptService")

local TweenService = game:GetService("TweenService")

local function onPromptTriggered(prompt, player)

 if prompt.Name == "SlidingDoorPrompt" then

local door = prompt.Parent

 local goal = {}

 goal.CFrame = door.CFrame + Vector3.new(0, 0, 5)

 local tweenInfo = TweenInfo.new(

 1.0,

 Enum.EasingStyle.Linear,

 Enum.EasingDirection.In

)

 local openDoor = TweenService:Create(door, tweenInfo, goal)

 openDoor:Play()

 end

end

ProximityPromptService.PromptTriggered:Connect(on PromptTriggered)

Chaining Tweens Together
Once one tween finishes, you may need a second tween to run—for example, if you want the

door to remain open for a little while and then a second tween closes the door.

206 HOUR 15: Smoothly Animating Objects

For cases like this, you can use the tween’s event, Completed. First, wait for the starting tween’s

Completed event to fire, and then use a second wait() to control how long before the door

closes, as shown here:

local ProximityPromptService = game:GetService("ProximityPromptService")

local TweenService = game:GetService("TweenService")

local DOOR_OPEN_DURATION = 2.0

local function onPromptTriggered(prompt, player)

 if prompt.Name == "SlidingDoorPrompt" then

local door = prompt.Parent

 local openGoal = {}

 openGoal.CFrame = door.CFrame + Vector3.new(0, 0, 5)

 local closeGoal = {}

 closeGoal.CFrame = door.CFrame

 local tweenInfo = TweenInfo.new(

 1.0,

 Enum.EasingStyle.Linear,

 Enum.EasingDirection.In

)

 local openDoor = TweenService:Create(door, tweenInfo, openGoal)

 local closeDoor = TweenService:Create(door, tweenInfo, closeGoal)

 -- Play the first tween

 openDoor:Play()

-- Wait for the Completed event to fire

 openDoor.Completed:Wait()

-- Pause, and then play the next tween

 wait(DOOR_OPEN_DURATION)

 closeDoor:Play()

end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

TIP

Don’t Forget to Debounce
The script as it is doesn’t include any sort of debounce. If someone were to keep opening the door,
the door could move farther and farther to one side. Don’t forget to add a debounce if you actually
place this co de in your experience.

Workshop 207

Summary
Tweens allow you to smoothly transition almost any of a target’s properties to a new value

over time. Although the Try It Yourself exercises in this hour only showed one property being

changed at a time, you can add as many properties to the goal table as you would like.

The pattern for creating tweens is

 1. Get TweenService.

 2. Set the target part.

 3. Set up the TweenInfo information.

 4. Create the goal dictionary.

 5. Pass the target part, TweenInfo, and goal dictionary in:

local tween = TweenService:Create(part, tweenInfo, goal)

 6. Play the tween.

It’s OK to depend on the IDE or to look up the order of the parameters if you can’t remember

them off the top of your head. All engineers do that. To revert a tween to the original state,

you can enable reverse, or you can chain tweens together by listening for a tween’s event,

Completed.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a momen t to answer the fol-
lowing questions.

Quiz
 1. To use tweens, what service do you need?

 2. Can you combine CFrames and tweens?

 3. True or false: You can simply skip a parameter if you don’t want to use it.

 4. Whether a tween reverses at the end is controlled by a ____ value.

 5. True or false: You can only tween one property at a time.

 6. True or false: Tweens play automatically once they are set up.

208 HOUR 15: Smoothly Animating Objects

Answers
 1. TweenService

 2. You can use tweens with many properties, including CFrame.

 3. False: While you don’t always have to pass an argument for every parameter, you can’t skip
over parameters.

 4. Boolean

 5. False: You can change multiple properties with the same tween.

 6. False: Once a tween is set up , it needs to be told when to play.

Exercise
For this exercise, tween the color of a SpotLight (like the lights in Figure 15.4) so it changes over
time and never stops looping.

FIGURE 15.4
Color-changing lights attract people to this fun party place.

Tip: You don’t need multiple tweens.

HOUR 16
 Solving Problems with

Algorithms

What You’ll Learn in This Hour:

How an algorithm is defined

What the three main parts of an algorithm are

How to sort arrays

How to sort dictionaries

This hour introduces a new computer science term to add to your vocabulary: algorithms. You’ll

get a better idea of how you’ve already been putting this concept into action and go a step fur-

ther with Roblox Studio’s built-in sorting algorithms, which you can use to do things like sort

items in a shop from lowest to highest price or rank participants in an FPS according to how

many kills they have.

Defining Algorithms
Algorithms are precise instructions for solving a problem. You’ve actually created a number of

algorithms throughout this book. For example, you’ve created algorithms that figure out a play-

er’s health points after stepping on a trap and algorithms that determine a player’s total points

every time somebody touches a part.

For a function to be an algorithm, it has to have three very clear stages:

 1. Information is taken in, typically through parameters.

 2. That information is acted on using ordered steps.

 3. A solution is given.

Let’s take a very simple algorithm, one that solves the problem of dividing two numbers.

210 HOUR 16: Solving Problems with Algorithms

Problem: What’s the dividend of two numbers?

local x = 20

local y = 9

-- Gives back the dividend of two numbers

local function divide(first, second)

 return first / second

end

local result = divide(x,y)

print(result)

In this little code sample, you can see the following:

 1. Two numbers are passed through the parameters.

 2. The step of dividing the two numbers takes place.

 3. The dividend is returned.

Algorithms can be used over and over again with different inputs, much like a function can be

used with any two numbers. Most algorithms will have more steps than this, but they’ll never

have infinite steps. To be a true algorithm, the code has to give you a solution to your problem.

Sorting an Array
A classic place where people need algorithms is when sorting things—taking a list of names,

objects, or numbers and putting them in order. In Roblox experiences, this information will most

likely be stored in a dictionary or array.

Let’s start with arrays. table.sort(arrayName) uses a sorting algorithm to arrange the values

within arrays numerically or alphabetically.

▼ TRY IT YOURSELF

Sort a List of Names

For this example, you’ll sort an array of names in alphabetical order and then print it.

 1. Create a list of three names:

local nameArray = {"Cat", "Mei", "Ana"}

 2. Pass the name of the array into table.sort():

local nameArray = {"Cat", "Mei", "Ana"}

table.sort(nameArray)

Sorting an Array 211

The same method can be used to arrange numeric values. The following code snippet sorts the

array into ascending order, as shown in Figure 16.3.

local testArray = {5, 2, 2, 10}

table.sort(testArray)

print(testArray)

▼ 3. Print the updated array:

local nameArray = {"Cat", "Mei", "Ana"}

table.sort(nameArray)

print(nameArray)

Tables in Output appear as little triangles, as shown in Figure 16.1.

FIGURE 16.1
The triangle indicates a collapsed view of a table.

Click the triangle to expand it and see the whole table, as shown in Figure 16.2.

FIGURE 16.2
The now-sorted table is expanded; notice the index on the left.

212 HOUR 16: Solving Problems with Algorithms

FIGURE 16.3
This result shows numeric values after they’ve been sorted.

WARNING

Be Careful with Numbers and Strings When Sorting
If you try to sort an array of mixed data types, such as numbers and strings, all you’ll get is an error:
-- Strings and numbers cannot be compared

local mixedArray = {5, "Frog", 2, 10}

You could use tostring() to convert from number to string types, but be aware that will cause
table.sort to put things in alphabetical order, like so:
-- Numbers converted to strings will so rt alphabetical ly

local stringArray = {"10", "2", "5", "Frog"}

Sorting in Descending Order
Both the alphabetical and numerical data in the previous examples was sorted in ascending

order. But what if the person who has the most points is actually the important factor? There’s a

second parameter that can be passed into table.sort(), and that parameter enables you to

control how exactly the table is sorted.

table.sort() works by going through the whole array two values at a time and comparing

the values against each other. By default, the function compares the two values using the less-

than operator (<), making the lesser numbers come first.

To customize the sorting algorithm, a new function for comparing two values needs to be created

and then passed in along with the array, as shown in the following snippet. Here, the greater-

than operator is used, so greater values will appear first:

-- First, set up the array

local testArray = {5, 2, 2, 10}

Sorting a Dictionary 213

-- Second, create a function that shows how two values should be compared

local function DescendingSort(a, b)

 return a > b

end

-- Third, pass the function into table.sort() along with the array.

table.sort(testArray, DescendingSort)

print(testArray)

The results of the code snippet will look like Figure 16.4.

FIGURE 16.4
The array is now sorted in descending order.

Sorting a Dictionary
A very important thing to remember about dictionaries in Lua is that they do not have a guar-

anteed order. They might sometimes do things in order, but you can’t depend on it. In other

words, you can’t actually sort a dictionary.

Instead, what you have to do is convert the dictionary to an array, the results of which might

look like the following table, which has an unsorted dictionary on the left and that same diction-

ary after it’s been converted to an array on the right. We show you the actual method for con-

verting a dictionary to an array in a moment.

Unsorted Dictionary Unsorted Array of Dictionaries

local IngredientDictionary = {
 healthBerry = 10,
 staminaOnion = 5,
 speedPepper = 1,
}

local sortingArray = {
 {name = "healthBerry", amount = 10},
 {name = "staminaOnion", amount = 5},
 {name = "speedPepper", amount = 1},
}

214 HOUR 16: Solving Problems with Algorithms

Notice that the right-hand column is truly an array, but each value is itself a dictionary. Arrays

can hold any valid data type, including dictionaries, and this lets you tag the data to make it

easier to sort.

Once sorted by name, the array might look like the following:

Array Sorted by Name

local sortingArray = {
 {name = "healthBerry", amount = 10},
 {name = "speedPepper", amount = 1},
 {name = "staminaOnion", amount= 5},
}

▼ TRY IT YOURSELF

Find Who Has the Most Points

Take a moment to create a dictionary with imaginary player scores and practice converting a dic-
tionary to an array. Once the dictionary is converted to an array, a slightly more specific function
for comparing values will be created and then passed in.

 1. Set up a dictionary of four or five imaginary players and their scores, similar to the
following:

local playerScores = {

 Ariel = 10,

 Billie = 5,

 Yichen = 4,

 Kevin = 14,

}

 2. Create a new array to hold the sorted results:

local playerScores = {

 Ariel = 10,

 Billie = 5,

 Yichen = 4,

 Kevin = 14,

}

local sortedArray = {}

 3. Use pairs() to go through the original dictionary and insert each key/value pair into the
array as its own mini dictionary:

-- Previous code

local sortedArray = {}

Sorting a Dictionary 215

▼-- Go through dictionary, and assign each key/value pair to an index

for key, value in pairs(playerScores) do

 table.insert(sortedArray, {playerName = key, points = value})

end

 4. Set up the comparison function. This time, you want to compare the points and have the
greater amounts be first:

-- Previous code

local function sortByMostPoints(a, b)

 return a.points > b.points

end

TIP

Use Dot Notation to Access Dictionary Keys
While sorting, the algorithm looks at two values and evaluates them with the comparison function.
In this case, each value happens to be a table, so you can use dot notation to navigate to the cor-
rect key.

 5. Pass the array and function into table.sort() and print the results:

local playerScores = {

 Ariel = 10,

 Billie = 5,

 Yichen = 4,

 Kevin = 14,

}

local sortedArray = {}

-- Go through dictionary, and assign each key/value pair to an index

for key, value in pairs(playerScores) do

 table.insert(sortedArray, {playerName = key, points = value})

end

-- Set up comparison function

local function sortByMostPoints(a, b)

 return a.points > b.points

end

-- Pass in array and function

table.sort(sortedArray, sortByMostPoints)

print(s ortedArray)

216 HOUR 16: Solving Problems with Algorithms

Sorting by Multiple Pieces of Information
The final thing to cover for using the sorting algorithm is to sort by multiple pieces of informa-

tion. Picture a fantasy world where you enter a store and can buy multiple types of weapons like

those shown in Table 16.1.

TABLE 16.1 Unsorted Weapons

Weapon Name Weapon Type Price

Iron Sword Sword 250

Light Bow Bow 150

Training Sword Sword 100

Dwarven Axe Axe 300

The Galactic Slash Sword 500

The unsorted information makes it difficult to find what you’re looking for. To make it easier to

shop, you might want to list the weapons by type and then by price, as shown in Table 16.2.

TABLE 16.2 Weapons Sorted by Type

Weapon Name Weapon Type Price

Dwarven Axe Axe 300

Light Bow Bow 150

Training Sword Sword 100

Iron Sword Sword 250

The Galactic Slash Sword 500

In code form, the original array might look like this:

-- Original array

local inventory = {

 {name = "Iron Sword", weaponType = "Sword", price = 250},

 {name = "Light Bow", weaponType = "Bow", price = 150},

 {name = "Training Sword", weaponType = "Sword", price = 100},

 {name = "Dwarven Axe", weaponType = "Axe", price = 300},

 {name = "The Galactic Slash", weaponType = "Sword", price = 500},

}

Workshop 217

Since this is already an array, you wouldn’t need to convert it, which means the next thing would

be to set up the comparison function. First you can compare types, or, if they’re the same type,

compare type and price:

-- Sort first by most weapon type, then by price

local function sortByTypeAndPrice(a, b)

 return (a.weaponType < b.weaponType)

 or (a.weaponType == b.weaponType and a.price < b.price)

end

TIP

Keywords Can’t Be Key Names
On its own, type is a keyword. That’s why it’s best to use something like weaponType instead of
type.

Finally, pass both the array and comparison function into table.sort() and print the result:

table.sort(inventory, sortByTypeAndPrice)

print(inven tory)

Summary
You’ve used algorithms before, but now you know what they’re called. There’s lots of different

sorting algorithms, each with their own strengths and weaknesses. Behind the scenes, Roblox

Studio table.sort() uses what’s called a quick sort. If you’re interested in learning more

about sorting algorithms or creating your own, there’s a wealth of information about them on

the Internet; just search “sorting algorit hms.”

Wor kshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing quest ions.

Quiz
 1. What is an algorithm?

 2. What are three components of an algorithm?

 3. What’s the first parameter of table.sort()?

 4. What’s the optional second parameter of table.sort()?

218 HOUR 16: Solving Problems with Algorithms

 5. If you want to use table.sort() to list the players with the quickest times, use the ___
operator.

 6. True or false: Dictionaries can be sorted using table.sort() as w ell.

Answers
 1. An algorithm is a specific set of steps that can be used to solve a problem.

 2. Takes in inputs, goes through a set of ordered steps, outputs a solution.

 3. The name of the array to sort.

 4. A function for a custom comparator can be passed into the second parameter.

 5. The less-than operator (<).

 6. False. Dictionaries have to be converted to arrays before being sor ted.

Exercise
A common set of stats in competitive experiences are a person’s number of kills, deaths, and
assists (other people’s kills they’ve contributed to). Take a sample dictionary such as the one
shown here, and sort it according to who has the most kills. If people are tied for kills, prioritize
who has assisted other members of the team the most.

Tips
 Include three to five different players and try to make sure some of them are tied for most

kills. You can use the following example dictionary if you like:

local playerKDA = {

 Ana = {kills = 0, deaths = 2, assists = 20},

 Beth = {kills = 7, deaths = 5, assists = 0},

 Cat = {kills = 7, deaths = 0, assists = 5},

 Dani = {kills = 5, deaths = 20, assists = 8},

 Ed = {kills = 1, deaths = 1, assists = 8},

}

 You will have to convert the dictionary to an array.

 Printing the array right after it’s created and before it’s sorted can be a good troubleshoot-
ing step for making sure the array looks the way you expect.

You can find the solution in the appendix.

HOUR 17
 Saving Data

What You’ll Learn in This Hour:

How to enable Data Stores

How to save data between sessions

How to protect data with protected calls

How to create a player database

How to get and update saved data

Without a special mechanism in place to save information, anything that people in your expe-

riences earn or accomplish between play sessions is lost. Once a person leaves the experience,

points, gold, and purchases are forgotten. This hour covers how data can be saved so that noth-

ing is lost between sessions.

Data saved from one session to another is kept in special tables, most typically in Data Stores.

Data Stores work like a dictionary in which keys and values can be stored in the cloud with Rob-

lox. This hour starts out by creating a box that keeps track of how many times it’s been clicked;

then the topic changes to how to minimize the chances that a player’s data is lost.

Enabling Data Stores
Data Stores are only available to experiences saved on the Roblox cloud. To use Data Stores, you

have to update some security settings for your experience:

 1. Make sure the experience is published to Roblox and not just saved locally on your

computer.

 2. On the Home tab, click Game Settings.

 3. Select Security and turn on Enable Studio Access to API Services. You can then save and

exit Game Setting s.

220 HOUR 17: Saving Data

Creating a Data Store
Once you’ve enabled Data Stores, you can get DataStoreService within a script. Individual

stores can be created and accessed with GetDataStore("DataStoreName"):

local DataStoreService = game:GetService("DataStoreService")

local dataStoreName= DataStoreService:GetDataStore("DataStoreName")

GetDataStore("DataStoreName") gets the matching Data Store or creates one with that

name if it doesn’t already exist.

Using Data in the Store
Remember, Data Stores function like a dictionary. All of the data within is stored using

key-value pairs. Key-value pairs can be created and updated using dataStoreName.

SetAsync("KeyName", value). Or you can retrieve information using dataStoreName.

GetAsync("KeyName"):

local DataStoreService = game:GetService("DataStoreService")

local dataStoreName = DataStoreService:GetDataStore("DataStoreName")

-- Update info in the Data Store, or create a new key/value pair

local updateStat = dataStoreName:SetAsync("StatName", value)

-- Retrieve information from the store using the key name

local storedStat = dataStoreName:GetAsync("StatName")

Keep in mind that SetAsync() will override the value of a key if it already exists. Once it’s

overwritten, that information is gone. That’s one reason to make sure you always use unique key

names.

▼ TRY IT YOURSELF

Track the Number of Clicks

Data Stores can hold any type of information that you could normally store in a dictionary. The
Data Store you create in this Try It Yourself keeps track of how many times this crate has been
clicked (see Figure 17.1). You don’t want to update Data Stores too frequently because frequent
updating can cause your game to lag or not actually save data. So you’ll use a while loop to
update the Data Store every so often.

Using Data in the Store 221

▼

FIGURE 17.1
This crate displays how many times it has been clicked.

Set Up
You need a part with a TextLabel, so do the following:

 1. Insert a part or mesh.

 2. Insert a SurfaceGui.

 3. Insert a TextLabel into the SurfaceGui named ClickDisplay.

 4. Select the crate and insert a ProximityPrompt named CratePrompt. Don’t worry about set-
ting up a HoldDuration. Your hierarchy should look something like Figure 17.2.

FIGURE 17.2
The finished hierarchy for the crate should look like this.

222 HOUR 17: Saving Data

▼ CrateManager
You’ll use two scripts. The first one will manage the ProximityPrompt and update the Data Store.
The second script will handle the default display:

 1. In ServerScriptService, add a new script named CrateManager.

 2. Get ProximityPromptService and DataStoreService.

 3. Create a new Data Store named CrateData:

local ProximityPromptService = game:GetService("ProximityPromptService")

local DataStoreService = game:GetService("DataStoreService")

local crateData = DataStoreService:GetDataStore("CrateData")

 4. Add two constants: one for how often players will be allowed to click the prompt and a
second for how often the Data Store will be updated:

local DISABLED_DURATION = 0.1

local SAVE_FREQUENCY = 10.0

 5. Get the total number of clicks so far from the Data Store; if there’s no data yet, start at 0.

local DISABLED_DURATION = 0.1

local SAVE_FREQUENCY = 10.0

-- Get the current value of TotalClicks, or set to 0 if it doesn't exist

local totalClicks = crateData:GetAsync("TotalClicks") or 0

 6. Set up everything you’ll need for a new function connected to the prompt’s
PromptTriggered event:

local function onPromptTriggered(prompt, player)

 if prompt.Name == "CratePrompt" then

 prompt.Enabled = false

end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

 7. Update totalClicks and the displayed text every time the player clicks:

-- Get the current value of TotalClicks, or set to 0 if it doesn't exist

local totalClicks = crateData:GetAsync("TotalClicks") or 0

local function onPromptTriggered(prompt, player)

if prompt.Name == "CratePrompt" then

 prompt.Enabled = false

local crate = prompt.parent

 local clickDisplay = crate:FindFirstChild("ClickDisplay", true)

Using Data in the Store 223

▼ totalClicks = totalClicks + 1

 clickDisplay.Text = totalClicks

 wait(DISABLED_DURATION)

 prompt.Enabled = true

end

end

ProximityPromptService.Promp tTriggered:Connect(onPromptTriggered)

TIP

Search the Children’s Children
Adding true as a second parameter for FindFirstChild() is one way to go through all of an
object’s children and then go through the children’s children to find what you’re looking for.

 8. Use a while loop to update the Data Store every so often:

local ProximityPromptService = game:GetService("ProximityPromptService")

local DataStoreService = game:GetService("DataStoreService")

local crateData = DataStoreService:GetDataStore("CrateData")

local DISABLED_DURATION = 0.1

local SAVE_FREQUENCY = 10.0

-- Get the current value of TotalClicks, or set to 0 if it doesn't exist

local totalClicks = crateData:GetAsync("TotalClicks") or 0

local function onPromptTriggered(prompt, player)

if prompt.Name == "CratePrompt" then

 prompt.Enabled = false

local crate = prompt.parent

 local clickDisplay = crate:FindFirstChild("ClickDisplay", true)

 totalClicks = totalClicks + 1

 clickDisplay.Text = totalClicks

 wait(DISABLED_DURATION)

 prompt.Enabled = true

end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

-- Update the Data Store every so often

while wait(SAVE_FREQUENCY) do

224 HOUR 17: Saving Data

▼ crateData:Set Async("TotalClicks", totalClicks)

end

Crate Script
This second, shorter, script will be used to update the display text at the beginning of every
session, before anyone has clicked on the crate.

 1. Select the crate and insert a script.

 2. Get DataStoreService and the Data Store you just created.

 3. Create references for the crate and the TextLabel:

local DataStoreService = game:GetService("DataStoreService")

local crateData = DataStoreService:GetDataStore("CrateData")

local crate = script.Parent

local clickDisplay = crate:FindFirstChild("ClickDisplay", true)

 4. Add a default value to be used in case the crate has never been clicked:

local DEFAULT_VALUE = 0

 5. Retrieve the current number of clicks from the Data Store:

local DEFAULT_VALUE = 0

local totalClicks = crateData:GetAsync("TotalClicks")

 6. Update the TextLabel to display the current count, or the default value if TotalClicks
isn’t found:

local DataStoreService = game:GetService("DataStoreService")

local crateData = DataStoreService:GetDataStore("CrateData")

local crate = script.Parent

local clickDisplay = crate:FindFirstChild("ClickDisplay", true)

local DEFAULT_VALUE = 0

local totalClicks = crateData:GetAsync("TotalClicks")

clickDisplay.Text = totalClicks or DEFAULT_VALUE

Test your place out. You should be able to stop the play test and then restart with the updated
click amount displayed on the crate. Sometimes it might take a second to update values.

TIP

Make Sure To Use Unique Key Names
Keep in mind that keys within the Data Store need to be unique. If you duplicate the crate, any click
on either crate will add to the total. If you want their totals to remain separate, each crate need s its
own distinct key.

Protecting Your Data 225

Limiting the Number of Calls
SetAsync() and GetAsync() are network calls, and using them often can be risky if you have

a bad Internet connection or if you send more calls than the network can handle at a time.

That’s why a while loop was used to update the Data Store instead of updating every time a

player clicked.

Each call request gets added to a queue, and there’s only so many spots in line before the queue

fills up and simply won’t accept any more requests. Other good times to update the Data Store

ar e when a player joins, leaves, or the server closes down.

Protecting Your Data
In addition to making sure you’re not sending too many calls at once, another way to make sure

network calls aren’t missed or dropped is to always use a protected call—a pcall(). Protected

calls track to make sure the network call went through. If the call wasn’t successful, an error

message is sent to help you figure out what went wrong.

A pcall() takes in a function and returns two values. The first value is a Boolean that states

whether the call went through; the second value is for any returned error messages:

local setSuccess, errorMessage = pcall(functionName)

pcall() only accepts functions, so if you don’t want to create a function beforehand, you can

pass in the network call using an anonymous function:

local setSuccess, errorMessage = pcall(function()

 dataStoreName:SetAsync(key, value)

end)

You can then test the returned value to make sure it went through. Here, if setSuccess is false,

the error message will be printed:

if not setSuccess then

print(errorMessage)

end

If you were to update the while loop in the last section, it might look like this:

-- Update the Data Store every so often

while wait(SAVE_FREQUENCY) do

local setSuccess, errorMessage = pcall(function()

 crateData:SetAsync("TotalClicks", totalClicks)

 end)

 if not setSuccess then

 print(errorMessage)

226 HOUR 17: Saving Data

else

 print("Current Coun t:")

 print(crateData:GetAsync("TotalClicks"))

 end

end

Saving Player Data
If you’re saving player data, an important thing to remember is that a player’s name can some-

times change. The safer alternative is to use the playerID to save the data. You can get the play-

erID from the player itself by using the following code :

local Players = game:GetService("Players")

local function onPlayerAdded(player)

 local playerKey = "Player _" .. player.UserId

end

Players.PlayerAdded:Connect(onPlayerAdded)

Using UpdateAsync to Update a Data Store
UpdateAsync(), which is similar to SetAsync(), should be used to update a Data Store if

more than one server has a chance of accessing the same Data Store at the same time. If you’re

dealing with Robux or have an experience that is getting lots of people, you probably want to

graduate to using UpdateAsync(). When called, UpdateAsync() returns the old value of a

key and then updates it.

The blue highlight in the code snippet below is the pcall():

local updateSuccess, errorMessage = pcall(function()

 pointsDataStore:UpdateAsync(playerKey, function(oldValue)

 local newValue = oldValue or 0

 newValue = newValue + GOLD_ON_JOIN

return newValue

 end)

 end)

Q&A 227

Within that, you get the Data Store as normal and use UpdateAsync() to pass in the key as the

first parameter:

local updateSuccess, errorMessage = pcall(function()

 pointsDataStore:UpdateAsync(playerKey, function(oldValue)

 local newValue = oldValue or 0

 newValue = newValue + GOLD_ON_JOIN

return newValue

 end)

 end)

Finally, the second parameter takes a function that accepts the old value and returns what the

updated value should be. You can create the function beforehand or use an anonymous function

as shown:

local updateSuccess, errorMessage = pcall(function()

 pointsDataStore:UpdateAsync(playerKey, function(oldValue)

 local newValue = oldValue or 0

 new Value = newValue + GOLD_ON_JOIN

 return newValue

 end)

end)

Summary
You can now save data, and that opens you up to opportunities like monetization that weren’t

available to you before. You can save just about any kind of data that you can think of. In an

RPG experience, you can save people’s skill level, weapon prowess, and inventory. In competi-

tive games, you can save a player’s rank or average KDA. You can also begin tracking whether

people have purchased items in your experience, such as pets, power ups, and weapons.

Data Stores are really powerful; you just need to make sure that you are always using unique

keys and verifying that you are both sending and receiving the correct data using pcalls().

The last thing you want is a communi ty of people who are angry that their purchases have been

lost to the ether.

Q&A
Q. What other ways can you save and update player data?

A. In addition to using SetAsync(), there are additional functions such as UpdateAsync()
and IncrementAsync(). As you work on larger experiences, particularly if you’re dealing
with Robux, it’s strongly recommended that you use UpdateAsync(). It’s a little bit more
work, but it adds a layer of protection to your data. Learn more about these additional
methods on the Developer Hub.

228 HOUR 17: Saving Data

 Q. How do I know what a returned error means?

 A. You can search the Roblox Developer hub to find a list of common errors, as well limits for
how often r equests can be made: https://developer.roblox.com/articles/Datastore-Errors.

Workshop
Now that you have finish ed, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What’s the pattern for retrieving a Data Store (not just a Data Store key)?

 2. What does the p in pcall() stand for?

 3. When should you use a pcall()?

 4. Data Stores take and store two pieces of information; what are they?

 5. If there’s a chance more than one server might be updating a Data Store at a time, should
you use SetAsync() or UpdateAsync()?

Answers
 1. local dataStoreName= DataStoreService:GetDataStore("DataStoreName")

 2. Protected

 3. You should use a pcall() every time you are re ading or updating information from a Data
Store.

 4. A key and a value

 5. UpdateAsync()

Exercise
Using the information in this hour, you should be able to award people five pieces of gold every
time they log in. You can display people’s gold on a leaderboard, but for the sake of this exer-
cise, you’re only being asked to print out how much gold a person has after it’s been updated.

Tips
 Make sure you use the player’s ID rather than their name.

 Don’t forget to check success while reading and updating the Data Store.

https://developer.roblox.com/articles/Datastore-Errors

HOUR 18
 Creating a Game Loop

What You’ll Learn in This Hour:

How to set up a simple game loop

How to use bindable events

Why you should practice organization of code and assets

This hour introduces the concept of a game loop, or the pattern of actions that take place in a

game. You’ll learn how to set up a simple round-based game where players are transported to

an arena and back again after a certain amount of time. To do this, you need all of the skills

you’ve learned so far, and add one new skill: using BindableEvents.

The real lesson of this hour is to think about how to organize your world and the scripts within

it. The main project focuses on best practices for organizing the workspace as well as your code.

Setting Up Game Loops
Game loops are the patterns of actions that people do within your Roblox experience. There’s an

infinite variety of loops the people in your worlds might go through. Here are a few examples:

 In harvesting simulators, one pattern is to harvest items, sell items, buy a bigger backpack

or a faster shovel, and then harvest even more items.

 In a competitive experience, contestants might be taken from a lobby and then teleported

to an arena to fight it out in a 15-minute match. At the end of the match, everyone is

returned to the lobby to prepare for the next match.

 In an exploration world, individuals might go through cycles of cooking, mining, and

hunting to improve their equipment and skills.

 In an educational experience, students might perform a virtual dissection, record their

findings, and then move on to another organism to compare the differences.

230 HOUR 18: Creating a Game Loop

The code you create needs to be able to facilitate the loops that people naturally want to cycle

through, giving them periods of both excitement and rest. The loop you’ll go through in this

hour is a simple round-based game. Participants will be teleported from the lobby to the arena.

Once in the arena, they have a certain amount of time to complete a moon-themed obby before

they’re transported back to the lobby.

This game loop is one that can be expanded upon if you later want to introduce elements like

competition between players, completing puzzles, or collecting ite ms.

Working with BindableEvents
This project needs a number of things to happen at various phases of the game loop. To know

when to make these things happen, you use BindableEvents, which are similar to RemoteEvents.

What makes them different is that they have the ability to communicate server to server or client

to client, whereas RemoteEvents send signals across the client-server divide.

BindableEvents for server use should be placed within ServerStorage. Within ServerStorage, it’s

best practice to create folders for different types of objects to keep them organized. Figure 18.1

shows two BindableEvents in a folder and a second folder for ModuleScripts.

FIGURE 18.1
Within ServerStorage, use folders to organize different types of objects.

BindableEvents are fired using EventName:Fire().

The event fired by BindableEvents is actually named Event. Functions can then be connected to

Event like normal:

EventName.Event:Connect(functionName)

Working with BindableEvents 231

▼TRY IT YOURSELF

Make a Simplified Game Loop

For the rest of this hour, you’ll be working on a moon obby challenge while focusing on cleanly
organizing your scripts and assets. The first step you’ll take is to set up two distinct areas: a
lobby and the arena. You can make them as detailed or functional as you would like. Figure 18.2
shows an elaborate lobby and arena; simpler versions are shown on the right.

FIGURE 18.2
On the left, a lobby sits on a tower above an arena. On the right, simple parts are used to mark the lobby
and arena.

After that, you’ll set up the events to mark the beginning and end of each round, as well as set
up the code for your simplified game loop.

Set Up
A big focus of this chapter is organization, which includes organizing the assets for your world.
You’ll keep all of the assets for the lobby and the arena in their own folders, and they’ll have
their own spawn locations.

 1. Create the two areas you want to use for your world, such as those shown in Figure 18.2.

 2. Separate all the elements for the two areas into unique folders (see Figure 18.3).

232 HOUR 18: Creating a Game Loop

▼

FIGURE 18.3
All of the assets for the lobby and arena should be separated into two folders.

 3. In the Lobby folder, add a spawn location named StartSpawn. Then add a second spawn-
Location in the Arena folder (see Figure 18.4).

FIGURE 18.4
The SpawnLocations will be used for moving players back and forth.

Working with BindableEvents 233

▼TIP

Use Additional Folders as Needed
In Figure 18.4, you can see an additional folder named Environment; all of the environment parts
have been placed inside. You don’t need to do this, but it is helpful.

 4. Within ServerStorage, add a folder named Events.

FIGURE 18.5
A new folder named Events is within ServerStorage.

 5. Inside of the Events folder, add two new BindableEvents. Name one of the events
RoundStart and the other RoundEnd (see Figure 18.6).

TIP

Theme Your World
If you would like to create a moonlike setting, you can change the gravity of the experience within
Game Settings > World. Otherwise, you can stay focused on the code if y ou don’t wa nt to create an
actual moon obby.

234 HOUR 18: Creating a Game Loop

▼

FIGURE 18.6
Within the Even ts folder, add two new BindableEvents.

RoundSettings ModuleScript
The basic settings that control how long each round lasts and how many people are required
before starting will be pulled out into its own ModuleScript. This makes updating often-changed
settings easier for you and easier for anyone who may end up working with you down the line.

 1. In ServerStorage, add a new folder named ModuleScripts.

 2. Within that folder, create a new ModuleScript named RoundSettings (see Figure 18.7).

FIGURE 18.7
The ModuleScript folder and RoundSettings module have been created.

Working with BindableEvents 235

▼ 3. Insert values for how long each round should last, the amount of time the players spend
in the obby, and the minimum number of people needed to start the round. Don’t forget to
rename the table:

local RoundSettings = {}

-- Game Variables

RoundSettings.intermissionDuration = 5

RoundSettings.roundDuration = 15

RoundSettings.minimumPeople = 1

return RoundSettings

RoundManager
The loop will run within a server-side script. As it runs, it’ll fire the events at the appropriate time.
A separate ModuleScript will then be listening for those events.

 1. In the ModuleScript folder, add a new ModuleScript named PlayerManager (see Figure
18.8).

FIGURE 18.8
ModuleScripts includes a new folder named PlayerManager.

 2. In ServerScriptService, add a new regular script named RoundManager (see Figure 18.9).

236 HOUR 18: Creating a Game Loop

▼

FIGURE 18.9
You should have three scripts altogether.

 3. Get your services:

-- Services

local ServerStorage = game:GetService("ServerStorage")

local Players = game:GetService("Players")

 4. Set up references for the ModuleScripts folder and the two ModuleScripts you’ll be using:

-- Module Scripts

local moduleScripts = ServerStorage.ModuleScripts

local playerManager = require(moduleScripts.PlayerManager)

local roundSettings = require(moduleScripts.RoundSettings)

 5. Get the two BindableEvents: RoundStart and RoundEnd:

-- Events

local events = ServerStorage.Events

local roundStart = events.RoundStart

local roundEnd = events.RoundEnd

 6. Create a while-true-do loop. Within it, use the settings from the ModuleScript to wait for
the right number of people to join the experience and then fire RoundStart:

-- Runs the game loop

while true do

repeat

 wait(roundSettings.intermissionDuration)

Working with BindableEvents 237

▼until Players.NumPlayers >= roundSettings.minimumPeople

 roundStart:Fire()

 wait (rou ndSettings.roundDuration)

 roundEnd:Fire()

end

TIP

Repeat Until a Condition Is Met
Before now, we’ve often used a while loop, which runs until a condition becomes false. Here,
we’ve used repeat until, which does the opposite; it runs until a condition becomes true. In
this cas e, the condition is when the minimum number of players have joined.

 7. Wait for the time specified in RoundSettings for the round duration and then fire RoundEnd.
Here is the completed script:

-- Services

local ServerStorage = game:GetService("ServerStorage")

local Players = game:GetService("Players")

-- Module Scripts

local moduleScripts = ServerStorage.ModuleScripts

local playerManager = require(moduleScripts.PlayerManager)

local roundSettings = require(moduleScripts.RoundSettings)

-- Events

local events = ServerStorage.Events

local roundStart = events.RoundStart

local roundEnd = events.RoundEnd

while true do

repeat

 wait(roundSettings.intermissionDuration)

until Players.NumPlayers >= roundSettings.minimumPeople

 roundStart:Fire()

 wait(roundSettings.roundDuration)

 roundEnd:Fire()

end

This is the loop that will run over and over and over. You can now add functionality to the rounds
by listening for the fired events.

PlayerManager
This is where the meat of your code will be. Everything that happens to the players as they enter
and leave the round goes here. You can give people weapons, assign teams, record scores, or
do pretty much anything else you can think of. For now, we’re just going to transfer them to and
from the obby.

238 HOUR 18: Creating a Game Loop

▼
 1. Start with your services:

local PlayerManager = {}

-- Services

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

return PlayerManager

 2. Set up variables for the lobby spawn, the arena map, and the arena spawn:

local PlayerManager = {}

-- Services

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

-- Variables

local lobbySpawn = workspace.Lobby.StartSpawn

local arenaMap = workspace.Arena

local arenaSpawn = arenaMap.SpawnLocation

return PlayerManager

 3. Get the events like you did in the last script:

local PlayerManager = {}

-- Services

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

-- Variables

local lobbySpawn = workspace.Lobby.StartSpawn

local arenaMap = workspace.Arena

local arenaSpawn = arenaMap.SpawnLocation

local events = ServerStorage.Events

local roundEnd = events.RoundEnd

local roundStart = events.RoundStart

return PlayerManager

 4. Start off with what should happen when the player first joins the experience, before they
enter the arena. Here, we’re just going to spawn them in the arena:

local PlayerManager = {}

Working with BindableEvents 239

▼-- Previous code not shown

local function onPlayerJoin(player)

 player.RespawnLocation = lobbySpawn

end

return PlayerManager

TIP

Get Any Saved Data
If you decide to add any saved data—such as skill level, appearance upgrades, or total points—this
is where you can check for that and update a leaderboard.

 5. Say what you want to happen at the beginning of the round. Here, we’re going through the
list of players and reloading their character at the arena spawn location:

local PlayerManager = {}

-- Previous code not shown

local function onRoundStart()

 for _, player in ipairs(Players:GetPlayers()) do

 player.RespawnLocation = arenaSpawn

 player:LoadCharacter()

end

end

return PlayerManager

 6. Create a function to run at the end of the round:

local PlayerManager = {}

-- Previous code not shown

local function onRoundEnd()

 for _, player in ipairs(Players:GetPlayers()) do

 player.RespawnLocation = lobbySpawn

 player:LoadCharacter()

end

end

return PlayerManager

240 HOUR 18: Creating a Game Loop

▼
 7. Connect the functions so that they run at the proper time:

local PlayerManager = {}

-- Services

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

-- Variables

local lobbySpawn = workspace.Lobby.StartSpawn

local arenaMap = workspace.Arena

local arenaSpawn = arenaMap.SpawnLocation

local events = ServerStorage.Events

local roundEnd = events.RoundEnd

local roundStart = events.RoundStart

local function onPlayerJoin(player)

 player.RespawnLocation = lobbySpawn

end

local function onRoundStart()

 for _, player in ipairs(Players:GetPlayers()) do

 player.RespawnLocation = arenaSpawn

 player:LoadCharacter()

end

end

local function onRoundEnd()

 for _, player in ipairs(Players:GetPlayers()) do

 player.RespawnLocation = lobbySpawn

 player:LoadCharacter()

end

end

Players.PlayerAdded:Connect(onPlayerJoin)

round Start.Event:Connect(onRoundStart)

roundEnd.Event:Connect(onRoundEnd)

return PlayerManager

Workshop 241

Summary
A game loop, or an action loop, is the pattern of activities that people take within your experi-

ence. The code you write needs to support those actions. In this hour, you created the loop using

a literal coded while loop. In other experiences, the loop might still be driven by events such as

harvesting, buying, and selling, but those may not be so literally circular. Once you have your

basic loop designed, you can continue to add functionality, such as server announcements, team

assignments, the ability to add random maps, and updating saved data.

BindableEvents are quite often used with game loops because they allow signals to be sent server

to server or client to client.

This hour also talked a lot about keeping the objects in your projects organized, which is just as

important as writing clean cod e. Use folders to organize the scripts, models, events, and every-

thing else in your world.

Q&A
Q. Why did you use LoadCharacter() instead of updating the HumanoidRootPart’s CFrame?

 A. If all you want to do is simply move a player from one location to another, updating their
CFrame position is a quick way to do it. However, there are some benefits that can be
taken advantage of by forcing a character to reload. SpawnLocations are capable of provid-
i ng temporary force fields as well as being used for team assignments and checkpoints.

Workshop
Now that you hav e finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. True or false: BindableEvents can send signals across the server-client divide.

 2. A repeat-until loop does what?

 3. Where should BindableEvents be stored?

 4. I f you were to add functionality such as giving the players superpowers, how would you do
that?

242 HOUR 18: Creating a Game Loop

Answers
 1. False. If a signal needs to be sent between the server and client, you should use

RemoteEvents.

 2. A repeat-until loop repeats until a condition is true, which is the opposite of what a
while-do loop does.

 3. If BindableEvents will be used by the server, they should be stored within their own folder
in ServerStorage. If BindableEvents are used by the client, then they are stored within
ReplicatedStorage.

 4. You can add functionality within roundStart() and remove it within roundEnd(). Or,
if it’s a larger chunk of code, you may want a separate ModuleScript to also be required
within RoundManager.

Exercise
It’s always good to keep players informed of what’s about to happen to them. Create a new
ModuleScript designed to announce the beginning and end of every match. For now, it’s fine to
just practice with BindableEvents and simply print “Round Starting” and “Round Over” at the
beginning and end of each round. In an actual experience, you would want to set up the UI to
make the announcement to the players.

Tips
 Create a separate module named Announcements.

 Within the module, create separate functions for the announcements at the beginning and
end of the match.

 Add the module to those required in RoundManager.

 Use print statements to check everything, and then if you want to, move to creating more
finalized UI code.

HOUR 19
 Monetization: One-Time

Purchases

What You’ll Learn in This Hour:

 How to allow one-time purchases with Robux

How to prompt the user for a purchase

How to confirm whether they have made the purchase previously

How to update avatar appearance on join

This hour deals with how to allow for users to buy items in your experiences using Robux. You

can use your earned Robux in other games or to purchase catalog items, or you can eventually

cash out for real-world money using the Developer Exchange Program.

To cash out, you must have an active Roblox Premium membership, be at least 13 years old,

and have acquired at least 100,000 Earned Robux. To see the full set of guidelines, visit the

Developer Exchange FAQs.

As you go through this hour, you may want to test the functionality of the items you’re selling,

which you have to have Robux to do. If you don’t have any Robux at this time or don’t want to

spend them, you can safely continue to the next hour without missing any new coding conc epts.

Adding Passes to Your Experience
There are several ways to monetize your experience on Roblox. One of those ways is passes.

Passes let you create special items that can only be purchased once per person using Robux. Here

are some examples of when you might want to use a pass:

 To give people the ability to visit new areas of your experience.

 To unlock avatar items people can wear.

 To offer people cosmetics such as sparkles, trails, and weapon skins.

244 HOUR 19: Monetization: One-Time Purchases

TIP

Fun Comes First
The most profitable experiences are the ones in which people have the most fun. If people have
been having fun in your experience for a while, they’re more likely to spend Robux than if you make
them pay for thing s upfront.

To make a new pass, you first need to set up some information on the Roblox site about the

pass, and you need an image for the pass itself:

 1. Make sure your experience is published and then go to https://www.roblox.com/.

 2. Click Create (see Figure 19.1).

FIGURE 19.1
Click Create in the top navigation.

 3. Find the experience you want to make a pass for.

 4. Select Create Pass from the Settings drop-down menu on the right-hand side (see Figure

19.2).

FIGURE 19.2
Select Create Pass.

 5. All passes require an image, name, and description. Provide all three and then click the

Preview button (see Figure 19.3).

https://www.roblox.com/

Adding Passes to Your Experience 245

FIGURE 19.3
Upload an image for the pass, give the pass a name, and type a description.

 6. On the next screen, click Verify Upload (see Figure 19.4) to create the pass and send it

through moderation.

FIGURE 19.4
Make sure everything looks correct before you click Verify Upload.

TIP

You Can Update the Pass Later
Changes can be made to the pass by selecting the pass and then right-clicking and selectin g
Configure.

246 HOUR 19: Monetization: One-Time Purchases

Configuring the Pass
Once you’ve created the game pass, it will appear slightly further down on the same page you’re

on beneath the create section. The final step is configuring the pass so players can buy it:

 1. Select Configure from the Settings right-side drop-down menu for the new pass (see Figure

19.5).

FIGURE 19.5
Configure the new pass.

 2. On the configuration page, click the Sales tab (see Figure 19.6).

FIGURE 19.6
Click the Sales tab.

 3. Click the Item for Sale toggle switch to make the pass available to players. Then enter the

price (in Robux) players will pay for the item (see Figure 19.7).

FIGURE 19.7
After you enter the price, the percentage of Robux you’ll get from the sale is s hown under the field.

Prompting In-Game Purchases 247

TIP

Roblox Premium Members Get More
If you’re a part of Roblox Premium, creator earnings are a greater percentage of the item cost. The
percentage kept by Roblox keeps the lights on and the servers running.

 4. Click the Save button to confirm your settings.

 5. Take a moment to copy the ID number of the pass from the URL. You’ll need this number

in your code (see Figure 19.8).

FIGURE 19.8
Make a note of the ID number for use in your code.

Prompting In-Game Purchases
Players can buy passes directly from your game’s main page by clicking the Store tab and brows-

ing the available items for purchase. Alternatively, you can call the MarketplaceService

within an in-game shop using the following code:

MarketplaceService:PromptGamePassPurchase(player, gamePassID)

When you’re checking to see if somebody already owns a pass, use this code:

UserOwnsGamePassAsync(player.UserId, gamePassID)

You should always wrap the check within a protected call like this:

local success, message = pcall(function()

 hasPass = MarketplaceService:UserOwnsGamePas sAsync(player.UserId, gamePassID)

end)

248 HOUR 19: Monetization: One-Time Purchases

▼ TRY IT YOURSELF

Sell Crowns to the Crowd

Create a button and use a local script to create a pass that allows players in your experience to
wear a cool neon party crown like the one shown in Figure 19.9.

FIGURE 19.9
Let people wear this cool party crown if they buy your pass.

Set Up the Pass
First, you need to set up the pass as shown earlier; then you delete the pass from your inventory
so you can test purchasing it.

 1. Follow the steps in the first part of the hour to create a pass. Remember to configure the
pass so it’s available to be purchased. You’ll need to test purchasing the pass, so you
may want to make the price something like 5 or 10 Robux.

 2. On the pass page, delete the pass from your inventory (see Figure 19.10). If you closed
the page, you can get back to the pass page by going back to the Create Pass drop-down
menu and then clicking on the pass.

Prompting In-Game Purchases 249

▼

FIGURE 19.10
Delete the pass from your inventory so you can test what it’s like to purchase it.

 3. In StarterGui, add a new ScreenGui and Button named BuyHat. You can use either a
TextButton or ImageButton.

Prompting the Purchase
This section is where you set up the script for the purchase:

 1. In the ScreenGui, add a new LocalScript.

 2. At the top of the script, get MarketplaceService, Players, and the local player:

local MarketplaceService = game:GetService("MarketplaceService")

local Players = game:GetService("Players")

local player = Players.LocalPlayer

 3. Create a function named promptPurchase connected to the button:

-- Previous Code

local screenGui = script.Parent

local button = screenGui:FindFirstChild("BuyHat")

local function promptPurchase()

end

button.Activated:Connect(promptPurchase)

 4. Set up a variable with your pass ID that you copied from the URL. Inside the function, set
up a Boolean variable named hasPass. Set hasPass to false:

-- Previous code

local screenGui = script.Parent

local button = screenGui:FindFirstChild("BuyHat")

250 HOUR 19: Monetization: One-Time Purchases

▼ local gamePassID = 0000000 -- Change this to your game pass ID

local function promptPurchase()

local hasPass = false

end

button.Activated:Connect(promptPurchase)

 5. Inside promptPurchase, use protected calls to check whether the player has the pass:

local function promptPurchase()

local hasPass = false

 local success, message = pcall(function()

 hasPass =
 MarketplaceService:UserOwnsGamePassAsync (player.UserId, gamePassID)

end)

if not success then

warn("Error while checking if player has pass: " .. tostring(message))

return

end

end

 6. If the player doesn’t have a pass, trigger the purchase prompt. The following is the com-
pleted script:

local MarketplaceService = game:GetService("MarketplaceService")

local Players = game:GetService("Players")

local player = Players.LocalPlayer

local screenGui = script.Parent

local button = screenGui:FindFirstChild("BuyHat")

local gamePassID = 0000000 -- Change this to your game pass ID

local function promptPurchase()

local hasPass = false

 local success, message = pcall(function()

 hasPass =
 MarketplaceService:UserOwnsGamePassAsync (player.UserId, gamePassID)

end)

if not success then

warn("Error while checking if player has pass: " .. tostring(message))

return

end

if hasPass then

 button.Text = "Already Owned"

Prompting In-Game Purchases 251

▼else

-- Player does NOT own the game pass; prompt them to purchase

 MarketplaceService:PromptGamePassPurch ase(player, gamePassID)

end

end

button.Activated:Connect(promptPurchase)

Testing
Testing properly requires a live server, but first you can do some quick spot checks in Studio to
see if you’re on the right track:

 1. Quickly test your code. You should see confirmation that you either own the pass or an
error that purchases aren’t allowed in this environment (see Figure 19.11). The error is a
good sign because passes have to be bought in a live server. If you see this, go on to the
next step. Otherwise, check your code and make sure you don’t already have the pass.

FIGURE 19.11
If your code is correct, this error should appear while testing in Studio.

 2. Publish to Roblox. You’ll need the most up-to-date version of your place.

 3. Test the code from the live server. The easiest way is to go back to the Create tab and
click on the starting place of the experience you want to test. That’ll take you to the game
page.

 4. Within the place, test your button. You should see a prompt to purchase the pass like the
one shown in Figure 19.12.

252 HOUR 19: Monetization: One-Time Purchases

▼

FI GURE 19.12
In the live environment, a prompt to purchase the pass displays.

TIP

Test the Live Server Often
It’s always best to test your code on a live server, particularly if you have GUI elements. Different
screen sizes and types can affect how people view your experie nce. If you can, test a variety of
devices, such as tablets, phones, PCs, and Macs.

Give Them Their Hat
Once somebody buys the pass, they expect it to work each and every time they join the game.
This section shows you how to check whether somebody has a pass. Then you’ll override the
user’s current appearance once their character has been added to workspace.

 1. In ServerScriptService, add a new script.

 2. Set up the services and your pass ID. Then connect a function to PlayerAdded:

local MarketplaceService = game:GetService("MarketplaceService")

local Players = game:GetService("Players")

local gamePassID = 0000000 -- Change this to your game pass ID

local function onPlayerAdded(player)

end

Players.PlayerAdded:Connect(onPlayerAdded)

Prompting In-Game Purchases 253

▼ 3. Inside the function, check for the pass as shown:

-- Previous code

local function onPlayerAdded(player)

local hasPass = false

local success, message = pcall(function()

 hasPass =
 MarketplaceService:UserOwnsGamePassAsync (player.UserId, gamePassID)

end)

if not success then

warn("Error while checking if player has pass: " .. tostring(message))

return

end

end

 4. If the player has the pass, you trigger whatever functionality the pass gives. Check for the
pass as shown here:

-- Previous code

local function onPlayerAdded(player)

local hasPass = false

local success, message = pcall(function()

 hasPass = MarketplaceService:UserOwnsGamePassAsync
 (player.UserId, gamePassID)

end)

if not success then

warn("Error while checking if player has pass: " .. tostring(message))

return

end

if hasPass == true then

print(player.Name .. " owns the game pass with ID " .. gamePassID)

-- Code for pass functionality goes here.

end

end

 5. For this particular pass, we want to override the user’s appearance. Create a new function
named onCharacterAdded and call it if the user has the pass:

local MarketplaceService = game:GetService("MarketplaceService")

local Players = game:GetService("Players")

local gamePassID = 0000000 -- Change this to your game pass ID

local function onCharacterAdded(character)

end

254 HOUR 19: Monetization: One-Time Purchases

▼ local function onPlayerAdded(player)

local hasPass = false

local success, message = pcall(function()

 hasPass =
 MarketplaceService:UserOwnsGamePassAsync (player.UserId, gamePassID)

end)

if not success then

warn("Error while checking if player has pass: " .. tostring(message))

return

end

if hasPass == true then

print(player.Name .. " owns the game pass with ID " .. gamePassID)

 player.CharacterAdded:Connect(onCharacterAdded)

end

end

Players.PlayerAdded:Connect(onPlayerAdded)

 6. Set up the hat ID you want to use:

local MarketplaceService = game:GetService("MarketplaceService")

local Players = game:GetService("Players")

local gamePassID = 0000000 -- Change this to your game pass ID

local HAT_ID = 156486131

 7. Finally, inside onCharacterAdded, get the current humanoid description and wait for the
character to be added to the workspace. Then use ApplyDescription() to add the hat,
as shown here:

local MarketplaceService = game:GetService("MarketplaceService")

local Players = game:GetService("Players")

local gamePassID = 0000000 -- Change this to your game pass ID

local HAT_ID = 156486131

local function onCharacterAdded(character)

local humanoid = character:WaitForChild("Humanoid")

 local description = humanoid:GetAppliedDescription()

 description.HatAccessory = HAT_ID

 while not character.Parent do

 character.AncestryChanged:Wait()

end

 humanoid:ApplyDescription(description)

end

local function onPlayerAdded(player)

local hasPass = false

Summary 255

▼local success, message = pcall(function()

 hasPass =
 MarketplaceService:UserOwnsGamePassAsync (player.UserId, gamePassID)

end)

if not success then

warn("Error while checking if player has pass: " .. tostring(message))

return

end

if hasPass == true then

print(player.Name .. " owns the game pass with ID " .. gamePassID)

 player .Cha racterAdded:Connec t(onCharacterAdded)

 end

end

Players.PlayerAdded:Connect(onPlayerAdded)

TIP

Using Descriptions
An alternative way to add a hat is to simply parent it to the user’s head. However, descriptions are
more reliable. Descriptions can also be used to update other accessories, such as hair. You can
find a full list of description uses on the Developer Hub.

 8. When you test in Studio, the print confirmation should appear in Output. Publish to Roblox
and then check on the server to verify everything actually works as intended.

Summary
Above all else, always concentrate on making your experience somewhere people want to spend

time before concentrating on getting your community to spend money.

To create one-time purchasable items, create a pass for the experience on www.roblox.com.

Then, within the experience, set up the functionality for the pass.

Purchasing and checking for passes are handled with MarketplaceService. You can use Market-

placeService to prompt users to purchase a pass with PromptGamePassPurchase() and check

whether they already have the pass with UserOwnsGamePassAsync(player.UserId, game-

PassID). Always wrap the check in a pcall().

http://www.roblox.com

256 HOUR 19: Monetization: One-Time Purchases

The pass demonstrated in this hour also took advantage of humanoid:GetAppliedDescription()

to see what items someone is currently wearing and then updated their appearance using

humanoid:ApplyDescription(description).

Q&A
Q. What if you want to create something that can be purchased over and over again, like in-

game currencies or power-ups?

 A. To create items that can be purchased repeatedly, you want to create Developer Products.
These work similarly to passes. If you search Developer Products on developer.roblox.com,
you’ll find sample code. With the knowledge you have from this hour, you should be able to
figure out how to customize the code.

 Q. How do I come up with ideas for pass and developer products?

 A. The number one most important thing you can do is figure out what would make people
want to stick around in your experience longer. If people are having fun, they’ll spend more.
One thing you can do is offer special skins, rare items, or consumables like health potions.
You can find great workshops about good monetization practices and how to create more
engaging experiences by following Roblox Developer Relations and their Level Up series on
YouTube.

 Q. Is there any other way to make money on Roblox?

 A. In addition to creating developer products and passes, you can also receive engagement
payouts. If users who are members of Roblox Premium spend a lot of time within your experi-
ence, you can earn Robux. The more time the y spend, the more you earn. There’s also oppor-
tunities to create and sell avatar items, t-shirts, and plug-ins.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the follow-
ing questions.

Quiz
 1. What service allows you to sell items in your experience?

 2. True or false: If you want to create a pass to sell, you need to include an image.

 3. You always wrap a check for passes in ________.

 4. Should confirmation that the user owns a pass be done on the server or client side?

 5. If you want your experience to do well and make Robux, what should you concentrate on
before anything else?

 6. How old do you need to be to take advantage of the Developer Exchange?

http://developer.roblox.com

Exercise 257

Answers
 1. MarketplaceService

 2. True

 3. Protected calls, or pcall()s

 4. On the server side. You never want something that impo rtant happening on the client side.

 5. Fun. If your experience isn’t fun, people won’t spend Robux in it.

 6. At least 13.

Exercise
Come up with an idea for a cosmetic change that can take place if a user has the correct pass.
In this particular case, the code will be very unique to you, but you should be able to make it
work if you follow the basic pattern already shown. The cosmetic change can be anything from giv-
ing the player sparkles to giving them a permanent speed boost.

Whatever pass you decide to create, it should never give purchasers an unfair advantage within
your experience. That’s not fun for anyone. Your community will complain, and in the long run, you
will most likely make fewer Robux than if you keep the playing field even.

This page intentionally left blank

HOUR 20
 Object-Oriented Programming

What You’ll Learn in This Hour:

What object-oriented programming means

How to define a custom class

How to add properties and methods to a class

How to create an instance of that class

This hour explains how to create custom instances using a concept called object-oriented program-

ming, which is more commonly referred to as just OOP. As you practice object-oriented program-

ming, you’ll begin to think about what objects in your experience have in common and how

you can begin to group them and create new categories of objects.

What Is OOP?
The core of OOP are the concepts of objects and classes. An object represents an individual thing

in your world, such as a house, a car, a tree. Indeed, everything in the Explorer is an object.

Parts, models, particle emitters, proximity prompts—all of these are objects.

A class describes what an object is and does. For example, a Part and SurfaceLight are very dif-

ferent things even though they are both objects. Their classes are what make them different. A

Part is one type of class, whereas a Light is anot her.

Organizing Code and Projects
OOP allows you to break problems down into smaller parts. As you plan your experience, you

can think about the different types of things your world needs. For example, you might have

cars, NPCs, playable classes, and different weapon types.

Once you know all the different types of things you need, you can begin thinking about how to

code them in a way that allows you to reuse code to create different versions of the same things.

For example, one car might be red with a racing stripe, whereas another is yellow. What you

260 HOUR 20: Object-Oriented Programming

don’t want is to have to create two different scripts just because the cars need to be two different

colors. With OOP, you just have to make one class, car, and then have color be one of the modi-

fiable prope rties.

Making a New Class
Some programming languages use special keywords to create classes. In Lua, you simply use a

table with a couple of modifications. The following steps walk you through the general process

of making a new class:

 1. To create a class, type the following:

local NameOfClass = {}

NameOfClass.__index = NameOfClass

TIP

Use Two Underscores Be fore index
There are actually two underscores before index. It can easily be mistaken for just one. __index
should always be set to the name of the class.

 2. A class on its own doesn’t do much, though. You need to add a function to the class that

describes how to create a new object of that class. These functions are called constructors

because they make things. Get it?

function NameOfClass.new()

end

 3. Inside the constructor, create a new table and return it at the end of the function. This

table is the object that gets made whenever a new class instance is asked for:

function NameOfClass.new()

 local self = {}

 return self

end

TIP

self as a Naming Convention
self is a commonly recognized way of referring to the object being created inside of the class. It’s
such a common convention that Studio bolds self to make it easier to see within a class, even
though it’s not normally a keyword in Lua.

Adding Class Properties 261

 4. Use setmetatable() to insert the object self into the original table:

function NameOfClass.new()

 local self = {}

 setmetatable(self, NameOfClass)

 return self

end

 5. Finally, you can call the function to create a new class instance:

local NameOfClass = {}

NameOfClass.__index = NameOfClass

function NameOfClass.new()

 local self = {}

 setmetatable(self, NameOfClass)

 return self

end

local newO bject = NameOfClass.new()

Adding Class Properties
Like other Roblox Instances, your custom classes can also have properties like color, size, and

scale. You can add a new property into the constructor function of the class. As for the value of

the property, you can add that yourself by directly assigning a value, or you can pass the value

in as a parameter of the constructor:

local NameOfClass = {}

NameOfClass.__index = NameOfClass

function NameOfClass.new(parameterProperty)

 local self = {}

 setmetatable(self, NameOfClass)

 self.defaultProperty = "Default Value"

 self.parameterProperty = parameterProperty

 return self

end

local newObject = NameOfClass .new()

262 HOUR 20: Object-Oriented Programming

▼ TRY IT YOURSELF

Create a Car Class

Create a car class that has one property for its color and another property for the number of
wheels on the car. The color should be passed in through the constructor, but the number of
wheels should be hard coded to 4.

 1. Create a class named Car and its constructor:

local Car = {}

Car.__index = Car

function Car.new()

 local self = {}

 setmetatable(self, Car)

 return self

end

 2. Hard code the number of wheels:

local Car = {}

Car.__index = Car

function Car.new()

 local self = {}

 setmetatable(self, Car)

 self.numberOfWheels = 4

 return self

end

 3. Add the parameter for the color of the car. Remember to add the parameter to the con-
structor declaration as well:

local Car = {}

Car.__index = Car

function Car.new(color)

 local self = {}

 setmetatable(self, Car)

 self.numberOfWheels = 4

 self.color = color

return self

end

Using Class Functions 263

▼ 4. Test your code by creating a new instance of the car and try printing out its properties:

local Car = {}

Car.__index = Car

function Car.new(color)

 local self = {}

 setmetatable(self, Car)

 self.numberOfWheels = 4

 self.color = color

return self

end

local redCar = Car.new("red")

print(redCar.numberOfWheels) -- Prin ts "4"

print(r edCar.color) -- Prints "red"

Using Class Functions
Custom classes can also have functions. Unlike properties, functions are declared outside the

constructor:

local NameOfClass= {}

NameOfClass.__index = NameOfClass

function NameOfClass.new()

 local self = {}

 setmetatable(self, NameOfClass)

 return self

end

-- Class function is declared outside of constructor

function NameOfClass:nameOfFunction()

end

You’ll often find that you will want to reference the object in class functions, particularly to

access that object’s properties. You can use self in functions that represent the object:

function NameOfClass:nameOfFunction()

 local variab le = self.nameOfProperty

end

264 HOUR 20: Object-Oriented Programming

▼ TRY IT YOURSELF

Create Your Own Pet

What’s better than a pet that follows you around when you pat it on the head? For this exercise,
create your own custom pet class that follows players for a short time after they interact with it.

Set Up
First, you need to have a model to use as the pet. You could use a fancy pet model if you have
one. Otherwise, just follow these steps to create a square stand-in:

 1. Insert a model into the workspace; rename the model something like Dog. If using just
a square part, use the key combination Ctrl+G/Cmd+G to turn it into a model and then
rename it.

 2. Inside the model, insert a new part. Rename the part HumanoidRo otPart.

TIP

MoveTo() Needs a HumanoidRootPart
Later in this script, the function MoveTo() will be used to make the pet move. In order for it to
work, the main part must be named exactly HumanoidRootPart. If it’s named anything else or
capitalized wrong, the part won’t be able to animate properly.

 3. Select the model, and set PrimaryPart to HumanoidRootPart.

 4. With the model still s elected, insert a humanoid.

 5. Move the pet to ServerStorage.

Create a Pet Class

Now, set up the class to create the pet, and then in the next section, you’ll add a function to
make the pet follow anyone who pets it:

 1. In ServerScriptService, add a new script.

 2. Reference ServerStorage and create a constant for how long the pet will follow a player
after someone has patted its head:

local ServerStorage = game:GetService("ServerStorage")

local FOLLOW_DURATION = 5

 3. Create a new pet class and its constructor. Include a parameter to allow you to pass in
what model to use for the pet:

local Pet = {}

Pet.__index = Pet

function Pet.new(model)

 local self = {}

Using Class Functions 265

▼ setmetatable(self, Pet)

 return self

end

 4. Assign the passed-in parameter to the class’s model and parent it to the workspace, as
follows:

local Pet = {}

Pet.__index = Pet

function Pet.new(model)

 local self = {}

 setmetatable(self, Pet)

 self._model = model

 self._model.Parent = workspace

 return self

end

TIP

Pay Attention to the Naming Convention
Notice that inside of the constructor, names are preceded by a single underscore.

 5. Inside the constructor, create a new ProximityPrompt. Update the prompt’s ObjectText
and ActionText as shown in the following code, and then parent the prompt to the pet:

local Pet = {}

Pet.__index = Pet

function Pet.new(model)

 local self = {}

 setmetatable(self, Pet)

 self._model = model

 self._model.Parent = workspace

 self._petPrompt = Instance.new("ProximityPrompt")

 self._petPrompt.ObjectText = "Pet"

 self._petPrompt.ActionText = "Giv e pets!"

 self._petPrompt.Parent = model.PrimaryPart

return self

end

266 HOUR 20: Object-Oriented Programming

▼ Add a Function to the Pet

This is where you’ll create the following function. MoveTo() updates the location of the pet every
0.25 seconds to where the player who patted it is:

 1. Add a new function to the pet class named getPets() with a parameter for the player:

-- Previous Code

function Pet:getPets(player)

end

Disable the prompt when it's been triggered.

function Pet:getPets(player)

 self._petPrompt.Enabled = false

end

 2. Use a for loop to update the location of the pet every 0.25 seconds and then re-enable
the prompt:

function Pet:getPets(player)

 self._petPrompt.Enabled = false

 for i = 0, FOLLOW_DURATION, 0.25 do

 local character = player.Character

 if character and character.PrimaryPart then

 self._model.Humanoid:MoveTo(character.PrimaryPart.Position)

end

 wait(0.25)

 end

self._petPrompt.Enabled = true

end

 3. Return the pet class:

function Pet:getPets(player)

 self._petPrompt.Enabled = false

 for i = 0, FOLLOW_DURATION, 0.25 do

 local character = player.Character

 if character and character.PrimaryPart then

 self._model.Humanoid:MoveTo(character.PrimaryPart.Position)

end

 wait(0.25)

 end

 self._petPrompt.Enabled = true

return Pet

end

Using Class Functions 267

▼ 4. Go back up to the Pet constructor and use an anonymous function to call getPets when
the prompt has been triggered:

local Pet = {}

Pet.__index = Pet

function Pet.new(model)

 local self = {}

 setmetatable(self, Pet)

 self._model = model

 self._model.Parent = workspace

 self._petPrompt = Instance.new("ProximityPrompt")

 self._petPrompt.ObjectText = "Pet"

self._petPrompt.ActionText = "Give pets!"

self._petPrompt.Parent = model.PrimaryPart

 self._petPrompt.Triggered:Connect(function (player)

 self:getPets(player)

 end)

 return self

end

 5. Now, all that’s left is to make a new instance of the Pet class and pass in the model of
the pet you want it to use. Here is the completed script:

local ServerStorage = game:GetService("ServerStorage")

local FOLLOW_DURATION = 5

local Pet = {}

Pet.__index = Pet

function Pet.new(model)

 local self = {}

 setmetatable(self, Pet)

 self._model = model

 self._model.Parent = workspace

 self._petPrompt = Instance.new("ProximityPrompt")

 self._petPrompt.ObjectText = "Pet"

self._petPrompt.ActionText = "Give pets!"

self._petPrompt.Parent = model.PrimaryPart

 self._petPrompt.Triggered:Connect(function (player)

 self:getPets(player)

 end)

268 HOUR 20: Object-Oriented Programming

TIP

Modify the ProximityPrompt if You Can’t See It
If you have trouble finding the ProximityPrompt while testing, try setting RequiresLineOfSight to
False. It may be buried within the model and therefore blocked from view. You can also customize
other ProximityPrompt properties, such as UIOffset and Exclusivity, as needed.

Summary
An important part of DRY coding is not repeating yourself. Creating classes saves you time and

work by creating reusable code. In the next hour, you find out how classes can be further cus-

tomized. So maybe instead of just having unique mo dels for pets, you can have different pets,

each with its own model, texture, and sound.

▼ return self

end

function Pet:getPets(player)

 self._petPrompt.Enabled = false

 for i = 0, FOLLOW_DURATION, 0.25 do

local character = player.Character

 if character and character.PrimaryPart then

self._model.Humanoid:MoveTo(character.PrimaryPart.Position)

 end

 wait(0.25)

 end

self._petPrompt.Enabled = true

 return Pet

end

-- Create a new Pet object and pass in the desired model

local rufus = Pet.new(ServerStorage.Dog:Clone())

local whiskers = Pet.new(ServerStorage.Ca t:Clone())

Workshop 269

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What does OOP stand for?

 2. What is a class?

 3. What is at least one benefit of OOP?

 4. What is a constructor?

 5. What’s wrong with the following code?

local NameOfClass = {}

NameOfClass.__index = NameOfClass

function NameOfClass.new(parameterProperty)

 local self = {}

 self.defaultProperty = "Default Value"

sel f.parameterProperty = parameterProperty

 return self

end

local newObject = NameOfClass.new()

Answers
 1. Object-oriented programming

 2. A class describes what an object is and does.

 3. Benefits of OOP are

 a. Allows you to break an experience into smaller chunks

 b. Keeps your code organized

 c. Cuts down on the amount of repetitive code in your project

 4. A constructor is a function that describes how to build a new object of a class. All of the
properties of a class go inside the constructor.

270 HOUR 20: Object-Oriented Programming

 5. The metatable wasn’t set.

local NameOfClass = {}

NameOfClass.__index = NameOfClass

function NameOfClass.new(parameterProperty)

 local self = {}

 setmetatable(self, NameOfClass) -- Was missing

self.defaultProperty = "Default Value"

sel f.parameterProperty = parameterProperty

 return self

end

local newObject = NameOfClass.new()

Exercise
Create an NPC person class where each NPC person has a parameter to set their name, and has
a function to print out their name when called.

Tips
 Create the class and constructor first.

 Include a parameter that allows the name to be passed in.

 You don’t need to include a model or other information unless you want to.

 Create the function outside of the constructor and call it separately.

You can find the code solution in the appendix.

HOUR 21
Inheritance

What You’ll Learn in This Hour:

What the relationship between parent and child classes (inheritance) is

How to create child classes that inherit properties and functions from a parent class

How to overload functions for polymorphism

How to call parent functions

As your projects get larger and more complex, you might notice some of your classes will overlap

and share certain characteristics. In such cases, you can structure your code so that classes pass

on their properties and functions to other classes. We call this practice inheritance. The classes

that pass on their behaviors are called parent classes, and the classes that inherit these behaviors

are called child classes.

Consider the built-in Roblox classes PointLight and SpotLight. Although they illuminate a scene

in slightly different ways, they also have a lot in common, as you can see in the properties

shown in Figure 20.1. You can turn either of them on and off, and you can adjust the color and

brightness for both. Both of these classes inherit these behaviors from their parent class Light.

272 HOUR 21: Inheritance

FIGURE 21.1
PointLight (left) and SpotLight (right) share a number of properties from their parent cl ass, Light.

Setting Up Inheritance
In Lua, inheritance is built on the same class and metatable structure that we used for classes in

the previous chapter. The following steps walk you through the basic pattern:

 1. Create the parent class and its constructor:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

 setmetatable(self, ParentClass)

 return self

end

 2. Create the child class:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

 setmetatable(self, ParentClass)

Setting Up Inheritance 273

return self

end

local ChildClass = {}

ChildClass.__index = ChildClass

 3. To make a child class, use the setmetatable function. This time, pass in the name of the

child class, and then the name of the parent class:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

 setmetatable(self, ParentClass)

 return self

end

local ChildClass = {}

ChildClass.__index = ChildClass

setmetatable(ChildClass, ParentClass)

 4. Create the constructor for the new class:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

 setmetatable(self, ParentClass)

 return self

end

local ChildClass = {}

ChildClass.__index = ChildClass

setmetatable(ChildClass, ParentClass)

function ChildClass.new()

end

 5. Inside the child class constructor, create a variable called self. However, instead of setting

the value to {} like we have been in constructors, have it set to a new instance of the par-

ent class:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

274 HOUR 21: Inheritance

 setmetatable(self, ParentClass)

 return self

end

local ChildClass = {}

ChildClass.__index = ChildClass

setmetatable(ChildClass, ParentClass)

function ChildClass.new()

 local self = ParentClass.new()

end

 6. Set the metatable for the self variable to the child class and then return self:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

 setmetatable(self, ParentClass)

 return self

end

local ChildClass = {}

ChildClass.__index = ChildClass

setmetatable(ChildClass, ParentClass)

function ChildClass.new()

 local self = ParentClass.new()

 setmetatable(self, Ch ildClass)

 return self

end

Inheriting Properties
Any properties that a parent class defines will also become properties of children classes. If you

remember talking about DRY coding a few hours ago, this is ideal because that means you don’t

have to repeat yourself by creating the same properties for every class:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

 setmetatable(self, ParentClass)

 self.inheritedProperty = "Inherited property"

 return self

end

Inheriting Properties 275

▼TRY IT YOURSELF

Create a Vehicle Class and a Car Class

The pattern just shown will be used to create a Vehicle parent class that has a property for the
number of engines it has. Then, create a Car child class that inherits the engine number prop-
erty from the Vehicle class but then uses its own property to determine the number of wheels
the car has.

 1. Create the Vehicle class and its constructor:

local Vehicle = {}

Vehicle.__index = Vehicle

function Vehicle.new()

 local self = {}

 setmetatable(self, Vehicle)

 return self

end

 2. Add a numberOfEngines property to self:

local Vehicle = {}

Vehicle.__index = Vehicle

function Vehicle.new()

 local self = {}

 setmetatable(self, Vehicle)

 self.numberOfEngines = 1

return self

end

 3. Create a Car class and have it inherit from Vehicle:

local Vehicle = {}

Vehicle.__index = Vehicle

function Vehicle.new()

 local self = {}

 setmetatable(self, Vehicle)

 self.numberOfEngines = 1

return self

end

local Car = {}

Car.__index = Car

setmetatable(Car, Vehicle)

276 HOUR 21: Inheritance

▼
 4. Create the Car class’s constructor:

local Vehicle = {}

Vehicle.__index = Vehicle

function Vehicle.new()

 local self = {}

 setmetatable(self, Vehicle)

 self.numberOfEngines = 1

return self

end

local Car = {}

Car.__index = Car

setmetatable(Car, Vehicle)

function Car.new()

 local self = Vehicle.new()

 setmetatable(self, Car)

 return self

end

 5. Add a numberOfWheels property to the Car class:

local Vehicle = {}

Vehicle.__index = Vehicle

function Vehicle.new()

 local self = {}

 setmetatable(self, Vehicle)

 self.numberOfEngines = 1

return self

end

local Car = {}

Car.__index = Car

setmetatable(Car, Vehicle)

function Car.new()

 local self = Vehicle.new()

 setmetatable(self, Car)

 self.numberOfWheels = 4

return self

end

Working with Multiple Child Classes 277

Working with Multiple Child Classes
You can have as many classes as you want to inherit from a parent class. In the preceding

example, you created a Car class that inherits from a Vehicle class. You can also make a

Motorcycle class that also inherits from the Vehicle. Although the car and motorcycle

will have distinct properties, in this case the number of wheels, they will share the number of

engines:

local Motorcycle = {}

Motorcycle.__index = Motorcycle

setmetatable(Motorcycle, Vehicle)

function Motorcycle.new()

 local self = Vehicle.new()

 setmetatable(self, Motorcycle)

 self.numberOfWheels = 2

return self

end

▼ 6. Create a new instance of the car and print the number of engines and wheels it has:

local Vehicle = {}

Vehicle.__index = Vehicle

function Vehicle.new()

 local self = {}

 setmetatable(self, Vehicle)

 self.numberOfEngines = 1

return self

end

local Car = {}

Car.__index = Car

setmetatable(Car, Vehicle)

function Car.new()

 local self = Vehicle.new()

 setmetatable(self, Car)

 self.numberOfWheels = 4

return self

end

local car = Car.new()

print("Engines:", car.numberOfEngines)

 print("Wheels:", car.numberOfWheels)

278 HOUR 21: Inheritance

local motorcycle = Motorcycle.new()

print("Engines:", motorc ycle.numberOfEngines)

print("Wheels:", motorcycle.numberOfWheels)

Inheriting Functions
Just like they do with properties, child classes will also inherit all of the functions of their parent

class:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass.new()

 local self = {}

 setmetatable(self, ParentCl ass)

 return self

end

function ParentClass:inheritedFunction()

end

Understanding Polymorphism
Sometimes child classes need to perform similar actions, but each class executes those functions

in specific ways. In these cases, the parent class can define a function that says what the default

behavior of child classes that use that function will be. But any child classes that want to break

from this and do something special can have a function with the same name that will override

the function they inherited from the parent:

local ParentClass = {}

ParentClass.__index = ParentClass

function ParentClass:doSomething()

 -- Default behavior if child classes do not define their own doSomething

end

local ChildClassOne = {}

setmetatable(ChildClassOne, ParentClass)

function ChildClassOne:doSomething()

 -- Does something specific to ChildClassOne

end

Understanding Polymorphism 279

local ChildClassTwo = {}

setmetatable(ChildClassTwo, ParentClass)

function ChildClassTwo:doSomething()

 -- Does something specific to ChildClassTwo

end

local ChildClassThree = {}

setmetatable(ChildClassThree, ParentClass)

-- ChildClassThree did not define a doSomething function .

-- It will call the Parent class doSomething function instead.

▼TRY IT YOURSELF

Create Different Sounding Animals

Let’s say you have an Animal parent class and two child classes, Dog and Cat. You want dogs
and cats able to make the sounds “woof” and “meow,” respectively. You could make separately
named functions for these in each class, such as Dog:woof() and Cat:meow(), but a more
common practice would be to create a shared function name. In this case, make a function
Animal:speak():

 1. Create the Animal parent class and its constructor:

local Animal = {}

Animal.__index = Animal

function Animal.new()

 local self = {}

 setmetatable(self, Animal)

 return self

end

 2. Create the Dog and Cat child classes and their constructors:

local Animal = {}

Animal.__index = Animal

function Animal.new()

 local self = {}

 setmetatable(self, Animal)

 return self

end

local Dog = {}

Dog.__index = Dog

setmetatable(Dog, Animal)

280 HOUR 21: Inheritance

▼
function Dog.new()

 local self = Animal.new()

 setmetatable(self, Dog)

 return self

end

local Cat = {}

Cat.__index = Cat

setmetatable(Cat, Animal)

function Cat.new()

 local self = Animal.new()

 setmetatable(self, Cat)

 return self

end

 3. Add a speak function to the Animal class:

local Animal = {}

Animal.__index = Animal

function Animal.new()

 local self = {}

 setmetatable(self, Animal)

 return self

end

function Animal:speak()

 print("The animal makes a noise")

end

local Dog = {}

Dog.__index = Dog

setmetatable(Dog, Animal)

function Dog.new()

 local self = Animal.new()

 setmetatable(self, Dog)

 return self

end

local Cat = {}

Cat.__index = Cat

setmetatable(Cat, Animal)

function Cat.new()

 local self = Animal.new()

Understanding Polymorphism 281

▼ setmetatable(self, Cat)

 return self

end

TIP

Use Colons for Functions
Notice that we are using a colon instead of dot notation like you would with properties.

 4. Add speak functions to the Dog and Cat classes:

local Animal = {}

Animal.__index = Animal

function Animal.new()

 local self = {}

 setmetatable(self, Animal)

 return self

end

function Animal:speak()

 print("The animal makes a noise")

end

local Dog = {}

Dog.__index = Dog

setmetatable(Dog, Animal)

function Dog.new()

 local self = Animal.new()

 setmetatable(self, Dog)

 return self

end

function Dog:speak()

 print("Woof")

end

local Cat = {}

Cat.__index = Cat

setmetatable(Cat, Animal)

function Cat.new()

 local self = Animal.new()

 setmetatable(self, Cat)

282 HOUR 21: Inheritance

Calling Parent Functions
With polymorphism, you may sometimes want to call the default function that the parent class

defines, as well as custom behavior from the child class. If a parent class and child class have a

function with the same name, you can call the parent function from the child class with the fol-

lowing pattern:

function ChildClass:sameFunctionName()

 ParentClass.sameFunctionName(self)

end

Notice that you are doing something slightly different from normal with this function call.

You’re not calling the function from a specific object; you’re calling it with the class itself. You’re

also using the dot (.) operator instead of the colon (:) operator to call the function. Last, you pass

in the variable self. This variable refers to the actual object you want to call the function with.

The following code sample shows two different jobs people can take on within an experience,

warrior and mage. For both jobs, people must use energy to attack. The energy property and the

attack function are both set within the parent job class:

local Job = {}

Job.__index = Job

function Job.new()

 local self = {}

 setmetatable(self, Job)

 self.energy = 1

return self

end

▼ return self

end

function Cat:speak()

 print("Meow")

end

 5. At th e bottom of the script, call speak() for both the Cat and Dog classes:

Cat:speak()

Dog:speak()

Calling Parent Functions 283

function Job:attack()

 if self.energy > 0 then

self.energy -= 1

return true

 end

return false

end

local Warrior = {}

Warrior.__index = Warrior

setmetatable(Warrior, Job)

function Warrior.new()

 local self = Job.new()

 setmetatable(self, Warrior)

 return self

end

function Warrior:attack()

 local couldAttack = Job.attack(self)

 if couldAttack then

 print("I swing my weapon!")

 else

 print("I'm too tired to attack!")

 end

end

local Mage = {}

Mage.__index = Mage

setmetatable(Mage, Job)

function Mage.new()

 local self = Job.new()

 setmetatable(self, Mage)

 return self

end

function Mage:attack()

 local couldAttack = Job.attack(self)

 if couldAttack then

 print("I cast a spell!")

 else

 print("I'm out of mana!")

 end

end

284 HOUR 21: Inheritance

local warrior = Warrior.new()

local mage = Mage.new()

-- The first attack() i s called, they'll attack.

-- The second time they'll be out of mana.

warrior:attack()

warrior:attack()

mage:attack()

mage:attack()

Summary
Inheritance and polymorphism are more tools in your belt when it comes to good object-oriented

programming practices. Once you have a parent class, like a zoo animal class, you can then

create as many child classes as you want. Default properties like the animal’s number of heads,

tails, and legs can be set within the parent class, and then passed on to the child class.

With polymorphism, the functions and properties of the parent class can be tweaked so that

each zoo animal is unique. A zebra and chimpanzee might have the same wandering behaviors

but different animations and sounds.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. True or false: A child class needs to include every property from the parent class.

 2. What is the definition of inheritance?

 3. What is the maximum number of child classes that can be created?

 4. What is the definition of polymorphism?

 5. True or false: Child classes inherit properties, but not functions.

Answers
 1. False. If a property exists in the parent class and isn’t defined in the child class, the child

uses what’s stated in the parent class.

 2. Inheritance is when the functions and properties of one class are passed to another.

 3. There is no maximum number of child classes. You can have as many as you want.

Exercise 285

 4. Sometimes child classes need to perform similar actions but execute them in different
ways. Th e example in the hour was of animals each having a unique sound.

 5. False. Child classes can inherit both functions and properties.

Exercise
Try making two jobs for a role-playing game. Make a class for each job. Each job should keep
track of how much experience the player has earned and have a function to add to that experi-
ence. Each job should also have a special resource that they keep track of, such as energy,
stamina, mana, etc. The jobs should have an attack function that depletes this resource. Once
you are done, make objects of these classes.

Tips
 If you find two classes have the exact same variables or code, see if you can use a parent

class to your advantage.

 Printing the values of object properties before and after function calls can be a good way to
make sure your function works correctly.

This page intentionally left blank

HOUR 22
 Raycasting

What You’ll Learn in This Hour:

How to raycast

How to find an object on a ray

How to find the ray’s direction from the origin and destination

How to ignore an object on a ray

Objects in a Roblox experience can move around a lot. Sometimes you’ll need your code to

examine the environment to understand where things are. One way to do this is with a tech-

nique called raycasting. When you raycast, you tell the engine to start at a given point and draw

a line from that point in a certain direction for a certain distance. If that line hits anything as

it is drawing, then the raycast function returns what is hit. This technique is used for everything

from creating detailed reflections on virtual glass surfaces to tracing bullet paths in competitive

games.

Setting Up the Function to Raycast
To raycast in Roblox, you use the workspace:Raycast() function. This function takes three

parameters: the origin of the ray, the direction the ray should go in, and a third optional param-

eter that lets you specify certain behaviors of the ray. We will get to the third parameter later in

the chapter. For now, let’s focus on the first two:

 1. Define parameters for the origin and direction of the ray using Vector3 coordinates:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

 2. Call workspace:Raycast() and store the result in a variable:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local result = game.Workspace:Raycast(origin, direction)

288 HOUR 22: Raycasting

 3. Check if the result exists:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local result = game.Workspace:Raycast(origin, direction)

if result then

 -- Do something

end

 4. If the result exists, print the instance that it hit:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local result = game.Workspace:Raycast(origin, direction)

if result then

 print("Found object:", result.Instance)

end

▼ TRY IT YOURSELF

Chameleon Material

In this Try It Yourself, you’re going to make a part that camouflages itself by copying the material
of whatever part it is over, as shown in Figure 22.1.

FIGURE 22.1
Before the ray is cast (left), the material will be plastic; then the part will update to match the part beneath it
(right).

 1. Create a few tiles of different materials, as shown in Figure 22.1, and one part to act as
the chameleon.

3D Math Trick: Getting the Direction 289

3D Math Trick: Getting the Direction
The second parameter of the Raycast function, the direction, is a Vector3. In simple cases, you

can know the direction you want the ray to go and just hard code those values. For example,

when you want to check below a point, simply use negative values for the y axis. But what if

you want to see if there is something between two points, and they aren’t simply above and

below each other, as in Figure 22.2?

▼ 2. Insert a script into the part; then reference the part:

local camouflagePart = script.Parent

 3. Use the camo part to define the origin for the ray; then define the direction:

local camouflagePart = script.Parent

local origin = camouflagePart.Position

local direction = Vector3.new(0, -5, 0)

 4. Create a ray and store the result:

local camouflagePart = script.Parent

local origin = camouflagePart.Position

local direction = Vector3.new(0, -5, 0)

local result = game.Workspace:Raycast(origin, direction)

 5. If a part was found along the ray, update the material of the camo part to match:

local camouflagePart = script.Parent

local origin = camouflagePart.Position

local direction = Vector3.new(0, -5, 0)

local result = game.Workspace:Raycast(origin, direction)

if result then

 camouflagePart.Material = result.Material

end

TIP

Ray Length
If the part fails to change materials, it’s possible the ray isn’t long enough. Either update the direc-
tion or move the camo part.

290 HOUR 22: Raycasting

FIGURE 22.2
The origin and destination are offset from each other, and the direction is unknown.

Fortunately, there is a convenient way to get a direction between two points using vector math.

Simply subtract the origin’s position from the destination’s position:

local pointA = Vector3.new(0, -4, 0)

local pointB = Vector3.new(24, -10, 0)

lo cal fromAToB = pointB - pointA

Setting Raycast Parameters
While detecting parts on a ray is useful, there are several configurations we can use for more

complicated situations. In particular, there are times when we care only about detecting certain

parts in the environment but not others. The following steps show how to check for an object

while ignoring a list of other objects:

 1. Create variables for the origin and direction of the ray:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

 2. Create a new RaycastParams object and store it in a variable:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local parameters = RaycastParams.new()

Setting Raycast Parameters 291

 3. Set the value of parameters.FilterDescendantsInstances to a new table:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local parameters = RaycastParams.new()

parameters.FilterDescendantsInstances = {

 -- Filter information goes here

}

 4. Put objects you want the raycast to ignore in the new table:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local parameters = RaycastParams.new()

parameters.FilterDescendantsInstances = {

 game.Workspace.IgnorePart1,

 game.Workspace.IgnorePart2,

}

 5. Set the FilterType parameter of the parameters object to

Enum.RaycastFilterType.Blacklist:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local parameters = RaycastParams.new()

parameters.FilterDescendantsInstances = {

 game.Workspace.IgnorePart1,

 game.Workspace.IgnorePart2,

}

parameters.FilterType = Enum.RaycastFilterType.Blacklist

 6. Call the Raycast function:

local origin = Vector3.new(0, 5, 0)

local direction = Vector3.new(0, -10, 0)

local parameters = RaycastParams.new()

parameters.FilterDescendantsInstances = {

 game.Workspace.IgnorePart1,

 game.Workspace.IgnorePart2,

}

parameters.FilterType = Enum.RaycastFilterType.Blacklist

local result = game.Workspace:Raycast(origin, directio n, parameters)

292 HOUR 22: Raycasting

▼ TRY IT YOURSELF

Raycast Through a Window

Create a translucent window with an object on either side of it. Cast a ray between the objects,
ignoring the window.

 1. Create a sphere and a cube on either side of a glass window as shown in Figure 22.3.

FIGURE 22.3
There are two red parts on either side of a clear glass window.

 2. In ServerScriptService, add a script and create references for both of the parts and for
the window.

 3. Use the position of the sphere as the origin:

local sphere = game.Workspace.Sphere

local cube = game.Workspace.Cube

local window = game.Workspace.Window

local origin = sphere.Position

 4. To find the direction, subtract the position of the sphere from the cube:

local origin = sphere.Position

local direction = cube.Position - sphere.Position

 5. Create a new RaycastParams object:

local origin = sphere.Position

local direction = cube.Position - sphere.Position

local parameters = RaycastParams.new()

3D Math Trick: Limit Direction 293

3D Math Trick: Limit Direction
The second parameter of the Raycast function not only determines the direction of the ray, it

also determines how long the ray is. In some cases, you may want the ray to extend a certain

distance.

For example, if you use raycasting to help enemies spot a player, you may not want them to be

able to see all the way across the map. You’d want to put a cap on how far they could see. In

▼ 6. Set up the filter list and include the window:

local origin = sphere.Position

local direction = cube.Position - sphere.Position

local parameters = RaycastParams.new()

parameters.FilterDescendantsInstances = {

 window,

}

parameters.FilterType = Enum.RaycastFilterType.Blacklist

 7. Cast the ray and confirm the window is not returned in the results:

local sphere = game.Workspace.Sphere

local cube = game.Workspace.Cube

local window = game.Workspace.Window

local origin = sphere.Position

local direction = cube.Position - sphere.Position

local parameters = RaycastParams.new()

parameters.FilterDescendantsInstances = {

 window,

}

parameters.FilterType = Enum.RaycastFilterType.Blacklist

local result = game.Workspace:Raycast(origin, direction, parameters)

if result then

 print("Found object:", result.Instance)

end

TIP

The Absence of Evidence Is Not Evidence of Absence
So far, you’ve only tested that the window is not being detected by the ray. When coding, try always
to think of multiple ways you can test your scripts. In this case, you should also confirm that parts
other than t he window will be detected.

294 HOUR 22: Raycasting

such cases, you can use the unit vector of the direction. The unit vector of a Vector3 is another

vector that is in the same direction, but it’s only 1 stud long:

local maximumDistance = 10

local pointA = Vector3.new(2.5, 10, 0)

local pointB = Vector3.new(16, 5, -9)

local fromAToB = pointB - pointA

local unit = fromAToB.Unit

local fromAToBCapped = unit * maximumDistance

Summary
Raycasting draws a line and returns the results of whatever is found on that line. You can use

this technique to check for obstacles, draw reflections, create weapon’s fire, or update an object

based on its surroundings.

The ray requires an X, Y, Z origin point, and an X, Y, Z direction. If you don’t know the direction

but you do know the end point for the ray, you can find the direction by subtracting the origin

from the destination. So, if you have an origin of (2, 2, 2) and a destination coordinate of (7, 7,

7), your direction would be (5, 5, 5).

Optionally, parameters can be provid ed for the ray so that it excludes certain objects along its

path.

Q&A
 Q. What if instead of ignoring objects along the ray, I only want to return certain objects?

 A. If you want to search for only certain types of objects instead of blacklisti ng objects, you
can filter using Enum.RaycastFilterType.Whitelist.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What are the two required parameters for casting a ray?

 2. How can you find the direction of a ray when you know the origin and destination?

 3. True or false: The ray will keep searching for things along the path that’s been drawn .

 4. True or false: You can set a maximum length for the ray to cast.

Exercise 295

Answers
 1. Origin and direction.

 2. Subtract the origin from the destination to find the direction for a ray.

 3. False. The ray returns results only once unless you tell it otherwise.

 4. True. You can use the unit vec tor of the direction to set a maximum length a ray is allowed
to draw.

Exercise
Build a detector in your game that senses when a player is nearby. The detector should change
colors if a player is within a certain distance of the detector. Remember that you can get all of
the players in a game using Players:GetPlayers(), and you can get a player character with
player.Character.

Tip: Until now, you’ve been raycasting only once per script. Keep in mind that the Raycast func-
tion only draws its ray at the exact moment when you call it. To build a proper detector, you
need to raycast every couple of milliseconds.

This page intentionally left blank

HOUR 23
 Plopping Objects in an

Experience: Part 1

What You’ll Learn in This Hour:

How to create a button that allows people to place objects

What the render step is

How to bind functions to the render step

Allowing your users to control what their environment looks like gives them a chance to express

themselves within the world you’ve made, and that makes them more engaged and more likely

to come back. For the next two hours, you’ll work on your capstone project: creating a button

that enables people in your experience to place or “plop” an item wherever they would like.

They can use it to decorate their house as in Figure 23.1 or plant flowers in their garden.

Two new concepts will be covered as you work through the project: the ability to update an object or

code whenever the game refreshes and to detect player clicks within the 3D environment.

FIGURE 23.1
MeepCity by AlexNewtron allows you to decorate your whole house, even the bathroom.

298 HOUR 23: Plopping Objects in an Experience: Part 1

By the end of this first hour, you’ll learn to track a user’s mouse movement to allow them to

drag a ghost image that only they can see. To do this, you’ll learn about the render step. In the

next hour, you’ll learn how to listen for user input to finalize the placement of the object on the

se rver.

Setting Up the Object
For this project, you need an object players can place and a part to plop the object onto. In this

section, you also set up the events, buttons, and folders you need to keep everything organized:

 1. In Workspace, add a new folder named Surfaces to hold all the parts that people can

place items onto.

 2. Within the folder, create a new part to act as a floor to place the item onto, as shown in

Figure 23.2.

FIGURE 23.2
This large part acts as a floor.

 3. In ReplicatedStorage, add a new folder named Events and a new RemoteEvent named

PlopEvent (see Figure 23.3).

 4. Also in ReplicatedStorage, add a folder named GhostObjects.

 5. Decide on the object you want to place and create a slightly transparent ghost version the

user will drag around before finalizing the placement. The model should have a base at

the bottom of the model that will be used to line up the object with the floor. Figure 23.4

shows a ghost chair.

Setting Up the Object 299

FIGURE 23.3
Add a new RemoteEvent in ReplicatedStorage.

FIGURE 23.4
The slightly transparent ghost model has a base at the bottom.

300 HOUR 23: Plopping Objects in an Experience: Part 1

 6. Make sure the base is the PrimaryPart and insert the whole model into the GhostObjects

folder (see Figure 23.5).

FIGURE 23.5
After setting the PrimaryPart (left), move the model to the GhostObjects folder (right).

 7. In ServerStorage, add another folder named Ploppables and insert a copy of the same

model at normal transparency (see Figure 23.6). It should also have a basepart as the

PrimaryPart.

 8. In StarterGui, add a ScreenGui and insert a TextButton named PlopButton (see Figure

23.7).

Setting Up the Object 301

FIGURE 23.6
This folder will hold the objects that will actually be placed in the world.

FIGURE 23.7
People will click the button t o plop an object.

302 HOUR 23: Plopping Objects in an Experience: Part 1

Creating a Plop Button
You start on the client side and create a LocalScript to create a ghost object people can move

around as they decide where they want it to go. Since this is client side, only the user will be able

to see the ghost. The first step is to hook up input to the plop button because that is the first part

of the sequence of actions the player will take in the plopping logic:

 1. In StarterPlayer > StarterPlayerScripts, add a new LocalScript.

 2. In the LocalScript, create variables for Player service and the local player:

local Players = game:GetService("Players")

local player = Players.LocalPlayer

 3. Create variables for the GUI components:

-- Previous code

local playerGui = player:WaitForChild("PlayerGui")

local plopScreen = playerGui:WaitForChild("ScreenGui")

local plopButton = plopScreen:WaitForChild("PlopButton")

 4. Create a function named OnPlopButtonActivated:

-- Previous code

local function onPlopButtonActivated()

end

 5. Inside the function, switch the Visible property of the button to false. This way, the but-

ton is hidden while the player is plopping:

-- Previous code

local function onPlopButtonActivated()

 plopButton.Visible = false

end

 6. Link the function to the plopButton’s Activated event:

local Players = game:GetService("Players")

local player = Players.LocalPlayer

local playerGui = player:WaitForChild("PlayerGui")

local plopScreen = playerGui:WaitForChild("ScreenGui")

local plopButton = plopScreen:WaitForChild("PlopButton")

Tracking Mouse Movements 303

local function onPlopButtonActivated()

 plopButton.Visible = false

end

plopButton.Activated:Connect(onPlopButtonActivated)

 7. Test the code and make sure the button disap pears after you click it.

Tracking Mouse Movements
Now that you have a button to start plopping, the next step is to track the mouse movements of

the player because you need that information later to det ermine where to plop the object.

BindToRenderStep
Every time your screen refreshes, there’s a whole host of code happening behind the scene that

calculates what should appear on the screen. This is called the render step. If something needs

to be smoothly animated, such as a camera, you can add functions to the render step using

BindToRenderStep(). However, you want to be careful about adding too many. Giving the

render step too much to do will slow down how often the screen refreshes, which makes your

experience appear laggy and the motion seem jerky.

BindToRenderStep is part of RunService, and it has three parameters. It looks like this:

RunService:BindToRenderStep(bindingName, priority, functionName)

The three parts are as follows:

 bindingName: This is not the same as the name of the function; it’s the name of the

binding.

 priority: A numeric value stating how soon in the render step the bound function

should be calculated.

 functionName: The name of the function to bind.

In the plopping project, you’re going to add code to the renderstep so that a ghost object can be

smoothly moved around before finalizing where the permanent object should be placed:

 1. In the same LocalScript, create a variable for RunService, the service that owns

renderstep:

local Players = game:GetService("Players")

local RunService = game:GetService("RunService")

local player = Players.LocalPlayer

-- Rest of code

304 HOUR 23: Plopping Objects in an Experience: Part 1

 2. Create a variable for the binding name:

-- Previous variables

local plopButton = plopScreen:WaitForChild("PlopButton")

local PLOP_MODE = "PLOP_MODE"

local function onPlopButtonActivated()

 plopButton.Visible = false

local

plopButton.Activated:Connect(onPlopButtonActivated)

 3. Above onPlopButtonActivated(), create a new function named onRenderStepped:

-- Previous variables

local plopButton = plopScreen:WaitForChild("PlopButton")

local PLOP_MODE = "PLOP_MODE"

local function onRenderStepped()

end

local function onPlopButtonActivated()

 plopButton.Visible = false

end

plopButton.Activated:Connect(onPlopButtonActivated)

 4. Inside the onPlopButtonActivated function, bind the onRenderStepped function:

-- Previous variables

local plopButton = plopScreen:WaitForChild("PlopButton")

local PLOP_MODE = "PLOP_MODE"

local function onRenderStepped()

end

local function onPlopButtonActivated()

 plopButton.Visible = false

 RunService:BindToRenderStep(PLOP_MODE,
 Enum.RenderPriority.Camera.Value + 1, onRenderStepped)

end

plopButton.Ac tivated:Connect(onPlopButtonActivated)

Tracking Mouse Movements 305

TIP

Determining Priority Value to Use
Rather than trying to state a specific value, like 20, this code finds the value of the player camera
a nd adds one, making the bound code happen right after.

Raycasting from the Mouse
Next, you use raycasting to draw a line from the user’s cursor to any parts in the Surfaces folder.

 1. Still in the same script, beneath the player variable, add variables for the camera and

mouse:

-- Previous variables

local player = Players.LocalPlayer

local camera = game.Workspace.Camera

local mouse = player:GetMouse()

local player Gui = player:WaitForChild("Player Gui")

-- Rest of code

TIP

Keep Like Variables Together
We’re jumping around a fair amount, but the important thing is to keep like variables together.
Services should be with services, objects with objects, and constants with constants.

 2. Create Raycast parameters and store them in a variable named RaycastParameters:

-- Previous variables

local plopButton = plopScreen:WaitForChild("PlopButton")

local raycastParameters = RaycastParams.new()

local PLOP_MODE = "PLOP_MODE"

-- Rest of code

 3. Set the filter type to Whitelist and add the surfaces folder you made earlier to the list of

instances:

-- Previous variables

local plopButton = plopScreen:WaitForChild("PlopButton")

local raycastParameters = RaycastParams.new()

raycastParameters.FilterType = Enum.RaycastFilterType.Whitelist

raycastParameters.FilterDescendantsInstances = { game.Workspace.Surfaces }

306 HOUR 23: Plopping Objects in an Experience: Part 1

local PLOP_MODE = "PLOP_MODE"

-- Rest of code

 4. Make a variable named RAYCAST_DISTANCE. This will control how long a ray the

Raycast function will use later:

-- Previous variables

local PLOP_MODE = "PLOP_MODE"

local RAYCAST_DISTANCE = 200

local function onRenderStepped()

-- Rest of code

 5. In the onRenderStepped function, use the ScreenPointToRay function to get the ray

starting at the camera and going toward the player’s mouse:

-- Other variables

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

end

-- Rest of code

 6. Still within onRenderStepped(), use the Raycast function with the values you got from

ScreenPointToRay() in the last step. Note that you have to multiply the direction by

your RAYCAST_DISTANCE value because that value is a unit vector by default:

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 -- Casts the ray using the origin and direction from mouseRay

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin,
 mouseRay.Direction * RAYCAST_DISTANCE, raycastParameters)

end

 7. Test your code again. The game won’t do anything different from the last test, but make

sure there are no errors.

Here’s the code up this point:

local Players = game:GetService("Players")

local RunService = game:GetService("RunService")

local player = Players.LocalPlayer

local camera = game.Workspace.Camera

local mouse = player:GetMouse()

local playerGui = player:WaitForChild("PlayerGui")

local plopScreen = playerGui:WaitForChild("ScreenGui")

local plopButton = plopScreen:WaitForChild("PlopButton")

Previewing the Object 307

local raycastParameters = RaycastParams.new()

raycastParameters.FilterType = Enum.RaycastFilterType.Whitelist

raycastParameters.FilterDescendantsInstances = { game.Workspace.Surfaces }

local PLOP_MODE = "PLOP_MODE"

local RAYCAST_DISTANCE = 200

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin,
 mouseRay.Direction * RAYCAST_DISTANCE, raycastParameters)

end

local function onPlopButtonActivated()

 plopButton.Visible = false

 RunService:BindToRenderStep(PLOP_MODE, Enum.RenderPriority.Camer a.Value + 1,
 onRenderStepped)

end

plopButton.Activated:Connect(onPlopButtonActivated)

Previewing the Object
The next step is to show a phantom version of the plop object where the player’s mouse is point-

ing. This gives the player a preview of their selection. This example involves placing an object

named GhostChair. If your object is named differently, be sure to update that in the code:

 1. Still in the same script, create variables for ReplicatedStorage and the ghost object stored

within:

local Players = game:GetService("Players")

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local RunService = game:GetService("RunService")

...

...

raycastParameters.FilterDescendantsInstances = {game.Workspace.Surfaces}

local ghostObjects = ReplicatedStorage:WaitForChild("GhostObjects")

local ghostChair = ghostObjects:Wa itForChild("GhostChair")

local PLOP_MODE = "PLOP_MODE"

...

TIP

Missing Code
If you see … in a code sample, assume there is code not being shown at the moment.

308 HOUR 23: Plopping Objects in an Experience: Part 1

 2. Create a variable named plopCFrame. This will store the position where the player’s

mouse is pointing:

...

local ghostChair = ReplicatedStorage:WaitForChild("GhostChair")

local plopCFrame = nil

local PLOP_MODE = "PLOP_MODE"

...

 3. Inside the onRenderStepped function and after the Raycast, check if the Raycast

returned any results:

...

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin,
 mouseRay.Direction * RAYCAST_DISTANCE, raycastParameters)

 if raycastResults then

end

end

...

 4. If the Raycast returned a result, that means the mouse is in a valid area, and you should

show the object there. Set the value of plopCFrame to the position of the Raycast result:

...

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin,
 mouseRay.Direction * RAYCAST_DISTANCE, raycastParameters)

 if raycastResults then

 plopCFrame = CFrame.new(raycastResults.Position)

end

end

...

 5. Use the SetPrimaryPartCFrame function of the ghost object to move the object to

plopCFrame:

...

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin,
 mouseRay.Direction * RAYCAST_DISTANCE, raycastParameters)

 if raycastResults then

 plopCFrame = CFrame.new(raycastResults.Position)

 ghostChair:SetPrimaryPartCFrame(plopCFrame)

Previewing the Object 309

end

end

...

 6. Move the object into the workspace. In the else statement, move the object back into

ReplicatedStorage:

...

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin, mouseRay.
Direction * RAYCAST_DISTANCE, raycastParameters)

 if raycastResults then

 plopCFrame = CFrame.new(raycastResults.Position)

 ghostChair:SetPrimaryPartCFrame(plopCFrame)

 ghostChair.Parent = game.Workspace

else

 plopCFrame = nil

 ghostChair.Parent = ReplicatedStorage

end

end

...

 7. Test your game. Make sure that after you click the Plop Chair button that you see the

ghost chair when you move your mouse over the build area, as shown in Figure 23.8.

FIGURE 23.8
After clickin g the button, the ghost object should appear when hovering over objects in the Surfaces folder.

310 HOUR 23: Plopping Objects in an Experience: Part 1

Summary
In this hour, you learned how to create ghost objects that only the user can see. You also learned

about the render step, the short period of time during which all of the graphics are calculated.

To bind objects to the render step, you use RunService:BindToRenderStep(bindingName,

priority, functionName). The parameters work as follows:

 bindingName: This is not the same as the name of the function; it’s the name of the bind-

ing. It allows you to connect and disconnect things to the render step.

 priority: A numeric value stating how soon in the render step the bound function

should be calculated.

 functionName: The name of the function to bind.

In the next h our, you’ll learn how to finalize the placement of the object by listening for the user

to click.

Q&A
 Q. Why do we use a whitelist for the raycast?

 A. A whitelist allows you to look for only certain objects. You could in theory blacklist every
other object in the experience, but that would be a much longer list and a lot more work.
You would also need to update the blacklist every time you add a new object to the
experience.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What is the render step?

 2. What does BindToRenderStep do?

 3. What service do you need to a dd actions to the render step?

 4. What is the first parameter of BindToRenderStep and what does it do?

Exercise 311

Answers
 1. The render step is when all the calculations needed to display an image on screen take

place.

 2. BindToRenderStep connects a function to the render step, making it happen during that
process.

 3. To add actions to the render step, you need the RunService.

 4. The first parameter is for the name of the bindi ng, and that allows you not only to connect
functions to the render step but also disconnect things.

Exercise
Use the same pattern shown so far to add a second object for users to plop, as shown in Figure
23.9.

FIGURE 23.9
A table is another good option for people to decorate with.

Tip: Remember to make sure the model has a base set as the primary part.

You can find the code solution in the appendix.

This page intentionally left blank

HOUR 24
 Plopping Objects in an

Experience: Part 2

What You’ll Learn in This Hour:

How to use ContextActionService to check for player input

How to allow players to place objects in the server

How to track and raycast using the mouse

This is the second hour of your two-part capstone project. In the last hour, you learned how to

track a player’s mouse movement and update what they see using the render step. In this hour,

you use ContextActionService to listen for a player to click and finalize the placement of the

object, such as when a player is decorating a house in Figure 24.1.

FIGURE 24.1
In Welcome to Bloxburg, users click to decorate their houses and garde ns.

314 HOUR 24: Plopping Objects in an Experience: Part 2

Detecting Mouse Input
Now that you can see where the player is intending to place the object, it’s time to listen

for when the player clicks so you can finalize the placement of the object. For this, you use

ContextActionService.

ContextActionService allows actions to take place only under certain conditions. A com-

mon use is to quickly bind and unbind actions to player input, such as mouse clicks or keyboard

presses using BindAction(), as follows:

ContextActionService:BindAction(actionName, functionName, addMobileButton,
inputTypes)

 actionName: Name of the binding.

 functionName: The function to call when input is triggered.

 addMobileButton: Adds a button on the screen for this action on mobile devices.

 inputTypes: List of inputs to fire this binding.

The function that you bind with BindAction should have the following parameters:

onInput(actionName, inputState)

 actionName: Name of the binding.

 inputState: What state the input was in when this function was called.

If you no longer need to listen for particular input, you can remove a binding with the

UnbindAction function:

ContextActionService:UnbindAction(actionName)

 1. In same script as before, create a variable for ContextActionService and one for the

binding name:

local ContextActionService = game:GetService("ContextActionService")

local Players = game:GetService("Players")

...

...

local plopCFrame = nil

local PLOP_CLICK = "PLOP_CLICK"

local PLOP_MODE = "PLOP_MODE"

...

Detecting Mouse Input 315

 2. Above onPlopButtonActivated(), add a function named onMouseInput:

...

local function onMouseInput(actionName, inputState)

end

local function onPlopButtonActivated()

...

 3. Switch to the onPlopButtonActivated function and bind the onMouseInput function

using the BindAction function:

...

local function onPlopButtonActivated()

 plopButton.Visible = false

 RunService:BindToRenderStep(PLOP_MODE,
 Enum.RenderPriority.Camera.Value + 1, onRenderStepped)

 ContextActionService:BindAction(PLOP_CLICK, onMouseInput, false,
 Enum.UserInputType.MouseButton1)

end

...

 4. In the onMouseInput function, check if the input state was End because this is when the

player has clicked the mouse:

...

local function onMouseInput(actionName, inputState)

 if inputState == Enum.UserInputState.End then

end

end

...

 5. In the if statement, make sure the ghost object is back in ReplicatedStorage:

...

local function onMouseInput(actionName, inputState)

 if inputState == Enum.UserInputState.End then

 ghostChair.Parent = ReplicatedStorage

end

end

...

 6. Also in the if statement, unbind the click action and the render actions using

UnbindAction and UnbindFromRenderStep:

...

local function onMouseInput(actionName, inputState)

 if inputState == Enum.UserInputState.End then

316 HOUR 24: Plopping Objects in an Experience: Part 2

 ghostChair.Parent = ReplicatedStorage

 RunService:UnbindFromRenderStep(PLOP_MODE)

 ContextActionService:UnbindAction(PLOP_CLICK)

end

end

...

 7. Make the plop button visible again:

...

local function onMouseInput(actionName, inputState)

 if inputState == Enum.UserInputState.End then

 ghostChair.Parent = ReplicatedStorage

 RunService:UnbindFromRenderStep(PLOP_MODE)

 ContextActionService:UnbindAction(PLOP_CLICK)

 plopButton.Visible = true

end

end

...

 8. Test your game. Confirm that after you click that the object disappears and the plop but-

ton appears again.

Sending a Message to the Server
Now you have to let the server know that the player wants to plop an object and where they

want to plop it. You use the RemoteEvent that we created in the set up for this:

 1. In the same script, create a variable for the remote event:

...

local ghostChair = ReplicatedStorage:WaitForChild("GhostChair")

local events = ReplicatedStorage:WaitForChild("Events")

local plopEvent = events:WaitForChild("PlopEvent")

local raycastParameters = RaycastParams.new()

...

 2. At the end of onMouseInput and in the if statement, fire the remote event passing the

plopCFrame variable in as an argument if the plopCFrame exists:

...

local function onMouseInput(actionName, inputState)

 if inputState == Enum.UserInputState.End then

 ghostChair.Parent = ReplicatedStorage

 RunService:UnbindFromRenderStep(PLOP_MODE)

 ContextActionService:UnbindAction(PLOP_CLICK)

Getting the Message 317

 plopButton.Visible = true

if plopCFrame then

 plopEvent:FireServe r(plopCFrame)

 end

end

end

...

TIP

Dealing with Multiple Objects
If you did the exercise in the last hour and have multiple objects, you need to send over the name of
the ghost object as well.

Getting the Message
Now it’s time to switch scripts! A new script in ServerScriptService listens for PlopEvent and

places the object where everyone can finally see it on the server:

 1. In ServerScriptService, add a new script.

 2. Create variables for ReplicatedStorage and ServerStorage:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local ServerStorage = game:GetService("ServerStorage")

 3. Create variables for the RemoteEvent and the chair object:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local ServerStorage = game:GetService("ServerStorage")

local events = ReplicatedStorage.Events

local plopEvent = events.PlopEvent

local ploppables = ServerStorage.Ploppables

local chair = ploppables.Chair

 4. Create a function named onPlop that takes a player and CFrame as an argument:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local ServerStorage = game:GetService("ServerStorage")

local events = ReplicatedStorage.Events

local plopEvent = events.PlopEvent

local ploppables = ServerStorage.Ploppables

local chair = ploppables.Cha ir

local functio n onPlop(player, cframe)

end

318 HOUR 24: Plopping Objects in an Experience: Part 2

TIP

Dealing with Multiple Objects
Remember to add another parameter here to tak e in an object name if you have more than one.

 5. Connect the onPlop function to the OnServerEvent of plopEvent:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local ServerStorage = game:GetService("ServerStorage")

local events = ReplicatedStorage.Events

local plopEvent = events.PlopEvent

local ploppables = ServerStorage.Ploppables

local chair = ploppables.Chair

local function onPlop(player, cframe)

end

plopEvent.OnServerEvent:Connect(onPlop)

 6. Inside the onPlop function, make a copy of the chair using the Clone function:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local ServerStorage = game:GetService("ServerStorage")

local events = ReplicatedStorage.Events

local plopEvent = events.PlopEvent

local ploppables = ServerStorage.Ploppables

local chair = ploppables.Chair

local function onPlop(player, cframe)

 local chairCopy = chair:Clone()

end

plopEvent.OnServerEvent:Connect(onPlop)

 7. Move the copied chair to the CFrame and change its parent to the workspace:

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local ServerStorage = game:GetService("ServerStorage")

local events = ReplicatedStorage.Events

local plopEvent = events.PlopEvent

local ploppables = ServerStorage.Ploppables

local chair = ploppables.Chair

Summary 319

local function onPlop(player, cframe)

 local chairCopy = chair:Clone()

 chairCopy:SetPrimaryPartCFrame(cframe)

 chairCopy.Parent = game.Workspace

end

plopEvent.OnServerEvent:Connect(onPlop)

 8. Test your game. Confirm that after clicking where you want the object to go that it does

get added to the workspace. Also try placing several chairs.

Summary
Congratulations! You’ve completed a big project that used all of the knowledge you’ve acquired

throughout this book. Here’s a quick summation of the skills you used to create a plopping sys-

tem that enables users to decorate and have more control of their environments:

 1. You used raycasting to find the location of the mouse and a whitelist to ensure it only

returned the names of certain objects.

 2. Users could drag a ghost object around using their mouse and the location was updated by

binding a function to the render step.

 3. Users finalized the placement of the object by clicking. You used ContextActionService

to bind a function to the click and place the object.

This is the last hour of this book, but there’s still lots more to learn. All of the code you’ve worked

on in this book should be seen as just a starting point. For every project, you can expand the

code out and use what you know in new ways. There’s a great community of Roblox developers

who can help you out on the Roblox Developer Forums and tons of code samples for you to use

on developer.roblox.com.

As you expand on your skills, keep in mind the importance of staying organized and testing

your code with multiple scenarios. You should always be thinking about how different situations

like differing screen sizes and having multiple people in a server affect how your code behaves.

Ideally, you should even get other people to try out your experience and make sure everything

works for them as expected.

If you’re interested in learning more about how to build experiences and get better at things like

lighting, sounds, environments, and animations, you can also check out the c ompanion book,

Learn Roblox Game Development in 24 Hours.

http://developer.roblox.com

320 HOUR 24: Plopping Objects in an Experience: Part 2

Q&A
 Q. How can you make the plop buttons disappear when you don’t need them?

 A. You could place all of the GUI needed for the plop buttons within a larger frame named
something like Decorations or Shop. By default, disable the frame. Use what you know to
create another button people can click to enable and disable the frame and see or hide all
of their decor choices.

 Q. What other types of actions could you use with ContextActionService?

 A. You can set up scenarios that enable new controls depending on what a player is doing. For
example, if they’re in a car, you might enable buttons to act as the breaks, gas, and horn.
You can then disable these buttons when the player isn’t in the car.

Workshop
Now that you have finished, let’s review what you’ve learned. Take a moment to answer the fol-
lowing questions.

Quiz
 1. What does ContextActionService allow you to do?

 2. What is the function that allows you to enable certain keys under certain circumstances?

 3. If you have multiple objects that can be plopped, wha t property do you need to pass over in
addition to the base code?

Answers
 1. ContextActionService allows you to make it so that an action can only take place in

certain conditions.

 2. Use BindAction() if you want to enable certain keys under certain circumstances.

 3. You need to send the name of the obje ct over as well if you have multiple objects that can
be plopped.

Exercise
Try adding a command to rotate objects while you’re placing them. Every time a player presses a
key, the object should rotate a set amount of degrees.

Tips
 Set up a constant for how many degrees the object should rotate.

 Use ContextActionService to enable a key such as R to rotate the object.

You can find the code solution in the appendix.

 APPENDIX A
 Roblox Basics

The following tables list the keys and associated actions when editing in Roblox Studio

TABLE A.1 Studio Camera Movement

Key Movement

W A S D Move the camera:

W: Forward

A: Back

S: Left

D: Right

E Raise camera

Q Lower camera

Shift Move camera slower

Right mouse button (hold and drag mouse) Turn camera

Middle mouse button Drag camera

Mouse scroll wheel Zoom camera in or out

F Focus on selected object

TABLE A.2 In-Game Camera Movement

Key Movement

W A S D Move the camera:

W: Forward

A: Back

S: Left

D: Right

E Raise camera

322 APPENDIX A: Roblox Basics

Key Movement

Q Lower camera

Right mouse button (hold and drag mouse) Turn camera

Mouse Scroll Wheel Zoom camera in or out

Alt+P Free camera

Keywords

Reserved Names in Lua
The following keywords are reserved by Lua and cannot be used as variable or function names:

and break do else elseif end false

function for if in local nil not

or repeat return then true until while

Here is a selection of a few additional keywords that perform important actions that are specific

to the Roblox platform:

script game self workspace

DataType Index

Lua Data Types
boolean function nil number

string thread table userdata

DataType Index 323

Roblox Lua Data Types
These data types have been added by Roblox to base Lua. Refer to the API pages on developer.

roblox.com to learn more about a particular data type.

A

Axes

 B

BrickColor

 C

CatalogSearchParams
CFrame
Color3
ColorSequence
ColorSequenceKeypoint

 D

DateTime
DockWidgetPluginGuiInfo

 E

Enum
EnumItem
Enums

 F

Faces

 I

Instance

 N

NumberRange
NumberSequence
NumberSequenceKeypoint

 P

PathWaypoint
PhysicalProperties

 R

Random
Ray
RaycastParams
RaycastResult
RBXScriptConnection
RBXScriptSignal
Rect
Region3
Region3int16

 T

TweenInfo

 U

UDim
UDim2

 V

Vector2
Vector2int16ector2
Vector3
Vector3int16

http://developer.roblox.com
http://developer.roblox.com

324 APPENDIX A: Roblox Basics

Operators
An operator is a special set of symbols used to perform an operation or conditional evaluation.

Logical
The logical operators for conditional statements are and, or, and not. These operators consider

both false and nil as “false” and anything else as “true.”

Operator Description

and Evaluates as true only if both conditions are true.

or Evaluates as true if either condition is true.

not Evaluates as the opposite of the condition.

Relational
Relational operators compare two parameters and return a boolean true or false.

Operator Description Associated Metamethod

== Equal to __eq

~= Not equal to

> Greater than

< Less than __lt

>= Greater than or equal to

<= Less than or equal to __le

Arithmetic
Lua supports the usual binary operators along with exponentiation, modulus, and unary

negation.

Operator Description Example Associated Metamethod

+ Addition 1 + 1 = 2 __add

- Subtraction 1 - 1 = 0 __sub

* Multiplication 5 * 5 = 25 __mul

/ Division 10 / 5 = 2 __div

^ Exponentiation 2 ^ 4 = 16 __pow

% Modulus 13 % 7 = 6 __mod

- Unary negation -2 = 0 - 2 __unm

Animation Easing 325

Miscellaneous
Miscellaneous operators include concatenation and length.

Operator Description Associated Metamethod

.. Concatenates two strings __concat

Length of table __len

Naming Conventions
 Spell out words fully! Abbreviations generally make code easier to write but harder to read.

 Use PascalCase names for class and enum-like objects.

 Use PascalCase for all Roblox APIs. camelCase APIs are mostly deprecated, but still work

for now.

 Use camelCase names for local variables, member values, and functions.

 For acronyms within names, don’t capitalize the whole thing—for example, a JsonVariable

or MakeHttpCall.

 The exception to this is when the abbreviation represents a set—for example, in an

RGBValue or GetXYZ. In these cases, RGB should be treated as an abbreviation of

RedGreenBlue and not as an acronym.

 Use LOUD_SNAKE_CASE names for local constants.

 Prefix private members with an underscore, such as _camelCase.

 Lua does not have visibility rules, but using a character like an underscore helps make

private access stand out.

 A module’s name should match the name of the object it expor ts.

Animation Easing
Animation easing defines a “direction” and style in which a tween will occur.

Style Description

Linear Moves at a constant speed.

Sine Movement speed is determined by a sine wave.

Back Tween movement backs into or out of place.

326 APPENDIX A: Roblox Basics

Style Description

Quad Eases in or out with quadratic interpolation.

Quart Similar to Quad but with a more emphasized start and/or finish.

Quint Similar to Quad but with an even more emphasized start and/or finish.

Bounce Moves as if the start or end position of the tween is bouncy.

Elastic Moves as if the object is attached to a rubber band.

Direction Description

In The tween will have less speed at its beginning and more speed toward its end.

Out The tween will have more speed at its beginning and less speed toward its end.

InOut In and Out on the same tween, with In at the beginning and Out taking effect
halfway through.

Possible Solutions to Exercises
The following are just some of the possible solutions to the exercises presented in each hour.

Your solution may end up being different.

Hour 1
Create a part that destroys whatever touches it.

Location and type: Part > Script

-- Destroys whatever touches the part

local lava = script.Parent

local function onTouch(partTouched)

 partTouched:Destroy()

-- Makes it so players will fall through the lava

 lava.CanCollide = false

end

lava.Touched:Connect(onTouch)

Possible Solutions to Exercises 327

H our 2

Exerc ise 1
Use code to turn a regular part into an NPC with a greeting and face.

Location and Type: Part > Script

-- Turns the parent into an NPC

local guideNPC = script.Parent

local message = "Don't fall in!"

local decal = Instance.new("Decal")

guideNPC.Transparency = 0.25

guideNPC.Dialog.InitialPrompt = message

guideNPC.Color = Color3.fromRGB(40, 0, 160)

decal.Parent = guideNPC

Exercise 2
Use code to create a new part instance at the center of the world, and give it a face and dialog.

Location and Type: ServerScriptService > Script

-- Creates an NPC at the center of the world

local newNPC = Instance.new("Part")

local message = "Don't fall in!"

local dialog = Instance.new("Dialog")

local decal = Instance.new("Decal")

dialog.InitialPrompt = message

dialog.Parent = newNPC

decal.Texture = "rbxassetid://494291269"

decal.Parent = newNPC

newNPC.Transparency = 0.25

newNPC.Color = Color3.fromRGB(40, 0, 160)

newNPC.Anchored = true

newNPC.Parent = w orkspace

328 APPENDIX A: Roblox Basics

Hour 3
Use a button to activate and deactivate a bridge.

Location and Type: Part > Script

-- Button activates bridge when touched

local button = script.Parent

local bridge = workspace.BridgePiece01 -- Locate the bridge

local function deactivateBridge()

 bridge.Transparency = 1

 bridge.CanCollide = false

end

local function onTouch()

 bridge.Transparency = 0

 bridge.CanCollide = true

-- Give just enough time to cross

 wait(3.0)

 deactivateBridge()

end

button.Touc hed:Connect(onTouch)

Hour 4
Create a part that sets whatever touches it on fire.

Location and type: Part > Script

-- Adds fire instance to bonfire

local bonfire = script.Parent

local function onTouch(otherPart)

 local fire = Instance.new("Fire")

 f ire.Parent = otherPart

end

bonfi re.Touched:Connect(onTouch)

Hour 5
Create a part that checks for a humanoid, and if found, increases their walk speed.

Location and type: Part > Script

-- Sets walk speed of anyone who touches to 50

local ServerStorage = game:GetService("ServerStorage")

Possible Solutions to Exercises 329

local speedBoost = script.Parent

local function onTouch(otherPart)

 -- Looks for a humanoid and stores it

local character = otherPart.Parent

 local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

 -- Checks for Humanoid without speed boost

if humanoid and humanoid.WalkSpeed <= 16 then

-- Assumes you have a ParticleEmitter named SpeedParticles

local speedParticles = ServerStorage.SpeedParticles:Clone()

 speedParticles.Parent = otherPart

 humanoid.WalkSpeed = 50

 wait(2.0)

 humanoid.WalkSpeed = 16

 speedParticles:Destroy()

end

end

sp eedBoost.Touched:Connect(onTouch)

Hour 6

Exercise 1
It’s important to start thinking about the ways in which your code can be improved in the

future. Here are a few ways some of the code you’ve worked with so far can be improved. Maybe

you can think of more:

 Players might get confused at still being able to use the ProximityPrompt while it’s on

cooldown.

 Some people might have low vision or color blindness. Adding sound while mining to let

them know it’s working might make the experience easier for them.

 People lose their points in between sessions.

 It’s a bit hard to tell if gold was received after mining. Maybe a particle or a sound would

make it more obvious what happened.

 In the speed part code solution, it only allows for players to go a certain speed. Maybe it

can be modified to allow players to go faster and faster each time they touch a part.

330 APPENDIX A: Roblox Basics

Exercise 2
Make anyone who touches a part gigantic (or tiny).

Location and type: Part > Script

-- Scales anyone who touches the part

local growthPotion = script.Parent

local originalColor = growthPotion.Color -- Get original color of part

local isEnabled = true

local COOLDOWN = 3.0

local SCALE_AMOUNT = 2.0 -- Change to decimal to shrink avatar

local function onTouch(otherPart)

 local otherPartParent = otherPart.Parent

 local humanoid = otherPartParent:FindFirstChildWhichIsA("Humanoid")

 if isEnabled == true and humanoid then

 isEnabled = false

 growthPotion.Color = Color3.fromRGB(7, 30, 39)

 local headScale = humanoid.HeadScale

 local bodyDepthScale = humanoid.BodyDepthScale

 local bodyWidthScale = humanoid.BodyWidthScale

 local bodyHeightScale = humanoid.BodyHeightScale

 headScale.Value = headScale.Value * SCALE_AMOUNT

 bodyDepthScale.Value = bodyDepthScale.Value * SCALE_AMOUNT

 bodyWidthScale.Value = bodyWidthScale.Value * SCALE_AMOUNT

 bodyHeightScale.Value = bodyHeightScale.Value * SCALE_AMOUNT

 wait(COOLDOWN)

 isEnabled = true

 growthPotion.Color = originalColor

 end

end

gro wthPotion.Touched:Connect(onTouch)

Hour 7
For this solution, it’ll be assumed that players can harvest logs and gold ore, so both will be

reflected in the harvesting and leaderboard scripts.

Possible Solutions to Exercises 331

Use a part or a mesh as a tree, and add a custom attribute:

 Name: ResourceType

 Type: String

 Value: Logs

Campfire Script
Location and type: ServerScriptService > Script

local ProximityPromptService = game:GetService("ProximityPromptService")

-- How long each log lasts

local BURN_DURATION = 3

local function onPromptTriggered(prompt, player)

 if prompt.Enabled and prompt.Name == "AddFuel" then

local playerstats = player.leaderstats

 local logs = playerstats.Logs

 if logs.Value > 0 then

 logs.Value -= 1

local campfire = prompt.Parent

 local fire = campfire.Fire

 local currentFuel = campfire:GetAttribute("Fuel")

 campfire:SetAttribute("Fuel", currentFuel + 1)

 if not fire.Enabled then

 fire.Enabled = true

while campfire:GetAttribute("Fuel") > 0 do

local currentFuel = campfire:GetAttribute("Fuel")

 campfire:SetAttribute("Fuel", currentFuel - 1)

 wait(BURN_DURATION)

 end

 fire.Enabled = false

end

end

end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

332 APPENDIX A: Roblox Basics

Leaderboard Script
Location and type: ServerScriptService > Script

local Players = game:GetService("Players")

local function statsSetup(player)

 local leaderstats = Instance.new("Folder")

 leaderstats.Name = "leaderstats"

 leaderstats.Parent = player

local gold = Instance.new("IntValue")

 gold.Name = "Gold"

 gold.Value = 0

 gold.Parent = leaderstats

local logs = Instance.new("IntValue")

 logs.Name = "Logs"

 logs.Value = 5

 logs.Parent = leaderstats

end

Players.PlayerAdded:Connect(statsSetup)

Harvesting Script
Location and type: ServerScriptService > Script

local ProximityPromptService = game:GetService("ProximityPromptService")

local DISABLED_DURATION = 10

local function onPromptTriggered(prompt, player)

 local node = prompt.Parent

 local resourceType = node:GetAttribute("ResourceType")

 if resourceType and prompt.Enabled then

 prompt.Enabled = false

 node.Transparency = 0.8

local leaderstats = player.leaderstats

 local resourceStat = leaderstats:FindFirstChild(resourceType)

 resourceStat.Value += 1

 wait(DISABLED_DURATION)

 prompt.Enabled = true

 node.Transparency = 0

end

end

ProximityPromptService.PromptTriggered:Connect(onPromptTriggered)

Possible Solutions to Exercises 333

Hour 8

Exercise 1
Create a hit box for a campfire, and do damage over time to anyone who touches it.

Location and type: Part > Script

-- Does damage over time to anyone who touches hitBox

local hitBox = script.Parent

local BURN_DURATION = 3

local DAMAGE_PER_TICK = 10

local enabled = true

local function onTouch(otherPart)

 local otherPartParent = otherPart.Parent

 local humanoid = otherPartParent:FindFirstChildWhichIsA("Humanoid")

 if humanoid and enabled == true then

 enabled = false

for burnCount = 0 , BURN_DURATION, 1 do

 humanoid.Health = humanoid.Health - DAMAGE_PER_TICK

 wait(1.0)

 end

 enabled = true

 end

end

hitBox.Touched:Connect(onTouch)

Exercise 2
Here’s a few ways loops can be used:

 Day/night cycles: You can use a while loop to cycle through the time of day. There are

lots of existing tutorials that can help you if you want to try!

 Seasonal cycles: Similar to day time cycles. Inside of the while loop, you can trigger envi-

ronmental changes for each season.

 Applying changes to multiple objects: Loops can be used to go through a bunch of

objects and make updates. For example, you can change the appearance of a number of

objects to make seasonal cycles like the one previously mentioned.

 Creating rounds and lobbies for games: Some experiences use a round-based structure to

control when a game starts and to wait for players.

334 APPENDIX A: Roblox Basics

 Creating a vanishing staircase or bridge: Loops can make objects continuously reappear

or disappear.

 Weapon cooldowns: Control how long spells and skills need to be recharged between uses.

You could use wait(), but loops give you greater control.

 Making objects move back and forth: It could be an NP C that walks on a set path or a

platform that slides from point A to point B.

Hour 9
Create a script that changes the appearance of a number of parts. This example shows a pine

tree going from normal green to snowy white.

Location and type: ServerScriptService > Script

local treeFolder = workspace.Trees

local trees = treeFolder:GetChildren()

for index, tree in ipairs(trees) do

local leaves = tree:GetChildren()

 for index, value in ipairs(leaves) do

if value:isA("BasePart") then

 value.Color = Color3.fromRGB(129, 157, 146)

 -- Add a wait if you want to watch it change

wait(0.005)

else

 print("Not a BasePart")

 end

end

end

Hour 10
Assign newcomers to either “red” or “blue” as they join and print the resulting teams.

Location and type: SeverScriptService > Script

Players = game:GetService("Players")

local AssignRed = true

local teamAssigments = {

}

local function printTeamAssignments()

 print("Teams are:")

Possible Solutions to Exercises 335

for player, team in pairs(teamAssigments) do

 print(player.name .. " is on " .. team .. " team")

 end

end

local function assignTeam(newPlayer)

 local name = newPlayer.Name

 print("hello " .. name)

 if AssignRed == true then

 teamAssigments[newPlayer] = "Red"

 AssignRed = false

else

 teamAssigments[newPlayer] = "Blue"

 AssignR ed = true

end

 printTeamAssignments()

end

Players.PlayerAdded:Connect(assignTeam)

Hour 11

Leaderstat Code for the Try It Yourself
The following script can be used to set up a leaderboard for use with the Try It Yourself if you

don’t have one set up already.

Script Name: PlayerStats

Location and type: ServerScriptService > Script

local Players = game:GetService("Players")

local function statsSetup(player)

 local leaderstats = Instance.new("Folder")

 leaderstats.Name = "leaderstats"

 leaderstats.Parent = player

local gold = Instance.new("IntValue")

 gold.Name = "Gold"

 gold.Value = 40

 gold.Parent = leaderstats

local logs = Instance.new("IntValue")

 logs.Name = "Logs"

 logs.Value = 5

336 APPENDIX A: Roblox Basics

 logs.Parent = leaderstats

end

Players.PlayerAdded:Connect(statsSetup)

Exercise
The goal of this exercise was to retrieve information about the shop item from the server instead

of hard coding it as shown in the Try It Yourself earlier in the hour.

1. Add a new RemoteFunction named GetShopInfo (see Figure A.1).

FIGURE A.1
Add an additional RemoteFunction.

2. Add attributes to the items you want to sell for StatName, Price, and NumberToGive (see

Figure A.2).

FIGURE A.2
Each item should have its own folder.

Possible Solutions to Exercises 337

Highlighted code is for the exercise; nonhighlighted was from the earlier Try It Yourself.

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

local checkPurchase = ReplicatedStorage:WaitForChild("CheckPurchase")

local getShopInfo = ReplicatedStorage:WaitForChild("GetShopInfo")

local shopItems = ServerStorage.ShopItems

local function confirmPurchase(player, purchaseType)

 local leaderstats = player.leaderstats

 local currentGold = leaderstats:FindFirstChild("Gold")

 local purchaseType = shopItems:FindFirstChild(purchaseType)

 local resourceStat =
 leaderstats:FindFirstChild(purchaseType:GetAttribute("StatName"))

 local price = purchaseType:GetAttribute("Price")

 local numberToGive = purchaseType:GetAttribute("NumberToGive")

 local serverMessage

 if currentGold.Value >= price then

 currentGold.Value = currentGold.Value - price

 resourceStat.Value += numberToGive

 serverMessage = ("Purchase Successful!")

 elseif currentGold.Value < price then

 serverMessage = ("Not enough Gold")

 else

 serverMessage = ("Didn't find necessary info")

 end

return serverMessage

end

-- New For Exercise

local function getButtonInfo(player, purchaseType)

 local purchaseType = shopItems:FindFirstChild(purchaseType)

 local numberToGive = purchaseType:GetAttribute("NumberToGive")

 local statName = purchaseType:GetAttribute("StatName")

 local price = purchaseType:GetAttribute("Price")

 return numberToGive, statName, price

end

checkPurchase.OnServerInvoke = confirmPurchase

getShopInfo.OnServerInvoke = getButtonInfo -- New For Exercise

338 APPENDIX A: Roblox Basics

ButtonManager

Location and type: StarterGui > ShopGui (ScreenGui) > Buy3Logs (TextButton) > ButtonMan-

ager (LocalScript)

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local checkPurchase = ReplicatedStorage:WaitForChild("CheckPurchase")

local getShopInfo = ReplicatedStorage:WaitForChild("GetShopInfo")

local button = script.Parent

local purchaseType = button:GetAttribute("PurchaseType")

-- New for Exercise

local numberToGive, statName, price = getShopInfo:InvokeServer(purchaseType)

local defaultText = "Buy " .. numberToGive .. statName .. " for " .. price

button.Text = defaultText

local COOLDOWN = 2.0

local function onButtonActivated()

 local confirmationText = checkPurchase:InvokeServer(purchaseType)

 button.Text = confirmationText

 button.Selectable = false

 wait(COOLDOW N)

 bu tton.Text = defaultText

 button.Selectable = true

end

button.Activated:Connect(onButtonActivated)

Hour 12
For this exercise, you were asked to announce to all clients what map was picked.

The complete setup is shown in Figure A.3.

Possible Solutions to Exercises 339

FIGURE A.3
In the complete setup, notice that only one RemoteEvent is needed.

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local mapPicked = ReplicatedStorage:WaitForChild("MapPicked")

local ServerStorage = game:GetService("ServerStorage")

local mapsFolder = ServerStorage:WaitForChild("Maps")

local currentMap = nil

local function announceMap(player, chosenMap)

 print("server says".. chosenMap)

 mapPicked:FireAllClients(chosenMap)

end

local function onMapPicked(player, chosenMap)

 local mapChoice = mapsFolder:FindFirstChild(chosenMap)

 if mapChoice then

if currentMap then

 currentMap:Destroy()

end

 currentMap = mapChoice:Clone()

 currentMap.Parent = workspace

340 APPENDIX A: Roblox Basics

else

 print("Map choice not found")

 end

end

mapPicked.OnServerEvent:Connect(announceMap)

mapPicked.OnServerEvent:Connect(onMapPicked)

DisplayMapManager

Location and type: StarterGui > Frame > LocalScript

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local nextMap = ReplicatedStorage:WaitForChild("MapPicked")

local frame = script.Parent

local displayMap = frame.DisplayMap

local DISPLAY_DURATION = 4.0

local function onMapPicked(chosenMap)

 displayMap.Text = chosenMap

 frame.V isible = true

 wait(DISPLAY_DURATION)

 frame.Visible = false

end

nextMap.OnClientEvent:Connect(onMapPicked)

Hour 13
For this exercise, you were asked to take something you’ve worked with before—trap parts—and

convert them to module scripts. This module could be extended not only to take all of a human-

oid’s health, but also to create traps that take partial health or even heal the player.

PickupManager

Location and type: ServerStorage > ModuleScript

local PickupManager = {}

function PickupManager.modifyHealth(part)

 local character = part.Parent

 local humanoid = character:FindFirstChild("Humanoid")

 if humanoid then

 humanoid.Health = 0

end

end

return PickupManager

Possible Solutions to Exercises 341

OnTouch

Location and type: Part > Script

local ServerStorage = game:GetService("ServerStorage")

local PickupManager = require(ServerStorage.PickupMana ger)

local trap = script.Parent

local function onTouch(part)

 PickupManager.modifyHealth(part)

end

trap.Touched:Connect(onTouch)

Hour 14
For this exercise, you were asked to teleport players from one part to another part.

Jump pad starting code

Name: JumpPadManager

Location and type: ServerStorage > ModuleScript

local JumpPadManager = {}

-- Local because they're not needed outside of this ModuleScript

local JUMP_DURATION = 1.0

local JUMP_DIRECTION = Vector3.new(0, 6000, 0)

-- Not local because the jump pads need these functions

function JumpPadManager.jump(part)

 local character = part.Parent

 local humanoid = character:FindFirstChildWhichIsA("Humanoid")

 if humanoid then

local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 local vectorForce = humanoidRootPart:FindFirstChild("VectorForce")

 if not vectorForce then

 vectorForce = Instance.new("VectorForce")

 vectorForce.Force = JUMP_DIRECTION

 vectorForce.Attachment0 = humanoidRootPart.RootRigAttachment

 vectorForce.Parent = humanoidRootPart

 wait(JUMP_DURATION)

 vectorForce:Destroy()

 end

end

end

return JumpPadManager

342 APPENDIX A: Roblox Basics

Name: OnTouchManager

Location and type: Part > Script

local ServerStorage = game:GetService("ServerStorage")

local JumpPadManager = require(ServerStorage.JumpPadM anager)

local jumpPad = script.Parent

local function onTouch(otherPart)

 JumpPadManager.jump(otherPart)

end

jumpPad.Touched:Connect(onTouch)

Exercise
For this exercise, you were asked to teleport players from one part to another part.

Set up: Create a part named Origin and a part named Destination.

Script name: OnTouchTeleport

Location and type: Part > Script

local ServerStorage = game:GetService("ServerStorage")

local origin = script.Parent

local destination = workspace.Destination

-- Teleports player from origin part to destination part

local function teleportPlayer(otherPart)

 local character = otherPart.Parent

 local humanoid = character:FindFirstChild("Hum anoid")

 if humanoid then

 character:SetPrimaryPartCFrame(CFrame.new(destination.Position))

end

end

origin.Touched:Connect(teleportPlayer)

Hour 15
Create a SpotLight that transitions from one color to another indefinitely. This particular solu-

tion goes back and forth between the light’s original color and the one set in the goal table. The

EasingStyle, Bounce, gives a slight flickering effect that would make this same script good for

things like campfires.

Possible Solutions to Exercises 343

ScriptName: SpotLightManager

Location and type: Part > Script

Set up: Script assumes there is a SpotLight inside of a part.

local TweenService = game:GetService("TweenService")

local lightModel = script.Parent

local spotLight = lightModel:FindFirstChild("SpotLight")

local tweenInfo = TweenInfo.new(

 3.0,

 Enum.EasingStyle.Bounce,

 Enum.EasingDirection.InOut,

 -1,

 true

)

l ocal goal = {}

goal.Color = Color3.fromRGB(255, 0, 255)

local spotLightTween = TweenService:Create(spotLight, tweenInfo, goal)

spotLightTween:Play()

Hour 16
Take a dictionary storing how many kills, deaths, and assists participants have in a match and

sort the dictionary according to who has the most kills. If tied, prioritize how many assists they

have.

Location and type: ServerScriptService > Script

-- Example dictionary

local playerKDA = {

 Ana = {kills = 0, deaths = 2, assists = 20},

 Beth = {kills = 7, deaths = 5, assists = 0},

 Cat = {kills = 7, deaths = 0, assists = 5},

 Dani = {kills = 5, deaths = 20, assists = 8},

 Ed = {kills = 1, deaths = 1, assists = 8},

}

-- Insert into array

local sortedKDA = {}

for key, value in pairs(playerKDA) do

 table.insert(sortedKDA, {playerName = key, kills = value.kills, deaths = value.
deaths, assists = value.assists})

end

344 APPENDIX A: Roblox Basics

-- Print at this point if you need to troubleshoot

print("Original array:")

print(sortedKDA)

-- Sort first by most kills, then by most assists

local function sortByKillsAndAssists(a,b)

 return (a.kills > b.kills) or (a.kills == b.kills and a.assists > b.assists)

end

table.sort(sortedKDA, sortByKillsAndAssists)

print("Sorted array:")

print(sortedKDA)

Hour 17
Give people gold each time they join. This version just prints each person’s current wealth in the

Output window, but the code can be expanded to update a leaderboard or GUI.

Location and type: ServerScriptService > Script

local DataStoreService = game:GetService("DataStoreService")

local goldDataStore = DataStoreService:GetDataStore("Gold")

local Players = game:GetService("Players")

local GOLD_ON_JOIN = 5.0

local function onPlayerAdded(player)

 local playerKey = "Player_" .. player.UserId

 -- Use UpdateAsync to get the old value, and send an updated value.

local updateSuccess, errorMessage = pcall(function ()

 goldDataStore:UpdateAsync(playerKey, function (oldValue)

 local newValue = oldValue or 0

 newValue = newValue + GOLD_ON_JOIN

return newValue

 end)

 end)

 -- Check to see if there was any errors

if not updateSuccess then

 print(errorMessage)

end

-- Use a pcall() when accessing data as well

local getSuccess, currentGold = pcall(function()

 return g oldDataStore:GetAsync(playerKey)

 end)

Possible Solutions to Exercises 345

if getSuccess then

 print(player.Name .. " has " .. currentGold)

 end

end

Players.PlayerAdded:Connect(onPlayerAdded)

Hour 18
Add an Announcements module that prints “Round Starting” and “Round Ending” at the begin-

ning and end of the round.

Announcements Module

Location and Type: ServerStorage > ModuleScripts > ModuleScript

local Announcements = {}

-- Services

local Players = game:GetService("Players")

local ServerStorage = game:GetService("ServerStorage")

local events = ServerStorage.Events

local roundEnd = events.RoundEnd

local roundStart = events.RoundStart

local function onRoundStart()

 print("Match starting")

end

local function onRoundEnd()

 print("Match over")

end

roundStart.Event:Connect(onRoundStart)

roundEnd.Event:Connect(onRoundEnd)

return Announcements

Updated RoundManager

-- Services

local ServerStorage = game:GetService("ServerStorage")

local Players = game:GetService("Players")

-- Module Scripts

local moduleScripts = ServerStorage.ModuleScripts

local playerManager = require(moduleScripts.PlayerManager)

346 APPENDIX A: Roblox Basics

local announcements = require(moduleScripts.Announcements)

local roundSettings = require(moduleScripts.RoundSettings)

-- Events

local events = ServerStorage.Events

local roundStart = events.RoundStart

local roundEnd = events.RoundEnd

while true do

repeat

 wai t(roundSettings.intermissionDuration)

 until Players.NumPlayers >= roundSettings.minimumPeople

 roundStart:Fire()

 wait(roundSettings.roundDuration)

 roundEnd:Fire()

end

Hour 19
You were asked to create a pass that could be purchased by users. The actual functionality of

your pass will be unique, so no solution is given here.

Hour 20
Create an NPC class that prints out its own name.

local Person = {}

 Person.__index = Person

function Person.new(name)

 local self = {}

 setmetatable(sel f, Person)

 self.name = name

 return self

end

function Person:sayName()

 print("My name is", self.name)

end

local sam = Person.new("Sam")

sam:sayName() -- Prints "My name is Sam"

Possible Solutions to Exercises 347

Hour 21
Imagine you’re creating an RPG world where you want characters to be able to take on different

jobs. Create a parent job class and two different child classes to represent roles people can take

on within the game.

local Job = {}

Job.__index = Job

function Job.new()

 local self = {}

 setmetatable(self, Job)

 self.experience = 0

return self

end

function Job:gainExperience(experience)

 self.experience = experience

end

function Job:attack()

 print("I attack the enemy!")

end

local Warrior = {}

Warrior.__index = Warrior

setmetatable(Warrior, Job)

function Warrior.new()

 local self = Job.new()

 setmetatable(self, Warrior)

 self.stamina = 5

return self

end

function Warrior:attack()

 if self.stamina > 0 then

 print("I swing my weapon at the enemy!")

 self.stamina -= 1

else

 print("I am too tired to attack")

 end

end

local Mage = {}

Mage.__index = Mage

setmetatable(Mage, Job)

348 APPENDIX A: Roblox Basics

function Mage.new()

 local self = Job.new()

 setmetatable(self, Mage)

 self.mana = 10

return self

end

function Mage:attack()

 if self.mana > 0 then

 print("I cast a spell at the enemy!")

 self.mana -= 1

else

 print("I am out of mana")

 end

end

local warrior = Warrior.new()

print("Warrior experience", warrior.experience)

print("Warrior stamina:", warrior.stamina)

print("Warrior mana:", warrior.mana) -- Should be nil

warrior:attack()

warrior:gainExperience(1)

print("Warrior experience", warrior.experience) -- Should be 1 greater

print("Warrior stamina:", warrior.stamina) -- Should be 1 lower

print("Warrior mana:", warrior.mana) -- Should be nil

local mage = Mage.new()

print("Mage experience:", mage.experience)

print("Mage stamina:", mage.stamina) -- Should be nil

print("Mage mana:", mage.mana)

mage:atta ck()

mage:gainExperience(1)

print("Mage experience:", mage.experience) -- Should be 1 greater

print("Mage stamina:", mage.stamina) -- Should be nil

print("Mage mana:", mage.mana) -- Should be 1 lower

Hour 22
Create a player detector. Use a ray to detect when a player is near a part.

Location and type: Part > Script

local Players = game:GetService("Players")

local detector = script.Parent

local DETECTION_RANGE = 20

local DETECTION_INTERVAL = 0.25

Possible Solutions to Exercises 349

local DETECTED_COLOR = Color3.new(0, 1, 0)

local NOT_DETECTED_COLOR = Color3.new(1, 0, 1)

local function findCharacter(character)

 if character then

local humanoidRootPart = character:FindFirstChild("HumanoidRootPart")

 if humanoidRootPart then

local toCharacter = humanoidRootPart.Position - detector.Position

 local toCharacterWithRange = toCharacter.Unit * DETECTION_RANGE

 local raycastResult = game.Workspace:Raycast(detector.Position,
 toCharacterWithRange)

 if raycastResult then

local hitPart = raycastResult.Instance

 if hitPart:IsDescendantOf(character) then

return true

 end

end

end

end

return false

end

local function checkForPlayers()

 for _, player in ipairs(Players:GetPlayers()) do

local character = player.Character

 if findCharacter(character) then

return true

 end

end

return false

end

detector.Color = NOT_DETECTED_COLOR

while wait(DETECTION_INTERVAL) do

if checkForPlayers() then

 detector.Color = DETECTED_COLOR

else

 detector.Color = NOT_DETECTED_COLOR

end

end

350 APPENDIX A: Roblox Basics

Hour 23
You were asked to update the existing code for the Try It Yourself and add a second ploppable

object. The code only needs to get up to the point where users can drag a ghost object around.

Location and type: StarterPlayer > StarterPlayerScripts > LocalScript

local Players = game:GetService("Players")

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local RunService = game:GetService("RunService")

local player = Players.LocalPlayer

local camera = game.Workspace.Camera

local mouse = player:GetMouse()

local playerGui = player:WaitForChild("PlayerGui")

local plopScreen = playerGui:WaitForChild("ScreenGui")

local plopChairButton = plopScreen:WaitForChild("PlopChairButton")

local plopTableButton = plopScreen:WaitForChild("PlopTableButton")

local ghostObjects = ReplicatedStorage:WaitForChild("GhostObjects")

local ghostChair = ghostObjects:WaitForChild("GhostChair")

local ghostTable = ghostObjects:WaitForChild("GhostTable")

local events = ReplicatedStorage.Events

local plopEvent = events:WaitForChild("PlopEvent")

local raycastParameters = RaycastParams.new()

raycastParameters.FilterType = Enum.RaycastFilterType.Whitelist

raycastParameters.FilterDescendantsInstances = { game.Workspace.Surfaces }

local plopCFrame = nil

local activeGhost = nil

local PLOP_MODE = "PLOP_MODE"

local RAYCAST_DISTANCE = 200

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin,
 mouseRay.Direction * RAYCAST_DISTANCE, raycastParameters)

 if raycastResults then

 plopCFrame = CFrame.new(raycastResults.Position)

 activeGhost:SetPrimaryPartCFrame(plopCFrame)

 activeGhost.Parent = game.Workspace

else

 activeGhost.Parent = ReplicatedStorage

end

end

Possible Solutions to Exercises 351

local function onPlopButtonActivated()

 plopChairButton.Visible = false

 plopTableButton.Visible = false

 RunService:BindToRenderStep(PLOP_MODE, Enum.RenderPriority.Camera.Value + 1,
onRenderStepped)

end

local function onPlopChairButtonActivated()

 activeGhost = ghostChair

 onPlopButtonActivated()

end

local function onPlo pTableButtonActivated()

 activeGhost = ghostTable

 onPlopButtonActivated()

end

plopChairButton.Activated:Connect(onPlopChairButtonActivated)

plopTableButton.Activated:Connect(onPlopTableButtonActivated)

Hour 24
Take the plopping code you have so far and add the ability for users to rotate the objects as they

place them.

Location and type: StarterPlayer > StarterPlayerScripts > LocalScript

local ContextActionService = game:GetService("ContextActionService")

local Players = game:GetService("Players")

local ReplicatedStorage = game:GetService("ReplicatedStorage")

local RunService = game:GetService("RunService")

local player = Players.LocalPlayer

local camera = game.Workspace.Camera

local mouse = player:GetMouse()

local playerGui = player:WaitForChild("PlayerGui")

local plopScreen = playerGui:WaitForChild("ScreenGui")

local plopButton = plopScreen:WaitForChild("PlopButton")

local raycastParameters = RaycastParams.new()

raycastParameters.FilterType = Enum.RaycastFilterType.Whitelist

raycastParameters.FilterDescendantsInstances = { game.Workspace.Surfaces }

local ghostObjects = ReplicatedStorage:WaitForChild("GhostObjects")

local ghostChair = ghostObjects:WaitForChild("GhostChair")

352 APPENDIX A: Roblox Basics

local events = ReplicatedStorage:WaitForChild("Events")

local plopEvent = events:WaitForChild("PlopEvent")

local plopCFrame = nil

local rotationAngle = 0

local PLOP_CLICK = "PLOP_CLICK"

local PLOP_ROTATE = "PLOP_ROTATE"

local PLOP_MODE = "PLOP_MODE"

local RAYCAST_DISTANCE = 200

local ROTATION_STEP = 45

local function onRenderStepped()

 local mouseRay = camera:ScreenPointToRay(mouse.X, mouse.Y, 0)

 local raycastResults = game.Workspace:Raycast(mouseRay.Origin,
 mouseRay.Direction * RAYCAST_DISTANCE, raycastParameters)

 if raycastResults then

local rotationAngleRads = math.rad(rotationAngle)

 local rotationCFrame = CFrame.Angles(0, rotationAngleRads, 0)

 plopCFrame = CFrame.new(raycastResults.Position) * rotationCFrame

 ghostChair:SetPrimaryPartCFrame(plopCFrame)

 ghostChair.Parent = game.Workspace

 else

 plopCFrame = nil

 ghostChair.Parent = ReplicatedStorage

end

end

local function onMouseInput(actionName, inputState)

 if inputState == Enum.UserInputState.End then

 ghostChair.Parent = ReplicatedStorage

 RunService:UnbindFromRenderStep(PLOP_MODE)

 ContextActionService:UnbindAction(PLOP_CLICK)

 ContextActionService:UnbindAction(PLOP_ROTATE)

 plopButton.Visible = true

 rotationAngle = 0

if plopCFrame then

 plopEvent:FireServer(plopCFrame)

end

end

end

local function onRotate(actionName, inputState)

 if inputState == Enum.UserInputState.End then

 rotationAngle += ROTATION_STEP

if rotationAngle >= 360 then

 rotationAngle -= 360

end

Possible Solutions to Exercises 353

end

end

local function onPlopButtonActivated()

 plopButton.Visible = false

 RunService:BindToRenderStep(PLOP_MODE,
 Enum.RenderPriority.Camera.Value + 1, onRenderStepped)

 ContextActionService :BindAction(PLOP_CLICK, onMouseInput, false,
 Enum.UserInputType.MouseButton1)

 ContextActionService:BindAction(PLOP_ROTATE, onRotate, false, Enum.KeyCode.R)

end

plopButton.Activated:Connect(onPlopButtonActivated)

This page intentionally left blank

Symbols

[] (brackets), in key-value pairs,

128-129

: (colon)

accessing functions, 68

for function notation, 281

{ } (curly brackets)

for arrays, 113

for dictionaries, 128

. (dot operator)

for dictionary values, 129-130

for embedded objects, 47

object hierarchy and, 18-19

properties and, 20

== (double equal sign) operator,

58

= (equal sign), variable values, 22

>= (greater than or equal to)

operator, 59

__index, naming classes, 260

"" (quotation marks), in key-value

pairs, 128

3D Editor, 3

3D space

CFrames, 189

offsetting, 191

Position property, 190

rotating with, 191

teleporting exercise,

196-197, 341-342

models, positioning, 192

relative jumps example,

194-195

world versus local coor-

dinates, 193-194

X, Y, Z coordinates, 187-189

A

abstractions, 183-184

accessing

Data Stores, 220

functions, 68

ModuleScripts, 177-178,

182-183

Index

adding356

adding

class functions, 263-268

class properties, 261-263

items to arrays, 114

key-value pairs to dic-

tionaries, 130-132

algorithms

for sorting

alphabetically, 210-211

arrays, 210

ascending, 210-212

descending, 212-213

dictionaries, 213-215,

218, 343

mixed data types, 212

multiple pieces of infor-

mation, 216-218, 343

numerically, 211-212

purpose of, 209-210

alphabetical sorts, 210-211

anchoring blocks, 10

and operator, 62

animal sounds example (poly-

morphism), 279-282

animation

CFrames, LoadCharacter()

function versus, 241

easing, 325

tweens

chaining, 205-206

changing colors, 199-200,

208, 342

elevator doors example,

202-205

setting parameters for,

201-202

TweenService, 199

anonymous functions, 52-55, 328

arguments

definition of, 43

mismatched, 51-52

multiple, 45-49

value types, 86

arithmetic operators, 324

arrays

adding items, 114

converting dictionaries to,

213-215

creating, 113-114

finding and removing all

specific values, 123

indexes, 113

finding from values, 121

retrieving specific values,

114-115

printing with ipairs() function,

115

purpose of, 113

removing items, 122

searching part of, 123-124

sorting, 210

alphabetically, 210-211

ascending, 210-212

descending, 212-213

mixed data types, 212

by multiple pieces of infor-

mation, 216-218, 343

numerically, 211-212

voting simulator, 133-142

ascending sorts, 210-212

assets, organizing, 231-234

assigning variable values, 41

attributes, 64-67

checking values, 85

code reusability and, 79

autocomplete feature, 20

B

Baseplate template, 3

BindableEvents, 230

BindAction() function, 314

BindToRenderStep() function,

303-305

blacklists versus whitelists in ray-

casting, 310

blocks, anchoring, 10

boolean data type, 22, 36

brackets ([]), in key-value pairs,

128-129

break keyword, 110

bridges

reactivating, 38-40

solidifying, 42, 328

vanishing, 34-36

burning fire, 93-97

buttons

for placing objects, creating,

302-303

testing, 170

viewing/hiding, 320

buying items. See monetization;

Robux

coordinates in 3D space 357

C

calling functions, 32

with events, 33-36

parent functions, 282

camera, moving, 4, 321

camouflage raycasting example,

288-289

car class example

adding properties, 262-263

property inheritance, 275-277

case-sensitivity of keywords, 19

cashing out Robux, 243

CFrame.Angles() function, 191

CFrames, 189

LoadCharacter() function

versus, 241

offsetting, 191

Position property, 190

rotating with, 191

teleporting exercise,

196-197, 341-342

chaining tweens, 205-206

changing

gravity, 233

properties, 25

changing seasons exercise,

125-126, 334

child classes, 271-272

calling parent functions, 282

function inheritance, 278

inheritance setup, 272-274

multiple, 277

polymorphism, 278-282

property inheritance, 274-277

child objects, 18

searching, 223

classes. See also child classes;

parent classes

calling parent functions, 282

creating, 260-261, 270, 346

functions of, 263-268

inheritance, 271-272

of functions, 278

job roles exercise, 285,

347

multiple child classes,

277

of properties, 274-277

setup, 272-274

naming, 260

polymorphism, 278-282

properties of, 261-263

purpose of, 259

clients, 145

GUIs. See GUIs

RemoteEvent object, 161-162

client-to-client communi-

cation, 171

client-to-server communi-

cation, 165-170

server-to-all-clients com-

munication, 162-165

server-to-single-client com-

munication, 170-171

RemoteFunction object,

149-151

server/client divide, 149

store purchases, 151-158

cloning particle emitters, 100,

330-332

code organization with OOP, 259

collecting firewood, 100, 330-332

colon (:)

accessing functions, 68

for function notation, 281

color picker, 25

colors, changing, 25, 199-200,

208, 342

comments, 12

concatenation, 23

concatenation operator, 325

conditional structures, 57

elseif keyword, 62

else keyword, 63

if/then statements, 58-59

portals, creating, 63-70

configuring passes, 246-249

connect() function, 33

constants, 84

constructors, 260, 265

ContextActionService, 314-316,

320

control variables in for loops, 103,

111

converting dictionaries to arrays,

213-215

coordinates in 3D space

CFrames, 189

offsetting, 191

Position property, 190

rotating with, 191

teleporting exercise,

196-197, 341-342

relative jumps example,

194-195

world versus local, 193-194

X, Y, Z coordinates, 187-189

358 copying meshes

copying meshes, 78

countdowns, creating with

RemoteEvent object, 163-165

crown sales example, 248-255

curly brackets ({ })

for arrays, 113

for dictionaries, 128

custom leaderboards, 87

D

Damage Over Time (DoT),

111-112, 333

dance floor, creating, 92-93

Data Stores

accessing, 220

creating, 220

enabling, 219

limiting network calls, 225

unique key names, 224

updating, 220-228, 344

data types, 22, 27

in Lua, 322

in Roblox Studio, 323

debouncing

Humanoid objects, 73-75,

88-89, 330

with ProximityPrompts, 78-79

debugging

argument value types, 86

attribute values, 85

exercise, 88, 329

string debugging, 82-84

variable order and placement,

84

decals, inserting, 28-29, 327

descending sorts, 212-213

descriptions, 255

destroy() function, 18-19

detecting mouse input, 314-316

detector exercise, 295, 348

Developer Exchange Program,

243

Developer Products, 256

dictionaries

converting to arrays, 213-215

creating, 128

key-value pairs, 128

adding, 130-132

formatting keys, 128-129

removing, 130-131

unique keys, 130

value usage, 129-130

pairs() function, 132-133

purpose of, 127-128

sorting, 213-215, 218, 343

voting simulator, 133-142

direction parameter for ray-

casting, 289-290

distance, limiting for raycasting,

293

doors, creating for elevator,

202-205

DoT (Damage Over Time),

111-112, 333

dot operator (.)

for dictionary values, 129-130

for embedded objects, 47

object hierarchy and, 18-19

properties and, 20

double equal sign (==) operator,

58

doubling and halving variables, 85

DRY coding. See also OOP

abstractions, 183-184

purpose of, 183

E

easing in animation, 325

elevator doors, creating, 202-205

else keyword, 63

elseif keyword, 62

embedded objects, finding in

hierarchy, 47

enabling Data Stores, 219

end value in for loops, 103

engagement payouts, 256

equal sign (=), variable values, 22

error messages, 11-12

errors

list of, 228

string debugging, 82-84

event connections, order and

placement, 138

events

BindableEvents, 230

calling functions, 33-36

RemoteEvent object, 161-162

client-to-client communi-

cation, 171

client-to-server communi-

cation, 165-170

server-to-all-clients commu-

nication, 162-165

server-to-single-client com-

munication, 170-171

Touched, 34-35

359functions

exercises

animating color changes, 208,

342

anonymous functions, 55,

328

changing player speed, 72,

328

changing seasons, 125-126,

334

cloned particle emitters, 100,

330-332

collecting firewood, 100,

330-332

creating NPCs, 29, 327

debouncing, 88-89, 330

debugging, 88, 329

detector with raycasting, 295,

348

dictionary sorting, 218, 343

DoT (Damage Over Time),

111-112, 333

inserting decals, 28-29, 327

job roles, 285, 347

loops, 112, 333-334

map choice announcement,

172, 338-340

NPC person class, 270, 346

obstacle course, 14-15, 326

pass creation, 257, 346

placing objects, 311, 350

player announcements, 242,

345

price lists, 160, 336-338

rotating objects, 320, 351

solidifying bridges, 42, 328

solutions to, 326-351

team assignments, 143, 334

teleporting with CFrames,

196-197, 341-342

traps with ModuleScripts,

185, 340-341

updating player information,

228, 344

Explorer window, 3

explosion script, 9-11

F

false conditions, loops for, 98

files, saving, 13

filtering

lists, 7

objects for raycasting, 294

finding

all specific array values, 123

array indexes from values,

121

embedded objects in

hierarchy, 47

list items, 7

fire

burning, 93-97

collecting firewood, 100,

330-332

folders, modifying items

with for loops, 116-121

with ipairs() function, 116

for loops, 98, 101-102

default increment, 105

examples and exercises,

105-106, 112, 333-334

finding and removing all

specific array values, 123

generic, 115

i in, 111

numeric, 123-124

printing arrays, 115

searching part of arrays,

123-124

turning lights on/off, 116-121

values in, 102-105

formatting dictionary keys,

128-129

functions

accessing, 68

anonymous, 52-55, 328

arguments

definition of, 43

mismatched, 51-52

multiple, 45-49

value types, 86

BindAction(), 314

BindToRenderStep(), 303-305

calling, 32

with events, 33-36

from parent classes, 282

CFrame.Angles(), 191

of classes, 263-268

connect(), 33

constructors, 260, 265

creating, 31-32

definition of, 31

destroy(), 18-19

GetAsync(), 220, 225

IncrementAsync(), 227

inheriting, 278

insert(), 114

360 functions

ipairs()

finding array indexes, 121

with folders, 116

pairs versus, 142

printing arrays, 115

LoadCharacter(), 241

as methods, 33

in ModuleScripts

accessing, 177-178

adding, 175-176

scope, 176

MoveTo(), 264

multiple in scripts, 41

named, 52-55, 328

naming conventions, 32, 35,

69

new(), 26

order and placement, 36-40

paint(), 44-48

pairs()

with dictionaries, 132-133

ipairs() versus, 142

parameters

creating, 43-45

definition of, 43

maximum, 54

mismatched, 51-52

multiple, 45-49

pcall(), 225

polymorphism, 278-282

print(), 7-9, 23, 43

for debugging, 82-84

RemoteFunction object,

149-151, 159

remove(), 122

require(), 177

return values

definition of, 49

multiple, 50, 80

nil, 51

scope, 33, 37-38

SetAsync(), 220, 225

table.sort(), 210-213

tostring(), 212

UnbindAction(), 314

UpdateAsync(), 226-227

wait(), 42-43, 201

default value, 86

with while loops, 92-93

workspace:Raycast()

camouflage example,

288-289

direction parameter,

289-290

limiting distance, 293

setup, 287-288

G

game loops

BindableEvents in, 230

creating, 231-240

for player announcements,

242, 345

purpose of, 229-230

gameplay, moving camera in, 321

generic for loops, 115

GetAsync() function, 220, 225

global coordinates, local versus,

193-194

global variables, 22, 41

glowing lights, 120

goal value in for loops, 103

gold ore script (mining simulator),

79-82

gold ore setup (mining simulator),

78-79

graphical user interfaces. See

GUIs

gravity, changing, 233

greater than or equal to (>=)

operator, 59

grouping parts, 166, 192

GUIs (graphical user interfaces)

creating, 106-109, 146-148,

335

customizing, 147

moving, 154

purpose of, 146

script placement, 148

H

Hello World! script, 7-9

hiding buttons, 320

hierarchy (of objects), 18

finding embedded objects, 47

instances, 26

IntValue objects, 77

naming conventions, 24

properties, 20-22

changing, 25

data types for, 22, 27

variables and, 28

361LocalScript object

Humanoid objects, 59-61

changing player speed, 72,

328

debouncing, 73-75, 88-89,

330

VectorForce objects, adding,

179-182

HumanoidRootPart, MoveTo()

function and, 264

I

i as control variable, 111

if/then statements, 58-59

ignoring objects in raycasting,

290-293

IncrementAsync() function, 227

increment value in for loops,

103-105

indenting code, 32

indexes, 113

finding from values, 121

key-value pairs versus, 129

retrieving specific values,

114-115

in-game purchases. See moneti-

zation; Robux

inheritance, 271-272

of functions, 278

job roles exercise, 285, 347

multiple child classes, 277

overriding, 278-282

of properties, 274-277

setup, 272-274

insert() function, 114

inserting

decals, 28-29, 327

scripts into parts, 6-7

installing Roblox Studio, 1-2

instances, 26

IntValue objects, 77

ipairs() function

finding array indexes, 121

with folders, 116

pairs() versus, 142

printing arrays, 115

iterations, 105

J–K

job roles exercise, 285, 347

jump pads

creating, 178-183

relative jumps with, 194-195

keys

for moving camera, 321

uniqueness in Data Stores,

224

key-value pairs, 128

adding, 130-132

in Data Stores, accessing,

220

formatting keys, 128-129

indexes versus, 129

removing, 130-131

unique keys, 130

value usage, 129-130

keywords, 19-20

break, 110

case-sensitivity, 19

else, 63

elseif, 62

nil, 51

reserved names, 322

return, 49-50

script, 20

type, 217

workspace, 19

L

leaderboards

creating, 75-77, 87

maximum number of stats, 87

value types, 86-87

leaderstats folder, 77

length operator, 325

lights

colors, changing via tweens,

208, 342

glowing, 120

SpotLight objects, 117

turning on/off, 116-121

limiting

distance for raycasting, 293

network calls, 225

lists, filtering, 7

LoadCharacter() function, 241

load times for scripts, 109

local object coordinates, world

versus, 193-194

LocalScript object, 148, 154-155

362 local variables

local variables, 22, 184

logging in to Roblox Studio, 2

logical operators, 62-63, 324

loops

break keyword, 110

exercises, 112, 333-334

for false conditions, 98

for, 98, 101-102

default increment, 105

examples, 105-106

finding and removing all

specific array values,

123

generic, 115

i in, 111

numeric, 123-124

printing arrays, 115

searching part of arrays,

123-124

turning lights on/off,

116-121

values in, 102-105

game loops

BindableEvents in, 230

creating, 231-240

for player announcements,

242, 345

purpose of, 229-230

nested, 109-110

repeat until, 237

while, 91-92

with ProximityPrompts,

93-97

scope, 98

with wait() function, 92-93

Lua, 1

arrays

adding items, 114

converting dictionaries to,

213-215

creating, 113-114

finding and removing all

specific values, 123

indexes, 113-115, 121

printing with ipairs()

function, 115

purpose of, 113

removing items, 122

searching part of, 123-124

sorting, 210-213,

216-218, 343

voting simulator, 133-142

classes. See also child

classes; parent classes

calling parent functions,

282

creating, 260-261, 270,

346

function inheritance, 278

functions of, 263-268

inheritance, 271-274,

285, 347

multiple child classes, 277

naming, 260

polymorphism, 278-282

properties of, 261-263

property inheritance,

274-277

conditional structures, 57

elseif keyword, 62

else keyword, 63

if/then statements, 58-59

portals, creating, 63-70

data types, 22, 27, 322

debugging

argument value types, 86

attribute values, 85

exercise, 88, 329

string debugging, 82-84

variable order and

placement, 84

dot operator

for dictionary values,

129-130

for embedded objects, 47

object hierarchy and,

18-19

properties and, 20

functions. See functions

keywords, 19-20

loops

break keyword, 110

exercises, 112, 333-334

for false conditions, 98

for, 98, 101-106, 111,

115-124

game loops, 229-242, 345

nested, 109-110

repeat until, 237

while, 91-98

ModuleScripts

accessing in scripts,

177-178, 182-183

code structure, 174

creating, 234-237

DRY coding and, 183

functions and variables in,

175-176

jump pad example,

179-182

363monetization

naming, 174-175

placing, 174

purpose of, 173

scope in, 176

trap exercise, 185,

340-341

naming conventions, list of,

325

object hierarchy, 18

finding embedded objects,

47

instances, 26

IntValue objects, 77

naming conventions, 24,

260

properties, 20-22, 25, 27

variables and, 28

operators

arithmetic, 324

concatenation, 325

double equal sign (==), 58

greater than or equal to

(>=), 59

length, 325

logical, 62-63, 324

most common, 58

purpose of, 324

relational, 324

reserved names, 322

scripts, 6

autocomplete feature, 20

comments, 12

DRY coding, 183-184

error messages, 11-12

explosion example, 9-11

GUI script placement, 148

Hello World!, 7-9

indenting code, 32

inserting into parts, 6-7

load times, 109

for mining simulator, 79-82

multiple functions in, 41

opening, 13

order and placement in,

36-40

renaming, 18-19

saving, 13

strings, 7

variables

combining with strings, 23

creating, 22-25

naming conventions, 24

properties and, 28

updating, 23

M

map choice announcement

exercise, 172, 338-340

map pickers, creating, 166-170

meshes, copying, 78

messages

receiving on server, 317-319

sending to server, 316

methods. See functions

mining simulator, 75

gold ore script, 79-82

gold ore setup, 78-79

leaderboard, creating, 75-77

mismatched arguments/

parameters, 51-52

mixed data types, sorting, 212

models

creating, 192

grouping parts into, 166

positioning, 192

modifying folder items

with for loops, 116-121

with ipairs(), 116

ModuleScripts

accessing in scripts, 177-178,

182-183

code structure, 174

creating, 234-237

DRY coding and, 183

functions and variables in,

175-176

jump pad example, 179-182

naming, 174-175

placing, 174

purpose of, 173

scope in, 176

trap exercise, 185, 340-341

monetization. See also Robux

Developer Products, 256

engagement payouts, 256

ideas for, 256

passes

checking for ownership,

252-255

configuring, 246-249

creating, 244-245, 257,

346

crown sales example,

248-255

prompting purchases,

247-250

purpose of, 243

testing, 251-252

updating, 245

364 mouse input

mouse input, detecting, 314-316

mouse movements, tracking,

303-306

BindToRenderStep() function,

303-305

raycasting from mouse,

305-306

MoveTo() function, 264

moving

camera, 4, 321

GUIs, 154

multiple arguments, 45-49

multiple child classes, 277

multiple functions in scripts, 41

multiple parameters, 45-49

multiple pieces of information,

sorting by, 216-218, 343

multiple player interactions,

variables for, 70

multiple players, testing for,

138-139

multiple return values, 80

N

named functions, 52-55, 328

naming

classes, 260

ModuleScripts, 174-175

objects, 260

naming conventions, 24, 32, 35,

69

constants, 84

constructors, 265

list of, 325

nested loops, 109-110

network calls, 225

Network Simulator, testing for

multiple people, 138-139

new() function, 26

nil keyword, 51, 157

not operator, 62

NPCs (Non Playable Characters),

17

adding face to, 28-29, 327

creating, 23-25, 29, 327

exercise, 270, 346

number data type, 22

numbers, sorting with strings, 212

numeric for loops, 123-124

numerical sorts, 211-212

O

object hierarchy, 18

finding embedded objects, 47

instances, 26

IntValue objects, 77

naming conventions, 24

properties, 20-22

changing, 25

data types for, 22, 27

variables and, 28

object-oriented programming.

See OOP (object-oriented pro-

gramming)

objects

filtering for raycasting, 294

ignoring in raycasting,

290-293

naming, 260

placing, 297-298, 313. See

also 3D space

creating button for,

302-303

detecting mouse input,

314-316

with other object coor-

dinates, 190

previewing placement,

307-309

receiving messages on

server, 317-319

second object exercise,

311, 350

sending messages to

server, 316

setup, 298-301

tracking mouse

movements, 303-306

purpose of, 259

rotating

with CFrames, 191

while placing, 320, 351

obstacle course exercise, 14-15,

326

offsetting CFrames, 191

one-time purchases. See passes

OOP (object-oriented pro-

gramming)

classes. See also child

classes; parent classes

calling parent functions,

282

creating, 260-261, 270,

346

function inheritance, 278

functions of, 263-268

inheritance, 271-274,

285, 347

365placing

multiple child classes, 277

naming, 260

polymorphism, 278-282

properties of, 261-263

property inheritance,

274-277

purpose of, 259

code organization with, 259

objects

filtering for raycasting, 294

ignoring in raycasting,

290-293

naming, 260

placing. See placing,

objects

purpose of, 259

rotating, 191, 320, 351

opening

Output window, 5

scripts, 13

operating system requirements,

13

operators

arithmetic, 324

concatenation, 325

double equal sign (==), 58

greater than or equal to (>=),

59

length, 325

logical, 62-63, 324

most common, 58

purpose of, 324

relational, 324

organizing

assets, 231-234

with OOP, 259

variables, 305

or operator, 62

Output window, opening, 5

overriding inheritance, 278-282

P

paint() function, 44-48

pairs() function

with dictionaries, 132-133

ipairs() versus, 142

parameters

creating, 43-45

definition of, 43

maximum, 54

mismatched, 51-52

multiple, 45-49

setting for raycasting,

290-293

for tweens, 201-202

parent classes, 271-272

calling parent functions from

child classes, 282

inheritance setup, 272-274

parent objects, 18

ParticleEmitter objects, 72

particle emitters, cloning, 100,

330-332

parts, 6

colors, changing via tweens,

199-200

creating instances, 26

grouping, 166, 192

initial location, 26

inserting scripts into, 6-7

ProximityPrompts for, 78-79

textures, showing activation,

67

Touched event, 34-35

passes

checking for ownership,

252-255

configuring, 246-249

creating, 244-245, 257, 346

crown sales example,

248-255

prompting purchases,

247-250

purpose of, 243

testing, 251-252

updating, 245

pcall() function, 225

pet class example, adding

functions, 264-268

placing

models, 192

ModuleScripts, 174

objects, 297-298, 313. See

also 3D space

creating button for,

302-303

detecting mouse input,

314-316

with other object coor-

dinates, 190

previewing placement,

307-309

receiving messages on

server, 317-319

rotating while, 320, 351

second object exercise,

311, 350

sending messages to

server, 316

366 placing

setup, 298-301

tracking mouse

movements, 303-306

player announcements exercise,

242, 345

playerID, saving data with, 226

player management, services for,

237-240

playtesting

changes during, 12

for multiple players, 138-139

references, checking, 165

scripts, 7-8

polymorphism, 278-282

portals, creating, 63-70

positioning. See placing

Position property (CFrames), 190

previewing object placement,

307-309

price list exercise, 160, 336-338

PrimaryParts (models), 192

print() function, 7-9, 23, 43

for debugging, 82-84

printing arrays with ipairs()

function, 115

prompting in-game purchases,

247-250

properties, 20-22

changing, 25

of classes, 261-263

data types for, 22, 27

inheriting, 274-277

variables and, 28

Properties window, 3

protected calls, 225

ProximityPrompt objects, 64,

67-70

debouncing with, 78-79

with ServerScriptService,

79-82

viewing, 268

with while loops, 93-97

ProximityPromptService, 68-70

purchases. See monetization;

Robux

Q–R

quotation marks ("") in key-value

pairs, 128

raycasting

camouflage example, 288-289

detector exercise, 295, 348

direction parameter, 289-290

filtering objects, 294

from mouse, 305-306

function setup, 287-288

limiting distance, 293

purpose of, 287

setting parameters, 290-293

through windows, 292-293

whitelists versus blacklists,

310

reactivating bridges, 38-40

receiving messages on server,

317-319

red lines in editor, 11-12

references, checking, 165

relational operators, 324

relative jumps, creating, 194-195

RemoteEvent object, 161-162

client-to-client communication,

171

client-to-server communi-

cation, 165-170

server-to-all-clients communi-

cation, 162-165

server-to-single-client commu-

nication, 170-171

RemoteFunction object, 149-151,

159

remove() function, 122

removing

all specific array values, 123

items from arrays, 122

key-value pairs from dic-

tionaries, 130-131

renaming scripts, 18-19

renderstep, 303-305

repeat until loops, 237

require() function, 177

reserved names, 322

resources for information, 13,

319

retrieving specific array values,

114-115

return keyword, 49-50

return values

definition of, 49

multiple, 50, 80

nil, 51

returning table values, 133

Roblox Premium

engagement payouts, 256

monetization and, 247

Roblox Studio, 1

blocks, anchoring, 10

camera controls, 4

367scripts

data types, 323

files, saving, 13

GUIs

creating, 106-109,

146-148, 335

customizing, 147

moving, 154

purpose of, 146

script placement, 148

Humanoid objects, 59-61

changing player speed,

72, 328

debouncing, 73-75, 88-89,

330

VectorForce objects,

adding, 179-182

installing, 1-2

leaderboards

creating, 75-77, 87

maximum number of stats,

87

value types, 86-87

leaderstats folder, 77

logging in, 2

moving camera in, 321

object hierarchy, 18

finding embedded objects,

47

instances, 26

IntValue objects, 77

naming conventions, 24

properties, 20-22, 25-27

variables and, 28

operating system

requirements, 13

Output window, opening, 5

parts, 6

colors, changing via

tweens, 199-200

creating instances, 26

grouping, 166, 192

initial location, 26

inserting scripts into, 6-7

ProximityPrompts for,

78-79

textures, showing acti-

vation, 67

Touched event, 34-35

red lines in editor, 11-12

resources for information, 13,

319

user interface, 2-4

Robux. See also monetization

cashing out, 243

engagement payouts, 256

uses for, 243

rotating objects, 320, 351

with CFrames, 191

Run command, testing code, 48

S

saving data

in Data Stores

accessing, 220

creating, 220

enabling, 219

limiting network calls, 225

unique key names, 224

updating, 220-228, 344

methods of, 227

with playerID, 226

saving scripts, 13

scope

of functions, 33, 37-38

in ModuleScripts, 176

of variables, 41

of while loops, 98

ScreenGui object, 146-147

script keyword, 20

scripts, 6

arrays

adding items, 114

converting dictionaries to,

213-215

creating, 113-114

finding and removing all

specific values, 123

indexes, 113-115, 121

printing with ipairs()

function, 115

purpose of, 113

removing items, 122

searching part of, 123-124

sorting, 210-213,

216-218, 343

voting simulator, 133-142

autocomplete feature, 20

comments, 12

conditional structures, 57

elseif keyword, 62

else keyword, 63

if/then statements, 58-59

portals, creating, 63-70

DRY coding

abstractions, 183-184

purpose of, 183

error messages, 11-12

368 scripts

explosion example, 9-11

functions. See functions

GUI script placement, 148

Hello World!, 7-9

indenting code, 32

inserting into parts, 6-7

load times, 109

loops

break keyword, 110

exercises, 112, 333-334

for false conditions, 98

for, 98, 101-106, 111,

115-124

game loops, 229-242, 345

nested, 109-110

repeat until, 237

while, 91-98

for mining simulator, 79-82

ModuleScripts

accessing, 177-178,

182-183

code structure, 174

creating, 234-237

functions and variables in,

175-176

jump pad example,

179-182

naming, 174-175

placing, 174

purpose of, 173

scope in, 176

trap exercise, 185,

340-341

multiple functions in, 41

opening, 13

order and placement in, 36-40

renaming, 18-19

saving, 13

ServerScriptService, 156-158

searching

child objects, 223

part of arrays, 123-124

seasons, changing, 125-126, 334

self, as naming convention, 260

sending messages to server, 316

servers, 145

receiving messages, 317-319

RemoteEvent object, 161-162

client-to-server communi-

cation, 165-170

server-to-all-clients commu-

nication, 162-165

serve-to-single-client com-

munication, 170-171

RemoteFunction object,

149-151

sending messages to, 316

server/client divide, 149

store purchases, 151-158

ServerScriptService, 76, 79-82,

156-158

services

ContextActionService,

314-316, 320

definition of, 68

player management, 237-240

ProximityPromptService, 68-70

ServerScriptService, 76,

79-82, 156-158

SetAsync() function, 220, 225

solidifying bridges, 42, 328

solutions to exercises, 326-351

animating color changes, 342

anonymous functions, 328

changing player speed, 328

changing seasons, 334

cloned particle emitters,

330-332

collecting firewood, 330-332

creating NPCs, 327

debouncing, 330

debugging, 329

detector with raycasting, 348

dictionary sorting, 343

DoT (Damage Over Time), 333

inserting decals, 327

job roles, 347

loops, 333-334

map choice announcement,

338-340

NPC person class, 346

obstacle course, 326

pass creation, 346

placing objects, 350

player announcements, 345

price lists, 336-338

rotating objects, 351

solidifying bridges, 328

team assignments, 334

teleporting with CFrames,

341-342

traps with ModuleScripts,

340-341

updating player information,

344

sorting

arrays, 210

alphabetically, 210-211

ascending, 210-212

descending, 212-213

369user interface for Roblox Studio

mixed data types, 212

by multiple pieces of infor-

mation, 216-218, 343

numerically, 211-212

dictionaries, 213-215, 218,

343

SpeedBoost tweaks, 85

speed of players, changing, 72,

328

SpotLight objects, 117

StarterGUI object, 146

storage

for BindableEvents, 230

for ModuleScripts, 174

store purchases, 151-158

string debugging, 82-84

strings, 7, 22

combining with variables, 23

sorting with numbers, 212

Studio. See Roblox Studio

SurfaceGui objects, 106-108

T

tables, 22

arrays

adding items, 114

converting dictionaries to,

213-215

creating, 113-114

finding and removing all

specific values, 123

indexes, 113-115, 121

printing with ipairs()

function, 115

purpose of, 113

removing items, 122

searching part of, 123-124

sorting, 210-213,

216-218, 343

voting simulator, 133-142

dictionaries

converting to arrays,

213-215

creating, 128

key-value pairs, 128-132

pairs() function, 132-133

purpose of, 127-128

sorting, 213-215, 218,

343

voting simulator, 133-142

purpose of, 113

returning values, 133

table.sort() function, 210-213

team assignments exercise, 143,

334

teleporting exercise, 196-197,

341-342

templates, Baseplate, 3

testing

buttons, 170

changes during, 12

for multiple players, 138-139

passes, 251-252

references, checking, 165

with Run command, 48

scripts, 7-8

TextLabel objects, 106-109

textured parts, showing activation,

67

Toolbar ribbon, 3

Toolbox, 3

tostring() function, 212

Touched event, 34-35

tracking mouse movements,

303-306

BindToRenderStep() function,

303-305

raycasting from mouse,

305-306

traps exercise, 185, 340-341

turning lights on/off, 116-121

tweens

chaining, 205-206

changing colors, 199-200,

208, 342

elevator doors example,

202-205

setting parameters for,

201-202

TweenService, 199

TweenService, 199

type keyword, 217

U

UnbindAction() function, 314

unique keys

in Data Stores, 224

in dictionaries, 130

UpdateAsync() function, 226-227

updating

Data Stores, 220-228, 344

passes, 245

variables, 23

user interface for Roblox Studio,

2-4

370 vanishing bridges

V

vanishing bridges, 34-36

variables

combining with strings, 23

creating, 22-25

without assigning value,

41

doubling and halving, 85

in for loops, 102-105

local, 184

in ModuleScripts

accessing, 177-178

adding, 175-176

scope, 176

for multiple player inter-

actions, 70

naming conventions, 24

order and placement, 36-40,

45, 84

organizing, 305

properties and, 28

scope, 41

updating, 23

VectorForce objects, adding to

humanoids, 179-182

vehicle class example (property

inheritance), 275-277

viewing

buttons, 320

ProximityPrompts, 268

voting simulator, 133-142

W

wait() function, 42-43, 201

default value, 86

with while loops, 92-93

WET coding, 183

while loops, 91-92

exercises, 112, 333-334

with ProximityPrompts, 93-97

scope, 98

with wait() function, 92-93

whitelists versus blacklists in ray-

casting, 310

windows

raycasting through, 292-293

in Roblox Studio, opening, 5

workspace keyword, 19

workspace:Raycast() function

camouflage example, 288-289

direction parameter, 289-290

limiting distance, 293

setup, 287-288

world coordinates, local versus,

193-194

writing scripts, 7-9

X–Z

X coordinates, 187-189

Y coordinates, 187-189

Z coordinates, 187-189

• Learn the basics of Lua programming using Roblox’s free development tools.

• Designed for anyone—even beginners—to learn how to build 3D models, code
scripts, and more on Roblox in 24 hour-long lessons. Books include step-by-
step instructions; Q&As, Quizzes, and Exercises to build and test knowledge;
and “Try It Yourself” exercises that encourage independent practice.

• Developed with and supported by Roblox Education. Be part of an ever-
growing global community of creators and discover how to build your own 3D
experiences on Roblox from scratch.

ISBN: 978-0-13-682973-7

ISBN: 978-0-13-682942-3

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Title Page
	Copyright Page
	Contents at a GlanceHour
	Table of Contents
	HOUR 1: Coding Your First Project
	Installing Roblox Studio
	Let’s Take a Tour
	Opening the Output Window
	Writing Your First Script
	Error Messages
	Leaving Yourself Comments

	HOUR 2: Properties and Variables
	Object Hierarchy
	Keywords
	Properties
	Finding Properties and Data Types
	Creating Variables
	Changing the Color Property
	Instances

	HOUR 3: Creating and Using Functions
	Creating and Calling Functions
	Understanding Scope
	Using Events to Call Functions
	Understanding Order and Placement

	HOUR 4: Working with Parameters and Arguments
	Giving Functions Information to Use
	Working with Multiple Parameters and Arguments
	Returning Values from Functions
	Returning Multiple Values
	Returning Nil
	Dealing with Mismatched Arguments and Parameters
	Working with Anonymous Functions

	HOUR 5: Conditional Structures
	if/then Statements
	elseif
	Logical Operators
	else

	HOUR 6: Debouncing and Debugging
	Don’t Destroy, Debounce
	Figuring Out Where Things Go Wrong

	HOUR 7: while Loops
	Repeat Forever, while true do
	Some Things to Keep in Mind
	while Loops and Scope

	HOUR 8: for Loops
	How for Loops Work
	Nested Loops
	Breaking Out of Loops

	HOUR 9: Working with Arrays
	What Are Arrays?
	Adding Items Later
	Getting Information from a Specific Index
	Printing an Entire List with ipairs()
	Folders and ipairs()
	Finding a Value on the List and Printing the Index
	Removing Values from an Array
	Numeric for Loops and Arrays

	HOUR 10: Working with Dictionaries
	Intro to Dictionaries
	Adding and Removing from Dictionaries
	Removing Key-Value Pairs
	Working with Dictionaries and Pairs
	Returning Values from Tables

	HOUR 11: Client Versus Server
	Understanding the Client and the Server
	Working with GUIs
	Understanding RemoteFunctions
	Using RemoteFunctions

	HOUR 12: Remote Events: One-Way Communication
	Remote Events: A One-Way Street
	Communicating from the Server to All Clients
	Communicating from the Client to the Server
	Communicating from the Server to One Client
	Communicating from Client to Client

	HOUR 13: Using ModuleScripts
	Coding Things Just Once
	Placing ModuleScripts
	Understanding How ModuleScripts Work
	Naming ModuleScripts
	Adding Functions and Variables
	Understanding Scope in ModuleScripts
	Using Modules in Other Scripts
	Don’t Repeat Yourself
	Dealing in Abstractions

	HOUR 14: Coding in 3D World Space
	Understanding X, Y, and Z Coordinates
	Refining Placement with CFrame Coordinates
	Offsetting CFrames
	Adding Rotations to CFrames
	Working with Models
	Understanding World Coordinates and Local Object Coordinates

	HOUR 15: Smoothly Animating Objects
	Understanding Tweens
	Setting TweenInfo Parameters
	Chaining Tweens Together

	HOUR 16: Solving Problems with Algorithms
	Defining Algorithms
	Sorting an Array
	Sorting in Descending Order
	Sorting a Dictionary
	Sorting by Multiple Pieces of Information

	HOUR 17: Saving Data
	Enabling Data Stores
	Creating a Data Store
	Using Data in the Store
	Limiting the Number of Calls
	Protecting Your Data
	Saving Player Data
	Using UpdateAsync to Update a Data Store

	HOUR 18: Creating a Game Loop
	Setting Up Game Loops
	Working with BindableEvents

	HOUR 19: Monetization: One-Time Purchases
	Adding Passes to Your Experience
	Configuring the Pass
	Prompting In-Game Purchases

	HOUR 20: Object-Oriented Programming
	What Is OOP?
	Organizing Code and Projects
	Making a New Class
	Adding Class Properties
	Using Class Functions

	HOUR 21: Inheritance
	Setting Up Inheritance
	Inheriting Properties
	Working with Multiple Child Classes
	Inheriting Functions
	Understanding Polymorphism
	Calling Parent Functions

	HOUR 22: Raycasting
	Setting Up the Function to Raycast
	3D Math Trick: Getting the Direction
	Setting Raycast Parameters
	3D Math Trick: Limit Direction

	HOUR 23: Plopping Objects in an Experience: Part 1
	Setting Up the Object
	Creating a Plop Button
	Tracking Mouse Movements
	Previewing the Object

	HOUR 24: Plopping Objects in an Experience: Part 2
	Detecting Mouse Input
	Sending a Message to the Server
	Getting the Message

	APPENDIX A: Roblox Basics
	Keywords
	DataType Index
	Operators
	Naming Conventions
	Animation Easing
	Possible Solutions to Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'InDesignCS6_Print'] [Based on 'InDesignCS6_Print'] [Based on 'InDesignCS4_200902'] RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

