The Official

Coding with
Roblox Lua

’D Pearson H 0“ rs



The Official
ROBLEAX
Guide

Coding with
Roblox Lua




Coding with Roblox Lua in 24 Hours: The Official Roblox Guide

Copyright © 2022 by Roblox Corporation. “Roblox,” the Roblox logo, and “Powering Imagination”
are among the Roblox registered and unregistered trademarks in the U.S. and other countries. All
rights reserved.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/
permissions/. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-682942-3

ISBN-10: 0-13-682942-2

Library of Congress Control Number: 2021948694
ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Pearson cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intics@pearson.com.

Editor-in-Chief
Debra Williams
Cauley

Acquisitions Editor
Kim Spenceley

Editorial Services
The Wordsmithery
LLC

Managing Editor
Sandra Schroeder
Senior Project
Editor

Tonya Simpson

Copy Editor
Charlotte Kughen

Indexer
Cheryl Lenser

Proofreader
Sarah Kearns

Editorial Assistant
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor
Bronkella
Publishing LLC

Graphics
Processing

TJ Graham Art


http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Pearson’s Commitment to
Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.
We embrace the many dimensions of diversity, including but not limited to race, ethnic-
ity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political
beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:
» Everyone has an equitable and lifelong opportunity to succeed through learning.

» Our educational products and services are inclusive and represent the rich diversity of
learners.

» Our educational content accurately reflects the histories and experiences of the
learners we serve.

» Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any con-
cerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/
report-bias.html.


https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

Contents at a Glance

Hour 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Appendix A

Coding Your First Project

Properties and Variables

Creating and Using Functions

Working with Parameters and Arguments
Conditional Structures

Debouncing and Debugging

while Loops

for Loops

Working with Arrays

Working with Dictionaries

Client Versus Server

Remote Events: One-Way Communication
Using ModuleScripts

Coding in 3D World Space

Smoothly Animating Obijects

Solving Problems with Algorithms

Saving Data

Creating a Game Loop

Monetization: One-Time Purchases
Object-Oriented Programming
Inheritance

Raycasting

Plopping Obijects in an Experience: Part 1
Plopping Objects in an Experience: Part 2
Roblox Basics

Index

17

31

43

57

73

91
101
113
127
145
161
173
187
199
209
219
229
243
259
271
287
297
313
321
355



Table of Contents

HOUR 1: Coding Your First Project
Installing Roblox Studio
Let’s Take a Tour
Opening the Output Window
Writing Your First Script
Error Messages

Leaving Yourself Comments

HOUR 2: Properties and Variables
Object Hierarchy
Keywords
Properties
Finding Properties and Data Types
Creating Variables
Changing the Color Property

Instances

HOUR 3: Creating and Using Functions
Creating and Calling Functions
Understanding Scope
Using Events to Call Functions

Understanding Order and Placement

HOUR 4: Working with Parameters and Arguments
Giving Functions Information to Use
Working with Multiple Parameters and Arguments
Returning Values from Functions
Returning Multiple Values
Returning Nil
Dealing with Mismatched Arguments and Parameters

Working with Anonymous Functions

%A S I

17
18
19
20
22
22
25
26

31
31
33
33
36

43
43
45
49
50
51
51
52



vi Coding with Roblox Lua in 24 Hours

HOUR 5: Conditional Structures
if/then Statements
elseif
Logical Operators

else

HOUR 6: Debouncing and Debugging
Don'’t Destroy, Debounce

Figuring Out Where Things Go Wrong

HOUR 7: while Loops
Repeat Forever, while true do
Some Things to Keep in Mind

while Loops and Scope

HOUR 8: for Loops
How for Loops Work
Nested Loops
Breaking Out of Loops

HOUR 9: Working with Arrays
What Are Arrays?
Adding Items Later

Getting Information from a Specific Index

Printing an Entire List with ipairs ()

Folders and ipairs ()

Finding a Value on the List and Printing the Index

Removing Values from an Array

Numeric for Loops and Arrays

HOUR 10: Working with Dictionaries

Intro to Dictionaries

Adding and Removing from Dictionaries

Removing Key-Value Pairs
Working with Dictionaries and Pairs

Returning Values from Tables

57
58
62
62
63

73
73
82

91
91
92
98

101
102
109
110

113
113
114
114
115
116
121
122
123

127
127
130
130
132
133



Contents vii

HOUR 11: Client Versus Server 145
Understanding the Client and the Server 145
Working with GUIs 146
Understanding RemoteFunctions 149
Using RemoteFunctions 149

HOUR 12: Remote Events: One-Way Communication 161
Remote Events: A One-Way Street 161
Communicating from the Server to All Clients 162
Communicating from the Client to the Server 165
Communicating from the Server to One Client 170
Communicating from Client to Client 171

HOUR 13: Using ModuleScripts 173
Coding Things Just Once 173
Placing ModuleScripts 174
Understanding How ModuleScripts Work 174
Naming ModuleScripts 174
Adding Functions and Variables 175
Understanding Scope in ModuleScripts 176
Using Modules in Other Scripts 177
Don'’t Repeat Yourself 183
Dealing in Abstractions 183

HOUR 14: Coding in 3D World Space 187
Understanding X, Y, and Z Coordinates 187
Refining Placement with CFrame Coordinates 189
Offsetting CFrames 191
Adding Rotations to CFrames 191
Working with Models 192
Understanding World Coordinates and Local Object Coordinates 193

HOUR 15: Smoothly Animating Objects 199
Understanding Tweens 199
Setting TweenInfo Parameters 201

Chaining Tweens Together 205



viii Coding with Roblox Lua in 24 Hours

HOUR 16: Solving Problems with Algorithms
Defining Algorithms
Sorting an Array
Sorting in Descending Order
Sorting a Dictionary
Sorting by Multiple Pieces of Information

HOUR 17: Saving Data
Enabling Data Stores
Creating a Data Store
Using Data in the Store
Limiting the Number of Calls
Protecting Your Data
Saving Player Data
Using UpdateAsync to Update a Data Store

HOUR 18: Creating a Game Loop
Setting Up Game Loops
Working with BindableEvents

HOUR 19: Monetization: One-Time Purchases
Adding Passes to Your Experience
Configuring the Pass

Prompting In-Game Purchases

HOUR 20: Object-Oriented Programming
What Is OOP?
Organizing Code and Projects
Making a New Class
Adding Class Properties

Using Class Functions

HOUR 21: Inheritance
Setting Up Inheritance
Inheriting Properties
Working with Multiple Child Classes

209
209
210
212
213
216

219
219
220
220
225
225
226
226

229
229
230

243
243
246
247

259
259
259
260
261
263

271
272
274
277



Inheriting Functions
Understanding Polymorphism

Calling Parent Functions

HOUR 22: Raycasting
Setting Up the Function to Raycast
3D Math Trick: Getting the Direction
Setting Raycast Parameters
3D Math Trick: Limit Direction

HOUR 23: Plopping Objects in an Experience: Part 1
Setting Up the Object
Creating a Plop Button
Tracking Mouse Movements

Previewing the Object

HOUR 24: Plopping Objects in an Experience: Part 2
Detecting Mouse Input
Sending a Message to the Server

Getting the Message

APPENDIX A: Roblox Basics
Keywords
DataType Index
Operators
Naming Conventions
Animation Easing

Possible Solutions to Exercises

Index

Contents

278
278
282

287
287
289
290
293

297
298
302
303
307

313
314
316
317

321
322
322
324
325
325
326

355

ix



About the Author

Genevieve Johnson is the senior instructional designer for Roblox, the
world’s largest user-generated social platform for play. In her role, she
oversees creation of educational content and advises educators world-
wide on how to use Roblox in STEAM-based learning programs. Her work
empowers students to pursue careers as entrepreneurs, engineers, and
designers. Prior to Roblox, Johnson was educational content manager for

iD Tech, a nationwide tech education program that reaches more than
50,000 students yearly, ages 6-18. While at iD Tech, she helped launch a successful all-girls
STEAM program, and her team developed educational content for more than 60 technology-
related courses, teaching a variety of subjects from coding to robotics and game design.



We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

You can email or write to let us know what you did or didn’t like about this book—as well
as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you email, please be sure to include this book’s title and author as well as your
name, email address, and phone number. We will carefully review your comments and
share them with the author and editors who worked on the book.

Email: community@informit.com

Reader Services

Register your copy of Roblox Game Development in 24 Hours at www.informit.com/register for
convenient access to downloads, updates, and corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an account.* Enter
the product ISBN (9780136829423) and click Submit.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts
on future editions of this product.


mailto:community@informit.com
http://www.informit.com/register
http://informit.com/register

This page intentionally left blank



HOUR 1

Coding Your First Project

What You’ll Learn in This Hour:

» Why Roblox and Lua are a perfect combination

» What Roblox Studio’s main windows are

» How to say “Hello” to the world with your first code
» How to make a part explode

» How to check for errors

» How to leave a comment

Roblox is the world’s most popular game development platform. All types of people come
together to create amazing virtual experiences: artists, musicians, and—you guessed it—coders.
Coding is what allows players to interact with the world that they see.

In Roblox, the coding language used is Lua. Lua is one of the easiest coding languages to learn,
and when used with Roblox Studio, you can see the results of your code fast. For example, want
to create an enormous explosion with a massive blast radius? You can do that with just a couple
of lines of Lua.

Roblox Studio is the tool in which all Roblox games are created, and when paired with Lua, it
offers seamless access to multiplayer servers, physics and lighting systems, world-building tools,
monetization systems, and more. And even though Roblox provides the environment in which
your program runs, you control the vision. You are the creator and artist. Roblox gives you the
canvas and paints, and Lua the brushes and actions. But you, with some well-placed dabs of
code, get to create your masterpiece. This first hour covers how to set up Roblox Studio, make
your first script, and test your code.

Installing Roblox Studio

Before you get started, make sure you have Roblox Studio installed. It runs on Windows and
MacOS, and you can grab a copy at https://roblox.com/create. Click Start Creating to begin.
You'll need to create a Roblox account if you don’t yet have one (see Figure 1.1).


https://roblox.com/create

2 Coding Your First Project

B Games  AvatarShop  Create  Robux

& Studio

Make Anything You Can Imagine

With our EREE and immersive creation engi

Start Creating

M

FIGURE 1.1
You need an account to use Roblox Studio. It's free and just a quick sign-up away.

Let’s Take a Tour

Roblox Studio provides everything you need to create games. It includes assets such as character
models, items to put in the world, graphics for the sky, soundtracks, and more.

Go ahead and launch Roblox Studio to see the window shown in Figure 1.2. Enter the login infor-
mation for the account you created when you signed up on the Roblox website and click Log In.

& Roblox Studic x o *

RABLEX Studio

Start creat

FIGURE 1.2
Enter your normal Roblox account information.



Let’'s Take a Tour 3

When you first open up Studio, you see templates. These are starting places you can use for your

experiences. The simplest starting point for any project is the Baseplate template. Click on the

Baseplate template, as shown in Figure 1.3.

FIGURE 1.3
Studio offers template places you can use as starting points.

Let’s start with a quick overview of the main parts of the screen in Figure 1.4, and then move

straight into your first line of code:

1.

2.

The offerings in the Toolbar ribbon change according to the menu tab you've selected.

The Toolbox contains existing assets to add to your game. You can also create your own
assets through a 3D modeling program such as Blender3D, and Studio includes a set of
mesh-editing tools to customize the 3D models already available.

. The 3D Editor provides a view of the world. Hold your right mouse button to turn the view,

and use the WASD keys to reposition the camera. Table 1.1 describes the different controls
to move the camera.

. The Explorer window provides convenient access to every key asset or system in the game.

You use this to insert objects into your experience.

. Use the Properties window to make changes to objects in the game, such as color, scale,

value, and attributes. Select an object in the Explorer to see available properties.



4 HOUR 1: Coding Your First Project

FIGURE 1.4
There are a number of panels, buttons, and lists in the Studio, and you’ll quickly become familiar with them.

TABLE 1.1 Camera Controls

Key Movement

WASD Move the camera up, left, down, or right
E Move the camera

Q Lower the camera down

Shift Move the camera slower

Right mouse button (hold and drag mouse) Turn the camera

Middle mouse button Drag the camera
Mouse scroll wheel Zoom the camera in or out
F Focus on selected object

There are numerous ways to configure this main screen, including hiding different sections,
rearranging their positioning to be more convenient, and changing their size.

Roblox Studio is a very complete game development environment that goes well beyond Lua. It’s
a big topic on its own, so you may want to check out our other book, Roblox Game Development in
24 Hours, for help.



Opening the Output Window 5

Opening the Output Window

The Output window in Studio isn’t open by default, but you need this before you continue so
that you can see errors and messages that are related to your code.

Use the following steps to display the Output window:

1. Click the View tab (see Figure 1.5). If you ever close a window and need to reopen it, you

can find it here.

FIGURE 1.5
Use the View tab to control which windows are open.

2. Click Output (see Figure 1.6) to display the Output window at the bottom of your screen, as
shown in Figure 1.7.

FIGURE 1.6
Click the Output option to open the Output window.

FEEI AT LY ]

FIGURE 1.7
The Output window opens beneath the 3D Editor.



6 HOUR 1: Coding Your First Project

Writing Your First Script

On to coding! You need something to hold your code, and that’s a script. You can insert scripts
directly into objects within the world. In this case, you're inserting a script into a part.

Insert a Script into a Part

A part is the basic building block of Roblox. Parts can range in size from very tiny to extremely
large. They can be different shapes such as a sphere or wedge, or they can be combined into
more complex shapes.

1. Return to the Home tab and click Part (see Figure 1.8). The part appears in the 3D Editor at
the center of your camera view.

FIGURE 1.8
Click Part on the Home tab to insert a part.

2. To add a script, in Explorer, hover over the part and click the + symbol, and then select
Script from the drop-down menu (see Figure 1.9).

FIGURE 1.9
You use Explorer to insert a script into the part.



Writing Your First Script

TIP

7

Finding Items Quickly

Typing the first letter (S, in this case) or two of the items you are adding filters the list so you can
locate that item quickly.

The script automatically opens. At the top, you see words familiar to any coder: "Hello
world!" (see Figure 1.10).

FIGURE 1.10
The window shows the default script and code.

Writing Some Code

Since the 1970s, "Hello World!" has been one of the first pieces of code people have learned.
Here it’s being used in the print function. Functions are chunks of code that serve a specific pur-
pose. As you learn to code, you'll use prebuilt functions like print (), which displays messages
in the Output window. You will, of course, also learn how to create functions of your own.

print () displays a string, which is a type of data usually used with letters and numbers that
need to stay together. In this case, you're printing "Hello world!":

1. Make this code your own by changing the message inside of the quotation marks to what
you want for dinner tonight. Here’s an example:

print ("I want lots of pasta")

2. To test the code, in the Home tab, click Play (see Figure 1.11).



8 HOUR 1: Coding Your First Project

FIGURE 1.11
Click Play to test your script.

Your avatar will fall into the world, and you can see your dinner dreams displayed in the
Output window, along with a note about which script that message came from (see Figure
1.12).

FIGURE 1.12
The string is displayed in Output.

3. To stop the playtest, click the Stop button (see Figure 1.13).

FIGURE 1.13
Click Stop to quit the playtest.

4. Return to your script by clicking on the tab above the 3D Editor, as shown in Figure 1.14.



Writing Your First Script

FIGURE 1.14
Click Script to return to the window where your script is visible.

Code an Explosion

Code of course can do more than just display messages to the output window. It can completely
change how players interact with the world and make it come alive. Let’s take a slightly longer
piece of code and make the block in the Baseplate template destroy anything it touches:

1. Use the Move tool (see Figure 1.15) to move the block off the ground and away from the
spawn point. The code you're going to write will destroy anything it touches, and you
don’t want it to go off prematurely.

FIGURE 1.15
Move the part up and away from the spawn.

9



10 HOUR 1: Coding Your First Project

2. In the Properties window, scroll to Behavior and make sure Anchored (see Figure 1.16) is
selected so the block doesn’t fall when you click Play.

Parent
Position

Behavior

Anchored

FIGURE 1.16
Check Anchored to keep the blocks from falling.

3. In the script, below the print function, add the following code:

print ("I want lots of pasta!")

-- Destroys whatever touches the part

local trap = script.Parent

local function onTouch (partTouched)
partTouched:Destroy ()

end

trap.Touched: Connect (onTouch)

NOTE

Code Boxes

Code boxes for this book will be presented in light mode, unless specifically calling attention to
Studio UX.

4. Click Play and run up and touch the part.

The result should be that your character breaks or parts of your avatar are destroyed. You may
notice that this code only destroys what touches it directly, such as your feet. Try jumping on top



Error Messages 11

of the block or brushing against it with just a hand. You'll see only that part of your avatar is
destroyed.

The reason is that code only does what you tell it, and you told the part to destroy only what it
touches and nothing more. You have to tell it how to destroy the rest of the player. Throughout
this book, you'll learn how to write additional instructions so that the code can handle more
scenarios like this one. In Hour 4, “Parameters and Arguments,” you’ll learn how to make sure it
destroys the entire player character.

Error Messages

What if the code didn’t work? The truth is, all engineers make mistakes in their code. It’s no big
deal, and the editor and the output window can help you spot mistakes and fix them. Try mak-
ing a couple of mistakes to learn how to better spot them later:

1. Delete the second parenthesis from the print function. A red line appears under local.
(See Figure 1.17.) In the editor, red lines indicate a problem.

I script

FIGURE 1.17
A red line indicates Studio has spotted an error.

2. Hover over the red line, and the editor gives you a clue about what’s gone wrong, as
shown in Figure 1.18. But don’t fix the mistake quite yet.



12 HOUR 1: Coding Your First Project

I script

print ("I want

FIGURE 1.18
An error message displays when you hover over the red line.

3. Click Play, which causes an error message to display in the Output window, as shown in
Figure 1.19. Click the red error, and Studio takes you to where it thinks the problem is.

FIGURE 1.19
The error shows up as a clickable red message in the Output window.

Stop the playtest and fix the issue.

TIP

Changes Made While Playtesting Aren’t Permanent

Be careful about making changes while in a playtest because the work you’ve done is not automati-
cally saved. If you do make changes, be sure to click Preserve Changes when you stop the playtest.

Leaving Yourself Comments

In the previous code, you may notice the sentence -- Destroys whatever touches the
part. This is a comment. Comments begin with two dashes. Anything on the same line as the
dashes doesn’t affect the script.



Q&A 13

Coders use comments to leave notes to themselves and others about what the code does. Trust
us: When you haven't looked at a piece of code in months, it’s very easy to forget what it does.

The following code shows what it might look like to add a comment at the top of the script you
wrote earlier in this hour:

-- What do I want for dinner?
print ("I want lots of pastal!")

Summary

In just one hour, you've come a long way, particularly if this happened to be your first time cod-
ing or using Roblox Studio. This hour covered creating an account and opening Roblox for the
first time. By using the + button, you were able to insert a script into a part, and then you added
code that turned the part into a trap for anyone who happened to touch it.

In addition, you learned how to test code using the Play button and use the built-in error detec-
tion within the script editor and Output window to help you troubleshoot when something goes
wrong.

Finally, you learned about comments, which are only readable in the script editor and can be
used to leave notes about the purpose of the code.

Q&A

Q. Can you use Studio on a Chromebook?

A. To create, Studio must be run on a MacOS or Windows machine. Once a game has been
published, it's available to be played on Android, Apple, Mac, PC, Chrome, and potentially
even XBox Live.

Q. How do I reopen a script if | close it?

A. If you close out of the script editor, you can reopen it by double-clicking the script object in
Explorer.

Q. How do | save my work?

A. Go to File, Publish to Roblox to save to the cloud, which makes your game accessible from
any computer.

Q. Where do | go if | want additional information about how Roblox Studio works?

A. You can visit developer.roblox.com to find documentation on all of Studio’s features and
API.


http://developer.roblox.com

14

HOUR 1: Coding Your First Project

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
1. Roblox uses the coding language.
2. Aspects of an object such as color, rotation, and anchored can be found inthe __
window.
3. Game objects are found in the window.
4. To enable the Output window, which displays code messages and errors, enable it in the
tab.
5. True or false: Comments change the code to enable new functionality.
6. To force parts to stay in place, they need to be
Answers
1. Lua
2. Properties
3. Explorer
4. View
5. False. Comments do not affect the code and are used to leave notes to yourself and other
coders as to the purpose of the script.
5. Anchored
Exercise

Before moving on, take a moment to experiment with the creation tools by creating a mini obsta-
cle course. It could be individual parts the player has to avoid, or it could be a lava floor like the
one shown in Figure 1.20.



Exercise 15

FIGURE 1.20
Use what you’'ve learned so far to create a lava obstacle course.

Tips

>

Create more parts and manipulate them with the Move, Translate, and Scale tools found on
the Home tab (see Figure 1.21). You can also change the parts’ appearance with Material
and Color.

FIGURE 1.21
The Home tab has the tools you need to create and manipulate parts.

>

>

Use a single large part and insert a script as you did earlier to turn it into lava.

Additional models can be found in the Toolbox; just be aware that some models may
already have scripts in them.

Don’t forget to anchor all parts and models.

If you know how to use the terrain tools, you can work that into your obstacle course as
well.



This page intentionally left blank



HOUR 2

Properties and Variables

What You’ll Learn in This Hour:

» About the parent/child relationship of objects in the Explorer
» How to make changes to an object’s properties

» How to create variables

» How to assign values to variables

» Which types of data variables can hold

» How to create instances of objects

In this hour, you learn how to find the objects you want to make changes to in the hierarchy
and create an adorable NPC (Non Playable Character) guide like the one in Figure 2.1 that can
warn players of upcoming danger. To create the guide, you use code to update a part’s appear-
ance and behavior.

‘Watch out! Stay on the rocks!

FIGURE 2.1
An NPC warns players of upcoming danger.



18 HOUR 2: Properties and Variables

Object Hierarchy

If you want to affect objects with code, you have to be able to say where those objects are within
the game’s hierarchy. As you look in the Explorer, you can see some game objects are nested
inside of others. For example, in Figure 2.2, you can see that the Baseplate object is nested inside
of Workspace. This makes Baseplate a child of Workspace, which makes Workspace the parent
object. And even though you can'’t see it in Explorer, Workspace is a child of Game.

FIGURE 2.2
Baseplate is a child of Workspace.

In code, you can navigate the hierarchy of the game using the dot operator—for example,
game.Workspace.Baseplate.

This is how you give directions in the script to tell the code what object to work with.

V¥ TRY IT YOURSELF

Search and Destroy

Use the dot operator to search within Workspace for the baseplate and use Destroy (), which
was also used in Hour 1 to get rid of the baseplate.

1. Insert a new script into Baseplate. Rename the script DestroyBaseplate by double-click-
ing it or pressing F2 (see Figure 2.3).

TIP

Rename Scripts and Objects
Renaming scripts and objects in your project is important for staying organized.




Keywords 19

c, Workspace
BY Camera

WA Terrain

I Des
-

lexture

FIGURE 2.3
You can rename a script.

2. In the script, type game . Workspace.Baseplate:Destroy ().

3. Playtest the game, and the baseplate will be destroyed, possibly even before your charac-
ter loads.

Keywords

Now let’s talk about keywords. Keywords can be thought of as the words that make up a coding
language. Each keyword serves a special purpose. Lua has fewer keywords than most coding lan-
guages, which makes it one of the easiest to learn. Some keywords are built into Lua automati-
cally, and some have been added by Roblox to make things easier.

One keyword in Roblox Lua is workspace, lowercased, because game . Workspace was typed so
much, the thoughtful Roblox engineers decided to supply a keyword to shorten it.

TRY IT YOURSELF V¥

Update the code you just wrote with the keyword workspace in place of game .Workspace.

Use the workspace Keyword

1. In your prior code, replace game . Workspace with workspace.

TIP

Correct Capitalization Is Important

Keywords are case-sensitive, so make sure workspace is lowercased.

2. Playtest and verify the code still works.



20 HOUR 2: Properties and Variables

Now back to hierarchy. Not only can the children of objects be accessed with the dot operator,
but so can parent objects. This time, use the keyword script, which always represents the Script
object no matter what the object is named, and use the dot operator to access the parent.

V¥ TRY IT YOURSELF

Shorten the Code

You can actually shorten the code even more and get rid of the baseplate by using Destroy ()
with script.Parent:

1. In the same script as before, replace your code with script.Parent :Destroy ().

TIP

Take Advantage of Autocomplete

As you type, you may see suggested code appear. You can accept the suggestion by pressing Enter.
This will save time on typing and minimize the risk of making typos.

2. Playtest and verify your code.

You can find a complete list of keywords in the appendix at the back of the book.

Properties

In addition to navigating the hierarchy, the dot operator also allows you access to the properties
of an object. So what are properties? I'll explain with an example: Take a look at the flower in
Figure 2.4. How would you describe it to someone?

Maybe you would start off saying that it’s a plant. When pressed for more information, you
might say that it’s a green plant with yellow petals. An engineer might add additional details
like it’s a green plant with yellow petals, three units tall and two units wide. Someone else might
mention it’s on fire (see Figure 2.5).



Properties 21

FIGURE 2.4
How would you describe this flower?

FIGURE 2.5
The flower is also flammable.

All of the ways you describe an object are its properties.



22 HOUR 2: Properties and Variables

Finding Properties and Data Types

When you click an object in Explorer, the aptly named Properties window populates with differ-
ent properties of the object that are changeable. The different formats in which properties track
values are data types. Some important data types to start off with are the following:

» Number: Any real number—for example, 11.9.

» String: A collection of letters and/or numbers sandwiched within quotation marks.
Good for storing readable information. print() accepts string values—for example, "99

bananas".

» Boolean: The values true and false. Properties that have states like on/off or checked/
unchecked are often booleans.

> Tables: A set of information—for example, {Amy, Bill, Cathleen}.

For a larger list of data types, see the appendix.

Creating Variables

Now that you have an understanding of how to find objects in the hierarchy and how each
property has its own specific value format called a data type, you can begin making variables.

Variables are placeholders for information. They can be used to keep track of objects and data
types for use in your code. Once created, some variables can only be used in specific scripts or
chunks of code. These are called local variables. Other variables are designed so that they can be
used more broadly across scripts. Those are called global variables.

Unless you have a good reason, you almost always want to use local variables. Your code runs
faster with local variables, and you're less likely to end up with clashing variable names in your
code. Almost all of the variables you create in this book will be local variables.

To create a local variable, type 1ocal and then the desired name of the variable, for example:

local baseplate

Once the variable is created, you can assign, or set, the value of the variable using the equal
sign, for example:

local baseplate = script.Parent

In your head, you can think of the equal sign as the word is. So, the prior variable would read
basePlate is script.Parent. Once the variable is created, you can access the information being held
as many times as you want with just the name, for example:

local basePlate = script.Parent
basePlate.Transparency = 0.5



Creating Variables 23

Variables can be updated as often as you want. So if you're keeping score in a game, every time
the player scores a new point, you can keep using the same variable and assign it the updated
score, like so:

local playerScore = 10

print ("playerScore is " .. playerScore)
local playerScore = playerScore + 1 -- Add one to current player score
print ( "new playerScore is " .. playerScore)

In Output, you should see print messages similar to Figure 2.6.

FIGURE 2.6
First, the original value of playerScore is printed, and then the updated playerScore prints.

TIP

Combining Strings and Variables

print () can accept both strings and variables, but they need to be combined with two dots.
Combining values is called concatenation.

TRY IT YOURSELF V¥

Create an NPC

With just the knowledge you have so far, you can create an NPC guide that delivers a warning
about the upcoming lava field to the player. This exercise will help you practice navigating hierar-
chy and properties using the dot operator, as well as using variables and data types.

First, you need to create the NPC:
1. Use the Part drop-down menu to create a sphere or any other type of part.

2. Rename the part to GuideNPC.

3. Insert a script into the sphere and rename it.



24 Properties and Variables

n 4. Insert a Dialog object into GuideNPC. Do not rename it. (See Figure 2.7.)

@ workspace
BY Camera

VA Terrain

S

W Baseplate @

W Lava

& GuideNPC

> , Lighting

FIGURE 2.7
The NPC hierarchy includes a Script and a Dialog.

Code the Script

For this example, you create two different variables. The first variable navigates to the parent
part, and the second variable holds the message that the spirit guide greets the player with when
first prompted. You also add a bit of code to customize the appearance of the NPC.

1. Replace the default code in NPCScript with a new local variable named guideNPC that
points at the script’s parent.

local guide = script.Parent

TIP

Object Naming Conventions

For consistency, in-game objects are named using CamelCase with the first letter in uppercase, and
variables named after them are pascalCased, with the first letter in lowercase.

2. Create a second variable holding the guide’s message with a string value. The message
can be anything you like as long as it's a string.

local guideNPC = script.Parent
local message = "Danger ahead, stay on the rocks!"

3. Make the NPC more ghostly by accessing its properties and setting Transparency to 0. 5.

local guideNPC = script.Parent
local message = "Danger ahead, stay on the rocks!"
guideNPC.Transparency = 0.5



Changing the Color Property 25

4. Access the child Dialog object and its property InitialPrompt. Set InitialPrompt to message. n

local guideNPC= script.Parent

local message = "Danger ahead, stay on the rocks!"
guideNPC.Transparency = 0.5
guideNPC.Dialog.InitialPrompt = message

Playtest and click the question mark above the NPC’s head to see the message.

Changing the Color Property

A property commonly changed in code is an object’s color property. To change the color, you need
to understand how light works. Every color on your screen is actually a product of just three types
of light; red, green, and blue. The strength of each color ranges from O to 255. All three colors at
full strength (255, 255, 255) appear white onscreen. Each band turned all the way down (0O, 0, 0)
is black. Pure red is (255, 0, 0), and pure green is (0, 255, 0). So what do you think pure blue is?

Turn your NPC purple by mixing a little red with a lot of blue:

guideNPC.Color = Color3.fromRGB (40, 0, 160)

TIP

Use the Color Picker to Find the Right Values

As you type, a small color wheel will appear (see Figure 2.8). If you click it, you can select the color
you want, and click OK to automatically set the correct RGB value.

L=

& Select Color b4

FIGURE 2.8
Click the color wheel to bring up the RGB color selector.



26 HOUR 2: Properties and Variables

Instances

The last topic for this hour is instances. Instances are copies of game objects like parts, scripts,
and sparkles.

Rather than using the + button like you have so far, instances can instead be created with the
function Instance.new (), as shown here:

local part = Instance.new("Part")

Once you've created a part, you can access all of its properties like normal. Make any desired
changes, and then parent it to the workspace.

V¥ TRY IT YOURSELF

Create a New Part Instance

Instead of inserting a part directly into Explorer, use code to create the part, change the part’s
color, and then place it in workspace where it can be seen.

1. In ServerScriptService, add a new script.

2. Create an instance of a part; then set the color and finally the parent:

local part = Instance.new("Part")
part.Color = Color3.fromRGB (40, 0, 160)
part.Parent = workspace

You can even take this one step further by creating instances inside of instances:
local part = Instance.new("Part")
local particles = Instance.new("ParticleEmitter")
part.Color = Color3.fromRGB (40, 0, 160)
particle.Parent = part
part.Parent = workspace

TIP

New Part Instance Appears at the World’s Center

When new parts are created via code, they appear at the very center of the world, where the default
spawn point is. If you can’t see your part when testing, try moving the spawn point and then testing again.

Summary

Every object in a game has properties like Color, Scale, and Transparency that determine how the
object looks and behaves in game. Each property uses values formatted in a specific way called a
data type. A few common data types are strings, booleans, and numbers.



Q&A 27

Within code, dot notation is used to access properties of an object, as well as to find the object in
the Explorer hierarchy.

Once you understand an object’s properties and how to access them in the game’s hierarchy,
you can begin making changes using code.

Variables can be used as placeholders for information that you want the script to work with.
There are two main types of variables, global and local. Of the two, local variables should
always be used unless there is a specific reason not to.

Game objects such as Parts, Scripts, Dialogs, and ParticleEmitters can be created in a running script
by using the function Instance.new (), which accepts the name of the object type as a string.

Q&A

Q. How do you know what data type a property accepts?

A. You can look up a game object, its properties, and their corresponding types on
developer.Roblox.com. For example, in a search engine, type Roblox Dialog Properties and
look for API results on the Roblox domain.

In Figure 2.9, you can see a portion of the Dialog APl page. It has a short description and a
list of properties with their matching data types. You can click each property and data type
to learn more about how to use it.

Dialog

The Dialog object allows users to create non-player characters (NPCs) that players can
talk to using a list of choices. The Dialog object can be inserted into a part such as a
Humanoid’s head, and then a player will see a speech bubble above the part that they can
click on to start a conversation. The creator of a place can choose what choices the player
can say by inserting DialogChoice objects into the dialog.

See Also:

Properties

DialogBehaviorType BehaviorType

Sets whether the Dialog can be used by multiple players at once.

float ConversationDistance

The furthest distance that | player can be from the Dialog's parent to start a conversation.

bool GoodbyeChoiceActive

Toggles whether the goodbye option will be displayed.

FIGURE 2.9
This snippet of the APl page for Dialog shows a short description of properties and matching data types.


http://Roblox.com

28

HOUR 2: Properties and Variables

Why should you not set a variable to include the property you want to change? Like 1ocal
partColor = workspace.Part.Color?

The hierarchy information and the property information are two different types of data and
can’'t be mixed.

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz

1.

What type of data type only accepts the values true or false?

2. Variables are for information.

If | were storing a player’s name, which would be a good data type: a string, a boolean, an
enum, or a float?

To access the script’s parent, use
A Dialog object inserted into a part is a of the part?

The process of combining values for use by print () is called

Answers

1.

o o > w b

Booleans
Placeholders
String
script.Parent
Child

Concatenation

Exercises

A face would make your NPC much more personable. One can easily be added on by inserting a
decal. For the texture, you can use the one in the link provided or upload your own.

Tips

» Give the spirit a face (see Figure 2.10) by inserting a decal instance and updat-

ing the texture property with the following string: "http://www.roblox.com/
asset?id=494290547"


http://www.roblox.com/asset?id=494290547
http://www.roblox.com/asset?id=494290547

Exercises 29

» You may have to rotate the NPC to get it to face the right way. Or you can try updating the
decal’s face property to change the placement of the decal.

» Find the code solution in the appendix.

FIGURE 2.10
The NPC now has a face, making it feel more alive to players.

» For the second exercise, see if you can create the spirit guide from start to finish only using
code.

Tips
> Insert a new Script object into ServerScriptService to write your code in.

» Use Instance.new () to create the part that will act as the guide’s body, the Dialog
object.

» Don’t forget to anchor the part. Anchored accepts boolean data types.

» Make all changes to the part, including adding the children objects before finally parenting
the guide to the workspace.

» The NPC appears at the dead center of the world as a cube. In Hour 14, “Coding in 3D
World Space,” you learn how to work with the coordinate system to move objects to exactly
where you would like them.

» See the appendix for an example code snippet.



This page intentionally left blank



HOUR 3

Creating and Using Functions

What You’ll Learn in This Hour:

» How to create functions in Lua

» How to call functions to make them run
» How to use events to call functions

» How scope works

In Hours 1 and 2, you used the prebuilt functions print (), destroy (), and new () . This hour
talks more about what functions actually are, how to create your own functions, and how to get
your functions to run using events that happen in the world.

The second half of the hour talks a little bit about how code is organized so you can better
understand how placement in a script matters when making sure that code will run.

Creating and Calling Functions

Functions are packaged bits of code designed for specific purposes that can be used when needed,
as often as needed.

The code that you used in the last hour to create your NPC ran as soon as the playtest session
started. But what if you don’t want the code to run right away? Say if you only want the NPC to
appear after the player clicks a button or completes a quest. Or what if you want to create mul-
tiple NPCs, but don’t want to write all the same code again. These types of scenarios are great for
functions. You can write the code the same as you did, package it in a function, and have it run
whenever you want.

1. To create a function, type local function nameofFunction.
2. Press Enter to automatically close the function with end. Your code will look like this:

local function nameOfFunction ()

end



32 HOUR 3: Creating and Using Functions

3. Inside the function, add your code on an indented line. In this case, we used print () just
for testing purposes. All of the code for the function must be typed before end:

local function nameOfFunction ()
print ("Function Test")
end

TIP

Indent Your Code

The code will work if not properly indented. Even so, proper indentation makes code a lot easier for
you and other people to read, so we highly recommend that you use indentation in your code.

4. Once the function is created, all that’s left is to tell it to run. To do this, you have to call
the function by typing the function name followed by a parenthesis:

local function nameOfFunction ()
print ("Function Test")
end

nameOfFunction ()

If you don’t call the function, it won’t run.

5. The function will run as many times as you call it. Try calling it a few more times:

local function nameOfFunction ()
print ("Function Test")
end

nameOfFunction ()
nameOfFunction ()
nameOfFunction ()

The name of the function can be whatever you like, as long as it’s followed by (), but let’s take
a second to think about properly naming functions. Here are some guidelines to follow:

» Names should tell you what the function does. For example, destroy () clearly destroys
things.

» Function names in Lua are typically pascalCased. They begin lowercase, and each new
word is capitalized.

» Do not include spaces or special characters in function names. This will cause errors.



Using Events to Call Functions 33

TIP

Method: Another Name for Function

Functions that are prebuilt or belonging to existing world objects such as print (), wait (), and
destroy () are often referred to as methods in other coding languages. Lua users tend to just say
function regardless of whether it could be referred to as a method.

Understanding Scope

Just mentioned was that any code not between the first and last lines of a function won’t run
when the function is called. Code that is outside a function is out of scope. Scope is the informa-
tion that a particular chunk of code, such as a function, can see and access.

If you run the following code, the print function inside of the function will run three times, and
the print function on the outside will run only once:
local function scopeTest ()

print ("This is in scope")

end
print ("This is out of scope")

scopeTest ()
scopeTest ()
scopeTest ()

Using Events to Call Functions

Just typing the name of a function is one way to call it, and that works well when you want it
to be called at a particular point in the script. Sometimes, however, you don’t know in advance
when the function should be called. You want the function to run when something in particular
happens in the experience. Here are some examples:

» Giving a user a sword when they click on a loot chest
» Assigning a player to a team when they’ve joined a game

» Destroying a piece of a bridge when a player has touched it

For these sorts of scenarios, you don’t know in advance when they’ll happen, but you do know
what code you want to run when they do. What you’re waiting for is a specific event. When the
event happens, a signal is fired that can be used to tell code to run. To call a function whenever
an event has been fired, use Connect () and pass in the name of the function to run, but leave
off the ().



34 HOUR 3: Creating and Using Functions

Here’s an example:

partName.Touched:Connect (functionName)

The Touched event is built into parts, so it can be accessed using the dot operator like other chil-
dren. The colon is then used to access the function named Connect ().

V¥ TRY IT YOURSELF

Create a Vanishing Bridge

Part objects have several built-in events, one of the most useful being Touched. The Touched
event fires whenever its parent part has been collided with. Let’s use the Touched event to
create a bridge where the pieces become transparent half a second after being touched by an
explorer:

1. Create a bridge piece (see Figure 3.1) using parts or models. Make sure to anchor the part
in place.

FIGURE 3.1
Use a model or a part to act as part of a bridge.

2. Insert a script into the part, and rename the script BridgeScript (see Figure 3.2).



Using Events to Call Functions 35

@® workspace
BY Camera
Terrain
Terrain
terfall
SpawnlLocation

BridgeEnd

! BridgeScript

@ GuideNPC

FIGURE 3.2
Insert a script into BridgePiece.

3. Assign the parent part to a local variable: local bridgePart = script.Parent.

4. Create a new local function named onTouch:

local bridgePart = script.Parent
local function onTouch ()

end

TIP

Naming Functions Used With Events

A common naming pattern for functions that are called with events is onBlank, where Blank is
the name of the event. Just another way of making your own code easy to read when you have to
update it after a year.

5. Connect the function to the part’s Touched event. Once that’s done, you can use
print () to test your code so far:

local bridgePart = script.Parent
local function onTouch ()

print ("Touch event fired!")
end

bridgePart.Touched:Connect (onTouch)



36 HOUR 3: Creating and Using Functions

n 6. Inside of the function, add the code that should run when the event fires. Here, the part
will turn transparent, and in 0.5 seconds, anyone standing on the bridge will be dropped. If
you added a print statement in the last step, go ahead and delete it:

local bridgePart = script.Parent

local function onTouch ()
bridgePart.Transparency = 0.5
wait (0.5)
bridgePart.CanCollide = false
end

bridgePart.Touched:Connect (onTouch)

TIP

Using Booleans

CanCollide is a boolean. When true, that object can interact with things in the world. When false, it
can’t. So in this case, when false, the bridge no longer supports the user.

Understanding Order and Placement

When creating variables and functions, it’s important to remember that where they are located
in the script matters. Scripts run code line by line, starting from the top and working to the
bottom.

So if you try to use a variable or a function before it’s been created in the script, you'll run into
problems (see Figure 3.3 and Figure 3.4). Take a look at the BridgeScript you just completed:

local bridgePart = script.Parent

local function onTouch ()
bridgePart.Transparency = 0.5
wait (0.5)
bridgePart.CanCollide = false

end

bridgePart.Touched:Connect (onTouch)

If you move the first line to the bottom, then the previous mentions of the variable now show
€ITors.



Understanding Order and Placement 37

FIGURE 3.3
Moving the creation of bridgePart to the bottom causes errors due to the unknown variable.

FIGURE 3.4
Calling a function before it's assigned also causes issues.

In both of these examples, errors are caused because the script is trying to call something that
isn’t there yet.

Now that you know that order matters, let’s talk about variables that are created inside of a func-
tion. Start with this basic set of three variables: one before the function, one inside, and one below:

local above = "above"

local function scopePractice()
local inside = "inside"

end

local below = "below"

At the bottom of the script, try to print all three variables. What happens? inside will error (see
Figure 3.5) despite having been assigned previously. That’s because local variables inside of a
function can’t be accessed from the outside.

FIGURE 3.5
Local variables inside of a function can’t be accessed outside of the function.



38 HOUR 3: Creating and Using Functions

To understand why this doesn’t work, you need to understand that a script is a series of nested
blocks of code. Each time you create a new function, you're creating a new block. Figure 3.6
illustrates how those blocks can overlap. The first block, block A, is the script itself. Inside is a
function, shown as block B.

Script
Local Variable

Local Function

Local Variable

Conditional Statement
Local Variable

FIGURE 3.6
Functions create a new block of code within the script.

Within the function can be more blocks, created by conditional statements and other things that
you'll learn about in a couple of hours. Each block can access local variables/functions in its par-
ent block, but not those in any child blocks:

> Block B can access the local variable in block A.
» Block C can access the local function/variables in blocks A and B.
» Block A cannot access the local function/variables in blocks B or C.

» Block B cannot access the local variable in block C.

V¥ TRY IT YOURSELF

Reactivate the Bridge

One thing to remember about Roblox experiences is that they are on live servers and are inher-
ently multiuser, which means that lots of people can be in the same server at the same time.
For that reason, you don’t want a broken bridge like the one in Figure 3.7 permanently in your
experience once a player has gone across it. Keep in mind what you’ve learned about scope and
create a second function that reactivates the bridge.



Understanding Order and Placement 39

FIGURE 3.7
The bridge needs to be reset so users can cross it again.

1. In the same script you used in the earlier Try It Yourself, create a new function called
activateBridge () above the onTouch function:

local bridgePart = script.Parent
local function activateBridge ()
end

local function onTouch ()
bridgePart.Transparency = 0.5
wait (0.5)
bridgePart.CanCollide = false
end

bridgePart.Touched:Connect (onTouch)

2. In activateBridge (), reverse the changes to CanCollide and Transparency:

local function activateBridge ()
bridgePart.Transparency = 0
bridgePart.CanCollide = true
end



40 HOUR 3: Creating and Using Functions

n 3. Inside of onTouch (), call activateBridge () after a short amount of time:

local bridgePart = script.Parent

local function activateBridge ()
bridgePart.Transparency = 0
bridgePart.CanCollide = true

end

local function onTouch ()
bridgePart.Transparency = 0.5
wait (0.5)
bridgePart.CanCollide = false
wait (3.0)
activateBridge ()

end

bridgePart.Touched:Connect (onTouch)

TIP

Pay Attention to the Order of Your Functions
activateBridge () needed to come before onTouch () in order to keep it in scope.

Summary

Functions are reusable chunks of code that you can use again and again and again. Once
defined, they can be called by simply typing functionName (). Or alternatively, if you don’t
know exactly when the function will be needed, you can connect them to an event. That way,
the function will be called each time the event fires.

When creating a script, it's important to keep in mind what information a chunk of code has
access to. Variables and functions need to be within the scope of a code chunk to be used. Code
chunks can access information within their own chunk and within their parent chunk. Trying to
access information that’s out of scope results in errors in the script.

A good way to practice scope is take a piece of code that you have working, like the bridge script,
and move around functions and variables to see when things break.



Workshop 11

Q&A

o

Can you create a variable without assigning it a value if you don’t know it yet?

Yes, the variable can be created earlier and then later assigned a value.

Can you have more than one function with a script?

Yes, you'll quite often have multiple functions created within a script.

Why not make everything global and not worry about scope?

In addition to global variables running slower than local variables, there’'s a lot of time you’ll
have to create multiple functions within the same script. These functions will all need their

own variables. If you don’t make your variables local, it's very easy to accidentally overwrite
a variable when you meant to make a new one.

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
1. What’'s another word for telling a function to run?
2. What function is used to run a function when an event is fired?
3. An object’s events are accessed using
4. What are two reasons for using local variables instead of global variables?
5. True or false: If a local variable is inside of a function, it can be accessed by all functions
further down the script.
6. What symbol is used to run a function associated with an object? Hint, think of how
Connect () and Destroy () were used.
Answers
1. Call
2. Connect ()
3. Dot notation
4. Local variables run faster and prevent accidentally overwriting values in the case of dupli-
cate names.
5. False. Variables are only accessible within their own code block and child code blocks.
6. A colon is used to call a function associated with an object—for example, part :Destroy ().



42 HOUR 3: Creating and Using Functions

Exercise

Instead of having the bridge collapse after being touched, try creating a bridge or track piece that
solidifies after a player touches a button and then resets. Create one function that activates the
bridge when touched and a second function that deactivates the bridge (see Figure 3.8).

FIGURE 3.8
Users need to touch the buttons to activate the missing bridge piece.

Tips

> It'll be easier to use a single bridge part rather than multiple parts.

v

Place the script in the button to take advantage of the Touched event.
» Use wait () to control how long the bridge is active.

» Turn the button green while the bridge is active.

» Make sure the bridge piece starts off disabled so that it can be enabled by the script.

The code solution is in the appendix.



HOUR 4

Working with Parameters and
Arguments

What You’ll Learn in This Hour:
» How to use parameters
» How to use multiple parameters and arguments
» How to return values from functions

» How to use anonymous functions

Functions can not only perform tasks; they can perform like little factory machines that take
things in, transform them, and then gives back the results. This hour covers the information that
goes inside of the parentheses—parameters and arguments—and what a function can do with
that info.

Giving Functions Information to Use

Functions don’t have to be stand-alone chunks of code; they can actually take in information
from the outside to use. You've seen this done with print ("Hello"), which takes in messages
to display, and wait (3) which takes in a number of seconds to pause a script.

The values that get passed into a function through the parentheses are called arguments. When
creating your own functions where information will get passed in, you need to create placehold-
ers for the arguments. Those placeholders are called parameters.

To create your own parameters, add a variable name within the parentheses when you define
the function, like so:

local function functionName (parameterName)

end

The parameter can then be used within the function just like any other variable.



44 HOUR 4: Working with Parameters and Arguments

V¥ TRY IT YOURSELF

Create a Painting Function

The side of the building in Figure 4.1 will be changed by creating a new function named paint (),
which will have a parameter for taking in what color the wall should be repainted. Instead of using a
building like this, you can practice with a regular old part or an untextured model.

FIGURE 4.1
Use a function to repaint part of the building.

1. Inside of a part or model, add a new script named Paint.

2. Create a new local variable assigned to the parent part, and then a new local function
named paint ():

local wall = script.Parent

local function paint ()

end

3. Create a parameter named paintColor that will act as a placeholder for what color to
paint the wall with:

local wall = script.Parent
local function paint (paintColor)

end



Working with Multiple Parameters and Arguments 45

4. Inside the function, set the color of the wall to the paintColor placeholder: n

local wall = script.Parent

local function paint (paintColor)
wall.Color = paintColor

end

5. Add a variable or two with different RGB colors you might want to paint the wall:
local wall = script.Parent

local blue = Color3.fromRGB (29, 121, 160)
local yellow = Color3.fromRGB (219, 223, 128)

local function paint (paintColor)
wall.Color = paintColor
end

TIP

Variable Placement

You may have already noticed, but variables usually go at the top of the script or the code chunk
they belong to.

6. Call the paint function and pass in one of the color variables:

local wall = script.Parent

local blue = Color3.fromRGB (29, 121, 160)
local yellow = Color3.fromRGB (219, 223, 128)

local function paint (paintColor)
wall.Color = paintColor
end

paint (blue)

Test it out, and whatever part you painted will be the color you picked!

Working with Multiple Parameters and
Arguments

The previous Try It Yourself let you pass in the colors you wanted to paint with, but the object
to be painted was hard-coded in. In other words, the code would only work with that particular
object.



46 HOUR 4: Working with Parameters and Arguments

Hard-coding really limits the use of the function unless you plan on changing the color of that
one wall a lot. Luckily, you can pass more than one argument into a function. All you have to
do is create more than one parameter.

Multiple parameter names can be separated with a comma when defining the function, as
shown here:

local function functionName (firstParameter, secondParameter)
print (firstParameter .." and ".. secondParameter)
end

TIP

How Many Is Too Many?

There’s no technical limit to how many parameters you can have, but most people agree that no
more than three is a good rule of thumb.

The arguments that get passed in always fill up the parameters in order. The first argument
always goes through the first parameter, and the second argument always goes through the sec-
ond parameter:

local first = "first"
local second = "second"

local function practice(firstParameter, secondParameter)

print (firstParameter .. " and " .. secondParameter)
end
practice (first, second) -- Prints "first and second"
practice (second, first) -- Prints "second and first"

V¥ TRY IT YOURSELF

Pass in What Color and What Object

Make the paint function more useful by creating a variable that takes in both an object to paint

and a color to paint with. Figure 4.2 shows a car and a building currently painted white, which is
incredibly boring and doesn’t match the scene. Take the same painter code as before but make
it so you can pass in the object you want to paint. That way, the code can be used on both the

building and the car:



Working with Multiple Parameters and Arguments

FIGURE 4.2
A function with two parameters can be used to designate both what object to paint and what color to use.

1.

TIP

In ServerScriptService, create a new script.

Assign variables for two different colors and two different objects:

-- Available colors
local red = Color3.fromRGB (170, 0, 0)
local olive = Color3.fromRGB (151, 15, 156)

-- Objects to paint
local car = workspace.Car
local restaurant = workspace.Buildings.Restaurant

47

Finding Embedded Objects

Note that for the second object in the example, the restaurant was in a folder, so dot notation was
used to navigate one more step down the hierarchy.

Create a function that has a parameter to take in an object to paint and the color to paint

it:

-- Paints objects

local function painter (objectToPaint, paintColor)
objectToPaint.Color = paintColor

end



48 Working with Parameters and Arguments

n 4. Call the function and pass in which object should be painted and what color:

-- Available colors
local red = Color3.fromRGB (170, 0, 0)
local olive = Color3.fromRGB (151, 15, 156)

-- Objects to paint
local car = workspace.Car

local restaurant = workspace.Buildings.Restaurant

-- Paints objects
local function painter (objectToPaint, paintColor)
objectToPaint.Color = paintColor

end

painter (restaurant, olive)
painter (car, red)

5. Test your code. Instead of Play, in the drop-down menu, select Run (see Figure 4.3) if you
want to see the changes to the world without playing the experience.

Play

Play Here

Run

FIGURE 4.3
Use Run to test code without loading a character avatar.

Figure 4.4 shows the finished car and building, which are no longer startlingly white.



Returning Values from Functions 49

FIGURE 4.4
Once the script runs, both the building and the car have had their color changed.

Returning Values from Functions

Not only can values be passed into a function, but they can also be passed back. A classic exam-
ple is a calculator, just like the one on your phone. Values go in, and the result is returned. In
the following code example, a function is assigned to a variable. When the variable is used, the
function runs, and the result is sent back using the keyword return:

-- Adds any two numbers together
local function add(firstNumber, secondNumber)

local sum = firstNumber + secondNumber

return sum -- Sends sum back to where the function was called
end

-- Some numbers to use
local rent = 3500
local electricity = 128

-- Use add() to add rent and electricity and return the result
local costOfLiving = add(rent, electricity)
print ("Rent in New York is " .. costOfLiving)



50 HOUR 4: Working with Parameters and Arguments

Returning Multiple Values

Sometimes you may want multiple values returned from a function. An example may be return-
ing how many wins, losses, and ties a user has. To return multiple values, use return as normal
and separate the values with a comma.

V¥ TRY IT YOURSELF

Return Player’s Wins, Losses, and Ties

Follow the steps to create a custom function which, when called, returns a player’s wins, losses,
and ties. Assign the returned values to a variable:

1. Create a custom function with variables for wins, losses, and ties.

2. Type return followed by the desired variable. Use a comma to separate them:

local function getWinRate ()

local wins = 4
local losses = 0
local ties = 1

return wins, losses, ties

end

3. Rather than creating variables for each received value on separate lines, create them
on the same line as in the following example. They’ll be filled in order with the returned
values:

local function getWinRate ()
local wins = 4
local losses = 0
local ties = 1
return wins, losses, ties
end

local userWins, userLosses, userTies = getWinRate ()

4. Print the variables to see the results.

local function getWinRate ()

local wins = 4
local losses = 0
local ties = 1

return wins, losses, ties

end

local userWins, userLosses, userTies = getWinRate ()

print ("Your wins, losses, and ties are: " .. userWins .. " , " .. userLosses
", " .. userTies)



Dealing with Mismatched Arguments and Parameters 51

Returning Nil

Nil means something can’t be found or doesn’t exist. If you see nil printed instead of the
expected output, do the following:

» Check that the number of values received is the same as those returned.
» Verify that values returned and received are separated by commas.

» Confirm nothing else is wrong with the function.

TRY IT YOURSELF V¥

Returning Something That Doesn’t Exist

If you try to use a variable or function that doesn’t exist, you can see the keyword nil displayed in
Output, as well as where the error occurred.

1. In any script, pass a fake variable name like doesntExist into print ().

2. Run the code and check Output. You should see the nil alongside the name of the script
and the line number of where the variable couldn’t be found, such as the error shown in
Figure 4.5.

FIGURE 4.5
The error message shows that a value couldn’t be found at line 1 of the script named NilTest.

Dealing with Mismatched Arguments and
Parameters

It's important to be aware of what will happen if the wrong number of values are passed into a
function or are returned. Having the wrong number can cause your code to error and freeze.



52 HOUR 4: Working with Parameters and Arguments

If insufficient arguments are passed into a function, an error occurs when the function reaches
the nil value:
local function whoWon (first, second)

print ("First place is " .. first .. "Second place is ")
end

whoWon ("AngelicaIsTheBest") -- Will error because there is not a second value

If more values are passed back than there are available variables, the values fill up in order, and
any variables left over will be dropped and lost. In this example, three values are passed back,
but there are only spaces for two:

local function giveBack ()
local a = "Apple"
local b = "Banana"
local ¢ = "Carrot"

return a, b, c

end
local a, b = giveBack() -- ¢ is lost
print(a, b, ¢) -- Will print Apple, Banana, nil

"Carrot" only exists within the scope of the function and is never returned, so nil is printed for
the third value.

Working with Anonymous Functions

Anonymous functions are, as the name implies, functions. What makes them special is that
when they are first defined, they go unnamed. This means they can be defined in the same place
as they are called. Compare the following two code samples for our familiar simple trap con-
nected to the Touched event. The Touched event returns the name of the triggering part, which
is then destroyed.

First, here is the script where a named function is created and then called whenever the Touched
event is fired:

Named Function Example

local trap = script.Parent

local function onTouch (otherPart)
otherPart :Destroy ()
end

trap.Touched:Connect (onTouch)



Summary 53

Now here is code that does the same thing, but the function is created in the same place where
it’s being called:

Anonymous Function Example

local part = script.Parent

part.Touched:Connect (function (otherPart)otherPart:Destroy () end)

If you were to run both pieces of code, they do the exact same thing: destroy anything that
touches the script’s parent. So why wouldn’t you use an anonymous function? The table shows
some pros and cons for unnamed functions.

Pros Cons

Faster to type. More difficult to read.

Can be used with functions that don’t return  Trickier to update and reuse.
values otherwise.

Can’t be called from elsewhere, because they
don’t have a name to call them by.

TIP

Named Functions Makes Collaborating Easier

The Roblox Lua Style Guide discourages the use of anonymous functions when not necessary
because most projects will have multiple coders, and anonymous functions make code much more
difficult to read and update.

Summary

Functions can be used and reused in a lot of different ways. They can be used to create some-
thing, like the NPC in Hour 2. They can be used to make changes to an object by updating prop-
erties or even destroying them altogether, as with a trap part. To do so, they can take in values
from outside of the function by passing those values through parameters. The actual chunks of
information that get passed through parameters are called arguments.

When the function completes its work, information can be passed back and used by the script.
A classic example of information being returned is the calculator on your phone. If you use the
calculator to add two numbers, it'll pass back the answer. Another example we’ve seen is when-
ever the Touched event is fired, Touched passes back the name of the object that caused it to
fire.



54 HOUR 4: Working with Parameters and Arguments

Sometimes, if there’s nothing to return, you might use an anonymous function and create the
function in the same place as it’s called. This can be convenient, but it also makes your code a
lot harder to read, which possibly means slowing down teammates who are working with the
script. It can even make it more challenging for yourself if you want to make updates to the code
later.

Q&A

Q. Is there a maximum amount of parameters a function can have?

A. There’s not a strict maximum, but most of the time, you’ll want to limit it to just three. The
more parameters you have, the harder it becomes to remember what each one is for, and
easier to mess up the order.

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz

Handing information from outside of a function to the inside is called

B

What keyword allows values to be handed back when a function is done?
The placeholder for values that will later be used by a function are called

The actual values used by functions are called

o » w0 N

The keyword that is used when values can’t be found or don’t exist is .

Answers
1. Passing

return
Parameters

Arguments

o & 0 N

Obnil



Exercise 55

Exercise

All coders will at times research how other people have made something. However, the code you
find online might not do exactly what you want or be formatted in a way that makes it easy for
your team members to read. It's important that you take the time to examine borrowed code and
make improvements where you can. In this exercise, practice by taking an anonymous function
and trying to reformat it as a named function:

script.Parent.Touched:Connect (function (otherPart) local fire = Instance.new"Fire"
fire.Parent = otherPart end)

See the appendix for the solution.



This page intentionally left blank



HOUR 5

Conditional Structures

What You’ll Learn in This Hour:

» How to use if/then statements

» How to work with operators

» How to use multiple conditions with elseif and else
» How to find the Humanoid

Have you ever told someone you would do something—on one condition? For example, you'll
help them move to a new place, but they have to help you study for finals. That’s a conditional
structure. You'll do something if something else happens.

The same thing can happen in scripts. You can set up code so that it'll run only if something else
is true. Figure 5.1 shows a flowchart of how a conditional structure works.

Thing to check

Is it true?

Do that

FIGURE 5.1
The code decides which option to take based on whether something is true or false.

This hour explores the world of conditional structures in which code runs only if certain condi-
tions are met.



58 HOUR 5: Conditional Structures

if/then Statements

The most common conditional structure is probably an if/then statement. If something is true,
then the code will do something.

Here are a few examples:
» If a key is found, then a new area can be explored.
» If a quest is completed, then the user will receive a free pet.

» If'someone says happy birthday in chat, then make a burst of balloons on screen.

In code, it looks like this:

if somethingIsTrue then
-- Do something
print ("It's true!")

end

If the first line is true, then the print command in the indented code will run.

Conditional statements can use operators to evaluate if something is true. Operators are symbols
that give directions about how to evaluate something. Table 5.1 shows some of the most com-
mon operators. For a complete list, refer to the appendix.

TABLE 5.1 Common Operators

Operator Description Examples of Being True
== Is equal If 3 == 3 then

+ Addition If 3 + 3 == 6 then
- Subtraction If 3 - 3 == 0 then
* Multiplication If 3 * 3 == 9 then

Pay close attention to the double equal sign used as an operator as compared to a single equal
sign used to assign a value to a variable. A double equal sign == is used to check if something is
equal.



if/then Statements 59

The following evaluates as true, and the code will run:

local health = 10

if health == 10 then
print ("You're at full health")
end

The following evaluates as false, and the code won’t run:

local health = 5

if health == 10 then
print ("You're at full health")
end

What if the player has temporary bonus health? You can check for that with the operator for
greater than or equal to (>=):

local health = 12

if health >= 10 then
print ("You're at full health")
end

You can also check for the presence of a value if no operator is used. The following code snippet
checks to see if a roof is on fire:

local roof = script.Parent
local fire = roof:FindFirstChildWhichIsA("Fire")
if fire then -- Checks if fire is not nil

print ("The roof is on firel!™")

fire:Destroy ()
end

It uses FindFirstChildWhichIsA () to see if any of the roof’s children objects are Fire objects.
FindFirstChildWhichIsA ()only gets the first object it finds that matches its search.

TRY IT YOURSELF V¥

Introducing Humanoids

The lava in Hour 1 had a major flaw: It only destroyed whatever touched it directly, which means
that users could possibly be running around without feet or hands if they managed only to brush
against the trap, as in Figure 5.2.



60 HOUR 5: Conditional Structures

FIGURE 5.2
This person has lost their feet.

To reset the user completely, you need to find the object that controls the user’s health. In
Roblox, by default that’s the Humanoid object. If you use the Humanoid to set the user’s health
to O, they’ll be forced to respawn—Ilegs, feet, hands, and all.

1. Create a part and insert a new script. You can use your lava from Hour 1 as long as you
delete the old script.

2. Create a variable assigned to the trap part itself.
3. Start a function named onTouch with a parameter for otherPart.

4. Inside of the function, create a variable named character to find otherPart’s parent,
if it has one:

local trap = script.Parent
local function onTouch (otherPart)
local character = otherPart.Parent

local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

end



if/then Statements 61

5. The next step is to check whether the character has a Humanoid. If it does, it's most likely n
a user or an NPC:

local trap = script.Parent

local function onTouch (otherPart)
local character = otherPart.Parent
local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

if humanoid then

end
end

6. Set the user’s health to 0:

local trap = script.Parent
local function onTouch (otherPart)
local character = otherPart.Parent

local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

if humanoid then
humanoid.Health = 0
end

end

7. Connect onTouch to the trap’s Touched event:

local trap = script.Parent

local function onTouch (otherPart)
local character = otherPart.Parent

local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

if humanoid then
humanoid.Health = 0
end

end

trap.Touched:Connect (onTouch)

You can find the API page for Humanoids at https://developer.roblox.com/api-reference/class/
Humanoid.


https://developer.roblox.com/api-reference/class/Humanoid
https://developer.roblox.com/api-reference/class/Humanoid

62 HOUR 5: Conditional Structures

elseif

OK, but what if you want the code to check for more than one scenario? For example, you want
the code to do one thing if the user’s health is full, but a different thing if the user’s health is not
full. In these scenarios, add a second conditional called with the keyword elseif:

local health = 5

if health >= 10 then
print ("You're at full health")

elseif health < 10 then -- Check if health is less than 10

print ("Find something to eat to regain health!")

end

The elseif is still part of the same code block as if/then. It does not have its own end.

Logical Operators

A few special operators aren’t symbols; instead, logical operators are the words and, or, and not.
and and or allow you to check against multiple conditions at the same time. not lets you make
sure something isn’t something else. Table 5.2 explains how these operators are evaluated.

TABLE 5.2 Logical Operators

Operator Description

and Evaluates as true only if both conditions are true.
or Evaluates as true if either condition is true.

not Evaluates as the opposite of the condition.

These operators consider both false and nil as “false” and anything else as “true.”

In the following snippet, and is used to check for a range rather than a single value. In this sce-
nario, we imagine the user has a maximum of 10 health, and at 0 health respawns. So the user
needs to eat only if they are less than full health:

local health = 1

588558588 S

if health >= 10 then
print ("You're at full health")

elseif health >= 1 and health < 10 then -- Check if health is in a specific range
print ("Find something to eat to regain health!")
end



else 63

You can keep creating code for specific scenarios as needed with additional elseif statements:

local health =1

if health >= 10 then
print ("You're at full health") -- Runs if health is 10 or higher

elseif health >= 5 and health < 10 then -- Runs if health is 5 - 9
print ("Find something to eat to regain health!")

elseif health >= 1 and health <= 4 then -- Runs if health is 1 - 4
print ("You are very hungry, better eat soon!")
end

Finally, it’s always wise to tell the script what to do if none of the other contingencies are met.
Use the keyword else to mark what should be done if no other conditions are met:

local health = 0

if health >= 10 then
print ("You're at full health") -- Runs if health is 10 or higher

elseif health >= 5 and health < 10 then -- Runs if health is 5 - 9
print ("Find something to eat to regain health!")

elseif health >= 1 and health <= 4 then -- Runs if health is 1 - 4

print ("You are very hungry, better eat soon!"

else -- Runs if none of the conditions have been true.
print ("You ran out of food, you'll need to restart")
end

Once again, else is not its own code block; the entire conditional should only use the keyword

end once.
TRY IT YOURSELF V¥

Make a Portal with Attributes and Services

Practice using if/then and elseif statements by creating a portal that only allows players
to pass into the tunnels on the other side if they’ve activated a special keystone nearby. (See
Figure 5.3.) To create the portal, you get to learn about the ProximityPromptService and custom
attributes.



64 HOUR 5: Conditional Structures

FIGURE 5.3
A keystone (left) that needs to be activated before people can use the portal (right).

First, you need to set up the portal and keystone using either parts or models. In Figure 5.3, a
model was used for the portal arch, but the portal itself is just a black part acting as a barrier.
The arch is just for show.

Both the portal and keystone will need a new attribute to make the script work. Attributes are
custom properties that you can name and set a value type for. An attribute named Activated
will be created for each part to track whether the key has been found and if the portal can be
used:

1. Set up parts or meshes named Portal and KeyStone.

2. Select Portal, and insert a ProximityPrompt (see Figure 5.4). ProximityPrompts enable users
to click and interact with parts instead of only being able to run up and touch them.

& Arch
‘ KeyStone
‘ Portal

"¢ ProximityPrompt o

S

FIGURE 5.4
Insert a ProximityPrompt object.

3. With Portal still selected, in Properties, scroll all the way down and click Add Attribute (see
Figure 5.5).



else 65

Attributes

Add Attribute

FIGURE 5.5
Click Add Attribute.

4. Name the attribute Activated, set the type to boolean, and then click Save (see Figure
5.6).

& Add Attribute X

Activated

Cancel

FIGURE 5.6
Name the attribute Activated and set the type to boolean.

5. Select KeyStone, create another new attribute named Activated, and set the type to
boolean.



66

HOUR 5: Conditional Structures

n WARNING

Leave the New Attributes Unchecked

Make sure to leave both new attributes disabled, as in not checked. Enabled/checked attributes
and properties are true, whereas disabled/unchecked are false.

Next, you create two scripts: one for the key and one for the portal.

Getting Attributes in the KeyStone Script

The KeyStone’s attribute, Activated, should currently be false. As long as the key isn’t acti-
vated, the portal doesn’t allow people to pass through. The KeyStone's script is used to turn on
the key when touched, and set Activated to true:

1.
2.

Select KeyStone and insert a new script.

Create a variable to reference the script’s parent and a function named onTouch con-
nected to the KeyStone’s Touched Event. Include a parameter for the touching part.

. Check to see if a person has touched the part by looking for a Humanoid. You don’t want

the code to be triggered by a touching baseplate or something similar. Refer to the code
earlier in the hour if you can’t remember how.

Inside the function, use SetAttribute () to pass in Activated and change the value
to true as shown:

local keyStone = script.Parent

local function onTouch (otherPart)
local character = otherPart.Parent
local humanoid = character:FindFirstChildWhichIsA ("Humanoid")

if humanoid then
keyStone:SetAttribute ("Activated", true)
end
end

keyStone.Touched: Connect (onTouch)

. Change the KeyStone’s material to Neon to show the user that the KeyStone has been

activated:

local keyStone = script.Parent

local function onTouch (otherPart)
local character = otherPart.Parent
local humanoid = character:FindFirstChildWhichIsA ("Humanoid")



else 67

if humanoid then
keyStone:SetAttribute ("Activated", true)
keyStone.Material = Enum.Material.Neon
end
end

keyStone.Touched: Connect (onTouch)

TIP

Alternatives for Textured Parts

If your part has a texture, changes to materials and color won’t show up. You can delete the texture
so these properties show or enable a particle when activated. The important thing here is to always
show users when they have an interaction with a part.

6. Test and make sure the part changes to neon, as shown in Figure 5.7.

FIGURE 5.7
The KeyStone (left) glows neon blue (right) after it’s activated so users know it’s working.

Portal Script

Back to the portal itself: When the user walks up to the portal, the ProximityPrompt displays a
message showing the barrier can be interacted with, as shown in Figure 5.8.



68 HOUR 5: Conditional Structures

@ Interact

FIGURE 5.8
A ProximityPrompt’s default message is shown to users when they get close enough.

ProximityPrompts have a number of associated functions that can be used, but they aren’t auto-
matically included with the functions normally available in a script. We can make these functions
available to us by adding the ProximityPromptService to the script. Services are optional sets of

code that provide additional functions for your script to use. These code sets can be made avail-
able for use by assigning them to a variable with GetService (). Here’s an example:

local ProximityPromptService= game:GetService ("ProximityPromptService")

TIP

Using Colons with Methods

As a reminder, when accessing methods—that is, functions associated with an object—you use
colons. Here, GetService () is associated with the top-level object, game:

Select Portal and insert a new script.
Create a variable to get ProximityPromptService.

Create variables to reference Portal, KeyStone, and ProximityPrompt.

E A o

Create a new function named onPromptTriggered:

local ProximityPromptService = game:GetService ("ProximityPromptService")

local portal = script.Parent
local keyStone = workspace.KeyStone



else 69

local proximityPrompt = portal.ProximityPrompt
local function onPromptTriggered ()
end

TIP

Naming Functions

You may have noticed that the formula of on and the name of the event is a common way to name
functions.

5. Connect the function to the PromptTriggered event that comes with
ProximityPromptService:

local function onPromptTriggered ()
end
ProximityPromptService.PromptTriggered:Connect (onPromptTriggered)

6. Inside of the function, get the current value of the KeyStone’s attribute, Activated:

local function onPromptTriggered ()
local KeyActivated = keyStone:GetAttribute ("Activated")
end

7. If KeyStone is Activated, make the part transparent and disable CanCollide:

local function onPromptTriggered ()
local KeyActivated = keyStone:GetAttribute ("Activated")

if KeyActivated == true then
portal.Transparency = 0.8
portal.CanCollide = false
print ("Come on through")
end
end

8. Otherwise, make the door blink red:

local ProximityPromptService = game:GetService ("ProximityPromptService")

local portal = script.Parent
local keyStone = workspace.KeyStone

local proximityPrompt = portal.ProximityPrompt
local originalColor = portal.Color

local function onPromptTriggered ()
local KeyActivated = keyStone:GetAttribute ("Activated")



70 HOUR 5: Conditional Structures

if KeyActivated == true then
portal.Transparency = 0.8
portal.CanCollide = false
print ("Come on through")

else

portal.Color = Color3.fromRGB (255, 0, 0)

wait (1)

portal.Color = originalColor

print ("Activate the key stone to pass through the portal")
end

end

ProximityPromptService.PromptTriggered:Connect (onPromptTriggered)

TIP

Taking into Account Multiple Player Interactions

A variable is used to get the portal’s original color at the top of the script instead of in the function.
Otherwise, if you spam the interaction, the function might start while the portal is still red. The vari-
able would then be assigned red instead of the original color.

The script is finished! Test it out and make sure people can use the portal. In the Property win-
dow, you can even customize the text of the ProximityPrompt (see Figure 5.9) and how far away
players have to be.

FIGURE 5.9
You can customize the ProximityPrompt text.



Workshop 71

Summary

Using conditional statements can really make your world start to come to life, allowing you to
set up cause-and-effect reactions in the world. If people touch something dangerous, then they
lose health. If they touch something else, magical powers can be given or new doors can open.

The keywords 1f/then, elseif, and else are what allow you to create the flowchart for what
code should run under what circumstances. The script checks each condition starting from the
top, and if the condition is true, the code for that section is run. The rest of the code in the if/
then statement is skipped. If nothing is true, an else can be used to say what the code should
do.

While setting up these interactions, always think of the people who will be experiencing the
world you're creating. Include visual clues such as color changes or special effects to make sure
the user understands an object is working as intended.

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
1. A double equal sign (==) means ___
2. What’s wrong with the following code snippet?

local health = 5
if health >= 10 then
print ("You're at full health")

elseif health < 10 then
print ("Find something to eat to regain health!")
end

end
Make additional sets of code available in your script with

What operator means less than or equal to?

Operators that are not symbols are called

o o w

What does the operator or do?

Answers
1. Is equal

2. elseif shouldn’t be its own code chunk. It should be on the same indent level as if, and
there should only be one end.



72 HOUR 5: Conditional Structures

GetService ()
<=

Logical operators

o o w

Evaluates as true if either condition is true.

Exercise

Give a player super powers by making them go fast when they touch a speed booster! A
Humanoid’'s default walkSpeed property is set to 16. Not so bad, but it'd be a lot cooler to go a
lot faster. Make a part that temporarily allows a user to go way faster and then returns them to
their original speed after a few seconds.

To do so, you can use the onTouch pattern you've been working with and some if/then state-
ments. As an added twist, use a ParticleEmitter object to stream sparkles behind them while
they’re powered up (see Figure 5.10).

Tips
» ParticleEmitters can be stored in ServerStorage.
Get ServerStorage using GetService ().
Use if/then to check for a Humanoid.
Change the Humanoid’'s WwalkSpeed property from the default value of 16 to 50.

Use the method Clone () to make a copy of the particle and then parent it to the runner.

vV vV v v VY

After a few seconds, reset walkSpeed to 16, and destroy the ParticleEmitter.

FIGURE 5.10
Stars stream behind this running ninja while they’'re powered up.

You can find the code solution in the appendix.



HOUR ©

Debouncing and Debugging

What You’ll Learn in This Hour:

» How to create debounce systems

» What string debugging is

» How to pull out values for easier testing
» How to create image and text labels

Now that you know what a humanoid is, and how to check for one using if, you can start cre-
ating code that doesn't just destroy things or set a user’s health all the way to 0. Instead, you can
start making things happen incrementally—that is, only by a certain amount at a time. Instead
of taking a user’s health all the way to 0, you can make it go down only part way, or a user’s
wealth can go up by one gold every time they mine a piece of ore.

The second half of this hour shows methods for checking and improving existing code. You'll use
string statements to check where your code might have gone wrong, see how to set up systems
that prevent individual users from spamming interactions, and find out how to start bringing
more of the design process into your coding.

Don’t Destroy, Debounce

Let’s explore setting up a trap that removes 10 health points from a user at a time. A human-
oid’s default max health is 100. Using what you know, the easiest way to set up a trap that takes
the player’s current health and subtracts 10 might be as follows:

local trap = script.Parent
local function damageUser (otherPart)
local partParent = otherPart.Parent
local humanoid = partParent:FindFirstChildWhichIsA ("Humanoid")
if humanoid then
humanoid.Health = humanoid.Health - 10
print ("Ouch! Current health is " .. humanoid.Health)
end
end
trap.Touched:Connect (damageUser)



74 HOUR 6: Debouncing and Debugging

The problem is that—because of how the physics engine handles collisions—the code will trigger
multiple near-simultaneous events and cause more damage than intended. In Figure 6.1, you
can see from the time stamp on the left that the person’s current health went down very quickly.

FIGURE 6.1
The output message shows the trap was activated more often than anticipated.

We don’t want the code to run so many times so fast. We want to make sure it runs only once
and doesn’t run again until we say it can. Ensuring that an action is triggered only once when it
would otherwise be triggered multiple times is known as debouncing.

Here’s the previous code snippet but with a debounce system that deactivates the trap for a set
amount of time:

local trap = script.Parent
local RESET SECONDS = 1 -- How long the trap will be disabled
local enabled = true -- Needs to be true to damage user
local function damageUser (otherPart)
local partParent = otherPart.Parent
local humanoid = partParent:FindFirstChildWhichIsA ("Humanoid")
if humanoid then
if enabled == true then -- Check that trap is currently enabled
enabled = false -- Set variable to false to disable the trap
humanoid.Health = humanoid.Health - 10
print ("OUCH!")
wait (RESET SECONDS) -- Wait for reset time duration
enabled = true -- Re-arms trap
end
end
end

trap.Touched:Connect (damageUser)



Don’t Destroy, Debounce 75

With this system, the player will only be harmed if enabled is equal to true.

TRY IT YOURSELF V¥

Mining Simulator

An excellent example of when you don’t want code to run more often than intended is when
giving users gold or points. Here you create a mining simulator where users get gold every time
they mine a pile of ore like the one in Figure 6.2. This Try It Yourself uses ProximityPrompts for
the mining mechanic and a leaderboard where people can see how much gold they’ve collected
so far.

FIGURE 6.2
Sparkling gold ore, just waiting to be mined.

Set Up the Scoreboard

You're going to use the leaderboard that’s built into Roblox. This is the leaderboard you see in
the top right of many Roblox games (see Figure 6.3). It can be used to keep track of more than
just scores. It can also be used to track what level a player is on, how many resources they
have, or what team they’re on.



76 Debouncing and Debugging

Gold Ore

Mine

FIGURE 6.3
The leaderboard in the top-right corner shows people’s names and how much gold they’ve collected so far.

Whenever a player enters the game, they should be added to the leaderboard. This can be done
as follows:

1. In ServerScriptService, add a new script. (See Figure 6.4.)

> H#§ ReplicatedStorage
v @ ServerScriptService
I Leaderboard

ServerStorage
» g StarterGui

FIGURE 6.4
The Leaderboard script should be placed in ServerScriptService.

2. Get the Players service and connect a function to the PlayerAdded event:

local Players = game:GetService ("Players")
local function leaderboardSetup (player)

end
-- Connect the "leaderboardSetup ()" function to the "PlayerAdded" event
Players.PlayerAdded:Connect (leaderboardSetup)



Don’t Destroy, Debounce

3. Inside the connected function, create a new Folder instance, name it leaderstats, and

parent it to the player:

local function leaderboardSetup (player)
local leaderstats = Instance.new("Folder")
leaderstats.Name = "leaderstats"
leaderstats.Parent = player

end

TIP

77

Make Sure the Name Is leaderstats

It’s really important that the folder is named leaderstats (all lowercase). Roblox won’t add the

player to the leaderboard if any other name variation is used.

4. Set up the actual stat that you see in the corner of the screen. Do your best to follow the

steps without looking at the code box:

a. Use a local variable named gold to create a new IntValue instance.

b. Name the IntValue Gold. What you type here is exactly what will be shown to users.

c. Set the IntValue’s value property to 0.

d. Parent the IntValue to leaderstats.

local Players = game:GetService ("Players")

local function leaderboardSetup (player)
local leaderstats = Instance.new("Folder")
leaderstats.Name = "leaderstats"
leaderstats.Parent = player

local gold = Instance.new("IntValue")
gold.Name = "Gold"
gold.Value = 0
gold.Parent = leaderstats
end
Players.PlayerAdded:Connect (leaderboardSetup)

TIP

IntValue Objects Can Help Track Values

IntValues are special objects that only accept integers—that is, whole numbers. That way, you don’t

accidentally end up with something like 6.7 points.




78 Debouncing and Debugging

n Set Up the Gold Ore Object

For the gold ore, you can use a part or mesh. Remember, you can always copy meshes that you
see in any of Roblox Studio’s templates and paste them into your file. As with the portal from the
last hour, you use a ProximityPrompt to allow people to interact with the ore, and a new attribute
is created. One of the cool things about ProximityPrompts is that you can modify them to include
their own debounce by increasing the HoldDuration property:

1. Pick a part or a mesh to act as the gold ore deposit.
2. Insert a ProximityPrompt.

3. Name the ProximityPrompt Goldore. This is important because we're going to use the
name to check whether we have the right proximity prompt.

4. In ProximityPrompt’s properties, change the following, as shown in Figure 6.5:
» ActionText: Mine

» HoldDuration: 1 (This is the amount of time users need to hold the interaction to
mine the ore.)

» ObjectText: Gold Ore

ityPrompt”

Data

ActionText

ClickablePrompt

Enabled

Exclusivity OnePerButton
ButtonX

HoldDuration 1

KeyboardKeyCode =

MaxActivationDistance 10

Name ProximityPrompt

ObjectText

FIGURE 6.5
Modify the ActionText, HoldDuration, and ObjectText properties.



Don’t Destroy, Debounce 79

5. Select the gold ore part, and add a new attribute named ResourceType, set to string. n

6. Set ResourceType to Gold, as shown in Figure 6.6.

TIP

Attributes Can Make Your Code Reusable

Using an attribute to tag the ResourceType means you can use this same script for other collectible
objects.

Surface

Attributes

ResourceType Gold

Add Attribute

FIGURE 6.6
Add a new attribute named Resource with its value set to Gold.

Set Up the Gold Ore Script

The next step is to set up the interactivity for the ProximityPrompt, but this time you’re going to
put the script into ServerScriptService. This will let you have lots of gold mines that all use the
same script.

With the PromptTriggered event, you can tell if the player has held the button the required
amount of time:

1. Insert a new script into ServerScriptService.

2. At the top of the script, get ProximityPromptService. Then, create a variable for how
long the prompt will be disabled once it is used. See if you can remember how to do it
without referring to the code example in step 3.



80 HOUR 6: Debouncing and Debugging

n 3. Create a new function connected to the PromptTriggered event with parameters for prompt
and for player, in that order. This way, you know when the user is done holding the
button:

local Players = game:GetService ("Players")

local ProximityPromptService = game:GetService ("ProximityPromptService")

local isEnabled = true -- Debounce variable
local DISABLED DURATION = 4
local function onPromptTriggered (prompt, player)

end
ProximityPromptService.PromptTriggered:Connect (onPromptTriggered)

TIP

You Need to Account for Both Arguments

When the prompt is triggered, both the specific prompt that triggered it and the player who triggers
it is returned. You only need to know the player, but remember that returned values are always
returned in order. So if you want the second returned value, you need two placeholders.

4. There can be lots of proximity prompts in your game, so find the prompt’s parent and see
if it has an attribute named ResourceType:

local ProximityPromptService = game:GetService ("ProximityPromptService")
local DISABLED DURATION = 4

local function onPromptTriggered (prompt, player)

local node = prompt.Parent

local resourceType = node:GetAttribute ("ResourceType")
end

ProximityPromptService.PromptTriggered: Connect (onPromptTriggered)

5. If there is a resourceType, and prompt . Enabled is equal to true, disable the prompt:

local function onPromptTriggered (prompt, player)
local node = prompt.Parent
local resourceType = node:GetAttribute ("ResourceType")
if resourceType and prompt.Enabled then
prompt .Enabled = false
end
end



Don’t Destroy, Debounce 81

6. Find the player’s leaderstats and then use the resourceType to update the leaderboard n
stats as shown:

local function onPromptTriggered (prompt, player)
local node = prompt.Parent
local resourceType = node:GetAttribute ("ResourceType")
if resourceType and prompt.Enabled then
prompt .Enabled = false

local leaderstats = player.leaderstats
local resourceStat = leaderstats:FindFirstChild (resourceType)
resourceStat.Value += 1

end
end

7. After a certain amount of time has passed, re-enable the prompt so that it can be used
again:
local ProximityPromptService = game:GetService ("ProximityPromptService")
local DISABLED DURATION = 4

local function onPromptTriggered (prompt, player)
local node = prompt.Parent
local resourceType = node:GetAttribute ("ResourceType")
if resourceType and prompt.Enabled then
prompt .Enabled = false

local leaderstats = player.leaderstats
local resourceStat = leaderstats:FindFirstChild (resourceType)
resourceStat.Value += 1

wait (DISABLED_ DURATION)
prompt .Enabled = true

end
end

ProximityPromptService.PromptTriggered:Connect (onPromptTriggered)

You've finished! Add some visual indicators when the ore is disabled, like changing the transpar-
ency or color of the ore. (See Figure 6.7.) When it's working as you like, go ahead and duplicate
the ore as many times as you want.

The cool thing is that because you just have the single script in ServerScriptService, if you need
to make changes to the script later, it’s really easy no matter how many copies of the ore you
add to your game.



82 Debouncing and Debugging

FIGURE 6.7
Now you have a dark disabled gold ore in the foreground and an enabled bright gold ore in the background.

TIP

Saving Player Data

With the code you have so far, the user has to start over every time they join the game. Hour 17
explores how to save users’ data between sessions.

Figuring Out Where Things Go Wrong

We all make mistakes. Even pro Roblox developers who have been coding for years make mis-
takes every day. The key is to develop a detectivelike attitude toward both what went wrong with
your code and how your code might encounter unexpected situations when users interact with it
in the experience you build. The second half of this hour covers some techniques you can use to
test your code and iterate on it to make a better experience for the people who visit your Roblox

worlds.

Using String Debugging

As your coding skill grows and you continue to challenge yourself, you'll quite often not be sure
why your code didn’t run on the first try. The most obvious thing to check for first is underlined
errors in the editor and Output window. Sometimes, though, that’s not enough.



Figuring Out Where Things Go Wrong 83

The next step in figuring out where things went wrong is trying to find where the code didn't
run as expected. Maybe a function wasn’t actually called or the given values weren’t what you'd
expect. One way to narrow things down is combining print statements with your knowledge of
scope. Use print statements to verify variables are what you expect and code is running when
you would expect.

For example, if you want to make sure a function was called, put a print statement right at the
beginning of the function:

local speedBoost = script.Parent

local function onTouch (otherPart)
print ("onTouch was called!")
-- Code Body

end

speedBoost . Touched: Connect (onTouch)

If for some reason you don’t see "onTouch was called!" in the output window, you know
the function was never called. Maybe the event didn't fire, or it’s not connected to the function.
If you do see the message, you need to check whether the problem was with the next code chunk
and verify if code chunks are running when expected. The following code snippet is for creating
a speed boost. The code can be placed within a script inserted into a part.

A print statement is used to verify the user’s walk speed before the conditional, when the walk
speed is supposed to have been changed, and after it’s set back to normal.

This way, you can verify the code is running, and WalkSpeed is changing as you would expect:

local speedBoost = script.Parent

local function onTouch (otherPart)
print ("onTouch was called!"
local character = otherPart.Parent
local humanoid = character:FindFirstChildWhichIsA ("Humanoid")
if humanoid and humanoid.WalkSpeed <= 16 then
-- Checks for Humanoid without speed boost

print ("Original walk speed is " .. humanoid.WalkSpeed)
humanoid.WalkSpeed = 30
print ("New walk speed is " .. humanoid.WalkSpeed)
wait (1) -- Duration of boost
humanoid.WalkSpeed = 16
print ("Walk speed is returned to " .. humanoid.WalkSpeed)
end

end

speedBoost . Touched: Connect (onTouch)



84 HOUR 6: Debouncing and Debugging

Once you're done testing your code, always go back and delete all unnecessary print state-
ments. Every line of code that runs makes the script just a little bit slower because there is more
for the script to do. Deleting unnecessary code keeps things running as quickly as possible.

Moving Values for Easier Testing

Even if your code runs perfectly, you may still need to tweak things. Maybe in the last code snip-
pet, you're not exactly sure how fast you want the player to run or how long the buff should
last. It's a great practice to move important variables that affect user experience to the top of the
script, making it easier for you and team members to tweak as needed.

This code snippet does the same thing as the previous snippet, but variables have been created
at the top for how fast players will go, and for how long the boost will last:

local speedBoost = script.Parent

local BOOSTED SPEED = 20
local BOOST DURATION = 1

local function onTouch (otherPart)
local character = otherPart.Parent
local humanoid = character:FindFirstChildWhichIsA ("Humanoid")
if humanoid and humanoid.WalkSpeed <= 16 then

print ("Original walk speed is " .. humanoid.WalkSpeed)
humanoid.WalkSpeed = BOOSTED_ SPEED
print ("New walk speed is " .. humanoid.WalkSpeed)
wait (BOOST DURATION) -- Duration of boost
humanoid.WalkSpeed = 16
print ("Walk speed is returned to " .. humanoid.WalkSpeed)
end

end

speedBoost . Touched: Connect (onTouch)

In a very long script, this saves you a lot of time with updating while experimenting to find just
the right value to use—particularly if the same value is used in multiple places.

Variables like the ones created for NEW _SPEED and BOOST DURATION, which never change
value throughout the entirety of a script, are called constants. Unlike normal variables, they are
typed in ALL_CAPS with words separated by an underscore ().



Figuring Out Where Things Go Wrong 85

TRY IT YOURSELF V¥

Tweak the SpeedBoost

Take the previous code snippet and adjust the values until you feel like the speed and duration
are just right. One technique you can use while experimenting with values is doubling and halving.
It’s particularly good if you're not sure what a great number to use is.

1. Add a new part or mesh and insert a script into it, as shown in Figure 6.8.

FIGURE 6.8
Insert a new script into a mesh or part.

2. Give people a temporary speed boost after having touched the part. You can use the code
snippets from earlier in this chapter, or if you did the Try It Yourself in Hour 5, use that and
modify the code to use constants.

3. Experiment with the values for BOOSTED SPEED and BOOST DURATION by doubling the
values for both BOOSTED SPEED and BOOST DURATION.

4. Test and see the results. If it doesn’t seem fast enough or boosted for long enough, dou-
ble the amount again. If it feels like too much, subtract half of what you added.

Checking Attribute Values

Most variable values can be printed, but attributes behave a little bit differently. You need to
assign the attribute’s value to a variable first:

local activatedValue = weapon:GetAttribute ("Activated")
print (activatedvalue)

Keep this in mind while confirming attribute values.



86 HOUR 6: Debouncing and Debugging

Getting the Right Types of Values

You also need to be careful with what types of values are being passed back into the functions.

Good code takes into account that errors happen when incorrect value types are passed in. If you
were to try to pass a string into wait (), the string is ignored, and a built-in default value of a
thirtieth of a second is used:

local part = script.Parent

wait ("twenty") -- Will use default value because strings aren't accepted
part.Color = Color3.fromRGB (170, 0, 255)

Summary

There are a lot of ways to make sure your code runs only once using different types of debounce
systems. One way you may have used before is deleting a part as soon as something touches

it. Two other ways used in this hour are setting up a debounce variable and using a proximity
prompt with a long hold. No matter what way is used, always think about how your choices will
affect your end user.

A big part of being a coder is thinking about all the possible scenarios that might come up and
trying to create code that won’t break while still giving your users the best possible experience. It
is, of course, totally normal for things to go wrong. It happens to the very best coders—even the
ones who make your favorite Roblox experiences.

If things aren’t going as anticipated, you can use your knowledge of scope, functions, and events
to narrow down the problem. A few well-placed print statements can help you verify whether
your functions are called and if values are what you expect.

Q&A

Q. In leaderboards, can you use values other than IntValues?

A. Yes, you can create other types of values. For example, in Figure 6.9, a StringValue was
used to display the faction name of the character.



Workshop 87

Paople Faction Gold

& Cherpl Ancients 4

FIGURE 6.9
The leaderboard at the top right uses strings to display faction names and integers to display owned gold.

Q. Is there a maximum amount of stats that can be displayed?

A. A maximum of four stats can be displayed, although additional stats can still be tracked.

Q. Can you create your own custom leaderboards?

A. You can! In later hours, you learn more about how to display information to individual peo-
ple and to everyone in the server as a whole.

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
1. What is it called when you make sure code can only be triggered once and not multiple
times?

2. What’'s a name for variables whose values don’t change as the script runs?
3. How are the variables in the preceding question formatted compared to other variables?

4. What's an easy technique for figuring out what value numbers to use when tweaking code
for a better user experience?

5. How do you print the value of an attribute?



88 HOUR 6: Debouncing and Debugging

Answers
1. Debouncing

Constants
ALL_CAPS, with an underscore (_) between words

Doubling and halving

@ ® N

You need to first assign the attribute to a variable, and then print the variable:

local armorValue = Helm:GetAttribute ("Armor")
print (armorValue)

Exercises

A large part of any engineer’s job is thinking about both what can go wrong and how to make things
better. Think about the code you've created in all of the hours up until now, and for this first exer-
cise, write down at least three ways in which the code could be better. It might be things that can
go wrong with the code, or features that would enable people to better enjoy your experience.

You might not be able to code the solutions just yet, but you should get in the habit of being criti-
cal of the code you’re creating.

You can find possible answers in the appendix.

For the second exercise, make two pickups: one that makes you smaller and one that makes you
larger (see Figure 6.10). Instead of setting three specific sizes, use a multiplier to change the
avatar’s current scale.

FIGURE 6.10
A giant mech avatar strolls through a city after being enlarged.



Exercises 89

Remember to create a debounce variable to control how fast the person is allowed to grow and
shrink. This is one case where if the function is triggered more often than intended, your experi-
ence will crash.

Tips
» You can modify the user’s default scale with the following properties:
» Humanoid.HeadScale: Scale of the avatar’'s head.
» Humanoid.BodyDepthScale: Scale of the body’s depth.
» Humanoid.BodyWidthScale: Scale of the body’s width.
» Humanoid.BodyHeightScale: Scale of the body’s height.
» Set up a simple debounce before experimenting with the avatar’s scale to avoid crashes.

» Save your work before testing! If the avatar’'s scale gets too big, it will crash your
experience.



This page intentionally left blank



HOUR 7

while Loops

What You’ll Learn in This Hour:

» What a while loop is

» How to make tasks repeat forever and ever

» How to create a fire that requires fuel to stay burning
» How to plan for scope with while loops.

Do you ever feel like you're stuck in a loop where you just keep doing the same thing over and
over and over and over? Get up, eat breakfast, work hard, go back to bed, and then the same
thing all over again the next day. We see loops throughout our world. The minutes on our clocks
loop through 60 minutes, and the hours loop 24 times to create a day.

Scripts have loops as well. When they’re inside of the loop, they keep doing the same task until
something makes them stop. This hour covers just one kind of loop that can be found in code:
while loops.

Repeat Forever, while true do

The first kind of loop in this hour is a while loop. These loops are typically used to check on the
state of something and run indefinitely until a condition is met. They can even run forever! The
following code snippet shows you how a while loop is formatted:

local isHungry = true

while isHungry == true do
print ("I should eat something")
wait (2.0)

end

The main keywords here are while and do. In the middle of those keywords is the condition for
the while loop to check against. As long as that condition is true, the code keeps running. In
fact, if you want the code to run forever, you can simply set the condition to true:

while true do
print (count)



92 HOUR 7: while Loops

count = count + 1
wait (1.0)
end

The preceding example would count every second and display the result in the output until you
stop the playtest.

Some Things to Keep in Mind

There’s a couple of things to keep in mind when working with while loops. One is that every
while loop should include a wait function. If you don't, there’s a good chance the loop will run
so quickly that your experience will end up either slowing down or crashing. The other thing to
keep in mind is that the next loop is started as soon as the previous loop finishes.

V¥ TRY IT YOURSELF

Create a Disco Dance Floor

Take a quick example where you're creating a disco dance floor, and you want the floor pieces to
loop through a series of specific colors—in this case, a pattern of blue and orange:

1. Use a part to act as a section of the floor and insert a script with the following code:

local discoPiece = script.Parent

while true do
discoPiece.Color = Color3.fromRGB(0, 0, 255)
wait (1.0)
discoPiece.Color = Color3.fromRGB (255, 170, 0)
end

2. Run the code. The only color you see while the code runs is blue. Because the next loop
starts immediately, the orange blinks so fast it's not even visible.

3. Fix this by adding a second wait function after the color change:

local discoPiece = script.Parent

while true do
discoPiece.Color = Color3.fromRGB (0, 0, 255)
wait(1.0)
discoPiece.Color = Color3.fromRGB (255, 170, 0)
wait (1.0)

end



Some Things to Keep in Mind 93

If the entire loop only needs a single wait function, it can be worked into the condition. This is
demonstrated in the following code chunk that assigns a new random color every second for a
floor like the one in Figure 7.1:

local discoPiece = script.Parent

while wait (1.0) do

-- Get random values for RGB

local red = math.random (0, 255)

local green = math.random (0, 255)

local blue = math.random(0, 255)

-- Assigns color values

discoPiece.Color = Color3.fromRGB(red, green, blue)
end

FIGURE 7.1
A while loop and random number generation are used to create an ever-changing disco floor.

TRY IT YOURSELF V¥

Keep the Campfire Burning

This Try It uses a while loop to keep track of how many fuel logs are on the fire. The fire is dis-
abled until someone uses the ProximityPrompt to add fuel. Then the fire burns for a little while
before going out again. (See Figure 7.2.)



94 while Loops

FIGURE 7.2
A fire where fuel will be spent over time using a while loop.

Set Up

First, set up the fire and the ProximityPrompt. Once everything is scripted, the fire can be copied
into any environment or model you please:

1. Use an invisible part to hold your fire.

2. Add a new attribute to the CampFire part:
Name: Fuel
Type: Number

3. Insert a Particle Emitter named Fire, and a ProximityPrompt named AddFuel. (See Figure
7.3.)

. B plate

~ ‘ CampFire
Fire
u!' -

5 Pla

FIGURE 7.3
Use an invisible part with a ParticleEmitter and ProximityPrompt inserted.

TIP

Designing a Fire

For the fire particles, setting the Texture property to 4797593940 and Speed to O will help you get a
particle like the one shown in the example. After that, try playing with the color, drag, and lifetime values.




Some Things to Keep in Mind 95

4. In the ParticleEmitter’s properties, uncheck Enabled because it’ll be turned on within the n
script.

5. In the ProximityPrompt’'s properties, change HoldDuration to 2.

The Script
When the ProximityPrompt is triggered, fuel is added to the fire, and the fire is enabled. A while
loop spends fuel every second, and when the fuel reaches 0, the fire is disabled:

1. In ServerScriptService, add a new script.

2. Get ProximityPromptService and set up a function that is called when the prompt is
triggered. Inside, make sure the prompt is enabled and confirm that the triggering prompt
is "AddFuel":

local ProximityPromptService = game:GetService ("ProximityPromptService")
local BURN DURATION = 3

local function onPromptTriggered (prompt, player)
if prompt.Enabled and prompt.Name == "AddFuel" then

end

end
ProximityPromptService.PromptTriggered: Connect (onPromptTriggered)

3. Create a constant to control how long the fire will burn; inside the if statement, create
variables for the campfire part and the fire particles:

local ProximityPromptService = game:GetService ("ProximityPromptService")
local BURN_DURATION = 3

local function onPromptTriggered (prompt, player)
if prompt.Enabled and prompt.Name == "AddFuel" then
local campfire = prompt.Parent
local fire = campfire.Fire -- This should be the particle emitter
end
end

ProximityPromptService.PromptTriggered:Connect (onPromptTriggered)

4. Get the current value of the Fuel attribute, and add 1:

local function onPromptTriggered (prompt, player)
if prompt.Enabled and prompt.Name == "AddFuel" then
local campfire = prompt.Parent
local fire = campfire.Fire -- This should be the particle emitter



96 HOUR 7: while Loops

local currentFuel = campfire:GetAttribute ("Fuel")
campfire:SetAttribute ("Fuel", currentFuel + 1)

end
end

5. Use another if to check whether the particles are off, and if so, turn the particles on:

local function onPromptTriggered (prompt, player)
if prompt.Enabled and prompt.Name == "AddFuel" then
local campfire = prompt.Parent
local fire = campfire.Fire -- This should be the particle emitter

local currentFuel = campfire:GetAttribute ("Fuel")
campfire:SetAttribute ("Fuel", currentFuel + 1)

if not fire.Enabled then
fire.Enabled = true
end
end
end

6. Burn off one piece of fuel at a time with a while loop, and then disable the particles:

local ProximityPromptService = game:GetService ("ProximityPromptService")
local BURN_DURATION = 3

local function onPromptTriggered (prompt, player)
if prompt.Enabled and prompt.Name == "AddFuel" then
local campfire = prompt.Parent
local fire = campfire.Fire -- This should be the particle emitter

local currentFuel = campfire:GetAttribute ("Fuel")
campfire:SetAttribute ("Fuel", currentFuel + 1)

if not fire.Enabled then
fire.Enabled = true
while campfire:GetAttribute ("Fuel") > 0 do
local currentFuel = campfire:GetAttribute ("Fuel")
campfire:SetAttribute ("Fuel", currentFuel - 1)
wait(BURN_DURATION)
end
fire.Enabled = false
end
end
end

ProximityPromptService.PromptTriggered:Connect (onPromptTriggered)



Some Things to Keep in Mind 97

Check your work. If the Ul is getting in the way of seeing the fire, you can move it higher in the n
prompt’s properties by using the UlOffset (see Figure 7.4).

Behavior
Archivable

Localization

FIGURE 7.4
The prompt’s UlOffset property can be used to move it out of the way.

Once you know the campfire works as intended, you can add it to fancier environments like those
shown in Figure 7.5.

FIGURE 7.5
Fire inserted into a great chalice on the left and a hearth on the right.

If you want to expand on this, you could have players collect wood from nearby trees before being
able to light the fire.



98 HOUR 7: while Loops

while Loops and Scope

One last thing you have to know about while loops is that any code beneath a while loop will
never run unless the loop is broken:

print ("The loop hasn't started yet") -- Will run once
while wait (1.0) do

print ("while loop has looped") -- Will run until the server stops
end
print ("The while loop has stopped looping ") -- Will never run

As you create more experiences, you'll find more instances of when you want code to keep
repeating forever or under certain circumstances. Some loops will be small and quick, like a loop
creating a flickering light. Other loops will be longer and control the entire flow of a game—for
example, the loops found in round-based games where people wait in a lobby for a certain
amount of time and then are transported to wherever the action is. At the end of the round,
everything is cleaned up, people are sent back to the lobby, and then the loop starts over again.

Of course, there are things to keep in mind when using while loops. Because a while loop runs
forever, code beneath the loop will never be reached unless the loop stops. It's also its own code
chunk, so you need to keep in mind how that affects scope.

If you don’t want the loop to begin as soon as the server is launched, you can always wrap the
while loop in a function if you want to control when it starts.

Q&A

Q. What if you want a piece of code to repeat only a certain number of times?

A. If you want a piece of code to repeat a certain number of times—for example, if you want
to create exactly ten trees—you can use what’s called a for loop. for loops are covered
in Hour 8.

Q. What if you want a loop to run while something is false instead of while true?

A. If you want a piece of code to run while a condition is false, you have a couple of options.
The first is that you can set a condition such as while NumberOfPlayers ~= 0
do. Here, a piece of code runs as long as the number of players is not equal to zero.
Alternatively, you can use repeat action until (condition), which instructs a piece
of code to repeat indefinitely until a condition becomes true.



Workshop 99

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz

1. How long will a while loop run?

2. What must always be included in a while loop and why?

3. How often will the following loop print hello?
while wait (1.0) do

print ("hello")
wait (1.0)
end

4. How many colors will the discoFloor referred to in this code turn?
local discoFloor = script.Parent
while wait (2.0) do

print ("hello")
end
while true do
discofloor.Color = Color3.fromRGB(0, 0, 255) -- Blue
wait (1.0)
discofloor.Color = Color3.fromRGB (255, 255, 0) -- Yellow
end
discofloor.Color = Color3.fromRGB (255, 0, 127) -- Pink
Answers

1. Until the given condition is false.

2. Await function must always be included; otherwise, the code loop will run faster than the
engine can handle and crash.

3. Hello will print every 2 seconds. There’'s a one-second wait in the condition, and a one-
second wait in the loop. The second wait isn’t needed, however. It could just be a two-sec-
ond wait in the condition.

4. The floor will never change colors. The first loop prevents the second loop from ever run-

ning. If that wasn’t there, however, it would appear blue. Yellow would flash by too quickly
to see, and pink is outside the scope of the loop.



100 HOUR 7: while Loops

Exercises

In this first exercise, modify the code so that people have to collect wood for the fire rather than
being able to simply walk up to a fire and light it (see Figure 7.6).

B Add Fuel
Fi

FIGURE 7.6
Logs can be collected from the tree and used to fuel the campfire.

Tips
» Use the leaderboard to track how much wood the player has.

» You can use nearly the exact code and set up that was used for ore in the last hour to
collect the logs.

» Modify the campfire script so that it takes logs from the player to use as fuel.

A universal truth to coding and design is that you’re going to find yourself wanting to update
things later. The more copies you have of something in your game, the harder making updates
becomes, whether scripts, particles, or models. For the second exercise, try updating the fire
script so that instead of enabling an existing particle emitter, it inserts a cloned particle emitter
into the campfire.

Tips
» You still need a part to hold the ProximityPrompt.

» See if you can remember how to clone things out of ReplicatedStorage.



HOUR 8

for Loops

What You’ll Learn in This Hour:

» How to repeat tasks with for loops
» How to use nested loops

» How to exit nested loops

» How to create displays for information

» How to do damage over time

So far, we've covered one type of loop—the while loop, which can go forever and ever and ever
if that’s what you want it to do.

If you want to make sure that code updates only a certain number of times, you use a different
kind of loop: a for loop. Unlike while loops, for loops repeat themselves a certain number of
times until a goal is reached.

Figure 8.1 shows a for loop being used to count down until an expected meteor collision.

FIGURE 8.1
A clock uses a for loop to show three seconds until impact.



102 for Loops

V¥ TRY IT YOURSELF

Create a Countdown

Test out this simple for loop that counts down to O. The individual parts of the code will be
explained in the next section:

1. In any script, copy the following:

for countDown = 10, 0, -1 do
print (countDown)
wait(1.0)

end

2. Run the code. In the Output window, you should see a countdown like the one in Figure
8.2.

FIGURE 8.2
Numbers count down one by one from 10 to O.

How for Loops Work

A for loop uses three values to control how many times it runs, which are formatted as shown
in Figure 8.3:



How for Loops Work 103

» Control variable: Tracks the current value. The assigned value marks the starting place. A
control variable can be any acceptable variable name. Like other variable names, a con-
trol variable name should be clear and descriptive about what the for loop is doing.

» End or goal value: The value at which the loop should stop running. The script checks the
control variable against the end value before starting the next loop.

» Increment value: The amount by which the control variable changes every time. Positive
increment values count up; negative increment values count down.

Control End Increment
Variable Value Value

| |
for count =0, 10, I do
print ("This is a for loop")
end

FIGURE 8.3

The three values that control how many times a for loop runs are the control value, the end value, and the
increment value.

Beginning at the initial value of the control variable, the for loop counts toward the ending
goal value, stopping once the goal value is reached:

1. The for loop compares the control variable with the end value. (See Figure 8.4.)

Start loop

Has the control variable
passed the end value?

FIGURE 8.4
Before executing the code in the loop, the control variable is checked against the goal value.

2. After running the code, the increment value is added to the control variable. The loop then
checks the control variable and starts over. (See Figure 8.5.)



104 HOUR 8: for Loops

Has the control variable
passed the end value?

FIGURE 8.5
At the end of the loop, the increment value is added to the control variable.

3. Once the control variable passes the end value, the loop will stop. For example, if a loop
has an end value of 10, once the control variable has passed 10, the for loop will stop (see
Figure 8.6).

Has the control variable
passed the end value?

End loop

FIGURE 8.6
This is the flow of a complete for loop process.

Let’s take another look at the Output shown in the Try It Yourself, displayed in Figure 8.7.



How for Loops Work 105

FIGURE 8.7
This output of a for loop counts down every second.

The loop that ran each time a number was printed is called an iteration. An iteration is the com-
plete process of checking the control value, running code, and updating the increment value.
Since the count started at O and ended after 10, the code actually went through eleven iterations.

Keep this in mind as you design your loops. If it's important for a count to go a specific number
of times, you'll probably want the starting value to be 1 instead of 0.

Increments Are Optional

If an increment value isn’t included, the default value of 1 is used. The code snippet begins at 0
and counts upward to 10:
for countUp = 0, 10 do

print (countUp)

wait (1.0)

end

Different for Loop Examples

Changing the values of the control variable, end goal, and increment changes how the loop
functions. The for loop you just wrote could instead count up to 10 or count down in odd num-
bers. The following are examples of for loops with different start, end, and increment values.



106 HOUR 8: for Loops

Counting Up by One

for count = 0, 5, 1 do
print (count)
wait (1.0)

end

Counting Up in Even Numbers

for count = 0, 10, 2 do
print (count)
wait (1.0)

end

Be careful not to reverse the starting and goal values, like so:

for count = 10, 0, 1 do
print (count)
wait (1.0)

end

If the control variable starts out beyond the end value, like in the earlier example, the for loop
doesn’t run at all. In this case, the for loop is counting up and checking if count is greater
than 0. When the for loop does its first check, it sees that 10 is greater than O, so it stops the
loop without printing anything.

V¥ TRY IT YOURSELF

In-World Countdown

So far, messages have only been displayed within the Output window. Now it’s time to start com-
municating information to people in your environments. In this Try It Yourself, you use a graphical
user interface (GUI) to display information where everyone can see it. GUIs are like sticker labels
that can be used to display information within the world.

Setup

For the setup, you create a SurfaceGui and TextLabel and size them to the part to display the
countdown. Since this is a coding book, we won't get too much into how these work. If you want
to know more, you can find more detailed explanations on the Roblox Developer Hub:

1. Create a new part.

2. Insert a SurfaceGui object into the part. Nothing obvious happens, but SurfaceGUI objects
act as containers for anything you want to display.



How for Loops Work 107

3. Select SurfaceGui and insert a TextLabel object. This displays the actual text. (See Figure n
8.8.)

FIGURE 8.8
The TextLabel is added on the front of a part.

TIP
Finding the TextLabel

If you can’t see the TextLabel, it probably appeared on a different side of the part. You can rotate
the part or change the SurfaceGui’s Face property to fix it.

4. Select the TextLabel. In Properties, expand Size. For X Scale, type 1, and in Offset, type 0.
Do the same for Y. This should make the TextLabel take up the entire side of the part. (See
Figure 8.9.)



108 HOUR 8: for Loops

FIGURE 8.9
The TextLabel takes up the entirety of the side.

5. Still in TextLabel’s properties, scroll almost to the bottom to TextScaled and enable it. This
sizes the font to fit as shown in Figure 8.10.

FIGURE 8.10
The text is automatically scaled to fit the entire TextLabel.



Nested Loops 109

Code the Countdown
You use a script to change what the TextLabel displays:

1. Select the sign part and insert a new script.

2. Use variables to reference the script’s parent and the TextLabel. Hint: You can go down the
hierarchy a couple of times.

3. Create a new for loop that counts down every second:

local sign = script.Parent

local textLabel = sign.SurfaceGui.TextLabel

for countDown = 10, 1, -1 do
print (countDown)
wait (1.0)

end

4. Within the loop, set the TextLabel’s Text property to the current value of the countdown:

local sign = script.Parent
local textLabel = sign.SurfaceGui.TextLabel

for countDown = 10, 1, -1 do
textLabel.Text = countDown
print (countDown)
wait(1.0)

end

5. Test your code.

TIP

A Note on Load Times

You may notice that sometimes the count seems to start in the middle. That’s because the script
started before your character and camera loaded all the way in. You can verify that the countdown
ran correctly by using a print statement or delay the beginning of the count with a small pause at
the beginning of the script. As you create more scripts, you begin having to take into account load
times more often.

Nested Loops

Loops can be used within loops. One of the most common ways you see this done is placing a
for loop inside of a while loop. This way, you can repeat events that repeat every so often,
such as firework shows:

while true do

for countDown = 10, 1, -1 do



110 HOUR 8: for Loops

textLabel.Text = countDown
print (countDown)
wait (1.0)

end

print ("Launch the rockets!")
wait (2.0)
end

When loops are nested, the script starts from the top line and works its way down. When a new
loop is reached, that loop runs to completion before continuing with the next lines of code.

Breaking Out of Loops

If for some reason you need to leave a loop, use the keyword break:

local goodToGo = true

while wait (1.0) do
if goodToGo == true then
print ("Keep going")
else
break -- will stop loop if goodToGo changes to false
end
end

Summary

Loops are everywhere in code. They can run forever or a set amount of times; it just depends
on what type of loop you use. while loops keep running unless the initial condition becomes
false or the keyword break is used. This type of loop gets used for things like a day/night
cycle, which only ends when the world ends.

On the other hand, for loops are best used when you're trying to reach a specific value, like
counting down to midnight on New Year’s Eve.



Exercises 111

Q&A

Q. Why do some people just type i?

A. There’s a bit of controversy over exactly what i stands for, but a common theory is that it
originally stood for integer. i was first used as a stand in for unknown numbers by ancient
mathematicians and then by early computer programmers who had to keep their code very,
very brief. In short, it’s just a common control variable name, which is why you might some-
times see for loops that look like this:

for i = 1, 10 do
print (i)
end

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
1. How long will a for loop run?

2. What is an increment?

3. How many times will this code loop (backward starting values)?

for count = 10, 0, 1 do
print (count)
end

4. True or false: Increment values are optional.

Answers
1. Until the given condition is reached.

2. The amount by which a value changes.
3. Zero times. The starting value of 10 is greater than the goal value of O.
4

. True. The default value of 1 is used if no increment value is given.

Exercises

The concept of Damage Over Time (DoT) is used in lots of experiences. With DoT, people take
ongoing damage for a certain amount of time rather than taking it all at once. Common examples
include encountering poison or taking burn damage after touching a fire.



112 HOUR 8: for Loops

Because you already have a fire from an earlier Try It Yourself, for this first exercise, use the
same model to temporarily inflict burn damage to anyone who happens to touch it.

Tips
» Use the same fire you created previously or use a part to act as a stand-in.

> Insert a new invisible part named HitBox. Scale it to encompass the fire. (See Figure 8.11.)

» |If somebody touches HitBox, use a for loop to inflict 10 points of damage every second for
three seconds.

FIGURE 8.11
An invisible box is used to mark the boundaries of the fire.

For the second exercise, take a moment to think of at least five other ways that you can use
for loops and while loops in your 3D Experiences. Don’t worry about whether you know how to
create the code. The important thing here is to be able to start recognizing where they might be
found.

Solutions for the exercises are in the back of the book.



HOUR 9

Working with Arrays

What You’ll Learn in This Hour:

» How to create and use arrays
» How to loop through arrays with ipairs
» How to make changes to arrays

Now it’s time to work with multiple objects at once so you can do things like give every member
of the team a shiny new weapon or modify every item in a folder. You handle tasks like this
with tables. Tables allow you to organize multiple pieces of data or objects into groups, such as
groups of players or a list of item requirements for a recipe.

This hour covers the first of two different table types: arrays. You'll learn how to make changes
to a whole folder full of objects by turning on multiple lights at once rather than making people
turn them on individually.

What Are Arrays?

Arrays create a numbered list of items that can be used to keep track of information, such as
who's in first place or a folder full of different parts.

Every item on the list has a specific number assigned to it, called an index. If you had a grocery
list, it might look something like the following table:

GroceryList

Index 1 2 3

Value Apples Bananas Carrots

Creating an array is the same as creating other variables; the only difference is it gets assigned
curly brackets, like so:

local myArray = {}



114 HOUR 9: Working with Arrays

The curly brackets are what make it a table data type. Items can be added to the array by listing
them within the brackets, although you need to be sure to separate values with commas. The
index number is assigned automatically in the order in which the values are added. Here’s an
example of three-item array:

local grocerylList = {"Apples", "Bananas", "Carrots"}

Arrays can hold any value type—even other arrays. The third array in the following example
contains the first two arrays, and a fourth unnamed array is assigned to index 3:

local firstArray = {1, 2, 3}
local secondArray = {"first", "second", "third"}
local thirdArray = {firstArray, secondArray, {"unnamed array"}}

Adding Items Later

You can add an item to an already-created array by using table.insert (array, valueTo-
Insert). So, adding a new item to the previous array looks like this:

local grocerylList = {"Apples", "Bananas", "Carrots"}
table.insert (groceryList, "Mangos")

print (groceryList)

New items get added to the end of the array.

Getting Information from a Specific Index

You can test the list by printing out a few indexed values. To use a value at a specific index, add
the index after the array’s name without any spaces, like arrayName [1]:

local grocerylList = {"Apples", "Bananas", "Carrots"}
table.insert (groceryList, "Mangos")

print (groceryList [1], groceryList[4], groceryList[5])

As you can see in Figure 9.1, the value at index 1—and the value at index 4, which was added
to the table later—were both printed. No value was found at index 5, so nil was returned.



Printing an Entire List with ipairs() 115

FIGURE 9.1
The first two array values are displayed, but the third value is nil because it doesn’t exist.

Printing an Entire List with ipairs()

The easiest way to print out the entirety of the list is with a special type of for loop that uses the
function ipairs (). The pattern looks like this:

for index, value in ipairs(arrayName) do
-- Do something

end

The components of the pattern are as follows:

» index: This references the current index the loop is working through. It can be any valid
variable name. People often just use the lowercase letter 1.

» value: References the value of the current index. This can also be any valid variable

name.

> in ipairs(arrayName): in is a keyword and can’t be changed. ipairs () takes in the
name of the array you want to work with.

So, if you have a list of player names, and you want to print them out in order, it might look
like this:

local players = {"Ali", "Ben", "Cammy"}

for playerIndex, playerName in ipairs(players) do
print (playerIndex .. " is " .. playerName)

end

TIP

Generic Loops
Sometimes you’ll see this type of loop referred to as a generic loop.




116 HOUR 9: Working with Arrays

Folders and ipairs ()

A really handy way to use ipairs () is to modify everything in a folder. You can get a list of
every object in a folder, in order, using GetChildren (), which returns an array.

Let’s say you have a folder full of parts, and you want every part in that folder to turn a different
color. You can use something like this code snippet:

local folder = workspace.Folder -- Make sure to use the name of your folder
local arrayTest = folder:GetChildren() -- GetChildren() returns an array

for index, value in ipairs(arrayTest) do

if value:IsA("BasePart") then -- checks to see it's a part
value.Color = Color3.fromRGB(0, 0, 255)
print ( "Object " .. index .. " is now blue")
end
end

V¥ TRY IT YOURSELF

Turn On the Kitchen Lights

In this Try It Yourself, you have a number of lights in a kitchen (see Figure 9.2) that should all
turn on using the same switch. You’ve learned before that putting a script into every single one
of these lights gets messy and makes things difficult to update. You could put a proximity prompt
into each light, but then people would have to go around and turn all the lights on one-by-one.

One way to organize objects is to put them into a folder and use a for loop to update everything
in that folder at once when somebody flips the switch.

FIGURE 9.2
A kitchen scene softly lit with track lighting. All the lights are controlled by a single switch.



Folders and ipairs() 117

1. Find a part to act as a light. In Figure 9.3, a small glass cylinder part is acting as a prop n
for the lens of the light. Insert a SpotLight into the part.

TIP

SpotlLights
SpotLights shine a cone of light, like a flashlight.

FIGURE 9.3
A tiny one-stud-wide glass disk that can be used as a light source.

2. To modify which direction the SpotLight shines, in Properties > Face, use the drop-down
menu to select the correct face that makes the light appear to shine downward. For this
example, that’s Left. (See Figure 9.4.) Yours may be different.



118 Working with Arrays

Appearance

Color
Enabled

Face Front
Back
Bottom
Shadows Front
Left
Right
Top

Range

Data

Name SpotLight

Parent Lightbulb

FIGURE 9.4
Use SpotLight’s Face property to control which direction the light shines in.

3. With SpotLight still selected, in Properties, increase Brightness and Range until it’s right
for the scene. (See Figure 9.5.)

Appearance

Angle 30

Brightness 5.84 =

Color W [255,255,255]

Enabled

FIGURE 9.5
Increase the Brightness of the SpotLight to make it brighter and the Range to make the light reach farther.

4. Duplicate the light around your scene. You can even use different models. In Figure 9.6,
the disk has been copied into track lighting around the ceiling of this kitchen.



Folders and ipairs() 119

FIGURE 9.6
Light props have been placed into track lighting within a kitchen scene.

5. Create a new folder called Lights, and move all of the lightbulbs into the folder. (See Figure
9.7.)

@ Workspace
By Camera

A Terrain

B Lights

@ Lightbulb

ightbulb
¥ Lightbulb

¥ SpawnlLocation

FIGURE 9.7
All of the lightbulbs have been moved into a single folder.



120 HOUR 9: Working with Arrays

n Turn the Lights On and Off

This script goes through each object in the Lights folder and checks to see if it has a spotlight. If
it finds a spotlight, the script turns it on or off.

1. In ServerScriptService, create a new script.
2. Create a new variable that references the Lights folder.

3. Create a second variable to get an array of all of the folder’s children:

local lightsFolder = workspace.Lights
local lights = lightsFolder:GetChildren ()

4. Create a new for loop using ipairs () and pass in the array:

local lightsFolder = workspace.Lights
local lights = LightsFolder:GetChildren ()

for index, lightBulb in ipairs(lights) do

end

5. Inside of the for loop, use FindFirstChildWwhichIsA () to find the SpotLight nested
inside of the lightbulb:

local lightsFolder = workspace.Lights
local lights = LightsFolder:GetChildren ()

for index, lightBulb in ipairs(lights) do
local spotLight = lightBulb:FindFirstChildWhichIsA ("SpotLight")

end

6. Set up the following three conditions:

a. If the spotlight is found and the light is off, enable the SpotLight.

TIP

Glowing Spotlight
If you’re using a part, you can also change the material to neon to make it appear to be glowing.

b. If the spotlight is found, and the light is on, disable the SpotLight.

c. If the loop finds something in the folder that does not have a SpotLight, print “Not a
lightbulb.”



Finding a Value on the List and Printing the Index

Try to do this on your own before looking at the following code:

local lightsFolder = workspace.Lights
local lights = LightsFolder:GetChildren ()

for index, lightBulb in ipairs(lights) do
local spotLight = lightBulb:FindFirstChildWhichIsA ("SpotLight")

if spotLight and not spotLight.Enabled then
spotLight .Enabled = true
lightBulb.Material = Enum.Material.Neon -- Makes it look glowy

elseif spotLight and spotLight.Enabled then
lightBulb.Material = Enum.Material.Glass
spotLight .Enabled = false

else
print ("Not a light")
end
end

Test your code by turning on some of the lights, disabling others, and throwing a random part

121

into the Lights folder. If it works as intended, place your code inside of a function to be run when
somebody interacts with a proximity prompt, as shown in the last few hours. If you've forgotten

how, look at your previous code, or look in the appendix at the end of the book.

Finding a Value on the List and Printing the

Index

Say you have a bunch of customers in line waiting for their table. One of them walks up and

wants to know their place in line. You know the customer’s name, but not their number. In this

case, the waiting list is just another array. You can use ipairs again to look up the customer’s

place by checking for the matching value:

local waitingList = {"Ana", "Bruce", "Casey"}
-- Let's find Casey's place in line

for placeInlLine, customer in ipairs(waitingList) do
if customer == "Casey" then
print (customer .. " is " .. placeInLine)
end
end



122 HOUR 9: Working with Arrays

Removing Values from an Array

To remove a value, like if a player used an item or someone in a list of active players leaves a
game, use table.remove (arrayName, index). This function either removes the last value of
a table or removes it at a specific index depending on whether both parameters are used.

local playerInventory = {}

table.insert (playerInventory, "Health Pack")

table.insert (playerInventory, "Stamina Booster")

table.insert (playerInventory, "Cell Key")

table.remove (playerInventory) -- No index, so last item will be removed
table.remove (playerInventory, 2) -- Will remove the second item

The second parameter for table.remove () only accepts a numerical index. Typing something
like table.remove (playerItems, "Health Pack") returns an error. You can try printing
the results of the table to confirm everything works as expected.

When an item is removed from an array, the rest of the values will shift to fill in the gap. You
can test this by printing the array before and after the item is removed. Of course, we don’t want
to type the code for printing an array more than once, so in the following code snippet, it’s part
of a function that can be called as often as you want:
local function printArray(arrayToPrint)

for index, value in ipairs(arrayToPrint) do

print ("Index " .. index .. " is " .. value)

end

end

local playerInventory = {"Health Pack", "Stamina Booster", "Cell Key"}
printArray (playerInventory)

table.remove (playerInventory, 2) -- Will remove the second item

printArray (playerInventory)

In Figure 9.8, you can see that originally index 2 is Stamina Booster, but once the value is
removed, index 2 becomes Cell Key.

FIGURE 9.8
First, the original array prints. Then, the updated array without Stamina Booster prints.



Numeric for Loops and Arrays 123

Numeric for Loops and Arrays

Mentioned earlier was that one name of a loop using ipairs () is a generic for loop. The type
of for loop you used in Hour 8 is called a numeric for loop. If it helps you remember which is
which, remember that numeric for loops use numbers to control when to start and stop.

Numeric for loops can easily be used with arrays as well. Let’s go through a couple of
examples.

Finding and Removing All of a Value with a for Loop

While the previous code could only remove the first instance of a value found, this code snippet
will find and remove all occurrences of a value from an array.

Remember, removing items causes later indexes to shift. Instead of starting at the beginning of
the array, start at the end to avoid accidentally skipping values. By starting at the last index,
you won't change the indexes of the values before it.

The size of the array can be found using #arrayName and used as the starting index number:

local playerInventory = {"Gold Coin", "Health Pack", "Stamina Booster", "Cell Key",
"Gold Coin", "Gold Coin"}
for index = #playerInventory, 1, -1 do

if playerInventory[index] == "Gold Coin" then

table.remove (playerInventory, index)
end

end

print (playerInventory)

Searching Only a Section of an Array

Another time you probably want to use a numeric for loop is when you only want to go over
part of an array. Say you need to find the names of the first three ships to cross the finish line in
a space race:

local shipsRaced = {"A Bucket of Bolts", "Blue Moon", "Cats In Space",
"DarkAvenger12"}

local fastestThree = {}
for index = 1, 3 do
table.insert (fastestThree, shipsRaced[index])

end

print (fastestThree)



124 HOUR 9: Working with Arrays

The preceding code snippet takes the first three values of shipsRaced and adds them to

fastestThree.

Summary

Tables, of which arrays are one type, let you organize your experience. With arrays, you can
make a list of every player in your game and give each of them a new avatar item or weapon.
You can also use arrays to create a list of every item in a folder that needs to have changes
made to it.

Once you have all the items you want in an array, you can use a for loop to iterate over the
array for whatever purpose you would like. You could print the names in the list, you could
update the color of every object in the array, or execute much more complicated code. There are
two types of for loops that can be used with an array. The for loop you used in the last hour
is called a numeric for loop. It's good at times when you want to make changes to only a por-
tion of the array or are working with very large arrays. The second type of for loop is called a
generic for. In this case, ipairs () is used to go over the complete array, in order.

Q&A

Q. What are some other reasons for using a numeric for loop?

A. Over a very long lists of objects, numeric for loops run slightly faster. If you need to iterate
through hundreds and hundreds of parts, it’'s worth keeping in mind.

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
Arrays are a type of

B

The number assigned to an item on an array is an number.
In Lua, the index starts at the number ___.

GetChildren () returns an __ .

@ ® N

Is ipairs () used to create a generic loop or a numeric loop?



Exercises 125

Answers

1.

@ ® N

Table
Index
One. Other coding languages may start at O instead.
Array

Generic

Exercises

One way developers make their experiences feel more tied to the real world is by updating assets
as seasons go by. In this first exercise, see if you can figure out how to make the pine tree in
Figure 9.9 go from a summery green to a wintery white.

FIGURE 9.9
Updating your world to match the seasons makes your world feel more alive.

Tips

» This pine tree can easily be found in the ToolBox (see Figure 9.10). Search tree if you don’t

see it. We picked it for this exercise because it's a known good model made out of several
parts, so you don’t have to worry about swapping textures or it having extra scripts inside.



126 HOUR 9: Working with Arrays

FIGURE 9.10
A pine tree with the endorsed model logo. The model is made out of base parts, so you'll easily be able to

update the color of each leaf.

» Assume there’s a whole forest of trees in your game.
» You’'re going to need more than one loop.

You can find the code solution in the appendix at the end of the book.



HOUR 10

Working with Dictionaries

What You’ll Learn in This Hour:

» How to create a dictionary

» Run through dictionaries with pairs ()

» How to return values from tables

» Test code designed for multiple participants
» Create a voting simulator

The second type of table you'll learn about in this book is dictionaries. This type of table enables
you to gather information into groups and tag individual entries with something other than just
a number, which opens up a whole world of possibilities. This hour covers creating dictionaries,
adding and removing values, and iterating through dictionaries using pairs ().

One way you'll use dictionaries this hour is to keep track of who has the most votes in a voting
simulator. The person with the most votes will be kicked off the island. This will give you practice
using both arrays and dictionaries to keep track of participants, and what their votes are.

Intro to Dictionaries

Dictionaries are table objects that use a key to identify values instead of numbered indexes. The
key can be a person’s ID number, properties like Health or Stamina, or any valid data type. The
following table is what a dictionary of player names and their respective scores might look like.

activePlayer Dictionary

Player's name as a key Agatha Billie Mary Sue
Score as a value 1000 150 1200




128 HOUR 1.0: Working with Dictionaries

In dictionary form, the same table might look like this:

local activePlayer = {
Agatha = 1000,
Billie = 150,
["Mary Sue'"] = 1200,

Use dictionaries when you need to label values, not just list them in a specific order as an array
does.

Coding a Dictionary

Like arrays, dictionaries are created with curly brackets ({ }).

When you're constructing a new dictionary, you'll often see the brackets separated so that people
can tell it apart from arrays, as shown in the following snippet:

local newDictionary = {

}

Key-value pairs are stored on separate lines followed by a comma. Keys and values can be any
data type, including strings, numbers, instances, and other tables. The following dictionary uses
strings as keys:
local inventory = {

Batteries = 4,

["Ammo Packs"] = 1,

["Emergency Rations"] = 0,

Formatting Keys

How a key is formatted depends on if it is a string, instance, or something else. If strings are used
as the key, they don’t need to be in brackets unless there are spaces in the string. Then they must
be enclosed in quotation marks and brackets:

local seedInventory = {
-- String keys with no spaces
Wheat = 1,
Rice = 4,

-- String key with spaces
["Sweet Potatoes"] = 3,



Intro to Dictionaries 129

However, if the keys are an instance such as a part or someone in the game, then brackets
should be used to mark that. In the following example, a dictionary uses boolean values to track
whether all of the required portalStones are activated before opening the master portal:

local eastStone = workspace.EastStone

local westStone = workspace.WestStone

local northStone = workspace.NorthStone
local southStone = workspace.SouthStone

-- Each portal stone is an instance of a part, so it's marked in brackets

local requiredPortalStones = {
[eastStone] = true,
[westStone] = true,
[northStone] = true,
[southStone] = false,

Dictionaries are often used for organizing information for a character or object where they’re
used to label properties like name or level. In this case, neither the brackets nor the quotation
marks are needed.

The following example uses a dictionary to track a character’s name and level:

local hero = {
Name = "Maria",
Level = 1000,

WARNING

Don’t Mix Keys and Indexes

Once you create a table, be consistent with using either key-value pairs or indexed values. Never
use both within the same table. Combining keys and indexes in the same table can lead to errors.

Using Dictionary Values

To use individual dictionary values in code, type the name of the dictionary followed by the key
in brackets, just like you did with arrays—for example, dictionaryName [key]. Or, if you're
working with strings, you can also use dot notation:
local hero = {

Name = "Maria",

Level = 1000,

}

-- Remember that Name is a string and can be accessed with brackets
print ( "The hero's name is " .. hero["Name"] )



130 HOUR 1.0: Working with Dictionaries

-- Or you can use dot notation

print ( "The hero's name is " .. hero.Name )

TIP

Dot Notation Only Works with String Keys
Once again, dot notation only works with strings, but it’'s something you’ll see quite a bit.

Use Unique Keys

Lua won't stop you from trying to reuse the same key. Keep this in mind as you code. In the fol-
lowing example, the original value for the key Name will be overwritten, and the second value
given for the key Name will be printed:

local hero = {
Name = "Maria",
Level = 1000,
Name = "Aya",

}

-- Will print Aya. The first value has been overwritten.
print ( "The hero's name is " .. hero.Name)

Adding and Removing from Dictionaries

To add a key-value pair to an existing dictionary, the formula is:

dictionaryName [key] = value

Or if working with strings:

dictionaryName.String = value

Adding players to a dictionary when they join the game, and then starting them off with O
points, might look like: playerPoints.Points = 0

Be careful! As mentioned earlier, if the key already exists, the existing value will be overwritten.

Removing Key-Value Pairs

To remove a key-value pair from a dictionary, set the key’s value to nil. This deletes the key:

local lightBulb = model.SpotLight

local flashLight = {



Removing Key-Value Pairs 131

Brightness = 6,
[1ightBulb] = "Enabled",

-- Remove string keys
flashLight.Brightness = nil

-- Remove other keys
flashLight [1ightBulb] = nil

This also means if you are ever trying to get a value from a dictionary, and you only get nil,
that means you're looking for something that doesn’t exist.

TRY IT YOURSELF V¥

Add New Players to a Dictionary

In this Try It Yourself, you add a player’'s name to a dictionary when they join and then assign
them to a team. If you’re using a key-value pair that hasn’t been added previously, it’'ll be added
automatically.

1. In ServerScriptService, create a new script.

2. Get the Players service and create an empty dictionary:

Players = game:GetService ("Players")
-- Empty dictionary
local teams= {

}

3. Add a new function for assigning teams and include a parameter for a new player. Connect
the function to the Players.PlayerAdded event:

Players = game:GetService ("Players")
local teams=

}

-- Assign player to "Red" team

local function assignTeam(newPlayer)
end

Players.PlayerAdded:Connect (assignTeam)

4. In the function, add a variable to get the player's name:

-- Assign player to "Red" team

local function assignTeam(newPlayer)
local name = newPlayer.Name

end

Players.PlayerAdded:Connect (assignTeam)



132 HOUR 1.0: Working with Dictionaries

n 5. Insert the name into the teamAssignments dictionary as a key, and set the value to
"Red":

-- Assign player to "Red" team

local function assignTeam(newPlayer)
local name = newPlayer.Name
teams.name = "Red"

end

Players.PlayerAdded:Connect (assignTeam)

6. Use name to print the name of the player and teamAssignment [name] to print the value
of the key:

Players = game:GetService ("Players")
local teams = {
}
-- Assign player to "Red" team
local function assignTeam(newPlayer)
local name = newPlayer.Name
teams.name = "Red"
print( name .. " is on " .. teams.name .. " team.")
end
Players.PlayerAdded:Connect (assignTeam)

Working with Dictionaries and Pairs

pairs () can be used to work with a dictionary element’s key, value, or both. In the following
for loop, the first variable is the key. The second variable is the value. The dictionary that you
want to work with is passed into pairs ():
local inventory = {

["Gold Bricks"] = 43,

Carrots = 3,

Torches = 2,

print ("You have:")
for itemName, itemValue in pairs(inventory) do
print (itemValue, itemName)

end

TIP

Comma Instead of Dots
If just printing two variables, you can use a comma instead of two dots.




Returning Values from Tables 133

Returning Values from Tables

You can search a table using pairs () or ipairs () for half of any table element, such as the
key or value, to find and return the other half. The following code snippet searches a dictionary
of names to find the spy among them:

local friendOrSpy = {

Angel = "Friend",
Beth = "Spy",

Cai = "Friend",
Danny = "Friend",

}
-- Searches a given dictionary to find the spy
local function findTheSpy (dictionaryName)
for name, loyalty in pairs(dictionaryName) do
if loyalty == "Spy" then
return name
end
end

end
local spyName = findTheSpy (friendOrSpy)

print ("The spy is " .. spyName)

TRY IT YOURSELF V¥

Vote Them Off the Island!

In this Try It Yourself, you're going to pretend to vote somebody off an island. The end goal of
this exercise is to take the name of every player in the experience and then create a way every-
one can vote on who should be kicked off the imaginary island.

To start, begin mentally breaking down the problems you need to solve to create this script. As
you start working on longer scripts, a to-do list of what needs to be done can be helpful.

Here are some problems to solve for:
» There needs to be enough time for all of the players to join before voting.

v

Each player’'s name needs to be represented in some way that players can interact with.

v

The votes for each person need to be kept track of.

v

The results need to be shown at the end of voting.

There are other things you could possibly solve for, but this is enough of a list to work with for
now.



134 HOUR 1.0: Working with Dictionaries

Set Up

The first problem will be solved by allowing players to click a button when they’re ready to begin
voting. In a more complex experience, the voting might happen after a series of mini-games or

something like that. To solve the second problem, once the voting starts, a new set of buttons
representing each player will appear. (See Figure 10.1.)

FIGURE 10.1
One button will start the vote, and then more buttons will be created to represent everyone on the island.

For this example, the names of the ProximityPrompts are important. Differently named prompts
will be used to do different things:

1. Set up a part to act as the first button that starts the voting:
a. Insert a ProximityPrompt named StartVote.
b. Set HoldDuration to 1.
2. Set up a second part to act as the button that will hold the player’s name:
a. Insert a ProximityPrompt named Addvote.
b. Set HoldDuration to 0.5.

c. Once set up, move the button to ServerStorage where copies can be made. (See
Figure 10.2.) Do not move the StartVote button; that needs to be where people can
see it.



Returning Values from Tables 135

e Workspace

FIGURE 10.2
The button to start the vote stays in Workspace, whereas the button with AddVote goes into ServerStorage.

Coding the Script

As you work through this exercise, you use multiple tables, both arrays and dictionaries.
Newcomers to the experience will be added to an array named activePlayers. Once voting starts,
anyone who receives a vote will be added to a dictionary along with how many votes they have.

Set Up the Buttons

Remember the different problems mentioned earlier that need to be solved for? As you start
working on larger scripts, it’s better to break the script into sections with individual functions
designed to solve unique problems. You start out by getting the names of all the players and cre-
ating buttons for each player:

1. In ServerScriptService, add a new script.



136 HOUR 1.0: Working with Dictionaries

n 2. Create variables for the following:
a. ServerStorage
b. ProximityPromptService

Players service

SN

Amount of time players have to cast their votes
e. An array to hold all of the active players

f. A dictionary to hold the votes cast

local ServerStorage = game:GetService ("ServerStorage")
local ProximityPromptService = game:GetService ("ProximityPromptService")

local PlayersService = game:GetService("Players")
local VOTING DURATION = 30

local activePlayers = {}
local votes = {

}

3. At this point, you start breaking your code into smaller solutions. Create a new function
that adds players to the activePlayers array when they are added to the experience.
Use the PlayerAdded event to call the function:

local function onPlayerAdded (player)
table.insert (activePlayers, player)
end

PlayersService.PlayerAdded:Connect (onPlayerAdded)

4. Create a new function that creates a button for each player instance in the active-
Players array. This function is called later in the script with the Startvote prompt:

local function onPlayerAdded (player)
table.insert (activePlayers, player)
end

local function makeButtons ()
for index, player in pairs(activePlayers) do
-- Use the name of your button in the next line
local newBooth = ServerStorage.Button:Clone ()

newBooth.Parent = workspace
end

end

PlayersService.PlayerAdded:Connect (onPlayerAdded)



Returning Values from Tables 137

5. Find the ProximityPrompt within the button, and set ActionText to match the player's n
name:

local function makeButtons ()
for index, player in pairs(activePlayers) do
local newBooth = ServerStorage.VotingBooth:Clone ()

local proximityPrompt =
newBooth:FindFirstChildWhichIsA ("ProximityPrompt")

local playerName = player.Name
proximityPrompt.ActionText = playerName

newBooth.Parent = workspace
end

end

6. Add the highlighted code additions to space the buttons apart a little. You learn more
about positioning objects in Hour 14, “Coding in 3D World Space”:

local function makeButtons ()
local position = Vector3.new(0,1,0)
local DISTANCE APART = Vector3.new(0,0,5)

for index, player in pairs(activePlayers) do
local newBooth = ServerStorage.Button:Clone ()

local proximityPrompt =
newBooth:FindFirstChildWhichIsA ("ProximityPrompt")

local playerName = player.Name
proximityPrompt.ActionText = playerName

position = position + DISTANCE APART
newBooth.Position = position

newBooth.Parent = workspace
end
end

7. Add a third function connected to the PromptTriggered event. Inside, use the StartVote
proximity prompt to call makeButtons () :

local function makeButtons ()
-- Earlier code
end

local function onPromptTriggered (prompt, player)
if prompt.Name == "StartVote" then
makeButtons ()



138 Working with Dictionaries

end
end

PlayersService.PlayerAdded:Connect (onPlayerAdded)
ProximityPromptService.PromptTriggered:Connect (onPromptTriggered)

TIP

Keep Event Connections Together When Possible

Notice that all of the event connections are at the bottom of the script. This keeps everything
organized.

Testing for Multiple People

When testing code that’s meant to be used for multiple players, you need to use Network
Simulator instead of just Play or Play Here. Network Simulator enables you to set up as many
fake people as you want, which you can then control to test your game:

1. In the Test tab, find the section titled Clients and Servers.

2. Set the bottom drop-down menu to two or more players, as shown in Figure 10.3.

FIGURE 10.3
Use the drop-down menu to select at least two players.

3. Clicking Start will bring up a new Studio instance representing the server and an additional
window for each pretend player. Player windows have a blue outline (see Figure 10.4),
whereas the Server window has a green outline.

4. Click any of the blue windows to control that dummy character. While testing, any errors
and printed messages show up in the Server Output window.

5. Interact with StartVote and make sure that a button is spawned for each test player.



Returning Values from Tables 139

r
Y
-
o
-
-
-
s
@

FIGURE 10.4
The blue outline indicates this is one of the player instances.

TIP

Positioning Objects

The buttons should appear just slightly above the center of your experience, 0,0,0. Later in the
book, you’ll learn how to control the position of objects when added to the workspace.

6. To stop the test, click Cleanup. (See Figure 10.5.)

FIGURE 10.5
Click the red X to close the extra Studio instances.



140

HOUR 1.0: Working with Dictionaries

n Adding and Counting Votes

Once the voting buttons are up and running, the votes need to be tracked and the results shown
when the voting is done. In this example, you give a set amount of time that players are allowed
to vote and then show the results:

1.

TIP

In the same script, above onPromptTriggered (), create a new function called
showVotes that prints all the values in the votes dictionary:

local function showVotes ()
for playerName, value in pairs(votes) do
print (playerName .. " has " .. value .. " votes."
end

end

In onPromptTriggered (), begin a countdown once voting starts, and call showVotes
when it's done:

local function onPromptTriggered (prompt, player)
if prompt.Name == "StartVote" then
makeButtons ()

for countdown = VOTING DURATION, 0, -1 do
print (countdown .. " seconds left")
wait (1.0)

end

showVotes ()
end

end

Further Code Organization

If you wanted to, you could make the countdown its own function as well. That would allow it to be
called by other means than just a prompt.

Also in onPromptTriggered (), add a second condition that listens for Proximity Prompts
named Addvote:

local function onPromptTriggered (prompt, player)
if prompt.Name == "StartVote" then
makeButtons ()
-- Countdown code
showVotes ()
elseif prompt.Name == "AddVote" then

end
end



Returning Values from Tables 141

4. Get the name of the player who was voted for from ActionText, where it was used to n
label the button:

local function onPromptTriggered (prompt, player)
if prompt.Name == "StartVote" then
makeButtons ()
-- Countdown code
showVotes ()
elseif prompt.Name == "AddVote" then
local chosenPlayer = prompt.ActionText
end

end

5. If the votes dictionary doesn’t already have an entry by that name, add the player’s name
as a key and set their points to 1. If a key does exist, take the current value and add one
to it:
local function onPromptTriggered (prompt, player)

if prompt.Name == "StartVote" then
makeButtons ()

for countdown = VOTING DURATION, 0, -1 do

print (countdown .. " seconds left")
wait (1.0)
end
showVotes ()
elseif prompt.Name == "AddVote" then

local chosenPlayer = prompt.ActionText
print ("A vote for " .. chosenPlayer)

if not votes[chosenPlayer] then

votes [chosenPlayer] = 1
else

votes [chosenPlayer] = votes|[chosenPlayer] + 1
end

-- Optional check for debugging purposes
else
print ("Prompt not found")
end
end



142 HOUR 1.0: Working with Dictionaries

TIP

If All Else Fails

Included are a couple of print statements and an else that can be used for testing the code. A final
else that runs if no other condition proves true can be quite helpful for making sure that the func-
tion was called as expected.

6. Use Network Simulator with at least two players to test the code, and look for the results
in the Server Output.

Summary

In all Roblox experiences, tables are behind the scenes tracking information. Arrays are used

to create lists of objects, and the information stored will always be in order. While dictionaries
are used to track information about objects and properties, and unlike arrays, the entries within
aren’t guaranteed to stay in any particular order.

To iterate through a dictionary, you want to use pairs () instead of ipairs (). The two func-
tions are very similar, but ipairs () only works with arrays.

Q&A

Q. I've seen pairs () used with arrays, so why not just use pairs () with both arrays and dic-
tionaries?

A. One of the benefits of using arrays is that it stores things in order. pairs () is not guaran-
teed to return every object in order, whereas ipairs () is.
Q. If pairs () can technically work with arrays, why can’t pairs () work with dictionaries?

A. ipairs() requires an ordered index to work. Dictionaries don’t have that. On the other
hand, pairs accept any valid datatype as a key, including indexes.

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
1. Instead of using indexes, dictionaries use ___.

2. True or false: Dictionaries store information in a particular order.



Exercise 143

To iterate through a dictionary, use the functions.
If an instance is being used as a key, does it need to have brackets or quotation marks?

To remove a key-value pair from a dictionary, set the value to ___.

o o w

Why does showVotes () have to be above onPromptTriggered () ?

Answers
1. Keys

2. False. Although dictionaries might sometimes return values in the order in which they were
stored, it’'s by no means guaranteed.

pairs ()
If an instance is being used as a key, it only needs the brackets.

Nil

o o P w

Because code is read from top to bottom, showVotes () needs to be created before it's
called in onPromptTriggered ().

Exercise

Earlier in this hour, a person was assigned to the "Red" team upon joining the experience.
For this exercise, can you figure out how to alternate team assignments between "Red" and
"Blue"? Print the members of each team.

Tips
» Test using Network Simulator.

» Instances can’t concatenate with strings, but the name of the instance will.



This page intentionally left blank



HOUR 11

Client Versus Server

What You’ll Learn in This Hour:

» What the server/client divide is

» How to set up serverwide messages

» How to create player-specific messages with GUIs
» How to test code

» How to use RemoteFunctions for two-way communication between the server and client

There are two sides to every Roblox experience. One side is where people interact with the experi-
ence, and the other side is in the cloud, controlling everything. This hour covers how these two

sides work together and how messages are sent between them. At the end of the hour, you create
a shop where players can click a button to buy firewood for the resource game created in Hour 9.

Understanding the Client and the Server

The first side, the side where people and players are interacting with the world, is the client side.
A client is the individual device somebody uses to join a game, whether it's a Mac, PC, phone,
tablet, or even a VR console.

Some things about the experience are calculated on the individual client device, whereas other
things are taken care of by super powerful Roblox hardware called the server. The server and the
client are always talking to each other. The server tells the client what the overall world is like,
and the client tells the server what a person is doing within the world.

Typically, you want important information like scores, in-game money, and progress levels to

be handled by the server. The server is more secure than the client and is harder to hack into.
Meanwhile, the client handles things that apply only to the particular person using the device or
for when it’s important to have the least amount of lag possible, such as for showing them their
own score or when controlling the camera.



146 HOUR 11: Client Versus Server

Working with GUIs

So far, we've only worked with server-side code typed within Script objects, and everyone in the
world sees the same thing. The next step is to start creating code that shows the person on each
client information that only they can see, like their current score, quest progress, health level,
and how much money they have. Information like this is displayed in what'’s called a Graphical
User Interface or GUI, like the one shown on the left in Figure 11.1.

B
CUSTOMIZE DELETE

FIGURE 11.1

In World//Zero by Red Manta Studio, returning players are greeted by GUI showing their characters’ levels
and current locations. Additional GUI elements allow for customization and deletion, and a big green button
starts the game.

With GUIs, you can also create onscreen buttons that allow you to build out things like shops.

The majority of GUI items that can only be seen by the local client should be placed in Starter-
GUI, and you type the code into a LocalScript object instead of a Script object. Anything in
StarterGUI is duplicated to anyone who joins the experience.

V¥ TRY IT YOURSELF

Create a GUI with the Player’'s Name

To show you what it can look like when everyone in the server sees information custom tailored
just for them, in this Try It Yourself, you create a GUI with the player’s name.

Set Up
1. In Explorer, select StarterGUI.

2. Insert a new ScreenGui (see Figure 11.2). This will be the container for any buttons and
labels you want to create.



Working with GUIs 147

@ workspace

A‘ Players
@ Lighting

BB ReplicatedFirst

g Replicat

" StarterPack

FIGURE 11.2
Insert a ScreenGui object into StarterGui.

3. Inside of ScreenGui, add a TextLabel. Rename the TextLabel PlayerName, as shown in
Figure 11.3.

gy Replica
@ ServerScripts

PlayerName

StarterPack

FIGURE 11.3
Insert a TextLabel into the ScreenGui just created.

TIP

Customizing GUIs

To learn about customizing the appearance and placements of ScreenGuis, check out the compan-
ion book Roblox Game Development in 24 Hours or look up Intro to ScreenGuis on the Developer
Hub.




148 HOUR 11: Client Versus Server

n Script

You use a LocalScript instead of the normal Script object. The Script object is for server-side
code:

1. With the ScreenGui selected, insert a new LocalScript object (see Figure 11.4).

LocalScript

Mame

FIGURE 11.4
LocalScripts are for client-side code.

TIP

GUI Script Placement
GUI scripts must be inside of StarterGUI. ServerScriptService can only access server Script objects.

2. Within the LocalScript, create variables for the Players service and the ScreenGui.

3. Create a new variable for the TextLabel:

local Players = game:GetService ("Players")

local screenGui = script.Parent

local textLabel = screenGui.PlayerName

4. Get the local player. In LocalScripts, this can easily be done with Players.LocalPlayer:

local Players = game:GetService ("Players")

local screenGui = script.Parent
local textLabel = screenGui.PlayerName
local localPlayer = Players.LocalPlayer
5. Set TextLabel’s Text property to the name of the local player:
local Players = game:GetService ("Players")
local screenGui = script.Parent

local textLabel = screenGui.PlayerName
local localPlayer = Players.LocalPlayer

textLabel.Text = localPlayer.Name

6. Use the Network Simulator to test your code. You'll see that each person’s name is dis-
played on screen.



Using RemoteFunctions 149

Understanding RemoteFunctions

One thing to keep in mind is that the server and the client don’t have access to the same infor-
mation. There are certain folders that the client can’t access, and vice versa. Here are a few

examples:

Object Server Client
Workspace yes yes
ServerScriptService yes no
ServerStorage yes no
ReplicatedStorage yes yes

Also, the server and the client don’t share information. Some people call this the server/client
divide, but you can just imagine it as if there was a wall between the two environments keeping
them separate.

To get information from one side to the other, special objects are used to toss information over
the wall. This can be done through RemoteEvent and RemoteFunction objects that both Scripts
and LocalScripts can use to communicate with each other. In this hour, RemoteFunctions are
covered, and the next hour gets into the different types of RemoteEvents.

Using RemoteFunctions

As stated earlier, RemoteFunctions are designed to send a request across the server-client
boundary.

What makes RemoteFunctions special is that they can also wait for a response from the other
side acting as a messenger between the client and the server. Usually this is a request from the
local client for the server to do something, and then the server sends the results back.

RemoteFunctions must be created where both clients and the server can access it—for instance,
ReplicatedStorage (see Figure 11.5).

Meanwhile, you have a normal server Script in ServerScriptService and a LocalScript in Starter-
PlayerScripts, as shown in Figure 11.6.



150 HOUR 11: Client Versus Server

FIGURE 11.5
RemoteFunctions must be placed someplace like ReplicatedStorage, which both the client and server can
access.

FIGURE 11.6
LocalScript in StarterPlayerScripts and server Script in ServerScriptService.

Get a message from the server, and print it locally: On the server side, set up a function that returns
a simple string to print. Bind the function to the RemoteFunction object, as highlighted here:

local ReplicatedStorage = game:GetService ("ReplicatedStorage")
local remoteFunction = ReplicatedStorage:WaitForChild ("RemoteFunction™)

local function sayHello()
local serverMessage = "Hello from the server"
return serverMessage

end

remoteFunction.OnServerInvoke = sayHello

RemoteFunctions can only have one function bound to them at a time. On the local side, the
code to invoke (indirectly call) the server would look like this:



Using RemoteFunctions 151

local ReplicatedStorage = game:GetService ("ReplicatedStorage")
local remoteFunction = ReplicatedStorage:WaitForChild ("RemoteFunction")

local messageFromServer = remoteFunction:InvokeServer ()

print (messageFromServer)

Server to Client

It is possible to go the other direction—from server to client to server. However, it’s quite risky
and won'’t be covered within this book for the following reasons:

» If the client throws an error, the server will throw the error, too.
» If the client disconnects while it’s being invoked, the InvokeClient () call will error.

» If the client never returns a value, the server will hang forever.

TRY IT YOURSELF V¥

Make a Store

A good example of when you might need to double-check with the server and wait for a response
is if someone wants to buy something. A client clicks a button to buy something, and then the
server checks whether the client actually has enough money and confirms the purchase.

For the purposes of this Try It Yourself, you take the leaderboard system you’'ve worked with before
and modify it to allow players to spend gold to buy more logs to burn for the fires (see Figure 11.7).

FIGURE 11.7
The end result will allow people to buy logs for the fire.



152 HOUR 11: Client Versus Server

n Set Up

For the sake of speed, use the leaderboard system for fuel and fire you previously set up. If you
don’t have it, you can use the code in the Hour 11 section of the appendix to quickly set it up.

1. In ServerScriptService, PlayerStats, give people a starting gold amount of 10 to make test-
ing easier:
local gold = Instance.new("IntValue")
gold.Name = "Gold"
gold.Value = 10
gold.Parent = leaderstats

2. In ReplicatedStorage, add a new RemoteFunction instance named CheckPurchase (see
Figure 11.8).

un ReplicatedStorage

=% CheckPurchase e

FIGURE 11.8
Add a RemoteFunction named CheckPurchase.

3. In ServerStorage, add a new folder named ShopItems (see Figure 11.9).

FIGURE 11.9
Add a folder named Shopltems.

4. In Shopltems, add a Folder object named 3Logs and add the three attributes shown on
the right in Figure 11.10. You’'ll use these names and values in the script.



Using RemoteFunctions 153

Parent sShopltems

Behavior
Archivable
Attributes
NumberToGive
Price

StatName

FIGURE 11.10
A new folder with custom attributes for NumberToGive, Price, and StatName.

TIP

Future Proofing the Shop

In a more advanced shop, the folder can also be used to hold mesh models, image icons, and
more.

5. In StarterGUI, add
» A new ScreenGui named ShopGui.

» In ShopGui, add a new TextButton named Buy3Logs (see Figure 11.11).

& Buy3logs
k

FIGURE 11.11
Set up for the GUIs.



154 HOUR 11: Client Versus Server

n TIP

Moving GUIs

To move the GUIs around, you can select the GUI objects in Explorer and then move and scale
them.

6. Select Buy3Logs and add an attribute, as shown in Figure 11.12:
» Name: PurchaseType
» Value: 3Logs
> Type: String

Attributes

PurchaseType 3Logs

Add Attribute

FIGURE 11.12
An attribute for Buy3Logs.

LocalScript

LocalScripts for GUI buttons need to be a direct child of the button they affect. In the LocalScript,
you set up the code to invoke the server and tell the person if their purchase was successful or
if they need more gold:

1. In the Buy3Logs button, add a LocalScript.

2. Get the information you need for the RemoteFunction, CheckPurchase:

local ReplicatedStorage = game:GetService ("ReplicatedStorage")

local checkPurchase= ReplicatedStorage:WaitForChild ("CheckPurchase")
3. For the button, you need to get the PurchaseType attribute:

local ReplicatedStorage = game:GetService ("ReplicatedStorage")
local checkPurchase= ReplicatedStorage:WaitForChild ("CheckPurchase")

local button = script.Parent
local purchaseType = button:GetAttribute ("PurchaseType")

4. Use the PurchaseType to create and assign default text for the button and then set up a
cooldown for how long the button will be deactivated between purchases:

local defaultText = "Buy " .. purchaseType
button.Text = defaultText

local COOLDOWN = 2.0



Using RemoteFunctions 155

TIP n

Make Sure to Assign Default Property Values

You'll be changing the Text property several times, so you want to make sure you have a default
message assigned in the beginning of the script.

5. Create a new function to be called when the button is activated:

local function onButtonActivated ()

end

button.Activated:Connect (onButtonActivated)

6. Create a variable to invoke the server to send the purchaseType and hold the returned
purchase confirmation:

local function onButtonActivated()
local confirmationText = checkPurchase:InvokeServer (purchaseType)
end

7. Display the confirmation text while disabling the button and then return the button to
normal:

local ReplicatedStorage = game:GetService ("ReplicatedStorage")
local checkPurchase = ReplicatedStorage:WaitForChild ("CheckPurchase")

local button = script.Parent

local purchaseType = button:GetAttribute ("PurchaseType")
local defaultText = "Buy ".. purchaseType

button.Text = defaultText

local COOLDOWN = 2.0
local function onButtonActivated()

local confirmationText = checkPurchase:InvokeServer (purchaseType)
button.Text = confirmationText
button.Selectable = false
wait (COOLDOWN)
button.Text = defaultText
button.Selectable = true
end

button.Activated:Connect (onButtonActivated)



156

HOUR 11: Client Versus Server

n Server Script

The server side is where you want to do all the heavy lifting of checking and updating stats.
Once the client sends over what the user wants to purchase, the server checks whether the user
has enough gold. If they do, the purchase will be made, and the button text will say Purchase
Successful! If they don’t have enough gold, then the server will send back a message saying
Not enough gold.

1.
2.

In ServerScriptService, add a new script.

Think about what your script needs to do and make the references you think it will need.
Compare your work to the following snippet:

local ReplicatedStorage = game:GetService ("ReplicatedStorage")
local Players = game:GetService ("Players")
local ServerStorage = game:GetService ("ServerStorage")

local checkPurchase = ReplicatedStorage:WaitForChild ("CheckPurchase")
local shopItems = ServerStorage.ShopItems

Create a function named confirmPurchase with parameters to pass in player and
purchaseType. Bind confirmPurchase to the RemoteFunction:

local function confirmPurchase (player, purchaseType)
end

checkPurchase.OnServerInvoke = confirmPurchase

Inside of confirmPurchase, get how much gold the person has:

local function confirmPurchase (player, purchaseType)
local leaderstats = player.leaderstats
local currentGold = leaderstats:FindFirstChild("Gold")

end

Use the passed in purchaseType to find the item they want to buy. Get the resource stat
that will be updated on the leaderboard, the item’s price, and how many of the resource
will be received:

local function confirmPurchase (player, purchaseType)
local leaderstats = player.leaderstats
local currentGold = leaderstats:FindFirstChild("Gold")

local purchaseType = shopItems:FindFirstChild (purchaseType)

local resourceStat =
leaderstats:FindFirstChild (purchaseType:GetAttribute ("StatName"))

local price = purchaseType:GetAttribute ("Price")
local numberToGive = purchaseType:GetAttribute ("NumberToGive")
end



Using RemoteFunctions 157

TIP n

Check Your Work

You should have four variables here. Notice how purchaseType:GetAttribute ("StatName")
is passed into shopItems:FindFirstChild().

6. Set up a variable for the server message that will be sent back once everything is checked:

local function confirmPurchase (player, purchaseType)
local leaderstats = player.leaderstats
local currentGold = leaderstats:FindFirstChild("Gold")

local purchaseType = shopItems:FindFirstChild (purchaseType)
local resourceStat =
leaderstats:FindFirstChild (purchaseType:GetAttribute ("StatName"))
local price = purchaseType:GetAttribute ("Price")
local numberToGive = purchaseType:GetAttribute ("NumberToGive")

local serverMessage = nil

return serverMessage
end

TIP

Set Undetermined Values to nil

In this code, the value of serverMessage will be determined in the next step. Rather than just
leaving the variable without a value for now, set it to nil so it's clear that a value was not mistak-
enly left out.

7. Set up conditionals to c