
carmanaught / mpvcontextmenu Archived

Context Menu for mpv

 MIT License

7 stars 1 fork

Code Issues Pull requests Actions Security Insights

View code

This repository has been archived by the owner. It is now read-only.

Star Notifications

master Go to file

carmanaught Update README.md … on 4 Jun 2018 26

DEPRECATED: This repository has been deprecated and moved to https://gitlab.com

/carmanaught/mpvcontextmenu/

Context Menu for mpv

This is a context menu forked and fairly extensively modified from this one (credit to

avih).

Table of Contents

Requirements

Tk

Gtk+

Dialogs

Fonts

Tk

Gtk+

Scripts

Usage

README.md

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

1 of 11 14/04/2021, 04:23

Configuration

Customization

Menu Layout

Function call/in-line function

Notes

Disclaimer

Credits

This is an example of what the Tk (left) and Gtk+ (right) menus look like in use

(showing the audio Channel Layout sub-menu):

A lot of the code from the original menu has been rewritten. In particular, the Tk

menu adds sub-menu's using the Tcl menu 'cascade' command, retaining the

possibility to rebuild the menu along with sub-menu's through the use of the Tcl

'postcascade' command.

The menu layout is based on the right-click menu for Bomi, which is what I was using

before switching to mpv. If you were a Bomi user be aware that not all the menu

items for Bomi are implemented (particularly those around video settings) and there

is no current plan to implement them at this point.

Some of the menu items reference commands that use the functions/bindings in

gui-dialogs.lua to show dialogs. These are based on the KDialog-open-files script

(credit to ntasos) and include both zenity and kdialog options.

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

2 of 11 14/04/2021, 04:23

The menu layout definitions and the menu engine have been separated. Part of this

is to allow for the use of other menu builders, with the logic and interactions with

builders handled by the menu engine script. This has the advantage that the menu

engine script doesn't care about the menu definition file and actually allows multiple

menu definition files to be used if desired, ensuring they are configured correctly (see

Customization below).

While some of this may work on Windows or macOS, most of this is only tested on

Linux. For macOS, some of the requirements may be available via Homebrew,

though I can't provide any guarantees for things working.

Requirements

For the menu's to work, this currently requires the following:

tcl, tk for the Tk based menu,

gjs (and it's dependancies, likely including gtk3) for the Gtk+ based menu,

kdialog or zenity for the dialogs to open files/folders/URLs.

Place the files (except for input.conf) in your ~/.config/mpv/scripts/ or ~/.mpv/scripts/

folder. The input.conf is not strictly necessary, but the key-bindings shown in the

menu are based on those in the input.conf . Note: the key-bindings are not

automatically detected and have been manually added as text to the menu, so you'll

need to change/remove them if they don't match your own.

Tk

You will need to install Tcl and Tk (for the Tk menu) and ensure that the

interpreter["tk"] variable in menu-engine.lua is set properly. This can be set to wish or

tclsh (set to wish by default, though tclsh may work smoother) and should either be

accessible via the PATH environment variable or the full path should be specified.

For Windows, download your preferred Tcl package (check the Tcl software page or

perhaps ActiveTcl or Tcl3D) and install/extract as needed. Ensure that the relevant

wish.exe or tclsh.exe is either in the PATH, the full path has been specified, or put the

necessary executable into the the mpv.exe directory. You could also use tclsh/wish

from git/msys2 (mingw).

Gtk+

The Gtk+ menu uses gjs for the interpreter and will need that installed along with

whatever dependencies that requires. The interpreter["gtk"] variable in menu-engine.lua

should be set properly as needed, depending on whether it's accessible by from the

PATH environment variable, etc.

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

3 of 11 14/04/2021, 04:23

Note: The Gtk+ menu may be slightly slower to open than the Tk menu, which might

just generally be due to how I have written the code and the manner in which the

menu is built.

This hasn't been tested on Windows as I'm unsure if there is a workable port/version

of gjs for Windows. For macOS, it looks like it's available in Homebrew (Gjs), though

it doesn't specify dependencies, so you may need Gtk+ from there as well.

Dialogs

For the dialogs to work, either kdialog or zenity need to be installed and accessible

via the PATH or the path set up manually in gui-dialogs.lua . By default, neither the

kdialog or zenity dialogs are enabled and either the script file should be modified or

a gui-dialogs.conf file should be created (read configuration section below regarding

the right directory for this).

If you do not wish to use any of the included dialogs you can also remove the entries

in the menu items referencing them.

For zenity , apparently there is a port of Zenity for windows, but this has not been

tested. For macOS, apparently this is available via Homebrew (Zenity). As far as I'm

aware, kdialog is not readily available on windows or macOS.

Fonts

The menu uses the Source Code Pro font, which can be found here (or check your

repositories), however the font can be changed in the menu-builder-tk.tcl or menu-

builder-gtk-js files. A mono-spaced font must be used for the menu items to appear

correctly.

Tk

To change the font for the Tk menu and to ensure that the correct name of the font is

specified, run wish from a terminal, then from the wish prompt, enter puts [font

families] .

user@hostname:~$ wish

% puts [font families]

This should output a list of available fonts enclosed by curly braces, which can be

used to copy the name of the desired font. To exit, type exit .

% exit

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

4 of 11 14/04/2021, 04:23

Set the font to be used in menu-builder-tk.tcl , changing the line with {Source Code Pro}

below in the Tcl file to whichever font is preferred and adjusting size as desired.

font create defFont -family {Source Code Pro} -size 9

Gtk+

The Gtk+ menu uses CSS to specify the font, so you should be able to use the font

name as it appears to most other applications. Change the font near the end of the

file in the show_menu() function as part of the Gtk.CssProvider().load_from_file() text

string.

load_from_data(" * { font-family: Source Code Pro; font-size: 9pt; font-weight: 500; }")

Scripts

Additionally the context menu uses some mpv scripts that other people have written,

called via script-binding/script-message. These are currently:

subit for the "Find Subtitle (Subit)" item under "Tools"

playlistmanager for the "Show" item under "Tools > Playlist"

stats for the "Playback Information" item under "Tools"

These will need to be either downloaded and set-up for these menu items to work or

the commands to use them should be removed if not.

Usage

There is no default binding for the context menu and the choice of menu needs to be

specified via a binding in input.conf via <BINDING> script_message <MENUTYPE> replacing

the <BINDING> with the desired key-binding. The <MENUTYPE> options are:

mpv_context_menu_tk for the Tk menu,

mpv_context_menu_gtk for the Gtk+ menu.

To get the Tk menu to work with the right-click button of the mouse, for instance, you

would use:

MOUSE_BTN2 script_message mpv_context_menu_tk

The default bindings for the dialogs in gui-dialogs.lua are:

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

5 of 11 14/04/2021, 04:23

Key Action

Ctrl + F Open files, replacing the playlist

Ctrl + G Open a folder, replacing the playlist

Ctrl + Shi� + F Add/append files to the playlist

Ctrl + Shi� + G Add/append a folder to the playlist

Shi� + F Open a subtitle file (for the playing file)

Configuration

Both gui-dialogs.lua and mpvcontextmenu.lua will read options stored in respective

config files (in a lua-se�ngs directory for mpv versions below 0.29.X and a script-opts

directory for mpv versions from 0.29.X on) in your mpv config directory (mentioned

above). The files should be named the same as the Lua files but with .conf instead

of .lua on the end. Check the near the top of each of the files to see which settings

can be changed.

For instance, if you want to specify the use of zenity dialogs and change the key-

bindings for the dialogs, you could create gui-dialogs.conf and specify the dialogPref

and the shortcuts as such:

Dialog preference

dialogPref=zenity

Open files and open folder

addFiles=Ctrl+f

addFolder=Ctrl+g

Keep in mind that the shortcut style should match the input.conf format that mpv

uses (allowing for case sensitivity) and that there should be no space between the

= and the value after the = should not use quote marks.

For the context menu itself, the options listed in the top of the file specify the unit for

the values used. It's important to specify the options in a conf file keeping the same

unit values in mind (e.g. Audio Sync is set up for milliseconds but Seek is set up for

seconds). An example for mpvcontextmenu.conf might be:

Play > Seek - Seconds

seekSmall=10

seekMedium=60

seekLarge=600

Audio > Volume - Percentage

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

6 of 11 14/04/2021, 04:23

audVol=1

Note that the changes to the values here only affect the menu, not the values for

shortcuts in the input.conf which has to be edited separately.

Customization

For those wishing to change the menu items or add/remove menu items, the

following should help, though looking at the code directly will be best. It's best if you

know some Lua to make changes here.

Menu Layout

The menu layouts use what Lua calls tables, though you could also think of them as

arrays (I certainly do).

The layout for the menus are sets of tables nested inside an over-arching table

(currently called menuList).

When the pseudo-gui is in use and there is no file playing, the layout uses a select

number of relevant options from the "while playing" menu allowing for a slightly

different menu.

For files that are playing, the layout is wrapped inside a function that is triggered by

the "file-loaded" event in mpv (registered with mp.register_event). This is important as

some of the mpv property values like track-list items and chapter information, etc. are

not available until the file has been loaded.

For both, menus, the layout is inside a table:

menuList = {

-- Menu items go here

}

Each menu item is itself a table.

A separator is comprised of a single item and uses the variable SEP to indicate this

like so:

{SEP},

A full menu item table is comprised of at least six (6) or seven (7) items. The layout

looks something like this (for all seven items):

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

7 of 11 14/04/2021, 04:23

{Item Type, Label, Accelerator, Command, Item State, Item Disable, Menu Rebuild},

Using the above as a guide, this table provides some information for what can/should

be entered for each item.

Value Purpose

Item Type
The item type specifies whether this is a a cascade (sub-menu),

command, checkbox, radio item, etc.

Label
The label for the menu item and is what will be seen when using

the menu.

Accelerator
The shortcut for the menu item and will show to the right of the

label when using the menu.

Command
The command you want to be executed when an item is clicked

on.

Item State
For checkboxes and radio items, this is the selected/unselected

state.

Item

Disable

This is set to true or false depending on whether the menu item

should be clickable/usable.

Menu

Rebuild

Set this to true if the menu should be rebuilt and re-cascaded so

that it appears in the same place with the same sub-menus

open.

For Item Type, this should be one of the preset variable names, CASCADE,

COMMAND, CHECK and RADIO respectively.

The Label and Accelerator items become the actual text that shows for each menu

item.

Command is either the a command to be sent directly to mpv (via mp.command) or a

function call that will do something (better detailed further below).

The Item State should normally be true or false values, though there is a special

case for the A/B Repeat where the receiving script will handle "a", "b" or "off" values

and change the appearance of the "checkbox" based on the value.

The best way to handle this for checkboxes or radio items is to wrap a function that

will return a true/false for the respective menu item in a function call (detailed below).

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

8 of 11 14/04/2021, 04:23

The Item Disable item is used to enable/disable menu items and can also disable

cascades from functioning. This can be useful if a menu item should be disabled

when certain functionality is not available with a given file. Set this to true to disable

the item and false to leave it enabled.

Menu Rebuild is used to toggle/use a menu item, but keep the menu open to the

same sub-menu. This makes it possible to have the mouse over a menu item and

click the item, causing a brief flicker as the menu is essentially closed and reopened

to where it was.

For the Item Label, Accelerator and Command items, you can use string

concatenation ("Text " .. var .. " Text") as the value is evaluated at much the same time

as in-line functions returning values (detailed below).

At least six items should be entered and empty quotes used when not specifying a

value. A seventh can be used when using the Menu Rebuild functionality.

An example item with these in mind, could be like so:

{Command, "Toggle Fullscreen", "F", "cycle fullscreen", "", false},

With all that in mind, a basic menu might look something like this (it's important to

remember your commas!):

menuList = {

 context_menu = {

 {CASCADE, "Play", "play_menu", "", "", false},

 },

 play_menu = {

 {COMMAND, "Play/Pause", "Space", "cycle pause", "", false, true},

 {COMMAND, "Stop", "Ctrl+Space", "stop", "", false},

 {SEP},

 {COMMAND, "Previous", "<", "playlist-prev", "", false},

 {COMMAND, "Next", ">", "playlist-next", "", false},

 },

}

The CASCADE item is special in that the third value in the table for a cascade menu

item is the name of the table that should cascade from that menu item.

In the above example, the cascade will have the play_menu table as a sub-menu

coming off of it. There is a maximum of 6 total menu levels, including the base,

making for up to 5 sub-menu levels deep. Any more than that will throw an error,

which also prevents infinite recursion in the menu building function.

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

9 of 11 14/04/2021, 04:23

Function call/in-line function

Apart from the separator, the menu items can make use of a function call:

func�on() return somefunc�on() end

Apart from the Command item, this function call is evaluated each time the menu is

built (each time the script-message shortcut binding is activated). This allows you to

dynamically build labels or set values at the time of creating the menu.

In the instance of the Command item, if there is a function call, this will be evaluated

as a function only upon being clicked and will not send a command unless you do so

within your function. If there is not a function call, the command provided will be sent

to mpv.

There is also a difference between a function call like the above and an in-line

function returning a value as part of building a command to send to mpv. For

instance, if we had a menu item like this:

{Command, getLabel(), "Shi�+L", "", "", getState()}

When the Lua code is being executed (either on initially being loaded or after a file is

loaded), the getLabel() and getState() functions would be run and should return a

label string and a true/false value respectively.

Notes

One of the files included is the langcodes.lua which holds two tables filled with

associative arrays using the 2 or 3 character long language name representations

(ISO 639-1 and ISO 639-2) as property accessors to get full length language names,

though these are only in English at this point.

Disclaimer

I have tried to test this on a variety of media files and have attempted to deal with any

bugs that have arisen, but I can't guarantee that this is bug-free. There may be use-

cases I haven't considered or some functions may throw errors from unexpected

values/input.

I also have only tested this on Linux and any information about Windows or macOS

is based either on the original authors code comments or some searches I've done. I

may look at trying to test other OS's, but can't guarantee anything at the moment.

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

10 of 11 14/04/2021, 04:23

Releases

No releases published

Packages

No packages published

Contributors 2

carmanaught Thomas Carmichael

avih

Languages

Lua 87.5% Tcl 12.5%

Credits

Thanks go out to the following people:

avih for the original Tcl/Tk context menu upon which this menu has been built

ntasos for some code and ideas from the KDialog-open-files script

GitHub - carmanaught/mpvcontextmenu: Context Menu for mpv h�ps://github.com/carmanaught/mpvcontextmenu

11 of 11 14/04/2021, 04:23

