

JAVA PROGRAMMING
LEARN HOW TO CODE WITH AN

OBJECT-ORIENTED PROGRAM TO
IMPROVE YOUR SOFTWARE

ENGINEERING SKILLS. GET FAMILIAR
WITH VIRTUAL MACHINE, JAVASCRIPT,

AND MACHINE CODE

TABLE OF CONTENTS

Introduction
Chapter 1. Java Basics
Chapter 2. Variables
Chapter 3. Java Basics
Chapter 4. Java Environment
Chapter 5. Objects and Classes
Chapter 6. Proper Working Code Examples
Chapter 7. Object-Oriented Programming
Chapter 8. Decision Making and Loop Control
Chapter 9. ADT, Data Structure, and Java Collections
Chapter 10. File Handling
Chapter 11. Collections
Conclusion

Introduction

Java is a widely-used programming language on the Web and in computing
applications. It is a free download solution that allows users to access the
latest versions and implement updates. This particular programming
language is present in the majority of today’s web applications and
computing technologies. Java’s scalable characteristics make it suitable for
deployment in a wide range of applications, including apps for small
electronic devices like cell phones and software solutions for large scale
operations such as data centers. The growing preference for deploying Java
is attributable to its robust functional features and sound security credentials.

Java is a programming language that is built by Sun Microsystems, which
was later taken over by the Oracle Corporation. It is designed to run on any
operating system that supports Java. This is what made the language so
popular, because the developer just had to write the program once, and the
program could then run on any operating system without the need for the
programmer to change the code.

Most of the modern applications built around the world are made from the
Java programming language. Most of the server-side and business logic
components of major applications are built on the Java programming
language.

During the entire course of this book, you will learn how to write programs
such as the one above, and also learn advanced concepts that will enable you
to start writing complete application programs.

Some of the design goals for Java are mentioned below:

� The language is intended to be written once and have the ability to be
run on any operating system.

� The language should provide support for numerous software
engineering principles.

Portability is an important factor. This is why Java has the ability to run on
Windows, Linux, and the MacOS operating system.

Support for internationalization is very important.

Java is intended to be suitable for writing applications for both hosted and
embedded systems.

Other design goals are discussed next:

Strong Type Checking

Java is a strong type language. Every variable that is defined needs to be
attached to a data type.

You don’t need to understand the complete program for now, but let’s just
have a quick look at 2 lines of the code.

1) int i=5;

Here we are defining something known as a variable, which is used to hold a
value. The value that can be stored depends on the data type. In this
example, we are saying that ‘i’ is of the type ‘int’ or Integer, which is a
numeric data value.

Array Bounds Checking

At runtime, Java will check whether the array has the required number of
values defined. If one tries to access a value which is outside the bounds of
the array, an exception will be thrown.

You don’t need to understand the complete program for now, but let’s just
have a quick look at the following lines of the code.

1) int[] array1 = new int[2];

Here we are declaring an array, which is a set of integer values. The value of
‘2’ means that we can only store two values in the array.

2) array1[0] = 1;
array1[1] = 2;
array1[2] = 3;

With this code, we can see that we are assigning 3 values to the array. When
you run this program, you will get an error because the program will see that
the array has gone out of its maximum allowable bounds of two. You will
get the below error at runtime.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2

at HelloWorld.main(HelloWorld.java:8)

Why Java is important?
Next, Java has syntax and features that resemble other programming
languages like C and C++. If you have any prior programming experience,
you will find learning Java a breeze. Even if you are totally new to
programming, you can rest assured that Java is designed to be a relatively
easy language to learn. Most programmers find it easier to learn Java than
say, C or C++.

Java is also designed to be platform-independent. As mentioned earlier, Java
code is compiled into bytecode first, which can be run on any machine that
has the Java Virtual Machine.

Hence with Java, you can write the code once and run it anywhere you want.

Why Java?
Of course, one of the key reasons to use Java is its focus on Object-oriented
programming.

Object-oriented programming, or “OOP” is a type of programming language
model which allows the program’s code to be organized around data, rather
than functions and logic, which is known as procedural programming.

These “data clusters” are organized into things called “objects,” hence the
moniker of “object-oriented programming.”

These objects are created by something called “classes,” understood here in
the traditional sense of how classes are: types of objects, allowing the
programmer to “classify” them according to two major criteria: attributes
and methods.

The attributes of a class are the raw data that will create the object: these are
its descriptors, such as the values that it possesses, and other relevant data
that will make up the object. The second criterion is the “method” of the
object.

This “method” is the behavior, or the logical sequences contained within the
class, describing how it interacts or can be interacted with natively.

Chapter 1. Java Basics

Of course, one of the key reasons to use Java is its focus on Object-oriented
programming. Object-oriented programming, or “OOP” is a type of
programming language model which allows the program’s code to be
organized around data, rather than functions and logic, which is known as
procedural programming.

These objects are created by something called “classes,” understood here in
the traditional sense of how classes are types of objects, allowing the
programmer to “classify” them according to two major criteria: attributes
and methods.

The attributes of a class are the raw data that will create the object: these are
its descriptors, such as the values that it possesses, and other relevant data
that will make up the object.

The second criterion is the “method” of the object.

In order to make this clearer, say that there is a class “Human.” This “class”
will have attributes such as height, weight, gender, and race. The “human”
class can also have methods such as “run,” “walk,” “talk.” These theoretical
components make up the “human” class, a blueprint for an object.

Now that the class has been defined, the programmer, if they so wish, can
create an object using the “human” class as a blueprint.

They can invoke the class “Human” and “populate” its attributes, giving it a
specific height, weight, gender, and race. In addition, the object already has
built-in functions such as “run,” “walk,” and “talk,” so upon the creation of
an object, let’s say named “Mike” from the “Human” class, it already
contains the functions to run, walk, and talk, without need for the
programmer to code those specific functions again, as they are already
“inherent” in the created object.

In a nutshell, that is what Object-oriented programming is meant to be: a
way of programming that allows the programmer to draw on pre-defined

classes so that it will be easier to describe them and use their internal, or
built-in functions in order to operate them.

Assuming that the reader is not a total newbie to programming, and has been
introduced to the world of programming using C or another procedural––
heavy language, the next logical question would be: why even use object-
oriented programming?

Well, one of its main advantages is that in the long run, it saves time.

Procedural programming is usually much quicker and more straightforward
in simpler algorithms and programs; rather than having to construct and
define a class, and create an object based on that class, all the programmer
really has to do is to simply declare the necessary variables and write the
functions, and create the algorithm in order to solve the problem that they
need the code to address.

However, when it comes to more complex programs, needing more complex
solutions, this is where object-oriented programming begins to shine, and
this is where it starts to show its strength.

In a lot of programs, there will be times that there will be a number of
“objects” or data clusters that have to be grouped together, and that the
programmer will be treated in a certain way.

This is what “classes” are meant to address.

Instead of declaring a new set of variables per data cluster, they can simply
draw on a pre-made “class” and create a new “object.”

Let’s see how this would work in practice.

If a programmer were to code a chess game in procedural fashion, then they
would have to manually describe each and every piece, all sixteen pawns,
four bishops and four knights, four rooks, two queens, and two kings. In
addition, they will have to write the functions that allow each piece to move
in its own separate way.

However, if the programmer makes use of object-oriented programming,
instead of having to code sixteen pawns, four bishops, four knights, four
rooks, two queens, two kings, they simply have to code six classes: one class
to describe each piece on the board.

The programmer can now simply include the movement functions within
each class, and have the attributes describe their position: whether they’re
white king’s pawn, or black queen’s pawn, these are all things that can be
inserted through the “attributes” portion of the “pawn” class. Instead of
thirty––two clusters of code, the programmer only has to do six.

Now it’s much easier, much shorter, and also much more elegant.

Java tokens

Java tokens are the values that are smaller than other integers.

These numbers are going to fall between the value of -32768 and 32767.

The code that I have been using is not going to work for shorts, instead, I am
going to need to use the short function so that I can make sure that the values
are going to fall between the set limitations.

Large values are going to be stored inside of a double value along with
floating-point values.

A double does not have to be used if I can use a floating-point. As I am
storing a floating variable.

I am going to need to put a letter at the end of my value amount.

This value should be f because it is a floating-point number.

Keywords
In Java, the Boolean type refers to false or true values. J

Ava finds out if it is true or false using the reserved keywords. Therefore, a
Boolean expression type will assume one of these values.

An example to demonstrate include:

There are a few things to note about this program.

First, the println(), displays a boolean value. Secondly, the boolean values
control the flow of an if statement.

You don’t need to go a long way in writing the boolean type this way: if (b
== true)

The result shown by the operator, such as < is boolean. It is one of the
reasons why we have the expression 11 > 8 showing the value true.

In addition, the other pair of parentheses near the 11 > 8 is important since
plus comes before the >.

Identifiers

The top layer of the diagram above is for the identifier or name.

This top layer is the name you give to a class. The name should specifically
identify and also describe the type of object as seen or experienced by the
user.

In simple terms, the name or identifier should identify the class.

Operators
Java has an extensive list of operator environment.

If you are wondering what an operator is, you can look at it as a symbol that
conveys a specific message to the compiler to carry out a logical or
mathematical operation. In Java, you will interact with four classes of
operators.

The four classes include:

Logical operator
Bitwise operator
Relational operator
Arithmetic operator

Like other computer languages, Java has a defined list of additional
operators to take care of certain specific scenarios.

When it comes to learning JAVA programming language, or any
programming language for that matter, there are five basic concepts you
must understand before you get started.

These five basic concepts include:

Variables
Data Structures
Control Structures
Syntax
Tools

Each of these concepts will be thoroughly explained on a beginner’s level to
ensure that they are understood.

Separators
They are not suitable for high-level abstraction: note that a lot of these
programs make use of low-level constructs which are primarily used for
low-level abstraction.

The usual approach with these programming languages is that they focus on
the machine––how to make a computer do something rather than how these
functions can help solve the issues of a user.

These languages deal with the minute details, which is already beyond the
scope of high-level abstraction, which is the more common approach that we
see today.

In low-level abstraction, data structures and algorithms are taken separately,
whereas these are taken as a whole in high-level abstraction.

Literals
When it comes to literals in Java, we mean the fixed values which appear in
the form in which human beings can read. We can say the number 200 is
literal. Most of the time, literals can be constants.

Literals are important in a program. In fact, most Java programs use literals.
Some of the programs we have already discussed in this book use literals.

Literals in Java can fall on various primitive data types.

The manner in which every literal is shown is determined by its type. Like it
was mentioned some time back, we enclose character constants in single
quotes such as ‘c’ and ‘%.’

We define literals in integers without involving the fractional part. For
instance, 12 and -30 are integer literals. A floating-point literal should

contain the decimal point plus the fractional part. 12.389 is a floating literal.

Java further permits for one to apply the scientific notation for the floating-
point literals.

Integer literals contain int value, and anyone can initialize them with a
variable of short, byte, and char.

Comments

When this occurs, we call the grey’s comments. In the running stages of the
program, the grey’s (comments) are moot.

This is to means that you can use the comment feature to state or explain
what the code you are creating wants to achieve.

You can achieve this by typing two slashes and then the comment. Here is a
sample.

//Place your single line comment here

You can have more than one comment line by doing either of the following:

//We are going to

//spread the comments into two

Or

/*

This comment spreads over two lines

*/

If you look at the comment above, you will notice that it starts with /* but
ends with */

Additionally, if you look at the previous image (figure 8, you will notice that
there are comments that begin with a single forward slash and two asterisks
(/**), but end with one asterisk and one forwards slash; this is called a
Javadoc comment.

Chapter 2. Variables

What are variables?
A variable, on the other hand, is an "object" that contains a specific data type
and it's assigned or received value. It is called a variable because the value
contained can change according to how it is used in the code, how the coder
can declare its value, or even how the user of the program chooses to interact
with it. A variable, in short, is a storage unit for a data type. Having access to
variables allow programmers to conveniently label and call stored values at
hand.

Types of variables in Java
Java requires the programmer to use declaration statements, lines of code
used to declare variables and define them by specifying the particular data
type and name. Java has a specific way of treating variables, by defining
variables as containers that contain a certain type and value of information,
unlike some languages such as python, which only requires a declaration of
a variable, and the variable can dynamically change its type; Java variables
are static, which retain their type once declared.

Int number = 20;

Boolean completed = true;

String hello = “Hello World!”

The syntax in declaring is seen in the previous examples, with the type of the
variable coming first, then the name of the variable, then the value. Note as
well that the declaration statement can be composed of multiple declarations
in one line, as in the following example:

Int number = 20, Boolean completed = true, string hello = “Hello World!”;

Java variables can be declared without any value at the start; in cases such as
these, Java chooses to declare these variables with a particular default value,
for example:

Byte a;

Short num;

Boolean answer;

Will result in the values 0, 0, and false, respectively. A more complete list of
default values is as follows: the byte, short, int, and long data types will all
result in a default value of 0, while the float and double data types will have
a default 0.0 value, the char data type will result in ‘u\0000’ value, a string
or any other object will have a null default value, and all Booleans will begin
with a false default value.

In Java, variables are static when declared, meaning that the programmer
must define the data type that the variable will be containing. To illustrate, if
we wish to use a variable num to store a number, we would first have to
declare the variable: "int num," before we can assign a value, such as "num
= 10."

The process above is usually known as and referred to as an "assignment
statement," where a value is assigned to the variable as declared by the
programmer. However, one prominent thing about how Java, and in fact how
most programming languages, works is that in the assignment statement,
such as in our example of num = 10, the actual value stored is the one on the
right side of the equals sign, the value of 10, and num is just the "marker" to
call that stored value. This is why there are many Java programmers that
tend to prefer the jargon of "getting" a value rather than "assigning," though
for the most part, they may be employed interchangeably, and outside of
some rare scenario, function mostly the same way.

Note, however, that once values have been assigned to variables, functions
need to be carried out in order for the data inside that variable to change its
data type.

Naming a variable
Creating variables is an easy task, especially given how Java programmers
tend to create and name them after the data type or the purpose of what the
variable will store. However, there are a few rules when it comes to naming
these variables, else Java will not recognize it, and an error message will
result. The main restrictions around variable names are that it should not

begin with a special character, such as an underscore or a number. However,
variable names can consist of characters such as letters and numbers, and
even an underscore, provided that the underscore is not placed at the start.
No other characters may be used, such as the # or even $, as these special
characters have different uses in Java, and thus will not be recognized in a
variable name.

While those are the major rules, here are some tips when it comes to naming
variables. The variable name should be descriptive, as in longer codes it may
be difficult to recall just what "x" is for. Having a variable name such as
"count" or "output" is much easier to recall as compared to having a generic
"x" or "y" and will help in avoiding confusion. In addition to being
descriptive, variables will also be easier to use if their names are kept fairly
short. While having a variable name such as banking information account
records is very descriptive, typing it repeatedly as needed in the program
will get exhausting, and having longer variable names increase the chances
of typographical errors, which will lead to bugs in the code, resulting in a
run - time error or the code not working as intended, or working, but
introducing bugs along the way. Note as well that it has always been a
practice for Java variables to be written in all lower––case letters, and while
there is no restriction on capitalization, keeping things in lowercase
simplifies things, as a missed capitalization may result in the variable not
being recognized, as Java reads an upper––case letter as an entirely different
character versus a lower––case letter.

Java primitive types

Method Naming Conventions

 We shall revisit the naming conventions in Java since you will be using
member methods. Methods in Java programming perform operations, they
also receive any argument provided by a caller, and it can also return a result
of an operation to a caller. Here’s the syntax for declaring a method:

[Access Control Modifier] Return Type methodName ([set of parameters]) {

 // body of the method

}

Here are a few rules to remember when you make the names for the methods
that you will write. Method names are always verbs or more specifically
verb phrases (which means you can use multiple words to name them). The
first word of the method name should all be in lower case letters, while the
rest of the words should follow a camel case format. Here is an example:

writeMethodNamesThisWay()

Now, you should remember that verbs are used for method names, and they
indicate an action while nouns are used for variable names, and they denote
a certain attribute.

Following the syntax for declaring a method and following the name
conventions for this Java construct, here’s a sample code that can be used to
compute the area of a circle.

public double computeCircleArea() {

return radius * radius * Math.PI;

}

Using Constructors in Your Code

We’ll just go over some additional details as they relate to object-oriented
programming. As stated earlier, a constructor will look like a method, and
you can certainly think of it and treat it like a special kind of method in Java
programming.

However, a constructor will still be different from a method in several ways.
The name of a constructor will be the same as the class name. Use the
keyword or operator “new” to create a new instance of the constructor and
also to initialize it. Here’s an example using the class “Employee” and a
variety of ways to initialize it in your code:

Employee payrate1 = new Employee();

Employee payrate2 = new Employee(2.0);

Employee payrate3 = new Employee(3.0, “regular”);

A constructor will also implicitly return void––that simply means it doesn’t
have a return type. You can’t put a return statement inside the body of a
constructor since it will be flagged by compilers as an error. The only way

you can invoke a constructor is via the use of the “new” statement. We have
already given you several ways how you can invoke constructors in the
samples above.

One final difference is that constructors can’t be inherited. Let’s go back to
the examples provided above––the first line includes “Employee();”––that
is called a default constructor. As you can see, it has no parameters
whatsoever. The job of a default constructor is to simply initialize the
member variables to a specific default value. In the example above, the
member variable payrate1 was initialized to its default pay rate and
employee status.

Can constructors be overloaded too? Yes, they can. Constructors behave like
methods too, so that means you can overload a constructor just the same way
you overload a method. Here are a few examples of how you can overload a
constructor. We use the Employee class and overload it using different
parameters.

Employee()

Employee(int r)

Employee(int r, String b)

How to initialize a variable
Now that we know how to declare variables, and we know the various types
of variables that are available to us, the next thing to do is to learn how to
make use of these variables, in something called “expressions.” Expressions
are the most used building blocks of a Java program, generally meant to
produce a new value as a result, though in some cases, expressions are used
to assign a new value to a variable. Generally, expressions are made up of
things such as values, variables, operators, and method calls. There are also
some expressions that produce no result, but rather affect another variable.
One example would be an expression that changes the value of a variable
based on an operation: there is no new value output, and there is no true
“assignment” of a new value, but rather there is what is called a side effect
that results in a changed variable value.

The "Hello World" printing program, we introduced raw values into the print
function, also known as "hard coding" the output. However, at this point, we

should try to incorporate what we have learned about variables. Variables
operate much the same way as raw values, as they simply reference a
previously stored value by the computer, and as such, the programmer can
just use the variable name instead of the value. In order to demonstrate this,
let us remember the previous "Hello World" program:

print ("Hello World") ;

input ("\n\nPlease press the return key to close this window.") ;

Now, instead of hard––coding the "Hello World" string, we can simply
declare it into a variable and have the program output that variable. This
should end up looking as:

String = "Hello World" ;

print(string) ;

input ("\n\nPlease press the return key to close this window.") ;

This should come out with the same result as the previous program, looking
something similar to:

Hello World

Please press the return key to close this window.

Chapter 3. Java Basics

Java Development Kit
The JDK provides the tools needed to build, test, and monitor robust Java-
anchored applications. It allows developers to access software components
and compile applications during Java programming operations. For example,
a developer needs a JDK-powered environment to be able to write applets or
implement methods.

Since the JDK more or less performs the operations of a Software
Development Kit (SDK), one could easily confuse the scope and operations
of the two items. Whereas the JDK is specific to the Java programming
language, an SDK has broader applicability. But a JDK still operates as a
component of an SDK in a program development environment. This means
that a developer would still need an SDK to provide certain tools with
broader operational characteristics and that are not available within the JDK
domain. Developer documentation and debugging utilities, as well as
application servers, are some of the crucial tools that SDK supplies to a Java
programming environment.

The scope of JDK deployment depends on the nature of the tasks at hand,
the supported versions, and the Java edition that is in use. For example, the
Java Platform, Standard Edition (Java SE) Development Kit is designed for
use with the Java Standard Edition. The Java Platform, Enterprise Edition
(Java EE), and the Java Platform, Macro Edition (Java ME), are the other
major subsets of the JDK. Details of each of these Java editions are
described in detail in the subtopics below. The JDK has been a free platform
since 2007, when it was uploaded to the OpenJDK portal. Its open-source
status facilitates collaborations and allows communities of software
developers to clone, hack, or contribute ideas for advancements and
upgrades.

Java SE
The Java SE powers a wide variety of desktop and server applications. It
supports the testing and deployment of the Java programming language

within the development environment of these applications. Some of the
documentations associated with the recent releases of Java SE include an
advanced management console feature and a revamped set of Java
deployment rules. Java SE 13.0.1 is the latest JDK version for the Java SE
platform at the time of writing this book.

The Java SE SDK is equipped with the core JRE capabilities alongside a
portfolio of tools, class libraries, and implementation technologies that are
designed for use in the development of desktop applications. These tools
range from simple objects and types for Java program implementations to
advanced class parameters that are suited for building applications with
networking capabilities and impenetrable security characteristics. Java
programmers can also apply this particular JDK on the development of Java
applications used to simplify access to databases or to enhance GUI
properties.

Java EE
The Java EE platform is an open-source product that is developed through
the collaborative efforts of members of the Java community worldwide. Java
EE is closely related to the Java SE because the former is built on top of the
latter. This particular software is integrated with transformative innovations
that are designed for use in enterprise solutions. The features and
advancements that are introduced in new releases often reflect the inputs,
requirements, and requests of members of the Java community. The Java EE
actually offers more than twenty implementations that are compliant with
Java programming.

The Java EE SDK is meant for use in the construction of applications for
large-scale operations. Just as its name suggests, this particular Java SDK
was created to provide support for enterprise software solutions. The JDK
features a powerful API and runtime properties that Java programmers
require to build applications with scalable and networkable functionalities.
Developers in need of developing multi-tiered applications could find this
JDK useful as well.

The Java EE 8 is the latest release at the time of writing this book. Java EE’s
revised design provides enhanced technologies for enterprise solutions as
well as modernized applications for security and management purposes. The

release features several advancements that included greater REST API
capabilities provided through the Client, JSON Binding, Servlet, and
Security APIs. This version also features the Date and Time API as well as
the Streams API, according to information published in the Oracle Corporate
website as of December 2019.

Java ME

The Java ME platform deploys simplicity, portability, and dynamism to
provide a versatile environment for building applications for small gadgets
and devices. Java ME is known for having an outstanding application
development environment, thanks to its interactive and user-friendly
navigation interfaces, as well as built-in capabilities for implementing
networking concepts. It is largely associated with the Internet of Things
(IoT) and is useful when building applications designed for built-in
technologies or connected devices that could be used to invent or implement
futuristic concepts. Java ME’s portability and runtime attributes make it
suitable for use in software applications for wearable gadgets, cell phones,
cameras, sensors, and printers, among other items and equipment.

The Java ME SDK is equipped with the requisite tools meant for use within
an independent environment when developing software applications, testing
functionalities, and implementing device simulations. According to
information published in the Oracle Corporate website as of 2019, this JDK
is well suited for accommodating “the Connected Limited Device
Configuration (CLDC)” technology alongside “the Connected Device
Configuration (CDC)” functionality. This results in a single and versatile
environment for developing applications.

There are several other Java ME solutions that support the deployment of the
Java programming language in applications. Java ME Embedded provides a
runtime environment integrating IoT capabilities in devices, while the Java
ME embedded client facilitates the construction of software solutions that
run and optimize the functionality of built-in programs. Java for Mobile
makes use of the CLDC and the stack of Java ME developer tools to create
innovative features for mobile devices.

Java Runtime Environment

Remember that there are certain conditions that must prevail for Java
applications to run efficiently. The JRE contains the ingredients responsible
for creating these requisite conditions. This includes the JVM and its
corresponding files and class attributes. Although JRE operates as a
component of the JDK, it is capable of operating independently, especially if
the tasks are limited to run rather than build application instructions.

The JRE lends important operational properties to different programs in the
Java programming ecosystem. For example, a program is considered self-
contained if it runs an independent JRE within it. This means that a program
does not depend on other programs to access the JRE. This independence
makes it possible for a program to achieve compatibility with different OS
platforms.

Java Virtual Machine
The JVM operates as a specification for implementing Java in computer
programs. It is the driving force behind the platform-independence
characteristics of the Java language. This status is accentuated by JVM’s
status as a program that is executed by other programs. The programs
written to interact with and execute the JVM see it as a machine. It is for this
reason that similar sets, libraries, and interfaces are used to write Java
programs to be able to match every single JVM implementation to a
particular OS. This facilitates the translation or interpretation of Java
programs into runtime instructions in the local OS, and thereby eliminating
the need for platform dependence in Java programming.

As a developer, you must be wary of the vulnerability your development
environment and applications have to cyber attacks and other threats. The
JVM provides enhanced security features that protect you from such threats.
The solid security foundation is attributable to its built-in syntax and
structure limitations that reside in the operational codes of class files. But
this does not translate to limitations on the scope of class files that the JVM
can accommodate. The JVM actually accepts a variety of class files so long
as they can be validated to be safe and secure. Therefore, the JVM is a viable
complementary alternative for developing software in other programming
languages.

The JVM is often included as a ported feature in a wide variety of software
applications and hardware installations. It is implemented through
algorithms that are determined by Oracle or any other provider. As such, the
JVM provides an open implementation platform. The JVM actually contains
the runtime instance as the core property that anchors its command
operations. For example, the creation of a JVM instance simply involves
writing an instruction in the command prompt that, in turn, runs the class
properties of Java.

A Java programmer needs to be familiar with the key areas of JVM, such as
the classloader and the data section for runtime operations as well as the
engine that is responsible for executing programs. There are also
performance-related components, such as the garbage collector and the heap
dimension tool, that are equally important to the deployment of the JVM.
There is a close affiliation between the JVM and bytecodes.

Bytecodes

Bytecodes are essentially JVM commands that are contained in a class file
alongside other information that include the symbol table. They operate as
background language programs responsible for facilitating the interpretation
and execution of JVM operations. Bytecodes are actually the substitutes for
native codes because Java does not provide the latter. The structure of the
JVM register is such that it contains methods which, in turn, accommodate
bytecode streams––that is, sets of instructions for the JVM. In other words,
each Java class has methods within it, and the class file loading process
executes a single bytecode stream for any given method. The activation of a
method automatically triggers a bytecode the moment a program begins to
run.

The other important feature of bytecodes is the Just-in-time (JIT) compiler
that operates during the runtime operations for compiling codes that can be
executed. The feature actually exists as a HotSpot JIT compiler within the
JVM ecosystem. It executes codes concurrently with the Java runtime
operations because it has the ability to perform at optimized levels and the
flexibility to scale and accommodate growing traffic of instructions.
Previously, the JIT compiler required frequent tuning to rid it of redundant
programs and refresh its memory. Tuning was a necessary procedure that
ensured the JIT compiler delivered optimum performance. However, the

frequent upgrades in the newer versions of Java gradually introduced
automated memory refreshing mechanisms that eliminated the need for
regular tuning.

Bytecodes can be either primitive types, flexible types, or stack-based.
According to Venners (1996), there are seven parameters of primitive data,
including byte, char, double, float, int, long, and short. The boolean
parameter is also a widely used primitive type, taking the tally to eight. Each
of the eight parameters is meant to help developers deploy variables that can
be acted upon by the bytecodes. Bytecode streams actually express these
parameters of the primitive types in the form of operands. This ends up
designating the larger and more powerful parameters to the higher levels of
the bytes’ hierarchy, with the smaller ones occupying the lower levels of the
hierarchy in a descending order.

Java opcodes are similarly crucial components of the primitive types, thanks
to their role of classifying operands. This role ensures that operands retain
their state, thereby eliminating the need for an operand identification
interface in the JVM. The JVM is able to speed up processes because it is
capable of multitasking while accommodating multiple opcodes that deliver
domicile variables into stacks. Opcodes are also useful for processing and
defining the value parameters for stack-based bytecodes. According to
Venners (1996), this could be an implicit constant value, an operand value,
or a value derived from a constant pool.

Chapter 4. Java Environment

Writing Programs in Editors
To write programs, you use a simple editor such as Notepad, or you can use
a full-fledged Integrated Development Environment (IDE). Below is a list of
some of the most popular IDE’s that are available for Java and some of their
relevant features.

Eclipse

This IDE has been around for quite a long time and is very popular and
widely used amongst the Java development community. Some of the core
features of the IDE are:

It’s free and open source. Hence there are many developers who
keep contributing to the IDE.

It can be used to develop applications in other languages such as
C++, Ruby, HTML5, and PHP.

It has a rich client platform.

It provides the ability of refactoring code.

It helps in code completion.

It has a wide variety of extensions and plugins.

It also has support for most source code version control systems.

IntelliJ IDEA

This is another popular IDE used by the Java development community.
Some of the core features of this IDE are:

The community edition is free and open source.

The paid edition provides many more features and allows
developers to build enterprise applications with the Java Enterprise
Edition.

It provides the ability of refactoring code.

It helps in code completion.

It has a wide variety of extensions and plugins.

It also has support for most source code version control systems.

Netbeans

NetBeans is a highly recommended IDE for beginners in Java language. It is
a powerful and fast IDE that supports all Java platforms as well as mobile
applications. It runs on a variety of platforms such as Windows, Linux, Mac
OS X, and Solaris. It also provides support for languages such as HTML5,
C/C++, and PHP.

The Upsides of Java
Java epitomizes simplicity in programming, thanks to its user-friendly
interface for learning, writing, deployment, and implementation.
Java’s core architecture is designed to facilitate ease of integration and
convenience of use within the development environment.
Java is platform-independent and readily portable, making it suitable
for multitasking and use across software applications.
The object-oriented characteristics of Java support the creation of
programs with standard features and codes that can be redeployed.
Java’s networking capabilities make it easier for programmers to
create software solutions for shared computing environments.
The close relationship between Java, the C++, and the C languages
makes it easier for anyone with knowledge of the other two languages
to learn Java.
Java’s automated garbage collection provides continuous memory
protection, making it convenient for programmers to eliminate security
vulnerabilities while writing codes.
Java’s architecture is flexible for the implementation of multithreading
programs.
Java is readily reusable, thanks to the ability to redeploy classes using
the interface or inheritance features.

The Downsides of Java

Since Java is not a native application, it runs at lower speeds compared
to other programming languages.
Java may also lack consistency in the processing and displaying of
graphics. For example, the ordinary appearance of the graphical user
interface (GUI) in Java-based applications is quite different and of
lower standards compared the GUI output of native software
applications.
Java’s garbage collection, a feature that manages memory efficiency,
may interfere with speed and performance whenever it runs as a
background application.

Chapter 5. Objects and Classes

Finally, we are going to look at classes and objects;

An object in Java has got to have a state, which will be stored in a field and a
behavior, indicated by a method.

A class is a sort of map, a blueprint if you like, from which an object is
created. This is what a class looks like:

public class Dog {

 String breed;

 int ageC;

 String color;

 void barking() {

 }

 void whining() {

 }

 void sleeping() {

 }

}

A class may have any of these variable types:

Local––defined within a constructor, block, or method. The variable is
declared and then initialized inside a method and destroyed once the
method has ended.
Instance––defined in a class but are outside a method. Initialized when
instantiation of the class happens and can be accessed from inside any
constructor, block, or method of the class.
Class––declared inside the class, uses the static keyword, and are
outside any method.

Classes can have multiple methods, as many as required to access all the
different kinds of values in the method. In our example above, we had three
methods––barking(), whining(), and sleeping().

Constructors

Every class will have a constructor; if you omit it, a default one will be built
by the compiler. When you create a new object, at least one constructor must
be invoked. As a rule, the name of a constructor must be the same as that of
the class, and there can be as many constructors as a class requires.

This is what a constructor looks like:

public class Puppy {

public Puppy() {

 }

public Puppy(String name) {

 // This constructor has a single parameter, name.

 }

}

Creating Objects
We already know that a class is a kind of blueprint to create objects from, so
it goes without saying that the object is created from the class. For a new
object to be created, we need the new keyword.

These are the three steps needed to create an object from a class:

Declaration––A variable must be declared with a name and the object type

Instantiation––The new keyword is used for creating the object

Initialization––The constructor is called, and this initializes the object.

The next example shows how objects are created:

public class Puppy {

public Puppy(String name) {

// This constructor contains a single parameter called name.

System.out.println("Passed Name is :" + name);

}

public static void main(String []args) {

// The next statement will create an object called myPuppy

Puppy myPuppy = new Puppy("fluffy");

}

}

Run this and see what happens.

Accessing Instance Variables and Methods

Objects can be used when we want to access instance variables and methods;
this example shows how we access an instance variable:

/* First we create the object */

ObjectReference = new Constructor();

/* Now we call our variable, like this */

ObjectReference.variableName;

/* Now a class method is called, like this */

ObjectReference.MethodName();

Next, we can see the instance variables and methods in a class are accessed:

public class Puppy {

int PuppyAge;

public Puppy(String name) {

// This constructor contains a single parameter called name.

System.out.println("Name chosen is :" + name);

}

public void setAge(int age) {

PuppyAge = age;

}

public int getAge() {

System.out.println("Puppy's age is :" + PuppyAge);

return PuppyAge;

}

public static void main(String[] args) {

/* Object creation */

Puppy myPuppy = new Puppy("fluffy");

/* Now we call the class method to set the Puppy's age */

myPuppy.setAge(2);

/* Next, we call another class method to get the Puppy's age */

myPuppy.getAge();

/* We access instance variable in this way */

System.out.println("Variable Value :" + myPuppy.PuppyAge);

}

}

Run this and see what happens.

Import Statements

One important thing to remember is that paths must be fully qualified, and
that includes the names of the class and the package. If not, the compiler will
struggle to load the source code and the classes. To qualify a path, we need
to use import statements and, in this example, we see how a compiler loads
the requested classes into the directory we specify:

import java.io.*;

Next, we need two classes created, one called Employee and one called
EmployeeTest. We use the following code to do this––keep in mind that
Employee is the name of the class, and it is a public class. Do this and then
save the file, calling it Employee.java.

Also note that we have four instance variables here––age, name, designation,
and salary, along with one constructor that has been explicitly defined and
that takes a parameter:

public class Employee {

String name;

int age;

String designation;

double salary;

// This is the constructor of the class called Employee

public Employee(String name) {

this.name = name;

}

// We assign the age of the Employee to the variable called age.

public void empAge(int empAge) {

age = empAge;

}

/* We assign the designation to the variable called designation.*/

public void empDesignation(String empDesig) {

designation = empDesig;

}

/* We assign the salary to the variable called salary.*/

public void empSalary(double empSalary) {

salary = empSalary;

}

/* Print the Employee details */

public void printEmployee() {

System.out.println("Name:"+ name);

System.out.println("Age:" + age);

System.out.println("Designation:" + designation);

System.out.println("Salary:" + salary);

}

}

Code processing begins with a main method, so you need to ensure that your
code has a main method, and we need to create some objects. We will start
by creating a class called EmployeeTest, and this will create a couple of
instances of the class called Employee. The methods for each object must be
invoked so that the values may be assigned to the variables. Save this code
in EmployeeTest:

public class EmployeeTest {

public static void main(String args[]) {

/* Create two objects by using constructor */

Employee empOne = new Employee("Bobby Bucket");

Employee empTwo = new Employee("Shelley Mary");

// Invoke the methods for each of the objects we created

empOne.empAge(28);

empOne.empDesignation("Senior Software Developer");

empOne.empSalary(1500);

empOne.printEmployee();

empTwo.empAge(22);

empTwo.empDesignation("Software Developer");

empTwo.empSalary(850);

empTwo.printEmployee();

}

}

Now the classes need to be compiled, and EmployeeTest run; do this and see
what you get.

You should see this:

Output

C:\> javac Employee.java

C:\> javac EmployeeTest.java

C:\> java EmployeeTest

Name: Bobby Bucket

Age:28

Designation: Senior Software Developer

Salary:1850.000

Name: Shelley Mary

Age:22

Designation: Software Developer

Salary:850.00

Chapter 6. Proper Working Code Examples

Traditionally, everyone's first program prints, “Hello World.” This first
program demonstrates how to create, save, and run a program. It also shows
the basic structure used in all Java programs.

Here's a screenshot of the window created by the Hello World program:

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Lesson 1––Java Projects and Packages

Programs are first organized by Java projects, then by packages within the
Java projects. You'll create a Java project for each program in this book.

Packages hold program files that are usually used together. Because the
programs in this book will be small, most of the Java projects you create will
have only one package.

In this lesson, you'll create one Java project and one package for your first
program.

Try It

Create your first Java project, called Hello World:

1. If Eclipse is no longer open:
a. Double-click the Eclipse shortcut you created on your desktop.
b. Click OK to use your Java work folder as your workspace.

2. Right-click in the Package Explorer pane and choose New/Java
Project.

3. Name the Java project Hello World, and select Use Default JRE if
it is 1.7 or higher, then click next, as shown in the image below. If
the default JRE is less than 1.7, select the option to Use an
execution environment JRE of 1.7 or higher.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

4. Click Libraries, then click Add External JARs..., as shown in the
image below.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5. Browse to and select DIYJava.jar, which you installed in your Java
work folder, and click Open.

6. Click Finish.

The Package Explorer pane now lists one project (Hello World) with the
added JAR file (DIYJava.jar), as shown in this image:

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Create a package for your Hello World program in the Hello World project:

1. Right-click on the Hello World project and choose New/Package.
2. Name the package ____________.____________.helloworld, as

shown in the image below. Use your own name as part of the
package name. I used annette.godtland.helloworld for my package
name.

3. Click Finish.

The Package Explorer pane now shows the package you created in your
Hello World project, as shown in this image:

Key Points and More

Right-click in the Package Explorer pane to create Java projects
and packages.
Create a different Java project for each program.

Eclipse will create a folder on your computer named the same as
the Java project. Give your Java project a name you want for the
folder on your computer.

You now have a folder called Hello World in your Java work
folder.
For example, capitalize the first letter of each word and put a
space between each word like the Hello World project.

Add DIYJava.jar to the Java projects you create with the help of
this book.

DIYJava.jar is an external JAR file.
DIYJava.jar makes it easy to write programs that print text to a
window.

Organize your program files into packages in Java projects.
Put program files that are usually used together into one package.

Because your programs will be small, most of your programs
will have only one package.

Package name rules:
Make your package name different from anyone else's package
names. Java programmers traditionally use their name or
business name as the first part of their package name.
Use all lowercase letters with no spaces.
Use periods between different categories in the package name.
For example, if the package name identifies who created the
package and what the package will be used for, put a period
between the creator and its purpose.

Make sure when you create the Java Projects in this book that you
select the option to Use an execution environment JRE of JavaSE-
1.7 or higher. Once you select this option for creating a project,
Eclipse will default to that option for all future Java Projects.
Java projects are for Eclipse; packages are for Java. Because you're
using Eclipse, you'll use both Java projects and packages. If you
were to create Java programs without Eclipse, you would probably
use only packages.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Lesson 2––Classes, Superclasses, and Programs

Java programs are made from one or more classes. Classes contain the actual
program code: the instructions that, when run in sequence, perform the
desired task.

Every class must name some other class as its superclass. For example,
programs intended to run in a window must name some type of window
class as its superclass.

In this lesson, you'll create your first class: a program that runs in a
DIYWindow.

Try It

Create your first class using the DIYWindow class as its superclass:

1. Right-click on your package in the Package Explorer pane and
choose New / Class.

2. Enter HelloWorld for the class name, as shown in the image below.
(Hint: there's no space between “Hello” and “World.”)

3. Click Browse for Superclass.
a. Enter “diy” for the type, select DIYWindow, as shown in the

image below, and click OK.
4. Which method stubs would you like to create? Select these options,

as shown in the image below:
a. Public static void main (String[] args).
b. Constructors from superclass.
c. It doesn't matter if the third option, Inherit abstract methods, is

selected or not.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5. Click Finish to create the class.

Eclipse will create code for a HelloWorld class that looks like the following
listing.

You may find it easier to read the code listings in this book if you set your e-
reader to a smaller font to minimize word wrapping.

Listing 1-1, from HelloWorld.java

package annette.godtland.helloworld;

import com.godtsoft.diyjava.DIYWindow;

public class HelloWorld extends DIYWindow {

 public HelloWorld() {

 // TODO Auto-generated constructor stub

 }

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 }

}

Eclipse adds comment code you don't need. Comments are lines that begin
with // or groups of lines that begin with /* and end with */.

1. Remove the automatically-generated comment lines from this
class, where it says (Code was removed from here.) in the
following listing.

Listing 1-2, from HelloWorld.java

package annette.godtland.helloworld;

import com.godtsoft.diyjava.DIYWindow;

public class HelloWorld extends DIYWindow {

 public HelloWorld() {

(Code was removed from here.)

 }

 public static void main(String[] args) {

(Code was removed from here.)

 }

}

Remove the automatically-generated comments from the program code for
every class you create for this book. You'll add your own comments in later
lessons.

Click any Completed listing link to see how to complete the code. However,
you'll learn more if you try to complete the code yourself before you look up
the answer.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The block of code that starts as a public static void main is called the main()
method. The block of code that starts as public HelloWorld() is called the
constructor.

Now, add your first lines of code:

1. Add code to the constructor and main() method exactly as shown
here. Changes to make to code are always shown bold in the
listings.

Listing 1-3, from HelloWorld.java

package annette.godtland.helloworld;

import com.godtsoft.diyjava.DIYWindow;

public class HelloWorld extends DIYWindow {

 public HelloWorld() {

print("Hello World");

 }

 public static void main(String[] args) {

new HelloWorld();

 }

}

1. Press Ctrl-S to save the program.
2. Click the Run button, as shown in this image, to run the program:

What happened?

A window should open that displays “Hello World,” as shown in this image:

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1. What would you have to change in your class to make it say hello
to you?

Listing 1-4, from HelloWorld.java

 ...

 public HelloWorld() {

 print("Hello

");

 }

 ...

1. Save the program and run it.

What happens if you make a mistake?

1. Type the word “print” incorrectly and save the program.

Listing 1-5, from HelloWorld.java

 ...

 public HelloWorld() {

 print

ttt

("Hello Annette");

 }

 ...

What happened?

Many error indicators appear, as shown in this image:

1. Double-click the Error count in the Problems pane of Eclipse to see
the list of errors found.

2. Double-click on the Error description in the Problems pane to
move your cursor to the line with the error.

3. Rest your cursor on the actual error (where it says Error right here
in the above image). Eclipse will list ways to fix the problem, as
shown in the image below. This feature of Eclipse is called Quick
Fix.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

4. Click the quick fix called Change to “print(...).”

That action will fix the error for you.

1. Save changes.

All error indicators should disappear.

Now, print more:

1. Change the code to make your program say this:

Hello, earthling.

Take me to your leader.

Listing 1-6, from HelloWorld.java

 ...

 public HelloWorld() {

 print

("_______________________");

 print("_______________________");

 }

 ...

Throughout the lessons, unless there are syntax errors, save changes, and run
the program after every code change.

Did it print the correct lines? If not, fix the code and try again.

1. What do you think you would have to print to put a blank line
between the two sentences, as shown below. (Hint: you want
nothing printed on that line.)

Hello, earthling.

Take me to your leader.

Listing 1-7, from HelloWorld.java

 ...

 public HelloWorld() {

 print("Hello, earthling.");

print(___);

 print("Take me to your leader.");

 }

 ...

Key Points and More

Java programs are made up of classes. Every program requires a
main() method in one of its classes.

The main() method must be written as public static void
main(String[] args). Later lessons will explain what all those
words mean.

Multiple classes are often used together to create one program.
However, most of the programs in this book will be made of only
one class.
Every class must have a superclass. Any class can be used as a
superclass. You'll create your own superclass in a later lesson.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Classes with the same superclass are considered to be of the same
type. For example, the main class you create for every program in
this book will use the DIYWindow class as its superclass. So every
program in this book will be a type of DIYWindow.
To create classes, right-click in the Package Explorer pane.

Class names can contain numbers, letters, dollar signs, and
underscores. Dollar signs and underscores are usually not used.
Blanks or periods aren't allowed in class names.
Class names cannot start with a number.
Class names typically start with an uppercase letter.
If the class name includes more than one word, the first letter of
each word is usually uppercase, and the rest of the letters are
lowercase.

Classes can have one or more constructors.
The class constructor is named the same as the class and must be
declared as public. Constructors will be explained more in later
lessons.
A constructor is called by using new, followed by the name of
the constructor and parentheses. For example, new HelloWord()
in the main() method calls the HelloWorld constructor.

Blocks of code are enclosed in curly brackets, { }, and each line of
code ends with a semicolon;

Every Java program runs the main() method first.
The main() method calls the class constructor in all the
programs in this book. Therefore, the main() method will run
first, followed by the class constructor.
Each statement within the curly brackets is run, one at a time, in
the order it appears in the code.
Blank lines between lines of code have no effect on how the
code runs. Blank lines are added to make the code easier for you
to read.

Print () statements print the text in the parentheses to a window.
Each print() statement prints on a new line.
To print a blank line, use print() with empty parentheses.

clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
clbr://internal.invalid/book/OEBPS/Text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The print() method is part of DIYWindow, which is in
DIYJava.jar. That's why you added the external JAR file,
DIYJava.jar, to the project, and why you chose DIYWindow as
the superclass for the HelloWorld class.

Comments are lines that begin with // or a group of lines that begin
with /* and end with */.

Chapter 7. Object-Oriented Programming

You have learned earlier that Java is an object-oriented programming
language. As such, it supports the fundamental principles of this
programming paradigm.

An object refers to real entities such as bag, car, chair, or pen. Object-
oriented programming languages allow programmers to design programs
that use objects and classes. They provide and support features that can
simplify software development and maintenance. The most important
concepts of this programming paradigm are the following:

Objects
Classes
Method
Instance
Inheritance
Abstraction
Polymorphism
Message Parsing
Encapsulation

Objects

In the real world, you will encounter objects such as humans, dogs, cars, and
cats. These objects possess state and behavior. For instance, when you think
of a cat, its state can consist of its breed, color, or name. Its behavior may
consist of running, jumping, or wagging its tail.

A software object resembles a real-world object in terms of these
characteristics. Its state is saved in fields, and its behavior is exhibited
through methods.

In development, the methods are performed on an object’s internal state, and
the methods facilitate communication between objects.

Classes

Classes are used to set the definitions for objects. These specifications serve
as blueprints for creating objects. While they are not immediately applied
when classes are created, the definitions are available in case an object of the
class is instantiated. An object or class can have multiple copies or instances
within a program.

Following is
an example of a class definition for a class named Cat:

A class can have the following types of variable:

Class variables

Class variables are those that are declared inside a class using the static
modifier and outside any method.

Local variables

Local variables are those that are defined within the methods, blocks, or
constructors. These variables are declared and instantiated inside the method
and are destroyed once the method had been carried out.

Instance variables

Instance variables are those that are inside a class but outside of the methods.
They are initialized at the same time as the class. They can be accessed from
a method, block, or constructor of that specific class.

A class can contain as many methods as necessary to obtain the values it
needs. For example, the Cat class has three methods: running(), sleeping(),
and jumping().

Constructors

A constructor is a method which is used to initialize an object. A class must
contain at least one constructor.

The following are the important rules for constructors:

The name of the constructor should match the name of the class

It should have no explicit return type.

Types of Constructors
Default or no-arg constructor
Parameterized constructor
Default Constructor

A constructor without a parameter is called default constructor.

Here’s the syntax:

Parameterized Constructor

A parameterized constructor is a constructor with parameters. It is used to
supply values to specific objects.

The following example shows both types of constructors. The first one is a
default constructor, and it doesn’t have any parameter. The second
constructor has one parameter, the name.

Creating Objects
Classes provide the template for objects. Objects are basically created from a
class. To create new objects, you will use the ‘new’ keyword.

The following steps are taken to create a new object from a class:

Declaration––This refers to a variable declaration where you will write the
name of the variable and its object type.

Instantiation––To create a new object; you will use the ‘new’ keyword.

Initialization––A call to a constructor follows the ‘new’ keyword and
initializes a new object.

The following examples show the different steps taken to create a new object

from class:

Here’s the output:

Passed Name is: spotty

How to Access Methods and Instance Variables
The created objects are used to access methods and instance variables. To
access instance variables, you will use these steps:

First, you must create an object:

ObjectName = New Constructor();

Next, call a variable like:

ObjectName.variableName;

To call a class method:

ObjectName.MethodName();

Java Package
A package is simply a way of grouping interfaces and classes. A Java
package serves as container for classes. The usual basis for grouping is
functionality. The use of packages facilitates code reusability. When
interfaces and classes are categorized into packages, you can easily access
them for use in other programs. The use of packages also helps prevent name
conflicts among classes and interfaces.

To create a package, use the package statement before the package name as
the first statement.

Here’s an example:

Import Statement

You may use the import keyword to import packages to your source file. An
import statement makes it easy for the compiler to find the location of a class
or source code.

You may want to import just one class from a package. You can use the dot
operator to indicate the

package and the
class. For example:

To import all classes from one package, you can use the wild character *

after the dot operator. For example:

Modifiers

Modifiers are keywords that alter the meaning of the definitions in your
code. Java provides several modifiers.

Access Modifiers

The access modifiers are used to define access levels for methods, variables,
classes, and constructors.

Private––only accessible within the class

When a method, variable, class, or constructor is declared private, it means
that it is only available within the class. If the class, however, has public
getter methods, you may be able to access a private variable outside the
class. The private keyword indicates the highest access restriction. Take note
that you cannot declare interfaces and class as private.

Public––accessible to the world

A method, interface, constructor, class, etc. that has been defined as public
may be accessed from other classes. Similarly, blocks, methods, or fields
that have been defined inside a public class may be accessed from Java class.
This is true as long as they are in the same package. If you want to access a
public class from another package, you will have to import the public class.
Under the class inheritance concept, subclasses inherit all public variables
and methods of a class.

Take note that an application’s main() method will have to be declared
public before the Java interpreter can call it to run the class.

Protected––accessible to all subclasses and package

Declaring a method, variable, or constructor as protected in a superclass
makes it accessible only to classes within its package or to its subclasses in
another package. This access type is used if you want to allow the subclass
to use variable or helper methods and prevent non-related classes from using
them. Interfaces, as well as the fields and methods under them, should not be
declared protected, but fields and methods outside of the interface can be
declared protected. Classes should not be declared as protected.

Default: Applicable when no modifier is provided––accessible to the
package

A method or variable that has been declared without a modifier is accessible
to other classes within the package.

The following table summarizes the different access modifiers and their
effect:

Modifier Inside
class

Inside
package

Outside
package by
subclass

Outside
package

Private Y N N N
Public Y Y Y Y
Protected Y Y Y N
Default Y Y N N

Non-access Modifiers

The non-access modifiers can be used to access various functionalities in
Java.

Final––used to finalize implementations of variables, methods, and
classes

Final variables

You can only explicitly initialize a final variable once. When you declare a
variable as final, you will never be able to reassign it to another object. Take
note, however, that you can still change the data stored inside the object.
This means that while you may change the object’s state, you will not be
able to change the reference. The final modifier is commonly paired with
static to create a class variable out of the constant value.

Final methods

The final keyword is used to prevent a method from being changed by
subclasses.

Final classes

The final modifier is used to prevent other classes from inheriting any
feature from the class declared as a final class.

Static––used to create class methods or variables.

You can use this keyword to create a unique variable (called a static variable
or class variable) that will exist independently from other instances of the
class. You cannot declare a local variable as static.

You can also use the static keyword to create a method (called a static
method or class method) that will exist independently from other instances
of the class. Static methods recognize and work only on data from the
arguments given without considering variables.

You may access class methods and class variables by writing the variable or
method name after the class name and a dot (.).

Abstract––used to create abstract methods or classes

Abstract class

When a class is declared as abstract, it means that you will never be able to
instantiate the class. The only reason for declaring a class as abstract is to
extend the class. You cannot declare a class to be both final and abstract, as
you can’t possibly extend a final class. A class that uses abstract methods
will have to be declared as abstract. Failure to do so will result in compile
errors.

Abstract method

As it is declared with no implementation, an abstract method derives its
methods body from the subclass. Abstract methods cannot be declared as
strict or final. Unless it is also an abstract class, a class extending an abstract
class must adopt the abstract methods of the superclass. A class that contains
at least one abstract method should be declared as an abstract class. On the
other hand, an abstract class need not have abstract methods.

Example:

Synchronized

The synchronized modifier is used to indicate that only one thread can
access a method at any given time. You can use this keyword with any
access level modifier.

Example:

Volatile

This keyword is used to indicate that a thread accessing a volatile variable
should merge its private copy with the master copy stored in memory. In
effect, it synchronizes all cached copies of the variable with the main

memory. You may only use this modifier to define instance variables of the

private or object type.

Example:

Transient

The keyword transient is used to tell the compiler to skip an instance
variable when it is serializing the object that contains the marked variable.

Example:

Chapter 8. Decision Making and Loop Control

The decision making structures are used in situations where a set of
instructions have to be executed if the condition is true and another set of
instructions have to be executed when the condition is determined to be
false. There are several constructs available in Java for programming such
scenarios. These structures include––

If statement
This statement is used in situations where a condition needs to be tested, and
if the condition is found true, the block of code that follows this statement
needs to be executed. The syntax for this construct is––

if(condition){

/*Body*/

}

Sample implementation for this construct is given below––

public class ifDemo {

public static void main(String args[]) {

int i = 10;

int j = 1;

if(i>j){

System.out.print(i);

}

}

}

If else statement

This statement is used in situations where a condition needs to be tested, and
if the condition is found true, the block of code that follows this statement
needs to be executed else the block of code that follows the else statement is
executed. The syntax for this construct is––

if(condition){

/*Body*/

}

else(

/*Body*/

}

Sample implementation for this construct is given below––

public class ifElseDemo {

public static void main(String args[]) {

int i = 1;

int j = 0;

if(i>j){

System.out.print(i);

}

else{

System.out.print(j);

}

}

}

Nested if statement

This statement is used in situations where a condition needs to be tested, and
if the condition is found true, the block of code that follows this statement
needs to be executed else the next condition is tested. If this condition is
found true, the block of code corresponding to the if statement for this
condition is executed. If none of the conditions are found true, the block of
code that follows the else statement is executed. Multiple conditions can be
tested using the nested if statements. The syntax for this construct is––

if(condition1) {

/*Body*/

}

else if (condition2) (

/*Body*/

}

else {

/*Body*/

}

Sample implementation for this construct is given below––

public class nestedIfDemo {

public static void main(String args[]) {

int i = 0;

int j = 0;

if(i>j){

System.out.print(i);

}

else if(j>i) {

System.out.print(j);

}

else {

System.out.print("Equal");

}

}

}

Switch

If you have a variable and different blocks of code need to be executed for
different values of that variable, the ideal construct that can be used is the
switch statement. The syntax for this construct is––

switch(variable){

case <value1>:

/*body*/

break;

case <value2>:

/*body*/

break;

case <value3>:

/*body*/

break;

default:

/*body*/

break;

}

Sample implementation for this construct is given below––

public class switchDemo {

public static void main(String args[]) {

int i = 5;

switch (i) {

case 0:

System.out.print(0);

break;

case 2:

System.out.print(2);

break;

case 5:

System.out.print(5);

break;

default:

System.out.print(999);

break;

}

}

}

Conditional Operator

Java also supports the conditional operator, which is also known as the?:
operator. This operator is used to replace the ‘if else’ construct. Its syntax is
as follows––

Expression1? Expression2: Expression3

Here, Expression1 is the condition that is to be tested. If the condition is
true, Expression2 is executed else Expression3 is executed.

Loop Control

There are several situations that require you to iterate the same set of
instructions a number of times. For instance, if you need to sort a set of
numbers, you will need to scan and rearrange the set several times to get the
desired arrangement. This flow of execution is known as loop control.

Simply, a loop is a construct that allows the execution of a block of code
many times. Java supports several constructs that can be used for
implementing loops. These include a while loop, for loop, and do while loop.

A while loop executes a block of code iteratively until the condition
specified for the while loop is true. The moment this condition fails, while
loop stops.

For loop allows the programmer to manipulate the condition and loop
variable in the same construct. Therefore, you can initialize a loop variable,
increment/decrement it, and run the loop until a condition on this variable is
true.

Do while loop is similar to while loop. However, in the while loop, the
condition is checked before executing the block code. On the other hand, in
a do while loop, the block of code is executed, and then the condition is
checked. If the condition is satisfied, the loop execution is again initiated
else the loop is terminated. It would not be wrong to state that the do while
loop, once implemented, will execute at least once.

Loop statements

There are two keywords that are specifically used in connection with loops
and are also termed as control statements as they allow transfer of control
from one section of the code to a different section. These keywords are––

Break

This keyword is used inside the loop at a point where you want the execution
flow to terminate the loop and directly start execution from the first
instruction that appears after the loop.

Continue

This keyword is used inside the loop at a point where the programmer wants
the computer to overlook the rest of the loop and move the control to the
first statement of the loop.

In order to help you understand how loops are executed, let us take an
example and implement it using all the three types of loop control.

For Loop Implementation

public class forDemo {

public static void main(String args[]) {

int [] numberArray = {100, 300, 500, 700, 900};

for(int i=0; i<5; i++) {

System.out.print(numberArray[i]);

System.out.print(,”");

}

System.out.print("\n");

}

}

While Loop Implementation
public class whileDemo {

public static void main(String args[]) {

int [] numberArray = {100, 300, 500, 700, 900};

int i = 0;

while(i<5) {

System.out.print(numberArray[i]);

System.out.print(",");

i++;

}

System.out.print("\n");

}

}

Do While Loop Implementation

public class doWhileDemo {

public static void main(String args[]) {

int [] numberArray = {100, 300, 500, 700, 900};

int i = 0;

do {

System.out.print(numberArray[i]);

System.out.print(",");

i++;

} while (i<5);

System.out.print("\n");

}

}

Enhanced For Loop
Java also supports an enhanced loop structure, which can be used for array
elements. The syntax for this loop construct is––

for(declaration : expression) {

/*Body*/

}

The declaration part of the Enhanced for loop is used to declare a variable.
This variable shall be local to the ‘for loop’ and must have the same type as
the type of the array elements. The current value of the variable is always
equal to the array element that is being traversed in the loop. The expression
is an array or a method call that returns an array.

Sample implementation of the enhanced for loop has been given below -

public class forArrayDemo {

public static void main(String args[]) {

int [] numberArray = {100, 300, 500, 700, 900};

for(int i : numberArray) {

System.out.print(i);

System.out.print(",");

}

System.out.print("\n");

}

}

Exception Hierarchy

Java has an inbuilt class named java.lang.Exception and all the exceptions
fall under this class. All the exception classes are subclasses of this class.
Moreover, the Throwable class is the superclass of the exception class.
Another subclass of the Throwable class is the Error class. All the errors like
stack overflow described above fall under this Error class.

The Exception class has two subclasses, namely RuntimeException class and
IOException class. A list of the methods, for which definitions are available
in Java, as part of the Throwable class, is given below.

public String getMessage()

When called, this message returns a detailed description of the exception that
has been encountered.

public Throwable getCause()

This method, when called returns a message that contains the cause of the
exception.

public String toString()

This method returns the detailed description of the exception concatenated
with the name of the class.

public void printStackTrace()

The result of toString(), along with a trace of the stack, can be printed to the
standard error stream, System.err, can be done by calling this method.

public StackTraceElement [] getStackTrace()

There may be some scenarios where you may need to access different
elements of the stack trace. This method returns an array, with each element
of the stack trace saved to different elements of the array. The first element
of the array contains the top element of the stack trace, while the bottom of
the stack trace is saved to the last element of the array.

public Throwable fillInStackTrace()

Appends the previous information in the stack trace with the current contents
of the stack trace and returns the same as an array.

Catching Exceptions
The standard method to catch an exception is using the ‘try and catch’
keywords along with their code implementations. This try and catch block
needs to be implemented in such a manner that it encloses the code that is
expected to raise an exception. It is also important to mention here that the
code that is expected to raise an exception is termed as protected code. The
syntax for try and catch block implementation is as follows––

try {

/*Protected code*/

}catch(ExceptionName exc1) {

/*Catch code*/

}

The code that is expected to raise an exception is placed inside the try block.
If the exception is raised, then the corresponding action to be performed for
exception handling is implemented in the catch block. It is imperative for
every try block to either have a catch block or a final block.

As part of the catch statement, the exception, which is expected to be raised
needs to be declared. In the event that an exception occurs, the execution is

transferred to the catch block. If the raised exception matches the exception
defined in the catch block, the catch block is executed.

A sample implementation of the try and catch block is given below. The
code implements an array with 2 elements. However, the code tries to access
the third element, which does not exist. As a result, an exception is raised.

import java.io.*;

public class demoException {

public static void main(String args[]) {

try {

int arr[] = new int[2];

System.out.println("Accesing the 3rd element of the array:" + arr[3]);

}catch(ArrayIndexOutOfBoundsException exp) {

System.out.println("Catching Exception:" + exp);

}

System.out.println("Reached outside catch block");

}

}

Implementing Multiple Catch Blocks
A block of code may lead to multiple exceptions. In order to cater for this
requirement, implementation of multiple catch blocks is also allowed. The
syntax for such implementation is given below.

try {

/*Protected Code*/

}catch(ExpType1 exp1) {

/*Catch block 1*/

}catch(ExpType2 exp2) {

/*Catch block 2*/

}catch(ExpType3 exp3) {

/*Catch block 3*/

}

The syntax shown above has illustrated the implementation of three catch
blocks. However, you can implement as many catch blocks as you want.
When this code is executed, the protected is executed. If an exception
occurs, the type of exception is matched with the exception of the first catch
block. However, if the exception type does not match, the catch block 1 is
ignored, and the exception type for the second catch block is tried for
matching. Whichever catch block has the same exception type as that of the
raised exception; the corresponding catch block is executed.

Chapter 9. ADT, Data Structure, and Java

Collections

Abstract data type (ADT)
An abstract data type (ADT) is a logical description of the data and the
operations that are allowed on it. ADT is defined as a user point of view of a
data. ADT concerns about the possible values of the data and the interface
exposed by it. ADT does not concern about the actual implementation of the
data structure.

For example, a user wants to store some integers and find their mean value.
ADT for this data structure will support two functions, one for adding
integers and other to get mean value. ADT for this data structure does not
talk about how exactly it will be implemented.

Data-Structure
Data structures are concrete representations of data and are defined as a
programmer point of view of data. Data-structure represents how data will
be stored in memory. All data-structures have their own pros and cons.
Depending upon the type of problem, we choose a data-structure that is best
suited for it.

For example, we can store data in an array, a linked-list, stack, queue, tree,
etc.

Note: In this chapter, we will be studying various data structures and their
API. So that the user can use them without knowing their internal
implementation.

JAVA Collection Framework

JAVA programming language provides a JAVA Collection Framework,
which is a set of high quality, high performance & reusable data-structures
and algorithms.

The following advantages of using a JAVA collection framework:

1. Programmers do not have to implement basic data structures and
algorithms repeatedly. Thereby it prevents the reinvention of the
wheel. Thus, the programmer can devote more effort in business logic

2. The JAVA Collection Framework code is well-tested, high quality,
high-performance code. Using them increase the quality of the
programs.

3. Development cost is reduced as basic data structures and algorithms
are implemented in the Collections framework are reused.

4. Easy to review and understand programs written by other developers
as most of Java developers uses the Collection framework. In addition,
the collection framework is well documented.

Array
Array represents a collection of multiple elements of the same datatypes.

Array ADT Operations

Below is the API of the array:

1. Adds an element at the kth position. Value can be stored in an array at
Kth position in O(1) constant time. We just need to store value at
arr[k].

2. Reading the value stored at the kth position. Accessing the value
stored at some index in the array is also O(1) constant time. We just
need to read the value stored at arr[k].

3. Substitution of value stored in the kth position with a new value. Time
complexity: O(1) constant time.

Example:

public class ArrayDemo {

 public static void main(String[] args) {

 int[] arr = new int[10];

 for (int i = 0; i < 10; i++)

 {

 arr[i] = i;

 }

 }

}

JAVA standard arrays are of fixed length. Sometimes we do not know how
much memory we need, so we create a bigger size array. Thereby wasting
space. If an array is already full and we want to add more values to it than
we need to create a new array, which has sufficient space and then copy the
old array to the new array. To avoid this manual reallocation and copy, we
can use ArrayList of JAVA Collection framework or Linked Lists to store
data.

ArrayList implementation in JAVA Collections

ArrayList<E> in JAVA Collections is a data structure which implements
List<E> interface, which means that it can have duplicate elements in it.
ArrayList is an implementation as a dynamic array that can grow or shrink
as needed. (Internally array is used when it is full a bigger array is allocated,
and the old array values are copied to it).

Example:

import java.util.ArrayList;

public class ArrayListDemo {

 public static void main(String[] args) {

 ArrayList<Integer> al = new ArrayList<Integer>();

al.add(1); // add 1 to the end of the list

 al.add(2); // add 2 to the end of the list

 System.out.println("Contents of Array: " + al);

 System.out.println("Array Size: " + al.size());

 System.out.println("Array IsEmpty: " + al.isEmpty());

 al.remove(al.size() -1); // last element of array is removed.

 al.removeAll(al); // all the elements of array are removed.

 System.out.println("Array IsEmpty: " + al.isEmpty());

 }

}

Output:

Contents of Array: [1, 2]

Array Size: 2

Array IsEmpty: false

Array IsEmpty: true

Linked
List

Linked lists are a dynamic data structure, and memory is allocated at run
time. The concept of the linked list is not to store data contiguously. Nodes
of the linked list contain a link that points to the next elements in the list.

Performance-wise linked lists are slower than arrays because there is no
direct access to linked list elements. Linked list is a useful data structure
when we do not know the number of elements to be stored ahead of time.
There are many types of linked lists: linear, circular, doubly, doubly
circulare, etc.

Linked list ADT Operations

Below is the API of Linked list.

Insert(k): adds k to the start of the list

Insert an element at the start of the list. Just create a new element and move
pointers. So that this new element becomes the first element of the list. This
operation will take O(1) constant time.

Delete(): Delete the element at the start of the list

Delete an element at the start of the list. We just need to move one pointer.
This operation will also take O(1) constant time.

PrintList(): Display all the elements of the list.

Start with the first element and then follow the pointers. This operation will
take O(N) time.

Find(k): Find the position of the element with value k

Start with the first element and follow the pointer until we get the value we
are looking for or reach the end of the list. This operation will take O(N)
time.

Note: Binary search does not work on linked lists.

FindKth(k): Find element at position k

Start from the first element and follow the links until you reach the kth
element. This operation will take O(N) time.

IsEmpty(): Check if the number of elements in the list are zero.

Just check the head pointer of the list, if it is Null, then the list is empty
otherwise not empty. This operation will take O(1) time.

LinkedList implementation in JAVA Collections

LinkedList<E> in by JAVA Collections is a data structure that also
implements List<E> interface.

Example:

import java.util.LinkedList;

public class LinkedListDemo {

 public static void main(String[] args) {

 LinkedList<Integer> ll = new LinkedList<Integer>();

 ll.addFirst(2); // 8 is added to the list

 ll.addLast(10); // 9 is added to last of the list.

 ll.addFirst(1); // 7 is added to first of the list.

 ll.addLast(11); // 20 is added to last of the list

 System.out.println("Contents of Linked List: " + ll);

 ll.removeFirst();

 ll.removeLast();

 System.out.println("Contents of Linked List: " + ll);

 }

}

Output:

Contents of Linked List: [1, 2, 10, 11]

Contents of Linked List: [2, 10]

Stack

Stack is a special kind of data structure that follows the Last-In-First-Out
(LIFO) strategy. This means that the element that is added last will be the
first to be removed.

The various applications of the stack are:

Recursion: recursive calls are implemented using system stack.

1. Postfix evaluation of the expression.
2. Backtracking implemented using stack.
3. Depth-first search of trees and graphs.
4. Converting a decimal number into a binary number etc.

Stack ADT Operations

Push(k): Adds value k to the top of the stack

Pop(): Remove element from the top of the stack and return its value.

Top(): Returns the value of the element at the top of the stack

Size(): Returns the number of elements in the stack

IsEmpty(): determines whether the stack is empty. It returns true if the stack
is empty otherwise return false.

Note: All the above stack operations are implemented in O(1) Time
Complexity.

Stack implementation in JAVA Collection

The stack is implemented by calling push and pop methods of Stack <T>
class.

Example:

public class StackDemo {

 public static void main(String[] args) {

 Stack<Integer> stack = new Stack<Integer>();

 int temp;

 stack.push(1);

 stack.push(2);

 stack.push(3);

 System.out.println("Stack : "+stack);

 System.out.println("Stack size : "+stack.size());

 System.out.println("Stack pop : "+stack.pop());

 System.out.println("Stack top : "+stack.peek());

 System.out.println("Stack isEmpty : "+stack.isEmpty());

 }

}

Output:

Stack : [1, 2, 3]

Stack size : 3

Stack pop : 3

Stack top : 2

Stack isEmpty : false

Stack is also implemented by calling push and pop methods of
ArrayDeque<T> class.

JDK provides both ArrayDeque<T> and Stack<T>. We can use both of these
classes. But there are some advantages of ArrayDeque<T>.

1. First reason is that Stack<T> does not drive from Collection interface.
2. Second Stack<T> drives from Vector<T> so random access is

possible, so it brakes abstraction of a stack.
3. Third ArrayDeque is more efficient as compared to Stack<T>.

Queue

A queue is a First-In-First-Out (FIFO) kind of data structure. The element
that is added to the queue first will be the first to be removed, and so on.

Queue has the following application uses:

1. Access to shared resources (e.g., printer)
2. Multiprogramming
3. Message queue
4. BFS, breadth-first traversal of graph or tree are implemented using

queue.

Queue ADT Operations:

Add(K): Adds a new element k to the back of the queue.

Remove(): Removes an element from the front of the queue and return its
value.

Front(): Returns the value of the element at the front of the queue.

Size(): Returns the number of elements inside the queue.

IsEmpty(): Returns 1 if the queue is empty otherwise returns 0

Note: All the above queue operations are implemented in O(1) Time
Complexity.

Queue implementation in JAVA Collection

ArrayDeque<T> is the class implementation of a doubly ended queue. If we
use add(), remove() and peek () it will behave like a queue. (Moreover, if we
use push(), pop(), and peekLast() it behave like a stack.)

Example:

import java.util.ArrayDeque;

public class QueueDemo {

 public static void main(String[] args) {

 ArrayDeque<Integer> que = new ArrayDeque<Integer>();

 que.add(1);

 que.add(2);

 que.add(3);

 System.out.println("Queue : "+que);

 System.out.println("Queue size : "+que.size());

 System.out.println("Queue peek : "+que.peek());

 System.out.println("Queue remove : "+que.remove());

 System.out.println("Queue isEmpty : "+que.isEmpty());

 }

}

Output:

Queue : [1, 2, 3]

Queue size : 3

Queue peek : 1

Queue remove : 1

Queue isEmpty : false

Chapter 10. File Handling

This chapter discusses the details of reading, writing, creating, and opening
files. There are a wide array of file I/O classes and methods to choose from.

Reading a text File

Reading a text file is a crucial ability in Java and has many practical
applications. FileReader, BufferedReader, and Scanner are useful classes for
reading a plain text file in Java. Each of them possess specific qualities that
make them uniquely qualified to handle certain situations.

BufferedReader

This technique reads text from a stream of character input. It buffers
characters, arrays, and rows to be read efficiently. You can specify the buffer
type or use the standard type. For most reasons, the default is big enough. In
particular, each read application produced from a Reader leads the
fundamental personality or byte stream to make a respective read
application. Therefore, it is advisable to wrap a BufferedReader around any
Reader whose read) (transactions, like FileReaders and InputStreamReaders,
can be expensive.

For example:

BufferedReader in = New BufferedReader(Reader in, int size)

FileReader

Class of convenience to read character documents. This class ' constructors
suppose the default character format and the default byte-buffer size is
suitable.

Scanner

A simple text scanner that uses regular expressions to parse primitive types
and strings. A Scanner uses a delimiter model to break its entry into tokens
that suits white space by definition. Using distinct next techniques, the
resulting tokens can then be transformed into values of distinct kinds.

import java.io.File;

import java.util.Scanner;

public class ReadFromFileUsingScanner

{

public static void main(String[] args) throws Exception

{

// filepath is set as a parameter now so that it can be scanned

File example =

new File("C:\\Users\\userName\\Desktop\\example.txt");

Scanner example1 = new Scanner(file);

while (example1.hasNextLine())

System.out.println(example1.nextLine());

}

}

Using Scanner class but without using loops:

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public class example{

public static void main(String[] args)

throws FileNotFoundException {

File example = new File("C:\\Users\\userName\\Desktop\\example.txt");

Scanner example1 = new Scanner(file);

// we will use \\Z as a delimiter

sc.useDelimiter("\\Z");

System.out.println(example1.next());

}

}

Read a text file as String in Java

package io;

import java.nio.file.*;;

public class example{

public static example(String fileName)throws Exception {

String example1 = "";

example1 = new String(Files.readAllBytes(Paths.get(fileName)));

return example1;

}

public static void main(String[] args) throws Exception

{

String example1 =
example("C:\\Users\\userName\\Desktop\\example.java");

System.out.println(example1);

}

}

Writing to a text file

You can use one of the write methods to write bytes or lines to a file. Write
methods include:

Write(Path, byte[], OpenOption...)
Write(Path, Iterable< extends CharSequence>, Charset, OpenOption...)

Renaming and Deleting Files

Renaming

In Java, there’s a method called renameTo(fileName) within the File class
that we can use to rename a file.

Deleting Files

Files that are saved using the java program will be permanently removed
without moving to the trash/recycle bin. Using java.io.File.delete deletes this
abstract pathname from the file or folder. Using
java.nio.file.files.deleteifexists will delete a folder, if it occurs. If the folder
is not open, it also deletes a folder listed in the route.

Advanced Topics In Java

Generics

In any non-trivial software project, bugs are simply a fact of life. Careful
planning, programming, and testing may help diminish their omnipresence,
but somehow they will always find a way to enter your system somewhere.
This becomes especially apparent as new features are introduced, and your
code base's magnitude and complexity increases.

Fortunately, it is easier to detect some bugs than others. Compile-time bugs,
for instance, can be identified soon; you can use the compiler's error codes to
determine what the issue is and solve it, right then and there. Runtime bugs,
however, can be much harder; they do not always occur instantly, and when
they do, they may be at a point in the program far apart from the true cause
of the problem. Generics help stabilize your software by creating it feasible
at compile time to identify more of your bugs.

Generics, in a nutshell, allow parameters for kinds (classes and objects)
when defining courses, interfaces, and techniques. Like the more familiar
formal parameters used in declarations of methods, type parameters provide
you with distinct outputs to re-use the same code. The distinction is that
values are the inputs to formal parameters, while kinds are the answers to
type parameters. Code using generics has many advantages over the non-
generic code. Through the use of generics, programmers can introduce

generic algorithms that operate on distinct kinds of collections, can be
tailored, and are secure and simpler to read form.

Generic Types

A generic form is a types-parameterized generic category or interface. It is
possible to modify an easy box class to show the idea. Consider a non-
generic box category that works on any sort of object. It only requires to
provide two techniques: set), (adding an item to the cabinet, and get),
(retrieving it. Because their methods accept or return an object, you are free
to pass in whatever you want, as long as it is not one of the primitive types.
There is no way to check how the class is used at compile time. One portion
of the software may put an integer in the cabinet and expect to get integers
out of it, while another portion of the software may erroneously move
through a string, leading in a mistake in runtime.

The segment of the type parameter, delegated by angle brackets (< >),
displays the title of the category. It indicates the parameters of the form (also
known as factors of the sort) T1, T2, till T. You generate a generic type
statement by altering the file "government class box" to "government class
box <T >" to update the box category to use generics. This presents the type
variable, T, which can be used inside the class anywhere. This replaces all
Object events with T. Any non-primitive type you specify can be a type
variable: any type of class, any type of interface, any type of array, or even
some other type variable. It is possible to apply this same method to generic
interfaces.

Type designations are single, upper case letters by convention. This contrasts
sharply with the variable naming conventions you already understand about
and with an excellent reason: it would be hard to say the distinction between
a type variable and a normal class or object name without this convention.

The most commonly used type parameter names are:

E - Element (used extensively by the Java Collections Framework)
K - Key
N - Number
T - Type
V - Value
S,U,V, etc.––2nd, 3rd, 4th types

You'll see these names used throughout the JDK and the API.

Invoking and Instantiating a Generic Type

To mention the generic box category within your system, a generic type
invocation must be performed that brings T with a certain concrete value,
such as Integer:

Box<Integer> integerBox;

You may believe that an invocation of a generic sort is comparable to a
normal process invocation, but instead of adding an assertion to a procedure,
you transfer a type argument—Integer, in this case––to the box category
itself.

Many designers interchangeably use the words "type parameter" and "type
statement," but not the same definitions. When coding, to generate a
parameterized type, one offers sort arguments. The T in Foo < T > is,
therefore, a type parameter, and the Foo < String > f string is a type
contention. In using these words, this class follows this concept.

Like any other statement of variable, this software does not generate a fresh
item of the box. It merely states that integerBox will have a reference to an
"Integer Box," which is how it reads Box < Integer>. A generic type
invocation is usually referred to as a parameterized type.

To instantiate this class, use the new keyword, as usual, but place <Integer>
between the class name and the parenthesis:

Box<Integer> integerBox = new Box<Integer>();

The Diamond

In the latest versions of Java, you can replace the type arguments needed to
invoke a generic class constructor with an empty set of type arguments (< >)
as long as the compiler can determine, or infer from the context, the type
arguments. This angle bracket couple, < >, is called “The Diamond loosely.”
For example, you can use the previous declaration to generate an instance of
Box < Integer>:

Box<Integer> integerBox = new Box<>();

Generic Methods

Generic techniques are techniques which implement parameters of their own
sort. This is similar to a generic type declaration, but the scope of the type
parameter is limited to the method in which it is declared. In addition to
generic class constructors, static and non-static generic techniques are
permitted.

The syntax for a generic technique involves a list of parameters of type
inside angle brackets that appear before the return type of the procedure. The
type parameter segment must occur before the return type of the method for
static generic techniques. The Util class involves, compare, a generic
technique comparing two Pair items.

Pair<Integer, String> ex1 = new Pair<>(49, "string1");

Pair<Integer, String> ex2 = new Pair<>(64, "string2");

boolean comparison = Util.<Integer, String>compare(ex1, ex2);

Bounded Type Parameters

Sometimes you want to limit the kinds that can be used in a parameterized
type as form statements. For instance, a technique that works on figures
could only recognize Number cases or its subclasses. That's what limit
parameters of the sort are for.

List the name of the type parameter to indicate a defined type parameter,
accompanied by the extension's keyword, followed by the upper bound,
which is Number in this instance. Note that expands is generally used in this
context to mean either "extends" (as in courses) or "implements" (as in
interfaces).

Multiple Bounds

Type parameters can have more than one bound. A type variable with
multiple bounds is a subtype of all the types listed in the bound. If one of the
bounds is a class, it must be specified first. For example:

Class X { /* ... */ }

interface Y { /* ... */ }

interface Z { /* ... */ }

class R <T extends X & Y & Z> { /* ... */ }

If bound X is not specified first, you get a compile-time error:

class R <T extends Y & X & Z> { /* ... */ } // compile-time error

Chapter 11. Collections

Functionalizing Collections
When we externalize code, we expose every step. This is the hallmark of
imperative programming. However, one of the re-occurring themes of
functional programming is the idea of doing the exact opposite: internalizing
code. The act of internalizing code is to hide the details inside a function.
But functional programming pushes this idea further by turning micro-
patterns of everyday programming into functions. For example, iterating
over data, be it with iterators, for-loops, or while-loops, is one of those
micro-patterns. Functional programming changes the way we think about
them.

Java’s functionalization effort would not be complete without a revamp of its
Collections library, namely the Collection, Map, List, and Set interfaces.
This is because iteration is often done over collections, and they are the very
fabric of Java programs. It is a natural place for the functionalization effort
to occur. But making any kind of significant changes, like adding new
methods to the Collection interface, would break backward compatibility to
all programs written pre-Java 8. This includes not only the JDK’s own
hierarchy extending the Collection interface but any open or closed source
3rd party library and in-house classes. Java’s designers never have and will
never adopt such a strategy. Yet changes were necessary; the library was
introduced in 1998, eons in software industry years, and was showing its
age.

The motivation for the introduction of default methods was ushered by the
need to modernize and functionalize the Collections library. Default methods
are just the right tonic because they permit behavior to be added at the root
of the hierarchy without disturbing dependent classes. Subclasses can either
inherit or override the behavior. Unlike adding new interface methods,
subclasses can automatically accept new default methods without
recompilation. Instant compatibility is achieved. Default methods have
proven useful in their own right but owe their existence to the need to
functionalize the Collections library.

A second re-occurring theme in functional programming is parallelization.
Quite simply, functional programming offers a better mousetrap for parallel
processing. As a consequence, the Collections library has been enriched to
benefit from multi-core CPUs when processing collections. Together with
Streams, the Collections library is at center stage in bringing functional-style
parallel processing to Java.

Now that we’ve studied Java’s standard functional interfaces, we can begin
to apply that knowledge to Collections. Let’s look at what has become of the
Collections library in Java 8.

Collection interface
We start by looking at a brand new default method in the Collection interface
available to lists and sets. This is the forEach() method:

This method iterates through the entire collection letting the Consumer
decide what to do for each element. This is the concept of internal iteration
and a manifestation of declarative programming. The details of how to
iterate are not specified. This is in opposition to external iteration, where the
details of how to iterate as well as what to do with each element are
specified in code.

We will show examples of these functionalized collection methods with the
slapstick comedy trio from the golden age of Hollywood films: Larry, Moe,
and Curly of The Three Stooges fame. To start, let’s print the contents of a
collection:

The forEach() method has a very wide range of applicability. It is a much
more convenient way to iterate through collections and should be your de-
facto standard. However, being a declarative construct, there are some things
you will not be able to do. Most notably, you cannot change the state of local
variables like you could in a while-loop. Algorithms must be re-thought

functionally. For now, just know that forEach() is ideal for iterations that do
not mutate state.

We now look at another new method available in Collection:

The method removeIf() internalizes the entire process of iterating, testing,
and removing. It requires only to be told what the condition for removal is.

Using the now-familiar predicate functional interface, we can easily figure
out what kind of lambda to use.

To replace all contents of a List, we can use replaceAll():

ReplaceAll() uses a UnaryOperator as its functional interface, which is a
Function sub interface.

Both replaceIf() and replaceAll() are available to all subclasses with one
caveat: the underlying class must support removal, or an exception will be
thrown.

These examples show the compactness of functional programming. Most of
the work was done by the function with the lambda providing the details.

Map interface

One of the biggest irritants of using lists as values in maps is the constant
need to check for the presence of the map before adding, updating, or
removing an element. First, you must try to extract the list and create it if it
is not found. For example, say we have a method that updates a movie
database implemented as a Map. The map’s key is the year of the movie, and
its value is a list of movies for that year. Pre-Java 8, the code would look like
this:

Java 8 offers a better alternative with these default methods:

Let’s start with the compute methods. Each variant allows the map’s value to
be generated by the mapping function. For computeIfPresent() and
computeIfAbsent(), mapping occurs conditionally. So with these methods,
we can refactor the previous code example:

Notice that the creation of the list is handled by the computeIfAbsent()
lambda. When it is time to add the movie to the list, via the compute()

method, the add() will never throw a NullPointerException because the list is
guaranteed to have been created.

In this case, using the computeIfAbsent() method is overkill, and we would
be better off with putIfAbsent():

This method is lambda-less and expects a value to be given—not calculated.
This is still a functional style method even though no lambda was used. It
proves the point that you can express code functionally without necessarily
using lambdas.

If you still need to extract the data, you can use a more functional approach
with the getOrDefault() method:

You can also use the merge() method as an alternative. It facilitates the
checking of the existence of a list. In the example below, if the key (year)
doesn’t exist in the map, it puts the value (titles) on the map. If it does exist,
it allows a BiFunction to decide what to do with the two lists:

And it can be used this way:

The BiFunction can also return null, which tells the merge to delete the key.

The takeaway is that we have removed the overhead code of checking for
the existence of an element and can now focus on what really matters:
defining how to create the list and how to add an element to the list.

The map interface has been enriched with other functional methods such as
forEach(), replace(), and replaceAll() and uses the same principle of code
internalization. Consult the appendix for the complete listing.

Spliterator
The Collections library is still subject to the same constraints regarding
concurrent access. As always, you must choose the Collections library class
that corresponds to your thread safety requirements. This is because the new
methods shown above are just functional abstractions riding above the same
underlying data structures. These methods are not particularly amenable to
functional programming’s take on parallel processing because they are still
based on the notion of multiple threads mutating the collection and
synchronizing access to the underlying data. However, there exists a new
Java 8 abstraction that is compatible. It is designed to iterate over data in
parallel. The idea is embodied by the Spliterator interface. The premise of
this interface is to partition the data and handoff chunks to different threads.
Spliterators can be obtained from the Collection interface, including
subinterfaces List and Set.

Central to the Spliterator interface are these three methods:

The method trySplit() partitions the underlying data in two. It creates a new
Spliterator with half the data and keeps the other half in the original instance.
Each can be given to a thread which, in turn, iterates over the partitioned
data using forEachRemaining(). The method tryAdvance() is a one-at-a-time
variant that returns the next element or null if the list has been exhausted.

Spliterators do not handle parallel processing themselves but provide the
abstraction to do so. Here’s the concept in action:

Given a title and a list of movies, the method isMovieInList() parallelizes the
search to determine if it is contained in the list. It sets the flag in
booleanHolder to true if found. It obtains a Spliterator instance from the list,
splits it in half, and handsoff one half to each thread. The splitting process
can be repeated if further threads are available.

Spliterators can be obtained from other Collection types as well as other
libraries in the JDK. There are many implementations designed that deal
with different characteristics, including finite/infinite, ordered/non-ordered,
sorted/non-sorted, and mutable/immutable. They inherit the qualities of their
underlying data structure.

Spliterators are a lower-level abstraction designed to give you more fine-
grained control over parallelized iteration. However, the API lacks some of
the refinements needed to implement functionally-friendly algorithms. In the
above example, we needed to store the state in the BooleanHolder for the
search.

Wrap up

This completes our overview of the new and improved Java 8 Collections
library as well as the standard functional interfaces. Just as there have been
many changes in the standard JDK libraries to support functional concepts,
expect major changes from 3rd party APIs. But the biggest change is yet to
come.

Key points

The new package java.util.function contains a set of functional interfaces.
These are grouped into four families, each represented by their archetypes:
Consumer, Function, Predicate, and Supplier.

Each family of functional interfaces defines variants that specialize in types
and arity.

Functional interfaces also define methods that enable functional
composition. Multiple disparate lambdas can be fused to form super
functions that appear as one.

The Collections library has been revamped and functionalized. This has been
achieved using default methods at top levels of the hierarchy, thereby
ensuring backward compatibility.

The new functional methods in Collections, Lists, Sets, and Maps have been
designed with internal iteration in mind. Behavioral parameters in the form
of lambdas and method references are given to methods that iterate over
collections and act upon each element.

An internal iteration is a form of declarative programming that is
fundamental to functional programming. It relieves the developer from
having to describe the “how” to do it and focuses instead on the “what” to
do.

Spliterators are designed for parallel iteration over collections. Data is
partitioned, and each chunk is handed to different threads for parallel
processing.

A number is greater than one that is not prime.

Conclusion

The JDK is the Java Development Kit, and it is a necessary tool required for
compiling, documenting, and packaging Java programs. Together with JRE,
an interpreter or loader is built-into the JDK, a compiler called javac, an
archiver (JAR), the Javadoc document generator, and many other tools
required for successful Java development.

The JRE is the Java Runtime Environment. It is the environment in which
the Java bytecode may be executed, and it is used for implementing the Java
Virtual Machine. The JRE also provides us with all the class libraries and
many other support files required at runtime by the JVM. It is, in basic
terms, a software package that provides us with everything we need for
running Java programs, a physical implementation of the Java Virtual
machine.

JVM stands for Java Virtual Machine. The JVM is an abstract machine, a
specification that provides us with the JRE in which our bytecode is
executed. The JVM must follow these notations–– Specification, which is a
document describing how the JVM is implemented, Implementation, which
is a program meeting the JVM specification requirements, and Runtime
Instance, which is the JVM instance that gets created whenever the
command prompt is used to write a Java command and run a class.

All three are inextricably linked, and each relies on the others to work.

With this, I would like to thank you for choosing my guide on Java
programming. As you can see, it is a simple yet complex language, with so
many different aspects to learn. By now, you should have a good
understanding of the core concepts of Java programming and how to use it.

Your next step is, quite simply, practice. And keep on practicing. You cannot
possibly read this guide once and think that you know it all. I urge you to
take your time going through this; follow the tutorials carefully and don’t
move on from any section until you fully understand it and what it all
means.

To help you out, there are several useful Java forums to be found online, full
of people ready, and willing to help you out and point you in the right
direction. There are also loads of online courses, some free and some that
you need to pay for, but all of them are useful and can help you take your
learning to the next level.

Did you enjoy this guide? I hope that it was all you wanted and more, and it
has put you on the right path to getting your dream job!

I hope that you found my introduction to computer programming helpful. It’s
a very basic start, but it should have given you some idea as to how to begin.
It should also have shown you that computer programming really isn’t all
that difficult and can be quite exciting, especially as you start to see your
results appear on the screen and see your computer, in short, doing what it’s
told to do!

If you found that this has given you a good idea of what to expect, then you
may want to move on to more advanced programming in your chosen
language. A word of warning here: don’t try to learn more than one language
at a time; otherwise, you’ll find yourself in a muddle. The only other piece
of advice I will give you at this stage is to practice…and keep on practicing.
The more you do, the more you’ll learn, and the more you’ll want to learn.

Thank you for downloading my book; if you found it helpful, please
consider leaving me a review at Amazon.com.

	Introduction
	Chapter 1. Java Basics
	Chapter 2. Variables
	Chapter 3. Java Basics
	Chapter 4. Java Environment
	Chapter 5. Objects and Classes
	Chapter 6. Proper Working Code Examples
	Chapter 7. Object-Oriented Programming
	Chapter 8. Decision Making and Loop Control
	Chapter 9. ADT, Data Structure, and Java Collections
	Chapter 10. File Handling
	Chapter 11. Collections
	Conclusion

