

Learning MySQL

Learning MySQL

Seyed M.M. “Saied” Tahaghoghi and Hugh E. Williams

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Learning MySQL
by Seyed M.M. “Saied” Tahaghoghi and Hugh E. Williams

Copyright © 2007 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sanders Kleinfeld
Copyeditor: Sanders Kleinfeld
Proofreader: Colleen Gorman

Indexer: Julie Hawks
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:
November 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning MySQL, the image of blue spotted crows and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-00864-2

[M] [01/09]

1259603998

http://safari.oreilly.com

Table of Contents

Preface . xi

Part I. Introduction

1. Introduction . 3
Why Is MySQL so Popular? 4
Elements of MySQL and Its Environment 5
MySQL Software Covered in This Book 7
The Book’s Web Site 8

2. Installing MySQL . 9
Installation Choices and Platforms 9
Using the Command-Line Interface 12
Using a Text Editor 18
Following the Instructions in This Book 20
Downloading and Verifying Files from the MySQL AB Web Site 22
Installing Under Linux 25
Installing Under Windows 51
Installing Under Mac OS X 61
Using a MySQL Installation Provided by an ISP 69
Upgrading an Existing MySQL Server 69
Configuring Access to the MySQL Server 74
What If Things Don’t Work? 75
The Contents of the MySQL Directory 81
Configuring and Controlling the Apache Web Server 83
Setting up Perl 88
Resources 93
Exercises 94

3. Using the MySQL Monitor . 95
Starting the Monitor 95

v

Style, Case, and Semicolons 97
The Monitor Help 98
Running the Monitor in Batch Mode 101
Loading the Sample Databases 102
MySQL Monitor Program Options 102
Graphical Clients 104
Exercises 105

Part II. Using MySQL

4. Modeling and Designing Databases . 109
How Not to Develop a Database 109
The Database Design Process 111
The Entity Relationship Model 112
Entity Relationship Modeling Examples 120
Using the Entity Relationship Model 128
Using Tools for Database Design 130
Resources 132
Exercises 132

5. Basic SQL . 135
Using the Music Database 135
The SELECT Statement and Basic Querying Techniques 139
The INSERT Statement 162
The DELETE Statement 168
The UPDATE Statement 171
Exploring Databases and Tables with SHOW and mysqlshow 173
Exercises 176

6. Working with Database Structures . 179
Creating and Using Databases 179
Creating Tables 181
The Sample Music Database 212
Altering Structures 214
Deleting Structures 220
Exercises 221

7. Advanced Querying . 223
Aliases 223
Aggregating Data 228
Advanced Joins 237
Nested Queries 250

vi | Table of Contents

User Variables 263
Transactions and Locking 266
Table Types 267
Exercises 275

8. Doing More with MySQL . 277
Inserting Data Using Queries 277
Loading Data from Comma-Delimited Files 281
Writing Data into Comma-Delimited Files 284
Creating Tables with Queries 285
Updates and Deletes with Multiple Tables 288
Replacing Data 292
The EXPLAIN Statement 294
Exercises 295

9. Managing Users and Privileges . 297
Understanding Users and Privileges 298
Creating and Using New Users 299
Privileges 303
The GRANT OPTION Privilege 306
How Privileges Interact 307
Users and Hosts 308
Checking Privileges 317
Revoking Privileges 323
Removing Users 324
Understanding and Changing Passwords 324
The Default Users 328
Devising a User Security Policy 333
Managing Privileges with SQL 339
Privileges and Performance 346
Resetting Forgotten MySQL Passwords 347
Exercises 349

Part III. Advanced Topics

10. Backups and Recovery . 353
Dumping a Database as SQL Statements 353
Loading Data from an SQL Dump File 360
mysqlhotcopy 361
Scheduling Backups 361
The Binary Log 365
Checking and Repairing Corrupted Tables 366

Table of Contents | vii

Re-Creating Damaged Grant Tables 369
Resources 369
Exercises 369

11. Using an Options File . 371
Configuring Options for the MySQL Monitor 371
Structure of the Options File 373
Scope of Options 374
Search Order for Options Files 375
Determining the Options in Effect 376
Exercises 377

12. Configuring and Tuning the Server . 379
The MySQL Server Daemon 379
Server Variables 383
Checking Server Settings 388
Other Things to Consider 391
Resources 392
Exercises 392

Part IV. Web Database Applications with PHP

13. Web Database Applications . 395
Building a Web Database Application 395
The Apache Web Server 400
Introducing PHP 402
Using a PHP-Enabled Web Hosting Site 410
Resources 411
Exercises 412

14. PHP . 415
Language Basics 415
Accessing MySQL Using PHP 427
Modularizing Code 449
Processing and Using User Data 452
The PHP Predefined Superglobal Variables 455
Untainting User Data 456
Sessions 462
The Reload Problem 463
Using PHP for Command-Line Scripts 466
Resources 471
Exercises 471

viii | Table of Contents

15. A PHP Application: The Wedding Gift Registry . 473
Designing and Creating the Wedding Database 474
The Login Form 476
Passing a Message to a Script 478
Logging Users In and Out 480
The db.php Include File 486
Editing the List of Gifts 487
Loading Sample Gifts 497
Listing Gifts for Selection 497
Selecting and Deselecting Gifts 501
Resources 507
Exercises 507

Part V. Interacting with MySQL Using Perl

16. Perl . 511
Writing Your First Perl Program 512
Scripting With Perl 513
Resources 538
Exercises 538

17. Using Perl with MySQL . 539
Connecting to the MySQL Server and Database 539
Handling Errors When Interacting with the Database 540
Using Queries That Return Answer Sets 542
Using Queries That Don’t Return Answer Sets 545
Binding Queries and Variables 546
Importing and Exporting Data 552
Handling NULL Values 554
Resources 554
Exercises 554

18. Serving Perl Pages to the Web . 557
The Perl CGI Module 560
Processing User Input 562
A Note on mod_perl 566
Perl Security 566
Resources 568
Exercises 568

Table of Contents | ix

Part VI. Appendix

Appendix: The Wedding Registry Code . 571

Index . 585

x | Table of Contents

Preface

Database management systems are the electronic filing cabinets that help individuals
and organizations to manage the mass of information they process each day. With a
well-designed database, information can be easily stored, updated, accessed, and col-
lated. For example, a freight company can use a database to record data associated with
each shipment, such as the sender and recipient, origin and destination, dispatch and
delivery time, current location, and shipping fee. Some of this information needs to be
updated as the shipment progresses. The current status of a shipment can be read off
the database at any time, and data on all shipments can also be summarized into regular
reports.

The Web has inspired a new generation of database use. It’s now very easy to develop
and publish multi-user applications that don’t require any custom software to be in-
stalled on each user’s computer. Adding a database to a web application allows infor-
mation to be automatically collected and used. For example, a customer can visit an
online shopping site, see what’s in stock, place an order, submit payment information,
and track the order until the goods are delivered. He can also place advance orders for
goods that aren’t available, and submit reviews and participate in discussions on items
he has purchased. If all goes well, the site’s staff doesn’t need to intervene in any of
these actions; the less staff intervention required during normal operation, the more
scalable the application is to large numbers of users. The staff are then free to do more
productive tasks, such as monitoring sales and stock in real time, and designing special
promotions based on product sales.

Both authors of this book have always been interested in using computers as a tool to
make things faster, more efficient, and more effective. Over the past few years we’ve
repeatedly found that the MySQL database management system—and the PHP and
Perl programming languages—provide a perfect platform for serious applications such
as managing research records and marking student assignments, and not-so-serious
ones like running the office sweepstakes. On the way, we’ve learned a lot of lessons
that we’d like to pass on; this book contains the tips that we think most readers will
find useful on a daily basis.

xi

Who This Book Is for
This book is primarily for people who don’t know much about deploying and using an
actual database-management system, or about developing applications that use a da-
tabase. We provide a readable introduction to relational databases, the MySQL data-
base management system, the Structured Query Language (SQL), and the PHP and Perl
programming languages. We also cover some quite advanced material that will be of
interest even to experienced database users. Readers with some exposure to these topics
should be able to use this book to expand their repertoire and deepen their under-
standing of MySQL in particular, and database techniques in general.

What’s in the Book
The book is divided into six main parts:

1. Introduction

2. Using MySQL

3. Advanced Topics

4. Web Database Applications with PHP

5. Interacting with MySQL using Perl

6. Appendix

Let’s look at how the individual chapters are laid out.

Introduction
We first provide some context for the book in Chapter 1, where we describe how
MySQL and web database applications fit into the domain of information management
tools and technologies.

In Chapter 2, we explain how you can configure the software required for this book on
different operating systems. This chapter provides far more detail than most books
because we know that it’s hard to learn MySQL if you can’t first get it up and running.

Chapter 3 introduces the standard text-based interface to the MySQL server. Through
this interface, you can control almost every aspect of the database server and the da-
tabases on it.

Using MySQL
Before we dive into creating and using databases, we look at proper database design in
Chapter 4. You’ll learn how to determine the features that your database must have,
and how the information items in your database relate to each other.

xii | Preface

In Chapter 5, we explore how to read data from an existing MySQL database and how
to store data in it.

In Chapter 6, we explain how to create a new MySQL database and how to modify an
existing one.

Chapter 7 covers more advanced operations such as using nested queries and using
different MySQL database engines.

Chapter 8 continues the advanced operations theme; in this chapter, you’ll find a dis-
cussion of importing and exporting data, and peeking under the hood to see how the
MySQL server processes a given query.

In any serious application, you’ll need to prevent unauthorized data access and ma-
nipulation. In Chapter 9, we look at how MySQL authenticates users and how you can
allow or disallow access to data or database operations.

Advanced Topics
Data stored on a computer can be lost due to hardware failure, theft, or other incidents
such as fire or flood. If you need your database, you’ll save yourself a lot of hair-pulling
by setting up regular and complete backups of your database structure and data. In
Chapter 10, we introduce techniques that can help you easily recover from a data loss
or corrupted database.

MySQL is highly configurable; in Chapter 11, we describe how you can use configu-
ration files to modify the behavior of the MySQL server and associated programs.

In Chapter 12, we introduce several ways to customize your MySQL server and your
application database for improved performance. Small speedups for frequently used
queries can markedly improve the overall performance of your system.

Web Database Applications with PHP
In Chapter 13, we examine how web database applications work.

Chapter 14 follows with an introduction to the PHP programming language and a
discussion of how PHP can be used to access and manipulate data in a MySQL database.

In Chapter 15, we walk through the design of a wedding gift registry to illustrate the
process of developing a full-fledged web database application.

Interacting with MySQL Using Perl
In Chapter 16, we present an easy-to-follow introduction to the powerful Perl pro-
gramming language.

We continue in Chapter 17 by using the Perl DBI module to connect to a MySQL
database to store and read information, and to import and export data.

Preface | xiii

We conclude this part in Chapter 18 by using the Perl CGI module to create dynamic
web pages that can interact with a MySQL database.

Appendix
The Appendix contains all the source code for the wedding gift registry developed in
Chapter 15. You can download this source code, and much more, from the book’s web
site.

Conventions Used in This Book
This book uses the following typographical conventions:

Italic
Indicates nomenclature that we’ve not previously used. Also used for emphasis and
to indicate files and directories.

Constant Width
Indicates commands and command options, usernames, and hostnames. Also used
to show the command output, and the contents of text and program files.

Constant Width Bold
Used in examples to indicate commands or other text that should be typed literally
by the user.

Constant Width Italic
Indicates text that you should replace with your own values—for example, your
own name or password. When this appears as part of text that you should type in,
it is shown as Constant Width Italic Bold .

#, $
Used in some examples as the root shell prompt (#) and as the user prompt ($)
under the Bourne or bash shell. Unless stated otherwise, instructions in such ex-
amples can be used with little modification from the Windows command prompt.

C:\>
Used in some examples as the Windows command prompt.

Signifies a tip, suggestion, or general note.

Indicates a warning or caution.

xiv | Preface

Resources
Each chapter finishes with a list of books and web sites that contain further information
on the topics covered. The book also has a companion web site at http://www.learning
mysql.com that contains links to useful resources, frequently asked questions (FAQs),
and the example code and data used in this book. It’s probably a good idea to have a
quick look at the web site now so that you know what’s there; it could save you a lot
of searching and typing!

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning MySQL by Seyed M.M.
Tahaghoghi and Hugh E. Williams. Copyright 2007 O’Reilly Media, Inc.,
978-0-596-00864-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com. (http://safari.oreilly.com)

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Preface | xv

http://www.learningmysql.com
http://www.learningmysql.com
http://safari.oreilly.com
http://safari.oreilly.com

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/learnmysql

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

We’ve spent a lot of effort trying to ensure that the material in this book is correct and
that the instructions and examples will work in your environment. However, there is
always room for improvement, and we’re keen to know your thoughts on how we can
make things better. Please send your thoughts by email to saied@tahaghoghi.com, or
use the online feedback form at http://www.learningmysql.com/feedback.

Acknowledgments
First of all, we thank all the people around the world who have contributed to the
MySQL, PHP, and Perl projects, and related open source initiatives such as Linux.
These have been an important part of our lives, and of course, this wouldn’t be much
of a book without them!

Writing a technical book is an incredibly time-consuming process, and only an editor
as patient and steady-handed as Andy Oram could have coaxed and cajoled us into
getting the book done and out of the door. Thanks Andy!

We also thank our technical reviewers, Paul Kinzelman, Falk Scholer, and Omkhar
Arasaratnam, for pointing out many ways in which the content could be improved, and
the team at O’Reilly for converting our material into a professionally produced book.

Saied Tahaghoghi
I thank Hugh for inviting me to collaborate on this project (and for the countless other
ways he’s made my life more interesting); Santha Sumanasekara for helping me to set
up my first ever Linux box and introducing me to MySQL and PHP so many years ago;
my various teachers and mentors for painstakingly showing me the way; and my friends
and colleagues for helping me maintain an appearance of sanity. Most of all, I thank
all my family for their constant kindness, support, and prayers; I’m especially indebted

xvi | Preface

http://www.oreilly.com/catalog/learnmysql
http://www.oreilly.com
http://www.learningmysql.com/feedback

to my wife, Somayyeh, for patiently enduring for so long my claims that, “The book’s
almost done!”

Hugh Williams
I thank Selina Williams for being always patient, even-tempered, encouraging, and
ready to listen while I slaved away on yet another (and maybe my last?) book project.
Thanks also to Lucy and Rose for letting Dad work upstairs day after day, and to Mum
and Dad for the lend of the Winnebago in the paddock while I bashed out a few of the
more technical chapters. But most of all, thanks Saied for agreeing to take up the reins
and finish the book after I moved to Microsoft: you’re one of the best men I know. Last,
another thank you to Andy Oram; you’re a very patient guy whom I’ve learnt a lot from.

Preface | xvii

PART I

Introduction

CHAPTER 1

Introduction

MySQL (pronounced “My Ess Cue Ell”) is more than just “the world’s most popular
open source database,” as the developers at the MySQL AB corporation (http://www
.mysql.com) claim. This modest-sized database has introduced millions of everyday
computer users and amateur researchers to the world of powerful information systems.

MySQL is a relatively recent entrant into the well-established area of relational database
management systems (RDBMs), a concept invented by IBM researcher Edgar Frank
Codd in 1970. Despite the arrival of newer types of data repositories over the past 35
years, relational databases remain the workhorses of the information world. They per-
mit users to represent sophisticated relationships between items of data and to calculate
these relationships with the speed needed to make decisions in modern organizations.
It’s impressive how you can go from design to implementation in just a few hours, and
how easily you can develop web applications to access terabytes of data and serve
thousands of web users per second.

Whether you’re offering products on a web site, conducting a scientific survey, or sim-
ply trying to provide useful data to your classroom, bike club, or religious organization,
MySQL gets you started quickly and lets you scale up your services comfortably over
time. Its ease of installation and use led media analyst Clay Shirky to credit MySQL
with driving a whole new type of information system he calls “situated software”—
custom software that can be easily designed and built for niche applications.

In this book, we provide detailed instructions to help you set up MySQL and related
software. We’ll teach you Structured Query Language (SQL), which is used to insert,
retrieve, and manipulate data. We’ll also provide a tutorial on database design, explain
how to configure MySQL for improved security, and offer you advanced hints on get-
ting even more out of your data. In the last five chapters, we show how to interact with
the database using the PHP and Perl programming languages, and how to allow inter-
action with your data over the medium most people prefer these days: the Web.

3

http://www.mysql.com
http://www.mysql.com

Why Is MySQL so Popular?
The MySQL development process focuses on offering a very efficient implementation
of the features most people need. This means that MySQL still has fewer features than
its chief open source competitor, PostgreSQL, or the commercial database engines.
Nevertheless, the skills you get from this book will serve you well on any platform.

Many database management systems—even open source ones—preceded MySQL.
Why has MySQL been the choice for so many beginners and small sites, and now for
some heavyweight database users in government and industry? We can suggest a few
factors:

Size and speed
MySQL can run on very modest hardware and puts very little strain on system
resources; many small users serve up information to their organizations by running
MySQL on modest desktop systems. The speed with which it can retrieve infor-
mation has made it a longstanding favorite of web administrators.

Over the past few years, MySQL AB has addressed the need of larger sites by adding
features that necessarily slow down retrieval, but its modular design lets you ignore
the advanced features and maintain the suppleness and speed for which MySQL
is famous.

Ease of installation
Partly because MySQL is small and fast, it works the way most people want straight
“out of the box.” It can be installed without a lot of difficult and sophisticated
configuration. Now that many Linux distributions include MySQL, installation
can be almost automatic.

This doesn’t mean MySQL is free of administrative tasks. In particular, we’ll cover
a few things you need to do at the start to tighten security. Very little configuration
is shown in this book, however, which is a tribute to the database engine’s con-
venience and natural qualities.

Attention to standards
As we’ll explain in the “Structured Query Language” section later in this chapter,
multiple standards exist in the relational database world, and it’s impossible to
claim total conformance. But learning MySQL certainly prepares you for moving
to other database engines. Moving code from one database engine to another is
never trivial, but MySQL does a reasonable job of providing a standard environ-
ment, and gets better as it develops more features.

Responsiveness to community
With a few hundred employees scattered around the globe, MySQL AB is a very
flexible organization that keeps constant tabs on user needs. At its conferences,
lead developers get out in front and make themselves available to everyone with a
gripe or a new idea. There are also local MySQL user groups in almost every major
city. This responsiveness is helped by the fact that MySQL is open and free; any

4 | Chapter 1: Introduction

sufficiently skilled programmer can look at the program code to find and perhaps
help in fixing problems.

MySQL actually has a dual-license approach: if you want to build your own prod-
uct around it, you pay MySQL AB a license fee. If you just want to use MySQL to
serve your own data, you don’t have to pay the license fee. MySQL also offers
technical support, as do numerous other companies and consultants, some of them
probably near you.

Easy interface to other software
It is easy to use MySQL as part of a larger software system. For example, you can
write programs that can interact directly with a MySQL database. Most major
programming languages have libraries of functions for use with MySQL; these in-
clude C, PHP, Perl, Python, Ruby, and the Microsoft .NET languages. MySQL also
supports the Open Database Connectivity (ODBC) standard, making it accessible
even when MySQL-specific functionality isn’t available.

Elements of MySQL and Its Environment
You need to master several skills to run a database system. In this section, we’ll lay out
what goes into using MySQL and how we meet those needs in this book.

A MySQL installation has two components: a server that manages the data, and cli-
ents that ask the server to do things with the data, such as change entries or provide
reports. The client that you’ll probably use most often is the mysql “MySQL monitor”
program, provided by the MySQL AB company and available in most MySQL instal-
lations. This allows you to connect to a MySQL server and run SQL queries. Other
simple clients are included in a typical installation; for example, the mysqladmin program
is a client that allows you to perform various server administration tasks.

In fact, any program that knows how to talk to the MySQL server is a client; a program
for a web-based shopping site or an application to generate sales graphs for a marketing
team can both be clients. In Chapter 3, you’ll learn to use the MySQL monitor client
to access the MySQL server. In Chapters 13 through 15, we’ll look at how we can use
PHP to write our own custom clients that run on a web server to present a web frontend
to the database for this. We’ll use the Apache web server (http://httpd.apache.org).
Apache has a long history of reliable service and has been the most popular web server
in the world for over 10 years. The Apache web server—or “HTTP server”— project
is managed by the Apache Foundation (http://www.apache.org). Although the web
server and MySQL server are separate programs and can run on separate computers,
it’s common to find small- to medium-scale implementations that have both running
on a single computer. In Chapters 16 through 18, we’ll explore how the Perl program-
ming language can be used to build command-line and web interfaces to the MySQL
server.

Elements of MySQL and Its Environment | 5

http://httpd.apache.org
http://www.apache.org

To follow the content in this book, you will need some software; fortunately, all the
software we use is open source, free for noncommercial use, and easily downloaded
from the Internet. To cover all parts of this book, you need a MySQL database server,
Perl, and a web server that can talk to MySQL using the PHP and Perl programming
languages. We’ll explore four aspects of using MySQL:

MySQL server
We explain how to create your own MySQL installation, and how to configure and
administer it.

SQL
This is the core of MySQL use, and the major topic in this book. It’s introduced in
“Structured Query Language.”

Programming languages
SQL is not a simple or intuitive language, and it can be tedious to repeatedly per-
form complex operations. You can instead use a general-purpose programming
language such as PHP or Perl to automatically create and execute SQL queries on
the MySQL server. You can also hide the details of the interaction with the database
behind a user-friendly interface. We’ll show you how to do this.

Web database applications
We explain how you can use PHP or Perl to create dynamic, database-driven web
applications that can publish information from the database to the Web, and cap-
ture information provided by users.

HTML is the lingua franca of the Web. Although learning HTML is not within the
scope of this book, there are many great HTML guides available, including HTML and
XHTML: The Definitive Guide by Chuck Musciano (O’Reilly). We recommend that
you pick up the basics of HTML before reading Chapters 13, 14, 15, or 18.

The LAMP Platform
It’s very common to find web database applications developed using the Linux oper-
ating system, the Apache web server, the MySQL database management system, and
the Perl or PHP scripting language. This combination is often referred to by the acronym
LAMP, a term invented at O’Reilly Media.

Linux is the most common development and deployment platform, but as we’ll show
in this book, you can run all the tools on other operating systems. In fact, we’ll give
directions for getting started on Linux, Windows, and Mac OS X. Most of the content
in this book can be used for other operating systems with little modification.

The P in LAMP originally stood for Perl, but over the past decade, users have increas-
ingly turned to PHP for developing dynamic web pages. PHP is very clean and efficient
for retrieving data and displaying it with minimal processing. If you have to do heavy
data crunching after the data is returned from MySQL, Perl may still be a better choice.
We discuss PHP and Perl largely independently; you can pick up one without needing

6 | Chapter 1: Introduction

to learn the other, although we believe that you’ll benefit from learning both languages.
In fact, almost any modern language can be used to perform this task; most of them
have the necessary interfaces to both web servers and database engines.

Structured Query Language
IBM is to be credited not only with inventing the relational database, but developing
the language still used today to interact with such databases. SQL is a little odd, bearing
the stylistic marks of its time and its developers. It’s also gotten rather bloated over the
years—a process made worse by its being standardized (multiple times)—but in this
book we’ll show you the essentials you really need and help you become fluent in them.

SQL shows many of the problems that are commonly attributed to computing stand-
ards: it tries to accomplish too much, it forces new features into old molds to maintain
backward compatibility, and it reflects uneasy compromises and trade-offs among
powerful vendors. As a result, there are several standards that database management
systems can adhere to. SQL-92 dates back to 1992 and provides just about everything
that you will need for beginning work. However, it lacks features demanded by some
modern applications. SQL:1999 was standardized in 1999 and adds a huge number of
new features, many of them considered overkill by some experts. There is also a more
recent standard, SQL:2003, that was published in 2003 and adds support for XML data.

Each development team has to decide on the trade-offs between the features requested
by users and the need to keep software fast and robust, and so database engines gen-
erally don’t conform totally to any one standard. Furthermore, historical differences
have stayed around in legacy database engines. That means that even if you use fairly
simple, vanilla SQL, you may have to spend time when porting your skills and your
code to another database engine.

In this book, we’ll show you how to use MySQL’s flavor of SQL to create databases
and store and modify data. We’ll also show you how to use this SQL variant to ad-
minister the MySQL server and its users.

MySQL Software Covered in This Book
You can be very productive with MySQL without dedicating a lot of time to configu-
ration and administration. In Chapter 2, we’ll look at several common ways of setting
up the software you’ll need for this book. While you can skip most of the instructions
if you already have a working MySQL installation, we recommend you at least skim
through the material for your operating system; we’ll frequently refer to parts of this
chapter later on. As part of this chapter, we explain how you can configure your MySQL
server for good security.

MySQL provides many other tools for administration, including compile-time options,
a large configuration file, and standalone utilities developed by both MySQL AB and

MySQL Software Covered in This Book | 7

external developers. We’ll give you the basics that will keep you up and running in
most environments, and will briefly describe even some relatively advanced topics.

We won’t cover all the programs that come with the MySQL distribution, and we won’t
spend too long on each one; the MySQL reference manual does a good job of covering
all the options. We’ll instead look at the programs and options that you’re most likely
to use in practice; these are the ones we’ve used ourselves a reasonable number of times
over several years of working with MySQL.

The Book’s Web Site
We’ve set up the web site, http://www.learningmysql.com, which contains the sample
databases, datafiles, and program code. We recommend you make good use of the web
site while you read this book.

8 | Chapter 1: Introduction

http://www.learningmysql.com

CHAPTER 2

Installing MySQL

Learning MySQL is easiest if you have a database server installed on your computer.
By administering your own server, you can go beyond querying and learn how to man-
age users and privileges, configure the server, and make the best use of its features.
Importantly, you also learn the steps required to install and configure MySQL, which
is useful when you need to deploy your applications elsewhere.

This chapter explains how to choose and configure a suitable environment for learning
MySQL. We cover the following topics:

• What to install: how to decide between precompiled packages, an integrated web
development environment, and compiling from the source code

• Where to install: Linux, Microsoft Windows, or Mac OS X?

• Why, when, and how to upgrade MySQL

• How MySQL has changed and how to migrate between versions

• How to configure the Apache web server and support for the PHP and Perl scripting
languages.

MySQL is available in several forms and for many operating systems. In the next section,
we examine the choices available and how you can decide what suits you.

Installation Choices and Platforms
As we mentioned before, you’ll need MySQL, the Apache web server, PHP, and Perl
for this book. How you choose to install these depends on what you want to do, how
confident you are in using your operating system environment, and the level of privi-
leges you have on your system. If you’re planning to use the installation for learning
and development only, and not for a production site, then you have greater choice, and
you need not be so concerned about security and performance. We’ll describe the most
common ways to install the software you need.

You can find the ready-to-use MySQL programs (known as binaries) on the MySQL
AB web site and on Linux installation CDs and web sites. You can also download the

9

source code for MySQL from the MySQL AB web site and prepare, or compile, the
executable programs yourself. By doing the compiling yourself, you ensure that you
have the most up-to-date version of the software, and you can optimize the compiler
output for your particular needs. The MySQL manual says that you can get a perform-
ance increase of up to 30 percent if you compile the code with the ideal settings for
your environment. However, rolling your own installation from source code can also
be a tedious and error-prone process, so we suggest that you stick with the ready-made
binaries unless you’re experienced and really need to squeeze every ounce of perform-
ance from your server. Compiling from source under Windows and Mac OS X is even
more involved, so it’s uncommon, and we don’t discuss it in this book.

You can also install MySQL as part of an integrated package that includes the Apache,
PHP, and Perl software that you’ll need later in this book. Using an integrated package
allows you to follow a step-by-step installation wizard. It’s easier than integrating
standalone packages, and many of the integrated packages include other tools that help
you adjust configuration files, work with MySQL, or conveniently start and stop serv-
ices. Unfortunately, many of the integrated packages are a couple of minor releases
behind the current version and may not include all the PHP libraries that you require.
Another disadvantage is that an integrated package doesn’t always fit in with your
current setup; for example, even if you already have a MySQL installation, you’ll get
another one as part of the integrated package, and you’ll have to take care to avoid
clashes. Despite the disadvantages, we recommend you follow this approach. There
are several integrated packages available; we feel that XAMPP is probably the best
produced of these, and we’ll describe how to install and use this. XAMPP includes
MySQL, the Apache web server with PHP and Perl support, and other useful software
such as phpMyAdmin. We recommend that you start out by using XAMPP, and we
won’t spend time describing how to separately install and configure Apache, PHP, and
Perl to work together on your system.

The software packages you need—MySQL, Apache, PHP, and Perl—are available
ready to install on many operating systems and can be compiled to run on a large
number of others. However, chances are that you’re running one of three major oper-
ating systems: Linux, Windows, or Mac OS X, so we’ll provide detailed instructions
for only these three. Let’s see how they compare as MySQL development and produc-
tion platforms.

Linux
Linux is an open source operating system that is closely modeled on Unix, which is
why it’s often called a Unix clone. Even though it’s free, Linux is very powerful and
very secure, with versions available for a wide range of hardware.

You typically get Linux in the form of a distribution, such as Red Hat or Mandriva. A
distribution packages the operating system together with a large range of useful soft-
ware for things such as word processing, networking, web and database development,

10 | Chapter 2: Installing MySQL

and even games. These distributions are free to download and distribute; you can also
buy low-cost CD copies or more expensive shrink-wrapped packs with printed man-
uals. Many of the most popular web sites run on Linux, and it’s an excellent choice for
learning MySQL.

Live CDs

You can install Linux on its own, or alongside Windows on a single computer (this is
known as dual-booting). If you want to try out Linux without installing it on your
computer, you can use a bootable, or live, CD distribution. This allows you to boot
your computer from a CD to get a fully-working Linux system without making any
changes to your hard disk. When you remove a live CD and reboot, everything is back
to what you had before; you don’t have to worry about doing any damage while you
learn how to use Linux. For example, the Knoppix (http://www.knoppix.org) live CD
includes all the software—MySQL, the Apache web server, PHP, and Perl—that you
need for this book. However, we recommend that you use a live CD only to become
familiar with Linux. While it’s possible to save files from a live CD onto the hard disk,
a USB flash disk, or another computer through a network connection, this is tedious.
For anything that involves using Linux for extended periods of time, you’re better off
with a full installation to hard disk.

Windows
Microsoft Windows is by far the most common commercial PC operating system today,
and new PCs often come with Windows pre-installed. Windows XP, released in 2001,
is available on most current PCs. Windows Vista is the latest version of Windows; at
the time of writing, it’s in “release candidate” (for testing) form and due to be published
in the next few months.

We’ve tested the instructions in this book using both XP and Vista. While we wouldn’t
recommend using either version for a production server, they’re quite appropriate for
learning the material in this book. We assume you’re using either XP or Vista; you can
set up a suitable environment on older versions of Windows such as 98 and Me, but
the process is less straightforward. When we say “Windows” in this book, we mean
XP or Vista.

Mac OS X
All new Apple computers since 2001 have come with OS X; recent versions include
10.3 (Panther) and 10.4 (Tiger), with 10.5 (Leopard) due for release in the next few
months. OS X has a nice graphical user interface over a Unix-like heart, which means
it’s not hard to use software originally designed for Unix or Linux. Most new Apple
computers built from 2006 onward have an x86-type processor; older systems have a
PowerPC processor. You can easily check which operating system version or processor
your system has by clicking on the Apple menu and choosing the About This Mac entry.

Installation Choices and Platforms | 11

http://www.knoppix.org

It’s not common to find a production MySQL server running on OS X, but it’s a good
environment for learning MySQL.

So, What Should I Do?
As we mentioned earlier, you can use almost any major operating system when prac-
tising the material covered in this book, but to keep things sensible, we’ll assume you’re
using one of the big three just listed. Where the process varies between operating sys-
tems, we’ll clearly explain the necessary steps. It shouldn’t be too hard to interpret the
instructions for other operating systems that we don’t focus on in this book. For ex-
ample, many of the Linux instructions can be used with little adaptation on Solaris or
FreeBSD.

To install a MySQL server with the standard directories and settings for a system-wide
installation, you’ll generally need superuser (also known as the system root user or
administrator) privileges on your system. Always be careful when using superuser ac-
cess. The superuser can do anything on a system, so you might be tempted to always
log in under the superuser account. However, “anything” means anything—including
accidentally deleting vital system files and making the system unusable. There are also
security risks associated with using this level of access by default, so we strongly suggest
you stick to an ordinary, or nonprivileged, user account and switch to the privileged
account only when necessary. We’ll explain how to configure a MySQL server installed
on a Linux or Mac OS X system to run as a less privileged user; any files and directories
that the server creates are then owned by this account.

If you don’t have superuser access—for example, you’re using a shared university
computer or want to experiment without touching the system-wide MySQL installation
—you can generally install a local MySQL server using nonstandard settings; we’ll also
explain how you can do this. However, we recommend that you go with the default
settings if you can, at least while you’re still learning a lot about MySQL. You’re far
less likely to make mistakes, and less likely to run into difficulties with the software;
programs are rarely tested as well on nonstandard configurations as they are on the
default settings.

Finally, there are cases when the database server may already be set up for you. Many
hosting companies, for example, allow you to administer your databases using only a
web-based MySQL client such as phpMyAdmin. We’ll take a brief look at phpMyAd-
min in Chapter 13.

Using the Command-Line Interface
The three operating systems we use in this book all have graphical user interfaces; you
can start programs by clicking on icons, you can select tasks from menus, and you can
drag and drop files and folders. However, once you start to use more powerful aspects
of the operating system and applications, you’ll quickly find that some tasks are more

12 | Chapter 2: Installing MySQL

easily done by typing in commands. For example, you can tell the operating system to
list certain files in a folder or run a given program in a particular way.

Linux, Windows, and Mac OS X all have a command-line interface that allows you to
do this. In Linux and Mac OS X, you use a Terminal program to show you the com-
mand-line interface, which is called the shell. In Windows, you use the Command
Prompt Window program to show you the Command Prompt, sometimes called the
DOS prompt.

In this section, we’ll describe how each command-line interface works; you can skip
the descriptions for the operating systems you don’t use.

The Linux and Mac OS X Shell
To access the shell under Linux, open a terminal program, such as konsole, rxvt, or
xterm; these are often listed in the main menu under the System or System Tools group,
and may be simply labeled Terminal. To access the shell under Mac OS X, open a
terminal window by double-clicking on the Terminal icon in the Utilities folder under
the Applications group.

Under Linux, you’ll see a prompt similar to this one:

[adam@eden ~]$

while under Mac OS X, you’ll see something like this:

eden:~ adam$

This shell prompt indicates what user account you’re logged in under, what computer
you’re logged in to, and what directory you’re working from. You’ll generally be first
logged in as an ordinary user (we’ve shown the user adam here) on the computer
(eden), and working from your home directory. The tilde (~) character is a shortcut
symbol to a user’s home directory on any Unix-like system, including Linux and Mac
OS X; for example, a user’s home directory could be /home/adam, but you can refer to
it as ~adam, or, if you’re logged in as adam, simply as ~. The sample prompt shows that
the user adam is logged in to the computer eden and working from his home directory.
To keep things simple, we’ll just show a dollar sign to indicate the Linux or Mac OS X
shell prompt, as below:

$

From the shell, you can run many useful commands; we’ll see some as we progress
through this book. Two standard commands that are important to know for this book
are:

cd
Changes your working folder or directory on disk. For example, you can change
to the /tmp directory by typing:

$ cd /tmp

Using the Command-Line Interface | 13

You can also change to your home directory by using the tilde shortcut:

$ cd ~

In fact, you can leave out the tilde: cd on its own means “change to my home
directory.”

ls
Lists the files and directories in your working folder. For example, you can list the
files in your home directory by typing:

$ ls ~

Together, the cd and ls commands are the text equivalent of using a graphical file
manager—such as Konqueror or Nautilus under Linux, or the Finder under Mac OS
X—to go to different directories and view their contents.

Command completion and history

Command completion is a great time-saving feature; when you start to type the name
of a command, file, or directory, pressing the Tab key cycles through names that could
match. The best way to understand this is to try it. For example, when you type:

$ cd /t

and then repeatedly press the Tab key, you’ll see items beginning with the letter “t” in
the / (filesystem root) directory. If a name has spaces, a backslash character is added
automatically before each space—for example My\ Important\ Notes.txt. Most Linux
and Mac OS X systems are configured to use the bash shell, and we assume you’re using
this, too. If you’re using a different shell variant, such as tcsh, you’ll need to press the
Ctrl-D key combination in place of the Tab key.

Pressing the up and down arrow keys will cycle through the last commands you typed;
you can use the arrow keys to edit a previous command, and you can press the Enter
key to run a displayed command. You can see a list of recently used commands with
the history command, as below:

$ history
1 cd Photos/
2 lt
3 find . -name "*AMES*"
4 cfdisk /dev/hda
5 ssh ubuntu@192.168.1.1

You can quickly run a command again by typing the number preceded by an exclama-
tion mark (!) character. For example, to run the command numbered 3 in the history
list, you can type !3 and press the Enter key.

Performing restricted operations

Certain restricted operations on a Linux or Mac OS X system are allowed only if you
have superuser, or root, privileges. On a Linux system, you can log in as the system root

14 | Chapter 2: Installing MySQL

user by typing the su - (switch user) command. When prompted, type in the system
root user’s password and press the Enter key:

[adam@eden ~]$ su -
Password: the_system_root_password
[root@eden ~]#

This is almost identical to the case for Mac OS X:

eden:~ adam$ su -
Password: the_system_root_password
eden:~ root#

After you type in the password, you’ll be logged in as the user root on the same com-
puter (in this example, eden) and be working from that user’s home directory (also
indicated by a tilde).

Notice how the last character of the prompt is a dollar sign ($) when you’re not the root
user and the hash or pound (#) sign when you are. In this book, we’ll use these symbols
to indicate whether you should run a certain command as an ordinary user or as the
root user. When you’ve finished doing the restricted operations, you can log out from
the system root account by typing exit:

exit
$

You can generally use the sudo command to perform actions with system superuser
privileges, even though you’re not actually logged in as root. You can also use the sudo
-s command to log in as the root user (in place of su -). If you log in as the system root
user, you can then omit the sudo keyword. Again, we emphasize that you can inadver-
tently do a great deal of damage if you use the root account, and we recommend that
you log in as the system root user as infrequently as you can. Some configuration is
necessary to allow ordinary Linux users to use the sudo command, but it’s enabled by
default under Mac OS X, and we’ll use this approach when discussing installation for
this operating system.

You can add the ampersand symbol (&) at the end of a command to start the command
in the background, allowing you to use the shell for other work. It’s better to avoid
using this symbol in conjuction with the sudo command, since you won’t see any system
prompt for you to enter your password. When we want you to run a sudo job in the
background, we’ll ask you to start the job normally, then press the CTRL-Z key com-
bination to suspend this new job. You can then type the command bg to send the
suspended job to the background.

Restricting access to files and directories

Before we end our discussion of the Linux and Mac OS X shell, let’s look at how access
to files and directories is controlled under such Unix-like operating systems. Each file
or directory can have read, write, and execute permissions set for the user who owns
it, the group associated with it, and every other user.

Using the Command-Line Interface | 15

When the operating system is asked to allow access to a file or directory, it looks to see
who the user is and what groups this user belongs to. It then checks the user and the
group associated with that file or directory, and allows access only if the permission
settings are appropriate.

Your group on a Linux or Mac OS X system is typically the same as your username, so,
for example, the username and group for the user adam would both be adam. The user
and group associated with a file or directory can be changed by using the chown com-
mand and specifying the username and group as username:group. For example, you can
set the owner of myfile.txt to be adam, and the associated group to be managers, by typing:

chown adam:managers myfile.txt

Only the superuser is allowed to change the owner of a file or directory.

You can allocate permissions to a file or directory by using the chmod command. To
allow the user who owns the file myfile.txt to read and write (modify) it but allow other
users to only read it, you would write:

$ chmod u=rw,g=r,o=r myfile.txt

You can also ensure that only the user who owns the file can read and write to the file
as follows:

$ chmod u=rw,g=,o= myfile.txt

Here, the group and other users have been assigned no permissions. Similarly, you can
give everyone read, write, and execute permissions to the directory mydir by typing the
command:

$ chmod u=rwx,g=rwx,o=rwx mydir

When reading other documentation, you’ll probably also come across cases where an
octal value (or mask) is used with the chmod command. In this notation, read access has
the value 4, write access has the value 2, and execute access has the value 1. So, read-
only access has the value 4, but read-and-write access has the value 4+2=6. Our pre-
vious two examples would be written as:

$ chmod 644 myfile.txt

and:

$ chmod 777 mydir

The chown or chmod operation can be applied to all files and directories under a specified
directory by using the --recursive option (under Linux) or the -R option (under Mac
OS X as well as Linux). We’ll see examples of this later in this chapter.

16 | Chapter 2: Installing MySQL

The Windows Command Prompt
Under Windows, you can open a command-prompt window by clicking on the Com-
mand Prompt entry under the Accessories submenu. You can also type cmd in the Start
menu search box (Vista) or in the Start menu “Run...” field (XP).

The command prompt typically shows you the current working disk and directory:

C:\Documents and Settings\Adam>

In this example, the current working directory is the home directory \Documents and
Settings\Adam on the C: disk. Under Vista, the location of the home directory is slightly
different:

C:\Users\Adam>

From the command prompt, you can run many useful commands; we’ll see some as
we progress through this book. Two standard commands that are important to know
for this book are:

cd
Changes your working folder or directory on disk.

dir
Lists the files and directories in your working folder.

Together, the cd and dir commands are the text equivalent of using a graphical file
manager such as Windows Explorer to go to different directories and view their
contents.

Windows uses the variable %HOMEPATH% to refer to your home directory, so you can
always change to your home directory by typing:

C:\> cd %HOMEPATH%
C:\Documents and Settings\Adam>

Command completion and history

Command completion is a feature that can save you a lot of typing. When you start to
type the name of a command, file, or directory, pressing the completion key sequence
cycles through matches. The completion key varies between systems; it is generally the
Tab key or the Ctrl-D or Ctrl-F key combination.

Under Windows, you can activate the command-completion feature if you start the
command prompt with the /f:on option (command completion is active by default in
Vista). If the /f:on switch doesn’t work on your system, try calling the cmd program
without the switch. You can also configure Windows XP to have command completion
active by default, but we won’t describe how to do this here.

The best way to understand command completion is to try it out. For example, when
you type cd c:\p:

Using the Command-Line Interface | 17

C:\> cd c:\p

and then repeatedly press the completion key sequence, you’ll see items beginning with
the letter “p” in the C:\ directory. Note that Windows doesn’t mind whether you use
uppercase or lowercase when referring to files and folders.

Quotes are added automatically around names with spaces—for example, "C:\Program
Files". To continue expansion, press the backspace key to delete the last quote and
type a further hint. For example, to switch to the C:\Program Files\MySQL directory,
you’d delete the quote, type a backslash (\), and then press the completion key sequence
again.

Pressing the up and down arrow keys will cycle through the command history. You can
see a list of recently used commands with the doskey/history command, as below:

C:\> doskey/history
dir C:\
doskey/history

There are many more tweaks for the command prompt; just do a search on the Web
for “windows cmd”.

You can also start other programs from the Start menu; under XP, you would use the
Run menu item to browse to select the program you want. If you type in the command,
you’ll also get command completion, as shown in Figure 2-1. Under Vista, simply type
the name of the program in the Start menu search box. However, this approach doesn’t
always keep the results of running a program on the screen, so we suggest you use the
command-prompt window.

Using a Text Editor
As you read through this book, you’ll frequently find references to using a text editor.
This means a program that can edit and save files that contain only plain text. Word

Figure 2-1. Starting a program from the Run menu item

18 | Chapter 2: Installing MySQL

processors save additional formatting instructions that only other word processors un-
derstand. Word processing programs also tend to use proportional fonts, which makes
it hard to read and write files of scripts and commands. It is possible to use a word
processor to load and save plain-text files, but it’s rather inconvenient and error-prone,
and so we don’t recommend you do this.

So, what should you use? There are hundreds of text editors available, and most people
find one they prefer to use. You should try out several different programs and settle on
one that you’re comfortable with. Let’s look at some options:

Linux
Under Linux, popular text editors include pico, gvim, vim, emacs, joe, kate, gedit,
and xedit. You can often find these listed under the Editors group in the main
menu of most Linux distributions. If you’re curious, you can also type the com-
mand apropos "text editor" at the shell to see a list of programs that have the
phrase “text editor” in their description.

Windows
Under Windows, use Notepad; you can also download and install free text editors
such as gvim, or commercial editors such as EditPad and TextPad.

Mac OS X
Under Mac OS X, you can use the included editors pico, vim, or emacs, configure
the TextEdit program to behave as a text editor, or install and use other editors
such as BBEdit or Smultron.

To start an editor from the command line, type in the name of the program followed
by the name of the file you wish to edit; for example, you can open the file myfile.txt
with the pico editor by typing:

$ pico myfile.txt

You can also open files from the graphical user interface; double-clicking on the text-
file icon will generally open the file in a text editor. You can modify the program that’s
used to open text files by right-clicking on the text-file icon (in Windows, depress the
Shift button while clicking) and work your way through the program options. We won’t
go into detail here.

Under Mac OS X, you can also configure the TextEdit program to act as a text editor.
Start the TextEdit program, and then choose the Preferences option from the TextEdit
menu. In the dialog box that appears, select Plain Text under the Format heading. To
open a file with TextEdit from the command line, you should type:

$ open -a TextEdit myfile.txt

You can instead select the plain-text mode for individual files one at a time by selecting
the Make Plain Text option from the Format menu, but this approach is likely to be
tedious and error-prone over time.

Using a Text Editor | 19

Following the Instructions in This Book
Starting in the next section, we’ll explain how to configure a MySQL server on the same
system that you’re logged in to (that is, localhost). We won’t describe how to set up
the MySQL server on one computer and the web server on a different computer; it
shouldn’t be too hard to modify our instructions to do this. If you modify any of the
default settings, you’ll need to remember to specify them where necessary.

We also assume that if you’re using Windows, you use only the C: disk; we’ll explain
how and when to change your working directory. When we show only the Linux or
Mac OS X prompt as below:

$

or the Windows Command Prompt as:

C:\>

the working disk and directory are unimportant, or you will be in the appropriate lo-
cation after following the steps we describe.

When we use the hash or pound symbol (#) as the prompt:

#

you will need to type in the commands as the superuser. For a Linux or Mac OS X
system, this means you should log in as the system superuser by typing su -, or use the
sudo keyword before the command. For a Windows system, you must be logged in with
a system account that has administrator privileges.

Most of our command-line examples outside this chapter are written in a form suitable
for Linux and Mac OS X; to run these instructions under Windows, simply replace the
forward slash character (/) with the backslash character (\). For example, you may see
an example starting the MySQL monitor program (mysql) from the bin subdirectory as
follows:

$ bin/mysql

On Windows, you’d type bin\mysql at the Windows Command Prompt. After this
chapter, we’ll mostly omit the path to programs and assume that you’ll call them using
the appropriate path described for your installation in this chapter.

The behavior of many of the programs that we describe in this book can be modified
through options. For example, you can use the user and password options to specify
the username and password you want to use. Options can be specified on the command
line after the program name. Some programs can also read options from a file. We
explain options files in Chapter 11.

When you list options on the command line, you identify them by two adjacent
hyphens:

$ mysql --user=saleh --password=tomcat

20 | Chapter 2: Installing MySQL

Here, we’ve specified the username saleh and the password tomcat.

If specified in a configuration file, the leading dashes should be omitted. For example,
you would write --user=saleh on the command line and user=saleh in an options file.
We’ll generally omit the leading dashes in our descriptions.

Many options also have a short form that can be used only from the command line.
For example, instead of writing --user=saleh on the command line, you can write the
short form -u saleh. To help you understand what each command does, we consis-
tently use the long form of each option (where one exists).

Most of the command-line utilities we describe in this book have a help option that
you can use to discover the command syntax, including any short forms. For example,
to learn about the options to use for the mysql program, type:

$ mysql --help
mysql Ver 14.12 Distrib 5.0.22, for pc-linux-gnu (i686) using readline 5.0
Copyright (C) 2002 MySQL AB
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL license
Usage: mysql [OPTIONS] [database]
 -?, --help Display this help and exit.
...
 -p, --password[=name]
 Password to use when connecting to server. If password is
 not given it's asked from the tty.
 -u, --user=name User for login if not current user.
...

We’ve shown only part of the output here. You can see that you can use the short form
-? instead of --help, -u in place of --user=, and -p in place of --password=. The brackets
indicate that a clause is optional; for example, you can call the mysql program without
any command-line options or database name.

Some options assume default values if you don’t specify anything. To avoid surprises,
you can always explicitly specify the values you want.

When a command gets too long for the page, we show it on multiple lines, with each
line ending with a backslash (\) symbol. For example, we might show the previous
command as:

$ mysql \
 --user=saleh \
 --password=tomcat

The backslash characters indicate that this is a single command that should be typed
in all on one line. You can actually type in the backslash on a Linux or Mac OS X system
to continue your command on a new line, but it’s not necessary.

Following the Instructions in This Book | 21

Downloading and Verifying Files from the MySQL AB Web Site
We’ll now describe in detail the steps you need to follow to get MySQL up and running
on Linux, Windows, and Mac OS X systems. We’ll also describe how to start, stop,
and configure your MySQL server.

If you install MySQL using the packages provided by MySQL AB, you still need Apache,
PHP, and Perl for the later chapters in this book. You can instead follow the instructions
to install the XAMPP integrated package to get everything you need. For Linux, you
can also use packages provided by your distribution.

Downloading MySQL from the MySQL AB Web Site
The MySQL AB web site usually has the very latest versions of the MySQL software.
To download from this web site, follow these steps:

1. Visit the MySQL AB downloads page at http://dev.mysql.com/downloads. Fig-
ure 2-2 shows what this page looks like.

2. Select the MySQL version that you want. You’ll normally want the latest Generally
Available (GA) release; this is 5.0.67 at the time of writing. However, you can also
download the cutting-edge beta version to try out new features or to help identify
problems before the new version becomes the general release.

3. You’ll see a long list of packages for the MySQL version you selected; Figure 2-3
shows part of this downloads page. Select the appropriate package to download
for your system. In the following sections, we’ll tell you what this is for each op-
erating system and installation approach.

4. Before the file download starts, you’ll probably be asked to to pick a mirror server
near you. Mirrors are servers that have identical copies of files for download, and
are used to share the burden of many people downloading the packages. The
MySQL site uses an IP-to-location database to guess where you are and will suggest
some nearby servers you can download from. Selecting a mirror will start the file
download.

Verifying Package Integrity with MD5
When downloading files from the Internet, it’s a good idea to ensure that what you’ve
got is what you wanted to get. For a production server, we recommend that you check
the integrity of packages that you download. A simple way to do this is to compare
checksums generated by a digest algorithm such as MD5.

A digest algorithm takes some data (for example, an RPM file) as input and calculates
a 128-bit number, or checksum, from this data. With a good digest algorithm, it’s prac-
tically impossible to change the data without changing the checksum, so if the check-
sums of two files match, you can be certain that the files are identical.

22 | Chapter 2: Installing MySQL

http://dev.mysql.com/downloads

On the MySQL download page, you’ll see a different string of characters such as:

MD5: 0d2a3b39e7bb4109b2f7b451b7768f34

next to each file. You should ensure that the checksum of the file you have downloaded
matches the corresponding value on the downloads page.

On Linux, use the md5sum program on the downloaded file:

$ md5sum mysql-standard-5.0.22-linux-i686.tar.gz
0eaa7a8ec18699ce550db1713a27cda3 mysql-standard-5.0.22-linux-i686.tar.gz

The filename is shown in italic in this example because the name is likely
to change, and you’ll have to type in the actual name of the file you
download.

On Windows, you can download and use the free winMd5Sum program from http://
www.nullriver.com/winmd5sum. This program is very easy to use; just install and start
the program, press the “...” button to browse for and select the downloaded file, and

Figure 2-2. The MySQL AB downloads page

Downloading and Verifying Files from the MySQL AB Web Site | 23

http://www.nullriver.com/winmd5sum
http://www.nullriver.com/winmd5sum

then read off the checksum value. Figure 2-4 shows what this program’s dialog box
looks like.

On Mac OS X, open a terminal window and use the md5 program:

$ md5 mysql-standard-5.0.22-osx10.4-i686.dmg
MD5
(mysql-standard-5.0.22-osx10.4-i686.dmg) =
 b7d7f0878503db504e1eaed5d2518f4e

Digitally signed packages offer a more secure way to ensure that files have not been
tampered with; however, MD5 checksums should be sufficient for most readers of this
book.

Figure 2-3. The Linux section of the MySQL downloads page

24 | Chapter 2: Installing MySQL

Open source projects such as MySQL, Apache, PHP, and Perl produce
constantly evolving software, with new versions appearing regularly.
The installation files typically include the version number in the file-
name—for example, MySQL-server-<version>.i686.rpm. The versions
of the software that you will use are almost certainly newer than the
ones used in our examples, so you should substitute the appropriate
version number when handling them. Of course, installation details
change over time—things generally become easier—so expect some
variation from the steps we discuss here. You’ll also probably find that
the output we show for various programs will be slightly different from
what you see on your own system.

Whenever you install software that can accept connections from other
computers, you should take care to configure your computer firewall
software to block connections from unauthorized systems. This is par-
ticularly important if your computer is easily accessible from the Inter-
net, for example through your connection to your Internet Service Pro-
vider (ISP).

Installing Under Linux
There are five main ways to get MySQL up and running on a Linux system. You can:

• Install a system-wide server from packages downloaded from the MySQL AB web
site. Using packages supplied by MySQL AB means that the MySQL-related files
are located together in a consistent way.

MySQL AB provides these packages in the RPM format: a collection of files that
can be processed and installed by the rpm program. The name is a vestige of the
program’s origins as the Red Hat Package Manager. However, many Linux distri-
butions other than Red Hat use RPMs for managing software installation; these
include Fedora, Mandriva/Mandrake, and SUSE. The MySQL AB company also
provides files for download in the format used by Debian-based distributions but

Figure 2-4. Using winMd5Sum to verify the MD5 checksum of a downloaded file

Installing Under Linux | 25

recommends that the apt-get method be used instead; we describe the recom-
mended approach in this chapter.

• Install a system-wide or local server using using a compressed directory (known as
a gzipped tar archive) from the MySQL AB web site. This directory has all the
necessary MySQL files ready to run in place; you don’t need to run an installer
program or place the files in a particular location on disk.

• Install a system-wide or local server by downloading the MySQL source code from
the MySQL AB web site and compiling the executable programs yourself. This is
the most time-consuming way of setting up Linux, but is the most flexible for power
users.

• Install a system-wide server using packages created by your Linux distribution; you
can download these from the Web or install them from your Linux CDs.

• Install a system-wide server by downloading the XAMPP integrated package. Note
that XAMPP is not designed for use as a local server, and significant effort is re-
quired to get around this limitation.

We’ll describe each of these approaches in detail. If you’re not sure which approach is
most suitable for you, we recommend you first try to use the packages provided by your
Linux distribution.

Installing MySQL on Linux Using RPM Packages from MySQL AB
First, go to the MySQL AB downloads page following the instructions in the “Down-
loading MySQL from the MySQL AB Web Site” section, and scroll down the list to the
part of the page with the label “Linux x86 RPM downloads.” The x86 indicates the
processor type; almost all PCs today use x86 processors. If you have a more advanced
type, such as an AMD 64-bit processor, you should find the appropriate part of the
downloads page.

Pick RPM packages for both the MySQL server and the client, taking care that you
select the correct version for your Linux distribution and your processor. These will
be called something like MySQL-server-5.0.22-0.i386.rpm and MySQL-cli
ent-5.0.22-0.i386.rpm. Packages with higher CPU numbers, such as i586 or i686, are
better tuned for newer machines, but won’t work on older machines.

If you intend to do server benchmarking and testing, you may need to download the
benchmark and test suites package (with a name like MySQL-
bench-5.0.22-0.i386.rpm); however, you won’t need them for this book.

To install the RPM files, you’ll need to log in as the system root user. Open a terminal
program and use the su - command to log in as the root user:

$ su -
#

26 | Chapter 2: Installing MySQL

Change to the directory containing the MySQL RPM files you downloaded. This is
typically your home directory or your desktop directory. To change to the home di-
rectory of the user adam, you’d type:

cd ~adam

The location of the desktop directory depends on the Linux distribution you use, but
is commonly the Desktop directory under the home directory. To change to the desktop
directory of the user adam, you’d type:

cd ~adam/Desktop

You can then install the MySQL server and MySQL client RPMs (or upgrade any ex-
isting versions) by typing:

rpm --upgrade --verbose --hash \
 MySQL-server-5.0.22-0.i386.rpm MySQL-client-5.0.22-0.i386.rpm

If all goes well, your MySQL server should now be installed. We’ll look at how to
configure it in “Configuring a Newly Installed Server,” later in this chapter.

Installing MySQL on Linux Using a gzipped Tar Archive from MySQL AB
Instead of using an installable package, you can download a compressed directory of
the MySQL executable and support files. This process is slightly more involved than
installation from a package.

Follow the instructions of “Downloading MySQL from the MySQL AB Web Site” and
download the appropriate package from the “Linux (non RPM package) downloads”
section of the MySQL AB downloads page. For this book, select the “standard” pack-
age, rather than the “Max” or “debug” versions.

If you’re unsure what to choose, try picking the Linux download at the top of the list.
This will be named something like mysql-standard-5.0.22-linux-i686.tar.gz.

For distribution, Linux software is often packaged using the tar program, and then this
package is compressed using the gzip program, so the final file often has the file ex-
tension .tar.gz or .tgz. A .tar file, or its gzipped version, is often referred to as a tar-
ball. You’ll need to unpack, or untar, this package:

$ tar --gunzip --extract --file mysql-standard-5.0.22-linux-i686.tar.gz

The gunzip option asks the program to decompress the file first using the gunzip pro-
gram. Some browsers automatically decompress files that have a .gz extension; if you
get a message like “gzip: stdin: not in gzip format,” this has probably happened in your
case, and you can omit the gunzip option:

$ tar --extract --file mysql-standard-5.0.22-linux-i686.tar.gz

You should now have the directory: mysql-standard-5.0.22-linux-i686. To keep things
simple, we’ll call this the MySQL directory.

Installing Under Linux | 27

The MySQL directory is self-contained and has all the files you need to run and access
the server. If you have superuser access on the Linux machine and want this MySQL
server to be the system-wide instance on the machine, you should move it across to a
the standard location under the /usr/local/ directory:

mv mysql-standard-5.0.22-linux-i686 /usr/local/

and make a link /usr/local/mysql that points to this directory:

ln --symbolic /usr/local/mysql-standard-5.0.22-linux-i686 /usr/local/mysql

Now you can simply refer to the MySQL directory as /usr/local/mysql. Using a sym-
bolic link in this way allows you to have different versions of MySQL ready to run on
the system, with /usr/local/mysql pointing to the directory containing the version you
want to use.

If you want to have a local installation, you can leave the MySQL directory under your
home directory. You’ll probably find it helpful to create the link ~/mysql to point to the
actual MySQL directory—for example:

$ ln --symbolic ~/mysql-standard-5.0.22-linux-i686 ~/mysql

With this link, you can use ~/mysql wherever you want to refer to the ~/mysql-
standard-5.0.22-linux-i686 directory.

Installing MySQL on Linux by Compiling the Source Code from MySQL AB
Given the nature of this book, we won’t go into detailed compile-time settings, but will
just look at how you can quickly get the server up and running.

First, you need to download the source file package from the MySQL AB downloads
page, following the directions in “Downloading MySQL from the MySQL AB Web
Site.” Go to the “Source downloads” section and download the “Tarball (tar.gz)”
package.

After downloading, you should have a file with a name like mysql-5.0.22.tar.gz. De-
compress this package using the following command:

$ tar --gunzip --extract --file mysql-5.0.22.tar.gz

This creates a new directory containing the MySQL source files; change your working
directory to this by typing:

$ cd mysql-5.0.22

You must now compile the source code and install the resulting programs. After you’ve
done this, you’ll have a MySQL directory that has all the files you need to run and access
the server. This is very similar to the tarball approach. Unlike the tarball approach,
however, you need to first use the configure command to tell the compilation process
where you want the MySQL directory to be located.

28 | Chapter 2: Installing MySQL

If you have superuser privileges and want your MySQL installation to be system-wide,
it’s best to install to a directory under the /usr/local directory—for example, /usr/local/
mysql-5.0.22. On the other hand, if you want to run a local server, you can have the
MySQL directory wherever you wish—for example, under your own home directory
at ~/mysql-5.0.22.

To install MySQL to the directory /usr/local/mysql-5.0.22, we call the configure com-
mand with the target as follows:

$./configure --prefix=/usr/local/mysql-5.0.22

If all is not well, you may see some error messages. Problems during configuration are
generally due to Linux programs and libraries missing from your system; read the error
messages carefully to identify the cause of the problem.

If the configuration is successful, you can use the make command to compile the files:

$ make

The compilation process may take a long time.

You need to use the GNU variant of the make program (http://www.gnu
.org/software/make). The make command on most Linux systems is in
fact the GNU make program; if you run into problems when using
make, it might not be GNU make, and the problem may be resolved by
using the gmake (GNU make) command instead.

When it’s done, you need to install the files to the directory you specified earlier. If
you’ve chosen to install a local server, you can simply type:

$ make install

If—as in our example—you’ve specified a prefix path that you can’t normally write to
as an ordinary user, you’ll need to first log in as root:

$ su -

and then run make install from the root prompt to copy the compiled files to the target
installation directory:

make install

If all goes well, the MySQL files will be installed in the correct directory. You’ll often
find it helpful to create a link to refer to this directory easily. For example, for a system-
wide server, you can make the link /usr/local/mysql to point to the /usr/local/
mysql-5.0.22 directory:

ln --symbolic /usr/local/mysql-5.0.22 /usr/local/mysql

Now you can simply refer to the MySQL directory as /usr/local/mysql. Similarly, if
you specified the path /home/adam/mysql-5.0.22 for a local installation, you can make
the link ~/mysql to point to the ~/mysql-5.0.22 directory:

Installing Under Linux | 29

http://www.gnu.org/software/make
http://www.gnu.org/software/make

$ ln --symbolic ~/mysql-5.0.22 ~/mysql

and refer to the directory as ~/mysql.

Again, using a symbolic link in this way allows you to configure and use different ver-
sions of MySQL on a system, with the symbolic link pointing to the directory containing
the version you want to use.

Note that the configuration process assumes default values for anything that you don’t
specify. For example, you can explicitly set the data directory, TCP port, and socket
file (more about these later):

$
./configure \
 --prefix=/home/adam/mysql \
 --localstatedir=/home/adam/mysql/data \
 --with-unix-socket-path=/home/adam/mysql/mysql.sock \
 --with-tcp-port=53306

However, we recommend you compile only with the prefix directory specified. You
can then modify other settings by passing options to MySQL from the command line;
we explain how to do this in “Configuring a local server,” later in this chapter. Even
better, you can specify the options in an options file as described in Chapter 11.

Installing MySQL, Apache, PHP, and Perl on Linux Using Distribution
Packages
Almost all distributions include packaged versions of the main pieces of software that
you need to follow this book: MySQL, the Apache web server, and support for the PHP
and Perl scripting languages. In this section, we’ll explain how to install these if they’re
not already present on your Linux system.

The three main distributions we’ll cover are Red Hat, Mandriva, and Debian, as well
as distributions associated with these, including Fedora, Mandrake, Ubuntu, and
Knoppix. These are very widely used, and are well supported by the distributors and
by the general Linux community. Configured correctly, they can automatically fetch
and install the required software from the installation media or from the Internet.

Most distributions have an easy-to-use graphical package-management tool that you
can use, but the command-line tools are generally more reliable, and we feel you’ll
better understand how things fit together by carrying out the installation from the
command line.

Installation on Red Hat and Fedora Core

Red Hat is probably the most famous Linux distribution, and Fedora Core is the cut-
ting-edge version of Red Hat’s Enterprise Linux distribution. If you’re installing one of
these two from scratch, select the Custom installation option and, when you see the
package-selection list like that shown in Figure 2-5, select (put a checkmark) next to

30 | Chapter 2: Installing MySQL

the Web Server item. To add PHP support and PHP MySQL libraries, click on the
Details link on the right and select the packages “php” and “php-mysql” from the list;
you should see something similar to Figure 2-6. Once you’ve done this, return to the
package-selection list and select (put a checkmark) next to the MySQL Database item.
As before, click on the Details link and ensure the “php-mysql” package is selected.

If you already have a running Linux installation, you can use the rpm command to check
whether MySQL, Apache (known as httpd), and PHP are already installed:

$ rpm --query --whatprovides mysql php php-mysql
mysql-5.0.22-1.FC5.1
mysql-server-5.0.22-1.FC5.1
httpd-2.2.0-5.1.2
php-5.1.4-1
php-mysql-5.1.4-1

If, as in this example, all the necessary packages are installed, you can simply skip to
“Configuring a Newly Installed Server,” later in this chapter.

If the packages aren’t present, you’ll see messages like this:

no package provides php

Figure 2-5. Red Hat and Fedora package options

Installing Under Linux | 31

and you’ll need to install any missing packages.

Run the Package Manager by selecting Add/Remove Software from the Fedora menu.
Alternatively, log in as root and type:

pirut

You should see a window similar to the one shown in Figure 2-7. Select the List tab,
and choose any of these packages that don’t already have a checkmark next to them:

httpd-2.2.0-5.1.2.i386
Apache HTTP Server

mysql-5.0.22-1.FC5.1.i386
MySQL client programs and shared libraries

Figure 2-6. Detailed Red Hat and Fedora package options

32 | Chapter 2: Installing MySQL

mysql-server-5.0.22-1.FC5.1.i386
The MySQL server and related files

php-5.1.2-5.i386
The PHP HTML-embedded scripting language (PHP Hypertext Preprocessor)

php-mysql-5.1.4-1.i386
A module for PHP applications that use MySQL databases

The version numbers you see will probably be different from the ones we’ve listed.
Once you’ve selected these, click the Apply button, and the software should be
installed.

If you’re using an older version of Red Hat or Fedora, the easiest way to install is to log
in under the root user account (by typing su -) and launch the package-management
program shown in Figure 2-5:

system-config-packages

Place a checkmark next to the entry for MySQL Database, and click on the Details link.
You’ll see a window such as that in Figure 2-6. Select the “mysql-server” and “php-
mysql” packages, and then click the Close button. You’ll be prompted for the Red Hat
or Fedora installation CDs, and the selected packages will be installed.

Figure 2-7. Red Hat and Fedora 5 package-management program

Installing Under Linux | 33

If you have a relatively recent version of Red Hat or Fedora, you can also use the yum
(short for Yellowdog Updater Modified) program to automatically download and in-
stall the necessary packages from the Internet. This is very convenient because you
don’t have to spend time digging up your installation CDs. More importantly, the latest
version of a package generally has patches for known bugs and security vulnerabilities.
If you’ve never used yum before, you need to configure it first. First, type su - to log in
as the system root user, and then update your /etc/yum.conf configuration file by
typing:

wget http://www.fedorafaq.org/samples/yum.conf
/bin/mv /etc/yum.conf /etc/yum.conf.bak
/bin/mv yum.conf /etc

Now, update the yum indexes that list packages and the locations that they can be
downloaded from:

rpm --upgrade --verbose --hash http://www.fedorafaq.org/yum
Retrieving http://www.fedorafaq.org/yum
Preparing... ### [100%]
1:yum-fedorafaq ### [100%]

Once you’ve configured yum, you can download and install all the programs you need
by simply specifying them from the command line:

yum update mysql mysql-server httpd php php-mysql
[root@saiedpc ~]# yum update mysql mysql-server httpd php php-mysql
...

Could not find update match for php
Could not find update match for php-mysql
Could not find update match for mysql-server
Could not find update match for mysql
Resolving Dependencies

...

===
Package Arch Version Repository Size
===
Updating:
httpd i386 2.2.2-1.2 updates 1.1 M
Updating for dependencies:
httpd-manual i386 2.2.2-1.2 updates 846 k
mod_ssl i386 1:2.2.2-1.2 updates 99 k

Transaction Summary
===
Install 0 Package(s)
Update 3 Package(s)
Remove 0 Package(s)
Total download size: 2.0 M
Is this ok [y/N]: y
Downloading Packages:
(1/3): mod_ssl-2.2.2-1.2. 100% |=========================| 99 kB 00:14

34 | Chapter 2: Installing MySQL

(2/3): httpd-2.2.2-1.2.i3 100% |=========================| 1.1 MB 03:14
(3/3): httpd-manual-2.2.2 100% |=========================| 846 kB 02:40
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
Updating : httpd ######################### [1/6]
Updating : mod_ssl ######################### [2/6]
Updating : httpd-manual ######################### [3/6]
Cleanup : mod_ssl ######################### [4/6]
Cleanup : httpd ######################### [5/6]
Cleanup : httpd-manual ######################### [6/6]

Updated: httpd.i386 0:2.2.2-1.2
Dependency Updated: httpd-manual.i386 0:2.2.2-1.2 mod_ssl.i386 1:2.2.2-1.2
Complete!

You’ll see lots of interesting messages flash by; we haven’t shown them all here. If all
goes well, you should see the reassuring Complete status message at the end. If the latest
version of a package is already installed, yum will tell you that it Could not find update
match for that package. To learn more about Fedora and configuring yum, visit the
Unofficial Fedora FAQ page (http://www.fedorafaq.org).

You can also download Red Hat or Fedora RPMs and install and upgrade them man-
ually just as you would the MySQL AB ones. For example, you can visit the web site
http://rpm.pbone.net and search for mysql; pick and download the RPM for Red Hat or
Fedora with the highest version number. Once you’ve downloaded the files, log in
under the root account by typing su -, and then install the RPM packages by typing in
this command (all on one line):

rpm --upgrade --verbose --hash \
 mysql-server-5.0.22-2.1.i386.rpm \
 mysql-5.0.22-2.1.i386.rpm \
 httpd-2.2.2-7.i386.rpm \
 php-5.1.4-8.1.i386.rpm

Installation on Mandriva

Mandriva, formerly known as Mandrake, is very easy to use for this book (we use it
ourselves). MySQL, Apache, PHP, and Perl all come on the distribution CDs.

If you’re installing Mandriva from scratch, choose the Expert installation option and
select the MySQL server and client packages.

If you already have a running Mandriva installation, you can check whether Apache,
PHP, and MySQL are already installed by typing:

$ rpm --query --whatprovides mysql mysql-client apache php php-mysql
MySQL-5.0.23-1mdv2007.0
MySQL-client-5.0.23-1mdv2007.0
apache-mpm-prefork-2.2.3-1mdv2007.0
apache-mod_php-5.1.4-1mdk

Installing Under Linux | 35

http://www.fedorafaq.org
http://rpm.pbone.net

php-cli-5.1.4-6mdv2007.0
php-mysql-5.1.4-3mdv2007.0

If, as in this example, all the necessary packages are installed, you can simply skip to
“Configuring a Newly Installed Server,” later in this chapter.

If the packages aren’t present, you’ll see messages like this:

no package provides php

and you’ll need to install any missing packages.

The easiest way to install is to log in under the root account (by typing su -) and type:

rpmdrake

This will launch the package-management program, shown in Figure 2-8. Place a
checkmark next to the entries for the MySQL server and client, and click on the Install
button. You’ll be prompted to insert the Mandriva installation CDs, and the selected
packages will be copied and installed.

If you prefer to use the command line, you can use the urpmi command to specify
packages to install. This will prompt you to insert the appropriate installation CDs,

Figure 2-8. The Mandriva package-management program

36 | Chapter 2: Installing MySQL

and will install the packages. You may be prompted to install other related packages,
depending on what’s already available on your system, but in most cases, it should be
painless.

If you have a fast Internet connection, you can also configure urpmi to download and
install the very latest packages from the Internet. This is very convenient because you
don’t have to spend time digging up your installation CDs. More importantly, the latest
version of a package generally has patches for known bugs and security vulnerabilities.
To set up Internet downloads, you’ll first need to tell urpmi where to find the packages.
The easiest way to do this is to go to http://easyurpmi.zarb.org; this site will ask you a
few questions and then provide you a list of commands you need to type in as the system
root user to configure the sources (Figure 2-9 shows how this site looks.) From time to
time, you should update the urpmi indexes by logging in as the system root user and
typing:

urpmi.update -a

Whichever approach—CDs or the Internet—you use, you just need to type urpmi
package_name as the root user to fetch and install the required packages.

$ urpmi mysql mysql-client apache php php-mysql
One of the following packages is needed:
 1- MySQL-5.0.23-1mdv2007.0.i586 : MySQL: a very fast and reliable SQL database
 engine (to install)
 2- MySQL-Max-5.0.23-1mdv2007.0.i586 : MySQL - server with extended functionality
 (to install)
 3- MySQL-NDB-4.1.12-4.3.20060mdk.i586 : MySQL - server with Berkeley DB, Innodb
 and NDB Cluster support (to install)
What is your choice? (1-3) 1
To satisfy dependencies, the following packages are going to be installed:
MySQL-5.0.23-1mdv2007.0.i586
MySQL-client-5.0.23-1mdv2007.0.i586
MySQL-common-5.0.23-1mdv2007.0.i586
apache-mod_php-5.1.4-2mdv2007.0.i586
libmysql15-5.0.23-1mdv2007.0.i586
perl-DBD-mysql-3.0006-1mdv2007.0.i586
php-mysql-5.1.4-3mdv2007.0.i586
Proceed with the installation of the 7 packages? (39 MB) (Y/n) Y

 ftp://somehost.net/somedir/libmysql15-5.0.23-1mdv2007.0.i586.rpm
 ftp://somehost.net/somedir/perl-DBD-mysql-3.0006-1mdv2007.0.i586.rpm
 ftp://somehost.net/somedir/MySQL-common-5.0.23-1mdv2007.0.i586.rpm
 ftp://somehost.net/somedir/MySQL-client-5.0.23-1mdv2007.0.i586.rpm
 ftp://somehost.net/somedir/MySQL-5.0.23-1mdv2007.0.i586.rpm
 ftp://somehost.net/somedir/apache-mod_php-5.1.4-2mdv2007.0.i586.rpm
installing
 libmysql15-5.0.23-1mdv2007.0.i586.rpm
 MySQL-client-5.0.23-1mdv2007.0.i586.rpm
 MySQL-common-5.0.23-1mdv2007.0.i586.rpm
 perl-DBD-mysql-3.0006-1mdv2007.0.i586.rpm
 MySQL-5.0.23-1mdv2007.0.i586.rpm
 apache-mod_php-5.1.4-2mdv2007.0.i586.rpm

Installing Under Linux | 37

http://easyurpmi.zarb.org

 php-mysql-5.1.4-3mdv2007.0.i586.rpm
from /var/cache/urpmi/rpms
Preparing... ######...######
 1/7: libmysql15 ######...######
 2/7: MySQL-client ######...######
 3/7: perl-DBD-mysql ######...######

Figure 2-9. The easyURPMI configuration page

38 | Chapter 2: Installing MySQL

 4/7: MySQL-common ######...######
 5/7: MySQL ######...######
 6/7: apache-mod_php ######...######
 7/7: php-mysql ######...######
--

More information on package MySQL-5.0.23-1mdv2007.0.i586

The initscript used to start mysql has been reverted to use the one shipped by
MySQL AB. This means the following changes:

 * The MYSQLD_OPTIONS="--skip-networking" option in the /etc/sysconfig/mysqld
 file has been removed, this is now set in the /etc/my.cnf file.

 * The MySQL Instance Manager is used by default, set use_mysqld_safe="1" in
 the /etc/sysconfig/mysqld file to use the old mysqld_safe script.

The extra MySQL-NDB server package has been merged into the MySQL-Max package
and ndb related pieces has been split into different sub packages as done by
MySQL AB. The MySQL libraries and the MySQL-common sub package uses the
MySQL-Max build so that no functionality required by for example the NDB parts
are lost.

The MySQL-common package now ships with a default /etc/my.cnf file that is
based on the my-medium.cnf file that comes with the source code. The
/etc/my.cnf file is constructed at build time of this package.

To connect to the Instance Manager you need to pass the correct command line
options like in the following examples:

 * mysql -u root --password=my_password --port=2273 --protocol=TCP
 * mysql -u root --password=my_password
 --socket=/var/lib/mysql/mysqlmanager.sock

Please note you also need to add a user in the /etc/mysqlmanager.passwd file
and make sure the file is owned by the user under which the Instance Manager
service is running under.

--

Here, urpmi has downloaded the latest versions of the programs from the Internet.
During installation, some packages display messages that you should read; in our ex-
ample, the MySQL package installation routine has described how the configuration
has changed since older versions.

You can also download and install or upgrade the Mandriva RPMs without using
urpmi. For example, you can visit http://rpm.pbone.net and search for mysql; pick and
download the RPMs for Mandriva with the highest version number. Once you’ve
downloaded the files, log in as the root user by typing su -, and then install the RPM
packages by running this command (all on one line):

rpm --upgrade --verbose --hash \
 MySQL-5.0.23-1mdv2007.0.i586.rpm \
 MySQL-client-5.0.23-1mdv2007.0.i586.rpm \

Installing Under Linux | 39

http://rpm.pbone.net

 MySQL-common-5.0.23-1mdv2007.0.i586.rpm \
 apache-mod_php-5.1.4-2mdv2007.0.i586.rpm \
 libmysql15-5.0.23-1mdv2007.0.i586.rpm \
 perl-DBD-mysql-3.0006-1mdv2007.0.i586.rpm \
 php-mysql-5.1.4-3mdv2007.0.i586.rpm

Installing under Debian-based systems

Debian Linux and its derivatives use Debian .deb packages, rather than RPMs. The
popular Ubuntu and Knoppix distributions are based on Debian.

To check whether Apache, PHP, and MySQL are already installed on a Debian-based
Linux system, use the dpkg --list command. If any packages aren’t present, the dpkg
program will let you know:

$ dpkg --list mysql-common mysql-server mysql-client apache2 php5
No packages found matching mysql-client.
No packages found matching apache2.
No packages found matching php5.
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description
+++-============-===============-==
ii mysql-common 5.0.21-3ubuntu1 mysql database common files (e.g. /etc/mysql/my.cnf)
un mysql-server <none> (no description available)

On some older distributions, you may need to specify php4 rather than php5.

To install MySQL, Apache, and PHP, you must first log in as the root user by typing
su -, and then use the apt-get install command:

apt-get --verbose-versions install mysql-common mysql-server mysql-client apache2 php5
Reading package lists... Done
Building dependency tree... Done
mysql-common is already the newest version.
The following extra packages will be installed:
apache2-common (2.0.55-4ubuntu2)
apache2-mpm-prefork (2.0.55-4ubuntu2)
apache2-utils (2.0.55-4ubuntu2)
libapache2-mod-php5 (5.1.2-1ubuntu3)
libapr0 (2.0.55-4ubuntu2)
libdbd-mysql-perl (3.0002-2build1)
libdbi-perl (1.50-1)
libnet-daemon-perl (0.38-1)
libplrpc-perl (0.2017-1)
mysql-client-5.0 (5.0.21-3ubuntu1)
mysql-server-5.0 (5.0.21-3ubuntu1)
php5-common (5.1.2-1ubuntu3)
ssl-cert (1.0.13)
Suggested packages:
apache2-doc (2.0.55-4ubuntu2)
lynx (2.8.5-2ubuntu1)
www-browser ()
php-pear (5.1.2-1ubuntu3)

40 | Chapter 2: Installing MySQL

dbishell ()
libcompress-zlib-perl (1.41-1)
Recommended packages:
mailx (8.1.2-0.20050715cvs-1ubuntu1)
The following NEW packages will be installed:
apache2 (2.0.55-4ubuntu2)
apache2-common (2.0.55-4ubuntu2)
apache2-mpm-prefork (2.0.55-4ubuntu2)
apache2-utils (2.0.55-4ubuntu2)
libapache2-mod-php5 (5.1.2-1ubuntu3)
libapr0 (2.0.55-4ubuntu2)
libdbd-mysql-perl (3.0002-2build1)
libdbi-perl (1.50-1)
libnet-daemon-perl (0.38-1)
libplrpc-perl (0.2017-1)
mysql-client (5.0.21-3ubuntu1)
mysql-client-5.0 (5.0.21-3ubuntu1)
mysql-server (5.0.21-3ubuntu1)
mysql-server-5.0 (5.0.21-3ubuntu1)
php5 (5.1.2-1ubuntu3)
php5-common (5.1.2-1ubuntu3)
ssl-cert (1.0.13)
0 upgraded, 17 newly installed, 0 to remove and 0 not upgraded.
Need to get 31.9MB/32.2MB of archives.
After unpacking 75.8MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
...

The --verbose-versions option displays detailed information on the packages. Once
you press the Y key, the required packages will be automatically downloaded and in-
stalled. We’ve left out most of the displayed messages to save space.

You can also download and install or upgrade the Debian packages without using
apt-get; for example, you can visit the web page http://www.debian.org/distrib/pack
ages, select your distribution, and search for “mysql.” Pick and download the package
with the highest version number for your distribution. Once you’ve downloaded the
files, log in as the root user by typing su -, and then install the packages by using the
dpkg --install command—for example:

dpkg --install \
 mysql-common_5.0.22-4_all.deb \
 mysql-server_5.0.22-4_all.deb \
 mysql-client-5.0_5.0.22-4_i386.deb \
 libmysqlclient15off_5.0.22-4_i386.deb

However, it’s quite likely that you’ll need to download other associated packages before
the installation can proceed, and we recommend that you use the apt-get approach to
automate the process. As we mentioned earlier in “Installing Under Linux,” you can
also download packages in the .deb format from the MySQL AB downloads page.

Installing Under Linux | 41

http://www.debian.org/distrib/packages
http://www.debian.org/distrib/packages

Uninstalling MySQL

You can generally install a newer software package over an older one by using the
rpm --upgrade, urpmi, yum update, or apt-get install commands described earlier. If,
you actually want to remove a package altogether rather than upgrading it, you should
first type su - to log in as the root user, and then execute the appropriate uninstall
commands.

Note that the data directory that contains your database files is not actually installed
but created after installation. This is typically the directory data under the MySQL base
directory, or /var/lib/mysql for a Linux distribution package installation. Uninstalling
MySQL packages does not delete this directory, so the files containing your data should
remain in place, unchanged.

For an RPM-based system such as Red Hat, Fedora, or Mandriva, use the
rpm --erase command to uninstall specific packages. If you’re unsure what the exact
package names are, you can use the rpm --query --all command to list all the installed
RPM packages, together with the grep --ignore-case command to show only those
with “mysql” (in uppercase or lowercase letters) in their name:

$ rpm --query --all | grep --ignore-case mysql
perl-DBD-mysql-3.0004-1mdv2007.0
MySQL-5.0.23-1mdv2007.0
libmysql15-5.0.23-1mdv2007.0
MySQL-client-5.0.23-1mdv2007.0
php-mysql-5.1.4-3mdv2007.0
MySQL-common-5.0.23-1mdv2007.0

Note that the .rpm file extension is not considered to be part of the package name. To
uninstall RPM packages, you use the rpm command with the --erase option, and list
the packages to remove. For example, you’d type (all on one line):

rpm --erase \
 perl-DBD-mysql-3.0004-1mdv2007.0 \
 MySQL-5.0.23-1mdv2007.0 \
 libmysql15-5.0.23-1mdv2007.0 \
 MySQL-client-5.0.23-1mdv2007.0 \
 php-mysql-5.1.4-3mdv2007.0 \
 MySQL-common-5.0.23-1mdv2007.0

You can query and remove the packages in one go by using the xargs command:

rpm --query --all | grep --ignore-case mysql | xargs rpm --erase
warning: /etc/my.cnf saved as /etc/my.cnf.rpmsave
#

On a Red Hat or Fedora system with yum, you can also use the yum remove command:

yum remove mysql
[root@saiedpc yum.repos.d]# yum remove mysql
...

Dependencies Resolved

42 | Chapter 2: Installing MySQL

===
 Package Arch Version Repository Size
===
Removing:
 mysql i386 5.0.22-1.FC5.1 installed 5.5 M
Removing for dependencies:
 MySQL-python i386 1.2.0-3.2.2 installed 2.3 M
 libdbi-dbd-mysql i386 0.8.1a-1.2.1 installed 37 k
 mysql-connector-odbc i386 3.51.12-1.2.1 installed 387 k
 mysql-server i386 5.0.22-1.FC5.1 installed 22 M
 perl-Class-DBI-mysql noarch 1.00-1.fc5 installed 38 k
 perl-DBD-MySQL i386 3.0004-1.FC5 installed 324 k
 php-mysql i386 5.1.4-1 installed 176 k

Transaction Summary
===
Install 0 Package(s)
Update 0 Package(s)
Remove 8 Package(s)
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
 Removing : mysql-connector-odbc ######...###### [1/8]
 Removing : perl-Class-DBI-mysql ######...###### [2/8]
 Removing : perl-DBD-MySQL ######...###### [3/8]
 Removing : php-mysql ######...###### [4/8]
 Removing : mysql ######...###### [5/8]
 Removing : libdbi-dbd-mysql ######...###### [6/8]
 Removing : MySQL-python ######...###### [7/8]
warning: /var/log/mysqld.log saved as /var/log/mysqld.log.rpmsave
 Removing : mysql-server ######...###### [8/8]

Removed: mysql.i386 0:5.0.22-1.FC5.1
Dependency Removed:
 MySQL-python.i386 0:1.2.0-3.2.2
 libdbi-dbd-mysql.i386 0:0.8.1a-1.2.1
 mysql-connector-odbc.i386 0:3.51.12-1.2.1
 mysql-server.i386 0:5.0.22-1.FC5.1
 perl-Class-DBI-mysql.noarch 0:1.00-1.fc5
 perl-DBD-MySQL.i386 0:3.0004-1.FC5
 php-mysql.i386 0:5.1.4-1
Complete!

For Debian-based systems, you can uninstall the MySQL server and client by using the
apt-get remove command:

apt-get remove mysql-server mysql-client
Reading package lists... Done
Building dependency tree... Done
The following packages will be REMOVED:
 mysql-client mysql-server
0 upgraded, 0 newly installed, 2 to remove and 1 not upgraded.
Need to get 0B of archives.

Installing Under Linux | 43

After unpacking 31.3MB disk space will be freed.
Do you want to continue [Y/n]? Y
(Reading database ... 103699 files and directories currently installed.)
Removing mysql-client ...
Removing mysql-server ...

If you’re unsure what to use for the package names, you can search for packages asso-
ciated with MySQL using the following command:

dpkg --search "*mysql*" | cut --fields=1 --delimiter=":" | sort --unique

Installing MySQL, Apache, PHP, and Perl on Linux Using the XAMPP
Integrated Package
To install XAMPP on your Linux system, first visit the XAMPP home page (http://www
.apachefriends.org/en/xampp.html), follow the link to XAMPP for Linux, and download
the gzipped tar package. Switch to the superuser account:

$ su -

and create the directory /opt:

mkdir --parents /opt

We’re using the --parents option here to tell Linux not to complain if the directory
already exists.

Now change to this directory and extract the files from the package:

cd /opt
tar --gunzip --extract --file ~adam/xampp-linux-1.5.3a.tar.gz

Here, we’ve assumed that the downloaded file is in adam‘s home directory (~adam); use
the appropriate location on your system.

You can now start XAMPP by typing:

/opt/lampp/lampp start
Starting XAMPP for Linux 1.5.3a...
XAMPP: Starting Apache with SSL (and PHP5)...
XAMPP: Starting MySQL...
XAMPP: Starting ProFTPD...
XAMPP for Linux started.

If there is already a running MySQL or Apache server running on your system, XAMPP
may complain during startup. If this happens, shut these down before trying to start
XAMPP again. Stop any existing MySQL or Apache server before starting XAMPP.

Now that the server’s running, tighten up the security settings by typing:

/opt/lampp/lampp security
XAMPP: Quick security check...
XAMPP: Your XAMPP pages are NOT secured by a password.
XAMPP: Do you want to set a password? [yes] n
XAMPP: MySQL is accessible via network.

44 | Chapter 2: Installing MySQL

http://www.apachefriends.org/en/xampp.html)
http://www.apachefriends.org/en/xampp.html)

XAMPP: Normally that's not recommended. Do you want me to turn it off? [yes] y
XAMPP: Turned off.
XAMPP: Stopping MySQL...
XAMPP: Starting MySQL...
XAMPP: The MySQL/phpMyAdmin user pma has no password set!!!
XAMPP: Do you want to set a password? [yes] y
XAMPP: Password:
XAMPP: Password (again):
XAMPP: Setting new MySQL pma password.
XAMPP: Setting phpMyAdmin's pma password to the new one.
XAMPP: MySQL has no root password set!!!
XAMPP: Do you want to set a password? [yes] y
XAMPP: Write the password somewhere down to make sure you won't forget it!!!
XAMPP: Password:
XAMPP: Password (again):
XAMPP: Setting new MySQL root password.
XAMPP: Change phpMyAdmin's authentication method.
XAMPP: The FTP password is still set to 'lampp'.
XAMPP: Do you want to change the password? [yes] y
XAMPP: Password:
XAMPP: Password (again):
XAMPP: Reload ProFTPD...
XAMPP: Done.

This will allow you to set a password for the MySQL server and also to configure the
server for improved security.

The XAMPP installation may have PHP configured with the register_globals setting
turned on. You should disable this old, insecure feature. Open the file /opt/lampp/etc/
php.ini and look for the line register_globals = On. Change the value On to Off, save
the file, and quit the editor. The new setting will be in effect after you restart your
Apache server.

You can stop your XAMPP servers by typing:

/opt/lampp/lampp stop
Stopping XAMPP for Linux 1.5.3a...
XAMPP: Stopping Apache with SSL...
XAMPP: Stopping MySQL...
XAMPP: Stopping ProFTPD...
XAMPP stopped.

The MySQL data directory is /opt/lampp/var/mysql; the files are owned by the user
nobody, and in the root group. Given the nature of the XAMPP installation as a devel-
opment platform, we won’t go into detailed modification of permissions.

Configuring a Newly Installed Server
Once you’ve installed the server, there are some steps you should take to initialize the
database tables and configure the server for good security. One of the first things to do
is to set a password for the database root account; this is not the same as the system

Installing Under Linux | 45

root account but is similar in that it has all privileges on the MySQL server. Let’s look
at three situations:

• You’ve installed the server using RPM or Debian packages.

• You’ve installed a system-wide server using a tarball or by compiling source code.

• You’ve installed a local server to run under your own account using a tarball or by
compiling source code.

As we explained earlier, the XAMPP package is tightly integrated and is not designed
for easy modification, so we won’t explore how to customize an XAMPP installation.

Configuring a server installed using RPM or Debian packages

The package installation process generally places the MySQL program files in the /usr/
bin directory, the datafiles in the /var/lib/mysql directory, and the server logs in
the /var/log/mysqld directory or the /var/log/mysqld.log file.

The installation typically configures the files and directories securely and also creates
the /etc/init.d/mysql or /etc/init.d/mysqld (MySQL daemon) startup script for easy con-
trol of the server.

Check what this script is called on your system using the ls command:

$ ls /etc/init.d/mysql*
/etc/init.d/mysql

In the preceding example, the file is called mysql. Use the appropriate name (mysql or
mysqld) where you see mysql in the commands below.

To start the server, run the following command:

/etc/init.d/mysql start

Set a password for the database root account:

$ mysqladmin --user=root password the_new_mysql_root_password

You can stop the server by typing the command:

/etc/init.d/mysql stop

The package-based installation process generally starts the MySQL server, and config-
ures it to be started automatically each time the system is started. In “Configuring
MySQL for automatic start,” later in this chapter, we explain how to check and con-
figure automatic startup.

Configuring a system-wide server installed from tarball or source

For security reasons, it’s a good idea to have the system-wide MySQL server run under
its own username and group, rather than the superuser account. First, log in as the root
user with the su - command, and then create the mysql user group:

groupadd mysql

46 | Chapter 2: Installing MySQL

and the mysql user account that’s in the mysql user group:

useradd --gid mysql mysql

It’s all right if you get a message that the group or user already exists.

Now let’s configure the MySQL files and directories. Change to the directory where
you installed MySQL; here, we’ll assume that MySQL is installed in the directory /usr/
local/mysql:

cd /usr/local/mysql

To create the data directory and initialize the database for the user mysql, run the
mysql_install_db script from the scripts directory under the MySQL directory:

scripts/mysql_install_db --user=mysql

You should now change the files in the MySQL directory to be owned by root but be
in the mysql group:

chown --recursive root:mysql .

And change the database files in the data directory to be be owned by the mysql user
and group:

chown --recursive mysql:mysql data

We described this use of the chown command in “Restricting access to files and direc-
tories,” earlier in this chapter.

You can now start the server to run under the mysql system account by running the
mysqld_safe program from the MySQL bin directory:

bin/mysqld_safe --user=mysql &

The ampersand (&) character tells Linux to run the server in the background so that
you can use the shell to do other things. If you don’t add the ampersand at the end,
you won’t see the shell prompt again until the MySQL server is stopped from another
shell window.

The next thing to do is to set a password for the database root account:

$ bin/mysqladmin --user=root password the_new_mysql_root_password

You can stop the server by running the command:

$ bin/mysqladmin --user=root --password=the_mysql_root_password shutdown

Note that the user root on the Linux system is different from the user root on the
MySQL server, and you don’t need to be logged in as the Linux root user to shut down
the server with mysqladmin.

You can also start and stop the server using the mysql.server script that comes in the
support-files directory; start the server with:

$ support-files/mysql.server start

Installing Under Linux | 47

and stop the server with:

$ support-files/mysql.server stop

You can copy the mysql.server script and place it as the file mysql in the /etc/init.d
directory:

cp support-files/mysql.server /etc/init.d/mysql

This allows you to control the server by typing:

/etc/init.d/mysql start

and

/etc/init.d/mysql stop

as with the package-based installation approaches. Importantly, this also allows you
to configure the server to start on every boot; this is explained later in “Configuring
MySQL for automatic start.”

Configuring a local server

With a local installation, the MySQL files will be placed in a directory under your home
directory, and the server will run under your username rather than mysql.

First, change to the directory containing the MySQL installation. If you followed our
instructions in “Installing MySQL on Linux by Compiling the Source Code from
MySQL AB,” you can type:

$ cd ~/mysql

To configure the data directory and initialize the database, you must run the mysql_in
stall_db script from the scripts directory:

$ scripts/mysql_install_db

If you want to use a data directory that’s not under the MySQL installation directory,
you can specify the path using the datadir option, as in:

$ mysql_install_db datadir=/home/adam/MySQL_Data

However, we’ll assume you’ll use the default data directory ~/mysql/data.

Now you need to change the files in the MySQL directory to be owned by your username
and your group. For the username and group adam, you would write:

$ chown --recursive adam:adam ~/mysql

Again, we described this use of the chown command earlier in “Restricting access to files
and directories.”

By default, MySQL listens for incoming client connections on port number 3306; if
there’s already another server running on the same computer, you should choose a
different port number for this installation. It’s best to avoid using port numbers that

48 | Chapter 2: Installing MySQL

are typically used by other common programs. For instance, port 8080 is often used by
web servers and proxies. A web search for “common ports” is a good way to learn about
these. Note that only the root user can allocate port numbers below 1024. We’ll use
the port number 57777 for our example.

You also need to specify a custom location for the socket file; this is a special type of
file used by clients to connect to a server on the same machine. A common choice for
a socket file location is the server data directory; we’ll use the file path ~/mysql/data/
mysql.sock in the following example.

Now, start the server using the nonstandard port and socket file:

$ bin/mysqld_safe --port=57777 --socket=~/mysql/data/mysql.sock &

Note that if you’re using a nonstandard MySQL installation directory and don’t start
the server from inside that directory, you have to specify the path to the mysqld_safe
program and tell this program where the data directory is. For example, to run the
program from the ~/mysql/bin directory with the data directory ~/mysql/data, you
would type (all on one line):

$ ~/mysql/bin/mysqld_safe \
 --port=57777 \
 --socket=~/mysql/data/mysql.sock \
 --datadir=~/mysql/data &

Now that the server is running, set a password for the database root account by typing:

$ bin/mysqladmin \
 --port=57777 \
 --socket=~/mysql/data/mysql.sock \
 --user=root \
 password the_new_mysql_root_password

Once you’ve added a password for the database root user, you’ll have to use it for all
further client connections to the server for the root account.

You can stop the server using the mysqladmin shutdown command, with the necessary
options added to identify the server. Type all on one line:

$ bin/mysqladmin \
 --port=57777 \
 --socket=~/mysql/data/mysql.sock \
 --user=root \
 --password=the_mysql_root_password \
 shutdown

Configuring MySQL for automatic start

If you’re planning to use MySQL a lot, you’ll probably want to have the server start
automatically every time your computer is switched on. The typical way to do this is
to call a script to start and stop the MySQL server when the computer is started and
stopped.

Installing Under Linux | 49

If you used an RPM or Debian package to install MySQL, this script is generally already
installed as /etc/init.d/mysql or /etc/init.d/mysqld (MySQL daemon). Check what this
script is called on your system using the ls command:

$ ls /etc/init.d/mysql*
/etc/init.d/mysql

In the preceding example, the file is called mysql. Use the appropriate name (mysql or
mysqld) where you see mysql in the commands below.

If you installed from a tarball or from source, you’ll need to copy the file across yourself
as discussed in the earlier section, “Configuring a system-wide server installed from
tarball or source.”

A Linux system can start in one of six runlevels; a system starting in runlevel 5 will
typically boot straight into the graphical windowing environment such as KDE or
GNOME, while a system starting in runlevels 2 or 3 will end up at a text-based login
screen. There’s an easy way to check what runlevel you’re in; just use the runlevel
program in the /sbin directory:

$ /sbin/runlevel
N 5

Here, the system is in runlevel 5.

A program is started automatically for a particular runlevel if there’s a startup entry for
it in the corresponding /etc/rc<runlevel>.d directory. You can list all the entries for
MySQL by typing:

$ ls /etc/rc*.d/*mysql*
/etc/rc0.d/K90mysql /etc/rc2.d/S11mysql /etc/rc4.d/S11mysql /etc/rc6.d/K90mysql
/etc/rc1.d/K90mysql /etc/rc3.d/S11mysql /etc/rc5.d/S11mysql

The entries starting with “S” start the program when the system is booted, and the
entries starting with “K” stop (or kill) the program when the system is shut down. Here,
MySQL is set to start and stop automatically in runlevels 2, 3, 4, and 5. On Red Hat or
Mandriva systems, you can more conveniently determine this using the chkconfig
--list command:

chkconfig --list mysql
mysql 0:off 1:off 2:on 3:on 4:on 5:on 6:off

If your server shows “off” for the runlevel that you found using the runlevel command,
the MySQL server is not started automatically.

If you don’t see an entry for your preferred runlevel (normally 3 or 5), you’ll need to
add one yourself. Most Linux distributions have a graphical tool to configure startup
services. For example, under Red Hat and Fedora, you can run the Service Configura-
tion program by choosing the Services entry from the Administration submenu of the
System menu; you can also run this program by typing system-config-services at the
command line. Similarly, with Mandriva, you can use the Services program from the
Mandriva Control Center (select Configure Your Computer from the Configuration

50 | Chapter 2: Installing MySQL

submenu of the System menu); you can also run this program by typing
drakxservices at the command line. We’ll explain how to configure services without
using these graphical tools.

On a Red Hat or Mandriva system, type:

chkconfig --level 35 mysql on

to enable automatic startup in runlevels 3 and 5 (corresponding to normal console or
graphical operation run levels), and:

chkconfig --level 35 mysql off

to disable it.

In a Debian-based system, startup services are controlled using the update-rc.d com-
mand. Enable MySQL as follows:

update-rc.d mysql defaults
Adding system startup for /etc/init.d/mysql ...
/etc/rc0.d/K20mysql -> ../init.d/mysql
/etc/rc1.d/K20mysql -> ../init.d/mysql
/etc/rc6.d/K20mysql -> ../init.d/mysql
/etc/rc2.d/S20mysql -> ../init.d/mysql
/etc/rc3.d/S20mysql -> ../init.d/mysql
/etc/rc4.d/S20mysql -> ../init.d/mysql
/etc/rc5.d/S20mysql -> ../init.d/mysql

and disable automatic startup as follows:

update-rc.d -f mysql remove
update-rc.d: /etc/init.d/mysql exists during rc.d purge (continuing)
Removing any system startup links for /etc/init.d/mysql ...
/etc/rc0.d/K20mysql
/etc/rc1.d/K20mysql
/etc/rc2.d/S20mysql
/etc/rc3.d/S20mysql
/etc/rc4.d/S20mysql
/etc/rc5.d/S20mysql
/etc/rc6.d/K20mysql

If you have a standalone Apache web server installed, you can enable and disable its
automatic startup by using httpd or apache2 instead of mysql in the preceding
commands.

Installing Under Windows
The MySQL installation process for Windows uses graphical installation programs and
is relatively straightforward. You need to first decide whether you want to install only
MySQL, or whether you’d like to install an integrated package including additional
software that you’re likely to need later. Both approaches are equally easy to follow. At
various points during the installation process, you may be prompted to allow the in-
staller program to run and modify your system, including unblocking server ports. Read

Installing Under Windows | 51

these prompts carefully; in most cases, you’ll want to allow the installer to do what it
needs to do. Remember to follow the instructions of “Verifying Package Integrity with
MD5,” earlier in this chapter, to verify that you’re running the correct installer program.
You need to unblock ports only if you want to allow connections to your server from
other hosts.

In this section, we’ll look at three ways to install MySQL on a Windows system:

• System-wide, using a graphical installation package provided by MySQL AB

• Local, using a “no-install” package by MySQL AB

• System-wide, using the XAMPP integrated package

To install system-wide, you’ll need to log in as a user with Windows administrator
privileges. The MySQL AB “no-install” package does not need to be installed using a
setup program and is handy for cases where you don’t have administrator privileges on
the computer.

Installing Only MySQL Using Packages from MySQL AB
First, follow the instructions of “Downloading MySQL from the MySQL AB Web
Site,” earlier in this chapter, and download the package you need. If you are using
Windows XP and have administrator privileges, it’s easiest if you download the “Win-
dows Essentials (x86)” package. This is small and has all the MySQL programs you
need. If you don’t have administrator privileges on your Windows machine, or you
need to have a complex server setup with nonstandard configuration, you should
download the package labeled “Without installer (unzip in C:\).” We’ll discuss how
to install each of these packages in the following sections.

Windows installation using the installer

Start the installer program and go with the default (typical) settings. This will install
MySQL in the C:\Program Files\MySQL\MySQL Server 5.0\ directory. Vista may ask
you to confirm whether you want to allow the installer to access your computer; click
Allow.

You might be prompted to sign up for a mysql.com account; you can skip this unless
you want to subscribe to MySQL newsletters, add comments to the online manual, or
file bug reports.

On the final screen of the installer program, you’ll see the “Configure the MySQL Server
now” option selected. When you click the Finish button to exit the installer, the MySQL
Server Instance Configuration Wizard will start. Follow the prompts and select Stand-
ard Configuration to go with the default settings.

On the next screen, shown in Figure 2-10, select “Install as a Windows Service” (typ-
ically already selected by default) and “Include Bin Directory in Windows PATH”
(typically not already selected by default).

52 | Chapter 2: Installing MySQL

Select a new root user password (there isn’t one by default), and then follow the
prompts until the installation process is completed. Unless you know what you’re do-
ing, don’t select the option to enable root access from remote machines. Also, don’t
select the option to create an anonymous account; we’ll discuss anonymous accounts
and the security problems associated with them in Chapter 9.

You may find that the installation program fails to configure the service under Vista
(you’ll see an error message like “Could not connect to the Service Control Man-
ager”). If this happens, click the Back button twice to return to the options dialog box,
and then uncheck the “Install as a Windows Service” checkbox. Continue the instal-
lation process from this point.

You can run the configuration program again at any time by selecting the MySQL Server
Instance Config Wizard entry from the MySQL Server 5.0 section of the MySQL sub-
menu of the Windows Start menu.

Starting and stopping MySQL as a service

If the installation process successfully configures MySQL as a Windows service, you
can use the Windows Services window at any time to check and control the server. On
Windows XP, select the Performance and Maintenance entry from the Control Panel,
and then choose Administrative Tools. If you have Classic View enabled, you can
choose Administrative Tools directly from the Control Panel. Figure 2-11 shows the
Windows Services window.

Figure 2-10. Specifying the server options during the Windows installation

Installing Under Windows | 53

Under Vista, open the Control Panel, and select the “System and Maintenance” entry.
From here, select the Administrative Tools and then the Services entry. Windows may
prompt you for authorization—click Continue.

Scroll down the list of services till you see an entry for MySQL, and select it. The
installation process sets the service status to be Automatic—that is, the server is started
automatically every time Windows is booted. If you’d prefer to start and stop the server
manually, you can set the service status to Manual. You can also start and stop the
server by clicking the Start or Stop link on the left of the Services window, or by opening
a command-prompt window and typing:

C:\> net start mysql

or:

C:\> net stop mysql

Figure 2-11. The Windows services window

54 | Chapter 2: Installing MySQL

You can run MySQL programs from the command window by first changing to the
MySQL directory:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.0"

and then typing in the MySQL program name.

For example, you can stop the server directly by calling the mysqladmin program directly
from the MySQL installation directory. You would type (all on one line):

C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqladmin \
 --user=root \
 --password=the_mysql_root_password \
 shutdown

Never kill the MySQL server from the Windows task manager; you could lose data.

Starting and stopping MySQL from the command line

If the installation program could not install the service, you’ll need to start and stop
the server from the command line. To do this, open a command prompt window and
change your working directory to the directory where the MySQL installation has been
installed. This is typically C:\Program Files\MySQL\MySQL Server 5.0\:

C:\> cd C:\Program Files\MySQL\MySQL Server 5.0\

To start the server, type:

C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqld-nt

Under Windows, executable programs such as mysqld-nt have the extension .exe. You
can include the full name and extension, as in mysqld-nt.exe; if you leave it out, Win-
dows won’t complain. If the program ends immediately, restart the server but add the
option no-defaults:

C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqld-nt --no-defaults

This tells the server not to expect an options file—we discuss this in further detail in
Chapter 11. You may also be prompted by your firewall software to authorize the server
to listen for incoming connections from the network; unless you need to allow con-
nections from other computers, it’s a good idea to keep blocking such connections.

Once the program’s started, nothing exciting will happen—you’ll just see a blinking
cursor; this command window will remain open as long as the server is running, so to
use any other MySQL command-line programs, you’ll need to open another command-
prompt window.

For example, to shut the server down, you should open another command-prompt
window and change to the MySQL directory:

C:\> cd C:\Program Files\MySQL\MySQL Server 5.0\

and then stop the server by sending the shutdown command:

Installing Under Windows | 55

C:\Program Files\MySQL\MySQL Server 5.0> bin\mysqladmin \
 --user=root \
 --password=the_mysql_root_password \
 shutdown

Never kill the MySQL server from the Windows task manager; you could lose data.

Installation with the “no-install” .zip Archive
The “no-install” package is a ready-to-use collection of files bundled together and
compressed using the popular ZIP compression method. All you need to do is extract
the package to the desired directory. This is useful if you don’t have administrator access
on a Windows computer or if you want to avoid changes that the installer program
might make to your Windows configuration.

Windows can handle ZIP files itself; if you’ve installed an archiving program such as
WinZip or PKZIP, this application will normally process the file instead of the standard
Windows decompression tool. In this book, we explain only the default Windows
behavior and assume that you know how to use any extra utility programs on your
system.

The icon for a compressed file often has a picture of a zipper on it, as shown in Fig-
ure 2-12. If you double-click on the icon, you’ll be able to see inside the package, but
this isn’t useful right now. Instead, right-click on the icon, select “Extract All...” as
shown in Figure 2-12, and follow the prompts. Ignore the Password button; the archive
doesn’t have one. When you see the message “Select a Destination,” replace the existing
text with the directory you want the MySQL directory to be located in. Figure 2-13
shows this window. The recommended directory for this package is C:\, so use this,
and click the Next button. The files will be installed to the mysql-5.0.22-win32 sub-
directory.

When you use the ZIP archive, a Windows service isn’t configured for MySQL; you’ll
need to start the server using the MySQL commands themselves. The MySQL execut-
ables directory isn’t added to your Windows path either, so you’ll need to always tell
Windows where to find the MySQL programs you’re trying to run. In the examples
here, we assume you first change to the MySQL directory and then tell Windows to
run the programs from the bin directory. Alternatively, you can add the directory to the
search path manually following the steps outlined later in “Error Message About
MySQL Executable Programs Not Being Found or Recognized.”

To control and access the server, open a command-prompt window and change your
working directory to the MySQL directory. For example, if you extracted the files to
the C:\ directory, change to the MySQL directory under there:

C:\> cd C:\mysql-5.0.22-win32

To start the server, type:

C:\mysql-5.0.22-win32> bin\mysqld-nt

56 | Chapter 2: Installing MySQL

as shown in Figure 2-14. Under Windows, executable programs such as mysqld-nt have
the extension .exe. You can include the full name and extension, as in mysqld-nt.exe;
if you leave it out, Windows won’t complain. If the program ends immediately, restart
it with the option no-defaults:

C:\mysql-5.0.22-win32>bin\mysql-nt --no-defaults

This tells the server not to expect an options file. We discuss options files in Chapter 11

You may also be prompted by your firewall software to authorize the server to listen
for incoming connections from the network; unless you need to allow connections from
other computers, it’s a good idea to keep blocking such connections.

Once the program’s started, nothing exciting will happen: you’ll just see a blinking
cursor; this command window will remain open as long as the server is running, so to
use any other MySQL command-line programs, you’ll need to open another command-
prompt window.

Open another command-prompt window and change to the MySQL directory:

C:\> cd C:\mysql-5.0.22-win32

Now, set a password for the database root account (all on one line):

Figure 2-12. Decompressing the compressed package

Installing Under Windows | 57

C:\mysql-5.0.22-win32> bin\mysqladmin --user=root \
 password the_new_mysql_root_password

Finally, stop the server by sending the shutdown command:

C:\mysql-5.0.22-win32> bin\mysqladmin --user=root \
 --password=the_mysql_root_password shutdown

Figure 2-15 shows the second command-prompt window and the mysqladmin com-
mands we’ve just discussed. Here, we used the password "new root password" as an
example; you should choose a password that’s hard to guess. As we’ve got spaces in
the password, we’ve enclosed it in quotes. Notice also how the command to shut down
the server has wrapped to the next line; this is fine, but don’t press the Enter key until
you’ve finished typing the whole command.

Figure 2-13. The Windows compressed-file-extraction dialog window

Figure 2-14. Starting the server in Windows

58 | Chapter 2: Installing MySQL

Installing MySQL, Apache, PHP, and Perl on Windows Using the XAMPP
Integrated Package
To install XAMPP on your Windows system, first visit the XAMPP home page at http:
//www.apachefriends.org/en/xampp.html, follow the link to XAMPP for Windows, and
download the installer package. The package will have a name like xampp-
win32-1.5.3a-installer.exe.

Run the installer package once you’ve downloaded it; Vista may prompt you to confirm
you want to do this. Accept C:\Program Files as the installation directory and click the
Install button. XAMPP is installed to the C:\Program Files\xampp directory. Don’t
change this unless you really have to. We assume this is the directory you’re using.

After XAMPP is installed, you’ll be prompted to install XAMPP servers as a service;
choose “yes”. Also select “yes” when asked whether you want to install Apache2 as a
service and whether you want to autostart the server. If you get a message about port
80 (the web server port) being blocked on your system, check whether you have another
running web server, such as Microsoft IIS; this server could have been installed as part
of Visual Studio .NET. You can also select “yes” to install the FileZilla FTP server as a
service, “no” to autostart the service, “no” to start the service, and “no” to uninstall
the server.

If your Windows Firewall is active, you may be told that Apache has been blocked from
accepting incoming network connections. Unless you need to allow connections from
other computers, this is a good setting to stick with, so choose to keep blocking the
connections.

Figure 2-15. Running the mysqladmin program from the Windows command prompt

Installing Under Windows | 59

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

Finally, select “yes” when prompted to start the XAMPP control panel. The installation
program places a shortcut to the XAMPP control panel on your desktop, but if it’s not
there, you can also start it from the XAMPP control panel from the “apachefriends”
submenu of the Windows Start menu. Figure 2-16 shows what the XAMPP control
panel looks like. Start the MySQL server by clicking the Start button next to the MySQL
label. You need to be logged in as a user with Windows Administrator privileges to
control XAMPP, although an unprivileged user is allowed to place files on the web
server. Stop any existing MySQL or Apache server before starting XAMPP.

XAMPP does not modify the Windows path. If you need to run any MySQL programs
from the command prompt, you’ll need to run them from the MySQL bin directory.
You can avoid this inconvenience by adding the C:\Program Files\xampp\mysql\bin di-
rectory to your Windows path as discussed in “Error Message About MySQL Execut-
able Programs Not Being Found or Recognized,” later in this chapter.

The first thing you should do once you’ve started the server is to set a password for the
database root account. First, open a command window and change to the MySQL
directory:

C:\> cd C:\Program Files\xampp\mysql

Then run the mysqladmin program from the bin directory:

C:\Program Files\xampp\mysql> bin\mysqladmin \
 --user=root \
 password the_new_mysql_root_password

Figure 2-16. The XAMPP control panel

60 | Chapter 2: Installing MySQL

You can also configure the server password, as well as other settings for better security,
by loading http://localhost in your browser and clicking on the Security link on the left
of the page. This takes you to a page that displays information on your server security
configuration and allows you to add passwords to authenticate access to the MySQL
and Apache servers.

The XAMPP installation has PHP configured, with the register_globals setting turned
on. You should disable this old, insecure feature: open the file C:\Program Files
\xampp\php\php.ini and look for the line register_globals = On. Change the value On
to Off, save the file, and quit the editor. The new setting will be in effect after you restart
your Apache server.

Finally, you can stop the MySQL server by pressing the Stop button next to the MySQL
label in the XAMPP control panel.

Installing Under Mac OS X
In this section, we’ll look at three ways to install MySQL on a Mac OS X system:

• System-wide, using an installation package provided by MySQL AB.

• Local, using an non-installation gzipped tar package provided by MySQL AB.

• System-wide, using the XAMPP integrated package.

To install system-wide, you should be able to access superuser privileges through the
sudo command.

Installing only MySQL Using the Installer from MySQL AB
Following the instructions of “Downloading MySQL from the MySQL AB Web Site,”
earlier in this chapter, visit the MySQL AB downloads page and choose the package
corresponding to the version of your operating system and your system processor.

Pick the Standard installer (rather than TAR) package. This is a small package that has
everything you need. Once the file is downloaded, double-click on it to unpack the
archive and view the package contents. You should see something similar to Fig-
ure 2-17.

Double-click on the package file with a name beginning with mysql-standard- to start
the installation process.

Simply following the prompts will install to the /usr/local/mysql-<version> directory,
where <version> is the MySQL version number. It also creates the symbolic link (or
alias) /usr/local/mysql that points to this installation directory. For example, the files
could be installed in the /usr/local/mysql-5.0.22 directory, and the /usr/local/mysql
link set to point to this directory.

Installing Under Mac OS X | 61

http://localhost

Next, double-click on the MySQL.prefPane item and install it. This adds a MySQL
configuration entry to the System Preferences; from the System Preferences window,
you can manually start and stop the MySQL server, and also select whether you want
the server to be automatically started each time the system boots.

Finally, if you want the MySQL server to be started and stopped automatically each
time the computer is started or stopped, double-click on the MySQLStartupItem.pkg
item and install this too.

Configuring the installed server

For security reasons, it’s a good idea to have the MySQL server run under its own
username and group, rather than under the superuser account. If something goes wrong
with the server, or an attacker gains control of the server, the damage will be restricted
to the MySQL user rather than the whole system. Mac OS X comes with a mysql user
and group already defined. You can check this using the graphical NetInfo Manager
tool, or from the shell prompt.

To check using the NetInfo Manager, double-click on the NetInfo Manager icon in the
Utilities folder under the Applications group, as shown in Figure 2-18. Then, select
“groups” and scroll down to make sure that there is an entry for the mysql group, as
shown in Figure 2-19. Similarly, you can select “users” and scroll down to see that there
is an entry for the mysql user there too.

You can instead check these settings from the shell prompt. To do this, open a terminal
window and use the grep command to search for the word mysql in the system’s list of
users (the /etc/passwd file) and groups (the /etc/group file):

$ grep mysql /etc/passwd /etc/group
/etc/passwd:mysql:*:74:74:MySQL Server:/var/empty:/usr/bin/false
/etc/group:mysql:*:74:

Figure 2-17. The contents of the MySQL AB Mac OS X installer package

62 | Chapter 2: Installing MySQL

You should see two lines similar to the ones above.

If, for some reason, the mysql user and group aren’t configured on your system, you
have to create them. You can add them in the NetInfo Manager by clicking on the lock
icon at the bottom of the screen and selecting the Add entry from the Edit menu. How-
ever, it’s probably faster to perform these steps from the command line.

First, create the user mysql (note that the first forward slash symbol (/) stands by itself
on the line):

$ sudo niutil -create / /users/mysql

and assign invalid (and therefore relatively secure) values for the home directory and
login shell:

$ sudo niutil -createprop / /users/mysql home /var/empty
$ sudo niutil -createprop / /users/mysql shell /usr/bin/false

Next, create the group mysql:

$ sudo niutil -create / /groups/mysql

Once you’ve done this, define a Group ID number (gid) for the mysql group and a User
ID number (uid) for the mysql user. The Mac OS X default value for both these IDs is
74; you can choose this or any other value—for example, 674—that’s not already al-
located to a user or group. Let’s use 74 in our example, and assign this value to the
mysql group and user:

Figure 2-18. Starting the Mac OS X NetInfo Manager

Installing Under Mac OS X | 63

$ sudo niutil -createprop / /groups/mysql gid 74
$ sudo niutil -createprop / /users/mysql uid 74

Finally, associate the mysql user with the mysql group:

$ sudo niutil -createprop / /users/mysql gid 74

When you’re sure the correct user and group exist, you have to initialize the MySQL
databases. First, change to the MySQL base directory:

$ cd /usr/local/mysql

Then run the mysql_install_db script from the scripts directory. The user option as-
signs ownership of the MySQL datafiles and folders to the specified user—here to the
system mysql account:

$ sudo scripts/mysql_install_db --user=mysql

Figure 2-19. Verifying that the mysql group exists

64 | Chapter 2: Installing MySQL

You should now change the files in the MySQL directory to be owned by root but be
in the mysql group:

$ sudo chown -RL root:mysql /usr/local/mysql

The -RL option tells the chown command to apply the ownership rule recursively (R) to
everything under the /usr/local/mysql directory, following symbolic links (L) if nec-
essary. You should also change the database files in the data directory to be owned by
the mysql user and group:

$ sudo chown -RL mysql:mysql /usr/local/mysql/data

If you used the mysql_install_db script with the user=mysql option, this will already
have been done for you.

You can now start the server and stop it in several ways; let’s look at a few of these.

First, if you installed the MySQL.prefPane item, you can use the MySQL pane in the
System Preferences window. To access this, click on the Apple logo at the top left of
the screen menu, select the “System Preferences...” menu entry, and then click on the
MySQL icon in the System Preferences window. This will bring up a window similar
to Figure 2-20, with a button labeled Start MySQL Server when the server is not running
and Stop MySQL Server when it is. Clicking on this button will start or stop the server.
You may be asked to type in your password.

Second, you can use the mysql.server script in the MySQL directory:

$ sudo /usr/local/mysql/support-files/mysql.server start

Figure 2-20. The MySQL preferences pane

Installing Under Mac OS X | 65

to start the MySQL server, and:

$ sudo /usr/local/mysql/support-files/mysql.server stop

to stop it.

Third, if you installed the MySQLStartupItem.pkg file during the installation process,
you can start the server from the command line by calling:

$ sudo /Library/StartupItems/MySQLCOM/MySQLCOM start

and stop it by calling:

$ sudo /Library/StartupItems/MySQLCOM/MySQLCOM start

Finally, you can use the generic mysqld_safe and mysqladmin programs from the com-
mand prompt. To start the server to run under the system mysql user account, type:

$ sudo /usr/local/mysql/bin/mysqld_safe --user=mysql

Then, press the Ctrl-Z key combination, and type bg to leave the server running in the
background.

You can then stop the server by running the command:

$ /usr/local/mysql/bin/mysqladmin --user=root \
 --password=the_mysql_root_password shutdown

This approach is the most robust, and also the most flexible if you need to add custom
options to your server.

The first thing you should do once you’ve started the server is to set a password for the
database root account:

$ sudo /usr/local/mysql/bin/mysqladmin --user=root password \
 the_new_mysql_root_password

Once you’ve set the MySQL root password, you’ll need to use this in all further accesses
to the server. For example, to shut down the server using mysqladmin, you would type:

$ /usr/local/mysql/bin/mysqladmin --user=root \
 --password=the_mysql_root_password shutdown

Installing Only MySQL Using the no-installer Package from MySQL AB
Following the instructions in “Downloading MySQL from the MySQL AB Web Site,”
earlier in this chapter, visit the MySQL AB downloads page and download the “Without
installer” package corresponding to the version of your operating system and processor
type.

This will download a compressed package with a name like mysql-standard-5.0.22-
osx10.4-i686.tar.gz. This is normally automatically decompressed and unpacked by
the web browser to leave the directory mysql-standard-5.0.22-osx10.4-i686 in the
download directory. You may instead find that your browser decompresses the file but
does not unpack it. If this is the case, you’ll find the file mysql-standard-5.0.22-osx10.4-

66 | Chapter 2: Installing MySQL

i686.tar in your download directory. You can unpack this in any location by opening
a terminal window, changing to the directory you want to run MySQL from, and calling
the tar program from there to unpack the file. For example, if the file was downloaded
to your Desktop directory, but you want to have the MySQL directory under your home
directory, you can open a terminal window and type:

$ cd

to go to your home directory, and:

$ tar --extract --file ~/Desktop/mysql-standard-5.0.22-osx10.4-i686.tar

to unpack the file that’s in your Desktop directory. If the browser does not decompress
the file at all, you’ll find the downloaded file still has a .gz extension. You can follow
the same steps as for the decompressed file, but use the gunzip option to decompress
the file before unpacking it:

$ tar --gunzip --extract --file \
 ~/Desktop/mysql-standard-5.0.22-osx10.4-i686.tar.gz

Once the package has been decompressed, you can move the resulting directory to the
location you want. For example, you can move it to be under your home directory,
either by dragging and dropping with the mouse, or by using the mv command from the
shell:

$ mv ~/Desktop/mysql-standard-5.0.22-osx10.4-i686 ~

You can also create a symbolic link to the MySQL directory so that you can refer to it
as simply ~/mysql:

$ ln -s ~/Desktop/mysql-standard-5.0.22-osx10.4-i686 ~/mysql

Once you have the extracted directory, you should change to that directory:

$ cd ~/mysql

and run the mysql_install_db program from the scripts directory to initialize the MySQL
databases:

$ scripts/mysql_install_db

You can now start the server using the command:

$ bin/mysqld_safe &

Set a password for the MySQL server root account immediately:

$ bin/mysqladmin --user=root password the_new_mysql_root_password

Since we’ve set a password for the root user, you need to use this password in all further
accesses to the server for the root account. You can now stop the server using the
command:

$ bin/mysqladmin --user=root --password=the_mysql_root_password shutdown

Installing Under Mac OS X | 67

Installing MySQL, Apache, PHP, and Perl on Mac OS X Using the XAMPP
Integrated Package
To install XAMPP on Mac OS X, visit the XAMPP home page (http://www.apachefriends
.org/en/xampp.html), follow the link to “XAMPP for Mac OS X,” and download the
installer package.

The installer package is in the StuffIt Expander (.sitx) format. If you get a screen of
garbled text in your browser when trying to download it, press the “back” button to
see the download link—for example, http://easynews.dl.sourceforge.net/sourceforge/
xampp/xampp-macosx-0.3.sitx. Hold down the Ctrl key and click on the link. From
the menu that appears, select the entry that says Download Linked File (for Safari),
Save Link As (for Firefox), or Download Link to Disk (for Internet Explorer).

Once the StuffIt archive is downloaded, double-click on it to extract the installation
package, and then double-click on the installation package to start the XAMPP instal-
lation program. When the decompression program finishes, you should find the in-
stallation program saved in the same directory as the downloaded file, or on your
Desktop. This installation program has a name like xampp-macosx-0.5.pkg. Running
this and accepting the default settings will install XAMPP to the /Applications/xampp/
directory, with the MySQL datafiles located in the /Applications/xampp/xamppfiles/var/
mysql directory.

If there is already a running MySQL or Apache server running on your system, XAMPP
may complain during startup. If this happens, shut these down before trying to start
XAMPP again. To switch off the default installation of Apache, go to the System Pref-
erences Window and click on Sharing. If the Personal Web Sharing entry has a check-
mark next to it, uncheck it to stop the Apache web server.

You can start XAMPP by typing:

$ sudo /Applications/xampp/xamppfiles/mampp start

Now that the server’s running, tighten up the security settings by typing:

$ sudo /Applications/xampp/xamppfiles/mampp security

and follow the prompts to add a password to your MySQL server.

The XAMPP installation has PHP configured with the register_globals setting turned
on. You should disable this old, insecure feature: open the file /Applications/xampp/etc/
php.ini and look for the line register_globals = On. Change the value On to Off, save
the file, and quit the editor. The new setting will be in effect after you restart your
Apache server.

You can also manually set the MySQL server root password as follows:

$ sudo /Applications/xampp/xamppfiles/bin/mysqladmin \
 --user root \
 password the_new_mysql_root_password

68 | Chapter 2: Installing MySQL

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://easynews.dl.sourceforge.net/sourceforge/xampp/xampp-macosx-0.3.sitx
http://easynews.dl.sourceforge.net/sourceforge/xampp/xampp-macosx-0.3.sitx

When the XAMPP web server is running, you can load pages from your own computer
by starting a browser such as Safari and opening the web page http://localhost.

You can stop XAMPP by typing:

$ sudo /Applications/xampp/xamppfiles/mampp stop

If you’re keen to access the MySQL executable files directly, you can start the server by
typing:

$ sudo /Applications/xampp/xamppfiles/bin/mysqld_safe

Then, press the Ctrl-Z key combination, and type bg to leave the server running in the
background.

Similarly, you can shut down the server by typing:

$ sudo /Applications/xampp/xamppfiles/bin/mysqladmin \
 --user root \
 --password=the_mysql_root_password \
 shutdown

Using a MySQL Installation Provided by an ISP
Most individuals and small- to medium-sized organizations don’t have the time or
resources to maintain a production web server that’s available around the clock. For-
tunately, there are countless Internet Service Providers (ISPs) that provide—usually for
a fee—access to servers they maintain.

Since you’re reading this book, we can assume you’re interested in servers that can host
dynamic web pages (for example, using PHP or Perl scripts) and provide a backend
MySQL database that can be accessed by the web application. It’s not hard to find an
ISP that provides this; a web search for “php mysql hosting” turns up several million
sites.

When selecting a hosting package, see whether you are given ssh or telnet access to
the server to run the MySQL client, or whether you can use only web clients such as
phpMyAdmin; using web clients is easy, but you could soon find them tedious to use
over extended periods of time. On a different note, don’t forget to also check how much
data transfer is included when comparing costs of alternative web hosting deals. If your
site becomes popular, it could end up costing you a lot of money!

Upgrading an Existing MySQL Server
If you’ve got a MySQL server that’s running well and without problems, you may won-
der whether it’s necessary to upgrade it to the latest version. There are three main
reasons to upgrade:

Upgrading an Existing MySQL Server | 69

http://localhost

Fixes for bugs
No complex software such as MySQL can be free of bugs; over time, people dis-
cover unexpected behavior, or possible data corruption. As these problems come
to light, they are fixed for the latest version. MySQL bugs are reported and analyzed
at the http://bugs.mysql.com web site. You can use this web site to view the bug
reports for your MySQL version and determine whether any are likely to affect your
operations.

Fixes for security vulnerabilities
Security vulnerabilities are an especially dangerous class of bug; by exploiting a
vulnerability, an attacker could gain unauthorized access to data, or render your
system unusable (cause a denial of service). If your server is connected to a network
or otherwise accessible to people other than yourself, you need to take security
issues very seriously.

Improved features
As software matures, new features are added to make some tasks easier or to im-
prove efficiency. For example, MySQL 5.0 introduced support for views (virtual
tables), stored procedures (predefined queries that clients can call), cursors (pointers
to the result of database operations), and triggers (predefined operations that are
carried out automatically before or after a row is inserted, deleted, or updated).
Similarly, subqueries (nested SELECT queries) were not possible in MySQL before
version 4.1; neither were multiple concurrent character sets.

Some new features could greatly simplify your application, allowing you to reduce
development time by simply upgrading your MySQL server. On a related note,
application software that you might want to use with your database server—for
example, a free web portal system—might require you to have a minimum version
of MySQL.

Newer versions of MySQL are generally backward-compatible with recent versions—
that is, older ways of doing things will continue to work. A new server can work with
old data, and even with older clients. For example, MySQL password management was
improved in version 4.1.0. The new server can correctly handle passwords stored in
the old format, and, if it’s started with the old-passwords option, it can modify its
behavior to cater to older clients, such as a web server that uses the old mechanism.

However, software is generally not upward-compatible—that is, you’re more likely to
have difficulty if moving from a newer version of MySQL to an older version, especially
if they are major versions apart (for example, moving from MySQL 5.0 to MySQL 4.1).
It’s hard to find cases where downgrading is warranted.

You should assess your own needs and decide whether an upgrade is necessary or
worthwhile; if, for example, you have an online shopping application that’s running
perfectly, you would only need to upgrade if you wanted to make changes that would
be easier done with a newer MySQL version or if you learn of bugs that could affect the
reliability or security of your site. Upgrading a MySQL server could require upgrades

70 | Chapter 2: Installing MySQL

http://bugs.mysql.com

to other associated software—for example, the version of PHP that the application uses;
you must think carefully about the implications of an upgrade before diving in.

Before deciding to upgrade, read the release notes for the new version; in particular,
note any changes marked as an “incompatible change.” You can find a complete set of
release notes under the “MySQL Change History” section of the MySQL manual (http:
//dev.mysql.com/doc/refman/5.1/en/news.html). For example, you may find that support
for something that you need is no longer available in the new version, or that you need
to carry out certain steps before you start the new server with your existing data. You
should also read the “Upgrading MySQL” section of the MySQL manual (http://dev
.mysql.com/doc/refman/5.1/en/upgrade.html). Note that these links point to the latest
version of the manual (5.1) available at the time of writing.

In this book, we don’t describe how to change over from a non-MySQL database server,
such as Microsoft Access, Microsoft SQL Server, or Oracle. The MySQL Migration
Toolkit is a graphical tool that helps you through the process of moving your data over
to MySQL. You can download this program as as part of the MySQL GUI Tools Bundle
from the MySQL AB downloads page at http://dev.mysql.com/downloads.

Should I Upgrade to MySQL 5.1?
At the time of writing, MySQL 5.1 is in beta testing; this means that it’s available for
easy use and testing, but that it’s best to avoid using it for mission-critical production
sites. You can download and install MySQL 5.1 using the same procedures discussed
in this chapter for the Generally Available versions. Probably the most interesting new
features in MySQL 5.1 are its powerful text search capabilities, improved support for
XML data, and optimizations for applications where the server must handle very high
loads with very high reliability. It’s likely that you won’t need these features for a con-
siderable time after beginning to use MySQL, and you can complete all the examples
in this book with any version of the MySQL server newer than 4.1.0 onwards.

How to Upgrade
We have seen in this chapter that different installation approaches place the MySQL
program and datafiles in different locations. For example, a MySQL AB RPM installs
the MySQL program files and the data directory under the /usr/local/mysql directory,
while a package provided by a Linux distribution typically places the MySQL program
files in the /usr/bin directory, and the datafiles in the /var/lib/mysql directory. Upgrading
a MySQL server installs new versions of the program files but will not affect your
datafiles.

The best way to ensure a trouble-free upgrade is to use the same approach as that used
to install the original server because the installation process can upgrade the existing
program files, and the new server will know where to find your datafiles. Alternatively,

Upgrading an Existing MySQL Server | 71

http://dev.mysql.com/doc/refman/5.1/en/news.html
http://dev.mysql.com/doc/refman/5.1/en/news.html
http://dev.mysql.com/doc/refman/5.1/en/upgrade.html
http://dev.mysql.com/doc/refman/5.1/en/upgrade.html
http://dev.mysql.com/downloads

you should isolate or remove the old version so that there is no confusion about which
program version is called when you type in a command.

To be able to revert to the older version of the MySQL server if the migration runs into
problems, you can install the new server to a different directory from the default. Under
Linux and Mac OS X, you can also make a symbolic link to the directory containing
the version you want to use. We discussed how to do this earlier in “Installing MySQL
on Linux Using a gzipped Tar Archive from MySQL AB” and “Installing MySQL on
Linux by Compiling the Source Code from MySQL AB” for the tarball and source
installation methods under Linux, and in “Installing Only MySQL Using the no-in-
staller Package from MySQL AB” for a local MySQL installation under Mac OS X. The
MySQL AB installer for Mac OS X creates this symbolic link automatically for a system-
wide installation. Under Windows, you can specify a different installation directory
during the installation process. It isn’t straightforward to have coexisting MySQL ver-
sions under Linux if you use RPM or Debian packages.

Steps to Upgrade an Existing MySQL Server
There are several ways to upgrade a server. Here, we look at a simple and reliable
approach. We first save all the databases on the old server to a dump file. Next, we
install the new server. Finally, we load the saved databases into the new server. This
last step is not always necessary; you can often get the new server to use the datafiles
from the old one.

1. To start, change directories to make the old MySQL installation directory your
current working directory. Under Linux or Mac OS X, this is typically /usr/local/
mysql for a system-wide installation:

$ cd /usr/local/mysql

and ~/mysql for a local installation:

$ cd ~/mysql

Under Windows, the MySQL server is typically installed under the MySQL directory
—for example, C:\Program Files\MySQL\MySQL Server 5.0:

C:\> cd C:\Program Files\MySQL\MySQL Server 5.0

Again, we’ll show the command-line instructions for Linux and Mac OS X; under
Windows, simply replace the forward slash (/) with the backslash (\).

2. We discuss how to make a database dumps in detail in Chapter 10. You
can dump all the databases on the old MySQL server to the file dump_of_all_data
bases_from_old_server.sql by typing (all on one line):

$ bin/mysqldump \
 --user=root \
 --password=the_mysql_root_password \
 --result-file=dump_of_all_databases_from_old_server.sql \
 --all-databases

72 | Chapter 2: Installing MySQL

It’s a good idea to make a backup of this file on CD or copy it across to another
computer.

3. Shut down the old server:

$ bin/mysqladmin --user root --password=the_mysql_root_password shutdown

4. Install the new server.

5. Configure and start the new server using the appropriate commands discussed
earlier in this chapter.

6. At this point, you should have a fresh installation of the MySQL server and asso-
ciated programs. If the new server version was installed using the same approach
as the old version, it’s likely to have the same data directory. To check that your
databases are available on the new server, you can use the mysqlshow command to
connect to it and list the databases:

$ bin/mysqlshow --user root --password=the_mysql_root_password

You can also use the SHOW DATABASES command in the MySQL monitor (described
in Chapter 3).

If you used a different approach, or for some reason the new server doesn’t know
about your old databases, you should now change your working directory to the
location of the new MySQL installation, and then load the databases from the
dump file you created earlier:

$ bin/mysql \
 --user root \
 --password=the_mysql_root_password \
 < dump_of_all_databases_from_old_server.sql

Of course, you should use the password of the new MySQL server here.

7. Your new server should now have loaded all the databases from your old server.
One of these, the mysql database, contains grant tables that specify user access
levels. You should now check and upgrade these tables if necessary.

Under Linux, change to your MySQL base directory and type:

$scripts/mysql_fix_privilege_tables \
 --user=root \
 --password=the_mysql_root_password

For a Windows MySQL server version 4.0.15 or newer, type:

C:\Program Files\MySQL\MySQL Server 5.0> bin/mysql \
 --user=root \
 --password=the_mysql_root_password \
 --database=mysql \
 < scripts\mysql_fix_privilege_tables.sql

Finally, for Mac OS X, type:

Upgrading an Existing MySQL Server | 73

$ sudo /usr/local/mysql/bin/mysql_fix_privilege_tables \
 --user=root \
 --password=the_mysql_root_password

Don’t worry if you see warnings about duplicate column names. Once you’ve
completed upgrading the tables, stop the server.

Configuring Access to the MySQL Server
By default, there is no password set for the MySQL server. You must set a root password
as soon as possible. The MySQL AB Windows installer automatically prompts you to
set one as part of the configuration process. For other cases, make sure you follow our
installation instructions to set a root password.

A MySQL client connects to a server differently depending on where the server is run-
ning. When the client and server are on the same Linux or Mac OS X system, a local
connection is made through a Unix socket file, typically /tmp/mysql.sock or /var/lib/
mysql/mysql.sock. On a Windows system, the connection is made through the MYSQL
named pipe if the server was started with the enable-named-pipe option. In other cases,
clients send their requests through a TCP/IP network connection. Using a named pipe
can actually be slower than using TCP/IP.

If you intend for your server to be accessed only from the host it is running on, you can
disable network access to the server by starting the server with the skip-networking
option. For a server running on Windows, remember to enable the enable-named-
pipe option at the same time; otherwise you won’t be able to connect to the server.

If you carry out the steps outlined in this chapter, the filesystem access permissions for
the MySQL data directory and the server logs should be configured correctly. Keep in
mind that users need access to the socket file to connect to the server; if the socket file
is in the data directory (sometimes the case when using Linux distribution RPMs), take
care that users can’t access other files in that directory. We discussed permission set-
tings in “Restricting access to files and directories,” at the beginning of this chapter. Of
course, securing the database server is only a small part of overall system security.

If you’re running Linux or Mac OS X, you can use the mysql_secure_installation script
from the MySQL bin directory to walk interactively through steps to improve the se-
curity of your server:

$ bin/mysql_secure_installation
...
Change the root password? [Y/n] n
...
Remove anonymous users? [Y/n] y
...
Disallow root login remotely? [Y/n] y
...
Remove test database and access to it? [Y/n] n
...

74 | Chapter 2: Installing MySQL

Reload privilege tables now? [Y/n] y
...

The ellipsis (...) symbols indicate where we’ve left out some of the program output.

What If Things Don’t Work?
Hopefully, you’ll have managed to get the server up and running without problems.
Sadly, things don’t always work perfectly. Here’s how to get around some of the more
common problems.

Can’t Download Files from Behind a Proxy
If you have to use a proxy to connect to the Web, you’ll need to ask web clients to use
them. Web browsers typically allow you to configure proxies under the program con-
nection preferences. For the Linux wget, yum, and apt-get programs, you can declare
the HTTP and FTP proxy settings as shown below:

export http_proxy=http://proxy_username:mypass@server_name:port
export ftp_proxy=http://proxy_username:mypass@server_name:port

For example, you might type:

export http_proxy=http://adam:mypass@proxy.mycompany.com:8080
export ftp_proxy=http://adam:mypass@proxy.mycompany.com:8080

Your Internet service provider or company network administrator can provide the
proxy settings that you should use. If for some reason the rpm command does not work
through the proxy, you can download the file yourself using a browser or with wget.
You can then install this downloaded file manually using the rpm --upgrade or
dpkg --install commands.

Error Message About MySQL Executable Programs Not Being Found
or Recognized
To use MySQL, you need to run MySQL executable programs, such as the server pro-
grams mysqld_safe and mysqld-nt.exe (described in Chapter 12), the monitor program
mysql (described in Chapter 3), and the mysqladmin administration program that we use
in this chapter and throughout this book. These programs are located together in a
bin directory somewhere on the system; examples of these are:

Linux
/usr/local/mysql/bin for a system-wide installation from a tarball or source files,
~/mysql-5.0.22/bin for a local gzipped-tar installation, /usr/bin directory for an in-
stallation from RPM or Debian packages, and /opt/lampp/bin for an XAMPP
installation.

What If Things Don’t Work? | 75

Windows
C:\mysql-5.0.22-win32\bin for a “no-install” (zip) installation; C:\Program Files
\MySQL\MySQL Server 5.0\bin for a standard installation; and C:\Program Files
\xampp\mysql\bin for an XAMPP installation.

Mac OS X
/usr/local/mysql/bin for a system-wide installation from a tarball or source files,
~/mysql-5.0.22/bin for a local gzipped-tar installation, /Applications/xampp/xampp
files/bin for an XAMPP installation.

If you can’t find the MySQL programs in one of these directories, try to remember
where you installed the server files. On a Linux or Mac OS X system, use the find
command as the root user to locate the mysqld_safe program:

find / -name mysqld_safe

If you run this command as an ordinary user (not as root), you’re likely to see lots of
“permission denied” messages telling you that you can’t look inside certain directories.

On a Windows system, use the search tool to look for files with the word “mysql” in
their names. If your search doesn’t turn anything up, it’s likely that MySQL hasn’t in
fact been installed. Run the installation process again, note the directory in which the
files will be installed, and ensure that all the steps complete successfully.

Once you know where the executable programs are located, you can run each execut-
able program by specifying the full path to it—for example:

$ /usr/local/mysql/mysqladmin status

on a Linux or Mac OS X system, and:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin status

on a Windows system.

If the MySQL bin directory is listed in your system PATH, you can simply type:

$ mysqladmin status

from your operating system command prompt. If you get a message such as:

command not found

under Linux or Mac OS X, or:

'mysqladmin' is not recognized as an internal or external command,
operable program or batch file.

under Windows, the directory containing the MySQL executable programs is not in
the system path.

The convenient thing to do is to add the MySQL bin directory to your system path. You
can see the list of directories in your system path by typing:

$ echo $PATH

76 | Chapter 2: Installing MySQL

at the command line. If the MySQL bin directory isn’t listed there, take the following
steps.

For a Linux or Mac system, open your ~/.bashrc shell configuration file (start a new file
if there isn’t one already) in a text editor using the instructions in “Using a Text Edi-
tor” at the beginning of this chapter, and add this line to the bottom:

export PATH=$PATH:/usr/local/mysql/bin:

If you use a shell other than bash, you’ll need to edit the appropriate shell configuration
file. For example, if you use tcsh, you’ll need to edit the ~/.tcshrc or ~/.cshrc file and
add the line:

setenv PATH $PATH:/usr/local/mysql/bin

To activate the changes, type $ source ~/.bashrc, log out and log in again, or simply
restart the computer.

For Windows, you can update the path in two ways. The first way is to run the MySQL
server configuration program again by selecting MySQL Server Instance Config Wizard
from the Windows Start menu and selecting the “Include Bin Directory in Windows
PATH” checkbox as described earlier in this chapter.

The second way is to manually add the appropriate entry to your Windows path by
following these steps:

1. Open the Windows control panel.

2. If you don’t have the control panel Classic View enabled (it’s disabled by default),
you’ll need to step through one additional window (if you have Classic View ena-
bled, you can skip this step). Under XP, if you have Category View enabled, you’ll
see an icon for Performance and Maintenance; open this. Under Vista, the control
panel window will open at the Control Panel Home view by default; click on the
System and Maintenance entry.

3. Open the System entry. Under Vista, click on the Advanced System Settings link
under the list of tasks.

4. Select the Advanced tab

5. Click on the Environment Variables button

6. In the bottom half of the window, you’ll see the “System variables” pane. Scroll
down this list until you see an entry for Path.

7. Double-click on this entry, or select it and press the Edit button.

8. In the dialog box that appears, go to the end of the Variable value field and add a
semicolon followed by the path to the MySQL bin directory. For example, if you
installed MySQL to the C:\Program Files\MySQL\MySQL Server 5.0\bin directory,
you should add:

;C:\Program Files\MySQL\MySQL Server 5.0\bin

The semicolon at the start is a delimiter used to separate entries in the system path.

What If Things Don’t Work? | 77

9. Press the OK button to close the edit dialog box, and then press the OK button to
close the Environment Variables dialog box. The new path should be active
immediately.

Error Message Running mysql_install_db
If, on a Linux or Mac OS X system, you get messages like these when running
mysql_install_db:

$ bin/mysql_install_db
Installing all prepared tables
/home/saied/mysql/libexec/mysqld: Can't read dir of '/root/tmp/' (Errcode: 13)
Fill help tables
/home/saied/mysql/libexec/mysqld: Can't read dir of '/root/tmp/' (Errcode: 13)
...

then the setting for your temporary files isn’t set correctly. The solution is to declare
the directory to use for temporary files as:

$ export TMPDIR=/tmp

On most systems, the directory /tmp is present and accessible by all users. You can use
any other directory you wish, but remember that it must exist, and you must have
permission to create and delete files in that directory.

Server Doesn’t Start
Possible questions to ask yourself include:

• Do you have filesystem access to the MySQL commands? Under Linux, try running
mysqld_safe as the user root. Under Windows, ensure that you have administrator
privileges. Under Mac OS X, check that you used the sudo keyword when calling
mysqld_safe.

• Is the server already running? Try stopping the server first and then starting it again.

• Is there another server using port 3306? Try starting your server with a different
port using the port option.

If you’re interested, you can list the open ports on a system using the open source
nmap security scanner program that is available for Linux, Windows, and Mac OS
X. To list the open ports on your own machine (localhost), you’d type:

$ nmap localhost

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2006-07-23 02:09 EST
Interesting ports on saied-ltc.cs.rmit.edu.au (127.0.0.1):
Not shown: 1669 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
80/tcp open http

78 | Chapter 2: Installing MySQL

143/tcp open imap
631/tcp open ipp
1494/tcp open citrix-ica
3306/tcp open mysql
6000/tcp open X11
8080/tcp open http-proxy
32770/tcp open sometimes-rpc3

Nmap finished: 1 IP address (1 host up) scanned in 0.472 seconds

Here, you can see that there is a MySQL server listening on port 3306.

A good place to find clues to your problem is to look at the error logfile; this is normally
in the data directory with the system host name and the extension .err. For example,
the logfile for the host eden.learningmysql.com is generally called eden.err or eden.lear
ningmysql.com.err. For a Linux host, this might be the file /var/lib/mysql/eden.err, /usr/
local/mysql/eden.err, or /opt/lampp/var/mysql/eden.err, depending on the way MySQL
was installed. Similarly, on a Windows system, possible locations for the error logfile
include C:\mysql-5.0.22-win32\data\eden.err, C:\Program Files\MySQL
\MySQL Server 5.0\data\eden.err, and C:\Program Files\xampp\mysql\data\eden.err. Fi-
nally, for a Mac OS X system, likely locations for the error logfile are /usr/local/mysql/
eden.err and /Applications/xampp/xamppfiles/var/mysql/eden.err.

You can use the more command to look inside this file:

$ more /var/lib/mysql/eden.err
050813 22:31:04 mysqld started
050813 22:31:04 InnoDB: Operating system error number 13 in a file operation.
InnoDB: The error means mysqld does not have the access rights to
InnoDB: the directory.
InnoDB: File name ./ibdata1
InnoDB: File operation call: 'create'.
InnoDB: Cannot continue operation.
050813 22:31:04 mysqld ended

This particular message indicates that the directory permissions may not be set cor-
rectly. Press Ctrl-C to exit the more program.

If you installed MySQL on a Linux system using packages provided by your Linux
distribution, you may instead find the MySQL logs under a different name—for ex-
ample, mysqld.log, in the /var/log/mysql or /var/log/mysqld directory.

Client Programs Can’t Connect to the Server
Consider these questions:

1. Did you use the correct username and password? Since the default MySQL instal-
lation doesn’t have a password set, it is easy to be confused when passwords are
enabled. For the MySQL command-line tools, try using the user and password
options. If you’ve forgotten your password, try resetting it by following the steps
of “Resetting Forgotten MySQL Passwords” in Chapter 9.

What If Things Don’t Work? | 79

2. Is the server running? Try running the command mysqladmin status from a terminal
window or command prompt.

3. If connecting to a server on localhost, do you have filesystem access to the socket
file? The socket file is normally created as /tmp/mysql.sock but can be created in
any location specified when the server was started. If it’s created in a directory that
some users can’t access—for example, in the MySQL server’s data directory—
these users won’t be able to connect to the server. For the MySQL command-line
tools, use the socket option to specify a custom socket path.

4. If connecting to a server on a host other than localhost, is the server running on a
port other than 3306? You should specify the same port to the client as the one you
specified when starting your server; if you don’t administer the server, ask the
system administrator to tell you the correct port number. For the MySQL com-
mand-line tools, use the port option to specify a custom port number.

5. If connecting to a server on a host other than localhost, is it configured to accept
network connections? Ensure that the server was not started with the skip-net
working option on the command line or in an options file (we discuss options files
in Chapter 11).

6. If connecting to a server on a host other than localhost, is a firewall preventing
network connections? Firewall software or hardware may be preventing connec-
tions to the port on which MySQL listens for incoming connections (the default
port is 3306). To fix this, you need to modify the firewall so that connections on
this port are allowed. Firewalls vary between networks and platforms, and you’ll
need to refer to your documentation or discuss with your system administrator
how to make these changes to your network or host-based firewall. Any firewall
changes should be considered carefully to balance feature and security
requirements.

Server Doesn’t Stop
When you try to shut down the server, you may get a message like:

$ bin/mysqladmin shutdown
mysqladmin: shutdown failed; error: 'Access denied; you need the SHUTDOWN privilege
for this operation'

This indicates that you have to use a MySQL user account that has the privilege to shut
down the server. If you’re not logged in to your system under the root account, MySQL
will use your own username and the password, if any, (for example, adam) when con-
necting to the MySQL server. (We discuss user privileges in detail in Chapter 9.) For
now, it’s enough to know that you should use the MySQL root account to shut down
the server. You can do this by specifying the username from the command line:

$ bin/mysqladmin --user=root --password-che-root.passwordshutdown
STOPPING server from pid file /var/run/mysql.pid
060706 21:04:02 mysqld ended

80 | Chapter 2: Installing MySQL

The Contents of the MySQL Directory
A MySQL installation has several key files and directories, and several optional ones.
In this section, we’ll briefly cover the contents of the MySQL directory when you’ve
downloaded and installed MySQL using a MySQL AB package.

First, there are some text files covering the licensing conditions and the installation
process. It’s a good idea to have a quick read through these:

• COPYING

• README

• EXCEPTIONS-CLIENT

• INSTALL-BINARY

The directory also contains the configure script to configure and start a freshly installed
server; you shouldn’t need to use this if you’ve followed the instructions in this chapter.

Then there are several subdirectories; the important ones are:

bin/
Contains the executable programs—binaries—such as mysqld_safe and mysqlad
min. Compiled programs contain binary (0 and 1) code, rather than human-read-
able text, hence the name of this directory. However, you’ll probably find some
human-readable script files in this directory too.

data/
Contains a subdirectory holding the data and index files for each database on the
server. A newly installed and configured MySQL server comes with the mysql and
test databases, so you’ll have at least these two subdirectories in your data direc-
tory. The mysql database contains information on user access privileges to different
databases; as its name suggests, the test database can be used for testing.

docs/
Contains the MySQL manual. Under Linux and Mac OS X, the manual file is in
an info file called mysql.info; you can view this by changing into the docs directory
and typing:

$ info mysql.info

To see how to navigate in the info viewer, press the “?” key in the program.

Under Windows, the manual file is in the Microsoft HTML Help file called man
ual.chm; you can view this file by double-clicking on the file icon, or by changing
to the Docs directory and typing:

C:\Program Files\MySQL\MySQL Server 5.0> hh manual.chm

In practice, you’re more likely to find it more convenient to refer to the HTML
version of the MySQL manual available from the MySQL AB web site.

The Contents of the MySQL Directory | 81

include/
Contains header files for use when developing programs that use MySQL libraries.

lib/
Contains library files that can be used by third-party programs to access the MySQL
server.

mysql-test/
Contains detailed tests you can run to confirm that your server is working properly.

sql-bench/
Contains detailed tests that can be used to measure database server performance.

scripts/
Contains scripts, such as mysql_install_db, that may be needed for server admin-
istration. Under Windows, you can’t run most of the scripts directly, but there are
several files that contain SQL statements to do certain tasks, which can be run
through the MySQL server.

share/
Contains configuration files, such as translations of MySQL display messages for
different languages.

Other directories that are typically present on a full installation include:

man/
Contains information on some MySQL programs in the classic Unix manual
format.

If you installed MySQL using RPMs or an installer, you should be able to view the
manual pages by typing man followed by the command name—for example:

$ man mysqldump

If you used a gzipped tar archive, you can add the MySQL man directory to the
search path used by the manual page-viewer program. To do this, edit the
file .bashrc in your home directory (~/.bashrc) and add this line to the end:

export MANPATH=$MANPATH:/usr/local/mysql/man

To activate the changes, type $ source ~/.bashrc, log out and log in again, or simply
restart the computer.

Finally, you can always view these files by typing a command such as the one below
(using the mysqldump file as an example):

$ man /usr/local/mysql/man/man1/mysqldump.1

support-files/
Contains files and scripts used to configure the server, including ones you can use
or modify for your system.

82 | Chapter 2: Installing MySQL

tests/
Contains sample Perl programs to connect to the MySQL server and perform var-
ious simple database operations.

If you install MySQL using packages provided by your Linux distributions, the direc-
tory locations will vary from the standard layout. For example, the executable files—
such as mysqld_safe, mysql, and mysqladmin—are typically installed in /usr/bin/, and
the data directory is located at /var/lib/mysql. Similarly, the logfiles may be stored in
the /var/log/mysqld directory, or the main server log may be the file /var/log/mysql.
Clearly, there’s a trade-off between easy installation using RPM packages and the dis-
parate location of MySQL-related files when the server is installed in this way. The
XAMPP web page has a section under “Basic Questions” named “Where is What?”
which lists the locations of configuration files and components.

Configuring and Controlling the Apache Web Server
For all chapters up through Chapter 12, you will need access to only a MySQL server.
To practice the examples in Chapters 13, 14, and 15, you’ll need an Apache web server
with support for the PHP language. In Chapter 18, you’ll learn how to run Perl scripts
on a Apache web server.

If you haven’t installed Apache using XAMPP, you should check whether you have
Apache installed and, if so, whether it supports PHP. You should also check whether
your PHP engine supports your installation of MySQL.

If you’ve used the XAMPP package, you can relax, knowing that this has been done for
you. You also know how to start and stop Apache using the /opt/lampp/lampp script
(Linux), the XAMPP control panel (Windows), or the /Applications/xampp/xamppfiles/
mampp script (Mac OS X). If you’re using Linux and aren’t using XAMPP, you’ll need
to ensure that your web server can work with your database server.

Apache is installed as part of the standard Mac OS X configuration, where it’s referred
to as Personal Web Sharing. You can configure it from the Sharing section of the System
Preferences window. However, we’ll rely on the XAMPP installation in this book, so
go to the Sharing settings and ensure that Personal Web Sharing is switched off.

In this section, we look at how to check that your web server is running, and how to
find the directory from which it serves files to your browser. We also explain where to
find the Apache configuration file and error log. Finally, we describe how you can
control the Apache web server on a Linux system where you haven’t used XAMPP, and
how to check that your web server is correctly configured for the work that you’ll do
in this book.

You can test whether a web server is running on your machine by opening a browser
(for example, Firefox, Internet Explorer, or Safari), and typing in the address http://
localhost. If your browser reports that it can’t open this page, you can try to start the

Configuring and Controlling the Apache Web Server | 83

http://localhost
http://localhost

server by using the appropriate XAMPP startup command, or the apachectl or
apache2ctl commands described later in this section in “Starting and Stopping
Apache.”

If you see some response when you try to load a page in your browser, you can try
placing content in the server’s document root. Let’s see how to find this directory.

The Apache Document Root
The document root is the base or parent directory in which the web server stores web
resources (such as HTML, PHP, or image files) and serves them to web browsers. For
the Apache web server, common locations of the document root include:

Linux
/var/www/html, /var/www/htdocs, or /var/www for a distribution installation; /usr/
local/apache/htdocs for a standalone installation, and /opt/lampp/htdocs for an
XAMPP installation.

Windows
C:\Program Files\xampp\htdocs for an XAMPP installation, and C:\Program Files
\Apache Group\Apache2\htdocs if Apache is installed independently

Mac OS X
/Applications/xampp/htdocs for an XAMPP installation, and /Library/WebServer/
Documents for the installation of Apache that is part of the standard Mac OS X
configuration

If you’re using a Linux system and don’t know where your server’s document root is,
search for it by following these instructions.

First, log in as the system superuser by typing su - in a terminal window. Then try to
list the common document root directories that we listed previously:

ls --directory /var/www/html /var/www/htdocs /var/www /usr/local/apache/htdocs
/bin/ls: /var/www/htdocs: No such file or directory
/bin/ls: /usr/local/apache/htdocs: No such file or directory
/var/www /var/www/html

The --directory option asks the ls program to list only directory names, and not their
contents.

If you get an error message for a directory, that directory doesn’t exist. Where the
directory name is listed, as for /var/www and /var/www/html above, the directory exists.
One of these is likely to be the document root. If none of the directories exist, you can
try searching your whole filesystem for a directory called htdocs:

find / -type d -name htdocs

Be patient; this may take a few minutes. Any directory it finds is likely to be the directory
root; if more than one is found, you’ll need to experiment by creating files in each to
determine which is the one used by your Apache installation.

84 | Chapter 2: Installing MySQL

The Apache Configuration File
The Apache configuration file is usually called httpd.conf and is found in one of several
common locations:

Linux
/etc/httpd/conf/httpd.conf or /etc/apache/conf/httpd.conf for an installation from Li-
nux distribution files; /usr/local/apache/conf/httpd.conf for an installation from
Apache Foundation files; and /opt/lampp/etc/httpd.conf for an XAMPP installation

Windows
C:\Program Files\xampp\apache\conf\httpd.conf for an XAMPP installation

Mac OS X
/Applications/xampp/etc/httpd.conf for an XAMPP installation, and /etc/httpd/
httpd.conf for the installation of Apache that is part of the standard Mac OS X
configuration

It’s increasingly common to find servers configured in a modular way, with a main
configuration file that reads in other files, for example under the directory /etc/httpd/
modules.d on a Linux system, or in the apache\conf\extra directory under the XAMPP
install directory. For example, directives specific to PHP are often stored in the file /etc/
httpd/modules.d/70_mod_php.conf.

If you make changes to the Apache configuration file, you need to restart the web server
to put the changes into effect.

The Apache Error Log
Common locations for the web server error log include:

Linux
/usr/local/apache/logs/error.log for Apache installed from Apache Foundation
files, /var/log/httpd/error_log or /var/log/apache/error.log for an installation using
distribution packages, and /opt/lampp/logs/error_log for an XAMPP installation

Windows
C:\Program Files\xampp\apache\logs\error.log for an XAMPP installation

Mac OS X
/Applications/xampp/xamppfiles/logs/error_log for an XAMPP installation,
and /private/var/log/httpd/error_log for the Apache installation that is part of the
standard Mac OS X configuration

Starting and Stopping Apache
Apache web server installations usually include a control script called: apachectlthat
you can use to start or stop the server. On newer installations this is sometimes called

Configuring and Controlling the Apache Web Server | 85

apache2ctl; if the examples below don't work for you, try replacing apachectl with
apache2ctl. You can generally start an installed Apache server by using the command:

apachectl start

If this fails on a Linux or Mac OS X system because the command isn't found, use the
find command to locate the apachectl script file:

find / -type f -name apachectl

On a Windows system, use the built-in search instead of the find command. If it’s
reported as being in, say, /usr/local/apache/bin/apachectl, try starting Apache using that
full path:

/usr/local/apache/bin/apachectl start

Apache should start, and you should be able to test it by loading the web page http://
localhost in your browser.

You can stop the server by typing:

apachectl stop

If you make a change to the web server configuration file, you can stop and start the
server in one go by typing:

apachectl restart

If you have an XAMPP installation, you can more easily start and stop the Apache web
server using the XAMPP control scripts (Linux and Mac OS X) or control panel (Win-
dows). Earlier, we described how to do this alongside our XAMPP installation instruc-
tions for each operating system.

Checking Whether Your Apache Installation Supports PHP
Once you’ve found your document root and have Apache running, you can check
whether it can serve PHP requests, and whether its PHP engine has support for MySQL.
Using a text editor, create the file phpinfo.php so that it has one line with the following
contents:

<?php phpinfo(); ?>

Save this file with the name phpinfo.php in the document root directory. On a Linux or
Mac OS X system, you can check the file permissions by listing the file, <path_to_docu
ment_root>/phpinfo.php, for example:

$ ls -al /var/www/html/phpinfo.php
-rw------- 1 saied saied 20 Jul 22 11:35 /var/www/html/phpinfo.php

Here, only the user who owns the file (saied) has permission to read and write the file.
For the web server to read a file, the file should be readable by everyone. You can set
the appropriate permissions as follows:

$ chmod u=rw,g=r,o=r path_to_document_root/phpinfo.php

86 | Chapter 2: Installing MySQL

http://localhost
http://localhost

If you check the permissions again, you should find that other users can access the file;
we’ve granted the group read access as well, but that’s not strictly necessary:

$ ls -al path_to_document_root/phpinfo.php
-rw-r--r-- 1 saied saied 20 Jul 22 11:35 /var/www/html/phpinfo.php

A common cause of Access Denied problems is the file or directory not being readable.
The web server also needs execute access to the directory containing the file, and all
the directories above it. On some systems, only the superuser can write to the document
root, so you may also need to allow write access to the document root. See “Restricting
access to files and directories,” at the beginning of this chapter, for more discussion of
file and directory permissions.

After creating the file, run the script by requesting the address http://localhost/phpinfo
.php with a web browser that is running on the same machine as the web server. If you
see a readable web page—and not just what you typed into the file—then your web
server has PHP support. Search this page for the word “mysql”; if you find a section
labeled “mysql” (and perhaps another labeled “mysqli”), your PHP installation can talk
to your MySQL server.

If you just see the contents of the phpinfo.php file, or your browser tries to download
the file, your Apache server may not support PHP. However, there are three common
problems that can cause this to happen even when your server does support PHP:

• Your PHP test files don’t have the extension .php. If this is the case, your web server
will deliver the source code and not run the scripts. Rename your scripts with
a .php extension.

• Your web server isn’t configured to run the PHP engine when a file with the .php
extension is requested. In Apache, this is controlled by the Apache configuration
file described earlier in “The Apache Configuration File.” Open the configuration
file and search for the following line:

AddType application/x-httpd-php .php

If this line is commented out—that is, there’s a pound or hash symbol (#) before
the text on the line—uncomment the line by removing this symbol, save the file,
and restart the web server following the instructions listed earlier in “Starting and
Stopping Apache.” If the line isn’t there at all, add it and restart the server.

• Your Apache PHP module isn’t being loaded by Apache. Open the Apache con-
figuration file and check whether one of the following lines appears in the file:

LoadModule php4_module libexec/libphp4.so
LoadModule php5_module libexec/libphp5.so

Add one of these lines if they don’t appear in the file. Try using the php5_module
line first. If both lines have the pound or hash symbol before the text on the line,
remove the comment symbol from one of the lines to activate the PHP module. If
you change the Apache configuration file, restart the web server.

Configuring and Controlling the Apache Web Server | 87

http://localhost/phpinfo.php
http://localhost/phpinfo.php

If you’re sure that you have Apache but not PHP, or that your PHP installation does
not support MySQL, the easiest solution is to reinstall by following the instructions
earlier in this chapter.

Setting up Perl
Chapters 16, 17, and 18 require that you have a working installation of Perl. Perl is
available as standard on almost all Linux and Mac OS X systems, and it is included in
the XAMPP integrated package, so you don’t need to install it separately. For Chapters
17 and 18, you’ll need two Perl extension packages or modules. We’ll use the Perl DBI
(Database Interface) module in Chapter 17 to talk to a MySQL server, and the Perl CGI
(Common Gateway Interface) module in Chapter 18 to write clean and readable scripts
that can be run by a web server. If you’re not planning to write complex Perl scripts for
a web application, you can manage without the CGI module, but you’ll definitely need
the DBI module to use Perl for interaction with MySQL.

Checking Your Existing Setup
To run Perl scripts, you need to know where the Perl interpreter (called perl) is installed
on your system. For Linux, we’ll use the instance of Perl that comes with the distribu-
tion; to find where this is located, use the which command:

$ which perl
/usr/bin/perl

In this example, the Perl interpreter is the file /usr/bin/perl.

For Windows and Mac OS X systems, we’ll use the instance of Perl that comes with
XAMPP. On a Windows system, the XAMPP Perl interpreter is C:\Program Files
\xampp\perl\bin\perl.exe, while on a Mac OS X system, the XAMPP Perl interpreter
is /Applications/xampp/xamppfiles/bin/perl. You can also use the Mac OS X system de-
fault installation (/usr/bin/perl), but as we discuss later in “Installing Perl modules under
Mac OS X,” we recommend you stick with the XAMPP installation for consistency.

Let’s start by examining what the version of this Perl installation is. On a Linux system,
type:

$ perl --version

On a Windows or Mac OS X system, the XAMPP Perl interpreter is not in the system
path, so you should specify the full path on a Windows system as:

C:\> C:\Program Files\xampp\perl\bin\perl --version

or on a Mac system as:

$ /Applications/xampp/xamppfiles/bin/perl --version

88 | Chapter 2: Installing MySQL

You should either add this bin directory to your system path following the instructions
earlier in this chapter in “Error Message About MySQL Executable Programs Not Being
Found or Recognized,” or specify the full path to the Perl interpreter whenever you see
perl for the remainder of this chapter.

If Perl is available, the command will display several lines of text describing the version
and other configuration details. If Perl is not installed, you’ll see an error message saying
something like command not found (Linux or Mac OS X) or 'perl' is not recognized
as an internal or external command, operable program or batch file (Windows).
You can find more information on obtaining and installing Perl at http://www.perl.org/
get.html, and more information on installing modules at http://www.cpan.org/modules/
INSTALL.html. For a Linux system, download and install the Perl package for your
distribution according to the instructions in “Installing MySQL, Apache, PHP, and Perl
on Linux Using Distribution Packages.” For a Windows or Mac OS X system, check
that you’ve installed XAMPP correctly.

Once you know that Perl is installed, you can test whether the DBI and CGI modules
are installed by asking the Perl interpreter to use these modules to run an empty Perl
script. To check whether the DBI module is installed, type:

$ perl -mDBI -e ''

If you see an error message that Perl “Can’t locate” DBI.pm, you’ll need to install the
module yourself. Similarly, check whether the CGI module is installed by typing:

$ perl -mCGI -e ''

If the DBI module is installed, you should also check whether the MySQL database
driver (DBD) is installed. An easy way to do this is to ask Perl to print out all the drivers
that are available:

$ perl -e "use DBI; foreach $d (DBI->available_drivers()){print $d;}"
DBMExamplePFileSpongemysql

If you don’t see the letters “mysql”, you’ll need to install the MySQL database driver.

Installing the Perl DBI and CGI Modules
If you found that you need to install the CGI or DBI module, or the MySQL DBD, then
you need to follow the steps outlined in the following sections for each operating
system.

Installing Perl modules under Linux

The standard way to install Perl modules is to get Perl to use the CPAN (Comprehensive
Perl Archive Network) module to install new modules from the Internet. Log in as the
system root user by typing su -, and then install the DBI module, the DBI MySQL
Database Driver, and the CGI module by running the following commands in turn:

Setting up Perl | 89

http://www.perl.org/get.html
http://www.perl.org/get.html
http://www.cpan.org/modules/INSTALL.html
http://www.cpan.org/modules/INSTALL.html

perl -MCPAN -e 'install DBI'
perl -MCPAN -e 'install DBD::mysql;'
perl -MCPAN -e 'install CGI;'

If this is the first time you’re installing Perl modules this way, you may be prompted to
answer a few questions. It’s generally safe to answer no to the question:

Are you ready for manual configuration? [yes]

and leave it to Perl to figure out how to fetch the required packages. If all goes well,
you should see reassuring status messages as Perl downloads and installs everything.

Perl modules are also available for individual Linux distributions, and you can down-
load and install them manually. For RPM-based systems, you should download and
install the perl-DBI package for DBI, the perl-DBD-mysql package for the DBI MySQL
driver, and the perl-CGI package for CGI. For example, on a Red Hat or Fedora system,
type:

yum update perl-DBI perl-DBD-mysql perl-CGI

For a Mandriva or Mandrake system, type:

urpmi perl-DBI perl-DBD-mysql perl-CGI

For a Debian-based system, the package names are slightly different:

apt-get install libdbi-perl libdbd-mysql-perl libcgi-pm-perl

Installing Perl modules under Windows

Windows does not have Perl support by default, so you need to install a Perl interpreter
yourself. The XAMPP package you installed earlier in this chapter includes a minimal
Perl setup. However, to include a reasonable set of Perl libraries, including the DBI and
CGI modules and the MySQL DBD, you should also visit the web page http://www
.apachefriends.org/en/xampp.html and download and install the Perl Addons installer.
This will have a filename similar to xampp-perl-addon-5.8.7-2.2.2-installer.exe. Install
this in the same directory in which your XAMPP installation is located; we assume this
is C:\Program Files\xampp.

Many of the MySQL command-line programs in the scripts directory are in fact Perl
scripts; if you want to use these scripts, you’ll need to associate Perl files with the Perl
interpreter. To do this, you tell Windows that all files with the standard Perl exten-
sion .pl must be run by the Perl interpreter. Open a command prompt window and
type the following two lines:

C:\> ASSOC .pl=PerlScript
C:\> FTYPE PerlScript=C:\Program Files\xampp\perl\bin\perl.exe %1 %*

You can now run Perl scripts by double-clicking on the icon of the script file, or by
typing in the name of the script file at the command prompt. You can find other tips
for using Perl under Windows in the Perl Win32 FAQ (http://www.perl.com/doc/FAQs/
nt/perlwin32faq4.html).

90 | Chapter 2: Installing MySQL

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.perl.com/doc/FAQs/nt/perlwin32faq4.html
http://www.perl.com/doc/FAQs/nt/perlwin32faq4.html

Installing Perl modules under Mac OS X

Mac OS X comes with a Perl interpreter already installed, so after installing XAMPP
following the instructions earlier in this chapter, you’ll have two Perl interpreters on
your system: /usr/bin/perl and /Applications/xampp/xamppfiles/bin/perl. You’ll need to
configure the DBI and CGI modules for at least one of these.

Since we use XAMPP for other parts of this book, our instructions will focus on it. You
can still configure the system default Perl interpreter by typing /usr/bin/perl in place
of /Applications/xampp/xamppfiles/bin/perl in our instructions, but we feel that you’ll
have fewer difficulties if you work with the XAMPP installation.

For XAMPP, you need to do two things to ensure a hassle-free DBD MySQL driver
installation. First, to allow the DBD installation process to test the installation process
using the MySQL server, start XAMPP by typing:

$ sudo /Applications/xampp/xamppfiles/mampp start

Then create a symbolic link to the XAMPP MySQL socket file in the default MySQL
socket file location /tmp/mysql.sock, which is where Perl will expect to find it:

$ ln -s /Applications/xampp/xamppfiles/var/mysql/mysql.sock /tmp/mysql.sock

Some versions of XAMPP come with permission settings for the /Applications/xampp/
xamppfiles/lib/perl5 directory that don’t allow ordinary users to access it, causing mod-
ules to appear missing. To ensure that the permissions are correctly set, type:

$ sudo chmod u=rwx,g=rx,o=rx /Applications/xampp/xamppfiles/lib/perl5

We discussed permission settings in “Restricting access to files and directories,” at the
beginning of this chapter.

You can download and install the DBI module, the MySQL driver, and the CGI module
for the XAMPP Perl installation by typing these commands in turn:

$ sudo /Applications/xampp/xamppfiles/bin/perl -MCPAN -e 'install DBI;'
$ sudo /Applications/xampp/xamppfiles/bin/perl -MCPAN -e 'install DBD::mysql;'
$ sudo /Applications/xampp/xamppfiles/bin/perl -MCPAN -e 'install CGI;'

You may be prompted for the system root user password. You may also be prompted
to configure the download locations with the message:

Are you ready for manual configuration? [yes]

Unless you’re very sure of what you’re doing, just type no and press the Enter key to let
Perl figure out how best to download the required files.

Problems installing the Perl modules

If, during the install process, you see an error message such as this one:

Error: Unable to locate installed Perl libraries or Perl source code.

It is recommended that you install perl in a standard location before

Setting up Perl | 91

building extensions. Some precompiled versions of perl do not contain
these header files, so you cannot build extensions. In such a case,
please build and install your perl from a fresh perl distribution. It
usually solves this kind of problem.

(You get this message, because MakeMaker could not find
"/System/Library/Perl/5.8.1/darwin-thread-multi-2level/CORE/perl.h")
Looks like your test died before it could output anything.
Running make test
Make had some problems, maybe interrupted? Won't test
Running make install
Make had some problems, maybe interrupted? Won't install

you’ll need to install the Apple Developer Tools. These are available on the Mac OS X
install disk that came with your system. Double-click on the XcodeTools.mpkg icon on
the screen of disk contents and follow the prompts to install this package.

You can also get the latest version of the Developer Tools by visiting http://developer
.apple.com and registering as a developer (it’s free). Once you’ve registered and logged
in to the site, click on the Downloads link, and then click on the Developer Tools link
on the downloads page. From the Developer Tools download page, click on the latest
release of the .Mac SDK; at the time of writing, this was 1.2, with version 2.0 available
for testing.

If you see a message similar to the one below:

Writing Makefile for DBD::mysql
-- NOT OK
Running make test
Can't test without successful make
Running make install
make had returned bad status, install seems impossible

you’ll need to build the downloaded module manually. First, check the directories
containing the downloaded module source files:

$ ls ~/.cpan/build
DBD-mysql-3.0002 DBI-1.48

In this example, we have files for DBI version 1.48 and DBD MySQL driver version
3.0002. The versions you download may be different.

Now, build the module by changing to the corresponding directory (here we’ll compile
the DBI module):

$ cd ~/.cpan/build/DBI-1.48

and using the make command:

$ make

Once the module has been successfully built, install it as the system root user:

$ sudo make install

Repeat this process for any other modules you need to compile.

92 | Chapter 2: Installing MySQL

http://developer.apple.com
http://developer.apple.com

Resources
You can find a detailed reference manual on MySQL and several sample databases on
the MySQL AB web site at http://dev.mysql.com/doc, although we recommend you ex-
plore these after you’ve finished reading this book.

You can also participate in MySQL-related discussion forums and mailing lists. Some
of these are run by MySQL AB. To learn more, visit the MySQL AB forums page at
http://forums.mysql.com and the lists page at http://lists.mysql.com.

There’s also a lot of helpful material on the MySQL community web site (http://forge
.mysql.com). In particular, look at the collection of (mostly user-contributed) docu-
mentation by following the “Wiki” link near the top of the page. Don’t worry if it all
seems overwhelming at first; you’ll be able to make sense of most of it by the time you
reach the end of this book!

To learn more about installing the software described in this book, we recommend the
following resources:

• For more on the Windows XP command prompt, visit the Microsoft XP command-
line reference at http://www.microsoft.com/resources/documentation/windows/xp/
all/proddocs/en-us/ntcmds_o.mspx. Much of this information applies to Vista too.

• A useful list of frequently-asked questions about XAMPP, including discussion of
common installation problems is available from the XAMPP web site (http://www
.apachefriends.org/en).

• For detailed information on setting up and configuring the Apache web server,
including a list of all the configuration directives, visit http://httpd.apache.org.

To learn more about shell or command-prompt instructions, do a web search for “learn
unix Linux” (for Linux), “learn unix mac os x” (for Mac OS X), or “Windows command
prompt” (for Windows).

Throughout this book, we point out security aspects you should consider while instal-
ling, configuring, and running MySQL and associated web applications. To better un-
derstand security issues, we highly recommend these resources:

• Security Engineering: A Guide to Building Dependable Distributed Systems by Ross
J. Anderson (Wiley). This book is also available online at http://www.cl.cam.ac.uk/
~rja14/book.html.

• Secrets and Lies: Digital Security in a Networked World by Bruce Schneier (Wiley).

• The monthly Crypto-Gram Newsletter, written by Bruce Schneier, available at http:
//www.schneier.com/crypto-gram.html.

Resources | 93

http://dev.mysql.com/doc
http://forums.mysql.com
http://lists.mysql.com
http://forge.mysql.com
http://forge.mysql.com
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/ntcmds_o.mspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/ntcmds_o.mspx
http://www.apachefriends.org/en).
http://www.apachefriends.org/en).
http://httpd.apache.org
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.schneier.com/crypto-gram.html
http://www.schneier.com/crypto-gram.html

Exercises
1. What is command completion?

2. What are the relative advantages of installing MySQL using the package, directory
archive (tarball or “no-install”), or compiled methods?

3. How do you verify the integrity of downloaded packages?

4. How do you add the MySQL bin directory to the operating system path?

94 | Chapter 2: Installing MySQL

CHAPTER 3

Using the MySQL Monitor

MySQL has a client-server architecture; clients connect to the server to perform database
operations such as reading or storing data. There are many MySQL clients available,
including some that have graphical interfaces. You can also develop your own clients.
The standard MySQL command-line client or “monitor” program provided by MySQL
AB is the client you’ll probably use the most often. The monitor allows you to control
almost all aspects of database creation and maintenance using SQL and the custom
MySQL extensions to SQL.

In this chapter, we’ll examine how to start the monitor and how to run commands
through the monitor either interactively or in batch mode. We’ll describe how you can
access the inbuilt MySQL help functions, and how to test your MySQL setup using the
sample databases from the book web site. We’ll also take a quick look at a couple of
graphical tools that you can use instead of the monitor.

Starting the Monitor
The monitor program is called simply mysql and is found in a directory with the other
MySQL programs. The exact location depends on your operating system and how you
chose to install MySQL; we considered some of these in “Error Message About MySQL
Executable Programs Not Being Found or Recognized,” in Chapter 2.

If your MySQL server isn’t already running, start it using the appropriate procedure for
your setup as discussed in Chapter 2. Now, follow these steps to start the monitor and
connect to your MySQL server as the MySQL administrator (the MySQL root user) by
typing this from the command line:

$ mysql --user=root

If you followed our instructions in Chapter 2, the MySQL root account is protected by
the password you chose earlier, and so you’ll get a message saying that you’ve been
denied access to the server. If your server has a password, you should specify the pass-
word as follows:

$ mysql --user=root --password=the_mysql_root_password

95

If you get a message from the operating system saying that it can’t find the MySQL
program, you’ll need to specify the full path to the mysql executable file as discussed in
“Error Message About MySQL Executable Programs Not Being Found or Recognized.”

If you used a nonstandard socket file when starting your server, you’ll need to provide
the details to any MySQL client programs you run, including mysql. For example, you
might type:

$ mysql \
 --socket=server_socket \
 --user=root \
 --password=the_mysql_root_password

If you’re trying to connect to a MySQL server on a different computer or a nonstandard
port, you should specify these when starting the monitor:

$mysql \
 --host=server_host_name \
 --port=server_port \
 --user=root \
 --password=the_mysql_root_password

We list a few more options to the monitor program at the end of this chapter.

Most of the other MySQL programs we’ll describe in this book take the same port and
socket options to identify the server to connect to, and the same user and password
options to identify and authenticate the MySQL user.

If all goes well, you’ll get the monitor’s mysql> prompt:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 456 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

You can now type in commands that MySQL understands. To start things off, ask the
server what version of MySQL it is:

mysql> SELECT VERSION();
+------------+
| VERSION() |
+------------+
| 5.0.22 |
+------------+
1 row in set (0.03 sec)

You’ll almost certainly be using a different version number from the one we’re using.
Now ask the server to list all the databases that it has:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+

96 | Chapter 3: Using the MySQL Monitor

| mysql |
| test |
+----------+
2 rows in set (0.00 sec)

You may see different results on your MySQL server. There are two databases here; the
mysql database is used to store information about user access privileges, and the test
database is an empty scratch space for experimentation. Not terribly exciting, but you’ll
remedy this situation as you progress through this book!

Style, Case, and Semicolons
When interacting with a MySQL server, you’ll use a combination of SQL keywords,
MySQL proprietary commands, and names of databases and database components.
We follow common convention and use a style to make it easier to distinguish between
components of an SQL query. We always show SQL statements and keywords in cap-
itals, such as SELECT or FROM. We also show the MySQL monitor’s proprietary SQL
commands—such as USE—in uppercase. We always enter database components—such
as database, table, and column names—in lowercase. This makes our SQL more read-
able and easier to follow in source code and books.

MySQL isn’t fussy about whether you enter SQL or the monitor’s proprietary state-
ments in uppercase or lowercase. For example, SELECT, select, Select, and even
SeLeCt are equivalent. However, depending on your platform, MySQL can be fussy
about database and table names. For example, under Windows, MySQL isn’t fussy at
all (because Windows itself isn’t fussy about the filenames that store those structures),
while on Mac OS X its fussiness depends on what underlying filesystem you use to store
disk files. Linux and Unix systems observe the difference between uppercase and low-
ercase strictly. A reliable approach is to adopt the convention of using lowercase for all
database, table, and column names. You can control how MySQL manages different
case behavior using an option when you start the MySQL server, mysqld, but we don’t
recommend you do this, and we don’t discuss it further in this book.

There are some restrictions on what characters and words you can use in your database,
table, and other names. For example, you can’t have a column named from or select
(in any mix of uppercase and lowercase). These restrictions are mostly obvious, since
they apply to reserved keywords that confuse MySQL’s parser. We discuss the char-
acters that can and can’t be used in Chapter 6.

You’ll notice that we terminate all SQL statements with the semicolon character (;).
This tells MySQL that we’ve finished entering a statement and that it should now parse
and execute it. This gives you flexibility, allowing you to type in a statement over several
lines. For example, the following statement works fine:

mysql> SELECT User,Host
 -> FROM user;
+------+--------------------------+

Style, Case, and Semicolons | 97

| User | Host |
+------+--------------------------+
	localhost
root	localhost
	saied-ltc.cs.rmit.edu.au
root	saied-ltc.cs.rmit.edu.au
+------+--------------------------+
4 rows in set (0.00 sec)

We often use this style in this book, because it helps long statements fit in the margins
of a page. Notice that the monitor shows you a different prompt (->) to indicate that
it’s waiting for you to enter more of your SQL statement or to type in a semicolon.

In fact, you can add whitespace—such as space and tab characters—anywhere between
the components of a statement to improve its formatting, and we often do this in our
longer statements. Of course, because whitespace separates keywords and values, you
can’t add space within the keywords or values themselves; for example, if you type the
keyword SELECT as SEL ECT, you’ll get an error.

In contrast to SQL statements, you can’t span the MySQL monitor’s own commands
over more than one line. This is because the semicolon isn’t actually required for these,
and just pressing the Enter key has the same effect. For example, the USE command tells
MySQL that you want to use a particular database. The following works fine:

mysql> USE test
Database changed

However, if you try to span the command over more than one line, you won’t get far:

mysql> USE
ERROR:
USE must be followed by a database name

The Monitor Help
The monitor has a handy HELP command that you can use to get more information on
the monitor commands or SQL syntax. If you type HELP and press the Enter key, you’ll
get a list of commands the monitor understands:

mysql> HELP
For information about MySQL products and services, visit:
 http://www.mysql.com/
For developer information, including the MySQL Reference Manual, visit:
 http://dev.mysql.com/
To buy MySQL Network Support, training, or other products, visit:
 https://shop.mysql.com/

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear command.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter. NOTE: Takes the rest of the line as new

98 | Chapter 3: Using the MySQL Monitor

 delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing binlog with
 multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.

For server side help, type 'help contents'

Depending on the version of the monitor that you’re using, you may see a different list.
The characters in the parentheses indicate a shortcut for each command. You typed in
the USE command earlier in this chapter to change to the test database. From the list,
you can see a short description of this command and also see that you can type \u
instead of USE.

Let’s look at another entry on this list. The monitor has command completion, just like
the Linux and Mac OS X shells, and like the Windows command prompt. You can
press the Tab key to complete SQL statements and table and attribute names. If not all
the options you expect are shown, you can update the internal list of expansions
(“rebuild the completion hash”) by typing rehash (or using the shortcut characters
\#) and pressing the Enter key.

Using the help function of the monitor, you can also get help on how to interact with
the MySQL server. To see a table of contents for the help documentation, type HELP
Contents:

mysql> HELP Contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the following
categories:
 Account Management
 Administration
 Data Definition
 Data Manipulation
 Data Types
 Functions
 Functions and Modifiers for Use with GROUP BY

The Monitor Help | 99

 Geographic Features
 Language Structure
 Storage Engines
 Stored Routines
 Table Maintenance
 Transactions
 Triggers

You may see more or less help content depending on the help files that have been
installed with your server. You can get information on individual topics by typing in
the HELP command followed by the topic name. For example, to get information on
data manipulation, you would type:

mysql> HELP Data Manipulation
You asked for help about help category: "Data Manipulation"
For more information, type 'help <item>', where <item> is one of the following
topics:
 CACHE INDEX
 ...
 DELETE
 ...
 EXPLAIN
 ...
 INSERT
 ...
 SELECT
 ...
 SHOW
 ...
 SHOW CREATE DATABASE
 ...
 SHOW CREATE TABLE
 ...
 SHOW DATABASES
 ...
 SHOW GRANTS
 ...
 SHOW STATUS
 ...
 SHOW TABLES
 ...
 UPDATE

We’ve omitted some items to keep the output short.

You can request further information on any of the items by typing HELP followed by
the appropriate keywords. For example, for information on the SHOW DATABASES com-
mand, you’d type:

mysql> HELP SHOW DATABASES
Name: 'SHOW DATABASES'
Description:
Syntax:
SHOW {DATABASES | SCHEMAS} [LIKE 'pattern']

100 | Chapter 3: Using the MySQL Monitor

SHOW DATABASES lists the databases on the MySQL server host. You see
only those databases for which you have some kind of privilege, unless
you have the global SHOW DATABASES privilege. You can also get this
list using the mysqlshow command.

If the server was started with the --skip-show-database option, you
cannot use this statement at all unless you have the SHOW DATABASES
privilege.

SHOW SCHEMAS can be used as of MySQL 5.0.2

Running the Monitor in Batch Mode
The MySQL monitor can be used in interactive mode or in batch mode. In interactive
mode, you type in SQL queries or MySQL commands such as SHOW DATABASES at the
MySQL prompt, and view the results.

In batch mode, you tell the monitor to read in and execute a list of commands from a
file. This is useful when you need to run a large set of operations—for example, when
you want to restore a database from a backup file. It’s also useful when you need to
run a particular sequence of operations frequently; you can save the commands in a
file and then tell the monitor to read in the file whenever you need it.

The examples we’ve presented earlier in this chapter, and most of the examples in this
book, show the monitor being used in interactive mode. Let’s look at an example for
batch mode. Say you have a text file called count_users.sql containing the SQL
commands:

use mysql;
SELECT COUNT(*) FROM user;

This script tells MySQL that you want to use the mysql database, and that you want to
count all the users who have accounts on the MySQL server (we’ll explain the syntax
of the SELECT command in Chapter 5).

You can run all the commands in this file using the SOURCE command:

mysql> SOURCE count_users.sql
Database changed
+----------+
| count(*) |
+----------+
| 4 |
+----------+
1 row in set (0.00 sec)

If the count_users.sql file isn’t in the current directory, you should give the full path to
the file—for example, /home/adam/Desktop/count_users.sql or C:\count_users.sql. Al-
ternatively, from the command line, you can use the less-than (<) redirection operator
followed by the filename:

Running the Monitor in Batch Mode | 101

$ mysql --user=root --password=the_mysql_root_password < count_users.sql
count(*)
4

Loading the Sample Databases
To get a working sample database that you can play with, start by visiting the book’s
web site and downloading the music database file music.sql from the sample databases
section.

To load the file into your server, you need to use the SOURCE command and specify where
MySQL can find the music.sql file. For example, this might be ~/music.sql or
~/Desktop/music.sql on a Linux or Mac OS X system, or C:\Documents and Settings
\my_windows_login_name\Desktop\music.sql on a Windows system.

Once you run the SOURCE command, you should see some reassuring messages flash by:

mysql> SOURCE path_to_music.sql_file;
Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.01 sec)

Query OK, 1 row affected (0.00 sec)
...

You can now see if the database is there by using the SHOW DATABASES command:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| music |
| mysql |
| test |
+----------+
3 rows in set (0.00 sec)

mysql>

We’ll see how to use this database in future chapters.

Repeat this process for the two additional sample database files, flight.sql and univer-
sity.sql, that are available from the book’s web site. Finally, you can leave the MySQL
monitor by typing quit:

mysql> quit

MySQL Monitor Program Options
The monitor program can take several parameters; the ones you’ll need most frequently
are:

102 | Chapter 3: Using the MySQL Monitor

host
The host the server is running on; you can leave this out if the server is running on
the same host as the client (localhost).

user
The username to use when connecting to the MySQL server. This bears no relation
to the username the server is running under, or to your Linux or Mac OS X user-
name. If you don’t provide a username with this option, the monitor uses a default
value; this default username is your machine account name on a Linux or Mac OS
X system, and ODBC on a Windows system.

password
The password of this user. If you don’t provide the password parameter, no pass-
word is supplied to the server. This is fine if there is no password stored for that
user, but if the user does have a password, the connection will fail:

$ mysql --user=the_username
ERROR 1045 (28000): Access denied for user 'the_username'@'localhost'
 (using password: NO)

If you include the password option but don’t specify a password, the client will
prompt you for a password after you press the Enter key. If the user has no pass-
word, pressing the Enter key will work; otherwise, the connection will fail again:

$ mysql --user=the_username --password
Enter password:
ERROR 1045 (28000): Access denied for user 'the_username'@'localhost'
 (using password: NO)

If you provide an incorrect password, or you don’t have permission to access a
specified database, MySQL will note this in the error message:

$ mysql --user=the_username --password=wrong_password
Enter password:
ERROR 1045 (28000): Access denied for user 'the_username'@'localhost'
 (using password: YES)

If you specify the correct password at the Enter password: prompt, or if you specify
the correct password on the command line when starting the monitor, the con-
nection will succeed:

$ mysql --user=the_username --password=the_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 169 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Some users prefer not to specify the password on the command line because sup-
pressing the password guarantees the password won’t be displayed in the operating
system process table or command history. Under all operating systems we’ve tes-
ted, the password is hidden and can’t be seen using operating system utilities to

MySQL Monitor Program Options | 103

view running processes. However, the password may be stored in your command-
line history, which other users may be able to access.

database
The database to use. This saves you from having to type USE the_database_name
after the MySQL monitor starts. You can also simply omit the database option and
just add the name of the database you want to use at the end of the mysql command.

safe-updates
Most experienced MySQL users can remember occasions where they’ve acciden-
tally deleted all the data in a table by issuing a DELETE FROM table_name command,
forgetting to add a limiting condition.

The safe-updates option prevents you from doing this by requiring you to provide
a key constraint to DELETE and UPDATE, or to use a LIMIT clause. For example:

mysql> DELETE FROM user;
ERROR 1175 (HY000): You are using safe update mode and you tried to update
 a table without a WHERE that uses a KEY column

We’ll explain these commands in later chapters.

Let’s look at a couple of examples. First, let’s say you want to connect to the server
running on the same machine you’re working on (localhost), as the MySQL user
root, and with the password the_mysql_root_password. You want to use the database
music, so you would type:

$ mysql --user=root --password=the_mysql_root_password --database=music

Now for a more complex example: say you’re working on the host sadri.learning-
mysql.com, and wish to use the Moodle database on the MySQL server listening to port
57777 on the host zahra.learningmysql.com. For this MySQL server, you have the
MySQL account name moodleuser and the password moodlepass. You would type the
command (all on one line):

$ mysql \
 --host=zahra.learningmysql.com \
 --port=57777 \
 --user=moodleuser \
 --password=moodlepass \
 --database=Moodle

We’ll look at how to create and manage users in Chapter 9.

Instead of specifying options on the command line, you can list them in the mysql
section of an options file. You can also store your password in an options file to avoid
typing it in every time you start the monitor. We discuss how to do this in Chapter 11.

Graphical Clients
Before we end this chapter, let’s have a quick look at two graphical clients that you can
use in place of the monitor.

104 | Chapter 3: Using the MySQL Monitor

The MySQL Administrator program is a graphical tool that you can download as part
of the MySQL GUI Tools Bundle from the MySQL AB downloads page at http://dev
.mysql.com/downloads. This program allows you to perform most database adminis-
tration from within a graphical environment, as shown in Figure 3-1.

The MySQL Query Browser program is also available for download from the same web
page. This allows you to run SQL queries from within a graphical environment, and
view the results. A sample query is shown in Figure 3-2. Together, these tools replace
an older program known as the MySQL Control Center mysqlcc. In this book, we focus
on doing things using the monitor; once you understand the way MySQL works, you’ll
find it easy to use other clients such as these.

Exercises
1. What do we mean when we say that MySQL has a client-server architecture?

2. Use the monitor help to look up information on the SELECT statement. (We’ll dis-
cuss SELECT in detail in Chapter 5.)

3. What is the difference between using the monitor in interactive mode and using
the monitor in batch mode?

4. What do the monitor user, password, and database options do?

Figure 3-1. The MySQL Administrator graphical MySQL administration tool

Exercises | 105

http://dev.mysql.com/downloads
http://dev.mysql.com/downloads

Figure 3-2. The MySQL Query Browser graphical MySQL client

106 | Chapter 3: Using the MySQL Monitor

PART II

Using MySQL

CHAPTER 4

Modeling and Designing Databases

When implementing a new database, it’s easy to fall into the trap of trying to quickly
get something up and running without dedicating adequate time and effort to the de-
sign. This carelessness frequently leads to costly redesigns and reimplementations
down the track. Designing a database is similar to drafting the blueprints for a house;
it’s silly to start building without detailed plans. Importantly, good design allows you
to extend the original building without having to pull everything down and start from
scratch.

How Not to Develop a Database
Database design is probably not the most exciting task in the world, but it’s still im-
portant. Before we describe how to go about the design process, let’s look at an example
of database design on the run.

Imagine we want to create a database to store student grades for a university computer
science department. We could create a Student_Grades table to store grades for each
student and each course. The table would have columns for the given names and the
surname of each student as well as for each course they have taken, the course name,
and the percentage result (shown as Pctg). We’d have a different row for each student
for each of their courses:

+------------+---------+---------------------------+------+
| GivenNames | Surname | CourseName | Pctg |
+------------+---------+---------------------------+------+
John Paul	Bloggs	Web Database Applications	72
Sarah	Doe	Programming 1	87
John Paul	Bloggs	Computing Mathematics	43
John Paul	Bloggs	Computing Mathematics	65
Sarah	Doe	Web Database Applications	65
Susan	Smith	Computing Mathematics	75
Susan	Smith	Programming 1	55
Susan	Smith	Computing Mathematics	80
+------------+---------+---------------------------+------+

109

This is nice and compact, and we can easily access grades for any student or any course.
However, we could have more than one student called Susan Smith; in the sample data,
there are two entries for Susan Smith and the Computing Mathematics course. Which
Susan Smith got an 80? A common way to differentiate duplicate data entries is to assign
a unique number to each entry. Here, we can assign a unique Student ID number to
each student:

+------------+------------+---------+---------------------------+------+
| StudentID | GivenNames | Surname | CourseName | Pctg |
+------------+------------+---------+---------------------------+------+
12345678	John Paul	Bloggs	Web Database Applications	72
12345121	Sarah	Doe	Programming 1	87
12345678	John Paul	Bloggs	Computing Mathematics	43
12345678	John Paul	Bloggs	Computing Mathematics	65
12345121	Sarah	Doe	Web Database Applications	65
12345876	Susan	Smith	Computing Mathematics	75
12345876	Susan	Smith	Programming 1	55
12345303	Susan	Smith	Computing Mathematics	80
+------------+------------+---------+---------------------------+------+

So, the Susan Smith who got 80 is the one with the Student ID number 12345303.

There’s another problem. In our table, John Paul Bloggs has failed the Computing
Mathematics course once with 43 percent, and passed it with 65 percent in his second
attempt. In a relational database, the rows form a set, and there is no implicit ordering
between them; you might guess that the pass happened after the fail, but you can’t
actually be sure. There’s no guarantee that the newer grade will appear after the older
one, so we need to add information about when each grade was awarded, say by adding
a year and semester (Sem):

+------------+------------+---------+---------------------------+------+-----+------+
| StudentID | GivenNames | Surname | CourseName | Year | Sem | Pctg |
+------------+------------+---------+---------------------------+------+-----+------+
12345678	John Paul	Bloggs	Web Database Applications	2004	2	72
12345121	Sarah	Doe	Programming 1	2006	1	87
12345678	John Paul	Bloggs	Computing Mathematics	2005	2	43
12345678	John Paul	Bloggs	Computing Mathematics	2006	1	65
12345121	Sarah	Doe	Web Database Applications	2006	1	65
12345876	Susan	Smith	Computing Mathematics	2005	1	75
12345876	Susan	Smith	Programming 1	2005	2	55
12345303	Susan	Smith	Computing Mathematics	2006	1	80
+------------+------------+---------+---------------------------+------+-----+------+

Notice that the Student_Grades table has become a bit bloated: the student ID, given
names, and surname are repeated for every grade. We could split up the information
and create a Student_Details table:

+------------+------------+---------+
| StudentID | GivenNames | Surname |
+------------+------------+---------+
12345121	Sarah	Doe
12345303	Susan	Smith
12345678	John Paul	Bloggs

110 | Chapter 4: Modeling and Designing Databases

| 12345876 | Susan | Smith |
+------------+------------+---------+

and keep less information in the Student_Grades table:

+------------+---------------------------+------+-----+------+
| StudentID | CourseName | Year | Sem | Pctg |
+------------+---------------------------+------+-----+------+
12345678	Web Database Applications	2004	2	72
12345121	Programming 1	2006	1	87
12345678	Computing Mathematics	2005	2	43
12345678	Computing Mathematics	2006	1	65
12345121	Web Database Applications	2006	1	65
12345876	Computing Mathematics	2005	1	75
12345876	Programming 1	2005	2	55
12345303	Computing Mathematics	2006	1	80
+------------+---------------------------+------+-----+------+

To look up a student’s grades, we’d need to first look up her Student ID from the
Student_Details table and then read the grades for that Student ID from the Stu
dent_Grades table.

There are still issues we haven’t considered. For example, should we keep information
on a student’s enrollment date, postal and email addresses, fees, or attendance? Should
we store different types of postal address? How should we store addresses so that things
don’t break when a student changes his address?

Implementing a database in this way is problematic; we keep running into things we
hadn’t thought about and have to keep changing our database structure. Clearly, we
can save a lot of reworking by carefully documenting the requirements and then work-
ing through them to develop a coherent design.

The Database Design Process
There are three major stages in database design, each producing a progressively lower-
level description:

Requirements analysis
First, we determine and write down what exactly the database is needed for, what
data will be stored, and how the data items relate to each other. In practice, this
might involve detailed study of the application requirements and talking to people
in various roles that will interact with the database and application.

Conceptual design
Once we know what the database requirements are, we distill them into a formal
description of the database design. In this chapter, we’ll see how to use modeling
to produce the conceptual design.

Logical design
Finally, we map the database design onto an actual database management system
and database tables.

The Database Design Process | 111

At the end of the chapter, we’ll look at how we can use the open source MySQL Work
bench tool to automatically convert the conceptual design to a MySQL database
schema.

The Entity Relationship Model
At a basic level, databases store information about distinct objects, or entities, and the
associations, or relationships, between these entities. For example, a university database
might store information about students, courses, and enrollment. A student and a
course are entities, while an enrollment is a relationship between a student and a course.
Similarly, an inventory and sales database might store information about products,
customers, and sales. A product and a customer are entities, while a sale is a relationship
between a customer and a product.

A popular approach to conceptual design uses the Entity Relationship (ER) model,
which helps transform the requirements into a formal description of the entities and
relationships that appear in the database. We’ll start by looking at how the Entity
Relationship modeling process itself works, then apply it in “Entity Relationship Mod-
eling Examples” for three sample databases.

Representing Entities
To help visualize the design, the Entity Relationship Modeling approach involves
drawing an Entity Relationship (ER) diagram. In the ER diagram, an entity set is rep-
resented by a rectangle containing the entity name. For our sales database example, the
product and customer entity sets would be shown as in Figure 4-1.

We typically use the database to store certain characteristics, or attributes, of the enti-
ties. In a sales database, we could store the name, email address, postal address, and
telephone number for each customer. In a more elaborate customer relationship man-
agment (CRM) application, we could also store the names of the customer’s spouse
and children, the languages the customer speaks, the customer’s history of interaction
with our company, and so on. Attributes describe the entity they belong to.

Customer Product

Figure 4-1. An entity set is represented by a named rectangle

112 | Chapter 4: Modeling and Designing Databases

An attribute may be formed from smaller parts; for example, a postal address is com-
posed of a street number, city, ZIP code, and country. We classify attributes as com-
posite if they’re composed of smaller parts in this way, and as simple otherwise.

Some attributes can have multiple values for a given entity. For example, a customer
could provide several telephone numbers, so the telephone number attribute is
multivalued.

Attributes help distinguish one entity from other entities of the same type. We could
use the name attribute to distinguish between customers, but this could be an inade-
quate solution because several customers could have identical names. To be able to tell
them apart, we need an attribute (or a minimal combination of attributes) guaranteed
to be unique to each individual customer. The identifying attribute or attributes form
a key.

In our example, we can assume that no two customers have the same email address,
so the email address can be the key. However, we need to think carefully about the
implications of our choices. For example, if we decide to identify customers by their
email address, it would be hard to allow a customer to have multiple email addresses.
Any applications we build to use this database might treat each email address as a
separate person, and it might be hard to adapt everything to allow people to have
multiple email addresses. Using the email address as the key also means that every
customer must have an email address; otherwise, we wouldn’t be able to distinguish
between customers who don’t have one.

Looking at the other attributes for one that can serve as an alternative key, we see that
while it’s possible that two customers would have the same telephone number (and so
we cannot use the telephone number as a key), it’s likely that people who have the same
telephone number never have the same name, so we can use the combination of the
telephone number and the name as a composite key.

Clearly, there may be several possible keys that could be used to identify an entity; we
choose one of the alternative, or candidate, keys to be our main, or primary, key. You
usually make this choice based on how confident you are that the attribute will be non-
empty and unique for each individual entity, and on how small the key is (shorter keys
are faster to maintain and use).

In the ER diagram, attributes are represented as labeled ovals and are connected to their
owning entity, as shown in Figure 4-2. Attributes comprising the primary key are shown
underlined. The parts of any composite attributes are drawn connected to the oval of
the composite attribute, and multivalued attributes are shown as double-lined ovals.

Attribute values are chosen from a domain of legal values; for example, we could specify
that a customer’s given names and surname attributes can each be a string of up to 100
characters, while a telephone number can be a string of up to 40 characters. Similarly,
a product price could be a positive rational number.

The Entity Relationship Model | 113

Attributes can be empty; for example, some customers may not provide their telephone
numbers. The primary key of an entity (including the components of a multiattribute
primary key) must never be unknown (technically, it must be NOT NULL); for example,
if it’s possible for a customer to not provide an email address, we cannot use the email
address as the key.

You should think carefully when classifying an attribute as multivalued: are all the
values equivalent, or do they in fact represent different things? For example, when
listing multiple telephone numbers for a customer, would they be more usefully labeled
separately as the customer’s business phone number, home phone number, cell phone
number, and so on?

Let’s look at another example. The sales database requirements may specify that a
product has a name and a price. We can see that the product is an entity because it’s a
distinct object. However, the product’s name and price aren’t distinct objects; they’re
attributes that describe the product entity. Note that if we want to have different prices
for different markets, then the price is no longer just related to the product entity, and
we’d need to model it differently.

For some applications, no combination of attributes can uniquely identify an entity (or
it would be too unwieldy to use a large composite key), so we create an artificial attribute
that’s defined to be unique and can therefore be used as a key: student numbers, Social
Security numbers, driver’s license numbers, and library card numbers are examples of
unique attributes created for various applications. In our inventory and sales applica-

Given names

Email address

Telephone number

Postal address

Street address

City

ZIP code

Country

Customer

Surname

Figure 4-2. The ER diagram representation of the customer entity

114 | Chapter 4: Modeling and Designing Databases

tion, it’s possible that we could stock different products with the same name and price.
For example, we could sell two models of “Four-port USB 2.0 Hub,” both at $4.95
each. To distinguish between products, we can assign a unique product ID number to
each item we stock; this would be the primary key. Each product entity would
have name, price, and product ID attributes. This is shown in the ER diagram in
Figure 4-3.

Representing Relationships
Entities can participate in relationships with other entities. For example, a customer
can buy a product, a student can take a course, an artist can record an album, and so on.

Like entities, relationships can have attributes: we can define a sale to be a relationship
between a customer entity (identified by the unique email address) and a given number
of the product entity (identified by the unique product ID) that exists at a particular
date and time (the timestamp).

Our database could then record each sale and tell us, for example, that at 3:13 p.m. on
Wednesday, March 22, Ali Thomson bought one “Four-port USB 2.0 Hub,” one “300
GB 16 MB Cache 7200 rpm SATA Serial ATA133 HDD Hard Disk,” and two sets of
“2000 Watt 5.1 Channel Sub-Woofer Speakers.”

Different numbers of entities can appear on each side of a relationship. For example,
each customer can buy any number of products, and each product can be bought by
any number of customers. This is known as a many-to-many relationship. We can also
have one-to-many relationships. For example, one person can have several credit cards,
but each credit card belongs to just one person. Looking at it the other way, a one-to-
many relationship becomes a many-to-one relationship; for example, many credit cards
belong to a single person. Finally, the serial number on a car engine is an example of a
one-to-one relationship; each engine has just one serial number, and each serial number
belongs to just one engine. We often use the shorthand terms 1:1, 1:N, and M:N for
one-to-one, one-to-many, and many-to-many relationships, respectively.

The number of entities on either side of a relationship (the cardinality of the relation-
ship) define the key constraints of the relationship. It’s important to think about the
cardinality of relationships carefully. There are many relationships that may at first
seem to be one-to-one, but turn out to be more complex. For example, people some-

ProductPrice

Product ID

Name

Figure 4-3. The ER diagram representation of the product entity

The Entity Relationship Model | 115

times change their names; in some applications, such as police databases, this is of
particular interest, and so it may be necessary to model a many-to-many relationship
between a person entity and a name entity. Redesigning a database can be
time-consuming if you assume a relationship is simpler than it really is.

In an ER diagram, we represent a relationship set with a named diamond. The cardin-
ality of the relationship is often indicated alongside the relationship diamond; this is
the style we use in this book. (Another common style is to have an arrowhead on the
line connecting the entity on the “1” side to the relationship diamond.) Figure 4-4 shows
the relationship between the customer and product entities, along with the number
and timestamp attributes of the sale relationship.

Partial and Total Participation
Relationships between entities can be optional or compulsory. In our example, we
could decide that a person is considered to be a customer only if they have bought a
product. On the other hand, we could say that a customer is a person whom we know
about and whom we hope might buy something—that is, we can have people listed as
customers in our database who never buy a product. In the first case, the customer entity
has total participation in the bought relationship (all customers have bought a product,
and we can’t have a customer who hasn’t bought a product), while in the second case
it has partial participation (a customer can buy a product). These are referred to as the

Given names

Email address

Telephone number

Postal address

Street address

City

ZIP code

Country

Customer

Surname

Buys

ProductPrice

Product ID

Name
N

M Number

Timestamp

Figure 4-4. The ER diagram representation of the customer and product entities, and the sale
relationship between them.

116 | Chapter 4: Modeling and Designing Databases

participation constraints of the relationship. In an ER diagram, we indicate total par-
ticipation with a double line between the entity box and the relationship diamond.

Entity or Attribute?
From time to time, we encounter cases where we wonder whether an item should be
an attribute or an entity on its own. For example, an email address could be modeled
as an entity in its own right. When in doubt, consider these rules of thumb:

Is the item of direct interest to the database?
Objects of direct interest should be entities, and information that describes them
should be stored in attributes. Our inventory and sales database is really interested
in customers, and not their email addresses, so the email address would be best
modeled as an attribute of the customer entity.

Does the item have components of its own?
If so, we must find a way of representing these components; a separate entity might
be the best solution. In the student grades example at the start of the chapter, we
stored the course name, year, and semester for each course that a student takes. It
would be more compact to treat the course as a separate entity and to create a class
ID number to identify each time a course is offered to students (the “offering”).

Can the object have multiple instances?
If so, we must find a way to store data on each instance. The cleanest way to do
this is to represent the object as a separate entity. In our sales example, we must
ask whether customers are allowed to have more than one email address; if they
are, we should model the email address as a separate entity.

Is the object often nonexistent or unknown?
If so, it is effectively an attribute of only some of the entities, and it would be better
to model it as a separate entity rather than as an attribute that is often empty.
Consider a simple example: to store student grades for different courses, we could
have an attribute for the student’s grade in every possible course; this is shown in
Figure 4-5. Because most students will have grades for only a few of these courses,
it’s better to represent the grades as a separate entity set, as in Figure 4-6.

Entity or Relationship?
An easy way to decide whether an object should be an entity or a relationship is to map
nouns in the requirements to entities, and to map the verbs to relations. For example,
in the statement, “A degree program is made up of one or more courses,” we can identify
the entities “program” and “course,” and the relationship “is made up of.” Similarly,
in the statement, “A student enrolls in one program,” we can identify the entities
“student” and “program,” and the relationship “enrolls in.” Of course, we can choose
different terms for entities and relationships than those that appear in the relationships,
but it’s a good idea not to deviate too far from the naming conventions used in the

The Entity Relationship Model | 117

requirements so that the design can be checked against the requirements. All else being
equal, try to keep the design simple, and avoid introducing trivial entities where pos-
sible; i.e., there’s no need to have a separate entity for the student’s enrollment when
we can model it as a relationship between the existing student and program entities.

Student ID

Year enrolled

Grade: Computing Mathematics

Grade: Programming

Student

Date of birth

Surname

Given names

Grade: Web Database Appplications

...Attributes for other courses...

Grade: Computer Forensics

Figure 4-5. The ER diagram representation of student grades as attributes of the student entity

Student ID

Year enrolled

Student

Date of birth

Surname

Given names

Takes

Course

N

M

Semester

Course name

Year

Mark

Figure 4-6. The ER diagram representation of student grades as a separate entity

118 | Chapter 4: Modeling and Designing Databases

Intermediate Entities
It is often possible to conceptually simplify many-to-many relationships by replacing
the many-to-many relationship with a new intermediate entity (sometimes called an
associate entity) and connecting the original entities through a many-to-one and a one-
to-many relationship.

Consider the statement: “A passenger can book a seat on a flight.” This is a many-to-
many relationship between the entities “passenger” and “flight.” The related ER dia-
gram fragment is shown in Figure 4-7.

However, let’s look at this from both sides of the relationship:

• Any given flight can have many passengers with a booking.

• Any given passenger can have bookings on many flights.

Hence, we can consider the many-to-many relationship to be in fact two one-to-many
relationships, one each way. This points us to the existence of a hidden intermediate
entity, the booking, between the flight and the passenger entities. The requirement
could be better worded as: “A passenger can make a booking for a seat on a flight.”
The related ER diagram fragment is shown in Figure 4-8.

Each passenger can be involved in multiple bookings, but each booking belongs to a
single passenger, so the cardinality of this relationship is 1:N. Similarly, there can be
many bookings for a given flight, but each booking is for a single flight, so this rela-
tionship also has cardinality 1:N. Since each booking must be associated with a par-
ticular passenger and flight, the booking entity participates totally in the relationships
with these entities. This total participation could not be captured effectively in the
representation in Figure 4-7. (We described partial and total participation earlier in
“Partial and Total Participation.”)

Weak and Strong Entities
Context is very important in our daily interactions; if we know the context, we can
work with a much smaller amount of information. For example, we generally call family
members by only their first name or nickname. Where ambiguity exists, we add further
information such as the surname to clarify our intent. In database design, we can omit

NM

Passenger

BooksFlight

Figure 4-7. A passenger participates in an M:N relationship with flight

The Entity Relationship Model | 119

some key information for entities that are dependent on other entities. For example, if
we wanted to store the names of our customers’ children, we could create a child entity
and store only enough key information to identify it in the context of its parent. We
could simply list a child’s first name on the assumption that a customer will never have
several children with the same first name. Here, the child entity is a weak entity, and
its relationship with the customer entity is called an identifying relationship. Weak en-
tities participate totally in the identifying relationship, since they can’t exist in the da-
tabase independently of their owning entity.

In the ER diagram, we show weak entities and identifying relationships with double
lines, and the partial key of a weak entity with a dashed underline, as in Figure 4-9. A
weak entity is uniquely identified in the context of its regular (or strong) entity, and so
the full key for a weak entity is the combination of its own (partial) key with the key of
its owning entity. To uniquely identify a child in our example, we need the first name
of the child and the email address of the child’s parent.

Figure 4-10 shows a summary of the symbols we’ve explained for ER diagrams.

Entity Relationship Modeling Examples
Earlier in this chapter, we showed you how to design a database and understand an
Entity Relationship (ER) diagram. This section explains the requirements for our three
example databases—music, university, and flight—and shows you their Entity Re-
lationship diagrams:

• The music database is designed to store details of a music collection, including the
albums in the collection, the artists who made them, the tracks on the albums, and
when each track was last played.

N1

Booking

Is forFlight

Makes

N

Passenger

1

Figure 4-8. The intermediate booking entity between the passenger and flight entities

120 | Chapter 4: Modeling and Designing Databases

• The university database captures the details of students, courses, and grades for
a university.

• The flight database stores an airline timetable of flight routes, times, and the plane
types.

The next section explains these databases, each with its ER diagram and an explanation
of the motivation for its design. You’ll find that understanding the ER diagrams and
the explanations of the database designs is sufficient to work with the material in this
chapter. We’ll show you how to create the music database on your MySQL server in
Chapter 5.

The Music Database
The music database stores details of a personal music library, and could be used to
manage your MP3, CD, or vinyl collection. Because this database is for a personal
collection, it’s relatively simple and stores only the relationships between artists, al-
bums, and tracks. It ignores the requirements of many music genres, making it most
useful for storing popular music and less useful for storing jazz or classical music. (We
discuss some shortcomings of these requirements at the end of the section in “What it
doesn’t do.”)

We first draw up a clear list of requirements for our database:

Given names

Email address

Telephone number

Postal address

Street address

City

ZIP code

Country

Customer

Surname

Is a child of

ChildGender

Date of birth

First name

M

1

Figure 4-9. The ER diagram representation of a weak entity

Entity Relationship Modeling Examples | 121

• The collection consists of albums.

• An album is made by exactly one artist.

• An artist makes one or more albums.

• An album contains one or more tracks

• Artists, albums, and tracks each have a name.

• Each track is on exactly one album.

• Each track has a time length, measured in seconds.

• When a track is played, the date and time the playback began (to the nearest sec-
ond) should be recorded; this is used for reporting when a track was last played,
as well as the number of times music by an artist, from an album, or a track has
been played.

There’s no requirement to capture composers, group members or sidemen, recording
date or location, the source media, or any other details of artists, albums, or tracks.

The ER diagram derived from our requirements is shown in Figure 4-11. You’ll notice
that it consists of only one-to-many relationships: one artist can make many albums,
one album can contain many tracks, and one track can be played many times. Con-
versely, each play is associated with one track, a track is on one album, and an album
is by one artist. The attributes are straightforward: artists, albums, and tracks have
names, as well as identifiers to uniquely identify each entity. The track entity has a time
attribute to store the duration, and the played entity has a timestamp to store when the
track was played.

Entity Relationship Entity

Identifying Relationship

1

Weak entity

N

Attribute

Attribute

Multivalued attribute

Attribute

Cardinality: 1

Cardinality: N

Total participation

Component of weak key

Component of key

Figure 4-10. Quick summary of the ER diagram symbols

122 | Chapter 4: Modeling and Designing Databases

The only strong entity in the database is Artist, which has an artist_id attribute that
uniquely identifies it. Each Album entity is uniquely identified by its album_id combined
with the artist_id of the corresponding Artist entity. A Track entity is similarly
uniquely identified by its track_id combined with the related album_id and artist_id
attributes. The Played entity is uniquely identified by a combination of its played time,
and the related track_id, album_id, and artist_id attributes.

What it doesn’t do

We’ve kept the music database simple because adding extra features doesn’t help you
learn anything new, it just makes the explanations longer. If you wanted to use the
music database in practice, then you might consider adding the following features:

• Support for compilations or various-artists albums, where each track may be by a
different artist and may then have its own associated album-like details such as a
recording date and time. Under this model, the album would be a strong entity,
with many-to-many relationships between artists and albums.

• Playlists, a user-controlled collection of tracks. For example, you might create a
playlist of your favorite tracks from an artist.

• Track ratings, to record your opinion on how good a track is.

artist_name

artist_id

Artist

Compiles

Album

1

N

album_name

album_id

Contains
1

Track

N

time

track_name

track_id

WasPlayedAt

1

Played

N

played

Figure 4-11. The ER diagram of the music database

Entity Relationship Modeling Examples | 123

• Source details, such as when you bought an album, what media it came on, how
much you paid, and so on.

• Album details, such as when and where it was recorded, the producer and label,
the band members or sidemen who played on the album, and even its artwork.

• Smarter track management, such as modeling that allows the same track to appear
on many albums.

The University Database
The university database stores details about university students, courses, the semester
a student took a particular course (and his mark and grade if he completed it), and what
degree program each student is enrolled in. The database is a long way from one that’d
be suitable for a large tertiary institution, but it does illustrate relationships that are
interesting to query, and it’s easy to relate to when you’re learning SQL. We explain
the requirements next and discuss their shortcomings at the end of this section.

Consider the following requirements list:

• The university offers one or more programs.

• A program is made up of one or more courses.

• A student must enroll in a program.

• A student takes the courses that are part of her program.

• A program has a name, a program identifier, the total credit points required to
graduate, and the year it commenced.

• A course has a name, a course identifier, a credit point value, and the year it
commenced.

• Students have one or more given names, a surname, a student identifier, a date of
birth, and the year they first enrolled. We can treat all given names as a single object
—for example, “John Paul.”

• When a student takes a course, the year and semester he attempted it are recorded.
When he finishes the course, a grade (such as A or B) and a mark (such as 60
percent) are recorded.

• Each course in a program is sequenced into a year (for example, year 1) and a
semester (for example, semester 1).

The ER diagram derived from our requirements is shown in Figure 4-12. Although it
is compact, the diagram uses some advanced features, including relationships that have
attributes and two many-to-many relationships.

In our design:

• Student is a strong entity, with an identifier, student_id, created to be the primary
key used to distinguish between students (remember, we could have several stu-
dents with the same name).

124 | Chapter 4: Modeling and Designing Databases

• Program is a strong entity, with the identifier program_id as the primary key used to
distinguish between programs.

• Each student must be enrolled in a program, so the Student entity participates
totally in the many-to-one EnrollsIn relationship with Program. A program can
exist without having any enrolled students, so it participates partially in this
relationship.

• A Course has meaning only in the context of a Program, so it’s a weak entity, with
course_id as a weak key. This means that a Course is uniquely identified using its
course_id and the program_id of its owning program.

• As a weak entity, Course participates totally in the many-to-one identifying rela-
tionship with its owning Program. This relationship has Year and Semester attributes
that identify its sequence position.

• Student and Course are related through the many-to-many Attempts relationships;
a course can exist without a student, and a student can be enrolled without at-
tempting any courses, so the participation is not total.

• When a student attempts a course, there are attributes to capture the Year and
Semester, and the Mark and Grade.

Student_ID

YearEnrolled

Date_of_Birth

Surname

GivenNames

Student

Attempts

M

N

Year

Semester

Mark

Grade

EnrollsIn
N 1

Program

Contains

Course

1

N

Year

Semester

CreditPoints

YearCommenced

program_id

Name

CreditPoints

YearCommenced

course_id

Name

Figure 4-12. The ER diagram of the university database

Entity Relationship Modeling Examples | 125

What it doesn’t do

Our database design is rather simple, but this is because the requirements are simple.
For a real university, many more aspects would need to be captured by the database.
For example, the requirements don’t mention anything about campus, study mode,
course prerequisites, lecturers, timetabling details, address history, financials, or as-
sessment details. The database also doesn’t allow a student to be in more than one
degree program, nor does it allow a course to appear as part of different programs.

The Flight Database
The flight database stores details about an airline’s fleet, flights, and seat bookings.
Again, it’s a hugely simplified version of what a real airline would use, but the principles
are the same.

Consider the following requirements list:

• The airline has one or more airplanes.

• An airplane has a model number, a unique registration number, and the capacity
to take one or more passengers.

• An airplane flight has a unique flight number, a departure airport, a destination
airport, a departure date and time, and an arrival date and time.

• Each flight is carried out by a single airplane.

• A passenger has given names, a surname, and a unique email address.

• A passenger can book a seat on a flight.

The ER diagram derived from our requirements is shown in Figure 4-13:

• An Airplane is uniquely identified by its RegistrationNumber, so we use this as the
primary key.

• A Flight is uniquely identified by its FlightNumber, so we use the flight number as
the primary key. The departure and destination airports are captured in the From
and To attributes, and we have separate attributes for the departure and arrival date
and time.

• Because no two passengers will share an email address, we can use the EmailAd
dress as the primary key for the Passenger entity.

• An airplane can be involved in any number of flights, while each flight uses exactly
one airplane, so the Flies relationship between the Airplane and Flight relation-
ships has cardinality 1:N; because a flight cannot exist without an airplane, the
Flight entity participates totally in this relationship.

• A passenger can book any number of flights, while a flight can be booked by any
number of passengers. As discussed earlier in “Intermediate Entities,” we could
specify an M:N Books relationship between the Passenger and Flight relationship,

126 | Chapter 4: Modeling and Designing Databases

but considering the issue more carefully shows that there is a hidden entity here:
the booking itself. We capture this by creating the intermediate entity Booking and
1:N relationships between it and the Passenger and Flight entities. Identifying such
entities allows us to get a better picture of the requirements. Note that even if we
didn’t notice this hidden entity, it would come out as part of the ER-to-tables
mapping process we’ll describe next in “Using the Entity Relationship Model.”

What it doesn’t do

Again, this is a very simple flight database. There are no requirements to capture pas-
senger details such as age, gender, or frequent-flier number.

We’ve treated the capacity of the airplane as an attribute of an individual airplane. If,
instead, we assumed that the capacity is determined by the model number, we would
have created a new AirplaneModel entity with the attributes ModelNumber and
Capacity. The Airplane entity would then not have a Capacity attribute.

We’ve mapped a different flight number to each flight between two destinations. Air-
lines typically use a flight number to identify a given flight path and schedule, and they
specify the date of the flight independently of the flight number. For example, there is
one IR655 flight on April 1, another on April 2, and so on. Different airplanes can

Capacity

From

FlightNumber

RegistrationNumber

ModelNumber

Airplane

To

DepartureDate

DepartureTime

ArrivalDate

ArrivalTime

Flies

Flight

1

N

Books

Booking

1

N

HasBooking
N1

Passenger

EmailAddress

Surname

GivenNames

Figure 4-13. The ER diagram of the flight database

Entity Relationship Modeling Examples | 127

operate on the same flight number over time; our model would need to be extended to
support this.

The system also assumes that each leg of a multihop flight has a different
FlightNumber. This means that a flight from Dubai to Christchurch via Singapore and
Melbourne would need a different FlightNumber for the Dubai-Singapore, Singapore-
Melbourne, and Melbourne-Christchurch legs.

Our database also has limited ability to describe airports. In practice, each airport has
a name, such as “Melbourne Regional Airport,” “Mehrabad,” or “Tullamarine.” The
name can be used to differentiate between airports, but most passengers will just use
the name of the town or city. This can lead to confusion, when, for example, a passenger
could book a flight to Melbourne, Florida, USA, instead of Melbourne, Victoria, Aus-
tralia. To avoid such problems, the International Air Transport Association (IATA)
assigns a unique airport code to each airport; the airport code for Melbourne, Florida,
USA is MLB, while the code for Melbourne, Victoria, Australia is MEL. If we were to
model the airport as a separate entity, we could use the IATA-assigned airport code as
the primary key. Incidentally, there’s an alternative set of airport codes assigned by the
International Civil Aviation Organization (ICAO); under this code, Melbourne, Florida
is KMLB, and Melbourne, Australia is YMML.

Using the Entity Relationship Model
In this section, we’ll look at the steps required to manually translate an ER model into
database tables. We’ll then perform these steps using the music database as an example.
In “Using Tools for Database Design,” we’ll see how we can automate this process with
the MySQL Workbench tool.

Mapping Entities and Relationships to Database Tables
When converting an ER model to a database schema, we work through each entity and
then through each relationship according to the following rules to end up with a set of
database tables.

Map the entities to database tables

For each strong entity, create a table comprising its attributes and designate the primary
key. The parts of any composite attributes are also included here.

For each weak entity, create a table comprising its attributes and including the primary
key of its owning entity. The primary key of the owning entity is known as a foreign
key here, because it’s a key not of this table, but of another table. The primary key of
the table for the weak entity is the combination of the foreign key and the partial key
of the weak entity. If the relationship with the owning entity has any attributes, add
them to this table.

128 | Chapter 4: Modeling and Designing Databases

For each multivalued attribute of an entity, create a table comprising the entity’s pri-
mary key and the attribute.

Map the relationships to database tables

For each one-to-one relationship between two entities, include the primary key of one
entity as a foreign key in the table belonging to the other. If one entity participates
totally in the relationship, place the foreign key in its table. If both participate totally
in the relationship, consider merging them into a single table.

For each nonidentifying one-to-many relationship between two entities, include the
primary key of the entity on the “1” side as a foreign key in the table for the entity on
the “N” side. Add any attributes of the relationship in the table alongside the foreign
key. Note that identifying one-to-many relationships (between a weak entity and its
owning entity) are captured as part of the entity-mapping stage.

For each many-to-many relationship between two entities, create a new table contain-
ing the primary key of each entity as the primary key, and add any attributes of the
relationship. This step helps to identify intermediate entities.

For each relationship involving more than two entities, create a table with the primary
keys of all the participating entities, and add any attributes of the relationship.

Converting the Music Database ER Model to a Database Schema
Following the mapping rules as just described, we first map entities to database tables:

• For the strong entity Artist, we create the table artist comprising the attributes
artist_id and artist_name, and designate artist_id as the primary key.

• For the weak entity Album, we create the table album comprising the attributes
album_id and album_name, and include the primary key artist_id of the owning
Artist entity as a foreign key. The primary key of the album table is the combination
{artist_id, album_id}.

• For the weak entity Track, we create the table track comprising the attributes
track_id, track_name, and time, and include the primary key {artist_id,
album_id} of the owning Album entity as a foreign key. The primary key of the
track table is the combination {artist_id, album_id, track_id}.

• For the weak entity Played, we create the table played comprising the attribute
played, and include the primary key {artist_id, album_id, track_id} of the owning
Track entity as a foreign key. The primary key of the played table is the combination
{artist_id, album_id, track_id, played}.

• There are no multivalued attributes in our design, nor are there any nonweak re-
lationships between our entities, so our mapping is complete here.

You don’t have to use consistent names across all tables; for example, you could have
a column musician in the album table that contains the artist ID that you call

Using the Entity Relationship Model | 129

artist_id in the artist table. Obviously, it’s much better to use a consistent naming
convention to avoid confusion. Some designers put fk_ in front of columns that contain
foreign keys; for example, in the album table, we could store the artist ID in the
fk_artist_id column. We don’t use this convention in this book.

Using Tools for Database Design
It’s a good idea to use a tool to draw your ER diagrams; this way, you can easily edit
diagrams as you refine your designs, and the final diagram is clear and unambiguous.
There are a large number of programs that can be used for this purpose. A good free
tool that is available for both Linux and Windows is Dia; you can download the latest
version from http://www.gnome.org/projects/dia. Mac OS X users can use the Omni-
Graffle program that comes bundled with the operating system. Windows users can
also use Microsoft Visio.

A screenshot of Dia is shown in Figure 4-14. When you open the program, you should
first select the ER “sheet” of shapes from the drop-down list in the middle of the control
window (where the ER label appears at the right of the figure) and then select from the
entity and relation shapes.

You can assign properties to shapes by double-clicking on them. For example, you can
mark an attribute as being a key or a weak key, and you can mark an entity’s partici-
pation in a relation as being total or partial.

Figure 4-14. Using the Dia program to draw an ER diagram

130 | Chapter 4: Modeling and Designing Databases

http://www.gnome.org/projects/dia

The open source MySQL Workbench program is a very powerful visual database design
tool available as part of the MySQL GUI Tools Bundle from the MySQL AB downloads
page at http://dev.mysql.com/downloads.

Figure 4-15 shows a screenshot of using MySQL Workbench to design the flight da-
tabase. You can select tables and relations from the toolbar icons on the left of the
screen, and double-click on each object to set properties such as attributes and rela-
tionship cardinality.

A very useful feature of MySQL Workbench is that it can export your design as SQL
statements ready to use on a MySQL database. Even better, it can connect to a MySQL
database to export a design directly. You can also reverse-engineer an ER model from
an existing database, edit the model, and then export the modified design back to the
MySQL database. Note that this program is currently in the beta testing phase, so you
should use it with care.

Figure 4-15. A screenshot of the MySQL Workbench program to design the Flight database

Using Tools for Database Design | 131

http://dev.mysql.com/downloads

Resources
To learn more about database fundamentals, including ER modeling, we recommend
the following books:

• Database Management Systems by Raghu Ramakrishnan and Johannes Gehrke
(McGraw-Hill).

• Fundamentals of Database Systems by Ramez Elmasri and Shamkant B. Navathe
(Addison-Wesley).

• Database Systems: A Practical Approach to Design, Implementation and Manage-
ment by Thomas M. Connolly and Carolyn E. Begg (Addison-Wesley).

Exercises
1. When would you use a weak entity?

2. Is it better to use entities instead of attributes?

3. Alter and extend the music database ER model so that it can store compilations,
where a compilation is an album that contains tracks by two or more different
artists.

4. Create an ER diagram for an online media store using the following requirements:

• There are two types of product: music CDs and video DVDs.

• Customers can buy any number of each product.

• For each CD, store the title, the artist’s name, the label (publisher), and the
price. Also store the number, title, and length (in seconds) of each track on the
CD.

• For each video DVD, store the title the studio name, and the price.

Tables 4-1 and 4-2 contain some sample data to help you better understand the
requirements.

Table 4-1. Video DVDs

Title Studio Price

Leon—The Professional Sony Pictures $21.99

Chicken Run Dreamworks Video $19.99

132 | Chapter 4: Modeling and Designing Databases

Table 4-2. Music CDs

Title Artist Label Price

Come Away With Me Norah Jones Blue Note Records $11.99

Feels Like Home Norah Jones Blue Note Records $11.99

The Joshua Tree U2 Island $10.99

Brothers in Arms Dire Straits Vertigo $9.99

Table 4-3 contains a sample list of music CD track titles and length in seconds for
the CD with the title “Come Away With Me” by the artist Norah Jones.

Table 4-3. Tracks

Number Name Length

1 Don’t Know Why 186

2 Seven Years 145

3 Cold, Cold Heart 218

4 Feelin’ the Same Way 177

5 Come Away with Me 198

6 Shoot the Moon 236

7 Turn Me On 154

8 Lonestar 186

9 I’ve Got to See You Again 253

10 Painter Song 162

11 One Flight Down 185

12 Nightingale 252

13 The Long Day Is Over 164

14 The Nearness of You 187

Exercises | 133

CHAPTER 5

Basic SQL

SQL is the only database language in widespread use. Since it was first proposed in the
early 1970s, it has been criticized, changed, extended, and finally adopted by all the
players in the database market. The latest standard is SQL-2003—the 2003 denotes its
release year—but the version supported by most database servers is more closely related
to its predecessors, SQL-1999 and SQL-1992. MySQL supports most of the features of
SQL-1992 and many from the newer SQL standards, but it also includes many non-
standard features that give more control over the database server and how it evaluates
queries and returns results.

This chapter introduces the basics of MySQL’s implementation of SQL. We show you
how to read data from a database with the SELECT statement, and how to choose what
data is returned and the order it is displayed in. We also show you the basics of mod-
ifying your databases with the INSERT statement to add data, UPDATE to change, and
DELETE to remove it. We also explain how to use the nonstandard SHOW TABLES and SHOW
COLUMNS statements to explore your database.

Following our example-based approach, we use the music database designed in Chap-
ter 4 to show you how to work with an existing database, and use basic SQL to read
and write data. In Chapter 6, we’ll explain how to create the music database on your
MySQL server. We’ll also show how you can create your own database and tables, and
modify the structure of existing ones. In Chapters 7 and 8, you’ll learn about some
advanced features of the SQL variant used by MySQL.

Using the Music Database
In Chapter 4, we showed you how we understood the requirements for storing a music
collection and how we designed the music ER model. We also introduced the steps you
take to convert an ER model to a format that makes sense for constructing a relational
database. For convenience, we’ve reproduced the music database ER diagram in Fig-
ure 5-1. In this section, we show you the structure of the MySQL database that we
created after converting the ER model into SQL statements. We don’t explain the SQL
statements we used to create the database; that’s the subject of Chapter 6.

135

To begin exploring the music database, connect to the MySQL monitor using the
root MySQL account. For Mac OS X or Linux, run a terminal program, and in the
terminal window type:

$ mysql --user=root --password=the_mysql_root_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

For Windows, click on the Start menu, then on the Run option, and then type cmd and
press Enter. In the DOS or command window, type:

C:\> mysql --user=root --password=the_mysql_root_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

If you find that the monitor doesn’t start, check the instructions in “Error Message
About MySQL Executable Programs Not Being Found or Recognized” in Chapter 2 to
see how to run it.

artist_name

artist_id

Artist

Compiles

Album

1

N

album_name

album_id

Contains
1

Track

N

time

track_name

track_id

WasPlayedAt

1

Played

N

played

Figure 5-1. The ER diagram of the music database

136 | Chapter 5: Basic SQL

The structure of the music database is straightforward; it’s the simplest of our three
sample databases. Let’s use the MySQL monitor to explore it. If you haven’t already,
start the monitor using the instructions in “Loading the Sample Databases” in Chap-
ter 3. To choose the music database as your current database, type the following:

mysql> USE music;
Database changed
mysql>

You can check that this is the active database by typing in the SELECT DATABASE();
command:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| music |
+------------+
1 row in set (0.00 sec)
mysql>

Now, let’s explore what tables make up the music database using the SHOW TABLES
statement:

mysql> SHOW TABLES;
+-----------------+
| Tables_in_music |
+-----------------+
| album |
| artist |
| played |
| track |
+-----------------+
4 rows in set (0.01 sec)

MySQL reports that there are four tables, which map exactly to the four entities in
Figure 5-1. The SHOW statement is discussed in more detail later in “Exploring Databases
and Tables with SHOW and mysqlshow.”

So far, there have been no surprises. Let’s find out more about each of the tables that
make up the music database. First, let’s use the SHOW COLUMNS statement to explore the
artist table:

mysql> SHOW COLUMNS FROM artist;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| artist_id | smallint(5) | NO | PRI | 0 | |
| artist_name | char(128) | NO | | | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

The DESCRIBE keyword is identical to SHOW COLUMNS FROM, and can be abbreviated to just
DESC, so we can write the previous query as follows:

Using the Music Database | 137

mysql> DESC artist;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| artist_id | smallint(5) | NO | PRI | 0 | |
| artist_name | char(128) | NO | | | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Let’s examine the table structure more closely. As you’d expect from the ER model in
Figure 5-1, the artist table contains two columns, artist_id and artist_name. The
other information in the output shows the types of the columns—an integer of length
5 for artist_id and a character string of length 128 for artist_name—and whether the
column is allowed to be NULL (empty), whether it’s part of a key, and the default value
for it. You’ll notice that the artist_id has PRI in the Key column, meaning it’s part of
the primary key for the table. Don’t worry about the details; all that’s important right
now is the column names, artist_id and artist_name.

We’ll now explore the other three tables. Here are the SHOW COLUMNS statements you
need to type:

mysql> SHOW COLUMNS FROM album;
+------------+-----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-----------+------+-----+---------+-------+
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
album_name	char(128)	YES		NULL	
+------------+-----------+------+-----+---------+-------+
3 rows in set (0.00 sec)

mysql> SHOW COLUMNS FROM track;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
track_id	int(3)		PRI	0	
track_name	char(128)	YES		NULL	
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
time	decimal(5,2)	YES		NULL	
+------------+--------------+------+-----+---------+-------+
5 rows in set (0.02 sec)

mysql> SHOW COLUMNS FROM played;
+-----------+-----------+------+-----+-------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-----------+------+-----+-------------------+-------+
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
track_id	int(3)		PRI	0	
played	timestamp	YES	PRI	CURRENT_TIMESTAMP	
+-----------+-----------+------+-----+-------------------+-------+
4 rows in set (0.00 sec)

138 | Chapter 5: Basic SQL

Again, what’s important is getting familiar with the columns in each table, as we’ll make
use of these frequently later when we’re learning about querying. Notice also that be-
cause all of these three entities are weak, each table contains the primary key columns
from the table it’s related to. For example, the track table contains artist_id,
album_id, and track_id, because the combination of all three is required to uniquely
identify a track.

In the next section, we show you how to explore the data that’s stored in the music
database and its tables.

The SELECT Statement and Basic Querying Techniques
Up to this point, you’ve learned how to install and configure MySQL, and how to use
the MySQL monitor. Now that you understand the music database, you’re ready to
start exploring its data and to learn the SQL language that’s used by all MySQL clients.
In this section, we introduce the most commonly used SQL keyword, and the only one
that reads data from a database: the SELECT keyword. We also explain some basic ele-
ments of style and syntax, and the features of the WHERE clause, Boolean operators, and
sorting (much of this also applies to our later discussions of INSERT, UPDATE, and
DELETE). This isn’t the end of our discussion of SELECT; you’ll find more in Chapter 7,
where we show you how to use its advanced features.

Single Table SELECTs
The most basic form of SELECT reads the data in all rows and columns from a table.
Start the monitor and choose the music database:

mysql> use music;
Database changed

Let’s retrieve all of the data in the artist table:

mysql> SELECT * FROM artist;
+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
1	New Order
2	Nick Cave & The Bad Seeds
3	Miles Davis
4	The Rolling Stones
5	The Stone Roses
6	Kylie Minogue
+-----------+---------------------------+
6 rows in set (0.08 sec)

The output has six rows, and each row contains the values for the artist_id and
artist_name columns. We now know that there are six artists in our database and can
see the names and identifiers for these artists.

The SELECT Statement and Basic Querying Techniques | 139

A simple SELECT statement has four components:

1. The keyword SELECT.

2. The columns to be displayed. In our first example, we asked for all columns by
using the asterisk (*) symbol as a wildcard character.

3. The keyword FROM.

4. The table name; in this example, the table name is artist.

Putting all this together, we’ve asked for all columns from the artist table, and that’s
what MySQL has returned to us.

Let’s try another simple SELECT. This time, we’ll retrieve all columns from the album
table:

mysql> SELECT * FROM album;
+-----------+----------+--+
| artist_id | album_id | album_name |
+-----------+----------+--+
2	1	Let Love In
1	1	Retro - John McCready FAN
1	2	Substance (Disc 2)
1	3	Retro - Miranda Sawyer POP
1	4	Retro - New Order / Bobby Gillespie LIVE
3	1	Live Around The World
3	2	In A Silent Way
1	5	Power, Corruption & Lies
4	1	Exile On Main Street
1	6	Substance 1987 (Disc 1)
5	1	Second Coming
6	1	Light Years
1	7	Brotherhood
+-----------+----------+--+
13 rows in set (0.03 sec)

We have 13 albums in our database, and the output has the same basic structure as our
first example.

The second example gives you an insight into how the relationships between the tables
work. Consider the first row of the results—for the album “Let Love In,” which is by
the artist with the artist_id value of 2. If you inspect the output of our first example
that retrieved data from the artist table, you’ll note that the matching artist is “Nick
Cave & The Bad Seeds.” So, Nick Cave recorded Let Love In. You’ll also notice that
the albums we own for a given artist each have a number in the album_id column. You
can see, for example, that we own seven albums by the artist with an artist_id of 1.
We’ll discuss how to write queries on relationships between tables later in this chapter
in “Joining Two Tables.”

Notice also that we have several different albums with the same album_id. This isn’t a
problem, since album_id is only a weak key; an album is uniquely identified by the

140 | Chapter 5: Basic SQL

combination of its album_id and the primary key of its owning entity, which is
artist_id.

You should now feel comfortable about choosing a database, listing its tables, and
retrieving all of the data from a table using the SELECT statement. To practice, you might
want to experiment with the university or flight databases you loaded in Chapter 3
in “Loading the Sample Databases.” Remember that you can use the SHOW TABLES state-
ment to find out the table names in these databases.

Choosing Columns
You’ve so far used the * wildcard character to retrieve all columns in a table. If you
don’t want to display all the columns, it’s easy to be more specific by listing the columns
you want, in the order you want them, separated by commas. For example, if you want
only the artist_name column from the artist table, you’d type:

mysql> SELECT artist_name FROM artist;
+---------------------------+
| artist_name |
+---------------------------+
| New Order |
| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue |
+---------------------------+
6 rows in set (0.01 sec)

If you want both the artist_name and the artist_id, in that order, you’d use:

mysql> SELECT artist_name,artist_id FROM artist;
+---------------------------+-----------+
| artist_name | artist_id |
+---------------------------+-----------+
New Order	1
Nick Cave & The Bad Seeds	2
Miles Davis	3
The Rolling Stones	4
The Stone Roses	5
Kylie Minogue	6
+---------------------------+-----------+
6 rows in set (0.00 sec)

You can even list columns more than once:

mysql> SELECT artist_id, artist_id FROM artist;
+-----------+-----------+
| artist_id | artist_id |
+-----------+-----------+
1	1
2	2
3	3

The SELECT Statement and Basic Querying Techniques | 141

4	4
5	5
6	6
+-----------+-----------+
6 rows in set (0.06 sec)

Even though this appears pointless, it can be useful when combined with aliases in
more advanced queries, as we show in Chapter 7.

You can specify databases, tables, and column names in a SELECT statement. This allows
you to avoid the USE command and work with any database and table directly with
SELECT; it also helps resolve ambiguities, as we show later in “Joining Two Tables.”
Consider an example: suppose you want to retrieve the album_name column from the
album table in the music database. You can do this with the following command:

mysql> SELECT album_name FROM music.album;
+--+
| album_name |
+--+
| Let Love In |
| Retro - John McCready FAN |
| Substance (Disc 2) |
| Retro - Miranda Sawyer POP |
| Retro - New Order / Bobby Gillespie LIVE |
| Live Around The World |
| In A Silent Way |
| Power, Corruption & Lies |
| Exile On Main Street |
| Substance 1987 (Disc 1) |
| Second Coming |
| Light Years |
| Brotherhood |
+--+
13 rows in set (0.01 sec)

The music.album component after the FROM keyword specifies the music database and
its album table. There’s no need to enter USE music before running this query. This syntax
can also be used with other SQL statements, including the UPDATE, DELETE, INSERT, and
SHOW statements we discuss later in this chapter.

Choosing Rows with the WHERE Clause
This section introduces the WHERE clause and explains how to use the Boolean operators
to write expressions. You’ll see these in most SELECT statements, and often in other
statements such as UPDATE and DELETE; we’ll show you examples later in this chapter.

WHERE basics

The WHERE clause is a powerful tool that allows you to choose which rows are returned
from a SELECT statement. You use it to return rows that match a condition, such as
having a column value that exactly matches a string, a number greater or less than a

142 | Chapter 5: Basic SQL

value, or a string that is a prefix of another. Almost all our examples in this and later
chapters contain WHERE clauses, and you’ll become very familiar with them.

The simplest WHERE clause is one that exactly matches a value. Consider an example
where we want to find out the details of the artist with the name “New Order.” Here’s
what you type:

mysql> SELECT * FROM artist WHERE artist_name = "New Order";
+-----------+-------------+
| artist_id | artist_name |
+-----------+-------------+
| 1 | New Order |
+-----------+-------------+
1 row in set (0.00 sec)

MySQL returns all rows that match our search criteria—in this case, just the one row
and all its columns. From this, you can see that the artist “New Order” has an
artist_id of 1.

Let’s try another exact-match example. Suppose you want to find out the name of the
artist with an artist_id value of 4. You type:

mysql> SELECT artist_name FROM artist WHERE artist_id = 4;
+--------------------+
| artist_name |
+--------------------+
| The Rolling Stones |
+--------------------+
1 row in set (0.00 sec)

In this example, we’ve chosen both a column and a row: we’ve included the column
name artist_name after the SELECT keyword, as well as WHERE artist_id = 4.

If a value matches more than one row, the results will contain all matches. Suppose we
ask for the names of all tracks with a track_id of 13; this retrieves the thirteenth song
on every album that has at least that many songs. You type in:

mysql> SELECT track_name FROM track WHERE track_id = 13;
+--+
| track_name |
+--+
| Every Little Counts |
| Everyone Everywhere |
| Turn My Way [Olympia, Liverpool 18/7/01] |
| Let It Loose |
+--+
4 rows in set (0.02 sec)

The results show the names of the thirteenth track of different albums, so there must
be 4 albums that contain at least 13 tracks If we could join the information we get from
the track table with information we get from the album table, we could display the
names of these albums. We’ll see how to perform this type of query later in “Joining
Two Tables.”

The SELECT Statement and Basic Querying Techniques | 143

Now let’s try retrieving values in a range. This is simplest for numeric ranges, so let’s
start by finding the names of all artists with an artist_id less than 5. To do this, type:

mysql> SELECT artist_name FROM artist WHERE artist_id < 5;
+---------------------------+
| artist_name |
+---------------------------+
| New Order |
| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
+---------------------------+
4 rows in set (0.06 sec)

For numbers, the frequently used operators are equals (=), greater than (>), less than
(<), less than or equal (<=), greater than or equal (>=), and not equal (<> or !=).

Consider one more example. If you want to find all albums that don’t have an
album_id of 2, you’d type:

mysql> SELECT album_name FROM album WHERE album_id <> 2;
+--+
| album_name |
+--+
| Let Love In |
| Retro - John McCready FAN |
| Retro - Miranda Sawyer POP |
| Retro - New Order / Bobby Gillespie LIVE |
| Live Around The World |
| Power, Corruption & Lies |
| Exile On Main Street |
| Substance 1987 (Disc 1) |
| Second Coming |
| Light Years |
| Brotherhood |
+--+
11 rows in set (0.01 sec)

This shows us the first, third, and all subsequent albums for all artists. Note that you
can use either <> or != for not-equal.

You can use the same operators for strings. For example, if you want to list all artists
whose name appears earlier alphabetically than (is less than) 'M', use:

mysql> SELECT artist_name FROM artist WHERE artist_name < 'M';
+---------------+
| artist_name |
+---------------+
| Kylie Minogue |
+---------------+
1 row in set (0.00 sec)

Since Kylie Minogue begins with a letter alphabetically less than 'M', she’s reported as
an answer; the names of our six other artists all come later in the alphabet. Note that
by default MySQL doesn’t care about case; we’ll discuss this in more detail later in

144 | Chapter 5: Basic SQL

“ORDER BY Clauses.” Of course, we haven’t stored the surname and the given names
separately, and MySQL isn’t smart enough to know that Kylie Minogue is a person’s
name that should ordinarily be sorted by surname (in phonebook order).

Another very common task you’ll want to perform with strings is to find matches that
begin with a prefix, contain a string, or end in a suffix. For example, you might want
to find all album names beginning with the word “Retro.” You can do this with the
LIKE operator in a WHERE clause:

mysql> SELECT album_name FROM album WHERE album_name LIKE "Retro%";
+--+
| album_name |
+--+
| Retro - John McCready FAN |
| Retro - Miranda Sawyer POP |
| Retro - New Order / Bobby Gillespie LIVE |
+--+
3 rows in set (0.00 sec)

Let’s discuss in detail how this works.

The LIKE clause is used only with strings and means that a match must meet the pattern
in the string that follows. In our example, we’ve used LIKE "Retro%", which means the
string Retro followed by zero or more characters. Most strings used with LIKE contain
the percentage character (%) as a wildcard character that matches all possible strings.
You can also use it to define a string that ends in a suffix—such as "%ing"—or a string
that contains a particular substring, such as %Corruption%.

For example, "John%" would match all strings starting with "John", such as John
Smith and John Paul Getty. The pattern "%Paul" matches all strings that have "Paul" at
the end. Finally, the pattern "%Paul%" matches all strings that have "Paul" in them,
including at the start or at the end.

If you want to match exactly one wildcard character in a LIKE clause, you use the
underscore character (_). For example, if you want all tracks that begin with a three-
letter word that starts with 'R', you use:

mysql> SELECT * FROM track WHERE track_name LIKE "R__ %";
+----------+----------------+-----------+----------+----------+
| track_id | track_name | artist_id | album_id | time |
+----------+----------------+-----------+----------+----------+
4	Red Right Hand	2	1	00:06:11
14	Run Wild	1	1	00:03:57
1	Rip This Joint	4	1	00:02:23
+----------+----------------+-----------+----------+----------+
3 rows in set (0.00 sec)

The specification "R__ %" means a three-letter word beginning with 'R'—for example
"Red", "Run" and "Rip"—followed by a space character, and then any string.

The SELECT Statement and Basic Querying Techniques | 145

Combining conditions with AND, OR, NOT, and XOR

So far, we’ve used the WHERE clause to test one condition, returning all rows that meet
it. You can combine two or more conditions using the Boolean operators AND, OR, NOT,
and XOR.

Let’s start with an example. Suppose you want to find all albums with a title that begins
with a character greater than C but less than M. This is straightforward with the AND
operator:

mysql> SELECT album_name FROM album WHERE
 -> album_name > "C" AND album_name < "M";
+-----------------------+
| album_name |
+-----------------------+
| Let Love In |
| Live Around The World |
| In A Silent Way |
| Exile On Main Street |
| Light Years |
+-----------------------+
5 rows in set (0.06 sec)

The AND operation in the WHERE clause restricts the results to those rows that meet both
conditions.

The OR operator is used to find rows that meet at least one of several conditions. To
illustrate, imagine you want a list of all albums that have a title beginning with L, S, or
P. You can do this with two OR and three LIKE clauses:

mysql> SELECT album_name FROM album WHERE
 -> album_name LIKE "L%" OR
 -> album_name LIKE "S%" OR
 -> album_name LIKE "P%";
+--------------------------+
| album_name |
+--------------------------+
| Let Love In |
| Substance (Disc 2) |
| Live Around The World |
| Power, Corruption & Lies |
| Substance 1987 (Disc 1) |
| Second Coming |
| Light Years |
+--------------------------+
7 rows in set (0.00 sec)

The OR operations in the WHERE clause restrict the answers to those that meet any of the
three conditions. As an aside, it’s particularly obvious in this example that the results
are reported without sorting; in this case, they’re reported in the order they were added
to the database. We’ll return to sorting output later in “ORDER BY Clauses.”

146 | Chapter 5: Basic SQL

You can combine AND and OR, but you need to make it clear whether you want to first
AND the conditions or OR them. Consider an example where the function isn’t obvious
from the query:

mysql> SELECT album_name FROM album WHERE
 -> album_name LIKE "L%" OR
 -> album_name LIKE "S%" AND
 -> album_name LIKE "%g";
+-----------------------+
| album_name |
+-----------------------+
| Let Love In |
| Live Around The World |
| Second Coming |
| Light Years |
+-----------------------+
4 rows in set (0.00 sec)

When you inspect the results, it becomes clear what’s happened: the answers either
begin with L, or they have S at the beginning and g at the end. An alternative interpre-
tation of the query would be that the answers must begin with L or S, and all end with
g; this is clearly not how the MySQL server has handled the query, since one of the
displayed answers, “Let Love In,” doesn’t end in a g. To make queries containing several
Boolean conditions easier to read, group conditions within parentheses.

Parentheses cluster parts of a statement together and help make expressions readable;
you can use them just as you would in basic math. Our previous example can be re-
written as follows:

mysql> SELECT album_name FROM album WHERE
 -> album_name LIKE "L%" OR
 -> (album_name LIKE "S%" AND album_name LIKE "%g");
+-----------------------+
| album_name |
+-----------------------+
| Let Love In |
| Live Around The World |
| Second Coming |
| Light Years |
+-----------------------+
4 rows in set (0.00 sec)

The parentheses make the evaluation order clear: we want albums beginning with
'L', or those beginning with 'S' and ending with 'g'. We’ve also typed the query over
three lines instead of four, making the intention even clearer through careful layout;
just as when writing program code, spacing, indentation, and careful layout help make
readable queries.

You can also use parentheses to force a different evaluation order. If you did want
albums having names with 'L' or 'S' at the beginning and 'g' at the end, you’d type:

mysql> SELECT album_name FROM album WHERE
 -> (album_name LIKE "L%" OR album_name LIKE "S%") AND

The SELECT Statement and Basic Querying Techniques | 147

 -> album_name LIKE "%g";
+---------------+
| album_name |
+---------------+
| Second Coming |
+---------------+
1 row in set (0.00 sec)

Both examples with parentheses are much easier to understand. We recommend that
you use parentheses whenever there’s a chance the intention could be misinterpreted;
there’s no good reason to rely on MySQL’s implicit evaluation order.

The unary NOT operator negates a Boolean statement. Suppose you want a list of all
albums except the ones having an album_id of 1 or 3. You’d write the query:

mysql> SELECT * FROM album WHERE NOT (album_id = 1 OR album_id = 3);
+-----------+----------+--+
| artist_id | album_id | album_name |
+-----------+----------+--+
1	2	Substance (Disc 2)
1	4	Retro - New Order / Bobby Gillespie LIVE
3	2	In A Silent Way
1	5	Power, Corruption & Lies
1	6	Substance 1987 (Disc 1)
1	7	Brotherhood
+-----------+----------+--+
6 rows in set (0.00 sec)

The expression in the parentheses says we want:

(album_id = 1 OR album_id = 3)

and the NOT operation negates it so we get everything but those that meet the condition
in the parentheses. There are several other ways you can write a WHERE clause with the
same function, and it really doesn’t matter which you choose. For example the follow-
ing three expressions have the same effect:

WHERE NOT (album_id = 1) AND NOT (album_id = 3)

WHERE album_id != 1 AND album_id != 3

WHERE album_id != 1 AND NOT (album_id = 3)

Consider another example using NOT and parentheses. Suppose you want to get a list
of all albums with an album_id greater than 2, but not those numbered 4 or 6:

mysql> SELECT * FROM album WHERE album_id > 2
 -> AND NOT (album_id = 4 OR album_id = 6);
+-----------+----------+----------------------------+
| artist_id | album_id | album_name |
+-----------+----------+----------------------------+
1	3	Retro - Miranda Sawyer POP
1	5	Power, Corruption & Lies
1	7	Brotherhood
+-----------+----------+----------------------------+
3 rows in set (0.01 sec)

148 | Chapter 5: Basic SQL

Again, the expression in parentheses lists albums that meet a condition—those that are
numbered 4 or 6—and the NOT operator negates it so that we get everything else.

The NOT operator’s precedence can be a little tricky. Formally, if you apply it to any
statement that evaluates to a Boolean FALSE or arithmetic zero, you’ll get TRUE (and
TRUE is defined as 1). If you apply it to a statement that is nonzero, you’ll get FALSE (and
FALSE is defined as 0). We’ve so far considered examples with clauses where the NOT is
followed by a expression in parentheses, such as NOT (album_id = 4 OR album_id = 6).
You should write your NOT expressions in this way, or you’ll get unexpected results. For
example, the previous expression isn’t the same as this one:

mysql> SELECT * FROM album WHERE album_id > 2
 -> AND (NOT album_id) = 4 OR album_id = 6;
+-----------+----------+-------------------------+
| artist_id | album_id | album_name |
+-----------+----------+-------------------------+
| 1 | 6 | Substance 1987 (Disc 1) |
+-----------+----------+-------------------------+
1 row in set (0.00 sec)

This returns unexpected results: just those albums with an album_id of 6. To understand
what happened, try just the part of the statement with the NOT operator:

mysql> SELECT * FROM album WHERE (NOT album_id) = 4;
Empty set (0.00 sec)

What has happened is that MySQL has evaluated the expression NOT album_id, and
then checked if it’s equal to 4. Since the album_id is always nonzero, NOT album_id is
always zero and, therefore, never equal to 4, and you get no results! Now, try this:

mysql> SELECT * FROM album WHERE (NOT album_id) != 4;
+-----------+----------+--+
| artist_id | album_id | album_name |
+-----------+----------+--+
2	1	Let Love In
1	1	Retro - John McCready FAN
1	2	Substance (Disc 2)
1	3	Retro - Miranda Sawyer POP
1	4	Retro - New Order / Bobby Gillespie LIVE
3	1	Live Around The World
3	2	In A Silent Way
1	5	Power, Corruption & Lies
4	1	Exile On Main Street
1	6	Substance 1987 (Disc 1)
5	1	Second Coming
6	1	Light Years
1	7	Brotherhood
+-----------+----------+--+
13 rows in set (0.00 sec)

Again album_id is always nonzero, and so NOT album_id is 0. Since 0 isn’t equal to 4, we
see all albums as answers. So be careful to use those parentheses: if you don’t, NOT’s

The SELECT Statement and Basic Querying Techniques | 149

high priority (or precedence) means it is applied to whatever immediately follows it,
and not to the whole expression!

You can combine the NOT operator with LIKE. Suppose you want all albums that don’t
begin with an L. To do this, type:

mysql> SELECT album_name FROM album WHERE album_name NOT LIKE "L%";
+--+
| album_name |
+--+
| Retro - John McCready FAN |
| Substance (Disc 2) |
| Retro - Miranda Sawyer POP |
| Retro - New Order / Bobby Gillespie LIVE |
| In A Silent Way |
| Power, Corruption & Lies |
| Exile On Main Street |
| Substance 1987 (Disc 1) |
| Second Coming |
| Brotherhood |
+--+
10 rows in set (0.01 sec)

The result is all albums, except those beginning with L.

You can combine NOT LIKE with AND and OR. Suppose you want albums beginning with
S, but not those ending with a closing parenthesis, ')'. You can do this with:

mysql> SELECT album_name FROM album WHERE
 -> album_name LIKE "S%" AND album_name NOT LIKE "%)";
+---------------+
| album_name |
+---------------+
| Second Coming |
+---------------+
1 row in set (0.00 sec)

MySQL also supports the exclusive-OR operation through the XOR operator. An exclu-
sive OR evaluates as true if only one—but not both—of the expressions is true. To be
precise, a XOR b is equivalent to (a AND (NOT b)) OR ((NOT a) AND b). For example,
suppose you want to find artists whose names end in “es” or start with “The,” but not
both. You’d need to type:

mysql> SELECT artist_name FROM artist WHERE
 -> artist_name LIKE "The%" XOR
 -> artist_name LIKE "%es";
Empty set (0.00 sec)

There are no matching entries in the database, since both “The Stone Roses” and “The
Rolling Stones” meet both criteria.

Before we move on to sorting, we’ll discuss syntax alternatives. If you’re familiar with
a programming language such as PHP, C, Perl, or Java, you’ll be used to using ! for
NOT, || for OR, and && for AND. MySQL also supports these, and you can use them inter-

150 | Chapter 5: Basic SQL

changeably with the word-based alternatives if you want to. However, we always use
the word-based versions, as that’s what you’ll see used in most SQL statements.

ORDER BY Clauses
We’ve so far discussed how to choose the columns and rows that are returned as part
of the query result, but not how to control how the result is displayed. In a relational
database, the rows in a table form a set; there is no intrinsic order between the rows,
and so we have to ask MySQL to sort the results if we want them in a particular order.
In this section, we explain how to use the ORDER BY clause to do this. Sorting has no
effect on what is returned, and only affects what order the results are returned.

Suppose you want to return a list of the artists in the music database, sorted in alpha-
betical order by the artist_name. Here’s what you’d type:

mysql> SELECT * FROM artist ORDER BY artist_name;
+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
6	Kylie Minogue
3	Miles Davis
1	New Order
2	Nick Cave & The Bad Seeds
4	The Rolling Stones
5	The Stone Roses
+-----------+---------------------------+
6 rows in set (0.03 sec)

The ORDER BY clause indicates that sorting is required, followed by the column that
should be used as the sort key. In this example, we’re sorting by alphabetically-as-
cending artist_name. The default sort is case-insensitive and in ascending order, and
MySQL automatically sorts alphabetically because the columns are character strings.
The way strings are sorted is determined by the character set and collation order that
are being used. We discuss these in “Collation and Character Sets.” For most of this
book, we assume that you’re using the default settings.

Consider a second example. This time, let’s sort the output from the track table by
ascending track length—that is, by the time column. Since it’s likely that two or more
tracks have the same length, we’ll add a second sort key to resolve collisions and de-
termine how such ties should be broken. In this case, when the track times are the same,
we’ll sort the answers alphabetically by track_name. Here’s what you type:

mysql> SELECT time, track_name FROM track ORDER BY time, track_name;
+------+--+
| time | track_name |
+------+--+
1.34	Intermission By Alan Wise [Olympia, Paris 12/11/01]
1.81	In A Silent Way
2.38	Rip This Joint
2.78	Jangling Jack
2.81	Full Nelson

The SELECT Statement and Basic Querying Techniques | 151

2.90	I Just Want To See His Face
2.97	Sweet Black Angel
2.99	Your Star Will Shine
3.00	Shake Your Hips
3.08	Happy
3.20	Dreams Never End
3.26	Straight To The Man
3.40	Under The Influence Of Love
3.40	Ventilator Blues
3.42	Cries And Whispers
3.44	Mesh
...

We’ve shown only part of the 153-row output. Notice that there’s a collision of track
times where the length is 3.40. In this case, the second sort key, track_name, is used to
resolve the collision so that “Under the Influence of Love” appears before “Ventilator
Blues.” You’ll find you often use multiple columns in an ORDER BY clause when you’re
sorting people’s names, where typically you’ll use something like ORDER BY surname,
firstname, secondname.

You can also sort in descending order, and you can control this behavior for each sort
key. Suppose you want to sort the artists by descending alphabetical order. You type
this:

mysql> SELECT artist_name FROM artist ORDER BY artist_name DESC;
+---------------------------+
| artist_name |
+---------------------------+
| The Stone Roses |
| The Rolling Stones |
| Nick Cave & The Bad Seeds |
| New Order |
| Miles Davis |
| Kylie Minogue |
+---------------------------+
6 rows in set (0.00 sec)

The DESC keyword specifies that the preceding sort key (in this case, artist_name) should
be sorted in descending order. You can use a mixture of ascending and descending
orders when multiple sort keys are used. For example, you can sort by descending
time and alphabetically increasing track_name:

mysql> SELECT time, track_name FROM track
 -> WHERE time < 3.6
 -> ORDER BY time DESC, track_name ASC;
+------+--+
| time | track_name |
+------+--+
3.57	Casino Boogie
3.57	Procession [Polytechnic of Central London, London 6/12/85]
3.56	Your Disco Needs You
3.55	I'm So High
3.55	On A Night Like This
3.54	Mr. Pastorius

152 | Chapter 5: Basic SQL

3.46	Spinning Around
3.44	Mesh
3.42	Cries And Whispers
3.40	Under The Influence Of Love
3.40	Ventilator Blues
3.26	Straight To The Man
3.20	Dreams Never End
3.08	Happy
3.00	Shake Your Hips
2.99	Your Star Will Shine
2.97	Sweet Black Angel
2.90	I Just Want To See His Face
2.81	Full Nelson
2.78	Jangling Jack
2.38	Rip This Joint
1.81	In A Silent Way
1.34	Intermission By Alan Wise [Olympia, Paris 12/11/01]
+------+--+
24 rows in set (0.06 sec)

In this example, the rows are sorted by descending time and, when there’s a collision,
by ascending track_name. We’ve used the optional keyword ASC to indicate an ascending
sort key. Whenever we sort, ascending order is assumed if the DESC keyword isn’t used.
You don’t need to explicitly include the ASC keyword, but including it does help to make
the statement’s behavior more obvious. Notice also that we’ve included a WHERE clause;
using WHERE and ORDER BY together is very common, and WHERE always appears before
ORDER BY in the SELECT statement.

If a collision of values occurs, and you don’t specify another sort key, the sort order is
undefined. This may not be important for you; you may not care about the order in
which two customers with the identical name “John A. Smith” appear. A common
source of collisions is string sorting, where MySQL ignores the case of characters. For
example, the strings john, John, and JOHN are treated as identical in the ORDER BY process.
If you do want sorting to behave like ASCII does (where uppercase comes before low-
ercase), then you can add a BINARY keyword to your sort as follows:

mysql> SELECT * FROM artist ORDER BY BINARY artist_name;
+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
6	Kylie Minogue
3	Miles Davis
1	New Order
2	Nick Cave & The Bad Seeds
4	The Rolling Stones
5	The Stone Roses
+-----------+---------------------------+
6 rows in set (0.01 sec)

Because there are no case collisions in the music database, this example doesn’t do
anything different from the example without the BINARY keyword.

The SELECT Statement and Basic Querying Techniques | 153

Note you can use the BINARY keyword in many places; for example, you can use it in
string comparisons. For example, searching for tracks with names alphabetically earlier
than the letter b returns 12 tracks:

mysql> SELECT track_name FROM track WHERE track_name < 'b';
+--+
| track_name |
+--+
| Ain't Gonna Rain Anymore |
| All Day Long |
| 1963 |
| Age Of Consent [Spectrum Arena, Warrington 1/3/86] |
| As It Is When It Was [Reading Festival 29/8/93] |
| Amandla |
| Age Of Consent |
| 5 8 6 |
| All Down The Line |
| Angel Dust |
| All Day Long |
| As It Is When It Was |
+--+
12 rows in set (0.00 sec)

However, if we specify that we want to perform the search in ASCII order, we get all
153 tracks, since they all start with an uppercase letter, and uppercase letters appear
before lowercase letters in the ASCII table:

mysql> SELECT track_name FROM track WHERE track_name < BINARY 'b';
+--+
| track_name |
+--+
| Do You Love Me? |
| Nobody's Baby Now |
| Loverman |
| Jangling Jack |
| Red Right Hand |
| I Let Love In |
...
| Broken Promise |
| As It Is When It Was |
| Weirdo |
| Paradise |
+--+
153 rows in set (0.00 sec)

Sorting is performed as appropriate to the column type. For example, if you’re sorting
dates, it organizes the rows in ascending date order. You can force the sort to behave
differently, using the CAST() function and the AS keyword. Suppose, for example, you
want to sort the track table by ascending time, but you want the times to be treated as
strings. Here’s how you do it:

mysql> SELECT time, track_name FROM track ORDER BY CAST(time AS CHAR);
+-------+---+
| time | track_name |

154 | Chapter 5: Basic SQL

+-------+---+
1.34	Intermission By Alan Wise [Olympia, Paris 12/11/01]
1.81	In A Silent Way
11.37	Breaking Into Heaven
12.80	Human Nature
16.67	Shhh/Peaceful
16.67	In A Silent Way/It's About That Time
2.38	Rip This Joint
2.78	Jangling Jack
2.81	Full Nelson
...

The results are ordered alphabetically, so that, for example, numbers beginning with
1 appear before numbers beginning with 2. The CAST() function forces a column to be
treated as a different type, in this example as a character string using the AS CHAR clause.
You can specify:

• AS BINARY, to sort as binary, which has the same effect as ORDER BY BINARY

• AS SIGNED, to sort as a signed integer

• AS UNSIGNED, to sort as an unsigned integer

• AS CHAR, to sort as a character string

• AS DATE, to sort as a date

• AS DATETIME, to sort as a date and time

• AS TIME, to sort as a time

The types of columns are discussed in detail in “Column Types” in Chapter 6.

The LIMIT Clause
The LIMIT clause is a useful, nonstandard SQL tool that allows you to control which
rows are output. Its basic form allows you to limit the number of rows returned from
a SELECT statement, which is useful when you want to limit the amount of data com-
municated over a network or output to the screen. You might use it, for example, in a
web database application, where you want to find the rows that match a condition but
only want to show the user the first 10 rows in a web page. Here’s an example:

mysql> SELECT track_name FROM track LIMIT 10;
+----------------------------+
| track_name |
+----------------------------+
| Do You Love Me? |
| Nobody's Baby Now |
| Loverman |
| Jangling Jack |
| Red Right Hand |
| I Let Love In |
| Thirsty Dog |
| Ain't Gonna Rain Anymore |
| Lay Me Low |

The SELECT Statement and Basic Querying Techniques | 155

| Do You Love Me? (Part Two) |
+----------------------------+
10 rows in set (0.00 sec)

The LIMIT clause in this example restricts the output to the first 10 rows, saving the
cost of buffering, communicating, and displaying the remaining 143 tracks.

The LIMIT clause can be used to return a fixed number of rows beginning anywhere in
the result set. Suppose you want five rows, but you want the first one displayed to be
the sixth row of the answer set. You do this by starting from after the fifth answer:

mysql> SELECT track_name FROM track LIMIT 5,5;
+----------------------------+
| track_name |
+----------------------------+
| I Let Love In |
| Thirsty Dog |
| Ain't Gonna Rain Anymore |
| Lay Me Low |
| Do You Love Me? (Part Two) |
+----------------------------+
5 rows in set (0.00 sec)

The output is rows 6 to 10 from the SELECT query.

If you want all rows after a start point, and you don’t know how many rows are in the
table, then you need to choose a large integer as the second parameter. Suppose you
want all rows after row 150 in the track table. Use the following command:

mysql> SELECT track_name FROM track LIMIT 150,999999999;
+----------------------+
| track_name |
+----------------------+
| As It Is When It Was |
| Weirdo |
| Paradise |
+----------------------+
3 rows in set (0.01 sec)

Since there are likely to be at most tens of thousands of rows in the track table, providing
999999999 as the second parameter guarantees all rows are returned. Technically, the
largest number you can use is 18446744073709551615; this is the maximum value that
can be stored in MySQL’s unsigned BIGINT variable type. MySQL will complain if you
try to use a larger value. We discuss variable types in “Other integer types” in Chapter 6.

There’s an alternative syntax that you might see for the LIMIT keyword: instead of
writing LIMIT 10,5, you can write LIMIT 10 OFFSET 5.

Joining Two Tables
We’ve so far worked with just one table in our SELECT queries. However, you know that
a relational database is all about working with the relationships between tables to an-
swer information needs. Indeed, as we’ve explored the tables in the music database, it’s

156 | Chapter 5: Basic SQL

become obvious that by using these relationships, we can answer more interesting
queries. For example, it’d be useful to know what tracks make up an album, what
albums we own by each artist, or how long an album plays for. This section shows you
how to answer these queries by joining two tables. We’ll return to this issue as part of
a longer, more advanced discussion of joins in Chapter 7.

We use only one join syntax in this chapter. There are several more, and each gives you
a different way to bring together data from two or more tables. The syntax we use here
is the INNER JOIN, which hides some of the detail and is the easiest to learn. Consider
an example, and then we’ll explain more about how it works:

mysql> SELECT artist_name, album_name FROM artist INNER JOIN album
 -> USING (artist_id);
+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+---------------------------+--+
13 rows in set (0.00 sec)

The output shows the artists and their albums. You can see for the first time how many
albums we own by each artist and who made each one.

How does the INNER JOIN work? The statement has two parts: first, two table names
separated by the INNER JOIN keywords; second, the USING keyword that indicates which
column (or columns) holds the relationship between the two tables. In our first exam-
ple, the two tables to be joined are artist and album, expressed as artist INNER JOIN
album (for the basic INNER JOIN, it doesn’t matter what order you list the tables in, and
so using album INNER JOIN artist would have the same effect). The USING clause in the
example is USING (artist_id), which tells MySQL that the column that holds the re-
lationship between the tables is artist_id; you should recall this from our design and
our previous discussion in “The Music Database,” in Chapter 4.

The data comes from the artist table:

mysql> SELECT * FROM artist;
+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
| 1 | New Order |

The SELECT Statement and Basic Querying Techniques | 157

2	Nick Cave & The Bad Seeds
3	Miles Davis
4	The Rolling Stones
5	The Stone Roses
6	Kylie Minogue
+-----------+---------------------------+
6 rows in set (0.01 sec)

and the album table:

mysql> SELECT * FROM album;
+-----------+----------+--+
| artist_id | album_id | album_name |
+-----------+----------+--+
2	1	Let Love In
1	1	Retro - John McCready FAN
1	2	Substance (Disc 2)
1	3	Retro - Miranda Sawyer POP
1	4	Retro - New Order / Bobby Gillespie LIVE
3	1	Live Around The World
3	2	In A Silent Way
1	5	Power, Corruption & Lies
4	1	Exile On Main Street
1	6	Substance 1987 (Disc 1)
5	1	Second Coming
6	1	Light Years
1	7	Brotherhood
+-----------+----------+--+
13 rows in set (0.00 sec)

In response to our query, MySQL finds the artist_name and album_name value pairs that
have the same artist_id values. For each artist_id in the artist table (let’s use 1 as
an example):

+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
| 1 | New Order |
+-----------+---------------------------+

the server finds all the entries in the album table that have this value of artist_id:

+-----------+----------+--+
| artist_id | album_id | album_name |
+-----------+----------+--+
1	1	Retro - John McCready FAN
1	2	Substance (Disc 2)
1	3	Retro - Miranda Sawyer POP
1	4	Retro - New Order / Bobby Gillespie LIVE
1	5	Power, Corruption & Lies
1	6	Substance 1987 (Disc 1)
1	7	Brotherhood
+-----------+----------+--+

It can then form a new temporary table from these two sets:

158 | Chapter 5: Basic SQL

+-----------+-------------+----------+--+
| artist_id | artist_name | album_id | album_name |
+-----------+-------------+----------+--+
1	New Order	1	Retro - John McCready FAN
1	New Order	2	Substance (Disc 2)
1	New Order	3	Retro - Miranda Sawyer POP
1	New Order	4	Retro - New Order / Bobby Gillespie LIVE
1	New Order	5	Power, Corruption & Lies
1	New Order	6	Substance 1987 (Disc 1)
1	New Order	7	Brotherhood
+-----------+-------------+----------+--+

Once it has processed all the different artist_id values, it selects the colums you asked
for—artist_name and album_name—to display:

+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
...
+---------------------------+--+

There are a few important issues you need to know about when using the basic INNER
JOIN syntax:

• It works only when two tables share a column with the same name that you can
use as the join condition; otherwise, you must use an alternative syntax described
in Chapter 7. Note that MySQL can’t automatically determine the column you
want to use for the join, (even if there are columns with the same name in the two
tables), so you have to specify it explicitly.

• The result rows shown are those where the join column (or columns) match be-
tween the tables; rows from one table that don’t have a match in the other table
are ignored. In the previous example, any artist who had no albums would be
ignored.

• With the exception of the join column or columns after the USING keyword, any
columns you specify must be unambiguous. For example, if you want to SELECT
the artist_name, you can use just artist_name because it exists only in the artist
table. However, if you want artist_id, then you need to specify it explicitly as
artist.artist_id or album.artist_id because both tables have a column of the
same name.

• Don’t forget the USING clause. MySQL won’t complain if you omit it, but the results
won’t make sense because you’ll get a Cartesian product. We discuss this further
in Chapter 7.

The SELECT Statement and Basic Querying Techniques | 159

• The column or columns following the USING clause must be surrounded by paren-
theses. If you want to join on more than one column, separate the column names
with a comma. We’ll show you an example in a moment.

If you remember these rules, you’ll find joins with INNER JOIN are reasonably straight-
forward. Let’s now consider a few more examples that illustrate these ideas.

Suppose you want to list the track names for all your albums. Examining the album and
track tables, you identify that you would have to join two columns, artist_id and
album_id. Let’s try the join operation:

mysql> SELECT album_name, track_name FROM album INNER JOIN track
 -> USING (artist_id, album_id) LIMIT 15;
+---------------------------+----------------------------+
| album_name | track_name |
+---------------------------+----------------------------+
Let Love In	Do You Love Me?
Let Love In	Nobody's Baby Now
Let Love In	Loverman
Let Love In	Jangling Jack
Let Love In	Red Right Hand
Let Love In	I Let Love In
Let Love In	Thirsty Dog
Let Love In	Ain't Gonna Rain Anymore
Let Love In	Lay Me Low
Let Love In	Do You Love Me? (Part Two)
Retro - John McCready FAN	Elegia
Retro - John McCready FAN	In A Lonely Place
Retro - John McCready FAN	Procession
Retro - John McCready FAN	Your Silent Face
Retro - John McCready FAN	Sunrise
+---------------------------+----------------------------+
15 rows in set (0.00 sec)

We’ve specified the two join columns in the USING clause separated by commas as USING
(artist_id, album_id). The results show the tracks for the album Let Love In, and the
first few from Retro - John McReady FAN. To fit the results into the book, we’ve limited
the output to 15 rows, using the LIMIT clause we discussed earlier in “The LIMIT
Clause.”

We can improve our previous example by adding an ORDER BY clause. It makes sense
that we’d want to see the albums in alphabetical order, with the tracks shown in the
order they occur on the album, so we could modify our previous query to be:

mysql> SELECT album_name, track_name FROM album INNER JOIN track
 -> USING (artist_id, album_id)
 -> ORDER BY album_name, track_id LIMIT 15;
+----------------------+-----------------------+
| album_name | track_name |
+----------------------+-----------------------+
Brotherhood	State of the Nation
Brotherhood	Every Little Counts
Brotherhood	Angel Dust

160 | Chapter 5: Basic SQL

Brotherhood	All Day Long
Brotherhood	Bizarre Love Triangle
Brotherhood	Way of Life
Brotherhood	Broken Promise
Brotherhood	As It Is When It Was
Brotherhood	Weirdo
Brotherhood	Paradise
Exile On Main Street	Rocks Off
Exile On Main Street	Rip This Joint
Exile On Main Street	Shake Your Hips
Exile On Main Street	Casino Boogie
Exile On Main Street	Tumbling Dice
+----------------------+-----------------------+
15 rows in set (0.00 sec)

You can see that the ORDER BY clause sorts the albums and tracks in the required order,
and that it’s listed last in the query after the join condition.

Let’s try a different query. Suppose you want to find out which tracks you’ve played.
You can do this with a join between the track and played tables, using the artist_id,
album_id, and track_id columns in the join condition. Here’s the query:

mysql> SELECT played, track_name FROM
 -> track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY track.artist_id, track.album_id, track.track_id, played;
+---------------------+-----------------------+
| played | track_name |
+---------------------+-----------------------+
2006-08-14 10:21:03	Fine Time
2006-08-14 10:25:22	Temptation
2006-08-14 10:30:25	True Faith
2006-08-14 10:36:54	The Perfect Kiss
2006-08-14 10:41:43	Ceremony
2006-08-14 10:43:37	Regret
2006-08-14 10:47:21	Crystal
2006-08-14 10:54:02	Bizarre Love Triangle
2006-08-15 14:00:03	In A Silent Way
2006-08-15 14:26:12	Intruder
2006-08-15 14:33:57	New Blues
+---------------------+-----------------------+
11 rows in set (0.00 sec)

We’ve sorted the results by artist, then album, then track, and then the play date and
time. Notice we’ve also had to unambiguously specify the columns in the ORDER BY
clause using the table name, since the first three columns occur in both tables. In prac-
tice, if columns are used in the join condition, it doesn’t matter whether you sort or
select using the column from either table; for example, in this query, track.artist_id
and played.artist_id are interchangeable because they’re always the same for each
row.

Before we leave SELECT, we’ll give you a taste of one of the functions you can use to
aggregate values. Suppose you want to find out how long New Order’s Brotherhood

The SELECT Statement and Basic Querying Techniques | 161

album takes to play. You can do this by summing the times of the individual tracks
with the SQL SUM() function. Here’s how it works:

mysql> SELECT SUM(time) FROM
 -> album INNER JOIN track USING (artist_id, album_id)
 -> WHERE album.artist_id = 1 AND album.album_id = 7;
+-----------+
| SUM(time) |
+-----------+
| 43.78 |
+-----------+
1 row in set (0.00 sec)

You can see the album runs for just under 44 minutes. The SUM() function reports the
sum of all values for the column enclosed in the parentheses—in this case, time—and
not the individual values themselves. Because we’ve used a WHERE clause to choose only
rows for the Brotherhood album, the sum of the time values is the total play time of the
album. Of course, to run this query, we needed to know that New Order’s artist_id
is 1 and that the album_id of “Brotherhood” is 7. We discovered this by running two
other SELECT queries beforehand:

mysql> SELECT artist_id FROM artist WHERE artist_name = "New Order";
+-----------+
| artist_id |
+-----------+
| 1 |
+-----------+
1 row in set (0.00 sec)

mysql> SELECT album_id FROM album
 -> WHERE artist_id = 1 AND album_name = "Brotherhood";
+----------+
| album_id |
+----------+
| 7 |
+----------+
1 row in set (0.00 sec)

We explain more features of SELECT and aggregate functions in Chapter 7.

The INSERT Statement
The INSERT statement is used to add new data to tables. In this section, we explain its
basic syntax and show you simple examples that add new rows to the music database.
In Chapter 6, we’ll discuss how to load data from existing tables or from external data
sources.

162 | Chapter 5: Basic SQL

INSERT Basics
Inserting data typically occurs in two situations: when you bulk-load in a large batch
as you create your database, and when you add data on an ad hoc basis as you use the
database. In MySQL, there are different optimizations built into the server for each
situation and, importantly, different SQL syntaxes available to make it easy for you to
work with the server in both cases. We explain a basic INSERT syntax in this section,
and show you examples of how to use it for bulk and single record insertion.

Let’s start with the basic task of inserting one new row into the artist table. To do this,
you need to understand the table’s structure. As we explained in Chapter 4 in “The
Music Database,” you can discover this with the SHOW COLUMNS statement:

mysql> SHOW COLUMNS FROM artist;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| artist_id | smallint(5) | NO | PRI | 0 | |
| artist_name | char(128) | NO | | | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

This tells you that the two columns occur in the order artist_id and then
artist_name, and you need to know this for the basic syntax we’re about to use.

Our new row is for a new artist, “Barry Adamson.” But what artist_id value do we
give him? You might recall that we already have six artists, so we should probably use
7. You can check this with:

mysql> SELECT MAX(artist_id) FROM artist;
+----------------+
| MAX(artist_id) |
+----------------+
| 6 |
+----------------+
1 row in set (0.04 sec)

The MAX() function is an aggregate function, and it tells you the maximum value for
the column supplied as a parameter. This is a little cleaner than SELECT artist_id FROM
artist, which prints out all rows and requires you to inspect the rows to find the max-
imum value; adding an ORDER BY makes it easier. Using MAX() is also much simpler than
SELECT artist_id FROM artist ORDER BY artist_id DESC LIMIT 1, which also returns
the correct answer. You’ll learn more about the AUTO_INCREMENT shortcut to automati-
cally assign the next available identifier in Chapter 6, and about aggregate functions in
Chapter 7.

We’re now ready to insert the row. Here’s what you type:

mysql> INSERT INTO artist VALUES (7, "Barry Adamson");
Query OK, 1 row affected (0.00 sec)

The INSERT Statement | 163

A new row is created—MySQL reports that one row has been affected—and the value
7 is inserted as the artist_id and Barry Adamson as the artist_name. You can check with
a query:

mysql> SELECT * FROM artist WHERE artist_id = 7;
+-----------+---------------+
| artist_id | artist_name |
+-----------+---------------+
| 7 | Barry Adamson |
+-----------+---------------+
1 row in set (0.01 sec)

You might be tempted to try out something like this:

mysql> INSERT INTO artist
 VALUES((SELECT 1+MAX(artist_id) FROM artist), "Barry Adamson");

However, this won’t work because you can’t modify a table while you’re reading from
it. The query would work if you wanted to INSERT INTO a different table (here, a table
other than artist).

To continue our example, and illustrate the bulk-loading approach, let’s now insert
Barry Adamson’s album The Taming of the Shrewd and its tracks. First, check the
structure of the album table:

mysql> SHOW COLUMNS FROM album;
+------------+-----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-----------+------+-----+---------+-------+
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
album_name	char(128)	YES		NULL	
+------------+-----------+------+-----+---------+-------+
3 rows in set (0.00 sec)

Second, insert the album using the approach we used previously:

mysql> INSERT INTO album VALUES (7, 1, "The Taming of the Shrewd");
Query OK, 1 row affected (0.00 sec)

The first value is the artist_id, the value of which we know from creating the artist,
and the second value is the album_id, which must be 1 because this is the first album
we’ve added for Barry Adamson.

Third, check the track table structure:

mysql> SHOW COLUMNS FROM track;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
track_id	int(3)		PRI	0	
track_name	char(128)	YES		NULL	
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
time	decimal(5,2)	YES		NULL	

164 | Chapter 5: Basic SQL

+------------+--------------+------+-----+---------+-------+
5 rows in set (0.01 sec)

Finally, insert the tracks:

mysql> INSERT INTO track VALUES (1, "Diamonds", 7, 1, 4.10),
 -> (2, "Boppin Out / Eternal Morning", 7, 1, 3.22),
 -> (3, "Splat Goes the Cat", 7, 1, 1.39),
 -> (4, "From Rusholme With Love", 7, 1, 3.59);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

Here, we’ve used a different INSERT style to add all four tracks in a single SQL query.
This style is recommended when you want to load more than one row. It has a similar
format to the single-insertion style, except that the values for several rows are collected
together in a comma-separated list. Giving MySQL all the data you want to insert in
one statement helps it optimize the insertion process, allowing queries that use this
syntax to be typically many times faster than repeated insertions of single rows. There
are other ways to speed up insertion, and we discuss several in Chapter 6.

The single-row INSERT style is unforgiving: if it finds a duplicate, it’ll stop as soon as it
finds a duplicate key. For example, suppose we try to insert the same tracks again:

mysql> INSERT INTO track VALUES (1, "Diamonds", 7, 1, 4.10),
 -> (2, "Boppin Out / Eternal Morning", 7, 1, 3.22),
 -> (3, "Splat Goes the Cat", 7, 1, 1.39),
 -> (4, "From Rusholme With Love", 7, 1, 3.59);
ERROR 1062 (23000): Duplicate entry '7-1-1' for key 1

The INSERT operation stops on the first duplicate key. You can add an IGNORE clause to
prevent the error if you want:

mysql> INSERT IGNORE INTO track VALUES (1, "Diamonds", 7, 1, 4.10),
 -> (2, "Boppin Out / Eternal Morning", 7, 1, 3.22),
 -> (3, "Splat Goes the Cat", 7, 1, 1.39),
 -> (4, "From Rusholme With Love", 7, 1, 3.59);
Query OK, 0 rows affected (0.01 sec)
Records: 4 Duplicates: 4 Warnings: 0

However, in most cases, you want to know about possible problems (after all, primary
keys are supposed to be unique), and so this IGNORE syntax is rarely used.

You’ll notice that MySQL reports the results of bulk insertion differently from single
insertion. From our initial bulk insertion, it reports:

Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

The first line tells you how many rows were inserted, while the first entry in the final
line tells you how many rows (or records) were actually processed. If you use INSERT
IGNORE and try to insert a duplicate record—for which the primary key matches that
of an existing row—then MySQL will quietly skip inserting it and report it as a duplicate
in the second entry on the final line:

The INSERT Statement | 165

Query OK, 0 rows affected (0.01 sec)
Records: 4 Duplicates: 4 Warnings: 0

We discuss causes of warnings—shown as the third entry on the final line—in Chap-
ter 6.

Alternative Syntaxes
There are several alternatives to the VALUES syntax we’ve shown you so far. This section
shows you these and explains the advantages and drawbacks of each. If you’re happy
with the basic syntax we’ve described so far, and want to move on to a new topic, feel
free to skip ahead to “The DELETE Statement.”

There are three disadvantages of the VALUES syntax we’ve shown you. First, you need
to remember the order of the columns. Second, you need to provide a value for each
column. Last, it’s closely tied to the underlying table structure: if you change the table’s
structure, you need to change the INSERT statements, and the function of the INSERT
statement isn’t obvious unless you have the table structure at hand. However, the three
advantages of the approach are that it works for both single and bulk inserts, you get
an error message if you forget to supply values for all columns, and you don’t have to
type in column names. Fortunately, the disadvantages are easily avoided by varying the
syntax.

Suppose you know that the album table has three columns and you recall their names,
but you forget their order. You can insert using the following approach:

mysql> INSERT INTO album (artist_id, album_id, album_name)
 -> VALUES (7, 2, "Oedipus Schmoedipus");
Query OK, 1 row affected (0.00 sec)

The column names are included in parentheses after the table name, and the values
stored in those columns are listed in parentheses after the VALUES keyword. So, in this
example, a new row is created and the value 7 is stored as the artist_id, 2 is stored as
the album_id, and Oedipus Schmoedipus is stored as the album_name. The advantages of
this syntax are that it’s readable and flexible (addressing the third disadvantage we
described) and order-independent (addressing the first disadvantage). The disadvant-
age is that you need to know the column names and type them in.

This new syntax can also address the second disadvantage of the simpler approach—
that is, it can allow you to insert values for only some columns. To understand how
this might be useful, let’s explore the played table:

mysql> SHOW COLUMNS FROM played;
+-----------+-----------+------+-----+-------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-----------+------+-----+-------------------+-------+
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
track_id	int(3)		PRI	0	
played	timestamp	YES	PRI	CURRENT_TIMESTAMP	

166 | Chapter 5: Basic SQL

+-----------+-----------+------+-----+-------------------+-------+
4 rows in set (0.00 sec)

Notice that the played column has a default value of CURRENT_TIMESTAMP. This means
that if you don’t insert a value for the played column, it’ll insert the current date and
time by default. This is just what we want: when we play a track, we don’t want to
bother checking the date and time and typing it in. Here’s how you insert an incomplete
played entry:

mysql> INSERT INTO played (artist_id, album_id, track_id)
 -> VALUES (7, 1, 1);
Query OK, 1 row affected (0.00 sec)

We didn’t set the played column, so MySQL defaults it to the current date and time.
You can check this with a query:

mysql> SELECT * FROM played WHERE artist_id = 7
 -> AND album_id = 1;
+-----------+----------+----------+---------------------+
| artist_id | album_id | track_id | played |
+-----------+----------+----------+---------------------+
| 7 | 1 | 1 | 2006-08-09 12:03:00 |
+-----------+----------+----------+---------------------+
1 row in set (0.00 sec)

You can also use this approach for bulk insertion as follows:

mysql> INSERT INTO played (artist_id, album_id, track_id)
 -> VALUES (7,1,2),(7,1,3),(7,1,4);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

The disadvantages of this approach are that you can accidentally omit values for col-
umns, and you need to remember and type column names. The omitted columns will
be set to the default values.

All columns in a MySQL table have a default value of NULL unless another default value
is explicitly assigned when the table is created or modified. Because of this, defaults
can often cause duplicate rows: if you add a row with the default primary key values
and repeat the process, you’ll get a duplicate error. However, the default isn’t always
sensible; for example, in the played table, the artist_id, album_id, and track_id col-
umns all default to 0, which doesn’t make sense in the context of our music collection.
Let’s try adding a row to played with only default values:

mysql> INSERT INTO played () VALUES ();
Query OK, 1 row affected (0.00 sec)

The () syntax is used to represent that all columns and values are to be set to their
defaults. Let’s find our new row by asking for the most recent played time:

mysql> SELECT * FROM played ORDER BY played DESC LIMIT 1;
+-----------+----------+----------+---------------------+
| artist_id | album_id | track_id | played |
+-----------+----------+----------+---------------------+

The INSERT Statement | 167

| 0 | 0 | 0 | 2006-08-09 12:20:40 |
+-----------+----------+----------+---------------------+
1 row in set (0.00 sec)

The process worked, but the row doesn’t make any sense. We’ll discuss default values
further in Chapter 6.

You can set defaults and still use the original INSERT syntax with MySQL 4.0.3 or later
by using the DEFAULT keyword. Here’s an example that adds a played row:

mysql> INSERT INTO played VALUES (7, 1, 2, DEFAULT);
Query OK, 1 row affected (0.00 sec)

The keyword DEFAULT tells MySQL to use the default value for that column, and so the
current date and time are inserted in our example. The advantages of this approach are
that you can use the bulk-insert feature with default values, and you can never acci-
dentally omit a column.

There’s another alternative INSERT syntax. In this approach, you list the column name
and value together, giving the advantage that you don’t have to mentally map the list
of values to the earlier list of columns. Here’s an example that adds a new row to the
played table:

mysql> INSERT INTO played
 -> SET artist_id = 7, album_id = 1, track_id = 1;
Query OK, 1 row affected (0.00 sec)

The syntax requires you list a table name, the keyword SET, and then column-equals-
value pairs, separated by commas. Columns that aren’t supplied are set to their default
values. The disadvantages are again that you can accidentally omit values for columns,
and that you need to remember and type in column names. A significant additional
disadvantage is that you can’t use this method for bulk insertion.

You can also insert using values returned from a query. We discuss this in Chapter 8.

The DELETE Statement
The DELETE statement is used to remove one or more rows from a database. We explain
single-table deletes here, and discuss multi-table deletes—which remove data from two
or more tables through one statement—in Chapter 8.

If you want to try out the steps in this section on your MySQL server, you’ll need to
reload your music database afterwards so that you can follow the examples in later
sections. To do this, follow the steps you used in “Loading the Sample Databases” in
Chapter 3 to load it in the first place.

DELETE Basics
The simplest use of DELETE is to remove all rows in a table. Suppose you want to empty
your played table, perhaps because it’s taking too much space or because you want to

168 | Chapter 5: Basic SQL

share your music database with someone else and they don’t want your played data.
You do this with:

mysql> DELETE FROM played;
Query OK, 19 rows affected (0.07 sec)

This removes all rows, including those we just added in “The INSERT Statement”; you
can see that 19 rows have been affected.

The DELETE syntax doesn’t include column names, since it’s used to remove whole rows
and not just values from a row. To reset or modify a value in a row, you use the
UPDATE statement, described later in this chapter in “The UPDATE Statement.” The
DELETE statement doesn’t remove the table itself. For example, having deleted all rows
in the played table, you can still query the table:

mysql> SELECT * FROM played;
Empty set (0.00 sec)

Of course, you can also continue to explore its structure using DESCRIBE or SHOW CREATE
TABLE, and insert new rows using INSERT. To remove a table, you use the DROP statement
described in Chapter 6.

Using WHERE, ORDER BY, and LIMIT
If you’ve deleted rows in the previous section, reload your music database now. You
need the rows in the played table restored for the examples in this section.

To remove one or more rows, but not all rows in a table, you use a WHERE clause. This
works in the same way as it does for SELECT. For example, suppose you want to remove
all rows from the played table with played dates and times earlier than August 15, 2006.
You do this with:

mysql> DELETE FROM played WHERE played < "2006-08-15";
Query OK, 8 rows affected (0.00 sec)

The result is that the eight played rows that match the criteria are removed. Note that
the date is enclosed in quotes and that the date format is year, month, day, separated
by hyphens. MySQL supports several different ways of specifying times and dates but
saves dates in this internationally friendly, easy-to-sort format (it’s actually an ISO
standard). MySQL can also reasonably interpret two-digit years, but we recommend
against using them; remember all the work required to avoid the Y2K problem?

Suppose you want to remove an artist, his albums, and his album tracks. For example,
let’s remove everything by Miles Davis. Begin by finding out the artist_id from the
artist table, which we’ll use to remove data from all four tables:

mysql> SELECT artist_id FROM artist WHERE artist_name = "Miles Davis";
+-----------+
| artist_id |
+-----------+
| 3 |

The DELETE Statement | 169

+-----------+
1 row in set (0.00 sec)

Next, remove the row from the artist table:

mysql> DELETE FROM artist WHERE artist_id = 3;
Query OK, 1 row affected (0.00 sec)

Then, do the same thing for the album, track, and played tables:

mysql> DELETE FROM album WHERE artist_id = 3;
Query OK, 2 rows affected (0.01 sec)

mysql> DELETE FROM track WHERE artist_id = 3;
Query OK, 13 rows affected (0.01 sec)

mysql> DELETE FROM played WHERE artist_id = 3;
Query OK, 3 rows affected (0.00 sec)

Since all four tables can be joined using the artist_id column, you can accomplish this
whole deletion process in a single DELETE statement; we show you how in Chapter 8.

You can use the ORDER BY and LIMIT clauses with DELETE. You usually do this when you
want to limit the number of rows deleted, either so that the statement doesn’t run for
too long or because you want to keep a table to a specific size. Suppose your played
table contains 10,528 rows, but you want to have at most 10,000 rows. In this situation,
it may make sense to remove the 528 oldest rows, and you can do this with the following
statement:

mysql> DELETE FROM played ORDER BY played LIMIT 528;
Query OK, 528 rows affected (0.23 sec)

The query sorts the rows by ascending play date and then deletes at most 528 rows,
starting with the oldest. Typically, when you’re deleting, you use LIMIT and ORDER BY
together; it usually doesn’t make sense to use them separately. Note that sorting large
numbers of entries on a field that doesn’t have an index can be quite slow. We discuss
indexes in detail in “Keys and Indexes” in Chapter 6.

Removing All Rows with TRUNCATE
If you want to remove all rows in a table, there’s a faster method than removing them
with DELETE. By using the TRUNCATE TABLE statement, MySQL takes the shortcut of
dropping the table—that is, removing the table structures and then re-creating them.
When there are many rows in a table, this is much faster.

If you want to remove the data in the played table, you can write this:

mysql> TRUNCATE TABLE played;
Query OK, 0 rows affected (0.00 sec)

Notice that the number of rows affected is shown as zero: to quickly delete all the data
in the table, MySQL doesn’t count the number of rows that are deleted, so the number

170 | Chapter 5: Basic SQL

shown (normally zero, but sometimes nonzero) does not reflect the actual number of
rows deleted.

The TRUNCATE TABLE statement has two other limitations:

• It’s actually identical to DELETE if you use InnoDB tables.

• It does not work with locking or transactions.

Table types, transactions, and locking are discussed in Chapter 7. In practice, none of
these limitations affect most applications, and you can use TRUNCATE TABLE to speed up
your processing. Of course, it’s not common to delete whole tables during normal
operation. An exception is temporary tables, which are used to temporarily store query
results for a particular user session and can be deleted without losing the original data.

The UPDATE Statement
The UPDATE statement is used to change data. In this section, we show you how to update
one or more rows in a single table. Multitable updates are discussed in Chapter 8.

If you’ve deleted rows from your music database, reload it by following the instructions
in “Loading the Sample Databases” in Chapter 3. You need a copy of the unmodified
music database to follow the examples in this section.

Examples
The simplest use of the UPDATE statement is to change all rows in a table. There isn’t
much need to change all rows from a table in the music database—any example is a
little contrived—but let’s do it anyway. To change the artist names to uppercase, you
can use:

mysql> UPDATE artist SET artist_name = UPPER(artist_name);
Query OK, 6 rows affected (0.04 sec)
Rows matched: 6 Changed: 6 Warnings: 0

The function UPPER() is a MySQL function that returns the uppercase version of the
text passed as the parameter; for example, New Order is returned as NEW ORDER. You can
see that all six artists are modified, since six rows are reported as affected. The function
LOWER() performs the reverse, converting all the text to lowercase.

The second row reported by an UPDATE statement shows the overall effect of the state-
ment. In our example, you see:

Rows matched: 6 Changed: 6 Warnings: 0

The first column reports the number of rows that were retrieved as answers by the
statement; in this case, since there’s no WHERE or LIMIT clause, all six rows in the table
match the query. The second column reports how many rows needed to be changed,
and this is always equal to or less than the number of rows that match; in this example,

The UPDATE Statement | 171

since none of the strings are entirely in uppercase, all six rows are changed. If you repeat
the statement, you’ll see a different result:

mysql> UPDATE artist SET artist_name = UPPER(artist_name);
Query OK, 0 rows affected (0.00 sec)
Rows matched: 6 Changed: 0 Warnings: 0

This time, since all of the artists are already in uppercase, six rows still match the
statement but none are changed. Note also the number of rows changed is always equal
to the number of rows affected, as reported on the first line of the output.

Our previous example updates each value relative to its current value. You can also set
columns to a single value. For example, if you want to set all played dates and times to
the current date and time, you can use:

mysql> UPDATE played SET played = NULL;
Query OK, 11 rows affected (0.00 sec)
Rows matched: 11 Changed: 11 Warnings: 0

You’ll recall from “Alternative Syntaxes” that since the default value of the played col-
umn is CURRENT_TIMESTAMP, passing a NULL value causes the current date and time to be
stored instead. Since all rows match and all rows are changed (affected), you can see
three 11s in the output.

Using WHERE, ORDER BY, and LIMIT
Often, you don’t want to change all rows in a table. Instead, you want to update one
or more rows that match a condition. As with SELECT and DELETE, the WHERE clause is
used for the task. In addition, in the same way as with DELETE, you can use ORDER BY
and LIMIT together to control how many rows are updated from an ordered list.

Let’s try an example that modifies one row in a table. If you browse the album database,
you’ll notice an inconsistency for the two albums beginning with “Substance”:

mysql> SELECT * FROM album WHERE album_name LIKE
 -> "Substance%";
+-----------+----------+-------------------------+
| artist_id | album_id | album_name |
+-----------+----------+-------------------------+
| 1 | 2 | Substance (Disc 2) |
| 1 | 6 | Substance 1987 (Disc 1) |
+-----------+----------+-------------------------+
2 rows in set (0.00 sec)

They’re actually part of the same two CD set, and the first-listed album is missing the
year 1987, which is part of the title. To change it, you use an UPDATE command with a
WHERE clause:

mysql> UPDATE album SET album_name = "Substance 1987 (Disc 2)"
 -> WHERE artist_id = 1 AND album_id = 2;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

172 | Chapter 5: Basic SQL

As expected, one row was matched, and one row was changed.

To control how many updates occur, you can use the combination of ORDER BY and
LIMIT. As with DELETE, you would do this because you either want the statement to run
for a controlled amount of time, or you want to modify only some rows. Suppose you
want to set the 10 most recent played dates and times to the current date and time (the
default). You do this with:

mysql> UPDATE played SET played = NULL ORDER BY played DESC LIMIT 10;
Query OK, 10 rows affected (0.00 sec)
Rows matched: 10 Changed: 10 Warnings: 0

You can see that 10 rows were matched and were changed.

The previous query also illustrates an important aspect of updates. As you’ve seen,
updates have two phases: a matching phase—where rows are found that match the
WHERE clause—and a modification phase, where the rows that need changing are up-
dated. In our previous example, the ORDER BY played is used in the matching phase, to
sort the data after it’s read from the table. After that, the modification phase processes
the first 10 rows, updating those that need to be changed. Since MySQL 4.0.13, the
LIMIT clause controls the maximum number of rows that are matched. Prior to this, it
controlled the maximum number of rows that were changed. The new implementation
is better; under the old scheme, you had little control over the update processing time
when many rows matched but few required changes.

Exploring Databases and Tables with SHOW and mysqlshow
We’ve already explained how you can use the SHOW command to obtain information on
the structure of a database, its tables, and the table columns. In this section, we’ll review
the most common types of SHOW statement with brief examples using the music database.
The mysqlshow command-line program performs the same function as several SHOW
command variants, but without needing to start the monitor.

The SHOW DATABASES statement lists the databases you can access. If you’ve followed our
sample database installation steps in Chapter 3 in “Loading the Sample Databases,”
your output should be as follows:

mysql> SHOW DATABASES;
+------------+
| Database |
+------------+
| flight |
| music |
| mysql |
| test |
| university |
+------------+
5 rows in set (0.01 sec)

Exploring Databases and Tables with SHOW and mysqlshow | 173

These are the databases that you can access with the USE command; as we explain in
Chapter 9, you can’t see databases for which you have no access privileges unless you
have the global SHOW DATABASES privilege. You can get the same effect from the command
line using the mysqlshow program:

$ mysqlshow --user=root --password=the_mysql_root_password

You can add a LIKE clause to SHOW DATABASES. This is useful only if you have many
databases and want a short list as output. For example, to see databases beginning with
m, type:

mysql> SHOW DATABASES LIKE "m%";
+---------------+
| Database (m%) |
+---------------+
| music |
| mysql |
+---------------+
2 rows in set (0.00 sec)

The syntax of the LIKE statement is identical to that in its use in SELECT.

To see the statement used to create a database, you can use the SHOW CREATE DATA
BASE statement. For example, to see how music was created, type:

mysql> SHOW CREATE DATABASE music;
+----------+--+
| Database | Create Database |
+----------+--+
| music | CREATE DATABASE music /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+--+
1 row in set (0.00 sec)

This is perhaps the least exciting SHOW statement; it only displays the statement:

CREATE DATABASE music

There are some additional keywords that are enclosed between the comment sym-
bols /*! and */:

40100 DEFAULT CHARACTER SET latin1

These instructions contain MySQL-specific extensions to standard SQL that are un-
likely to be understood by other database programs. A database server other than
MySQL would ignore this comment text, and so the syntax is usable by both MySQL
and other database server software. The optional number 40100 indicates the minimum
version of MySQL that can process this particular instruction—in this case, version
4.01.00; older versions of MySQL ignore such instructions. You’ll learn about creating
databases in Chapter 6.

The SHOW TABLES statement lists the tables in a database. To check the tables in music,
type:

174 | Chapter 5: Basic SQL

mysql> SHOW TABLES FROM music;
+-----------------+
| Tables_in_music |
+-----------------+
| album |
| artist |
| played |
| track |
+-----------------+
4 rows in set (0.01 sec)

If you’ve already selected the music database with the USE music command, you can use
the shortcut:

mysql> SHOW TABLES;
+-----------------+
| Tables_in_music |
+-----------------+
| album |
| artist |
| played |
| track |
+-----------------+
4 rows in set (0.01 sec)

You can get a similar result by specifying the database name to the mysqlshow program:

$ mysqlshow --user=root --password=the_mysql_root_password music

As with SHOW DATABASES, you can’t see tables that you don’t have privileges for. This
means you can’t see tables in a database you can’t access, even if you have the SHOW
DATABASES global privilege.

The SHOW COLUMNS statement lists the columns in a table. For example, to check the
columns of track, type:

mysql> SHOW COLUMNS FROM track;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
track_id	int(3)		PRI	0	
track_name	char(128)	YES		NULL	
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
time	decimal(5,2)	YES		NULL	
+------------+--------------+------+-----+---------+-------+
5 rows in set (0.01 sec)

The output reports all column names, their types and sizes, whether they can be NULL,
whether they are part of a key, their default value, and any extra information. Types,
keys, NULL values, and defaults are discussed further in Chapter 6. If you haven’t already
chosen the music database with the USE command, then you can add the database name
before the table name, as in music.track. Unlike the previous SHOW statements, you can
always see all column names if you have access to a table; it doesn’t matter that you

Exploring Databases and Tables with SHOW and mysqlshow | 175

don’t have certain privileges for all columns. You can get a similar result by using
mysqlshow with the database and table name:

$ mysqlshow --user=root --password=the_mysql_root_password music track

You can see the statement used to create a particular table using the SHOW CREATE
TABLE statement; creating tables is a subject of Chapter 6. Some users prefer this output
to that of SHOW COLUMNS, since it has the familiar format of a CREATE TABLE statement.
Here’s an example for the track table:

mysql> SHOW CREATE TABLE track;
+-------+---+
| Table | Create Table |
+-------+---+
track	CREATE TABLE `track` (
	`track_id` int(3) NOT NULL default '0',
	`track_name` char(128) default NULL,
	`artist_id` int(5) NOT NULL default '0',
	`album_id` int(4) NOT NULL default '0',
	`time` decimal(5,2) default NULL,
	PRIMARY KEY (`artist_id`,`album_id`,`track_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
+-------+---+

We’ve reformatted the output slightly so it fits better in the book.

Exercises
All exercises here concern the music database. You’ll find the table structures in “The
Music Database” are a useful reference, or you can practice using the SHOW statement
as you work your way through the tasks:

1. Use one or more SELECT statements to find out how many tracks are on New Order’s
Brotherhood album.

2. Using a join, list the albums that we own by the band New Order.

3. With INSERT statements, add the artist Leftfield to the database. For this new
artist, add the album Leftism that has the following tracks:

a. Release the Pressure (Time: 7.39)

b. Afro-Melt (Time: 7.33)

c. Melt (Time: 5.21)

d. Song of Life (Time: 6.55)

e. Original (Time: 6.00)

f. Black Flute (Time: 3.46)

g. Space Shanty (Time: 7.15)

h. Inspection Check One (Time: 6.30)

i. Storm 3000 (Time: 5.44)

176 | Chapter 5: Basic SQL

j. Open Up (Time: 6.52)

k. 21st Century Poem (Time: 5.42)

l. Bonus Track (Time: 1.22)

4. How long in minutes is the Leftism album you added in Question 3? Hint: use the
SUM() aggregate function.

5. Change the time for the Original track on the Leftism album to 6.22.

6. Remove the Bonus Track from the Leftism album.

Exercises | 177

CHAPTER 6

Working with Database Structures

This chapter shows you how to create your own databases, add and remove structures
such as tables and indexes, and make choices about column types in your tables. It
focuses on the syntax and features of SQL, and not the semantics of conceiving, spec-
ifying, and refining a database design; you’ll find an introductory description of data-
base design techniques in Chapter 4. To work through this chapter, you need to un-
derstand how to work with an existing database and its tables, as discussed in Chap-
ter 5.

This chapter lists the structures in the sample music database used in this book; detail
on how to load the database is presented in Chapter 2. If you’ve followed those in-
structions, you’ll already have the database available and know how to restore the
database after you’ve modified its structures.

When you finish this chapter, you’ll have all the basics required to create, modify, and
delete database structures. Together with the techniques you learned in Chapter 5,
you’ll have the skills to carry out a wide range of basic operations. Chapters 7, 8, and
9 cover skills that allow you to do more advanced operations with MySQL.

Creating and Using Databases
When you’ve finished designing a database, the first practical step to take with MySQL
is to create it. You do this with the CREATE DATABASE statement. Suppose you want to
create a database with the name lucy. Here’s the statement you’d type in the monitor:

mysql> CREATE DATABASE lucy;
Query OK, 1 row affected (0.10 sec)

We assume here that you know how to connect to and use the monitor, as described
in Chapter 3. We also assume that you’re able to connect as the root user or as another
user who can create, delete, and modify structures (you’ll find a detailed discussion on
user privileges in Chapter 9). Note that when you create the database, MySQL says that
one row was affected. This isn’t in fact a normal row in any specific database—but a
new entry added to the list that you see with SHOW DATABASES.

179

Behind the scenes, MySQL creates a new directory under the data directory for the new
database and stores the text file db.opt that lists the database options; for example, the
file might contain:

default-character-set=latin1
default-collation=latin1_swedish_ci

These particular two lines specify the default character set and collation of the new
database. We’ll look at what these mean later, but you generally won’t need to know
much about the db.opt file or access it directly.

Once you’ve created the database, the next step is to use it—that is, choose it as the
database you’re working with. You do this with the MySQL command:

mysql> USE lucy;
Database changed

As discussed previously in Chapter 5, this command must be entered on one line and
need not be terminated with a semicolon, though we usually do so automatically
through habit. Once you’ve used the database, you can start creating tables, indexes,
and other structures using the steps discussed next in “Creating Tables.”

Before we move on to creating other structures, let’s discuss a few features and limita-
tions of creating databases. First, let’s see what happens if you create a database that
already exists:

mysql> CREATE DATABASE lucy;
ERROR 1007 (HY000): Can't create database 'lucy'; database exists

You can avoid this error by adding the IF NOT EXISTS keyword phrase to the statement:

mysql> CREATE DATABASE IF NOT EXISTS lucy;
Query OK, 0 rows affected (0.00 sec)

You can see that MySQL didn’t complain, but it didn’t do anything either: the 0 rows
affected message indicates that no data was changed. This addition is useful when
you’re adding SQL statements to a script: it prevents the script from aborting on error.

Let’s discuss how to choose database names and the use of character case. Database
names define physical directory (or folder) names on disk. On some operating systems,
directory names are case-sensitive; on others, case doesn’t matter. For example, Unix-
like systems such as Linux and Mac OS X are typically case-sensitive, while Windows
isn’t. The result is that database names have the same restrictions: when case matters
to the operating system, it matters to MySQL. For example, on a Linux machine, LUCY,
lucy, and Lucy are different database names; on Windows, they refer to just one data-
base. Using incorrect capitalization under Linux or Mac OS X will cause MySQL to
complain:

mysql> select artIst.Artist_id from ARTist;
ERROR 1146 (42S02): Table 'music.ARTist' doesn't exist

180 | Chapter 6: Working with Database Structures

but under Windows, this will normally work. To make your SQL machine-independ-
ent, we recommend that you consistently use lowercase names for databases (and for
tables, columns, aliases, and indexes).

There are other restrictions on database names. They can be at most 64 characters in
length. You also shouldn’t use MySQL reserved words—such as SELECT, FROM, and USE
—as names for structures; these can confuse the MySQL parser, making it impossible
to interpret the meaning of your statements. There’s a way around this problem: you
can enclose the reserved word with the backtick symbol (‵) on either side, but it’s more
trouble remembering to do so than it’s worth. In addition, you can’t use selected char-
acters in the names: specifically, you can’t use the forward slash, backward slash, sem-
icolon, and period characters, and a database name can’t end in whitespace. Again, the
use of these characters confuses the MySQL parser and can result in unpredictable
behavior. For example, here’s what happens when you insert a semicolon into a data-
base name:

mysql> CREATE DATABASE IF NOT EXISTS lu;cy;
Query OK, 1 row affected (0.00 sec)

ERROR 1064 (42000): You have an error in your SQL syntax. Check the manual
that corresponds to your MySQL server version for the right syntax to use
near 'cy' at line 1

Since more than one SQL statement can be on a single line, the result is that a database
lu is created, and then an error is generated by the very short, unexpected SQL state-
ment cy;.

Creating Tables
This section covers topics on table structures. We show you how to:

• Create tables, through introductory examples

• Choose names for tables and table-related structures

• Understand and choose column types

• Understand and choose keys and indexes

• Use the proprietary MySQL AUTO_INCREMENT feature

When you finish this section, you’ll have completed all of the basic material on creating
database structures; the remainder of this chapter covers the sample music database
used in the book, and how to alter and remove existing structures.

Basics
For our examples in this section, we’ll assume that the database music hasn’t been
created. If you want to follow the examples, and you have already loaded the database,
you can drop it for this section and reload it later; dropping it removes the database,

Creating Tables | 181

tables, and all of the data, but the original is easy to restore by following the steps in
Chapter 2. Here’s how you drop it temporarily:

mysql> DROP DATABASE music;
Query OK, 4 rows affected (0.06 sec)

The DROP statement is discussed further at the end of this chapter in “Deleting Struc-
tures.”

To begin, create the database music using the statement:

mysql> CREATE DATABASE music;
Query OK, 1 row affected (0.00 sec)

Then select the database with:

mysql> USE music;
Database changed

We’re now ready to begin creating the tables that’ll hold our data. Let’s create a table
to hold artist details. Here’s the statement that we use:

mysql> CREATE TABLE artist (
 -> artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 -> artist_name CHAR(128) DEFAULT NULL,
 -> PRIMARY KEY (artist_id)
 ->);

Query OK, 0 rows affected (0.06 sec)

Don’t panic: even though MySQL reports that zero rows were affected, it’s definitely
created the table:

mysql> SHOW TABLES;
+-----------------+
| Tables_in_music |
+-----------------+
| artist |
+-----------------+
1 row in set (0.00 sec)

Let’s consider all this in detail. The CREATE TABLE statement has three major sections:

1. The CREATE TABLE statement, which is followed by the table name to create. In this
example, it’s artist.

2. A list of one or more columns to add to the table. In this example, we’ve added
two: artist_id SMALLINT(5) NOT NULL DEFAULT 0 and artist_name CHAR(128)
default NULL. We’ll discuss these in a moment.

3. Optional key definitions. In this example, we’ve defined a single key: PRIMARY KEY
(artist_id). We’ll discuss keys and indexes in detail later in this section.

Notice that the CREATE TABLE component is followed by an opening parenthesis that’s
matched by a closing parenthesis at the end of the statement. Notice also that the other

182 | Chapter 6: Working with Database Structures

components are separated by commas. There are other elements that you can add to a
CREATE TABLE statement, and we’ll discuss some in a moment.

Let’s discuss the column specifications. The basic syntax is as follows: name type [NOT
NULL | NULL] [DEFAULT value]. The name field is the column name, and it has the same
limitations as database names, as discussed in the previous section. It can be at most
64 characters in length, backward and forward slashes aren’t allowed, periods aren’t
allowed, it can’t end in whitespace, and case sensitivity is dependent on the underlying
operating system. The type defines how and what is stored in the column; for example,
we’ve seen that it can be set to CHAR for strings, SMALLINT for numbers, or TIMESTAMP for
a date and time.

If you specify NOT NULL, a row isn’t valid without a value for the column; if you specify
NULL or omit the clause, a row can exist without a value for the column. If you specify
a value with the DEFAULT clause, it’ll be used to populate the column when you don’t
otherwise provide data; this is particularly useful when you frequently reuse a default
value such as a country name. The value must be a constant (such as 0, "cat", or
20060812045623), except if the column is of the type TIMESTAMP. Types are discussed in
detail later in this section.

The NOT NULL and DEFAULT features can be used together. If you specify NOT NULL and
add a DEFAULT value, the default is used when you don’t provide a value for the column.
Sometimes, this works fine:

mysql> INSERT INTO artist SET artist_name = "Duran Duran";
Query OK, 1 row affected (0.05 sec)

And sometimes it doesn’t:

mysql> INSERT INTO artist SET artist_name = "Bob The Builder";
ERROR 1062 (23000): Duplicate entry '0' for key 1

Whether it works or not is dependent on the underlying constraints and conditions of
the database: in this example, artist_id has a default value of 0, but it’s also the primary
key. Having two rows with the same primary-key value isn’t permitted, and so the
second attempt to insert a row with no values (and a resulting primary-key value of 0)
fails. We discuss primary keys in detail later in this section.

Column names have fewer restrictions than database and table names. What’s more,
they’re not dependent on the operating system: the names are case-insensitive and
portable across all platforms. All characters are allowed in column names, though if
you want terminate them with whitespace or include periods (or other special charac-
ters such as the semicolon), you’ll need to enclose the name with a backtick symbol
(`) on either side. We recommend that you consistently choose lowercase names for
developer-driven choices (such as database, alias, and table names) and avoid charac-
ters that require you to remember to use backticks. We also recommend being de-
scriptive with your choices: name doesn’t mean much outside of the context of the
artist table, but artist_name has universal meaning across the music database. We like
using the underscore character to separate words, but that’s just a matter of style and

Creating Tables | 183

taste; you could use underscores or dashes, or omit the word-separating formatting
altogether. As with database and table names, the longest column name is 64 characters
in length.

Collation and Character Sets
Because not everyone wants to store English strings, it’s important that a database
server be able to manage non-English characters and different ways of sorting charac-
ters. When you’re comparing or sorting strings, how MySQL evaluates the result de-
pends on the character set and collation used. Character sets define what characters can
be stored; for example, you may need to store non-English characters such as ٱ or ü. A
collation defines how strings are ordered, and there are different collations for different
languages: for example, the position of the character ü in the alphabet is different in
two German orderings, and different again in Swedish and Finnish.

In our previous string-comparison examples, we ignored the collation and character-
set issue, and just let MySQL use its defaults; the default character set is latin1, and
the default collation is latin1_swedish_ci. MySQL can be configured to use different
character sets and collation orders at the connection, database, table, and column
levels.

You can list the character sets available on your server with the SHOW CHARACTER SET
command. This shows a short description for each character set, its default collation,
and the maximum number of bytes used for each character in that character set:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
utf8	UTF-8 Unicode	utf8_general_ci	3

184 | Chapter 6: Working with Database Structures

ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp866	DOS Russian	cp866_general_ci	1
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
cp1251	Windows Cyrillic	cp1251_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
binary	Binary pseudo charset	binary	1
geostd8	GEOSTD8 Georgian	geostd8_general_ci	1
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+----------+-----------------------------+---------------------+--------+
36 rows in set (0.30 sec)

For example, the latin1 character set is actually the Windows code page 1252 that
supports West European languages. The default collation for this character set is
latin1_swedish_ci, which follows Swedish conventions to sort accented characters
(English is handled as you’d expect). This collation is case-insensitive, as indicated by
the letters ci. Finally, each character takes up one byte. By comparison, if you use the
ucs2 character set, each character would take up to two bytes of storage.

Similarly, you can list the collation orders and the character sets they apply to:

mysql> SHOW COLLATION;
+----------------------+----------+-----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+-----+---------+----------+---------+
| big5_chinese_ci | big5 | 1 | Yes | Yes | 1 |
...
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
..					
hebrew_general_ci	hebrew	16	Yes		0
...					
gb2312_chinese_ci	gb2312	24	Yes	Yes	1
...					
utf8_persian_ci	utf8	208		Yes	8
utf8_esperanto_ci	utf8	209		Yes	8
...					
eucjpms_japanese_ci	eucjpms	97	Yes	Yes	1
eucjpms_bin	eucjpms	98		Yes	1
+----------------------+----------+-----+---------+----------+---------+
126 rows in set (0.02 sec)

You can see the current defaults on your server as follows:

Creating Tables | 185

mysql> SHOW VARIABLES LIKE 'c%';
+--------------------------+----------------------------+
| Variable_name | Value |
+--------------------------+----------------------------+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/share/mysql/charsets/
collation_connection	latin1_swedish_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
...
+--------------------------+----------------------------+
14 rows in set (0.00 sec)

When you’re creating a database, you can set the default character set and sort order
for the database and its tables. For example, if you want to use the latin1 character set
and the latin1_swedish_cs (case-sensitive) collation order, you would write:

mysql> CREATE DATABASE rose DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_cs;
Query OK, 1 row affected (0.00 sec)

As we’ve previously discussed, there’s no need to do this if you’ve installed your MySQL
correctly for your language and region, and if you’re not planning on internationalizing
your application. You can also control the character set and collation for individual
tables or columns, but we won’t go into the detail of how to do that here.

Other Features
This section briefly describes other features of the MySQL CREATE TABLE statement. It
includes an example using the IF NOT EXISTS feature, and a list of advanced features
and where to find more about them in this book.

You can use the IF NOT EXISTS keyword phrase when creating a table, and it works
much as it does for databases. Here’s an example that won’t report an error even when
the artist table exists:

mysql> CREATE TABLE IF NOT EXISTS artist (
 -> artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 -> artist_name CHAR(128) DEFAULT NULL,
 -> PRIMARY KEY (artist_id)
 ->);

Query OK, 0 rows affected (0.00 sec)

It’s actually hard to tell success from failure here: zero rows are affected whether or not
the table exists, and no warning is reported when the table does exist.

186 | Chapter 6: Working with Database Structures

There are a wide range of additional features you can add to a CREATE TABLE statement.
Many of these are advanced and aren’t discussed in this book, but you can find more
information in the MySQL manual under the heading “CREATE TABLE syntax.”
These additional features include:

The AUTO_INCREMENT feature for numeric columns
This feature allows you to automatically create unique identifiers for a table. We
discuss it in detail later in this chapter in “The AUTO_INCREMENT Feature.”

Column comments
You can add a comment to a column; this is displayed when you use the SHOW CREATE
TABLE command that we discuss later in this section.

Foreign key constraints
You can tell MySQL to check whether data in one or more columns matches data
in another table. For example, you might want to prevent an album from being
added to the music database unless there’s a matching artist in the artist table. As
we explain in “Table Types,” we don’t recommend using foreign key constraints
for most applications. This feature is currently supported for only the InnoDB table
type.

Creating temporary tables
If you create a table using the keyword phrase CREATE TEMPORARY TABLE, it’ll be
removed (dropped) when the monitor connection is closed. This is useful for copy-
ing and reformatting data because you don’t have to remember to clean up.

Advanced table options
You can control a wide range of features of the table using table options. These
include the starting value of AUTO_INCREMENT, the way indexes and rows are stored,
and options to override the information that the MySQL query optimizer gathers
from the table.

Control over index structures
Since MySQL 4.1, for some table types, you’ve been able to control what type of
internal structure—such as a B-tree or hash table—MySQL uses for its indexes.
You can also tell MySQL that you want a full text or spatial data index on a column,
allowing special types of search.

You can check the CREATE TABLE statement for a table using the SHOW CREATE TABLE state-
ment introduced in Chapter 5. This often shows you output that includes some of the
advanced features we’ve just discussed; the output rarely matches what you actually
typed to create the table. Here’s an example for the artist table:

mysql> SHOW CREATE TABLE artist;
+--------+--+
| Table | Create Table |
+--------+--+
| artist | CREATE TABLE `artist` (
 `artist_id` smallint(5) NOT NULL default '0',
 `artist_name` char(128) default NULL,

Creating Tables | 187

 PRIMARY KEY (`artist_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 |
+--------+--+
1 row in set (0.08 sec)

We’ve reformatted the output slightly to fit better in this book. You’ll notice that the
output includes content added by MySQL that wasn’t in our original CREATE TABLE
statement:

• The names of the table and columns are enclosed in backticks. This isn’t necessary,
but it does avoid any parsing problems that can occur through using reserved words
and special characters, as discussed previously

• An additional default ENGINE clause is included, which explicitly states the table
type that should be used. The setting in a default installation of MySQL is MyI
SAM, so it has no effect in this example

• An additional DEFAULT CHARSET=latin1 clause is included, which tells MySQL what
character set is used by the columns in the table. Again, this has no effect in a
default, Latin-character-set-based installation

Column Types
This section describes the column types you can use in MySQL. It explains when each
should be used and any limitations it has. We’ve ordered the choices in two sections:
first, the commonly used, and, second, the less frequently used choices. Skip the second
part if you want to and revisit it when one of the common choices doesn’t fit your needs;
it’s certainly worth reviewing when you’re tackling the exercises at the end of this
chapter.

Common column types

The following are the six commonly used column types in MySQL tables:

INT[(width)] [UNSIGNED] [ZEROFILL]
The most commonly used numeric type. Stores integer (whole number) values in
the range –2,147,483,648 to 2,147,483,647. If the optional UNSIGNED keyword is
added, the range is 0 to 4,294,967,295. The keyword INT is short for INTEGER, and
they can be used interchangeably. An INT column requires four bytes of storage
space.

You can also include optional width and ZEROFILL arguments to left-pad the values
with zeros up to the specified length. The maximum width is 255. The width pa-
rameter has no effect on what is stored. If you store a value wider than the width,
the width value is ignored. Consider this example:

mysql> CREATE TABLE numbers (my_number INT(4) ZEROFILL);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO numbers VALUES(3),(33),(333),(3333),(33333),(333333);

188 | Chapter 6: Working with Database Structures

Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM numbers;
+-----------+
| my_number |
+-----------+
| 0003 |
| 0033 |
| 0333 |
| 3333 |
| 33333 |
| 333333 |
+-----------+
6 rows in set (0.00 sec)

You can see that numbers shorter than four digits wide are zero-padded to four
digits; once the numbers are longer than four digits long, they are shown unaffected
by the width and the ZEROFILL parameters.

If you use ZEROFILL, MySQL automatically adds UNSIGNED to the declaration (since
zero filling makes sense only in the context of positive numbers).

DECIMAL[(width[,decimals])] [UNSIGNED] [ZEROFILL]
A commonly used numeric type. Stores a fixed-point number such as a salary or
distance, with a total of width digits of which some smaller number are decimals
that follow a decimal point. For example, a column declared as price DECI
MAL(4,2) should be used to store values in the range –99.99 to 99.99. If you try to
store a value that’s outside this range, it will be stored as the closest value in the
allowed range. For example, 100 would be stored as 99.99, and –100 would be
stored as –99.99. Note that MySQL versions before 5.03 would allow an extra digit
for positive values (numbers from –99.99 to 999.99 could be stored). The width is
optional, and a value of 10 is assumed when this is omitted. The maximum value
of width is 255.

The number of decimals is optional and, when omitted, a value of 0 is assumed;
the maximum value of decimals should be two less than the value of width. If you’re
storing only positive values, use the UNSIGNED keyword as described for INT. If you
want zero padding, use the ZEROFILL keyword for the same behavior as described
for INT. The keyword DECIMAL has three identical, interchangeable alternatives: DEC,
NUMERIC, and FIXED.

Prior to MySQL version 5.0.3, a DECIMAL column was stored as a string, and so
required exactly the number of bytes of storage space as the length of the value
(plus up to two bytes for a minus sign and a decimal point if required). Beginning
with version 5.0.3, a binary format was introduced that uses four bytes for every
nine digits. Under both approaches, the value retrieved is identical to the value
stored; this isn’t always the case with other types that contain decimal points, such
as the FLOAT and DOUBLE types described later.

Creating Tables | 189

DATE
Stores and displays a date in the format YYYY-MM-DD for the range 1000-01-01 to
9999-12-31. Dates must always be input as year, month, and day triples, but the
format of the input can vary, as shown in the following examples:

YYYY-MM-DD or YY-MM-DD
It’s optional whether you provide two-digit or four-digit years. We strongly
recommend that you use the four-digit version to avoid confusion about the
century. In practice, if you use the two-digit version, you’ll find that 70 to 99
are interpreted as 1970 to 1999, and 00 to 69 are interpreted as 2000 to 2069.

YYYY/MM/DD, YYYY:MM:DD, YY/MM/DD, or other punctuated formats
MySQL allows any punctuation characters to separate the components of a
date. We recommend using dashes and, again, avoiding the two-digit years.

YYYY-M-D, YYYY-MM-D, or YYYY-M-DD
When punctuation is used (again, any punctuation character is allowed),
single-digit days and months can be specified as such. For example, February
2, 2006, can be specified as 2006-2-2. The two-digit year equivalent is available,
but not recommended.

YYYYMMDD or YYMMDD
Punctuation can be omitted in both date styles, but the digit sequences must
be six or eight digits in length.

You can also input a date by providing both a date and time in the formats described
later for DATETIME and TIMESTAMP, but only the date component is stored in a DATE
type column. Regardless of the input type, the storage and display type is always
YYYY-MM-DD. The zero date 0000-00-00 is allowed in all versions and can be used to
represent an unknown or dummy value. If an input date is out of range, the zero
date 0000-00-00 is stored. By default, from MySQL 5.0.2 onward, the zero date is
stored when you insert an invalid date such as 2007-02-31. Prior to that version,
invalid dates are stored provided the month is in the range 0 to 12, and the day is
in the range 0 to 31. Consider this example:

mysql> CREATE TABLE testdate (mydate DATE);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/0');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/1');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/31');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testdate VALUES ('2007/02/100');
Query OK, 1 row affected, 1 warning (0.00 sec)

With a version of MySQL older than 5.0.2, we would have:

190 | Chapter 6: Working with Database Structures

mysql> SELECT * FROM testdate;
+------------+
| mydate |
+------------+
| 2007-02-00 |
| 2007-02-01 |
| 2007-02-31 |
| 0000-00-00 |
+------------+
4 rows in set (0.00 sec)

while with version 5.0.2 onwards, we have:

mysql> SELECT * FROM testdate;
+------------+
| mydate |
+------------+
| 2007-02-00 |
| 2007-02-01 |
| 0000-00-00 |
| 0000-00-00 |
+------------+
4 rows in set (0.01 sec)

Note also that the date is displayed in the YYYY-MM-DD format, regardless of how it
was input.

TIME
Stores a time in the format HHH:MM:SS for the range -838:59:59 to 838:59:59. The
values that can be stored are outside the range of the 24-hour clock to allow large
differences between time values (up to 34 days, 22 hours, 59 minutes, and 59 sec-
onds) to be computed and stored. Times must always be input in the order days,
hours, minutes, and seconds, using the following formats:

DD HH:MM:SS, HH:MM:SS, DD HH:MM, HH:MM, DD HH, or SS
The DD represents a one-digit or two-digit value of days in the range 0 to 34.
The DD value is separated from the hour value, HH, by a space, while the other
components are separated by a colon. Note that MM:SS is not a valid combina-
tion, since it cannot be disambiguated from HH:MM.

For example, if you insert 2 13:25:59 into a TIME type column, the value
61:25:59 is stored, since the sum of 2 days (48 hours) and 13 hours is 61 hours.
If you try inserting a value that’s out of bounds, a warning is generated, and
the value is limited to the maximum time available. Similarly, if you try in-
serting an incorrect value, a warning is generated and the value is set to zero.
You can use the SHOW WARNINGS command to reports the details of the warning
generated by the previous SQL statement.

Let’s try all these out in practice:

mysql CREATE TABLE test_time(id SMALLINT, mytime TIME);
Query OK, 0 rows affected (0.00 sec)

mysql INSERT INTO test_time VALUES(1, "2 13:25:59");

Creating Tables | 191

Query OK, 1 row affected (0.00 sec)

mysql INSERT INTO test_time VALUES(2, "35 13:25:59");
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1264 | Out of range value adjusted for column 'mytime' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

mysql INSERT INTO test_time VALUES(3, "-35 13:25:59");
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql INSERT INTO test_time VALUES(4, "35 13:25:69");
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1265 | Data truncated for column 'mytime' at row 1 |
+---------+------+---+
1 row in set (0.00 sec)

mysql SELECT * FROM test_time;
+----+------------+
| id | mytime |
+----+------------+
1	61:25:59
2	838:59:59
3	-838:59:59
4	00:00:00
+----+------------+
4 rows in set (0.00 sec)

Note how the out-of-range and invalid times are stored.

H:M:S, and single-, double-, and triple-digit combinations
You can use different combinations of digits when inserting or updating data;
MySQL converts them into the internal time format and displays them con-
sistently. For example, 1:1:3 is equivalent to 01:01:03. Different numbers of
digits can be mixed; for example, 1:12:3 is equivalent to 01:12:03. Consider
these examples:

mysql> CREATE TABLE mytime (testtime TIME);
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO mytime VALUES
 -> ('-1:1:1'), ('1:1:1'),
 -> ('1:23:45'), ('123:4:5'),
 -> ('123:45:6'), ('-123:45:6');
Query OK, 4 rows affected (0.00 sec)

192 | Chapter 6: Working with Database Structures

Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM mytime;
+------------+
| testtime |
+------------+
| -01:01:01 |
| 01:01:01 |
| 01:23:45 |
| 123:04:05 |
| 123:45:06 |
| -123:45:06 |
+------------+
5 rows in set (0.01 sec)

Note that hours are shown with two digits for values within the range –99 to
+99.

HHMMSS, MMSS, and SS
Punctuation can be omitted, but the digit sequences must be two, four, or six
digits in length. Note that the rightmost pair of digits is always interpreted as
a SS (seconds) value, the second next rightmost pair (if present) as MM (minutes),
and the third rightmost pair (if present) as HH (hours). The result is that a value
such as 1222 is interpreted as 12 minutes and 22 seconds, not 12 hours and 22
minutes.

You can also input a time by providing both a date and time in the formats described
for DATETIME and TIMESTAMP, but only the time component is stored in a TIME type
column. Regardless of the input type, the storage and display type is always
HH:MM:SS. The zero time 00:00:00 can be used to represent an unknown or dummy
value. If an input date is invalid or out of range, the zero time 00:00:00 is stored.
The TIME type has an additional fraction component for storing fractions of sec-
onds, but, while a time value can be input with a fractional component, it is pres-
ently truncated before storage by MySQL; we’ve therefore omitted it from our
discussions.

TIMESTAMP
Stores and displays a date and time pair in the format YYYY-MM-DD HH:MM:SS for the
range 1970-01-01 00:00:00 to sometime in 2037. The behavior of this type has
varied over the life of MySQL (and continues to do so!), and this section describes
only the version implemented since MySQL 4.1. The key features of a TIMESTAMP
column are twofold. First, if you assign NULL to it, it’s set to the current date and
time. Second, a developer-selected TIMESTAMP column in a table can be automati-
cally updated to the current date and time when a row is inserted or updated. You
can always explicitly set a column to a value you want by assigning that value to
the column, regardless of whether it’s the automatically updating column. The
automatic update feature is discussed later in this section. A nonupdating near-
equivalent is the DATETIME type described later in this section.

Creating Tables | 193

The value stored always matches the template YYYY-MM-DD HH:MM:SS, but the value
can be provided in a wide range of formats:

YYYY-MM-DD HH:MM:SS or YY-MM-DD HH:MM:SS
The date and time components follow the same relaxed restrictions as the
DATE and TIME components described previously (however, as of MySQL 5.0.2,
zero values aren’t permitted). This includes allowance for any punctuation
characters, including (unlike TIME) flexibility in the punctuation used in the
time component. For example, 2005/02/15 12+22+23 is valid.

YYYYMMDDHHMMSS or YYMMDDHHMMSS
Punctuation can be omitted, but the string should be either 12 or 14 digits in
length. We recommend only the unambiguous 14-digit version, for the reasons
discussed for the DATE type. You can specify values with other lengths without
providing separators, but we don’t recommend doing so.

Let’s discuss the automatic-update feature in detail. Only one TIMESTAMP column
per table can be automatically set to the current date and time on insert or update.
You control this by following these steps when creating a table:

1. Choose the column you want to be automatically updated.

2. If you have other TIMESTAMP columns in the table, set the ones that precede the
selected column in the CREATE TABLE statement to have a constant default (such
as DEFAULT 0).

3. For the automatically updating column, decide which behavior you want:

a. If you want the timestamp to be set only when a new row is inserted into
the table, add DEFAULT CURRENT_TIMESTAMP to the end of the column dec-
laration.

b. If you don’t want a default timestamp but want the current time to be used
whenever the data in a row is updated, add ON UPDATE CURRENT_TIME
STAMP to the end of the column declaration.

c. If you want both of the above—that is, you want the timestamp to be set
to the current time in each new row or whenever an existing row is modi-
fied— add DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP to
the end of the column declaration.

If you specify DEFAULT NULL for a TIMESTAMP column, it will be interpreted differently
depending on whether there are any other TIMESTAMP columns before it in the table.
DEFAULT NULL is handled as DEFAULT CURRENT_TIMESTAMP for the first timestamp col-
umn, but as DEFAULT 0 for any subsequent ones.

Consider this example:

mysql> CREATE TABLE mytime(id INT NOT NULL,
 -> changetime TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytime VALUES(1,''),(2,'2006-07-16 1:2:3'),(3,NULL);
Query OK, 3 rows affected, 2 warnings (0.01 sec)

194 | Chapter 6: Working with Database Structures

Records: 3 Duplicates: 0 Warnings: 2

mysql> SELECT * FROM mytime;
+----+---------------------+
| id | changetime |
+----+---------------------+
1	0000-00-00 00:00:00
2	2006-07-16 01:02:03
3	2006-07-16 01:05:24
+----+---------------------+
3 rows in set (0.00 sec)

Note how the current time is stored when we ask to insert a NULL value. Now, let’s
change the id for the first row:

mysql> UPDATE mytime SET id=4 WHERE id=1;
Query OK, 1 row affected (0.08 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM mytime;
+----+---------------------+
| id | changetime |
+----+---------------------+
4	2006-07-16 01:05:42
2	2006-07-16 01:02:03
3	2006-07-16 01:05:24
+----+---------------------+
3 rows in set (0.00 sec)

As you can see, the timestamp is updated to the current timestamp.

There are other variations on how you can control which column updates
automatically, but if you stick to the previous steps, you’ll get the behavior you
want. You can find more examples of using timestamps later in “The Sample Music
Database.”

CHAR[(width)]
The most commonly used string type. CHAR stores a fixed-length string (such as a
name, address, or city) of length width. If a width is not provided, CHAR(1) is as-
sumed. The maximum value of width is 255. With MySQL versions between 4.1.0
and 5.0.2, MySQL accepts values greater than 255 and silently changes the CHAR
type to the smallest TEXT type that is suitable; we discuss the TEXT type later in this
section.

You can in fact define a special CHAR(0) NULL column that takes up only one bit of
storage. This provides two handy features. First, it allows you to include a dummy
column in a table that doesn’t do anything (which might be useful as a placeholder
for a future feature, or to be backward-compatible with an old application). Sec-
ond, it allows you to store one of two values: NULL or the empty string '', giving
you very compact storage of binary (Boolean) values. To help you understand this
better, let’s create a table with a CHAR(0) field, and an id field to help differentiate
between entries:

Creating Tables | 195

mysql> CREATE TABLE bool(id INT, bit CHAR(0) NULL);
Query OK, 0 rows affected (0.02 sec)

Now, let’s add three values: an empty string '', NULL, and the character 1:

mysql> INSERT INTO bool VALUES (1,''), (2,NULL), (3,'1');
Query OK, 3 rows affected, 1 warning (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 1

These all look the same:

mysql> SELECT * FROM bool;
+----+------+
| id | bit |
+----+------+
1	
2	
3	
+----+------+
3 rows in set (0.00 sec)

However, one is NULL:

mysql> SELECT * FROM bool WHERE bit IS NULL;
+----+------+
| id | bit |
+----+------+
| 2 | |
+----+------+
1 row in set (0.00 sec)

and the other two aren’t:

mysql> SELECT * FROM bool WHERE bit IS NOT NULL;
+----+------+
| id | bit |
+----+------+
| 1 | |
| 3 | |
+----+------+
2 rows in set (0.01 sec)

In all other cases, the CHAR type takes exactly the number of bytes in storage space
as the width of the column (assuming your chosen character set uses one byte per
character). Values that are less than width characters in length are stored left-
aligned in the allocated space, with space character padding on the right side. All
trailing spaces are ignored when retrieving and displaying values, as in this
example:

mysql> CREATE TABLE show_padding(mystring CHAR(10));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO show_padding VALUES ('a'),('abc'),('abcde'),('abcdefg ');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

196 | Chapter 6: Working with Database Structures

mysql> SELECT * FROM show_padding;
+----------+
| mystring |
+----------+
| a |
| abc |
| abcde |
| abcdefg |
+----------+
4 rows in set (0.01 sec)

As you can see, the trailing spaces aren’t shown in the last row. They’re also ignored
if you try to find strings that have a trailing space:

mysql> SELECT * FROM show_padding WHERE mystring LIKE '% ';
Empty set (0.00 sec)

Since trailing spaces are ignored, no matches are reported.

Note that this has an interesting side effect: you can’t differentiate between strings
of spaces alone; the strings " " and " " are considered to be the same thing.
Consequently, you can’t use one value in the primary key if you’ve already got the
other. Consider an example; we can create a table to store names and email ad-
dresses, with the email address as the primary key:

mysql> CREATE TABLE contacts (name CHAR(40), email CHAR(40) PRIMARY KEY);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO contacts VALUES('Sarah', 'sarah@learningmysql.com');
Query OK, 1 row affected (0.01 sec)

So far, so good. Now, if we don’t know someone’s email address, we can store an
empty string:

mysql> INSERT INTO contacts VALUES('Zahra', '');
Query OK, 1 row affected (0.00 sec)

Note that an empty string is not NULL, so MySQL doesn’t complain; however, since
the email address is the primary key, we can’t store another empty string. Let’s try
storing a single space:

mysql> INSERT INTO Contacts VALUES('Samaneh', ' ');
ERROR 1062 (23000): Duplicate entry '' for key 1

MySQL complains about a duplicate key, since the single space is treated as an
empty string. Trying to insert the string "not sure" works, but then
"not sure " (with a trailing space) doesn’t work:

mysql> INSERT INTO Contacts VALUES('Samaneh', 'not sure');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Contacts VALUES('Sadri', 'not sure ');
ERROR 1062 (23000): Duplicate entry 'not sure' for key 1

Leading spaces don’t cause any problems:

Creating Tables | 197

mysql> INSERT INTO Contacts VALUES('Saleh', ' not sure');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Contacts VALUES('Susan', ' not sure');
Query OK, 1 row affected (0.00 sec)

You should use the BLOB or TEXT types described later if you don’t want this be-
havior.

That concludes our discussion of the six common column types used in MySQL. You’ll
find examples using some of these types in “The Sample Music Database,” later in this
chapter. The remainder of this section covers the other type choices available in
MySQL, beginning with the other choices for numeric values.

Other integer types

In “Common column types,” we saw the INT type for storing integer numbers. In this
section, we’ll look at a few other integer types that you can use. We recommend that
you always choose the smallest possible type to store values. For example, if you’re
storing age values, choose TINYINT instead of the regular INT. Smaller types require less
storage space; this reduces disk and memory requirements and speeds up the retrieval
of data from disk. Indeed, column type tuning is a key step that professional database
tuners use in optimizing database applications.

Here is the list of the integer types—besides INT—that you can choose from. Be aware
that the general issues described for INT apply to these types as well:

BOOLEAN
A type introduced in MySQL 4.1 that stores a Boolean value of false (zero) or true
(nonzero). For example, it might be used to store whether a person is alive (true)
or dead (false), a customer is active (true) or inactive (false), or whether a customer
wants to receive emails (true) or not (false). The BOOLEAN type has the synonyms
BOOL and BIT. It is equivalent to TINYINT(1), and so requires one byte of storage
space; you can achieve more compact, one-bit Boolean values by using CHAR(0), as
described previously.

TINYINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range –128 to 127. The width,
UNSIGNED, and ZEROFILL options behave as for INT. When UNSIGNED is used, a column
can store values in the range 0 to 255. A TINYINT column requires one byte of storage
space.

SMALLINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range –32,768 to 32,767. The width,
UNSIGNED, and ZEROFILL options behave as for INT. When UNSIGNED is used, a column
can store values in the range 0 to 65,535. A SMALLINT column requires two bytes of
storage space.

198 | Chapter 6: Working with Database Structures

MEDIUMINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range –8,388,608 to 8,388,607. The
width, UNSIGNED, and ZEROFILL options behave as for INT. When UNSIGNED is used,
a column can store values in the range 0 to 16,777,215. A MEDIUMINT column re-
quires three bytes of storage space.

BIGINT[(width)] [UNSIGNED] [ZEROFILL]
Stores integer (whole number) values in the range –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. The width, UNSIGNED, and ZEROFILL options behave as
for INT. When UNSIGNED is used, a column can store values in the range 0 to
18,446,744,073,709,551,615. A BIGINT column requires eight bytes of storage
space.

Other rational number types

In “Common column types,” we discussed the fixed-point DECIMAL type. There are two
other types that support decimal points: DOUBLE (also known as REAL) and FLOAT. They’re
designed to store approximate numeric values rather than the exact values stored by
DECIMAL. Why would you want approximate values? The answer is that many numbers
with a decimal point are approximations of real quantities. For example, suppose you
earn $50,000 per annum and you want to store it as a monthly wage. When you convert
it to a per-month amount, it’s $4,166 plus 66 and 2/3rds cents. If you store this as
$4,166.67, it’s not exact enough to convert to a yearly wage (since 12 multiplied by
$4,166.67 is $50,000.04). However, if you store 2/3rds with enough decimal places,
it’s a closer approximation, and you’ll find that it is accurate enough to correctly mul-
tiply to obtain the original value in a high-precision environment such as MySQL.
That’s where DOUBLE and FLOAT are useful: they let you store values such as 2/3rds or
pi with a large number of decimal places, allowing accurate approximate representa-
tions of exact quantities.

Let’s continue the previous example using DOUBLE. Suppose you create a table as follows:

mysql> CREATE TABLE wage (monthly DOUBLE);
Query OK, 0 rows affected (0.09 sec)

You can now insert the monthly wage using:

mysql> INSERT INTO wage VALUES (50000/12);
Query OK, 1 row affected (0.00 sec)

When you multiply it to a yearly value, you get an accurate approximation:

mysql> SELECT monthly*12 FROM wage;
+------------+
| monthly*12 |
+------------+
| 50000 |
+------------+
1 row in set (0.00 sec)

Here are the details of the DOUBLE and FLOAT types:

Creating Tables | 199

FLOAT[(width, decimals)] [UNSIGNED] [ZEROFILL] or FLOAT[(precision)] [UNSIGNED]
[ZEROFILL]

Stores floating-point numbers. It has two optional syntaxes: the first allows an
optional number of decimals and an optional display width, and the second allows
an optional precision that controls the accuracy of the approximation measured
in bits. Without parameters, the type stores small, four-byte, single-precision
floating-point values; usually, you use it without providing any parameters. When
precision is between 0 and 24, the default behavior occurs. When precision is
between 25 and 53, the type behaves as for DOUBLE. The width has no effect on what
is stored, only on what is displayed. The UNSIGNED and ZEROFILL options behave as
for INT.

DOUBLE[(width, decimals)] [UNSIGNED] [ZEROFILL]
Stores floating-point numbers. It has one optional syntax: it allows an optional
number of decimals and an optional display width. Without parameters, the type
stores normal, eight-byte, double-precision floating point values; usually, you use
it without providing any parameters. The width has no effect on what is stored,
only on what is displayed. The UNSIGNED and ZEROFILL options behave as for INT.
The DOUBLE type has two identical synonyms: REAL and DOUBLE PRECISION. The
REAL alternative can be made to behave as FLOAT using a nondefault parameter to
the MySQL server, but this is not discussed here.

Other date and time types

We discussed the DATE, TIME, and TIMESTAMP types in “Common column types.” There
are two more date and time types: YEAR for storing only year values, and DATETIME for
storing date and time combinations without the automatic-update feature of
TIMESTAMP. These work as follows:

YEAR[(digits)]
Stores a two- or four-digit year, depending on whether 2 or 4 is passed as the op-
tional digits parameter. Without the parameter, four digits is the default. The two-
digit version stores values from 70 to 69, representing 1970 to 2069; again, we
caution against using two-digit dates. The four-digit version stores values in the
range 1901 to 2155, as well as the zero year, 0000. Illegal values are converted to
the zero date. You can input year values as either strings (such as '2005') or integers
(such as 2005). The YEAR type requires one byte of storage space.

DATETIME
Stores and displays a date and time pair in the format YYYY-MM-DD HH:MM:SS for the
range 1000-01-01 00:00:00 to 9999-12-31 23:59:59. As for TIMESTAMP, the value
stored always matches the template YYYY-MM-DD HH:MM:SS, but the value can be
input in the same formats listed for the TIMESTAMP description. If you assign only a
date to a DATETIME column, the zero time 00:00:00 is assumed. If you assign only a
time to a DATETIME column, the zero date 0000-00-00 is assumed. This type does
not have the automatic update features of TIMESTAMP.

200 | Chapter 6: Working with Database Structures

Other string types

The remaining types in MySQL are variants of the string type; here’s a list that you can
choose from—excepting CHAR, which was described in “Common column types”:

VARCHAR(width)
A commonly used string type. Stores variable-length strings (such as names, ad-
dresses, or cities) up to a maximum width. The maximum value of width is 65,535
characters.

Prior to MySQL version 5.0.3, the maximum length was 255 characters. Trying to
specify a longer length would cause an error in versions up to 4.1.0. Between ver-
sions 4.1.0 and 5.0.3, the server would silently change the column type to the
smallest TEXT type that would hold values of that length

A VARCHAR type incurs one or two extra bytes of overhead to store the length of the
string, depending on whether the string is shorter than or longer than 255
characters.

Trailing spaces are removed when a value is stored; you can use TEXT or BLOB types
to avoid this behavior.

BINARY(width) and VARBINARY(width)
Available since MySQL 4.1.2, these are equivalent to CHAR and VARCHAR but allow
you to store binary strings. Binary strings have no character set, and sorting them
is case-sensitive. Read the descriptions of CHAR and VARCHAR for other details. If
you’re using a MySQL version earlier than 4.1.2, you can create the same behavior
by adding the keyword BINARY after the CHAR or VARCHAR declaration, as in CHAR(12)
BINARY.

BLOB
The commonly used type for storing large data. Stores a variable amount of data
(such as an image, video, or other nontext file) up to 65,535 bytes in length. The
data is treated as binary—that is, no character set is assumed, and comparisons
and sorts are case-sensitive. There is no trailing-space-removal behavior as for the
CHAR or VARCHAR types. In addition, a DEFAULT clause is not permitted, and you must
take a prefix of the value when using it in an index (this is discussed in the next
section).

TEXT
A commonly used type for storing large string data objects. Stores a variable
amount of data (such as a document or other text file) up to 65,535 bytes in length.
It is identical to BLOB, except that the data is treated as belonging to a character set.
Since MySQL 4.1, the character set can be set for each column, and prior to that
the character set of the server was assumed. Comparisons and sorts are case-in-
sensitive.

TINYBLOB and TINYTEXT
Identical to BLOB and TEXT, respectively, except that a maximum of 255 bytes can
be stored.

Creating Tables | 201

MEDIUMBLOB and MEDIUMTEXT
Identical to BLOB and TEXT, respectively, except that a maximum of 16,777,215 bytes
can be stored.

LONGBLOB and LONGTEXT
Identical to BLOB and TEXT, respectively, except that a maximum of four gigabytes
of data can be stored. The effective maximum can vary depending on the memory
available on the server and its configuration.

ENUM('value1'[,'value2'[, ...]]
A list, or enumeration of string values. A column of type ENUM can be set to a value
from the list value1, value2, and so on, up to a maximum of 65,535 different values.
While the values are stored and retrieved as strings, what’s stored in the database
is an integer representation. The enumerated column can contain NULL (stored as
NULL), the empty string '' (stored as 0), or any of the valid elements (stored as 1, 2,
3, and so on). You can prevent NULL values from being accepted by declaring the
column as NOT NULL when creating the table.

This type is a compact way of storing values from a list of predefined values, such
as state or country names. Consider this example using fruit names; the name can
be any one of the predefined values Apple, Orange, or Pear (in addition to NULL and
the empty string):

mysql> CREATE TABLE fruits_enum (fruit_name ENUM('Apple', 'Orange', 'Pear'));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO fruits_enum VALUES ('Apple');
Query OK, 1 row affected (0.00 sec)

If you try inserting a value that’s not in the list, MySQL warns you that it didn’t
store the data you asked:

mysql> INSERT INTO fruits_enum VALUES ('Banana');
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1265 | Data truncated for column 'fruit_name' at row 1 |
+---------+------+---+
1 row in set (0.00 sec)

Similarly, a list of several allowed values isn’t accepted either:

mysql> INSERT INTO fruits_enum VALUES ('Apple,Orange');
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1265 | Data truncated for column 'fruit_name' at row 1 |

202 | Chapter 6: Working with Database Structures

+---------+------+---+
1 row in set (0.00 sec)

Displaying the contents of the table, you can see that when you try to store anything
that’s not in the valid values, an empty string is stored instead:

mysql> SELECT * FROM fruits_enum;
+------------+
| fruit_name |
+------------+
| Apple |
| |
| |
+------------+
3 rows in set (0.00 sec)

You can also specify a default value other than the empty string:

mysql> CREATE TABLE new_fruits_enum (fruit_name ENUM('Apple', 'Orange', 'Pear')
 -> DEFAULT 'Pear');
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO new_fruits_enum VALUES();
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM new_fruits_enum;
+------------+
| fruit_name |
+------------+
| Pear |
+------------+
1 row in set (0.00 sec)

Here, not specifying a value results in the default value Pear being stored.

SET('value1'[,'value2'[, ...]])
A set of string values. A column of type SET can be set to zero or more values from
the list value1, value2, and so on, up to a maximum of 64 different values. While
the values are strings, what’s stored in the database is an integer representation.
SET differs from ENUM in that each row can store only one ENUM value in a column,
but can store multiple SET values. This type is useful for storing a selection of
choices from a list, such as user preferences. Consider this example using fruit
names; the name can be any combination of the predefined values:

mysql> CREATE TABLE fruits_set (fruit_name SET('Apple', 'Orange', 'Pear'));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO fruits_set VALUES ('Apple');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO fruits_set VALUES ('Banana');
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+

Creating Tables | 203

| Level | Code | Message |
+---------+------+---+
| Warning | 1265 | Data truncated for column 'fruit_name' at row 1 |
+---------+------+---+
1 row in set (0.00 sec)

mysql> INSERT INTO fruits_set VALUES ('Apple,Orange');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM fruits_set;
+--------------+
| fruit_name |
+--------------+
| Apple |
| |
| Apple,Orange |
+--------------+
3 rows in set (0.01 sec)

Again, note that we can store multiple values from the set in a single field, and that
an empty string is stored for invalid input.

As with numeric types, we recommend that you always choose the smallest possible
type to store values. For example, if you’re storing a city name, use CHAR or VARCHAR,
rather than, say, the TEXT type. Having shorter columns helps keep your table size down,
which in turns helps performance when the server has to search through a table.

Using a fixed size with the CHAR type is often faster than using a variable size with
VARCHAR, since the MySQL server knows where each row starts and ends, and can
quickly skip over rows to find the one it needs. However, with fixed-length fields, any
space that you don’t use is wasted. For example, if you allow up to 40 characters in a
city name, then CHAR(40) will always use up 40 characters, no matter how long the city
name actually is. If you declare the city name to be VARCHAR(40), then you’ll use up only
as much space as you need, plus one byte to store the name length. If the average city
name is 10 characters long, this means that using a variable length field will take up 29
fewer bytes per entry; this can make a big difference if you’re storing millions of
addresses.

In general, if storage space is at a premium or you expect large variations in the length
of strings that are to be stored, use a variable-length field; if performance is a priority,
use a fixed length.

Keys and Indexes
You’ll find that almost all tables you use will have a PRIMARY KEY clause declared in their
CREATE TABLE statement. The reasons why you need a primary key are discussed in
Chapter 4. This section discusses how primary keys are declared, what happens behind
the scenes when you do so, and why you might want to also create other keys and
indexes on your data.

204 | Chapter 6: Working with Database Structures

A primary key uniquely identifies each row in a table. When you declare one to MySQL,
it creates a new file on disk that stores information about where the data from each row
in the table is stored. This information is called an index, and its purpose is to speed
up searches that use the primary key. For example, when you declare PRIMARY KEY
(artist_id) in the artist table in the music database, MySQL creates a structure that
allows it to find rows that match a specific artist_id (or a range of identifiers) extremely
quickly. This is very useful to match artists to albums, tracks, and playlist information.
You can display the indexes available on a table using the SHOW INDEX command:

mysql> SHOW INDEX FROM artist;
+--------+------------+----------+--------------+-------------+-----------+...
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation |...
+--------+------------+----------+--------------+-------------+-----------+...
| artist | 0 | PRIMARY | 1 | artist_id | A |...
+--------+------------+----------+--------------+-------------+-----------+...
... +-------------+----------+--------+------+------------+---------+
... | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
... +-------------+----------+--------+------+------------+---------+
... | 6 | NULL | | | BTREE | |
... +-------------+----------+--------+------+------------+---------+
1 row in set (0.00 sec)

We’ve wrapped the output here so that it would fit on the page. The cardinality is the
number of unique values in the index; for an index on a primary key, this is the same
as the number of rows in the table.

Note that all columns that are part of a primary key must be declared as NOT NULL, since
they must have a value for the row to be valid. Without the index, the only way to find
rows in the table is to read each one from disk and check whether it matches the
artist_id you’re searching for. For tables with many rows, this exhaustive, sequential
searching is extremely slow. However, you can’t just index everything; we’ll come back
to this point at the end of this section.

You can create other indexes on the data in a table. You do this so that other searches
—on other columns or combinations of columns—are extremely fast and in order to
avoid sequential scans. For example, suppose you often want to search by
artist_name. You can drop the table and modify the CREATE TABLE definition to add an
extra index:

mysql> DROP TABLE artist;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE artist (
 -> artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 -> artist_name CHAR(128) DEFAULT NULL,
 -> PRIMARY KEY (artist_id),
 -> KEY artist_name (artist_name)
 ->);
Query OK, 0 rows affected (0.06 sec)

Creating Tables | 205

You can see we’ve used the keyword KEY to tell MySQL that we want an extra index;
you can use the word INDEX in place of KEY. Following this, we’ve named the index—
in this example, we’ve named it after the column name—and then we’ve included the
column to index in parentheses. You can also add indexes after tables are created—in
fact, you can pretty much change anything about a table after its creation—and this is
discussed in “Altering Structures.”

You can build an index on more than one column. For example, consider the following
customer table:

mysql> CREATE TABLE customer (
 -> cust_id INT(4) NOT NULL DEFAULT 0,
 -> firstname CHAR(50),
 -> secondname CHAR(50),
 -> surname CHAR(50),
 -> PRIMARY KEY (cust_id),
 -> KEY names (firstname, secondname, surname));
Query OK, 0 rows affected (0.01 sec)

You can see that we’ve added a primary key index on the cust_id identifier column,
and we’ve also added another index—called names—that includes the firstname,
secondname, and surname columns in this order. Let’s now consider how you can use
that extra index.

You can use the names index for fast searching by combinations of the three name
columns. For example, it’s useful in the following query:

mysql> SELECT * FROM customer WHERE
 -> firstname = "Rose" AND
 -> secondname = "Elizabeth" AND
 -> surname = "Williams";

We know it helps the search, because all columns listed in the index are used in the
query. You can use the EXPLAIN statement to check whether what you think should
happen is in fact happening:

mysql> EXPLAIN SELECT * FROM customer WHERE
 -> firstname = "Rose" AND
 -> secondname = "Elizabeth" AND
 -> surname = "Williams";
+----+-------------+----------+------+---------------+...
| id | select_type | table | type | possible_keys |...
+----+-------------+----------+------+---------------+...
| 1 | SIMPLE | customer | ref | names |...
+----+-------------+----------+------+---------------+...
...+-------+---------+-------------------+------+-------------+
...| key | key_len | ref | rows | Extra |
...+-------+---------+-------------------+------+-------------+
...| names | 153 | const,const,const | 1 | Using where |
...+-------+---------+-------------------+------+-------------+
1 row in set (0.00 sec)

206 | Chapter 6: Working with Database Structures

We’ve reformatted the output slightly to fit better in the book. You can see that MySQL
reports that the possible_keys are names (meaning that the index could be used for this
query) and that the key that it’s decided to use is names. So, what you expect and what
is happening are the same, and that’s good news! You’ll find out more about the
EXPLAIN statement in Chapter 7.

The index we’ve created is also useful for queries on only the firstname column. For
example, it can be used by the following query:

mysql> SELECT * FROM customer WHERE
 -> firstname = "Rose";

You can use EXPLAIN to check whether the index is being used. The reason it can be
used is because the firstname column is the first listed in the index. In practice, this
means that the index clusters, or stores together, information about rows for all people
with the same first name, and so the index can be used to find anyone with a matching
first name.

The index can also be used for searches involving combinations of first name and sec-
ond name, for exactly the same reasons we’ve just discussed. The index clusters to-
gether people with the same first name, and within that it clusters people with identical
first names ordered by second name. So, it can be used for this query:

mysql> SELECT * FROM customer WHERE
 -> firstname = "Rose" AND
 -> secondname = "Elizabeth";

However, the index can’t be used for this query because the leftmost column in the
index, firstname, does not appear in the query:

mysql> SELECT * FROM customer WHERE
 -> surname = "Williams" AND
 -> secondname = "Elizabeth";

The index should help narrow down the set of rows to a smaller set of possible answers.
For MySQL to be able to use an index, the query needs to meet both the following
conditions:

1. The leftmost column listed in the KEY (or PRIMARY KEY) clause must be in the query.

2. The query must contain no OR clauses for columns that aren’t indexed.

Again, you can always use the EXPLAIN statement to check whether an index can be used
for a particular query.

Before we finish this section, here are a few ideas on how to choose and design indexes.
When you’re considering adding an index, think about the following:

• Indexes cost space on disk, and they need to be updated whenever data changes.
If your data changes frequently, or lots of data changes when you do make a change,
indexes will slow the process down. However, in practice, since SELECT statements

Creating Tables | 207

(data reads) are usually much more common than other statements (data modifi-
cations), indexes are usually beneficial.

• Only add an index that’ll be used frequently. Don’t bother indexing columns before
you see what queries your users and your applications need. You can always add
indexes afterward.

• If all columns in an index are used in all queries, list the column with the highest
number of duplicates at the left of the KEY clause. This minimizes index size.

• The smaller the index, the faster it’ll be. If you index large columns, you’ll get a
larger index. This is a good reason to ensure your columns are as small as possible
when you design your tables.

• For long columns, you can use only a prefix of the values from a column to create
the index. You can do this by adding a value in parentheses after the column def-
inition, such as KEY names (firstname(3), secondname(2), surname(10)). This
means that only the first three characters of firstname are indexed, then the first
two characters of secondname, and then 10 characters from surname. This is a sig-
nificant saving over indexing 50 characters from each of the 3 columns! When you
do this, your index will be less able to uniquely identify rows, but it’ll be much
smaller and still reasonably good at finding matching rows.

The AUTO_INCREMENT Feature
MySQL’s proprietary AUTO_INCREMENT feature allows you to create a unique identifier
for a row without running a SELECT query. Here’s how it works. Suppose you drop and
re-create the artist table as follows:

mysql> DROP TABLE artist;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE artist (
 -> artist_id SMALLINT(5) NOT NULL AUTO_INCREMENT,
 -> artist_name CHAR(128) DEFAULT NULL,
 -> PRIMARY KEY (artist_id)
 ->);

Query OK, 0 rows affected (0.06 sec)

You can now insert rows, without providing an artist_id:

mysql> INSERT INTO artist VALUES (NULL, "The Shamen");
Query OK, 1 row affected (0.06 sec)

mysql> INSERT INTO artist VALUES (NULL, "Probot");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO artist VALUES (NULL, "The Cult");
Query OK, 1 row affected (0.00 sec)

208 | Chapter 6: Working with Database Structures

When you view the data in this table you can see that each artist has a meaningful
artist_id:

mysql> SELECT * FROM artist;
+-----------+-------------+
| artist_id | artist_name |
+-----------+-------------+
1	The Shamen
2	Probot
3	The Cult
+-----------+-------------+
3 rows in set (0.01 sec)

Each time an artist is inserted, a unique artist_id is created for the new row.

Let’s consider how the new feature works. You can see that the artist_id column is
declared as an integer with the clauses NOT NULL AUTO_INCREMENT. The AUTO_INCREMENT
keyword tells MySQL that when a value isn’t provided for this column, the value allo-
cated should be one more than the maximum currently stored in the table. The
AUTO_INCREMENT sequence begins at 1 for an empty table.

The NOT NULL is required for AUTO_INCREMENT columns; when you insert NULL (or 0,
though this isn’t recommended), the MySQL server automatically finds the next avail-
able identifier and assigns it to the new row. You can manually insert negative values
if the column was not defined as UNSIGNED; however, for the next automatic increment,
MySQL will simply use the largest (most positive) value in the column, or start from 1
if there are no positive values.

The AUTO_INCREMENT feature has the following requirements:

• The column it is used on must be indexed.

• The column that is it used on cannot have a DEFAULT value.

• There can be only one AUTO_INCREMENT column per table.

MySQL supports different table types; we’ll learn more about these in “Table Types”
in Chapter 7. When you’re using the default MyISAM table type, you can use the
AUTO_INCREMENT feature on keys that comprise multiple columns. In our music database
example, we could create the album table as follows:

mysql> CREATE TABLE album (
 -> artist_id INT(5) NOT NULL,
 -> album_id INT(4) NOT NULL AUTO_INCREMENT,
 -> album_name CHAR(128) DEFAULT NULL,
 -> PRIMARY KEY (artist_id, album_id)
 ->);

Query OK, 0 rows affected (0.00 sec)

You can see that the primary key is on two columns—artist_id and album_id—and
that the AUTO_INCREMENT feature is applied to the album_id column.

Creating Tables | 209

Suppose you want to insert two albums for The Shamen, the artist we added earlier
with an artist_id of 1. Here’s how you do it:

mysql> INSERT INTO album VALUES (1, NULL, "Boss Drum");
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO album VALUES (1, NULL, "Entact");
Query OK, 1 row affected (0.00 sec)

Now, let’s inspect the results:

mysql> SELECT * FROM album WHERE artist_id = 1;
+-----------+----------+------------+
| artist_id | album_id | album_name |
+-----------+----------+------------+
| 1 | 1 | Boss Drum |
| 1 | 2 | Entact |
+-----------+----------+------------+
2 rows in set (0.00 sec)

You can see that the correct album_id values are assigned; this is just as we’d expect.
Now, consider what happens when we add two albums for the artist “The Cult”:

mysql> INSERT INTO album VALUES (3, NULL, "Electric");
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO album VALUES (3, NULL, "Sonic Temple");
Query OK, 1 row affected (0.00 sec)

Here are the results:

mysql> SELECT * FROM album WHERE artist_id = 3;
+-----------+----------+--------------+
| artist_id | album_id | album_name |
+-----------+----------+--------------+
| 3 | 1 | Electric |
| 3 | 2 | Sonic Temple |
+-----------+----------+--------------+
2 rows in set (0.00 sec)

You can see how the feature works with two columns in the primary key: it’s reused
the artist_id value that was used for The Cult, and the weak key (album_id) is incre-
mented automatically. This ensures that the album primary key (the combination of
artist_id and album_id) is unique for each album. We now have albums 1 and 2 for
The Shamen (with an artist_id of 1), and albums 1 and 2 for The Cult (with an
artist_id of 3).

While the AUTO_INCREMENT feature is useful, it isn’t portable to other database environ-
ments, and it hides the logical steps to creating new identifiers. It can also lead to
ambiguity; for example, dropping or truncating a table will reset the counter, but de-
leting selected rows (with a WHERE clause) doesn’t reset the counter. Consider an ex-
ample; let’s create the table count that contains an auto-incrementing field counter:

mysql> CREATE TABLE count (counter INT AUTO_INCREMENT KEY);
Query OK, 0 rows affected (0.13 sec)

210 | Chapter 6: Working with Database Structures

mysql> INSERT INTO count VALUES (),(),(),(),(),();
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM count;
+---------+
| counter |
+---------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+---------+
6 rows in set (0.00 sec)

Inserting several values works as expected. Now, let’s delete a few rows and then add
six new rows:

mysql> DELETE FROM count WHERE counter > 4;
Query OK, 2 rows affected (0.00 sec)

mysql> INSERT INTO count VALUES (),(),(),(),(),();
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM count;
+---------+
| counter |
+---------+
| 1 |
| 2 |
| 3 |
| 4 |
| 7 |
| 8 |
| 9 |
| 10 |
| 11 |
| 12 |
+---------+
10 rows in set (0.00 sec)

Here, we see that the counter is not reset, and continues from 7. If, however, we delete
all the data in the table, the counter is reset to 1:

mysql> TRUNCATE TABLE count;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO count VALUES (),(),(),(),(),();
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM count;

Creating Tables | 211

+---------+
| counter |
+---------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+---------+
6 rows in set (0.00 sec)

Instead of relying on MySQL to handle incrementing fields as you hope, you can man-
age the process in program code that you write to interact with the database. We don’t
use an auto-incrementing field in the final music database specification, described fully
in the next section. However, we do use one in our wedding gift registry in Chapter 15.

The Sample Music Database
We’ve used the music database extensively in this and the previous chapter, so you’re
already familiar with its structure. This section explains the steps we took to express
our sample music database as SQL statements for loading into MySQL. It also lists the
complete SQL statements used to create the structures, which you’ll find a useful ref-
erence for discussions in later chapters.

Let’s begin by discussing how we structured the file that contains the SQL statements.
You can download the file music.sql from the book’s web site. We created the table
using the monitor, and created the file from the output of one of MySQL’s commands
for dumping SQL, and then edited it for readability. You’ll find more about how to
dump SQL statements to a file in Chapter 10.

The music.sql file is structured as follows:

1. Drop the database if it exists, and then create it.

2. Use the database.

3. Create the tables.

4. Insert the data.

This structure allows you to reload the database—using the SOURCE command discussed
in Chapter 3—at any time without having to worry about whether the database, tables,
or data exist. Loading the file just wipes the database and starts again. Of course, in a
production environment, always ensure your backups are reasonably up-to-date before
commencing a restore operation that involves dropping tables or deleting existing data.

The first three lines of the file carry out the first two steps:

DROP DATABASE IF EXISTS music;
CREATE DATABASE music;
USE music;

212 | Chapter 6: Working with Database Structures

The next section of the file creates the tables (the third step), and that’s the focus of
this section; we don’t list the insert statements in this book, but they’re easily viewed
in music.sql. Let’s start by looking at how we created the artist table:

CREATE TABLE artist (
 artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 artist_name CHAR(128) DEFAULT NULL,
 PRIMARY KEY (artist_id)
);

The table has a structure that’s derived from the design in Chapter 4. The artist_id is
the primary key; because of this, and as required by MySQL, we’ve added a NOT NULL
clause. The DEFAULT clause inserts a default value for the column if we don’t provide
one. If a field doesn’t have a default value, MySQL reports an error if a value isn’t
provided for it during an insert operation. In the artist table, the artist_id will be set
to 0 if we don’t provide an artist_id ourselves. MySQL will complain the second time
we try to do this, since artist_id is the primary key of the artist table, and we can’t
have two rows with the same primary key.

We’ve used the SMALLINT type for the artist_id because it’s a numeric identifier, and
a SMALLINT allows us to have around 65,000 artists; we’ve limited its display width to
5 characters.

We’ve decided that 128 characters is more than we’d need for any likely artist_name.
We use the CHAR type instead of the VARCHAR type so that each row has an fixed, pre-
dictable size; this allows MySQL to better optimize the retrieval of rows from its files,
typically making the application faster despite the files being typically larger than if
VARCHAR was used. We haven’t added a NOT NULL clause to the artist_name, and have
instead assumed that whatever application we build will do the checking for us. In
general, the fewer the constraints and conditions that are built into the database, the
faster it is for MySQL to work with. However, MySQL now optimizes for NOT NULL
columns, so it is better to declare NOT NULL where the data will never be NULL. See
the "Data Size" section of the MySQL manual for details.

The album table follows a similar rationale:

CREATE TABLE album (
 artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 album_id SMALLINT(4) NOT NULL DEFAULT 0,
 album_name CHAR(128) DEFAULT NULL,
 PRIMARY KEY (artist_id,album_id)
);

We’ve declared the artist_id to be the same type as in artist. This is important as
otherwise MySQL couldn’t use indexes to join tables together to resolve queries (which
is a very common cause of odd results in EXPLAIN output). We’ve used SMALLINT for the
album_id, since we don’t expect more than 65,000 albums per artist! We define
album_name as a CHAR(128) because 128 characters seems long enough for album titles.

The Sample Music Database | 213

Again, we’ve added NOT NULL for the primary key, added DEFAULT clauses to make the
behavior predictable, and gone with only fixed-length types to improve performance.

The track table is created as follows:

CREATE TABLE track (
 track_id SMALLINT(3) NOT NULL DEFAULT 0,
 track_name CHAR(128) DEFAULT NULL,
 artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 album_id SMALLINT(4) NOT NULL DEFAULT 0,
 time TIME DEFAULT NULL,
 PRIMARY KEY (artist_id,album_id,track_id)
);

The reasoning behind the choices for the first four columns is the same as for the other
tables. The time column stores the duration of each track, and we’ve chosen to use the
TIME type to store this. Using the TIME type—in preference to a numeric type such as
DECIMAL—makes it easy to do math such as summing values to find the running time
for an album. It also gives you flexibility in formats for the time data, as discussed
previously. Despite this, you’ll see that in music.sql we use the format HH:MM:SS because
we prefer to keep SQL queries readable and unambiguous.

The final table is played:

CREATE TABLE played (
 artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 album_id SMALLINT(4) NOT NULL DEFAULT 0,
 track_id SMALLINT(3) NOT NULL DEFAULT 0,
 played TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
 PRIMARY KEY (artist_id,album_id,track_id,played)
);

The choices for the first three columns are again as previously described. The played
column makes use of the TIMESTAMP type and its automatic-update feature: we want the
value to be set to the current date and time whenever a row is inserted (and, for good
measure, whenever it’s updated, which we don’t plan to do). To use the feature, when-
ever we play a track, we create a new row with the artist_id, album_id, and track_id,
and set the played column to NULL. Since all columns form the primary key, it’s accept-
able to have more than one entry for a specific combination of artist, album, and track,
as long as the timestamps aren’t the same. We can reasonably assume that two tracks
won’t be played at the same time in a single-user application, and can also add instruc-
tions to enforce this in any application that uses this database.

Altering Structures
We’ve shown you all the basics you need for creating databases, tables, indexes, and
columns. In this section, you’ll learn how to add, remove, and change columns, data-
bases, tables, and indexes in structures that already exist.

214 | Chapter 6: Working with Database Structures

Adding, Removing, and Changing Columns
You can use the ALTER TABLE statement to add new columns to a table, remove existing
columns, and change column names, types, and lengths.

Let’s begin by considering how you modify existing columns. Consider an example in
which we rename a table column. The played table has a column—also called played
—that contains the time the track was played. To change the name of this column to
last_played, you would write:

mysql> ALTER TABLE played CHANGE played last_played TIMESTAMP;
Query OK, 12 rows affected (0.03 sec)
Records: 12 Duplicates: 0 Warnings: 0

You can see that MySQL processes and alters each row. What actually happens behind
the scenes is that MySQL creates a new table with the new structure, copies the data
into that table, removes the original played table, and renames the table to played. You
can check the result with the SHOW COLUMNS statement:

mysql> SHOW COLUMNS FROM played;
+----------------+-------------+------+-----+-------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------+-------------+------+-----+-------------------+-------+
artist_id	smallint(5)		PRI	0	
album_id	smallint(4)		PRI	0	
track_id	smallint(3)		PRI	0	
last_played	timestamp	YES	PRI	CURRENT_TIMESTAMP	
+----------------+-------------+------+-----+-------------------+-------+
4 rows in set (0.01 sec)

In the previous example, you can see that we provided four parameters to the ALTER
TABLE statement with the CHANGE keyword:

1. The table name, played

2. The original column name, played

3. The new column name, last_played

4. The column type, TIMESTAMP

You must provide all four; that means you need to respecify the type and any clauses
that go with it. In the previous example, it just happens that the TIMESTAMP type defaults
to:

DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

If you want to rename the artist_name column to artist-name, you would write:

ALTER TABLE artist CHANGE artist_name artist-name CHAR(128) DEFAULT NULL;

If you want to modify the type and clauses of a column, but not its name, you can use
the MODIFY keyword:

Altering Structures | 215

mysql> ALTER TABLE artist MODIFY artist_name CHAR(64) DEFAULT "Unknown";
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

You can also do this with the CHANGE keyword, but by specifying the same column name
twice:

mysql> ALTER TABLE artist CHANGE artist_name artist_name CHAR(64) DEFAULT "Unknown";
Query OK, 6 rows affected (0.03 sec)
Records: 6 Duplicates: 0 Warnings: 0

Be careful when you’re modifying types:

• Don’t use incompatible types, since you’re relying on MySQL to successfully con-
vert data from one format to another (for example, converting an INT column to a
DATETIME column isn’t likely to do what you hoped).

• Don’t truncate the data unless that’s what you want. If you reduce the size of a
type, the values will be edited to match the new width, and you can lose data.

Suppose you want to add an extra column to an existing table. Here’s how to do it with
the ALTER TABLE statement:

mysql> ALTER TABLE artist ADD formed YEAR;
Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

You must supply the ADD keyword, the new column name, and the column type and
clauses. This example adds the new column, formed, as the last column in the table, as
shown with the SHOW COLUMNS statement:

mysql> SHOW COLUMNS FROM artist;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
artist_id	smallint(5)		PRI	0	
artist_name	char(64)	YES		Unknown	
formed	year(4)	YES		NULL	
+-------------+-------------+------+-----+---------+-------+
3 rows in set (0.02 sec)

If you want it to instead be the first column, use the FIRST keyword as follows:

mysql> ALTER TABLE artist ADD formed YEAR FIRST;
Query OK, 6 rows affected (0.04 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW COLUMNS FROM artist;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
formed	year(4)	YES		NULL	
artist_id	smallint(5)		PRI	0	
artist_name	char(64)	YES		Unknown	
+-------------+-------------+------+-----+---------+-------+
3 rows in set (0.01 sec)

216 | Chapter 6: Working with Database Structures

If you want it added in a specific position, use the AFTER keyword:

mysql> ALTER TABLE artist ADD formed YEAR AFTER artist_id;
Query OK, 6 rows affected (0.03 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW COLUMNS FROM artist;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
artist_id	smallint(5)		PRI	0	
formed	year(4)	YES		NULL	
artist_name	char(64)	YES		Unknown	
+-------------+-------------+------+-----+---------+-------+
3 rows in set (0.01 sec)

To remove a column, use the DROP keyword followed by the column name. Here’s how
to get rid of the newly added formed column:

mysql> ALTER TABLE artist DROP formed;
Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

This removes both the column structure and any data contained in that column. It also
removes the column from any index it was in; if it’s the only column in the index, the
index is dropped, too. You can’t remove a column if it’s the only one in a table; to do
this, you drop the table instead as explained later in “Deleting Structures.” Be careful
when dropping columns; you discard both the data and the structure of your table.
When the structure of a table changes, you will generally have to modify any INSERT
statements that you use to insert values in a particular order. We described INSERT
statements in “The INSERT Statement” in Chapter 5.

MySQL allows you to specify multiple alterations in a single ALTER TABLE statement by
separating them with commas. Here’s an example that adds a new column and adjusts
another:

mysql> ALTER TABLE artist ADD formed YEAR, MODIFY artist_name char(256);
Query OK, 6 rows affected, 1 warning (0.08 sec)
Records: 6 Duplicates: 0 Warnings: 0

It’s very efficient to join multiple modifications in a single operation, as it potentially
saves the cost of creating a new table, copying data from the old table to the new table,
dropping the old table, and renaming the new table with the name of the old table for
each modification individually.

Adding, Removing, and Changing Indexes
As we discussed previously, it’s often hard to know what indexes are useful before the
application you’re building is used. You might find that a particular feature of the
application is much more popular than you expected, causing you to evaluate how to
improve performance for the associated queries. You’ll therefore find it useful to be

Altering Structures | 217

able to add, alter, and remove indexes on the fly after your application is deployed.
This section shows you how. Modifying indexes does not affect the data stored in the
table.

We’ll start with adding a new index. Imagine that the artist table is frequently queried
using a WHERE clause that specifies an artist_name. To speed this query, you’ve decided
to add a new index, which you’ve named by_name. Here’s how you add it after the table
is created:

mysql> ALTER TABLE artist ADD INDEX by_name (artist_name);
Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

Again, you can use the terms KEY and INDEX interchangeably. You can check the results
with the SHOW CREATE TABLE statement:

mysql> SHOW CREATE TABLE artist;
+--------+---+
| Table | Create Table |
+--------+---+
artist	CREATE TABLE `artist` (
	`artist_id` smallint(5) NOT NULL default '0',
	`artist_name` char(128) default NULL,
	PRIMARY KEY (`artist_id`),
	KEY `by_name` (`artist_name`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
+--------+---+

As expected, the new index forms part of the table structure. You can also specify a
primary key for a table after it’s created:

mysql> ALTER TABLE artist ADD PRIMARY KEY (artist_id);

Now let’s consider how to remove an index. To remove a non-primary-key index, you
do the following:

mysql> ALTER TABLE artist DROP INDEX by_name;
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

You can drop a primary-key index as follows:

mysql> ALTER TABLE artist DROP PRIMARY KEY;

MySQL won’t allow you to have multiple primary keys in a table. If you want to change
the primary key, you’ll have to remove the existing index before adding the new one.
Consider this example:

mysql> CREATE TABLE staff (staff_id INT, name CHAR(40));
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE staff ADD PRIMARY KEY (staff_id);
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

218 | Chapter 6: Working with Database Structures

mysql> ALTER TABLE staff ADD PRIMARY KEY (name);
ERROR 1068 (42000): Multiple primary key defined

mysql> ALTER TABLE staff DROP PRIMARY KEY;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE staff ADD PRIMARY KEY (name);
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

MySQL complains when we try to add the second primary key on name; we have to
drop the existing primary key on staff_id, and then add one on name.

You can’t modify an index once it’s been created. However, sometimes you’ll want to;
for example, you might want to reduce the number of characters indexed from a column
or add another column to the index. The best method to do this is to drop the index
and then create it again with the new specification. For example, suppose you decide
that you want the by_name index to include only the first 10 characters of the
artist_name. Simply do the following:

mysql> ALTER TABLE artist DROP INDEX by_name;
Query OK, 6 rows affected (0.02 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE artist ADD INDEX by_name (artist_name(10));
Query OK, 6 rows affected (0.03 sec)
Records: 6 Duplicates: 0 Warnings: 0

Renaming Tables and Altering Other Structures
We’ve seen how to modify columns and indexes in a table; now let’s see how to modify
tables themselves. It’s easy to rename a table. Suppose you want to rename played to
playlist. Use the following command:

mysql> ALTER TABLE played RENAME TO playlist;
Query OK, 0 rows affected (0.00 sec)

The TO keyword is optional.

There are several other things you can do with ALTER statements:

• Change the default character set and collation order for a database, a table, or a
column.

• Change the order of the rows in a table. This is useful only if you know you want
to access the rows in a particular order and you want to help get the data into or
near that order.

• Manage and change constraints. For example, you can add and remove foreign
keys.

Altering Structures | 219

You can find more about these operations in the MySQL manual under the “ALTER
DATABASE” and “ALTER TABLE” headings.

Beginning with MySQL 5.1, you can also change the name of a database using the new
RENAME DATABASE command:

mysql> RENAME DATABASE old_database_name new_database_name;
Query OK, 0 rows affected (0.01 sec)

Deleting Structures
In the previous section, we showed how you can delete columns and rows from a
database; now we’ll describe how to remove databases and tables.

Dropping Databases
Removing, or dropping, a database is straightforward. Here’s how you drop the music
database:

mysql> DROP DATABASE music;
Query OK, 4 rows affected (0.01 sec)

The number of rows returned in the response is the number of tables removed. You
should take care when dropping a database, since all its tables, indexes, and columns
are deleted, as are all the associated disk-based files and directories that MySQL uses
to maintain them.

If a database doesn’t exist, trying to drop it causes MySQL to report an error. Let’s try
dropping the music database again:

mysql> DROP DATABASE music;
ERROR 1008 (HY000): Can't drop database 'music'; database doesn't exist

You can avoid the error, which is useful when including the statement in a script, by
using the IF EXISTS phrase:

mysql> DROP DATABASE IF EXISTS music;
Query OK, 0 rows affected, 1 warning (0.00 sec)

You can see that a warning is reported, since the music database has already been drop-
ped. You can always check what the warning was with the SHOW WARNINGS statement,
which has been available since MySQL 4.1.0:

mysql> SHOW WARNINGS;
+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Note | 1008 | Can't drop database 'music'; database doesn't exist |
+-------+------+---+
1 row in set (0.00 sec)

The warning is also generated with the error if you leave out the IF EXISTS clause.

220 | Chapter 6: Working with Database Structures

Removing Tables
Removing tables is as easy as removing a database. Let’s create and remove a table from
the music database:

mysql> CREATE TABLE temp (temp INT(3), PRIMARY KEY (temp));
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE temp;
Query OK, 0 rows affected (0.00 sec)

Don’t worry: the 0 rows affected message is misleading. You’ll find the table is defi-
nitely gone.

You can use the IF EXISTS phrase to prevent errors. Let’s try dropping the temp table
again:

mysql> DROP TABLE IF EXISTS temp;
Query OK, 0 rows affected, 1 warning (0.00 sec)

Again, you can investigate the warning indicates with the SHOW WARNINGS statement:

mysql> SHOW WARNINGS;
+-------+------+----------------------+
| Level | Code | Message |
+-------+------+----------------------+
| Note | 1051 | Unknown table 'temp' |
+-------+------+----------------------+
1 row in set (0.00 sec)

You can drop more than one table in a single statement by separating table names with
commas:

mysql> DROP TABLE IF EXISTS temp, temp1, temp2;
Query OK, 0 rows affected, 3 warnings (0.00 sec)

You can see three warnings because none of these tables existed.

Exercises
All exercises here concern the music database. You’ll find that the CREATE TABLE state-
ments in “The Sample Music Database” are a useful reference.

1. You’ve decided to store more information about artists and albums. Specifically,
for artists, you want to store the names of people who have worked with the artist
(for example, vocalists, guitarists, trumpeters, and drummers), when they began
working with the artist, and when they stopped working with the artist (if they
have done so).

For albums, you want to store the name of the album producer, when the album
was released, and where the album was recorded. Design tables or columns that
can store this information, and explain the advantages and disadvantages of your

Exercises | 221

design. Choose the column types you need, explaining the advantages and disad-
vantages of your choices.

2. There are five types for storing temporal data: DATETIME, DATE, TIME, YEAR, and
TIMESTAMP. Explain what each is used for, and give an example of a situation in
which you would choose to use it.

3. You’ve decided to use the AUTO_INCREMENT feature. List the three requirements that
must be met by the column you’re applying it to.

4. Why can only one column in a table have the AUTO_INCREMENT feature?

5. Using the monitor, create a table with the following statement:

mysql> CREATE TABLE exercise (field1 INT(3));

Using the ALTER TABLE statement, make field1 the primary key, carrying out any
additional steps you need to make this possible. Add a second column, field2, of
type CHAR(64) with a DEFAULT 5 clause. Create an index on a prefix of 10 characters
from field2.

222 | Chapter 6: Working with Database Structures

CHAPTER 7

Advanced Querying

Over the previous two chapters, you’ve completed an introduction to the basic features
of querying and modifying databases with SQL. You should now be able to create,
modify, and remove database structures, as well as work with data as you read, insert,
delete, and update entries. Over the next three chapters, we’ll look at more advanced
concepts. You can skim these chapters and return to read them thoroughly when you’re
comfortable with using MySQL.

This chapter teaches you more about querying, giving you skills to answer complex
information needs. You’ll learn how to:

• Use nicknames, or aliases, in queries to save typing and allow a table to be used
more than once in a query

• Aggregate data into groups so you can discover sums, averages, and counts

• Join tables in different ways

• Use nested queries

• Save query results in variables so they can be reused in other queries

• Understand why MySQL supports several table types

Aliases
Aliases are nicknames. They give you a shorthand way of expressing a column, table,
or function name, allowing you to:

• Write shorter queries

• Express your queries more clearly

• Use one table in two or more ways in a single query

• Access data more easily from programs (for example, from PHP scripts, as dis-
cussed in Chapter 14)

223

• Use special types of nested queries; these are the subject of “Nested Queries,”
discussed later in this chapter

Column Aliases
Column aliases are useful for improving the expression of your queries, reducing the
number of characters you need to type, and making it easier to work with languages
such as PHP. Consider a simple, not-very-useful example:

mysql> SELECT artist_name AS artists FROM artist;
+---------------------------+
| artists |
+---------------------------+
| New Order |
| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue |
+---------------------------+
6 rows in set (0.00 sec)

The column artist_name is aliased as artists. You can see that in the output, the usual
column heading, artist_name, is replaced by the alias artists. The advantage is that
the alias artists might be more meaningful to users. Other than that, it’s not very
useful, but it does illustrate the idea: for a column, you add the keyword AS and then
a string that represents what you’d like the column to be known as.

Now let’s see column aliases doing something useful. Here’s an example that uses a
MySQL function and an ORDER BY clause:

mysql> SELECT CONCAT(artist_name, " recorded ", album_name) AS recording
 -> FROM artist INNER JOIN album USING (artist_id)
 -> ORDER BY recording;
+---+
| recording |
+---+
| Kylie Minogue recorded Light Years |
| Miles Davis recorded In A Silent Way |
| Miles Davis recorded Live Around The World |
| New Order recorded Brotherhood |
| New Order recorded Power, Corruption & Lies |
| New Order recorded Retro - John McCready FAN |
| New Order recorded Retro - Miranda Sawyer POP |
| New Order recorded Retro - New Order / Bobby Gillespie LIVE |
| New Order recorded Substance (Disc 2) |
| New Order recorded Substance 1987 (Disc 1) |
| Nick Cave & The Bad Seeds recorded Let Love In |
| The Rolling Stones recorded Exile On Main Street |
| The Stone Roses recorded Second Coming |
+---+
13 rows in set (0.03 sec)

224 | Chapter 7: Advanced Querying

The MySQL function CONCAT() concatenates together the strings that are parameters
—in this case, the artist_name, a constant string recorded, and the album_name to give
output such as New Order recorded Brotherhood. We’ve added an alias to the function,
AS recording, so that we can refer to it easily as recording throughout the query. You
can see that we do this in the ORDER BY clause, where we ask MySQL to sort the output
by ascending recording value. This is much better than the unaliased alternative, which
requires you to write out the CONCAT() function again:

mysql> SELECT CONCAT(artist_name, " recorded ", album_name)
 -> FROM artist INNER JOIN album USING (artist_id)
 -> ORDER BY CONCAT(artist_name, " recorded ", album_name);
+---+
| recording |
+---+
| Kylie Minogue recorded Light Years |
| Miles Davis recorded In A Silent Way |
| Miles Davis recorded Live Around The World |
| New Order recorded Brotherhood |
| New Order recorded Power, Corruption & Lies |
| New Order recorded Retro - John McCready FAN |
| New Order recorded Retro - Miranda Sawyer POP |
| New Order recorded Retro - New Order / Bobby Gillespie LIVE |
| New Order recorded Substance (Disc 2) |
| New Order recorded Substance 1987 (Disc 1) |
| Nick Cave & The Bad Seeds recorded Let Love In |
| The Rolling Stones recorded Exile On Main Street |
| The Stone Roses recorded Second Coming |
+---+
13 rows in set (0.21 sec)

The alternative is unwieldy, and worse, you risk mistyping some part of the ORDER BY
clause and getting a result different from what you expect. (Note that we’ve used as
recording on the first line so that the displayed column has the label recording.)

There are restrictions on where you can use column aliases. You can’t use them in a
WHERE clause, or in the USING and ON clauses that we discuss later in this chapter. This
means you can’t write a query such as:

mysql> SELECT artist_name AS a FROM artist WHERE a = "New Order";
ERROR 1054 (42S22): Unknown column 'a' in 'where clause'

You can’t do this because MySQL doesn’t always know the column values before it
executes the WHERE clause. However, you can use column aliases in the ORDER BY clause,
and in the GROUP BY and HAVING clauses discussed later in this chapter.

The AS keyword is optional. Because of this, the following two queries are equivalent:

mysql> SELECT artist_id AS id FROM artist WHERE artist_name = "New Order";
+----+
| id |
+----+
| 1 |
+----+
1 row in set (0.05 sec)

Aliases | 225

mysql> SELECT artist_id id FROM artist WHERE artist_name = "New Order";
+----+
| id |
+----+
| 1 |
+----+
1 row in set (0.00 sec)

We recommend using the AS keyword, since it helps to clearly distinguish an aliased
column, especially where you’re selecting multiple columns from a list of columns
separated by commas.

Alias names have few restrictions. They can be at most 255 characters in length and
can contain any character. If you plan to use characters that might confuse the MySQL
parser—such as periods, commas, or semicolons—make sure you enclose the alias
name in backticks. We recommend using lowercase alphanumeric strings for alias
names and using a consistent character choice—such as an underscore—to separate
words. Aliases are case-insensitive on all platforms.

Table Aliases
Table aliases are useful for the same reasons as column aliases, but they are also some-
times the only way to express a query. This section shows you how to use table aliases,
and “Nested Queries,” later in this chapter, shows you other sample queries where
table aliases are essential.

Here’s a basic table-alias example that shows you how to save some typing:

mysql> SELECT ar.artist_id, al.album_name, ar.artist_name FROM
 -> album AS al INNER JOIN artist AS ar
 -> USING (artist_id) WHERE al.album_name = "Brotherhood";
+-----------+-------------+-------------+
| artist_id | album_name | artist_name |
+-----------+-------------+-------------+
| 1 | Brotherhood | New Order |
+-----------+-------------+-------------+
1 row in set (0.00 sec)

You can see that the album and artist tables are aliased as al and ar, respectively, using
the AS keyword. This allows you to express column names more compactly, such as
ar.artist_id. Notice also that you can use table aliases in the WHERE clause; unlike
column aliases, there are no restrictions on where table aliases can be used in queries.
From our example, you can see that we’re referring to the table aliases before they have
been defined.

As with column aliases, the AS keyword is optional. This means that:

album AS al INNER JOIN artist AS ar

is the same as:

226 | Chapter 7: Advanced Querying

album al INNER JOIN artist ar

Again, we prefer the AS style, as it’s clearer to anyone looking at your queries than the
alternative. The restrictions on table-alias-name characters and lengths are the same as
column aliases, and our recommendations on choosing them are the same, too.

As discussed in the introduction to this section, table aliases allow you to write queries
that you can’t otherwise easily express. Consider an example: suppose you want to
know whether two or more artists have released an album of the same name and, if so,
what the identifiers for those artists are. Let’s think about the basic requirement: you
want to know if two albums have the same name. To do this, you might try a query
like this:

mysql> SELECT * FROM album WHERE album_name = album_name;

But that doesn’t make sense: an album has the same name as itself, and so it just pro-
duces all albums as output:

+-----------+----------+--+
| artist_id | album_id | album_name |
+-----------+----------+--+
2	1	Let Love In
1	1	Retro - John McCready FAN
1	2	Substance (Disc 2)
1	3	Retro - Miranda Sawyer POP
1	4	Retro - New Order / Bobby Gillespie LIVE
3	1	Live Around The World
3	2	In A Silent Way
1	5	Power, Corruption & Lies
4	1	Exile On Main Street
1	6	Substance 1987 (Disc 1)
5	1	Second Coming
6	1	Light Years
1	7	Brotherhood
+-----------+----------+--+
13 rows in set (0.01 sec)

What you really want is to know if two different albums from the album table have the
same name. But how can you do that in a single query? The answer is to give the table
two different aliases; you then check if one row in the first aliased table matches a row
in the second:

mysql> SELECT a1.artist_id, a2.album_id
 -> FROM album AS a1, album AS a2 WHERE
 -> a1.album_name = a2.album_name;
+-----------+----------+
| artist_id | album_id |
+-----------+----------+
2	1
1	1
1	2
1	3
1	4
3	1

Aliases | 227

3	2
1	5
4	1
1	6
5	1
6	1
1	7
+-----------+----------+
13 rows in set (0.01 sec)

But it still doesn’t work! We get all 13 albums as answers. The reason is that an album
still matches itself because it occurs in both aliased tables.

To get the query to work, we need to make sure an album from one aliased table doesn’t
match itself in the other aliased table. The way to do so is to specify that the albums in
each table shouldn’t have the same artist:

mysql> SELECT a1.artist_id, a2.album_id
 -> FROM album AS a1, album AS a2
 -> WHERE a1.album_name = a2.album_name
 -> AND a1.artist_id != a2.artist_id;
Empty set (0.00 sec)

You can now see that there aren’t two albums in the database with the same name but
by different artists. The additional AND a1.artist_id != a2.artist_id stops answers
from being reported where the artist is the same in both tables.

Table aliases are also useful in nested queries that use the EXISTS and ON clauses. We
show you examples later in this chapter when we introduce nested techniques.

Aggregating Data
Aggregate functions allow you to discover the properties of a group of rows. You use
them for purposes such as discovering how many rows there are in a table, how many
rows in a table share a property (such as having the same name or date of birth), finding
averages (such as the average temperature in November), or finding the maximum or
minimum values of rows that meet some condition (such as finding the coldest day in
August).

This section explains the GROUP BY and HAVING clauses, the two most commonly used
SQL statements for aggregation. But first, it explains the DISTINCT clause, which is used
to report unique results for the output of a query. When neither the DISTINCT nor the
GROUP BY clause is specified, the returned raw data can still be processed using the
aggregate functions that we describe in this section.

The DISTINCT Clause
To begin our discussion on aggregate functions, we’ll focus on the DISTINCT clause.
This isn’t really an aggregate function, but more of a post-processing filter that allows

228 | Chapter 7: Advanced Querying

you to remove duplicates. We’ve added it into this section because, like aggregate
functions, it’s concerned with picking examples from the output of a query, rather than
processing individual rows.

An example is the best way to understand DISTINCT. Consider this query:

mysql> SELECT DISTINCT artist_name FROM
 -> artist INNER JOIN album USING (artist_id);
+---------------------------+
| artist_name |
+---------------------------+
| New Order |
| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue |
+---------------------------+
6 rows in set (0.03 sec)

The query finds artists who have made albums—by joining together artist and
album with an INNER JOIN clause—and reports one example of each artist. You can see
that we have six artists in our database for whom we own albums. If you remove the
DISTINCT clause, you get one row of output for each album we own:

mysql> SELECT artist_name FROM
 -> artist INNER JOIN album USING (artist_id);
+---------------------------+
| artist_name |
+---------------------------+
| New Order |
| New Order |
| New Order |
| New Order |
| New Order |
| New Order |
| New Order |
| Nick Cave & The Bad Seeds |
| Miles Davis |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue |
+---------------------------+
13 rows in set (0.00 sec)

So, the DISTINCT clause helps get a summary.

The DISTINCT clause applies to the query output and removes rows that have identical
values in the columns selected for output in the query. If you rephrase the previous
query to output both artist_name and album_name (but otherwise don’t change the
JOIN clause and still use DISTINCT), you’ll get all 13 rows in the output:

mysql> SELECT DISTINCT artist_name, album_name FROM
 -> artist INNER JOIN album USING (artist_id);

Aggregating Data | 229

+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+---------------------------+--+
13 rows in set (0.00 sec)

Because none of the rows are identical, no duplicates are removed using DISTINCT. You
can check this by rephrasing the query to omit the DISTINCT clause; you’ll get the same
output.

To remove duplicates, MySQL needs to sort the output. If indexes are available that
are in the same order as required for the sort—or the data itself is in an order that’s
useful—this process has very little overhead. However, for large tables and without an
easy way of accessing the data in the right order, sorting can be very slow. You should
use DISTINCT (and other aggregate functions) with caution on large data sets. If you do
use it, you can check its behavior using the EXPLAIN statement discussed in Chapter 8.

The GROUP BY Clause
The GROUP BY clause sorts data into groups for the purpose of aggregation. It’s similar
to ORDER BY, but it occurs much earlier in the query process: GROUP BY is used to organize
the data before other clauses—such as WHERE, ORDER BY, and functions—are applied. In
contrast, ORDER BY is applied last—after the query has been resolved—to reorganize the
query output for display.

An example will help you understand what GROUP BY is used for. Suppose you want to
know how many albums we own by each artist. Using the techniques you’ve learned
so far, you could perform an INNER JOIN between artist and album, and use an ORDER
BY artist_name clause to organize the artists into an order to make it easy for you to
count. Here’s the query that you’d use:

mysql> SELECT artist_name FROM
 -> artist INNER JOIN album USING (artist_id)
 -> ORDER BY artist_name;
+---------------------------+
| artist_name |
+---------------------------+
| Kylie Minogue |

230 | Chapter 7: Advanced Querying

| Miles Davis |
| Miles Davis |
| New Order |
| New Order |
| New Order |
| New Order |
| New Order |
| New Order |
| New Order |
| Nick Cave & The Bad Seeds |
| The Rolling Stones |
| The Stone Roses |
+---------------------------+
13 rows in set (0.00 sec)

By running down the list, it’s easy to count off how many albums we’ve got by each
artist: one by Kylie Minogue, two by Miles Davis, seven by New Order, and so on.

The GROUP BY clause can help automate this process by grouping the albums by artist;
we can then use the COUNT() function to count off the number of albums in each group.
Here’s the query that does what we want:

mysql> SELECT artist_name, COUNT(artist_name) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> GROUP BY artist_name;
+---------------------------+--------------------+
| artist_name | COUNT(artist_name) |
+---------------------------+--------------------+
Kylie Minogue	1
Miles Davis	2
New Order	7
Nick Cave & The Bad Seeds	1
The Rolling Stones	1
The Stone Roses	1
+---------------------------+--------------------+
6 rows in set (0.01 sec)

You can see that the output we’ve asked for is artist_name, COUNT(artist_name), and
this tells us exactly what we wanted to know. Notice also that we’ve used GROUP BY
artist_name to sort early for aggregation, rather than using ORDER BY artist_name later
for presentation.

Let’s consider the query further. We’ll start with the GROUP BY clause. This tells us how
to put rows together into groups: in this example, we’re telling MySQL that the way to
group rows is by artist_name. The result is that rows for artists with the same name
form a cluster—that is, each distinct name becomes one group. Once the rows are
grouped, they’re treated in the rest of the query as if they’re one row. So, for example,
when we write SELECT artist_name, we get just one row for each group. This is exactly
the same as DISTINCT, which performs the same function as grouping by a column name
and then selecting that column for display. The COUNT() function tells us about the
properties of the group. More specifically, it tells us the number of rows that form each
group; you can count any column in a group, and you’ll get the same answer, so

Aggregating Data | 231

COUNT(artist_name) is the same as COUNT(*) or COUNT(artist_id). Of course, you can
use a column alias for the COUNT() column.

Let’s try another example. Suppose you want to know how many tracks are on each
album, along with the artist and album name. Here’s the query:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> GROUP BY artist.artist_id, album.album_id;
+---------------------------+-------------------------------------+----------+
| artist_name | album_name | COUNT(*) |
+---------------------------+-------------------------------------+----------+
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie	15
New Order	Power, Corruption & Lies	8
New Order	Substance 1987 (Disc 1)	12
New Order	Brotherhood	10
Nick Cave & The Bad Seeds	Let Love In	10
Miles Davis	Live Around The World	11
Miles Davis	In A Silent Way	2
The Rolling Stones	Exile On Main Street	18
The Stone Roses	Second Coming	13
Kylie Minogue	Light Years	13
+---------------------------+-------------------------------------+----------+
13 rows in set (0.12 sec)

Before we discuss what’s new, think about the general function of the query: it’s an
INNER JOIN between artist, album, and track using the primary-key (identifier) col-
umns. Forgetting the aggregation for a moment, the output of this query is one row per
track.

The GROUP BY clause puts the rows together into clusters. In this query, we want the
tracks grouped together for each album by an artist. So, the GROUP BY clause uses
artist_id and album_id to do that. You can use the artist_id from any of the three
tables; artist.artist_id, album.artist_id, or track.artist_id are the same for this
purpose. It doesn’t matter since the INNER JOIN makes sure they match anyway. The
same applies to album_id.

As in the previous example query, we’re using the COUNT() function to tell us how many
rows are in each group. For example, you can see that COUNT(*) tells us that there are
15 tracks on New Order’s Retro - John McReady FAN album. Again, it doesn’t matter
what column or columns you count in the query: for example, COUNT(*) has the same
effect as COUNT(artist.artist_id) or COUNT(artist_name).

Let’s try another example. Say we want to know how many times we’ve listened to
tracks on each album. This query is a little trickier than the previous ones: we need to
think carefully about how to group the rows. We want rows for each album grouped
together—that is, we want to count the total number of times that any of the tracks on

232 | Chapter 7: Advanced Querying

the album have been played. So, we want to group together by artist and by album; we
don’t want to group by track, since that’d split the tracks from each album into different
groups and tell us how many times we’d listened to each track. We also need a
four-way join between all four tables in the database, but that isn’t hard to do using
the skills we’ve developed so far. Here’s the query:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> INNER JOIN played USING (artist_id, album_id, track_id)
 -> GROUP BY album.artist_id, album.album_id;
+-------------+----------------------------+----------+
| artist_name | album_name | COUNT(*) |
+-------------+----------------------------+----------+
| New Order | Retro - Miranda Sawyer POP | 8 |
| Miles Davis | Live Around The World | 3 |
+-------------+----------------------------+----------+
2 rows in set (0.11 sec)

You can see we’ve only listened to two albums: we’ve listened to one or more tracks
on New Order’s Retro - Miranda Sawyer POP eight times, and one or more tracks on
the Miles Davis album Live Around The World three times. We don’t know whether
it’s the same track we’ve listened to multiple times, different tracks a few times, or many
tracks once: the GROUP BY clause hides the details. Again, we use COUNT(*) to do the
counting of rows in the groups, and you can see the INNER JOIN spread over lines 2 to
4 in the query.

Before we end this section, let’s consider how results are displayed for a grouping op-
eration. The output rows are grouped together according to the GROUP BY clause, with
one row displayed for each group. You will typically not ask for fields that are collected
together in the grouping process, since the result will be meaningless. For example,
grouping the tracks by artist will produce:

mysql> SELECT * FROM track GROUP BY artist_id;
+----------+----------------------+-----------+----------+----------+
| track_id | track_name | artist_id | album_id | time |
+----------+----------------------+-----------+----------+----------+
0	Elegia	1	1	00:04:93
0	Do You Love Me?	2	1	00:05:95
0	In A Silent Way	3	1	00:01:81
0	Rocks Off	4	1	00:04:54
0	Breaking Into Heaven	5	1	00:11:37
0	Spinning Around	6	1	00:03:46
+----------+----------------------+-----------+----------+----------+
6 rows in set (0.01 sec)

Only the artist_id here is meaningful; the rest of the columns just contain the first-
listed entry from each group. To illustrate this point, “Elegia” is the first track that
would be listed for artist_id 1 if we hadn’t performed any grouping:

mysql> SELECT * FROM track WHERE artist_id=1;
+----------+----------------------+-----------+----------+----------+

Aggregating Data | 233

| track_id | track_name | artist_id | album_id | time |
+----------+----------------------+-----------+----------+----------+
0	Elegia	1	1	00:04:93
1	In A Lonely Place	1	1	00:06:26
2	Procession	1	1	00:04:28
...
+----------+----------------------+-----------+----------+----------+
86 rows in set (0.00 sec)

Other aggregate functions

We’ve seen examples of how the COUNT() function can be used to tell how many rows
are in a group. Here are other functions commonly used to explore the properties of
aggregated rows:

AVG()
Returns the average (mean) of the values in the specified column for all rows in a
group. For example, you could use it to find the average cost of a house in a city,
when the houses are grouped by city:

SELECT AVG(cost) FROM house_prices GROUP BY city;

MAX()
Returns the maximum value from rows in a group. For example, you could use it
to find the warmest day in a month, when the rows are grouped by month.

MIN()
Returns the minimum value from rows in a group. For example, you could use it
to find the youngest student in a class, when the rows are grouped by class.

STD() or STDDEV()
Returns the standard deviation of values from rows in a group. For example, you
could use it to understand the spread of test scores, when rows are grouped by
university course.

SUM()
Returns the sum of values from rows in a group. For example, you could use it to
compute the dollar amount of sales in a given month, when rows are grouped by
month.

There are other functions available for use with GROUP BY; they’re less frequently used
than the ones we’ve introduced. You can find more details on them in the MySQL
manual under the heading “GROUP BY (Aggregate) Functions.”

The HAVING Clause
You’re now familiar with the GROUP BY clause, which allows you to sort and cluster data.
You should now be able to use it find out about counts, averages, minimums, and
maximums. This section shows how you can use the HAVING clause to add additional
control to the aggregation of rows in a GROUP BY operation.

234 | Chapter 7: Advanced Querying

Suppose you want to know how many times you’ve listened to tracks on popular al-
bums. You’ve decided to define an album as popular if you’ve listened to one or more
of its tracks at least five times. In the previous section, we tried an almost identical
query but without the popularity limitation. Here’s the new query, with an additional
HAVING clause that adds the constraint:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> INNER JOIN played USING (artist_id, album_id, track_id)
 -> GROUP BY album.artist_id, album.album_id
 -> HAVING COUNT(*) >= 5;
+-------------+----------------------------+----------+
| artist_name | album_name | COUNT(*) |
+-------------+----------------------------+----------+
| New Order | Retro - Miranda Sawyer POP | 8 |
+-------------+----------------------------+----------+
1 row in set (0.01 sec)

You can see there’s only one album that meets the new criteria.

The HAVING clause must contain an expression or column that’s listed in the SELECT
clause. In this example, we’ve used HAVING COUNT(*) >= 5, and you can see that
COUNT(*) is part of the SELECT clause. Typically, the expression in the HAVING clause uses
an aggregate function such as COUNT(), SUM(), MIN(), or MAX(). If you find yourself
wanting to write a HAVING clause that uses a column or expression that isn’t in the
SELECT clause, chances are you should be using a WHERE clause instead. The HAVING clause
is only for deciding how to form each group or cluster, not for choosing rows in the
output. We’ll show you an example later that illustrates when not to use HAVING.

Let’s try another example. Suppose you want a list of albums that have more than 10
tracks, together with the number of tracks they contain. Here’s the query you’d use:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> GROUP BY artist.artist_id, album.album_id
 -> HAVING COUNT(*) > 10;
+--------------------+--+----------+
| artist_name | album_name | COUNT(*) |
+--------------------+--+----------+
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie LIVE	15
New Order	Substance 1987 (Disc 1)	12
Miles Davis	Live Around The World	11
The Rolling Stones	Exile On Main Street	18
The Stone Roses	Second Coming	13
Kylie Minogue	Light Years	13
+--------------------+--+----------+
9 rows in set (0.00 sec)

Aggregating Data | 235

You can again see that the expression COUNT(*) is used in both the SELECT and HAVING
clauses.

Now let’s consider an example where you shouldn’t use HAVING. You want to know
how many tracks are on albums by New Order. Here’s the query you shouldn’t use:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> GROUP BY artist.artist_id, album.album_id
 -> HAVING artist_name = "New Order";
+-------------+--+----------+
| artist_name | album_name | COUNT(*) |
+-------------+--+----------+
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie LIVE	15
New Order	Power, Corruption & Lies	8
New Order	Substance 1987 (Disc 1)	12
New Order	Brotherhood	10
+-------------+--+----------+
7 rows in set (0.00 sec)

It gets the right answer, but in the wrong—and, for large amounts of data, much slower
—way. It’s not the correct way to write the query because the HAVING clause isn’t being
used to decide what rows should form each group, but is instead being incorrectly used
to filter the answers to display. For this query, we should really use a WHERE clause as
follows:

mysql> SELECT artist_name, album_name, COUNT(*) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> WHERE artist_name = "New Order"
 -> GROUP BY artist.artist_id, album.album_id;
+-------------+--+----------+
| artist_name | album_name | COUNT(*) |
+-------------+--+----------+
New Order	Retro - John McCready FAN	15
New Order	Substance (Disc 2)	12
New Order	Retro - Miranda Sawyer POP	14
New Order	Retro - New Order / Bobby Gillespie LIVE	15
New Order	Power, Corruption & Lies	8
New Order	Substance 1987 (Disc 1)	12
New Order	Brotherhood	10
+-------------+--+----------+
7 rows in set (0.00 sec)

This correct query forms the groups, and then picks which groups to display based on
the WHERE clause.

236 | Chapter 7: Advanced Querying

Advanced Joins
So far in the book, we’ve used the INNER JOIN clause to bring together rows from two
or more tables. We’ll explain the inner join in more detail in this section, contrasting
it with the other join types we explain: the union, left and right joins, and natural joins.
At the conclusion of this section, you’ll be able to answer difficult information needs
and be familiar with the correct choice of join for the task.

The Inner Join
The INNER JOIN clause matches rows between two tables based on the criteria you pro-
vide in the USING clause. For example, you’re very familiar now with an inner join of
the artist and album tables:

mysql> SELECT artist_name, album_name FROM
 -> artist INNER JOIN album USING (artist_id);
+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+---------------------------+--+
13 rows in set (0.00 sec)

Let’s review the key features of an INNER JOIN:

• Two tables (or results of a previous join) are listed on either side of the INNER
JOIN keyphrase.

• The USING clause defines one or more columns that are in both tables or results,
and used to join or match rows.

• Rows that don’t match aren’t returned. For example, if you have a row in the
artist table that doesn’t have any matching albums in the album table, it won’t be
included in the output.

You can actually write inner-join queries with the WHERE clause without using the INNER
JOIN keyphrase. Here’s a rewritten version of the previous query that produces the same
result:

Advanced Joins | 237

mysql> SELECT artist_name, album_name FROM artist, album
 -> WHERE artist.artist_id = album.artist_id;
+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+---------------------------+--+
13 rows in set (0.00 sec)

You can see that we’ve spelled out the inner join: we’re selecting from the artist and
album tables the rows where the identifiers match between the tables.

You can modify the INNER JOIN syntax to express the join criteria in a way that’s similar
to using a WHERE clause. This is useful if the names of the identifiers don’t match between
the tables. Here’s the previous query, rewritten in this style:

mysql> SELECT artist_name, album_name FROM
 -> artist INNER JOIN album ON artist.artist_id = album.artist_id;
+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+---------------------------+--+
13 rows in set (0.00 sec)

You can see that the ON clause replaces the USING clause, and that the columns that
follow are fully specified to include the table and column names. There’s no real ad-
vantage or disadvantage in using ON or a WHERE clause; it’s just a matter of taste. Typically,
you’ll find most SQL professionals use the WHERE clause in preference to INNER JOIN,
most likely because it’s the technique they learned first.

238 | Chapter 7: Advanced Querying

Before we move on, let’s consider what purpose the WHERE, ON, and USING clauses serve.
If you omit the WHERE clause from the query we showed you, you get a very different
result. Here’s the query, and the first few lines of output:

mysql> SELECT artist_name, album_name FROM artist, album;
+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Let Love In
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Let Love In
The Rolling Stones	Let Love In
The Stone Roses	Let Love In
Kylie Minogue	Let Love In
New Order	Retro - John McCready FAN
Nick Cave & The Bad Seeds	Retro - John McCready FAN
Miles Davis	Retro - John McCready FAN
The Rolling Stones	Retro - John McCready FAN
The Stone Roses	Retro - John McCready FAN
Kylie Minogue	Retro - John McCready FAN
...

The output is nonsensical: what’s happened is that each row from the artist table has
been output alongside each row from the album table, for all possible combinations.
Since there are 6 artists and 13 albums, there are 6 × 13 = 78 rows of output, and we
know that only 13 of those combinations actually make sense (there are only 13 al-
bums). This type of query, without a clause that matches rows, is known as a Cartesian
product. Incidentally, you also get the Cartesian product if you perform an inner join
without specifying a column with a USING or ON clause, as in the query:

SELECT artist_name, album_name FROM artist INNER JOIN album;

Later in “The Natural Join,” we’ll introduce the natural join, which is an inner join on
identically named columns. While the natural join doesn’t use explicitly specified col-
umns, it still produces an inner join, rather than a Cartesian product.

The keyphrase INNER JOIN can be replaced with JOIN or STRAIGHT JOIN; they all do the
same thing. However, STRAIGHT JOIN forces MySQL to always read the table on the left
before it reads the table on the right. We’ll have a look at how MySQL processes queries
behind the scenes in Chapter 8. The keyphrase INNER JOIN is the one you’ll see most
commonly used: it’s used by many other database systems besides MySQL, and we use
it in all our inner-join examples.

The Union
The UNION statement isn’t really a join operator. Rather, it allows you to combine the
output of more than one SELECT statement to give a consolidated result set. It’s useful
in cases where you want to produce a single list from more than one source, or you
want to create lists from a single source that are difficult to express in a single query.

Advanced Joins | 239

Let’s look at an example. If you wanted to output all of the text in the music database,
you could do this with a UNION statement. It’s a contrived example, but you might want
to do this just to list all of the text fragments, rather than to meaningfully present the
relationships between the data. There’s text in the artist_name, album_name, and
track_name columns in the artist, album, and track tables, respectively. Here’s how to
display it:

mysql> SELECT artist_name FROM artist
 -> UNION
 -> SELECT album_name FROM album
 -> UNION
 -> SELECT track_name FROM track;
+--+
| artist_name |
+--+
| New Order |
| Nick Cave & The Bad Seeds |
| Miles Davis |
| The Rolling Stones |
| The Stone Roses |
| Kylie Minogue |
| Let Love In |
| Retro - John McCready FAN |
| Substance (Disc 2) |
| Retro - Miranda Sawyer POP |
| Retro - New Order / Bobby Gillespie LIVE |
| Live Around The World |
| In A Silent Way |
| Power, Corruption & Lies |
| Exile On Main Street |
| Substance 1987 (Disc 1) |
| Second Coming |
| Light Years |
| Brotherhood |
| Do You Love Me? |
...

We’ve only shown the first 20 of 153 rows. The UNION statement outputs all results from
all queries together, under a heading appropriate to the first query.

A slightly less contrived example is to create a list of the first five and last five tracks
you’ve played. You can do this easily with the UNION operator:

mysql> (SELECT track_name FROM
 -> track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played ASC LIMIT 5)
 -> UNION
 -> (SELECT track_name FROM
 -> track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played DESC LIMIT 5);
+-----------------------+
| track_name |
+-----------------------+
| Fine Time |

240 | Chapter 7: Advanced Querying

| Temptation |
| True Faith |
| The Perfect Kiss |
| Ceremony |
| New Blues |
| Intruder |
| In A Silent Way |
| Bizarre Love Triangle |
| Crystal |
+-----------------------+
10 rows in set (0.09 sec)

The first query uses ORDER BY with the ASC (ascending) modifier and a LIMIT 5 clause to
find the first five tracks played. The second query uses ORDER BY with the DESC (de-
scending) modifier and a LIMIT 5 clause to find the last five tracks played. The UNION
combines the result sets.

The UNION operator has several limitations:

• The output is labeled with the names of the columns or expressions from the first
query. Use column aliases to change this behavior.

• The queries should output the same number of columns. If you try using different
numbers of columns, MySQL will report an error.

• All matching columns should have the same type. So, for example, if the first col-
umn output from the first query is a date, the first column output from any other
query must be a date.

• The results returned are unique, as if you’d applied a DISTINCT to the overall result
set. To see this in action, let’s add a new row for the track “Fine Time” to the
played table. This has artist_id 1, album_id 3, and track_id 0:

mysql> INSERT INTO played SET
 -> artist_id = 1,
 -> album_id = 3,
 -> track_id = 0,
 -> played='2006-08-14 10:27:03';
Query OK, 1 row affected (0.02 sec)

We’ve used the more verbose INSERT format to clarify what we’re inserting.

Now, if you run the previous SELECT query again, you’ll see 9 rows instead of 10,
since “Fine Time” appears twice in the first 5 tracks placed, but the implicit DIS
TINCT operation means it’s shown only once:

mysql> (SELECT track_name FROM
 -> track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played ASC LIMIT 5)
 -> UNION
 -> (SELECT track_name FROM
 -> track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played DESC LIMIT 5);
+-----------------------+
| track_name |

Advanced Joins | 241

+-----------------------+
| Fine Time |
| Temptation |
| True Faith |
| The Perfect Kiss |
| New Blues |
| Intruder |
| In A Silent Way |
| Bizarre Love Triangle |
| Crystal |
+-----------------------+
9 rows in set (0.01 sec)

If you want to show any duplicates, replace UNION with UNION ALL:

mysql> (SELECT track_name FROM
 -> track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played ASC LIMIT 5)
 -> UNION ALL
 -> (SELECT track_name FROM
 -> track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played DESC LIMIT 5);

+-----------------------+
| track_name |
+-----------------------+
| Fine Time |
| Temptation |
| Fine Time |
| True Faith |
| The Perfect Kiss |
| New Blues |
| Intruder |
| In A Silent Way |
| Bizarre Love Triangle |
| Crystal |
+-----------------------+
10 rows in set (0.00 sec)

Here, “Fine Time” appears twice.

• If you want to apply LIMIT or ORDER BY to an individual query that is part of a
UNION statement, enclose that query in parentheses (as shown in the previous ex-
ample). It’s useful to use parentheses anyway to keep the query easy to understand.

The UNION operation simply concatenates the results of the component queries with
no attention to order, so there’s not much point in using ORDER BY within one of
the subqueries. The only time that it makes sense to order a subquery in a UNION
operation is when you want to select a subset of results. In our example, we’ve
ordered the tracks by the time they were played, and then selected only the first
five (in the first subquery) and the last five (in the second subquery).

For efficiency, MySQL will actually ignore an ORDER BY clause within a subquery if
it’s used without LIMIT. Let’s look at some examples to see exactly how this works.

242 | Chapter 7: Advanced Querying

First, let’s run a simple query to list the tracks that have been played, along with
the time each track was played. We’ve enclosed the query in parentheses for con-
sistency with our other examples—the parentheses don’t actually have any effect
here—and haven’t used an ORDER BY or LIMIT clause:

mysql> (SELECT track_name, played
 -> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
 ->);
+-----------------------+---------------------+
| track_name | played |
+-----------------------+---------------------+
Fine Time	2006-08-14 10:21:03
Fine Time	2006-08-14 10:27:03
Temptation	2006-08-14 10:25:22
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Ceremony	2006-08-14 10:41:43
Regret	2006-08-14 10:43:37
Crystal	2006-08-14 10:47:21
Bizarre Love Triangle	2006-08-14 10:54:02
In A Silent Way	2006-08-15 14:00:03
Intruder	2006-08-15 14:26:12
New Blues	2006-08-15 14:33:57
+-----------------------+---------------------+
12 rows in set (0.00 sec)

The query returns all the played tracks, in no particular order (see the second and
third entries).

Now, let’s add an ORDER BY clause to this query:

mysql> (SELECT track_name, played
 -> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played ASC);
+-----------------------+---------------------+
| track_name | played |
+-----------------------+---------------------+
Fine Time	2006-08-14 10:21:03
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:27:03
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Ceremony	2006-08-14 10:41:43
Regret	2006-08-14 10:43:37
Crystal	2006-08-14 10:47:21
Bizarre Love Triangle	2006-08-14 10:54:02
In A Silent Way	2006-08-15 14:00:03
Intruder	2006-08-15 14:26:12
New Blues	2006-08-15 14:33:57
+-----------------------+---------------------+
12 rows in set (0.03 sec)

As expected, we get all the played tracks, in the order that they’ve been played.

Advanced Joins | 243

Adding a LIMIT clause to the previous query selects the first five tracks played, in
chronological order—no surprises here:

mysql> (SELECT track_name, played
 -> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played ASC LIMIT 5);
+------------------+---------------------+
| track_name | played |
+------------------+---------------------+
Fine Time	2006-08-14 10:21:03
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:27:03
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
+------------------+---------------------+
5 rows in set (0.00 sec)

Now, let’s see what happens when we perform a UNION operation. In this example,
we’re using two subqueries, each with an ORDER BY clause. We’ve used a LIMIT
clause for the second subquery, but not for the first:

mysql> (SELECT track_name, played
 -> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played ASC)
 -> UNION ALL
 -> (SELECT track_name,played
 -> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played DESC LIMIT 5);
+-----------------------+---------------------+
| track_name | played |
+-----------------------+---------------------+
Fine Time	2006-08-14 10:21:03
Fine Time	2006-08-14 10:27:03
Temptation	2006-08-14 10:25:22
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Ceremony	2006-08-14 10:41:43
Regret	2006-08-14 10:43:37
Crystal	2006-08-14 10:47:21
Bizarre Love Triangle	2006-08-14 10:54:02
In A Silent Way	2006-08-15 14:00:03
Intruder	2006-08-15 14:26:12
New Blues	2006-08-15 14:33:57
New Blues	2006-08-15 14:33:57
Intruder	2006-08-15 14:26:12
In A Silent Way	2006-08-15 14:00:03
Bizarre Love Triangle	2006-08-14 10:54:02
Crystal	2006-08-14 10:47:21
+-----------------------+---------------------+
17 rows in set (0.00 sec)

As expected, the first subquery returns all the played tracks (the first 12 rows of
this output), and the second subquery returns the last 5 tracks (the last 5 rows of
this output). Notice how the first 12 rows are not in order (see the second and third

244 | Chapter 7: Advanced Querying

rows), even though the first subquery does have a ORDER BY clause. Since we’re
performing a UNION operation, the MySQL server has decided that there’s no point
sorting the result of the subquery. The second subquery includes a LIMIT operation,
so the results of that subquery are sorted.

The output of a UNION operation isn’t guaranteed to be ordered, even if the subqu-
eries are ordered, so if you want the final output to be ordered, you should add an
ORDER BY clause at the end of the whole query:

mysql> (SELECT track_name, played
 -> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played ASC)
 -> UNION ALL
 -> (SELECT track_name, played
 -> FROM track INNER JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played DESC LIMIT 5)
 -> ORDER BY played;
+-----------------------+---------------------+
| track_name | played |
+-----------------------+---------------------+
Fine Time	2006-08-14 10:21:03
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:27:03
True Faith	2006-08-14 10:30:25
The Perfect Kiss	2006-08-14 10:36:54
Ceremony	2006-08-14 10:41:43
Regret	2006-08-14 10:43:37
Crystal	2006-08-14 10:47:21
Crystal	2006-08-14 10:47:21
Bizarre Love Triangle	2006-08-14 10:54:02
Bizarre Love Triangle	2006-08-14 10:54:02
In A Silent Way	2006-08-15 14:00:03
In A Silent Way	2006-08-15 14:00:03
Intruder	2006-08-15 14:26:12
Intruder	2006-08-15 14:26:12
New Blues	2006-08-15 14:33:57
New Blues	2006-08-15 14:33:57
+-----------------------+---------------------+
17 rows in set (0.00 sec)

Here’s another example of sorting the final results, including a limit on the number
of returned results:

mysql> (SELECT artist_name FROM artist WHERE artist_id < 5)
 -> UNION
 -> (SELECT artist_name FROM artist WHERE artist_id > 7)
 -> ORDER BY artist_name LIMIT 4;
+---------------------------+
| artist_name |
+---------------------------+
| Miles Davis |
| New Order |
| Nick Cave & The Bad Seeds |
| The Rolling Stones |

Advanced Joins | 245

+---------------------------+
4 rows in set (0.01 sec)

The UNION operation is somewhat unwieldy, and there are generally alternative ways of
getting the same result. For example, the previous query could have been written more
simply as:

mysql> SELECT artist_name FROM artist WHERE
 -> artist_id < 3 OR artist_id > 5
 -> ORDER BY artist_name LIMIT 4;
+---------------------------+
| artist_name |
+---------------------------+
| Kylie Minogue |
| New Order |
| Nick Cave & The Bad Seeds |
+---------------------------+
3 rows in set (0.00 sec)

The Left and Right Joins
The joins we’ve discussed so far output only rows that match between tables. For ex-
ample, when you join the track and played tables, you see only the tracks that have
been played. Therefore, rows for tracks that haven’t been played are ignored and—if
they existed—would play data for tracks that don’t exist. This makes sense in many
cases, but it isn’t the only way to join data. This section explains other options you have.

Suppose you did want a comprehensive list of all albums and the number of times
you’ve played tracks from them. Unlike the example earlier in this chapter, included
in the list you want to see a zero next to albums that haven’t been played. You can do
this with a left join, a different type of join that’s driven by one of the two tables par-
ticipating in the join. A left join works like this: each row in the left table—the one
that’s doing the driving—is processed and output, with the matching data from the
second table if it exists and NULL values if there is no matching data in the second table.
We’ll show you how to write this type of query later in this section, but we’ll start with
a simpler example.

Here’s a simple LEFT JOIN example. You want to list all tracks, and next to each track
you want to show when it was played. If a track has been never been played, you want
to see that. If it’s been played many times, you want to see that too. Here’s the query:

mysql> SELECT track_name, played FROM
 -> track LEFT JOIN played USING (artist_id, album_id, track_id)
 -> ORDER BY played DESC;
+--------------------------+---------------------+
| track_name | played |
+--------------------------+---------------------+
New Blues	2006-08-15 14:33:57
Intruder	2006-08-15 14:26:12
In A Silent Way	2006-08-15 14:00:03
Bizarre Love Triangle	2006-08-14 10:54:02

246 | Chapter 7: Advanced Querying

Crystal	2006-08-14 10:47:21
Regret	2006-08-14 10:43:37
Ceremony	2006-08-14 10:41:43
The Perfect Kiss	2006-08-14 10:36:54
True Faith	2006-08-14 10:30:25
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:21:03
Do You Love Me?	NULL
Nobody's Baby Now	NULL
Loverman	NULL
Jangling Jack	NULL
Red Right Hand	NULL
I Let Love In	NULL
...

You can see what happens: tracks that have been played have dates and times, and
those that haven’t don’t (the played value is NULL). We’ve added an ORDER BY played
DESC to display the output from most to least recently played, where “never played”
(NULL) is the smallest possible value.

The order of the tables in the LEFT JOIN is important. If you reverse the order in the
previous query, you get very different output:

mysql> SELECT track_name, played FROM
 -> played LEFT JOIN track USING (artist_id, album_id, track_id)
 -> ORDER BY played DESC;
+-----------------------+---------------------+
| track_name | played |
+-----------------------+---------------------+
New Blues	2006-08-15 14:33:57
Intruder	2006-08-15 14:26:12
In A Silent Way	2006-08-15 14:00:03
Bizarre Love Triangle	2006-08-14 10:54:02
Crystal	2006-08-14 10:47:21
Regret	2006-08-14 10:43:37
Ceremony	2006-08-14 10:41:43
The Perfect Kiss	2006-08-14 10:36:54
True Faith	2006-08-14 10:30:25
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:21:03
+-----------------------+---------------------+
11 rows in set (0.18 sec)

In this, the query is driven by the played table, and so all rows from it are output matched
against track values if they exist and NULL otherwise. Since all rows in the played table
have matching tracks, no NULL values are shown. Importantly, because the played table
drives the process, you don’t see all the rows from the track table (because not all tracks
have been played).

In the introduction to this section, we motivated left joins with the example of listing
all albums and the number of times they’ve been played, regardless of whether that
value is zero. You’ll recall from “The GROUP BY Clause” the following query that
shows you that information, but only for albums you’ve played:

Advanced Joins | 247

mysql> SELECT artist_name, album_name, COUNT(*) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> INNER JOIN played USING (artist_id, album_id, track_id)
 -> GROUP BY album.artist_id, album.album_id;
+-------------+----------------------------+----------+
| artist_name | album_name | COUNT(*) |
+-------------+----------------------------+----------+
| New Order | Retro - Miranda Sawyer POP | 8 |
| Miles Davis | Live Around The World | 3 |
+-------------+----------------------------+----------+
2 rows in set (0.11 sec)

Here’s how you modify that query to use a left join to list all albums, even those that
have never been played:

mysql> SELECT artist_name, album_name, COUNT(played) FROM
 -> artist INNER JOIN album USING (artist_id)
 -> INNER JOIN track USING (artist_id, album_id)
 -> LEFT JOIN played USING (artist_id, album_id, track_id)
 -> GROUP BY album.artist_id, album.album_id;
+---------------------------+--+----------+
| artist_name | album_name | COUNT(*) |
+---------------------------+--+----------+
New Order	Retro - John McCready FAN	0
New Order	Substance (Disc 2)	0
New Order	Retro - Miranda Sawyer POP	8
New Order	Retro - New Order / Bobby Gillespie LIVE	0
New Order	Power, Corruption & Lies	0
New Order	Substance 1987 (Disc 1)	0
New Order	Brotherhood	0
Nick Cave & The Bad Seeds	Let Love In	0
Miles Davis	Live Around The World	3
Miles Davis	In A Silent Way	0
The Rolling Stones	Exile On Main Street	0
The Stone Roses	Second Coming	0
Kylie Minogue	Light Years	0
+---------------------------+--+----------+
13 rows in set (0.18 sec)

The only difference is that the final INNER JOIN is replaced by a LEFT JOIN, which means
that the data from the first two inner joins—of artist and album—drives the process.
The result is that all albums and their artists are displayed, along with the count of the
number of matching rows in the played table. You can see we haven’t listened to the
majority of the albums.

We’ve shown you that it matters what comes before and after the LEFT JOIN statement.
Whatever is on the left drives the process, hence the name “left join.” If you really don’t
want to reorganize your query so it matches that template, you can use rollRIGHT
JOIN. It’s exactly the same, except whatever is on the right drives the process. Here’s
our earlier played and track example written as a right join:

mysql> SELECT track_name, played FROM
 -> played RIGHT JOIN track USING (artist_id, album_id, track_id)

248 | Chapter 7: Advanced Querying

 -> ORDER BY played DESC;
+-----------------------+---------------------+
| track_name | played |
+-----------------------+---------------------+
New Blues	2006-08-15 14:33:57
Intruder	2006-08-15 14:26:12
In A Silent Way	2006-08-15 14:00:03
Bizarre Love Triangle	2006-08-14 10:54:02
Crystal	2006-08-14 10:47:21
Regret	2006-08-14 10:43:37
Ceremony	2006-08-14 10:41:43
The Perfect Kiss	2006-08-14 10:36:54
True Faith	2006-08-14 10:30:25
Temptation	2006-08-14 10:25:22
Fine Time	2006-08-14 10:21:03
Do You Love Me?	NULL
Nobody's Baby Now	NULL
Loverman	NULL
Jangling Jack	NULL

The right join is useful sometimes because it allows you to write a query more naturally,
expressing it in a way that’s more intuitive. However, you won’t often see it used, and
we’d recommend avoiding it where possible.

Both the LEFT JOIN and RIGHT JOIN can use either the USING or ON clauses discussed for
the INNER JOIN earlier in this chapter in “The Inner Join.” You should use one or the
other: without them, you’ll get the Cartesian product discussed in “The Inner Join.”

There’s an extra OUTER keyword that you can optionally use in left and right joins, to
make them read as LEFT OUTER JOIN and RIGHT OUTER JOIN. It’s just an alternative syntax
that doesn’t do anything different, and you won’t often see it used. We stick to the
basic versions in this book.

The Natural Join
We’re not big fans of the natural join that we’re about to describe in this section. It’s
in here only for completeness and because you’ll see it used sometimes in SQL state-
ments you’ll encounter. Our advice is to avoid using it where possible.

A natural join is, well, supposed to be magically natural. This means that you tell
MySQL what tables you want to join, and it figures out how to do it and gives you an
INNER JOIN result set. Here’s an example for the artist and album tables:

mysql> SELECT artist_name, album_name FROM artist NATURAL JOIN album;
+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies

Advanced Joins | 249

New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+---------------------------+--+
13 rows in set (0.03 sec)

In reality, it’s not quite magical: all MySQL does is look for columns with the same
names and, behind the scenes, adds these silently into an inner join with a USING clause.
So, the above query is actually translated into:

mysql> SELECT artist_name, album_name FROM
 -> artist INNER JOIN album USING (artist_id);

If identifier columns don’t share the same name, natural joins won’t work. Also, more
dangerously, if columns that do share the same names aren’t identifiers, they’ll get
thrown into the behind-the-scenes USING clause anyway. For example, if you had
name columns in the artist and album tables (instead of artist_name and album_name),
you’d get USING (artist_id, name) and some unpredictable results. The magic and
mystery makes natural joins worth avoiding; spell out queries using an inner join or a
WHERE clause instead.

You’ll sometimes see the natural join mixed with left and right joins. The following are
valid join syntaxes: NATURAL LEFT JOIN, NATURAL LEFT OUTER JOIN, NATURAL RIGHT
JOIN, and NATURAL RIGHT OUTER JOIN. The former two are left joins without ON or
USING clauses, and the latter two are right joins. Again, avoid writing them when you
can, but you should understand what they mean if you see them used.

Nested Queries
Nested queries—supported by MySQL since version 4.1—are the most difficult to
learn. However, they provide a powerful, useful, and concise way of expressing difficult
information needs in short SQL statements. This section explains them, beginning with
simple examples and leading to the more complex features of the EXISTS and IN state-
ments. At the conclusion of this section, you’ll have completed everything this book
contains about querying data, and you should be comfortable understanding almost
any SQL query you encounter.

Nested Query Basics
You know how to find the name of an artist who made a particular album using an
INNER JOIN:

mysql> SELECT artist_name FROM
 -> artist INNER JOIN album USING (artist_id)

250 | Chapter 7: Advanced Querying

 -> WHERE album_name = "In A Silent Way";
+-------------+
| artist_name |
+-------------+
| Miles Davis |
+-------------+
1 row in set (0.14 sec)

But there’s another way, using a nested query:

mysql> SELECT artist_name FROM artist WHERE artist_id =
 -> (SELECT artist_id FROM album WHERE album_name = "In A Silent Way");
+-------------+
| artist_name |
+-------------+
| Miles Davis |
+-------------+
1 row in set (0.28 sec)

It’s called a nested query because one query is inside another. The inner query, or
subquery—the one that is nested—is written in parentheses, and you can see that it
determines the artist_id for the album with the name In A Silent Way. The paren-
theses are required for inner queries. The outer query is the one that’s listed first and
isn’t parenthesized here: you can see that it finds the artist_name of the the artist with
an artist_id that matches the result of the subquery. So, overall, the inner query finds
the artist_id, and the outer query uses it to find the artist’s name.

So, which approach is preferable: nested or not nested? The answer isn’t easy. In terms
of performance, the answer is usually not: nested queries are hard to optimize, and so
they’re almost always slower to run than the unnested alternative. Does this mean you
should avoid nesting? The answer is no: sometimes it’s your only choice if you want to
write a single query, and sometimes nested queries can answer information needs that
can’t be easily solved otherwise. What’s more, nested queries are expressive. Once
you’re comfortable with the idea, they’re a very readable way to show how a query is
evaluated. In fact, many SQL designers advocate teaching nested queries before the
join-based alternatives we’ve shown you in the past few chapters. We’ll show you ex-
amples of where nesting is readable and powerful throughout this section.

Before we begin to cover the keywords that can be used in nested queries, let’s visit an
example that can’t be done easily in a single query—at least, not without MySQL’s
proprietary LIMIT clause! Suppose you want to know which track you listened to most
recently. To do this, following the methods we’ve learned previously, you could find
the date and time of the most recently stored row in the played table:

mysql> SELECT MAX(played) FROM played;
+---------------------+
| MAX(played) |
+---------------------+
| 2006-08-15 14:33:57 |
+---------------------+
1 row in set (0.00 sec)

Nested Queries | 251

You can then use the output as input to another query to find the track name:

mysql> SELECT track_name FROM track INNER JOIN played
 -> USING (artist_id, album_id, track_id)
 -> WHERE played = "2006-08-15 14:33:57";
+------------+
| track_name |
+------------+
| New Blues |
+------------+
1 row in set (0.31 sec)

In “User Variables,” later in this chapter, we’ll show how you can use variables to avoid
having to type in the value in the second query.

With a nested query, you can do both steps in one shot:

mysql> SELECT track_name FROM track INNER JOIN played
 -> USING (artist_id, album_id, track_id)
 -> WHERE played = (SELECT MAX(played) FROM played);
+------------+
| track_name |
+------------+
| New Blues |
+------------+
1 row in set (0.28 sec)

You can see the nested query combines the two previous queries. Rather than using the
constant date and time value discovered from a previous query, it executes the query
directly as a subquery. This is the simplest type of nested query, one that returns a
scalar operand—that is, a single value.

The previous example used the equality operator, the equals sign, =. You can use all
types of comparison operators: < (less than), <= (less than or equal to), > (greater than),
>= (greater than or equal to), and != (not equals) or <> (not equals).

The ANY, SOME, ALL, IN, and NOT IN Clauses
Before we start to show some more advanced features of nested queries, we need to
create two new tables to use in our examples. Unfortunately, our music database is a
little too simple to effectively demonstrate the full power of nested querying. So, let’s
extend the database to give us something to play with.

We’ll create two new tables that share common data, but store different types of facts.
The first table we’ll create contains information about producers—that is, the people
who oversee the music recording process. Here’s the structure and some data:

mysql> CREATE TABLE producer (
 -> producer_id SMALLINT(4) NOT NULL DEFAULT 0,
 -> producer_name CHAR(128) DEFAULT NULL,
 -> years SMALLINT(3) DEFAULT 0,
 -> PRIMARY KEY (producer_id));

252 | Chapter 7: Advanced Querying

Query OK, 0 rows affected (1.03 sec)

mysql> INSERT INTO producer VALUES
 -> (1, "Phil Spector", 36),
 -> (2, "George Martin", 40),
 -> (3, "Tina Weymouth", 20),
 -> (4, "Chris Frantz", 20),
 -> (5, "Ed Kuepper", 15);

Query OK, 5 rows affected (0.50 sec)
Records: 5 Duplicates: 0 Warnings: 0

You can download these instructions from the book’s web site in the file pro-
ducer.sql, and run them in the same way you ran the music.sql file.

You can see it’s a fairly simple table: an identifier column, a textual name, and an integer
value of the number of years they’ve been producing. The second table is almost iden-
tical, but stores information about engineers—that is, the people who work the mixing
desks and other equipment that’s used in the music recording process. Here’s the table
and its data:

mysql> CREATE TABLE engineer (
 -> engineer_id SMALLINT(4) NOT NULL DEFAULT 0,
 -> engineer_name CHAR(128) DEFAULT NULL,
 -> years SMALLINT(3) DEFAULT 0,
 -> PRIMARY KEY (engineer_id));
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO engineer VALUES
 -> (1, "George Martin", 40),
 -> (2, "Eddie Kramer", 38),
 -> (3, "Jeff Jarratt", 40),
 -> (4, "Ed Stasium", 25);
Query OK, 4 rows affected (0.14 sec)
Records: 4 Duplicates: 0 Warnings: 0

You can download these instructions from the book’s web site in the file engineer.sql.

Using ANY and IN

Now that you’ve created the sample tables, you can try an example using ANY. Suppose
you’re looking to find engineers who’ve been working longer than the least experienced
producer. You can express this information need as follows:

mysql> SELECT engineer_name, years
 -> FROM engineer WHERE years > ANY
 -> (SELECT years FROM producer);
+---------------+-------+
| engineer_name | years |
+---------------+-------+
George Martin	40
Eddie Kramer	38
Jeff Jarratt	40
Ed Stasium	25

Nested Queries | 253

+---------------+-------+
4 rows in set (0.08 sec)

The subquery finds the years that the producers have worked:

mysql> SELECT years FROM producer;
+-------+
| years |
+-------+
| 36 |
| 40 |
| 20 |
| 20 |
| 15 |
+-------+
5 rows in set (0.00 sec)

The outer query goes through each engineer, returning the engineer if their number of
years is greater than any of the values in the set returned by the subquery. So, for
example, Eddie Kramer is output because 38 is greater than at least one value in the set
(36, 40, 20, 15). The ANY keyword means just that: it’s true if the column or expression
preceding it is true for any of the values in the set returned by the subquery. Used in
this way, ANY has the alias SOME, which was included so that some queries can be read
more clearly as English expressions; it doesn’t do anything different and you’ll rarely
see it used.

The ANY keyword gives you more power in expressing nested queries. Indeed, the pre-
vious query is the first nested query in this section with a column subquery—that is, the
results returned by the subquery are one or more values from a column, instead of a
single scalar value as in the previous section. With this, you can now compare a column
value from an outer query to a set of values returned from a subquery.

Consider another example using ANY. Suppose you want to know the producers who
are also engineers. You can do this with the following nested query:

mysql> SELECT producer_name FROM producer WHERE
 -> producer_name = ANY
 -> (SELECT engineer_name FROM engineer);
+---------------+
| producer_name |
+---------------+
| George Martin |
+---------------+
1 row in set (0.04 sec)

The = ANY causes the outer query to return a producer when the producer_name is equal
to any of the engineer names returned by the subquery. The = ANY keyphrase has the
alias IN, which you’ll see commonly used in nested queries. Using IN, the previous
example can be rewritten:

mysql> SELECT producer_name FROM producer WHERE producer_name
 -> IN (SELECT engineer_name FROM engineer);
+---------------+

254 | Chapter 7: Advanced Querying

| producer_name |
+---------------+
| George Martin |
+---------------+
1 row in set (0.06 sec)

Of course, for this particular example, you could also have used a join query:

mysql> SELECT producer_name FROM producer INNER JOIN engineer
 -> ON (producer_name = engineer_name);
+---------------+
| producer_name |
+---------------+
| George Martin |
+---------------+
1 row in set (0.17 sec)

Again, nested queries are expressive but typically slow in MySQL, so use a join where
you can.

Using ALL

Suppose you want to find engineers who are more experienced than all of the producers
—that is, more experienced than the most experienced producer. You can do this with
the ALL keyword in place of ANY:

mysql> SELECT engineer_name, years FROM engineer
 -> WHERE years > ALL (SELECT years FROM producer);
Empty set (0.00 sec)

You can see that there are no answers: looking at the data, we see that George Martin
has been a producer for 40 years, equal to or longer than the time any engineer has been
engineering. While the ANY keyword returns values that satisfy at least one condition
(Boolean OR), the ALL keyword returns values when all the conditions are satisfied
(Boolean AND).

We can use the alias NOT IN in place of <> ANY or != ANY. Let's find all the engineers who
aren't producers:

mysql> SELECT engineer_name FROM engineer WHERE
 -> engineer_name NOT IN
 -> (SELECT producer_name FROM producer);
+---------------+
| engineer_name |
+---------------+
| Eddie Kramer |
| Jeff Jarratt |
| Ed Stasium |
+---------------+
3 rows in set (0.25 sec)

As an exercise, try writing the above query using the ANY syntax and in at least two ways
as a join query.

Nested Queries | 255

The ALL keyword has a few tricks and traps:

• If it’s false for any value, it’s false. Suppose that table a contains a row with the
value 14. Suppose table b contains the values 16, 1, and NULL. If you check whether
the value in a is greater than ALL values in b, you’ll get false, since 14 isn’t greater
than 16. It doesn’t matter that the other values are 1 and NULL.

• If it isn’t false for any value, it isn’t true unless it’s true for all values. Suppose that
table a again contains 14, and suppose b contains 1 and NULL. If you check whether
the value in a is greater than ALL values in b, you’ll get UNKNOWN (neither true or false)
because it can’t be determined whether NULL is greater than or less than 14.

• If the table in the subquery is empty, the result is always true. Hence, if a contains
14 and b is empty, you’ll get true when you check if the value in a is greater than
ALL values in b.

When using the ALL keyword, be very careful with tables that can have NULL values in
columns; consider disallowing NULL values in such cases. Also, be careful with empty
tables.

Writing row subqueries

In the previous examples, the subquery returned a single, scalar value (such as an
artist_id) or a set of values from one column (such as all of the engineer_name values).
This section describes another type of subquery, the row subquery that works with
multiple columns from multiple rows.

Suppose you’re interested in whether an engineer has been a producer for the same
length of time. To answer this need, you must match both names and years. You can
easily write this as a join query:

mysql> SELECT producer_name, producer.years FROM
 -> producer, engineer WHERE producer_name = engineer_name AND
 -> producer.years = engineer.years;
+---------------+-------+
| producer_name | years |
+---------------+-------+
| George Martin | 40 |
+---------------+-------+
1 row in set (0.30 sec)

But you can also write it as a nested query:

mysql> SELECT producer_name, years FROM producer WHERE
 -> (producer_name, years) IN
 -> (SELECT engineer_name, years FROM engineer);
+---------------+-------+
| producer_name | years |
+---------------+-------+
| George Martin | 40 |
+---------------+-------+
1 row in set (0.17 sec)

256 | Chapter 7: Advanced Querying

You can see there’s a different syntax being used in this nested query: a list of two
column names in parentheses follows the WHERE statement, and the inner query returns
two columns. We’ll explain this syntax next.

The row subquery syntax allows you to compare multiple values per row. The expres-
sion (producer_name, years) means two values per row are compared to the output of
the subquery. You can see following the IN keyword that the subquery returns two
values, engineer_name and years. So, the fragment:

(producer_name, years) IN (SELECT engineer_name, years FROM engineer)

matches producer names and years to engineer names and years, and returns a true
value when a match is found. The result is that if a matching pair is found, the overall
query outputs a result. This is a typical row subquery: it finds rows that exist in two
tables.

To explain the syntax further, let’s consider another example. Suppose you want to see
if you own the Brotherhood album by New Order. You can do this with the following
query:

mysql> SELECT artist_name, album_name FROM artist, album WHERE
 -> (artist.artist_id, artist_name, album_name) =
 -> (album.artist_id, "New Order", "Brotherhood");
+-------------+-------------+
| artist_name | album_name |
+-------------+-------------+
| New Order | Brotherhood |
+-------------+-------------+
1 row in set (0.16 sec)

It’s not a nested query, but it shows you how the new row subquery syntax works. You
can see that the query matches the list of columns before the equals sign,
(artist.artist_id, artist_name, album_name), to the list of columns and values after
the equals sign, (album.artist_id, "New Order", "Brotherhood"). So, when the
artist_id values match, the artist is New Order, and the album is Brotherhood, we get
output from the query. We don’t recommend writing queries like this—use a WHERE
clause instead—but it does illustrate exactly what’s going on. For an exercise, try writ-
ing this query using a join.

Row subqueries require that the number, order, and type of values in the columns
match. So, for example, our previous example matches a SMALLINT to a SMALLINT, and
two character strings to two character strings.

The EXISTS and NOT EXISTS Clauses
You’ve now seen three types of subquery: scalar subqueries, column subqueries, and
row subqueries. In this section, you’ll learn about a fourth type, the correlated sub-
query, where a table used in the outer query is referenced in the subquery. Correlated

Nested Queries | 257

subqueries are often used with the IN statement we’ve already discussed, and almost
always used with the EXISTS and NOT EXISTS clauses that are the focus of this section.

EXISTS and NOT EXISTS basics

Before we start on our discussion of correlated subqueries, let’s investigate what the
EXISTS clause does. We’ll need a simple but strange example to introduce the clause,
since we’re not discussing correlated subqueries just yet. So, here goes: suppose you
want to find a list of all artists in the database, but only if the database is active (which
you’ve defined to mean only if at least one track from any album by any artist has been
played). Here’s the query that does it:

mysql> SELECT * FROM artist WHERE EXISTS
 -> (SELECT * FROM played);
+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
1	New Order
2	Nick Cave & The Bad Seeds
3	Miles Davis
4	The Rolling Stones
5	The Stone Roses
6	Kylie Minogue
+-----------+---------------------------+
6 rows in set (0.18 sec)

The subquery returns all rows from the played table. However, what’s important is that
it returns at least one row; it doesn’t matter what’s in the row, how many rows there
are, or whether the row contains only NULL values. So, you can think of the subquery
as being true or false, and in this case it’s true because it produces some output. When
the subquery is true, the outer query that uses the EXISTS clause returns a row. The
overall result is that all rows in the artist table are displayed because, for each one,
the subquery is true.

Let’s try a query where the subquery isn’t true. Again, let’s contrive a query: this time,
we’ll output the names of all albums in the database, but only if we own at least one
album by John Coltrane. Here’s the query:

mysql> SELECT album_name FROM album WHERE EXISTS
 -> (SELECT * FROM artist WHERE artist_name = "John Coltrane");
Empty set (0.10 sec)

Since the subquery isn’t true—no rows are returned because John Coltrane isn’t in our
database—no results are returned by the outer query.

The NOT EXISTS clause does the opposite. Imagine you want a list of all producers if you
don’t have an artist called New Order in the database. Here it is:

mysql> SELECT * FROM producer WHERE NOT EXISTS
 -> (SELECT * FROM artist WHERE artist_name = "New Order");
Empty set (0.16 sec)

258 | Chapter 7: Advanced Querying

This time, the inner query is true but the NOT EXISTS clause negates it to give false. Since
it’s false, the outer query doesn’t produce results.

You’ll notice that the subquery begins with SELECT * FROM artist. It doesn’t actually
matter what you select in an inner query when you’re using the EXISTS clause, since it’s
not used by the outer query anyway. You can select one column, everything, or even a
constant (as in SELECT "cat" from artist), and it’ll have the same effect. Traditionally,
though, you’ll see most SQL authors write SELECT * by convention.

Correlated subqueries

So far, it’s difficult to imagine what you’d do with the EXISTS or NOT EXISTS clauses.
This section shows you how they’re really used, illustrating the most advanced type of
nested query that you’ll typically see in action.

Let’s think about a realistic information need you might want to answer from the
music database. Suppose you want a list of all artists who’ve produced a self-titled
album. You can do this easily with a join query, which we recommend you try to think
about before you continue. You can also do it with the following nested query that uses
a correlated subquery:

mysql> SELECT artist_name FROM artist WHERE EXISTS
 -> (SELECT * FROM album WHERE album_name = artist_name);
Empty set (0.28 sec)

There’s no output because there are no self-titled albums. Let’s add an artist with a self-
titled album and try again:

mysql> INSERT INTO artist VALUES (7, "The Beatles");
Query OK, 1 row affected (0.13 sec)

mysql> INSERT INTO album VALUES (7, 1, "The Beatles");
Query OK, 1 row affected (0.14 sec)

Now the query:

mysql> SELECT artist_name FROM artist WHERE EXISTS
 -> (SELECT * FROM album WHERE album_name = artist_name);
+-------------+
| artist_name |
+-------------+
| The Beatles |
+-------------+
1 row in set (0.17 sec)

So, the query works; now, we just need to understand how!

Let’s examine the subquery in our previous example. You can see that it lists only the
album table in the FROM clause, but it uses a column from the artist table in the WHERE
clause. If you run it in isolation, you’ll see this isn’t allowed:

mysql> SELECT * FROM album WHERE album_name = artist_name;
ERROR 1054 (42S22): Unknown column 'artist_name' in 'where clause'

Nested Queries | 259

However, it’s legal when executed as a subquery because tables listed in the outer query
are allowed to be accessed in the subquery. So, in this example, the current value of
artist_name in the outer query is supplied to the subquery as a constant, scalar value
and compared to the album name. If the album name matches the artist name, the
subquery is true, and so the outer query outputs a row. Consider two cases that illustrate
this more clearly:

• When the artist_name being processed by the outer query is New Order, the sub-
query is false because SELECT * FROM album WHERE album_name = "New Order"
doesn’t return any rows, and so the artist row for New Order isn’t output as an
answer.

• When the artist_name being processed by the outer query is The Beatles, the sub-
query is true because SELECT * FROM album WHERE album_name = "The Beatles"
returns at least one row. Overall, the artist row for The Beatles is output as an
answer.

Can you see the power of correlated subqueries? You can use values from the outer
query in the inner query to evaluate complex information needs.

We’ll now explore another example using EXISTS. Let’s try to find all artists from whom
we own at least two albums. To do this with EXISTS, we need to think through what
the inner and outer queries should do. The inner query should produce a result only
when the condition we’re checking is true; in this case, it should produce output when
the artist has at least two albums in the database. The outer query should produce the
artist name whenever the inner query is true. Here’s the query:

mysql> SELECT artist_name FROM artist WHERE EXISTS
 -> (SELECT * FROM album WHERE artist.artist_id = album.artist_id
 -> GROUP BY artist.artist_id HAVING COUNT(*) >= 2);
+-------------+
| artist_name |
+-------------+
| New Order |
| Miles Davis |
+-------------+
2 rows in set (0.12 sec)

This is yet another query where nesting isn’t necessary and a join would suffice, but
let’s stick with this version for the purpose of explanation. Have a look at the inner
query: you can see that the WHERE clause ensures only album rows for the artist being
referenced by the outer query—the current artist—are considered by the subquery. The
GROUP BY clause clusters the rows for that artist, but only if there are at least two albums.
Therefore, the inner query only produces output when there are at least two albums
for the current artist. The outer query is straightforward: it outputs an artist’s name
when the subquery produces output.

Here’s one more example before we move on and discuss other issues. We’ve already
shown you a query that uses IN and finds producers who are also engineers:

260 | Chapter 7: Advanced Querying

mysql> SELECT producer_name FROM producer WHERE producer_name
 -> IN (SELECT engineer_name FROM engineer);
+---------------+
| producer_name |
+---------------+
| George Martin |
+---------------+
1 row in set (0.06 sec)

Let’s rewrite the query to use EXISTS. First, think about the subquery: it should produce
output when there’s an engineer with the same name as a producer.

Second, think about the outer query: it should return the producer’s name when the
inner query produces output. Here’s the rewritten query:

mysql> SELECT producer_name FROM producer WHERE EXISTS
 -> (SELECT * FROM engineer WHERE producer_name = engineer_name);
+---------------+
| producer_name |
+---------------+
| George Martin |
+---------------+
1 row in set (0.06 sec)

Again, you can see that the subquery references the producer_name column, which
comes from the outer query.

Correlated subqueries can be used with any nested query type. Here’s the previous
IN query rewritten with an outer reference:

mysql> SELECT producer_name FROM producer WHERE producer_name
 -> IN (SELECT engineer_name FROM engineer WHERE
 -> engineer_name = producer_name);
+---------------+
| producer_name |
+---------------+
| George Martin |
+---------------+
1 row in set (0.14 sec)

The query is more convoluted than it needs to be, but it illustrates the idea. You can
see that the producer_name in the subquery references the producer table from the outer
query. This query can also be rewritten to use an equals instead of IN:

mysql> SELECT producer_name FROM producer WHERE producer_name
 -> = (SELECT engineer_name FROM engineer WHERE
 -> engineer_name = producer_name);
+---------------+
| producer_name |
+---------------+
| George Martin |
+---------------+
1 row in set (0.01 sec)

Nested Queries | 261

This works because the subquery returns one scalar value—there’s only one engineer
and producer with each name—and so the column subquery operator IN isn’t neces-
sary. Of course, if names are duplicated, you’d need to use IN, ANY, or ALL instead.

Nested Queries in the FROM Clause
The techniques we’ve shown all use nested queries in the WHERE clause. This section
shows you how they can alternatively be used in the FROM clause. This is useful when
you want to manipulate the source of the data you’re using in a query.

The producer and engineer tables store the number of years that a person has been
producing and engineering, respectively. If you want that value in months, there are
several ways you can obtain it. One way—which we’ll show you in Chapter 8—is to
use a date and time function to do the conversion. Another way is to do some math in
the query; one option in this class is to do it with a subquery:

mysql> SELECT producer_name, months FROM
 -> (SELECT producer_name, years*12 AS months FROM producer) AS prod;
+---------------+--------+
| producer_name | months |
+---------------+--------+
Phil Spector	432
George Martin	480
Tina Weymouth	240
Chris Frantz	240
Ed Kuepper	180
+---------------+--------+
5 rows in set (0.05 sec)

Focus on what follows the FROM clause: the subquery uses the producer table and returns
two columns. The first column is the producer_name; the second column is aliased as
months, and is the years value multiplied by 12. The outer query is straightforward: it
just returns the producer_name and the month value created through the subquery. Note
that we’ve added the table alias as prod for the subquery. When we use a subquery as
a table, that is, we use a SELECT FROM operation on it—this “derived table” must have
an alias—even if we don’t use the alias in our query. MySQL complains if we omit the
alias:

mysql> SELECT producer_name, months FROM
 -> (SELECT producer_name, years*12 AS months FROM producer);
ERROR 1248 (42000): Every derived table must have its own alias

Here’s another example, where we’ll find out the average number of albums that we
own by each artist. Let’s begin by thinking through the subquery. It should return the
number of albums that we own by each artist. Then, the outer query should average
the values to give the answer. Here’s the query:

mysql> SELECT AVG(albums) FROM
 -> (SELECT COUNT(*) AS albums FROM artist INNER JOIN album
 -> USING (artist_id) GROUP BY artist.artist_id) AS alb;
+-------------+

262 | Chapter 7: Advanced Querying

| AVG(albums) |
+-------------+
| 2.0000 |
+-------------+
1 row in set (0.00 sec)

You can see that the inner query joins together artist and album, and groups the albums
together by artist so you can get a count for each artist. If you run it in isolation, here’s
what happens:

mysql> SELECT COUNT(*) AS albums FROM artist INNER JOIN album
 -> USING (artist_id) GROUP BY artist.artist_id;
+--------+
| albums |
+--------+
| 7 |
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 1 |
+--------+
7 rows in set (0.00 sec)

Now, the outer query takes these counts—which are aliased as albums—and averages
them to give the final result. This query is the typical way that you apply two aggregate
functions to one set of data. You can’t apply aggregate functions in cascade, as in
AVG(COUNT(*)); it won’t work:

mysql> SELECT AVG(COUNT(*)) FROM album INNER JOIN artist
 -> USING (artist_id) GROUP BY artist.artist_id;
ERROR 1111 (HY000): Invalid use of group function

With subqueries in FROM clauses, you can return a scalar value, a set of column values,
more than one row, or even a whole table. However, you can’t use correlated subqu-
eries, meaning that you can’t reference tables or columns from tables that aren’t ex-
plicitly listed in the subquery. Note also that you must alias the whole subquery using
the AS keyword and give it a name, even if you don’t use that name anywhere in the
query.

User Variables
Often you’ll want to save values that are returned from queries. You might want to do
this so that you can easily use a value in a later query. You might also simply want to
save a result for later display. In both cases, user variables solve the problem: they allow
you to store a result and use it later.

Let’s illustrate user variables with a simple example. The following query finds the name
of an artist and saves the result in a user variable:

User Variables | 263

mysql> SELECT @artist:=artist_name FROM artist WHERE artist_id = 1;
+----------------------+
| @artist:=artist_name |
+----------------------+
| New Order |
+----------------------+
1 row in set (0.05 sec)

The user variable is named artist, and it’s denoted as a user variable by the @ character
that precedes it. The value is assigned using the := operator. You can print out the
contents of the user variable with the following very short query:

mysql> SELECT @artist;
+-----------+
| @artist |
+-----------+
| New Order |
+-----------+
1 row in set (0.00 sec)

You can explicitly set a variable using the SET statement without a SELECT. Suppose you
want to initialize a counter to 0:

mysql> SET @counter := 0;
Query OK, 0 rows affected (0.11 sec)

You should separate several assignments with a comma, or put each in a statement of
its own:

mysql> SET @counter := 0, @age:=23;
Query OK, 0 rows affected (0.00 sec)

The most common use of user variables is to save a result and use it later. You’ll recall
the following example from earlier in the chapter, which we used to motivate nested
queries (which are certainly a better solution for this problem). We want to find the
name of the track that was played most recently:

mysql> SELECT MAX(played) FROM played;
+---------------------+
| max(played) |
+---------------------+
| 2006-08-15 14:33:57 |
+---------------------+
1 row in set (0.00 sec)

mysql> SELECT track_name FROM track INNER JOIN played
 -> USING (artist_id, album_id, track_id)
 -> WHERE played = "2006-08-15 14:33:57";
+------------+
| track_name |
+------------+
| New Blues |
+------------+
1 row in set (0.31 sec)

264 | Chapter 7: Advanced Querying

You can use a user variable to save the result for input into the following query. Here’s
the same query pair rewritten using this approach:

mysql> SELECT @recent := MAX(played) FROM played;
+-------------------------+
| @recent := MAX(played) |
+-------------------------+
| 2006-08-15 14:33:57 |
+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT track_name FROM track INNER JOIN played
 -> USING (artist_id, album_id, track_id)
 -> WHERE played = @recent;
+------------+
| track_name |
+------------+
| New Blues |
+------------+
1 row in set (0.44 sec)

This can save you cutting and pasting, and it certainly helps you avoid typing errors.

Here are some guidelines on using user variables:

• User variables are unique to a connection: variables that you create can’t be seen
by anyone else, and two different connections can have two different variables with
the same name.

• The variable names can be alphanumeric strings and can also include the period
(.), underscore (_), and dollar ($) characters.

• Variable names are case-sensitive in MySQL versions earlier than version 5, and
case-insensitive from version 5 onward.

• Any variable that isn’t initialized has the value NULL; you can also manually set a
variable to be NULL.

• Variables are destroyed when a connection closes.

• You should avoid trying to both assign a value to a variable and use the variable as
part of a SELECT query. Two reasons for this are that the new value may not be
available for use immediately in the same statement, and a variable’s type is set
when it’s first assigned in a query; trying to use it later as a different type in the
same SQL statement can lead to unexpected results.

Let’s look at the first issue in more detail using the new variable @aid. Since we
haven’t used this variable before, it’s empty. Now, let’s show the artist_id for
artists who have an entry in the album table. Instead of showing it directly, we’ll
assign the artist_id to the @aid variable. Our query will show the variable twice:
once before the assignment operation, once as part of the assignment operation,
and once afterwards:

User Variables | 265

mysql> SELECT @aid, @aid:=artist.artist_id, @aid FROM artist,album
 -> WHERE album.artist_id=@aid;
Empty set (0.00 sec)

This returns nothing; since there’s nothing in the variable to start with, the WHERE
clause tries to look for empty artist_id values. If we modify the query to use
artist.artist_id as part of the WHERE clause, things work as expected:

mysql> SELECT @aid, @aid:=artist.artist_id, @aid FROM artist,album
 -> WHERE album.artist_id=artist.artist_id;

+------+------------------------+------+
| @aid | @aid:=artist.artist_id | @aid |
+------+------------------------+------+
	1	1
1	1	1
1	1	1
1	1	1
1	1	1
1	1	1
1	1	1
1	2	2
2	3	3
3	3	3
3	4	4
4	5	5
5	6	6
+------+------------------------+------+
13 rows in set (0.01 sec)

Now that @aid isn’t empty, the initial query will produce some results:

mysql> SELECT @aid, @aid:=artist.artist_id, @aid FROM artist,album
 -> WHERE album.artist_id=@aid;
+------+------------------------+------+
| @aid | @aid:=artist.artist_id | @aid |
+------+------------------------+------+
6	1	1
1	1	1
1	2	2
+------+------------------------+------+
3 rows in set (0.01 sec)

It’s best to avoid such circumstances where the behavior is not guaranteed and is
hence unpredictable.

Transactions and Locking
When a database is concurrently accessed by several users, you have to consider how
you may be affected if other users change the data that you’re accessing, and how
changes you make may affect other users. For example, you might get the wrong value
for the total sales so far this year if new sales are being added to the database while
you’re adding up the sales figures.

266 | Chapter 7: Advanced Querying

Locks can be applied to prevent concurrent users from interacting destructively with
one other’s data. A read lock allows you to prevent other users from changing data
while you’re reading and processing the data, while a write lock tells other users that
the data is being changed and that they should not read or modify it. For example, you
need locks to avoid problems with reports when one user is trying to produce a report
while another user changes the data the report is derived from.

In some cases, you want all or none of a series of operations to succeed. For example,
if you want to travel from Melbourne to Seattle via Los Angeles, you need to have a
seat on the flight from Melbourne to Los Angeles, and a seat on the connecting flight
from Los Angeles to Seattle. Having a confirmed seat on just one leg of the route is no
use to you; you can’t fly without confirmed seats on both legs.

Transactions allow you to batch together SQL statements as an indivisible set that either
succeeds or has no effect on the database. This means you can start a transaction and
then issue a series of SQL statements. At the conclusion, you have the option of com-
mitting (saving) the transaction to the database or rolling back (canceling) the
transaction.

By default, MySQL operates in AUTOCOMMIT mode, where each update is treated as an
atomic transaction of its own, and changes are automatically committed. If this mode
is disabled, or a transaction is explicitly started, changes aren’t commited to the data-
base unless you execute a COMMIT or ROLLBACK instruction.

Locking and transaction support is complex, and you need to make choices about the
degree of isolation needed between users and the trade-offs involved in implementing
them for your application. This is a difficult and advanced topic that’s mostly outside
the scope of this book, but in the next section we discuss how the main table types
supported by MySQL allow locking and transactions. We also include a simple trans-
action example in “Transaction examples,” and we describe how simple locking can
be used—and avoided—for our PHP wedding-registry application in “Selecting and
Deselecting Gifts” in Chapter 15.

Table Types
In the book so far, we’ve used only the default MyISAM table type. There’s a good
reason behind this: you very rarely need to make any other choice in small- to medium-
size applications because it’s a very fast, reliable table type for most tasks. However, at
the time of writing, there are at least nine other choices you can make. This section
gives you an insight into these choices, explaining briefly the pros and cons of the
alternatives to MyISAM.

You can divide the MySQL table types up into two sets using a few different criteria.
The most common division is transaction-safe (TST) versus non-transaction-safe
(NTST):

Table Types | 267

transaction-safe tables (TSTs)
These include the InnoDB and the (no longer supported) Berkeley Database (BDB)
table types. TSTs support transactions and have advanced features that allow you
safely restore and recover from database failures.

Non-transaction-safe tables (NTSTs)
These include the MyISAM, Merge, and Memory (also called Heap) types descri-
bed in this section. They’re less advanced than the TSTs, but that isn’t always bad.
They’re typically much faster to query because there’s less overhead, and they use
much less disk and memory space. They’re also much easier to understand.

We’ve avoided TSTs in this book, because you’re unlikely to need to configure, set
parameters for, and use such tables for most applications.

Another consideration when choosing a table type is whether it supports foreign key
constraints. With foreign-key support, you can tell MySQL that a row in a table
shouldn’t exist without another matching row in another table. For example, you could
use it to stop you from adding a new album for an artist who doesn’t exist. We don’t
use foreign-key constraints, and instead rely on the application to do the checking, not
the database. Doing the checking in the database slows everything down because
MySQL needs to verify the foreign-key constraints before it modifies anything. It also
prevents you from ignoring the rules for good reasons—such as improved performance
—when you want to. Currently, only the InnoDB table type supports foreign-key con-
straints, although support is planned for MyISAM. If you’re not using the InnoDB table
type and specify foreign-key constraints for a field, MySQL won’t complain, but won’t
actually do anything, either. We won’t discuss foreign key constraints in further detail.

You can use the SHOW TABLE STATUS command to display technical information about
how your tables are stored:

mysql> USE music
mysql> SHOW TABLE STATUS;
+--------+--------+---------+------------+------+----------------+-------------+...
| Name | Engine | Version | Row_format | Rows | Avg_row_length | Data_length |...
+--------+--------+---------+------------+------+----------------+-------------+...
| album | MyISAM | 10 | Fixed | 13 | 133 | 1729 |...
| artist | MyISAM | 10 | Fixed | 6 | 131 | 786 |...
| played | MyISAM | 10 | Fixed | 11 | 11 | 121 |...
| track | MyISAM | 10 | Fixed | 153 | 138 | 21114 |...
+--------+--------+---------+------------+------+----------------+-------------+...
... +-------------------+--------------+-----------+----------------+...
... | Max_data_length | Index_length | Data_free | Auto_increment |...
... +-------------------+--------------+-----------+----------------+...
... | 37436171902517247 | 2048 | 0 | NULL |...
... | 36873221949095935 | 2048 | 0 | NULL |...
... | 3096224743817215 | 2048 | 0 | NULL |...
... | 38843546786070527 | 5120 | 0 | NULL |...
... +-------------------+--------------+-----------+----------------+...
... +---------------------+---------------------+------------+-------------------+...
... | Create_time | Update_time | Check_time | Collation |...
... +---------------------+---------------------+------------+-------------------+...

268 | Chapter 7: Advanced Querying

... | 2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latin1_swedish_ci |...

... | 2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latin1_swedish_ci |...

... | 2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latin1_swedish_ci |...

... | 2006-06-12 07:17:06 | 2006-06-12 07:17:06 | | latin1_swedish_ci |...

... +---------------------+---------------------+------------+-------------------+...

... +---------------------+------------+-------------------+----------+...

... | Update_time | Check_time | Collation | Checksum |...

... +---------------------+------------+-------------------+----------+...

... | 2006-06-12 07:17:06 | | latin1_swedish_ci | NULL |...

... | 2006-06-12 07:17:06 | | latin1_swedish_ci | NULL |...

... | 2006-06-12 07:17:06 | | latin1_swedish_ci | NULL |...

... | 2006-06-12 07:17:06 | | latin1_swedish_ci | NULL |...

... +---------------------+------------+-------------------+----------+...

... +----------------+---------+

... | Create_options | Comment |

... +----------------+---------+

... | | |

... | | |

... | | |

... | | |

... +----------------+---------+
4 rows in set (0.00 sec)

The SHOW ENGINES command displays a list of all table types and indicates whether
they’re available for use on your MySQL installation:

mysql> SHOW ENGINES;
+------------+---------+--+
| Engine | Support | Comment |
+------------+---------+--+
MyISAM	DEFAULT	Default engine as of MySQL 3.23 with great performance
MEMORY	YES	Hash based, stored in memory, useful for temporary tables
InnoDB	YES	Supports transactions, row-level locking, and foreign keys
BerkeleyDB	NO	Supports transactions and page-level locking
BLACKHOLE	NO	/dev/null storage engine (anything you write disappears)
EXAMPLE	NO	Example storage engine
ARCHIVE	NO	Archive storage engine
CSV	NO	CSV storage engine
ndbcluster	NO	Clustered, fault-tolerant, memory-based tables
FEDERATED	NO	Federated MySQL storage engine
MRG_MYISAM	YES	Collection of identical MyISAM tables
ISAM	NO	Obsolete storage engine
+------------+---------+--+
12 rows in set (0.00 sec)

For example, if we need a transaction-safe table on this server, we can use the InnoDB
table type.

If you decide you want to use a different table type, there are two ways to exercise your
choice. One way to do it is in the CREATE TABLE statement. For example, you can create
a new Memory table mytable as follows:

mysql> CREATE TABLE mytable (field INT(2)) type=Memory;
Query OK, 0 rows affected, 1 warning (0.08 sec)

Table Types | 269

Alternatively, you can use ALTER TABLE to adjust the type after it’s created. For example,
you could convert the artist table to the InnoDB type:

mysql> ALTER TABLE artist type = InnoDB;

In both examples, you can substitute the alias ENGINE for TYPE. Of course, much like
every other ALTER TABLE statement, the overhead of changing your choice can be high
for large tables.

Note that there are several, rarely used table types we don’t discuss at all in this book.
These include Merge (which is a variant of MyISAM used in large distributed installa-
tions), Example (a nonfunctioning type used to illustrate ideas for programmers), NDB
Cluster (a high-performance type used to partition tables across many computers),
Archive (a high-performance, index-free table type used for very large data collections),
CSV (a table type for working with data stored as comma-separated values in text files),
and Federated (a very new engine—added in MySQL 5.0.3—that’s used to store data
in remote databases). You can find out more about these under “Storage Engines and
Table Types” in the MySQL manual.

MyISAM
Before we discuss the alternatives, let’s focus on the default MyISAM type. It’s an all-
around performer that’s designed for typical applications; it supports very fast querying
and has very low overhead for changes to data. It’s also very flexible: underneath; it
adapts how it stores data, depending on the structure of the tables you ask it to create.
You’ll recall from Chapter 6 that we encouraged you to consider using fixed-length
column types in preference to variable-length types. It was with MyISAM in mind that
we made the recommendation: when you use fixed-length fields, MySQL adapts its
disk-storage structures for fast data access and modification; it’s also easier to recover
data from a corrupted table file if it uses fixed-length fields.

One of the key features of MyISAM is its unique way of locking tables. In brief, MyISAM
locks are whole-table locks. This means that when you decide to lock a table, other
users can have no access to the table at all. While this seems heavy-handed, it works
fine for most typical applications, and management of the locks in this way costs very
little memory and computational overhead. We’ll contrast this with other locking
schemes later when we describe InnoDB and BDB tables.

Unless you can see a good reason, stick with MyISAM while you’re learning MySQL.

Memory or Heap
Prior to MySQL 4.1, the Memory table type was known as the Heap table type. Both
keywords are supported, but the MySQL designers now prefer the term Memory. We’ll
use the new term here, but they’re interchangeable.

270 | Chapter 7: Advanced Querying

The Memory table type is useful when you want to force data to be in main memory
and not on disk. You do this when you want very fast access to a typically small set of
data. It’s ideal, for example, for storing and finding country names, lists of states or
cities, or salutations. Don’t use it for large files, as you need main memory for other
tasks, such as SQL query evaluation and whatever other tasks your computer performs.
Choose it when speed is essential for small tables with data that doesn’t change.

There are serious disadvantages to the Memory type that can make it annoying. The
most serious is that when you stop and restart a MySQL server, the data stored in a
Memory table is lost. This means you need to restore it each time you start the MySQL
server, which you might do by using the SOURCE statement or by using the init-file
option to cause it to load a file on startup; the former is discussed in “Running the
Monitor in Batch Mode” in Chapter 3 and the latter in “Resetting Forgotten MySQL
Passwords” in Chapter 9. This is also a good reason to ensure the data doesn’t change:
use it for tasks where you have a fixed set of choices, not for tasks where you’re dy-
namically updating those choices. Remember that if your MySQL server goes down,
you’ll lose any changes you’ve made if you’ve haven’t explicitly dumped them to a disk
file.

The Memory type has one significant advantage: it’s an extremely fast environment for
searching for exact matches (for example, checking if a country entered by a user
matches a list of valid countries). Its list of disadvantages and limitations is longer:

• As discussed, data is lost when the server stops. You need to reload it each time
the server starts.

• It doesn’t support TEXT or BLOB type columns, or any of their variants.

• Prior to MySQL 4.0.2, it doesn’t support indexes on columns that contain NULL
values.

• Prior to MySQL 4.1.0, the AUTO_INCREMENT feature isn’t supported.

• The tables are stored exclusively in memory. While this is what makes them fast,
it’s a disadvantage if there are many memory-based tables, if the memory-based
tables are large, or if the server needs the memory for other tasks.

InnoDB
The InnoDB type is the heavyweight, reliable, high-performance choice for large-scale,
highly reliable applications. It’s similar to MyISAM but includes extra features that
make it transaction-safe, reliable, and flexible for high-end applications. Choose it if
you’re building an application that needs features MyISAM doesn’t have. In this book,
we don’t discuss those features in detail, so it’s unlikely you’ll need to use it while you’re
learning MySQL. However, note that with MySQL 4.1.5 and later, InnoDB is the de-
fault table type in Windows when you download and install a binary package from the
MySQL AB web site; in practice, this has no impact on you, so don’t be too concerned
whether the default is MyISAM or InnoDB while using this book.

Table Types | 271

The InnoDB table type includes the following features:

Support for transactions
This is discussed at the start of this section.

Advanced crash recovery features
The InnoDB table type uses logs, which are files that contain the actions that
MySQL has taken to change the database. With the combination of a log and the
database, MySQL can recover effectively from power losses, crashes, and other
basic database failures. Of course, nothing can help you recover from loss of a
machine, failure of a disk drive, or other catastrophic failures. For these, you need
offsite backups and new hardware.

Row-level locking
We’ve explained how MyISAM locks at the table level, and the advantages and
disadvantages of this. InnoDB locks at the row level, meaning that only the rows
of data that are affected are unavailable to other users, which promotes better
concurrency (sharing) of resources in certain circumstances. For applications that
write more data than they read, or for applications that change large amounts of
data when they do, InnoDB may be a better choice than MyISAM.

Foreign-key support
InnoDB is currently the only MySQL table type that supports foreign keys.

Fast, flexible indexing
The InnoDB type chooses the right data structure for the task when you create an
index. It can switch from the fast, exact-match hash index to the fast, all-around
B-tree index as the need arises, giving you fast searching for most applications
without you having to explicitly set the index type.

The InnoDB type has the following limitations:

More features means more to understand
You need to know about transactions, foreign keys, data versioning, and other
features to use it effectively.

It’s difficult to set up
It has tens of startup parameters and options, and to use it effectively, you need to
understand and tune these. If you’re planning on using it, you need to know its
details because that’s why you’ve chosen it over MyISAM. Tuning InnoDB requires
a book of its own!

It’s disk-hungry
To support its transaction-safe and robust behavior, InnoDB needs extra disk
space. MyISAM is much more compact because it doesn’t have these features.

Locking overheads
Row locking is more complex than table locking, and so it’s slower and takes more
memory.

272 | Chapter 7: Advanced Querying

Transaction examples

Because transactions are the key feature that make InnoDB different from MyISAM,
we’ll conclude this section with an introductory example that shows how they work.

Suppose you decide you want to add a new artist and album to the database. You want
to ensure that either both actions succeed or neither do, and you want to carry out the
process in complete isolation from other users; you don’t want to insert tracks for a
peculiar artist ID if the artist_id values is already taken for another artist, or other
people using your data until it’s finalized. To do this with a transaction, we need to
first, change the table type for artist and album to InnoDB:

mysql> ALTER TABLE artist type = InnoDB;
Query OK, 7 rows affected, 1 warning (0.54 sec)
Records: 7 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE album type = InnoDB;
Query OK, 14 rows affected, 1 warning (0.01 sec)
Records: 14 Duplicates: 0 Warnings: 0

With the InnoDB tables, we can now perform the following transaction:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO artist VALUES (8, "The Cure");
Query OK, 1 row affected (0.04 sec)

mysql> INSERT INTO album VALUES (8, 1, "Disintegration");
Query OK, 1 row affected (0.00 sec)

mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)

The first statement, START TRANSACTION, tells MySQL that you’re beginning a set of
statements you want in isolation and to be treated as a block or atomic entity. You then
execute the two statements that modify the database. At the conclusion, you tell
MySQL to COMMIT—that is, end the transaction and make the changes to the database.

Transactions also allow you to abort or rollback—that is, undo everything that’s in the
transaction. Let’s try an example where we do just that:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO artist VALUES (9, "The Wh");
Query OK, 1 row affected (0.01 sec)

mysql> ROLLBACK;
Query OK, 0 rows affected (0.04 sec)

mysql> SELECT * FROM artist;
+-----------+---------------------------+
| artist_id | artist_name |

Table Types | 273

+-----------+---------------------------+
1	New Order
2	Nick Cave & The Bad Seeds
3	Miles Davis
4	The Rolling Stones
5	The Stone Roses
6	Kylie Minogue
7	The Beatles
8	The Cure
+-----------+---------------------------+
8 rows in set (0.06 sec)

You can see in the second statement that we’ve misspelled the name of the band The
Who, so we’ve decided to ROLLBACK the transaction. You can see that the rollback was
successful, since the SELECT statement shows the artist wasn’t added.

BDB
The Berkeley Database (BDB) table type can survive the same types of database crashes
as the InnoDB table type, and also has the COMMIT and ROLLBACK functionality we showed
you in the previous section. The Berkeley DB software itself is developed by Sleepycat
Software (http://www.sleepycat.com) and is modified to work with MySQL. While Ber-
keley DB is very stable and is used by over 200 million installations in a very wide range
of products, the interface between MySQL and Berkeley DB is still under development
—and so the MySQL BDB table type is not yet widely used. Inbuilt support for this
table type was dropped from MySQL version 5.1.12 onward. If you really need to use
this table type, you can add support for it as a plug-in storage table, but that’s outside
the scope of this book.

This table type includes the following features:

Transaction support
See our earlier description of transactions in “Transactions and Locking.”

Advanced crash-recovery features
See our earlier description in “InnoDB” for a discussion of logging and recovery.

Page-level locking
We’ve explained how MyISAM and InnoDB lock at the table and row levels, re-
spectively. The BDB locking philosophy lies somewhere between the two, locking
typically a block of rows that reside in a physical disk-drive block.

Fast primary-key indexing
The primary key index is stored with the data, and MySQL can avoid accessing the
data itself if you require only columns that are part of the primary key. However,
this also means that you must have a primary-key index. MySQL will automatically
create a hidden five-byte primary key if you don’t specify one. It’s also slower to
scan all rows in a table if required for a query.

The BDB type has the following limitations:

274 | Chapter 7: Advanced Querying

http://www.sleepycat.com

Gamma-quality interface and limited support
The Berkeley DB engine never became a fully integrated and supported part of
MySQL, and it could not be used on some non-Intel architectures. As mentioned
earlier, inbuilt support for the BDB engine was officially dropped from MySQL
version 5.1.12.

It’s disk-hungry, like InnoDB
With the features that make it transaction safe and robust to recover comes the
cost of extra disk space for storing the information that’s needed. MyISAM is much
more compact because it doesn’t have those features.

It’s difficult to set up
You generally need a compiler to generate the required program files from source
code. There are plenty of startup parameters and options, and you need to under-
stand and tune these to make effective use of the BDB engine. This is a good enough
reason not to use it, unless you really know what you’re doing and why you want
it.

Exercises
Selected exercises in this section concern the music database. You’ll find that the de-
scription of table structures in “The Music Database” in Chapter 4 is a useful reference:

1. Write a join query that displays the name of each artist and the albums they’ve
made. Alongside the album, display the number of tracks on the album.

2. Repeat Question 1, but now display only those albums that have more than 10
tracks.

3. Repeat Question 1, but write it as a nested query.

4. What are the four types of nested queries? For each type, write a sample query on
the music database. Try to use different keywords in each query, selecting from ANY,
ALL, EXISTS (or NOT EXISTS), and IN (or NOT IN).

5. What is the difference between an INNER JOIN, a LEFT JOIN, and a RIGHT JOIN? Does
the order of tables matter in an INNER JOIN?

Exercises | 275

CHAPTER 8

Doing More with MySQL

MySQL is feature-rich. Over the past three chapters, you’ve seen the wide variety of
techniques that can be used to query, modify, and manage data. However, there’s still
much more that MySQL can do, and some of those additional features are the subject
of this chapter.

In this chapter, you’ll learn how to:

• Insert data into a database from other sources, including with queries and from
text files

• Perform updates and deletes using multiple tables in a single statement

• Replace data

• Use MySQL functions in queries to meet more complex information needs

• Analyze queries using the EXPLAIN statement and then improve their performance
with simple optimization techniques

Inserting Data Using Queries
Much of the time, you’ll create tables using data from another source. The examples
you’ve seen so far in Chapter 5 therefore illustrate only part of the problem: they show
you how to insert data that’s already in the form you want—that is, formatted as an
SQL INSERT statement. The other ways to insert data include using SQL SELECT state-
ments on other tables or databases, and reading in files from other sources. This section
shows you how to tackle the former method of inserting data; you’ll learn how to insert
data from a file of comma-separated values in the next section, “Loading Data from
Comma-Delimited Files.”

Suppose you’ve decided to create a new table in the music database. It’s going to store
a shuffle list, tracks that are randomly selected from your music collection, put into a
list, and played to you in that order. It’s a way of tasting part of the collection, redis-
covering some old favorites and learning about hidden treasures in those albums you
haven’t explored. We’ve decided to structure the table as follows:

277

mysql> CREATE TABLE shuffle (
 -> artist_id SMALLINT(5) NOT NULL DEFAULT 0,
 -> album_id SMALLINT(4) NOT NULL DEFAULT 0,
 -> track_id SMALLINT(3) NOT NULL DEFAULT 0,
 -> sequence_id SMALLINT(3) AUTO_INCREMENT NOT NULL,
 -> PRIMARY KEY (sequence_id));
Query OK, 0 rows affected (0.01 sec)

You can download these instructions from the the file shuffle.sql on the book’s web
site. This table stores the details of the track, allowing you to find the artist, album,
and track names using simple queries on the other tables. It also stores a sequence_id,
which is a unique number that enumerates where the track is in your playlist. When
you first start using the shuffle feature, you’ll listen to the track with a sequence_id of
1, then track 2, and so on. When we get to track 999, we can have our application reset
the counter and table so it starts again at 1. Our reasoning is that after you’ve heard
999 tracks, it doesn’t matter if you start hearing the same ones again. You can see that
we’re using the MySQL auto_increment feature to allocate the sequence_id values.

Now we need to fill up our new shuffle table with a random selection of tracks. Im-
portantly, we’re going to do the SELECT and INSERT together in one statement. Here we
go:

mysql> INSERT INTO shuffle (artist_id, album_id, track_id)
 -> SELECT artist_id, album_id, track_id FROM
 -> track ORDER BY RAND() LIMIT 10;
Query OK, 10 rows affected (0.07 sec)
Records: 10 Duplicates: 0 Warnings: 0

Now, let’s investigate what happened before we explain how this command works:

mysql> SELECT * FROM shuffle;
+-----------+----------+----------+-------------+
| artist_id | album_id | track_id | sequence_id |
+-----------+----------+----------+-------------+
1	7	0	1
3	1	3	2
1	3	10	3
6	1	1	4
4	1	8	5
1	7	1	6
1	1	4	7
2	1	6	8
1	6	0	9
4	1	1	10
+-----------+----------+----------+-------------+
10 rows in set (0.00 sec)

You can see that we got 10 tracks into our shuffle playlist, numbered with
sequence_id values from 1 to 10. We’re ready to start playing the shuffled tracks!

Let’s discuss how the command works. There are two parts to the SQL statement: an
INSERT INTO and a SELECT. The INSERT INTO statement lists the destination table into
which the data will be stored, followed by an optional list of column names in

278 | Chapter 8: Doing More with MySQL

parentheses; if you omit the column names, all columns in the destination table are
assumed in the order they appear in a DESCRIBE TABLE or SHOW CREATE TABLE statement.
The SELECT statement outputs a list of columns that must match the type and order of
the list provided for the INSERT INTO statement (or the implicit, complete list if one isn’t
provided). The overall effect is that the rows output from the SELECT statement are
inserted into the destination table by the INSERT INTO statement. In our example,
artist_id, album_id, and track_id values from the track table are inserted into the three
columns with the same names and types in the shuffle table; the sequence_id is auto-
matically created using MySQL’s AUTO_INCREMENT feature, and so isn’t specified in the
statements.

Our example includes the clause ORDER BY RAND(); this orders the results according to
the MySQL function RAND(). The RAND() function returns a pseudorandom number
in the range 0 to 1:

mysql> SELECT RAND();
+------------------+
| RAND() |
+------------------+
| 0.34423927529178 |
+------------------+
1 row in set (0.00 sec)

A pseudorandom number generator doesn’t generate truly random numbers, but rather
generates numbers based on some property of the system, such as the time of day; this
is sufficiently random for most applications. A notable exception is cryptography ap-
plications that depend on the true randomness of numbers for security.

If you ask for the RAND() value in a SELECT operation, you’ll get a random value for each
returned row:

mysql> SELECT *, RAND() FROM artist;
+-----------+---------------------------+------------------+
| artist_id | artist_name | RAND() |
+-----------+---------------------------+------------------+
1	New Order	0.866806439
2	Nick Cave & The Bad Seeds	0.66403617492322
3	Miles Davis	0.71976158834972
4	The Rolling Stones	0.60669944771258
5	The Stone Roses	0.8742125042474
6	Kylie Minogue	0.55096420883291
+-----------+---------------------------+------------------+
6 rows in set (0.00 sec)

Since the values are effectively random, you’ll almost certainly see different results than
we’ve shown here. Let’s return to the INSERT operation. When we ask that the results
be ordered by RAND(), the results of the SELECT statement are sorted in a pseudorandom
order.

Inserting Data Using Queries | 279

The LIMIT 10 is there to limit the number of rows returned by the SELECT; we’ve limited
in this example simply for readability, but in practice you’d limit it to 999 because that’s
the maximum sequence_id you want to use.

The SELECT statement in an INSERT INTO statement can use all of the features of
SELECT statements. You can use joins, aggregation, functions, and any other features
you choose. You can also query data from one database into another, by prefacing the
table names with the database name followed by a period (.) character. For example,
if you wanted to insert the artist table from the music database into a new art database,
you could do the following:

mysql> CREATE DATABASE art;
Query OK, 1 row affected (0.01 sec)

mysql> USE art;
Database changed
mysql> CREATE TABLE people (
 -> people_id SMALLINT(4) NOT NULL,
 -> name CHAR(128) NOT NULL,
 -> PRIMARY KEY (people_id));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO art.people (people_id, name)
 -> SELECT artist_id, artist_name FROM music.artist;
Query OK, 8 rows affected (0.00 sec)
Records: 8 Duplicates: 0 Warnings: 0

You can see that the new people table is referred to as art.people (though it doesn’t
need to be, since art is the database that’s currently in use), and the artist table is
referred to as music.artist (which it needs to be, since it isn’t the database being used).
Note also that the column names don’t need to be the same for the SELECT and the
INSERT.

Sometimes, you’ll encounter duplication issues when inserting with a SELECT statement.
This occurs if you try to insert the same primary key value twice; it won’t happen in
the shuffle table, as long as you automatically allocate a new sequence_id using the
auto_increment feature. However, when you try to insert duplicate key values, MySQL
will abort. Let’s force a duplicate into the shuffle table to show the behavior:

mysql> USE music;
Database changed

mysql> INSERT INTO shuffle (artist_id, album_id, track_id, sequence_id)
 -> SELECT artist_id, album_id, track_id, 1 FROM track LIMIT 1;
ERROR 1062 (23000): Duplicate entry '1' for key 1

If you want MySQL to ignore this and keep going, add an IGNORE keyword after the
INSERT:

mysql> INSERT IGNORE INTO shuffle (artist_id, album_id, track_id, sequence_id)
 -> SELECT artist_id, album_id, track_id, 1 FROM track LIMIT 1;

280 | Chapter 8: Doing More with MySQL

Query OK, 0 rows affected (0.00 sec)
Records: 1 Duplicates: 1 Warnings: 0

MySQL doesn’t complain, but it does report that it encountered a duplicate. Prior to
MySQL 4.0.1, the IGNORE mode was the default behavior, but for later versions, you
have to add the keyword if you want duplicates to be ignored.

Finally, note that for versions of MySQL older than 4.0.14, you couldn’t insert into a
table that’s listed in the SELECT statement, since the SELECT would find the newly inserted
rows and try to insert them again. On newer systems, you still need to avoid duplicate
primary keys:

mysql> INSERT INTO artist SELECT artist_id,artist_name FROM artist;
ERROR 1062 (23000): Duplicate entry '1' for key 1

but you can modify values in the SELECT statement to get a different primary key value
and insert it back into the same table:

mysql> INSERT INTO artist SELECT 10*artist_id,artist_name FROM artist;
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

Here, we’re copying the rows but multiplying their artist_ids by 10 before we insert
them. This is the result:

mysql> SELECT * FROM artist;
+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
1	New Order
2	Nick Cave & The Bad Seeds
3	Miles Davis
4	The Rolling Stones
5	The Stone Roses
6	Kylie Minogue
60	Kylie Minogue
50	The Stone Roses
40	The Rolling Stones
30	Miles Davis
20	Nick Cave & The Bad Seeds
10	New Order
+-----------+---------------------------+
12 rows in set (0.01 sec)

Loading Data from Comma-Delimited Files
Databases are sometimes an afterthought. In fact, a staggeringly large amount of time
spent by IT professionals is devoted to reformatting data from one application to suit
another. It’s very common, for example, to store data using a spreadsheet program such
as Microsoft Excel or OpenOffice Calc, only to realize later—when you’re swamped
with data—that a relational database would have been a better choice. Most spread-
sheet programs allow you to export data as rows of comma-separated values (CSV),

Loading Data from Comma-Delimited Files | 281

often also referred to as comma-delimited format (CDF). You can then import the data
with a little effort into MySQL.

If you need to import large numbers of spreadsheet files, you could use the xls2csv script
(http://search.cpan.org/~ken/xls2csv) to automate the conversion from the Excel spread-
sheet files to text files of comma-separated values.

If you’re not using a spreadsheet program, you can still often use tools such as sed and
awk to convert text data into a CSV format suitable for import by MySQL. This section
shows you the basics of how to import CSV data into MySQL.

Let’s work through an example. We have a list of Australian academics with their
university affiliation that we want to store in a database. At present, it’s stored in a
spreadsheet workbook file named academics.xls and has the format shown in Fig-
ure 8-1. You can see that the surname is stored in the first column, one or more given
names and initials in the second column, and their affiliation in the third column. This
example is formulated from a file that is publicly available at http://www.cs.jcu.edu.au/
acsadb/nameonly_db.html, and the workbook format example is available from the
book’s web site.

Saving the academics.xls file as values with a comma or other character as a delimiter
is easy in most spreadsheet programs. In most versions of Microsoft Excel, you click
on the File menu, then select Save As, and then choose “CSV (Comma delimited)” for

Figure 8-1. List of Australian academics stored in a spreadsheet file

282 | Chapter 8: Doing More with MySQL

http://search.cpan.org/~ken/xls2csv
http://www.cs.jcu.edu.au/acsadb/nameonly_db.html
http://www.cs.jcu.edu.au/acsadb/nameonly_db.html

the “Save as type” field. If you’re using OpenOffice or StarOffice, follow the same steps,
but choose “Text CSV (.csv)” for the “File type” field. When you save the file, you’ll
find it has the same name as the workbook (in this case, academics) but with the ex-
tension .csv.

If you open the file using a text editor (we discussed how to use a text editor in “Using
a Text Editor” in Chapter 2), you’ll see the result: the file has one line per spreadsheet
row, with the value for each column separated by a comma. If you’re on a non-Windows
platform, you may find each line terminated with a ^M, but don’t worry about this; it’s
an artifact of the origins of Windows. Data in this format is often referred to as DOS
format, and most software applications can handle it without problem. Here are a few
lines selected from academics.csv:

Abramson,David,Griffith University
Addie,Ron,University of Southern Queensland
Al-Qaimari,Ghassan,Royal Melbourne Institute of Technology
Allen,Greg,James Cook University
Allen,Robert,Swinburne University of Technology
Anderson,Gerry,University of Ballarat
Armarego,Jocelyn,Curtin University of Technology
Ashenden,Peter,University of Adelaide
Atiquzzaman,M,La Trobe University
Backhouse,Jenny,"University College, ADFA, UNSW"

If there are commas within values, the whole value is enclosed in quotes, as in the last
line shown here.

Let’s import this data into MySQL. First, create the new academics database:

mysql> CREATE DATABASE academics;

and choose this as the active database:

mysql> USE academics;

Now, create the details table to store the data. This needs to handle three fields: the
surname, the given names, and the institution:

mysql> CREATE TABLE details (surname CHAR(40), given_names CHAR(40),
 institution CHAR(40));

We’ve allocated 40 characters for each field.

Now that we’ve set up the database table, we can import the data from the file using
the LOAD DATA INFILE command:

mysql> LOAD DATA INFILE 'academics.csv' INTO TABLE details FIELDS TERMINATED BY ',';

If the academics.csv file isn’t in the current directory, you’ll need to specify the full path
—for example, /home/adam/academics.csv or C:\academics.csv. The MySQL server
must have permission to read this file; for example, if the server is running as the user
mysql on a Linux or Mac OS X system, the datafile must have its permissions set such
that this user can read it.

Loading Data from Comma-Delimited Files | 283

The clause FIELDS TERMINATED BY ',' specifies the character that delimits the field
values in the text file. For example, if you have a file called academics.colon_sv with
values separated by colons, you can import it by specifying the colon as the field
terminator:

mysql> LOAD DATA INFILE 'academics.colon_sv' INTO
 -> TABLE details FIELDS TERMINATED BY ':';

Writing Data into Comma-Delimited Files
You can use the SELECT INTO OUTFILE statement to write out the result of a query into
a comma-separated values (CSV) file that can be opened by a spreadsheet or other
program.

Let’s export the list of artists from our music database into a CSV file. The query used
to list all the artists is shown below:

mysql> USE music;
Database changed

mysql> SELECT artist_name, album_name FROM
 -> artist, album WHERE artist.artist_id=album.artist_id;
+---------------------------+--+
| artist_name | album_name |
+---------------------------+--+
New Order	Retro - John McCready FAN
New Order	Substance (Disc 2)
New Order	Retro - Miranda Sawyer POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave & The Bad Seeds	Let Love In
Miles Davis	Live Around The World
Miles Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+---------------------------+--+
13 rows in set (0.10 sec)

We can change this SELECT query slightly to write this data into an output file as comma-
separated values:

mysql> SELECT artist_name, album_name FROM
 -> artist, album WHERE artist.artist_id=album.artist_id
 -> INTO OUTFILE '/tmp/artists_and_albums.csv' FIELDS TERMINATED BY ',';

Query OK, 13 rows affected (0.02 sec)

Here, we’ve saved the results into the file artists_and_albums.csv in the /tmp directory;
the MySQL server must be able to write to the directory that you specify. On a Windows
system, specify a path such as C:\artists_and_albums.csv instead. If you omit the FIELDS

284 | Chapter 8: Doing More with MySQL

TERMINATED BY clause, the server will use tabs as the default separator between the data
values.

You can view the contents of the file artists_and_albums.csv in a text editor, or import
it into a spreadsheet program:

New Order,Retro - John McCready FAN
New Order,Substance (Disc 2)
New Order,Retro - Miranda Sawyer POP
New Order,Retro - New Order / Bobby Gillespie LIVE
New Order,Power\, Corruption & Lies
New Order,Substance 1987 (Disc 1)
New Order,Brotherhood
Nick Cave & The Bad Seeds,Let Love In
Miles Davis,Live Around The World
Miles Davis,In A Silent Way
The Rolling Stones,Exile On Main Street
The Stone Roses,Second Coming
Kylie Minogue,Light Years

Notice how the comma in Power, Corruption & Lies has been automatically escaped
with a backslash to distinguish it from the separator. Spreadsheet programs understand
this and remove the backslash when importing the file.

Creating Tables with Queries
You can create a table or easily create a copy of a table using a query. This is useful
when you want to build a new database using existing data—for example, you might
want to copy across a list of countries—or when you want to reorganize data for some
reason. Data reorganization is common for producing reports, merging data from two
or more tables, and redesigning on the fly. This short section shows you how it’s done.

From MySQL 4.1 onward, you can easily duplicate the structure of a table using a
variant of the CREATE TABLE syntax:

mysql> CREATE TABLE artist_2 LIKE artist;
Query OK, 0 rows affected (0.24 sec)

mysql> DESCRIBE artist_2;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| artist_id | smallint(5) | | PRI | 0 | |
| artist_name | char(128) | YES | | NULL | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.09 sec)

mysql> SELECT * FROM artist_2;
Empty set (0.30 sec)

Creating Tables with Queries | 285

The LIKE syntax allows you to create a new table with exactly the same structure as
another, including keys. You can see that it doesn’t copy the data across. You can also
use the IF NOT EXISTS and TEMPORARY features with this syntax.

If you want to create a table and copy some data, you can do that with a combination
of the CREATE TABLE and SELECT statements. Let’s remove the artist_2 table and re-
create it using this new approach:

mysql> DROP TABLE artist_2;
Query OK, 0 rows affected (0.08 sec)

mysql> CREATE TABLE artist_2 SELECT * from artist;
Query OK, 7 rows affected (0.02 sec)
Records: 7 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM artist_2;
+-----------+-----------------------------+
| artist_id | artist_name |
+-----------+-----------------------------+
1	New Order
2	Nick Cave and The Bad Seeds
3	Miles Dewey Davis
4	The Rolling Stones
5	The Stone Roses
6	Kylie Minogue
10	Jane's Addiction
+-----------+-----------------------------+
7 rows in set (0.01 sec)

An identical table artist_2 is created, and all of the data is copied across by the
SELECT statement.

This technique is powerful. You can create new tables with new structures and use
powerful queries to populate them with data. For example, here’s a report table that’s
created to contain the names of artists and albums in our database:

mysql> CREATE TABLE report (artist_name CHAR(128), album_name CHAR(128))
 -> SELECT artist_name, album_name FROM artist INNER JOIN album
 -> USING (artist_id);
Query OK, 13 rows affected (0.45 sec)
Records: 13 Duplicates: 0 Warnings: 0

You can see that the syntax is a little different from the previous example. In this ex-
ample, the new table name, report, is followed by a list of column names and types in
parentheses; this is necessary because we’re not duplicating the structure of an existing
table. Then, the SELECT statement follows, with its output matching the new columns
in the new table. You can check the contents of the new table:

mysql> SELECT * FROM report;
+-----------------------------+--+
| artist_name | album_name |
+-----------------------------+--+
| New Order | Retro - John McCready FAN |
| New Order | Substance (Disc 2) |

286 | Chapter 8: Doing More with MySQL

New Order	RETRO - MIRANDA SAWYER POP
New Order	Retro - New Order / Bobby Gillespie LIVE
New Order	Power, Corruption & Lies
New Order	Substance 1987 (Disc 1)
New Order	Brotherhood
Nick Cave and The Bad Seeds	Let Love In
Miles Dewey Davis	LIVE AROUND THE WORLD
Miles Dewey Davis	In A Silent Way
The Rolling Stones	Exile On Main Street
The Stone Roses	Second Coming
Kylie Minogue	Light Years
+-----------------------------+--+
13 rows in set (0.00 sec)

So, in this example, the artist_name and album_name values from the SELECT statement
are used to populate the new artist_name and album_name columns in the report table.

Creating tables with a query has a major caveat that you need to be careful about. It
doesn’t copy the indexes (or foreign keys, if you use them); this is a feature, since it
gives you a lot of flexibility, but it can be a catch if you forget. Have a look at our
artist_2 example:

mysql> DESCRIBE artist_2;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| artist_id | smallint(5) | | | 0 | |
| artist_name | char(128) | YES | | NULL | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.31 sec)

mysql> SHOW CREATE TABLE artist_2;
+----------+---+
| Table | Create Table |
+----------+---+
| artist_2 | CREATE TABLE `artist_2` (
 `artist_id` smallint(5) NOT NULL default '0',
 `artist_name` char(128) default NULL)
 ENGINE=MyISAM DEFAULT CHARSET=latin1 |
+----------+---+
1 row in set (0.33 sec)

You can see that there’s no primary key; if there had been other keys, they’d be missing
too.

To copy indexes across to the new table, there are at least three things you can do. The
first is to use the LIKE statement to create the empty table with the indexes, as described
earlier and then copy the data across using an INSERT with a SELECT statement as de-
scribed earlier in this chapter in “Inserting Data Using Queries.”

The second thing you can do is to use CREATE TABLE with a SELECT statement, and then
add indexes using ALTER TABLE as described in Chapter 6.

Creating Tables with Queries | 287

The third way is to use the UNIQUE (or PRIMARY KEY or KEY) keyword in combination with
the CREATE TABLE and SELECT to add a primary-key index. Here’s an example of this
approach:

mysql> CREATE TABLE artist_2 (UNIQUE(artist_id))
 -> SELECT * FROM artist;
Query OK, 7 rows affected (0.27 sec)
Records: 7 Duplicates: 0 Warnings: 0

mysql> DESCRIBE artist_2;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| artist_id | smallint(5) | | PRI | 0 | |
| artist_name | char(128) | YES | | NULL | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.26 sec)

The UNIQUE keyword is applied to the artist_id column, making it the primary key in
the newly created table. The keywords UNIQUE and PRIMARY KEY can be interchanged.

You can use different modifiers when you’re creating tables using these techniques. For
example, here’s a table created with defaults and other settings:

mysql> CREATE TABLE artist_3
 -> (artist_id SMALLINT(5) NOT NULL AUTO_INCREMENT,
 -> artist_name CHAR(128) NOT NULL DEFAULT "New Order",
 -> PRIMARY KEY (artist_id), KEY (artist_name))
 -> SELECT * FROM artist;
Query OK, 7 rows affected (0.31 sec)
Records: 7 Duplicates: 0 Warnings: 0

Here, we’ve set NOT NULL for the new columns, used the AUTO_INCREMENT feature on
artist_id, and created two keys. Anything you can do in a regular CREATE TABLE state-
ment can be done in this variant; just remember to add those indexes explicitly!

Updates and Deletes with Multiple Tables
In Chapter 5, we showed you how to update and delete data. In the examples there,
each update and delete affected one table and used properties of that table to decide
what to modify. This section shows you more complex updates and deletes, with which
you can delete or update rows from more than one table in one statement and can use
those or other tables to decide what rows to change.

Deletion
Imagine you’ve just run out of disk space or you’re sick of browsing unwanted data in
your music collection. One way to solve this problem is to remove some data, and it’d
make sense to remove tracks you’ve never listened to. Unfortunately, this means you
need to remove data from the track table using information from the played table.

288 | Chapter 8: Doing More with MySQL

With the techniques we’ve described so far in the book, there’s no way of doing this
without creating a table that combines the two tables (perhaps using INSERT with
SELECT), removing unwanted rows, and copying the data back to its source. In fact, this
is exactly what you had to do prior to MySQL 4.0. This section shows you how you
can perform this procedure and other more advanced types of deletion in recent ver-
sions of MySQL.

Consider the query you need to write to find tracks you’ve never played. One way to
do it is to use a nested query—following the techniques we showed you in Chapter 7
—with the NOT EXISTS clause. Here’s the query:

mysql> SELECT track_name FROM track WHERE NOT EXISTS
 -> (SELECT * FROM played WHERE
 -> track.artist_id = played.artist_id AND
 -> track.album_id = played.album_id AND
 -> track.track_id = played.track_id);
+----------------------------+
| track_name |
+----------------------------+
| Do You Love Me? |
| Nobody's Baby Now |
| Loverman |
| Jangling Jack |
| Red Right Hand |
| I Let Love In |
| Thirsty Dog |
| Ain't Gonna Rain Anymore |
| Lay Me Low |
| Do You Love Me? (Part Two) |
...
+----------------------------+

We’ve shown only 10 tracks from the output, but there are actually 142 tracks we’ve
never listened to. You can probably see how the query works, but let’s briefly discuss
it anyway before we move on. You can see it uses a correlated subquery, where the
current row being processed in the outer query is referenced by the subquery; you can
tell this because three columns from track are referenced, but the track table isn’t listed
in the FROM clause of the subquery. The subquery produces output when there’s a row
in the played table that matches the current row in the outer query (and so there’s a
track that’s been played). However, since the query uses NOT EXISTS, the outer query
doesn’t produce output when this is the case, and so the overall result is that rows are
output for tracks that haven’t been played.

Now let’s take our query and turn it into a DELETE statement. Here it is:

mysql> DELETE track FROM track WHERE NOT EXISTS
 -> (SELECT * FROM played WHERE track.artist_id = played.artist_id AND
 -> track.album_id = played.album_id AND
 -> track.track_id = played.track_id);
Query OK, 142 rows affected (0.01 sec)

Updates and Deletes with Multiple Tables | 289

You can see that the subquery remains the same, but the outer SELECT query is replaced
by a DELETE statement. The DELETE statement syntax is as follows: first, the keyword
DELETE is followed by the table or tables from which rows should be removed; second,
the keyword FROM is followed by the table or tables that should be queried to determine
which rows to delete; and, last, a WHERE clause (and any other query clauses, such as
GROUP BY or HAVING) follow. In this query, rows are deleted from the track table using
the track table in the query along with the played table in the nested subquery.

As another example, let’s clean up our database to remove albums and tracks by the
band New Order:

mysql> DELETE FROM track, album USING artist, album, track WHERE
 -> artist_name = "New Order" AND
 -> artist.artist_id = album.artist_id AND
 -> artist.artist_id = track.artist_id AND
 -> album.album_id = track.album_id;
Query OK, 93 rows affected (0.00 sec)

This query deletes rows from track and album, based on a query that involves artist,
album, and track. You can see the result is that 93 rows are removed: 7 albums and 86
tracks.

In this syntax, the keywords DELETE FROM are followed by the table or tables from which
you want to delete rows. The keyword USING then follows with a list of tables that are
used in the query part of the statement (and then the WHERE clause or other associated
query mechanisms).

With MySQL versions between 4.0 and 4.02, you had to use the following syntax:

mysql> DELETE track, album FROM artist, album, track WHERE
 -> artist_name = "New Order" AND
 -> artist.artist_id = album.artist_id AND
 -> artist.artist_id = track.artist_id AND
 -> album.album_id = track.album_id;
Query OK, 93 rows affected (0.10 sec)

The query identifies the artist_id of "New Order" and performs a join between the
tables.

We prefer the newer syntax because it is clearer: DELETE FROM some tables USING other
tables to drive the querying process.

Note that you can use clauses such as LEFT JOIN and INNER JOIN in DELETE statements.
However, you can’t delete from a table that’s read from in a nested subquery, such as
in the following line:

mysql> DELETE FROM artist WHERE artist_id IN (SELECT artist_id FROM artist);
ERROR 1093 (HY000): You can't specify target table 'artist' for update in
 FROM clause

In multiple table deletes, you can’t use ORDER BY or LIMIT clauses.

290 | Chapter 8: Doing More with MySQL

Updates
Now we’ll contrive an example using the music database to illustrate multiple-table
updates. We’ve decided to highlight albums we’ve played. Our method of highlighting
is to change the album’s name to all capital letters. To begin, let’s display albums we’ve
played:

mysql> SELECT DISTINCT album_name FROM
 -> album INNER JOIN track USING (artist_id, album_id)
 -> INNER JOIN played USING (artist_id, album_id, track_id);
+----------------------------+
| album_name |
+----------------------------+
| Retro - Miranda Sawyer POP |
| Live Around The World |
+----------------------------+
2 rows in set (0.00 sec)

Now, let’s put that query into an UPDATE statement:

mysql> UPDATE album INNER JOIN track USING (artist_id, album_id)
 -> INNER JOIN played USING (artist_id, album_id, track_id)
 -> SET album_name = UPPER(album_name);
Query OK, 2 rows affected (0.01 sec)
Rows matched: 11 Changed: 2 Warnings: 0

Let’s look at the syntax: a multiple-table update looks similar to a SELECT query. The
UPDATE statement is followed by a list of tables that incorporates whatever join clauses
you need or prefer; in this example, we’ve used INNER JOIN to bring together the artist,
album, and track tables. This is followed by the keyword SET, with assignments to in-
dividual columns; in this example, you can see that only one column is modified (to
put the album name in uppercase), so columns in all other tables besides album aren’t
modified. An optional WHERE may in turn follow (but doesn’t in this example, since the
USING clause does it for us).

To illustrate using a WHERE clause, here’s the previous query rewritten with the join
expressed using WHERE:

mysql> UPDATE artist, album, track, played
 -> SET album_name = UPPER(album_name)
 -> WHERE artist.artist_id = album.artist_id AND
 -> album.artist_id = track.artist_id AND
 -> album.album_id = track.album_id AND
 -> track.artist_id = played.artist_id AND
 -> track.album_id = played.album_id AND
 -> track.track_id = played.track_id;
Query OK, 2 rows affected (0.00 sec)
Rows matched: 11 Changed: 2 Warnings: 0

The method that you choose to use is just personal preference, and that might be driven
by the amount of typing you’re prepared to do!

As with multiple-table deletes, there are some limitations on updates:

Updates and Deletes with Multiple Tables | 291

• You can’t use ORDER BY.

• You can’t use LIMIT.

• You can’t update a table that’s read from in a nested subquery.

Other than that, multiple-table updates are much the same as single-table ones.

Replacing Data
You’ll sometimes want to overwrite data. You can do this in two ways using the tech-
niques we’ve shown previously:

• Delete an existing row using its primary key and then insert a new replacement
with the same primary key.

• Update a row using its primary key, replacing some or all of the values (except the
primary key).

The REPLACE statement gives you a third, convenient way to change data. This section
explains how it works.

The REPLACE statement is just like INSERT, but with one difference. You can’t INSERT a
new row if there is an existing row in the table with the same primary key, You can get
around this problem with a REPLACE query, which first removes any existing row with
the same primary key and then inserts the new one.

Let’s try an example, where we’ll replace the row for "Nick Cave & The Bad Seeds":

mysql> REPLACE artist VALUES (2, "Nick Cave and The Bad Seeds");
Query OK, 2 rows affected (0.02 sec)

You can see that MySQL reports that two rows were affected: first, the old row was
deleted, and, second, the new row was inserted. You can see that the change we made
was minor—we just changed the & to an “and”—and therefore, it could easily have
been accomplished with an UPDATE. Because the tables in the music database contain
few columns, it’s difficult to illustrate an example in which REPLACE looks simpler than
UPDATE.

You can use the different INSERT syntaxes with REPLACE, including using SELECT queries.
Here are some examples:

mysql> REPLACE INTO artist VALUES (2, "Nick Cave and The Bad Seeds");
Query OK, 2 rows affected (0.00 sec)

mysql> REPLACE INTO artist (artist_id, artist_name)
 -> VALUES (2, "Nick Cave and The Bad Seeds");
Query OK, 2 rows affected (0.00 sec)

mysql> REPLACE artist (artist_id, artist_name)
 -> VALUES (2, "Nick Cave and The Bad Seeds");
Query OK, 2 rows affected (0.01 sec)

292 | Chapter 8: Doing More with MySQL

mysql> REPLACE artist SET artist_id = 2,
 -> artist_name = "Nick Cave and The Bad Seeds";
Query OK, 2 rows affected (0.00 sec)

The first variant is almost identical to our previous example, except it includes the
optional INTO keyword (which, arguably, improves the readability of the statement).
The second variant explicitly lists the column names that the matching values should
be inserted into. The third variant is the same as the second, without the optional
INTO keyword. The final variant uses the SET syntax; you can add the optional keyword
INTO to this variant if you want. Note that if you don’t specify a value for a column, it’s
set to its default value, just like for INSERT.

You can also bulk-replace into a table, removing and inserting more than one row.
Here’s an example:

mysql> REPLACE artist (artist_id, artist_name)
 -> VALUES (2, "Nick Cave and The Bad Seeds"),
 -> (3, "Miles Dewey Davis");
Query OK, 4 rows affected (0.00 sec)
Records: 2 Duplicates: 2 Warnings: 0

Note that four rows are affected: two deletions and two insertions. You can also see
that two duplicates were found, meaning the replacement of existing rows succeeded.
In contrast, if there isn’t a matching row in a REPLACE statement, it acts just like an
INSERT:

mysql> REPLACE INTO artist VALUES (10, "Jane's Addiction");
Query OK, 1 row affected (0.22 sec)

You can tell that only the insert occurred, since only one row was affected.

Replacing also works with a SELECT statement. Recall the shuffle table from “Inserting
Data Using Queries,” at the beginning of this chapter. Suppose you’ve added 10 tracks
to it, but you don’t like the choice of the seventh track in the playlist. Here’s how you
can replace it with a random choice of another track:

mysql> REPLACE INTO shuffle (artist_id, album_id, track_id, sequence_id)
 -> SELECT artist_id, album_id, track_id, 7 FROM
 -> track ORDER BY RAND() LIMIT 1;
Query OK, 2 rows affected (0.01 sec)
Records: 1 Duplicates: 1 Warnings: 0

Again, the syntax is the same as with INSERT, but a deletion is attempted (and succeeds!)
before the insertion. Note that we keep the value of the sequence_id as 7.

If a table doesn’t have a primary key, replacing doesn’t make sense. This is because
there’s no way of uniquely identifying a matching row in order to delete it. When you
use REPLACE on such a table, its behavior is identical to INSERT. Also, as with INSERT,
you can’t replace rows in a table that’s used in a subquery. Finally, note the difference
between INSERT IGNORE and REPLACE: the first keeps the existing data with the duplicate
key and does not insert the new row, while the second deletes the existing row and
replaces it with the new one.

Replacing Data | 293

The EXPLAIN Statement
You’ll sometimes find that MySQL doesn’t run queries as quickly as you expect. For
example, you’ll often find that a nested query runs slowly. You might also find—or, at
least, suspect—that MySQL isn’t doing what you hoped, because you know an index
exists but the query still seems slow. You can diagnose and solve query optimization
problems using the EXPLAIN statement.

The EXPLAIN statement helps you learn about a SELECT query. Specifically, it tells you
how MySQL is going to do the job in terms of the indexes, keys, and steps it’ll take if
you ask it to resolve a query. Let’s try a simple example that illustrates the idea:

mysql> EXPLAIN SELECT * FROM artist;
+---+------------+-------+-----+--------------+-----+--------+-----+-----+------+
|id |select_type |table |type |possible_keys |key |key_len |ref |rows |Extra |
+---+------------+-------+-----+--------------+-----+--------+-----+-----+------+
| 1 |SIMPLE |artist |ALL |NULL |NULL | NULL |NULL | 6 | |
+---+------------+-------+-----+--------------+-----+--------+-----+-----+------+
1 row in set (0.10 sec)

The statement gives you lots of information. It tells you in this example that:

• The id is 1, meaning the row in the output refers to the first (and only!) SELECT
statement in this query. In the query:

SELECT * FROM artist WHERE artist_id in (SELECT artist_id FROM played);

each SELECT statement will have a different id in the EXPLAIN output.

• The select_type is SIMPLE, meaning it doesn’t use a UNION or subqueries.

• The table that this row is referring to is artist.

• The type of join is ALL, meaning all rows in the table are processed by this SELECT
statement. This is often bad—but not in this case—and we’ll explain why later.

• The possible_keys that could be used are listed. In this case, no index will help
find all rows in a table, so NULL is reported.

• The key that is actually used is listed, taken from the list of possible_keys. In this
case, since no key is available, none is used.

• The key_len (key length) of the key MySQL plans to use is listed. Again, no key
means a NULL key_len is reported.

• The ref (reference) columns or constants that are used with the key is listed. Again,
none in this example.

• The rows that MySQL thinks it needs to process to get an answer are listed.

• Any Extra information about the query resolution is listed. Here, there’s none.

In summary, the output tells you that all rows from the artist table will be processed
(there are six of them), and no indexes will be used to resolve the query. This makes
sense and is probably exactly what you expected would happen.

294 | Chapter 8: Doing More with MySQL

We’ll now give the EXPLAIN statement some work to do. Let’s ask it to explain an INNER
JOIN between artist and album:

mysql> EXPLAIN SELECT * FROM artist INNER JOIN album USING (artist_id);
+----+-------------+--------+------+---------------+...
| id | select_type | table | type | possible_keys |...
+----+-------------+--------+------+---------------+...
| 1 | SIMPLE | artist | ALL | PRIMARY |...
| 1 | SIMPLE | album | ref | PRIMARY |...
+----+-------------+--------+------+---------------+...
...+---------+---------+------------------------+------+-------+
...| key | key_len | ref | rows | Extra |
...+---------+---------+------------------------+------+-------+
...| | | | 6 | |
...| PRIMARY | 2 | music.artist.artist_id | 1 | |
...+---------+---------+------------------------+------+-------+
2 rows in set (0.01 sec)

Before we discuss the output, think about how the query could be evaluated. MySQL
could go through each row in the artist table and look up the album table to see what
rows match. Or it could go through each row in the album table and look up the
artist table to see what rows match. Let’s see what MySQL has decided to do. This
time, there are two rows because there are two tables in the join. Let’s run through this,
focusing on those things that are different from the previous example:

• The first row is basically identical to the previous example. All rows in the
artist table are processed, so MySQL has decided that the same method of solving
the query is its preferred way here, too.

• The join type for the album table is ref, meaning that all rows in the album table
that match rows in the artist table will be read. In practice, this means one or
more rows from the album table will be read for each artist_id.

• The possible_keys for artist and album are both only the PRIMARY key. A key isn’t
used in artist (because we’re scanning the whole table), but the key used for
album is that table’s PRIMARY key

• The primary key used to search album has a key_len of 2 and is searched using the
music.artist.artist_id value from the artist table

Again, this seems like a sensible strategy, and it fits with what we thought about in our
design of the database.

Exercises
1. Write the monitor command to import the file academics.tsv, which has its values

separated by tabs, into the details table. Hint: the tab character is shown with the
\t escape sequence.

2. When would you need to insert data using a query?

3. What’s the difference between REPLACE and INSERT IGNORE?

Exercises | 295

4. What can you tell from this output produced by the EXPLAIN command?

+----+-------------+------------+-------+---------------+---------+...
| id | select_type | table | type | possible_keys | key |...
+----+-------------+------------+-------+---------------+---------+...
| 1 | SIMPLE | supervisor | const | PRIMARY | PRIMARY |...
| 1 | SIMPLE | student | ALL | NULL | NULL |...
| 1 | SIMPLE | supervises | index | NULL | PRIMARY |...
+----+-------------+------------+-------+---------------+---------+...
... +---------+-------+------+------------------------------------+
... | key_len | ref | rows | Extra |
... +---------+-------+------+------------------------------------+
... | 4 | const | 1 | Using index; Using temporary |
... | NULL | NULL | 95 | |
... | 12 | NULL | 570 | Using where; Using index; Distinct |
... +---------+-------+------+------------------------------------+
3 rows in set (0.00 sec)

5. What can you tell from this output produced by the EXPLAIN command?

+-----+--------------+------------+--------+---------------+---------+---------+...
| id | select_type | table | type | possible_keys | key | key_len |...
+-----+--------------+------------+--------+---------------+---------+---------+...
| 1 | PRIMARY | played | index | PRIMARY | PRIMARY | 10 |...
| 1 | PRIMARY | track | eq_ref | PRIMARY | PRIMARY | 6 |...
| 2 | UNION | played | index | PRIMARY | PRIMARY | 10 |...
| 2 | UNION | track | eq_ref | PRIMARY | PRIMARY | 6 |...
| NULL| UNION RESULT | <union1,2> | ALL | | | |...
+-----+--------------+------------+--------+---------------+---------+---------+...
...+--+------+...
...| ref | rows |...
...+--+------+...
...| | 12 |...
...| music.played.artist_id,music.played.album_id,music.played.track_id | 1 |...
...| | 12 |...
...| music.played.artist_id,music.played.album_id,music.played.track_id | 1 |...
...| | NULL |...
...+--+------+...
...+-----------------------------+
...| Extra |
...+-----------------------------+
...| Using index; Using filesort |
...| |
...| Using index; Using filesort |
...| |
...| |
...+-----------------------------+
5 rows in set (0.01 sec)

296 | Chapter 8: Doing More with MySQL

CHAPTER 9

Managing Users and Privileges

Learning MySQL, developing applications, and deploying finished software are tasks
with very different security requirements. While you’re learning the basics—especially
if you’re working on your own machine—it’s not usually critical if you accidentally
remove databases or tables, change data, or don’t carefully limit access to the MySQL
server and its databases. However, when you develop and maintain real applications,
it’s crucial that you secure your server and databases against accidental or deliberate
acts that can delete, change, or expose your data. Fortunately, using MySQL’s sophis-
ticated user and privilege management tools, you can properly set up and secure access
to your database server. This chapter shows you how.

In addition to setting up the MySQL server access privileges, you should separately
ensure the physical security of your host computer and backup media, and proper
configuration of permissions at the operating system level. We’ve explained some im-
portant aspects of this in Chapters 2 and 10, and we’ll also look at this topic briefly in
this chapter.

The MySQL server comes with the user root, who can do everything on the MySQL
server, including creating and deleting users, databases, tables, indexes, and data. Up
to this point, we’ve connected to the server under this superuser account, which is very
convenient, but not very secure—remember the saying about how absolute power cor-
rupts absolutely?

Most applications don’t need superuser privileges for day-to-day activities. You can
define less powerful users who have only the privileges they need to get their jobs done.
You may want to prevent users creating or changing indexes, tables, or databases. You
may even want to prevent users doing more than simply running SELECT statements on
a given database or even particular tables in a database.

For example, you could have a user allmusic who can perform any database operation
on the music database, and the user partmusic who can read data from the music data-
base but can’t change anything.

In this way, if the allmusic account is compromised, an attacker can at most delete the
music database, but nothing else—and, of course, you would have backups, wouldn’t

297

you?! Similarly, a manager creating a report of daily sales wouldn’t be able to acciden-
tally—or deliberately—change any data.

It’s also a good idea to use less privileged accounts yourself wherever possible; if you
log in as the MySQL root user for routine tasks, there’s a greater likelihood that an
unauthorized user will somehow be able to gather enough information to access that
account. You might even make a mistake and inadvertently damage your database.

In this chapter, we show you how to:

• Understand MySQL privileges

• Add, remove, and change MySQL users and passwords

• GRANT and REVOKE privileges

• Understand MySQL’s default security configuration

• Devise a security policy for your MySQL server

• Manage users and privileges using SQL queries

• Limit server usage by user

Understanding Users and Privileges
MySQL, like most other database servers, has users who have privileges that determine
whether they can create, modify, delete, and query databases, and also whether they
can modify the privileges and control the server. In practice, this control can be coarse-
grained—a user may be allowed or prevented from accessing the server—or fine-
grained, where a user can access only some tables in a database or only some columns
in a table. Some database servers support only coarse-grained control, while others such
as MySQL allow both coarse-grained and fine-grained control over access.

MySQL allows you to control which users can access the server; the databases, tables,
and columns on the server that they can access; and the types of actions that users can
carry out on these structures. For example, MySQL allows you to explicitly control
whether users can run the SELECT, UPDATE, INSERT, and DELETE statements, as well as
whether they can LOCK TABLES, ALTER structures, or create and remove indexes. Most of
the time, you’ll create users who can access and modify the data in a database but
otherwise have no privileges to adjust the server configuration, change the database’s
structure, or access other databases. We show you how to create different users and
list all of the privileges later in this section.

MySQL users are distinct from the operating system users on the server computer.
When you set up your machine, you automatically create superuser accounts that allow
configuration of the server—the root user on a Linux or Mac OS X server, and the
Administrator on Windows—and also one or more user accounts that you use to work
with the server. For example, you could have a superuser account that’s used only when
installing or configuring software such as MySQL or a new word processor, and an

298 | Chapter 9: Managing Users and Privileges

ordinary account that you log in to while writing, reading email, web browsing, and
doing the other things you normally do.

The ordinary account can’t access or modify sensitive system-wide files, such as the
system’s hardware settings, or the MySQL server logfiles or datafiles. On a single-user
system, having a less privileged account for day-to-day use helps reduce the chances of
doing silly things such as deleting important system files or installing malware by mis-
take. On a corporate or university server, this security is essential: it not only helps
prevent accidental damage or malicious attack, but also helps protect confidential files
and data.

If a system account on your server can access the MySQL configuration, it can bypass
the monitor (and every other MySQL client) and carry out actions directly on the server
or databases. For example, the system root user can manipulate any MySQL instance
on the system, while an ordinary user can manipulate any MySQL instance that runs
under her account. With this access, you can bypass the MySQL server’s authentication
and user-management scheme by starting the server with the skip-grant-tables option;
we discuss this and other ways to get around a forgotten root password in “Resetting
Forgotten MySQL Passwords,” later in this chapter. You can also browse data, indexes,
and database structures using a text editor, or just copy the databases elsewhere and
access them using another installation of MySQL. Therefore, you should take the usual
precautions of maintaining physical security of your server, keeping operating system
patches up-to-date, adding a network firewall, using appropriate permission settings
on files and directories, and requiring hard-to-guess passwords. Remember, if your
server is insecure or compromised, your MySQL server is insecure; it doesn’t matter
how the MySQL users and privileges are configured. You should be similarly vigilant
about access to your database backups.

Creating and Using New Users
To create a new user, you need to have permission to do so; the root user has this
permission, so connect to the monitor as the root user:

$ mysql --user=root --password=the_mysql_root_password

Now create a new user called allmusic who’ll connect from the same system as the one
the MySQL server is running on (localhost). We’ll grant this user all privileges on all
tables in the music database (music.*) and assign the password the_password:

mysql> GRANT ALL ON music.* TO 'allmusic'@'localhost' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.02 sec)

This instruction creates the new user and assigns some privileges. Now, let’s discuss
what we’ve done in more detail.

The GRANT statement gives privileges to users. Immediately following the keyword
GRANT is the list of privileges that are given, which, in the previous case, is ALL (all simple

Creating and Using New Users | 299

privileges); we discuss the actual privileges later. Following the privilege list is the
required keyword ON, and the databases or tables that the privileges are for. In the
example, we grant the privileges for music.*, which means the music database and all
its tables. If the specified MySQL user account does not exist, it will be created auto-
matically by the GRANT statement.

In the example, we’re assigning privileges to 'allmusic'@'localhost', which means the
user has the name allmusic and can connect to the server only from the localhost, the
machine on which the database server is installed. There’s a 16-character limit on user-
names. The at symbol (@) implies that the user is trying to connect to the server from
the specified host; the MySQL user account doesn’t need to correspond to any system
user account on that host, and so there is no relation to any email address. The quotes
surrounding the username and the client hostname are optional; you need them only
if either the username or the hostname has special characters, such as hyphens (-) or
wildcard characters. For example, you could write:

mysql> GRANT ALL ON music.* TO ali@localhost IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.02 sec)

However, we recommend that you use the quotes all the time to avoid any surprises.

The optional IDENTIFIED BY 'the_password' component sets the user’s password to
the_password. There’s no limit on password length, but we recommend using eight or
fewer characters because this avoids problems with system libraries on some platforms.

You’ll find many examples using GRANT throughout this chapter.

Let’s experiment with our new user. Quit the monitor using the QUIT command. Then
run it again and connect as the user allmusic:

$ mysql --user=allmusic --password=the_password

Note that this time, we’ve specified the MySQL user allmusic for the user parameter
and passed this user’s password to the password parameter.

You should see the mysql> prompt again. You will now be able to use the music database
by typing USE music; and pressing Enter. Try running a simple query:

mysql> SELECT * FROM album;

You should see the albums in the database.

So far, we haven’t found the limits of our privileges. Let’s try using the university
database:

mysql> USE university;
ERROR 1044 (42000): Access denied for user: 'allmusic'@'localhost' to database
 'university'

MySQL complains that our new user doesn’t have permission to access the database
university. Indeed, if we ask MySQL what databases are available, you’ll see that
MySQL is secretive:

300 | Chapter 9: Managing Users and Privileges

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| music |
| test |
+----------+
2 rows in set (0.00 sec)

A user who doesn’t have any privileges for a database can’t see or use that database
(the exception to this is a user who has the global SHOW DATABASE privilege we discuss
later).

Let’s try to create a new database:

mysql> CREATE DATABASE some_new_database;
ERROR 1044 (42000): Access denied for user 'allmusic'@'localhost' to database
 'some_new_database'

We can’t; when we were logged in as the MySQL root user, we never granted the
allmusic user the privilege to create new databases.

Let’s create a second new user who can access only the artist table in the music database
(music.artist). Quit the monitor (or start the monitor from another terminal or com-
mand prompt window) and connect again as the root user. Then, create this new user:

mysql> GRANT ALL ON music.artist TO 'partmusic'@'localhost'
 -> IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.01 sec)

We’ve specified the artist table in the music database by using music.artist. If you
want to provide access to more than one table (but not all tables) in a database (or
tables in different databases), you have to type several GRANT statements. For example,
to add access to the album table to our newly created user, type:

mysql> GRANT ALL ON music.album TO 'partmusic'@'localhost';
Query OK, 0 rows affected (0.01 sec)

Since we’re reusing the username and location 'partmusic'@'localhost', there’s no
need to provide a password in this second statement; the password was set when the
user was first created, and it isn’t changed by the second statement.

You can also allow a user to access only specific columns in a table. For example, you
can allow the partmusic user to have only read (SELECT) access to the title and time
columns of the track table:

mysql> GRANT SELECT (track_id, time) ON music.track TO 'partmusic'@'localhost';
Query OK, 0 rows affected (0.01 sec)

The syntax is different from the previous examples: instead of specifying ALL privileges,
we’ve specified only SELECT, and we’ve listed the columns to which the privilege applies
—track_id and time—in parentheses after it. The remainder of the statement follows
the same syntax as the previous examples, including the music.track component that

Creating and Using New Users | 301

specifies where the columns track-id and time are located. Note that you can’t grant
all privileges at the column level; you must specifically list them.

Before you experiment with your new user, let’s summarize what you’ve done. You’ve
created a new user, partmusic, set this user’s password to the_password, and allowed
access to the database server from only the machine on which the server is installed,
the localhost. The partmusic user has access to the music database and has all privileges
for the album and artist tables. In addition, this user can run SELECT statements that
retrieve values from the track_id and time columns in the track table.

Let’s test what our new user can do. Start the monitor as the new user by supplying the
appropriate user and password parameters:

$ mysql --user=partmusic --password=the_password

and connect to the music database:

mysql> USE music;

Now, check what tables this user can access:

mysql> SHOW TABLES;
+-----------------+
| Tables_in_music |
+-----------------+
| album |
| artist |
| track |
+-----------------+
3 rows in set (0.00 sec)

You can see three of the four tables in the database, but since you (the partmusic user)
don’t have privileges for the played table, you can’t see it. You do have privileges to do
anything you want to the album and artist tables, so try this out:

mysql> INSERT INTO artist VALUES (7, "The Jimi Hendrix Experience");
Query OK, 1 row affected (0.00 sec)

mysql> SELECT album_name FROM album WHERE album_id=4;
+--+
| album_name |
+--+
| Retro - New Order / Bobby Gillespie LIVE |
+--+
1 row in set (0.00 sec)

Feel free to test your access to these tables further: you’ll be able to insert, delete, update,
and retrieve all data.

Now, let’s test our limited access to the track table. First, we’ll try to retrieve the values
in all columns:

mysql> SELECT * FROM track;
ERROR 1143 (42000): select command denied to user:
'partmusic'@'localhost' for column 'track_name' in table 'track'

302 | Chapter 9: Managing Users and Privileges

As expected, MySQL complains that you don’t have privileges to retrieve values from
the columns other than track_id and time; note that MySQL stops on its first error and
doesn’t report all the columns you can’t access. If you now try to retrieve values for
columns you can access, it works as expected:

mysql> SELECT time FROM TRACK LIMIT 3;
+------+
| time |
+------+
| 8.10 |
| 5.27 |
| 8.66 |
+------+
3 rows in set (0.00 sec)

Notice that, unlike databases and tables, you can see the details of all columns in a table
even if you don’t have access to them:

mysql> DESCRIBE track;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
track_id	int(3)		PRI	0	
track_name	char(128)	YES		NULL	
artist_id	int(5)		PRI	0	
album_id	int(4)		PRI	0	
time	decimal(5,2)	YES		NULL	
+------------+--------------+------+-----+---------+-------+
5 rows in set (0.00 sec

Privileges
So far, we’ve shown you how to add new users and grant privileges for databases, tables,
and columns. In this section, we discuss the privileges in more detail and explain which
ones are used at the global, database, table, and column level. Then we discuss how
the different privilege levels interact.

You can see a list of all available privileges by running the SHOW PRIVILEGES command
in the MySQL monitor; Table 9-1 lists some of the more important of these. Each row
shows a privilege, followed by a description, and then a list of the four levels at which
the privilege can be granted. For example, the second row shows the ALTER privilege
that controls whether the ALTER TABLE statement can be used, and shows that it can be
controlled at the global, database, and table levels:

Global level
You can use ON *.* in a GRANT statement to grant a user a particular privilege across
all databases on the server.

Database level
You can use, for example, music.* to grant a privilege for one or more databases.

Privileges | 303

Table level
You can use, for example, music.album to grant a privilege for one or more tables
in a database.

Column level
Grants access for one or more columns in a table in a database (but isn’t available
for ALTER). You grant column-level access using a comma-separated list in pa-
rentheses after the privilege, as in, for example:

GRANT SELECT (album_name, album_id) ON music.album

In this chapter, we explain how to manage privileges using the GRANT statement. Many
of the statements affected by the privileges are discussed elsewhere as follows:

• The statements DELETE, INSERT, SELECT, SHOW DATABASES, and UPDATE are introduced
in Chapter 5 and discussed further in Chapters 7 and 8.

• The statements ALTER, CREATE, DROP, LOAD DATA INFILE, and SELECT ... INTO are
described in Chapter 6.

• The statements LOCK TABLES and UNLOCK TABLES are discussed in Chapter 7.

The EXECUTE, PROCESS, REPLICATION CLIENT, REPLICATION SLAVE, CHANGE MASTER, KILL,
and PURGE MASTER LOGS statements are outside the scope of this book; see the MySQL
manual for more on these. We discuss GRANT OPTION in the next section.

Table 9-1 shows the levels at which the privileges can be configured: Global (G), Da-
tabase (D), Table (T), and Column (C). For example, the first row shows that the ALL
option is available at all levels except for columns.

Table 9-1. Privileges and their levels in MySQL

Privilege Application G D T C

ALL All simple privileges except the ability to grant privileges (GRANT
OPTION).

✓ ✓ ✓ ✗

ALTER The ALTER TABLE statement. ✓ ✓ ✓ ✗
CREATE The CREATE statement. ✓ ✓ ✗ ✗
CREATE TEMPO
RARY TABLES

The CREATE TEMPORARY TABLES statement; user is allowed
to create a temporary table in the active database for her own
session.

✓ ✓ ✗ ✗

DELETE The DELETE statement. ✓ ✓ ✓ ✗
DROP The DROP statement. ✓ ✓ ✓ ✗
EXECUTE Stored procedures (MySQL version 5 and later only). ✓ ✗ ✗ ✗
FILE Reading and writing of disk files with SELECT ... INTO and

LOAD DATA INFILE.
✓ ✗ ✗ ✗

GRANT OPTION Ability to grant own privileges to others. For most applications,
there is generally no need for this, because the root user decides
on access privileges.

✓ ✓ ✓ ✗

304 | Chapter 9: Managing Users and Privileges

Privilege Application G D T C

INDEX The CREATE INDEX and DROP INDEX statements. ✓ ✓ ✓ ✗
INSERT The INSERT statement. ✓ ✓ ✓ ✓
LOCK TABLES The use of LOCK TABLES and UNLOCK TABLES. Must have

SELECT privilege for the tables. Since this is a database-wide
privilege, it can only be granted using the database_name.*
(or *.*) format.

✓ ✓ ✗ ✗

PROCESS The use of SHOW FULL PROCESSLIST. ✓ ✗ ✗ ✗
RELOAD The use of FLUSH (discussed later in this chapter in “Managing

Privileges with SQL”).
✓ ✗ ✗ ✗

REPLICATION
CLIENT

Controls whether you can see where master and slave servers are. ✓ ✗ ✗ ✗

REPLICATION
SLAVE

Controls whether slaves can read the master binary log. ✓ ✗ ✗ ✗

SELECT The use of SELECT, allowing data to be read from the specified
table(s).

✓ ✓ ✓ ✓

SHOW DATABASES Controls whether all databases are shown with SHOW
DATABASES.

✓ ✗ ✗ ✗

SHUTDOWN Controls whether the server can be shut down with the
mysqladmin shutdown command.

✓ ✗ ✗ ✗

SUPER The use of the CHANGE MASTER, KILL, PURGE MASTER
LOGS, SET GLOBAL, and the mysqladmin debug commands.

✓ ✗ ✗ ✗

UPDATE The use of UPDATE to modify existing data in the specified
table(s).

✓ ✓ ✓ ✓

USAGE No privileges; not explicitly allowed to do anything other than
connect to the server. Used when creating an account or updating
details.

✓ ✓ ✓ ✓

Table 9-2 shows what the ALL option means at the global, database, and table levels.
For example, the second column shows what happens when you GRANT ALL ON *.* to
a user. All privileges listed with a checkmark (✓) are given to the user, and those with
a cross (✗) are omitted. The GRANT OPTION—which allows a user to pass on his privileges
to another user—isn’t available for ALL at any level, and therefore must be granted
explicitly. We discuss it next.

Table 9-2. Simple privileges that comprise the ALL privilege at different levels

Privilege Global Database Table

ALTER ✓ ✓ ✓
CREATE ✓ ✓ ✗
CREATE TEMPORARY TABLES ✓ ✓ ✗
DELETE ✓ ✓ ✓

Privileges | 305

Privilege Global Database Table

DROP ✓ ✓ ✓
EXECUTE ✓ ✗ ✗
FILE ✓ ✗ ✗
GRANT OPTION ✗ ✗ ✗
INDEX ✓ ✓ ✓
INSERT ✓ ✓ ✓
LOCK TABLES ✓ ✓ ✗
PROCESS ✓ ✗ ✗
RELOAD ✓ ✗ ✗
REPLICATION CLIENT ✓ ✗ ✗
REPLICATION SLAVE ✓ ✗ ✗
SELECT ✓ ✓ ✓
SHOW DATABASES ✓ ✗ ✗
SHUTDOWN ✓ ✗ ✗
SUPER ✓ ✗ ✗
UPDATE ✓ ✓ ✓

The GRANT OPTION Privilege
The GRANT OPTION privilege allows a user to pass on any privileges she has to other users.
Consider an example, which we’ve run when connected to the monitor as the root user:

mysql> GRANT ALL ON music.* TO 'hugh'@'localhost';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT GRANT OPTION ON music.* TO 'hugh'@'localhost';
Query OK, 0 rows affected (0.00 sec)

This creates a MySQL user hugh (with no password!) and allows him to pass on his
privileges for the music database to other users. Since the GRANT OPTION is given at the
database level (to music.*), hugh can pass on his privileges on that database, or on any
of the tables or columns in that database. GRANT OPTION always allows a user to pass on
his privileges at the level which they’re given, or any lower level, and it also allows him
to pass on any future privileges he’s given. We explain this hierarchy more in the next
section.

Let’s test our new privilege using the user hugh. Quit the monitor, and then reconnect
as the MySQL user hugh:

$ mysql --user=hugh

Now, let’s give our privileges to another user:

306 | Chapter 9: Managing Users and Privileges

mysql> GRANT ALL ON music.* TO 'selina'@'localhost';
Query OK, 0 rows affected (0.00 sec)

This passes on all privileges to a new user, selina (with no password). It doesn’t pass
on the GRANT OPTION privilege, but you can do this if you want to:

mysql> GRANT GRANT OPTION ON music.* TO 'selina'@'localhost';
Query OK, 0 rows affected (0.00 sec)

Now selina can do the same things hugh can on the music database.

You can also pass on the GRANT OPTION privilege in a single SQL statement that also
grants other privileges. Here’s an example using an alternative syntax:

mysql> GRANT ALL ON music.* to 'lucy'@'localhost' WITH GRANT OPTION;
Query OK, 0 rows affected (0.00 sec)

This has exactly the same effect as the previous two-step example that created the user
selina.

As discussed previously, users can pass on privileges at the same or lower levels. Con-
sider an example that’s executed when we’re connected as hugh:

mysql> GRANT ALL ON music.artist TO 'rose'@'localhost';
Query OK, 0 rows affected (0.00 sec)

Since hugh has all privileges for all tables in the music database, he can pass all privileges
for only the artist table to a new user, rose.

Be careful with GRANT OPTION; users with this privilege can share other privileges in ways
you may not anticipate. We discuss this further later in this chapter in “More Security
Tips.”

How Privileges Interact
In the previous section, we explained how the GRANT OPTION privilege is used to pass
privileges to other users and how it allows privileges at lower levels in the privilege
hierarchy to be granted. In this section, we explore the privilege hierarchy further and
explain how MySQL allows or denies access to resources.

Figure 9-1 shows an example of the MySQL privilege hierarchy. There are four levels;
reading from highest to lowest, these are global, database, table, and column. In Fig-
ure 9-1, the global level contains the MySQL server system and three databases: music,
university, and flight. Each database contains tables; the figure shows the tables in
the music database. Each table in turn contains columns, and the figure shows the
columns in the artist table.

When you grant privileges at a level, those privileges are available at that and all lower
levels. In Figure 9-1, if you grant privileges at the global level, those privileges are avail-
able for MySQL server functions and throughout the databases, tables, and columns.
For example, if you have the UPDATE privilege at the global level, you can execute the

How Privileges Interact | 307

UPDATE statement on any table or column in any database. If you grant privileges for
only the music database, the privileges are available for just it and its tables and columns.
Privileges never propagate up the hierarchy; for example, if you grant privileges for only
a column, those privileges don’t apply for the table, database, or server.

When you run a statement, your privileges to run that statement are determined using
a logical OR operation. The operation checks whether you have any of the following for
the statement:

• Global privileges

• Database privileges

• Table privileges

• Column privileges

If any of these permit the statement, it proceeds. This has an important consequence:
if you allow a privilege for a statement at a level, it doesn’t matter if it’s allowed or
disallowed at another level. This can lead to unexpected behavior. For example, if you
revoke a previously granted permission to SELECT from the artist table, access will not
be revoked if the user still has the SELECT privilege to the music database or at the global
level. “Users and Hosts” discusses how users are allowed or disallowed server connec-
tions, and “Revoking Privileges” explains how to revoke privileges.

Users and Hosts
So far, we’ve discussed the steps to grant privileges, as well as how these privileges
interact in a hierarchy. However, we’ve skipped over the basic principles of connecting
to the server and explaining how MySQL validates a connection. This section covers
these topics and helps you understand how you connect to a MySQL server.

artist

artist

artistmusic

album

track

played

flight

university

Global Database Table Column

Figure 9-1. The privilege hierarchy

308 | Chapter 9: Managing Users and Privileges

Local and Remote Users
MySQL supports both local and remote users. A local user connects to the server and
accesses the databases from the same computer that the MySQL server is running on
(localhost). All our examples so far have been for a local user. In contrast, a remote
user connects to the server and accesses the databases from another computer.

For each application, you must decide how the database will be used and apply the
most restrictive set of access privileges needed to get the job done. There are perform-
ance as well as security issues to be considered when doing this. MySQL actually treats
local connections differently; if the client is local, the connection is made internally
through a Unix socket (for Linux and Mac OS X) or through a named pipe (for Win-
dows). This is generally much faster than the TCP/IP network connection used for
remote access.

You should be careful not to give remote access to the database when you can avoid it.
Consider the case where three different managers need to see how many items of each
title there are in stock. You could give each manager an account on the MySQL server
and allow remote access so that they can connect to the database from their own com-
puters and run queries to view the data. This is shown in Figure 9-2.

Since there are a limited number of queries needed to generate standard reports for the
managers, you could instead create a password-protected dynamic web page that dis-
plays the output of the necessary reporting queries; managers would still access the
reports from their own computers, but through a web browser rather than a MySQL
client. This approach has several security benefits: you don’t have to give database
server accounts to other users, you don’t have to allow remote access, only your own
client programs can run queries on the database server, and only the limited set of
queries supported by your client program will be executed. Figure 9-3 shows how this
could be configured.

User with database client software
Remote access to database server

User with database client software
Remote access to database server

User with database client software
Remote access to database server

Host running database server

Database server software

Figure 9-2. Database server, with managers’ computers configured for remote access to the database
server

Users and Hosts | 309

If the web server and the database server are on different computers, you have to allow
the web application on the web server to connect remotely to the database server, as
shown in Figure 9-4.

Database server software

User with web browser

User with web browser

User with web browser

Web database application
Local access to database server

Web server software

Host running database
and web servers

Figure 9-3. Database server and web application; the web application has local access to the database
server, and the managers’ computers interact with the database through the web application

Database server software

User with web browser

User with web browser

User with web browser

Web database application
Remote access to database server

Web server software

Host running
database server

Host running
web server

Figure 9-4. Web application, web server, and database server configured for remote access

310 | Chapter 9: Managing Users and Privileges

Creating a New Remote User
If you want to allow a user to connect to the server from another computer, you must
specify the host from which they can do so (the remote client). Suppose that you have
a home network, that your machine has the private IP address 192.168.1.2, that your
home domain is invyhome.com, and that your machine is named ruttle (that is, its
complete name is ruttle.invyhome.com). Let’s also assume that you’re running a
MySQL server on ruttle, and that there are two other machines on the network:
toorak.invyhome.com with the IP address 192.168.1.4 and yazd.invyhome.com with IP
address 192.168.1.6.

Figure 9-5 illustrates this setup. Again, we differentiate between user accounts on the
MySQL server (MySQL users or MySQL accounts) and user accounts on the host ma-
chines (system users or system accounts).

Now, let’s consider the MySQL setup on ruttle. Let’s assume you’ve previously logged
in to the MySQL server on ruttle as the root user and created the user hugh with the
statement:

mysql> GRANT ALL on *.* TO 'hugh'@'localhost' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.00 sec)

If you’re logged in to your system account on ruttle, you can connect to the MySQL
server on ruttle using the following:

$ mysql --host=localhost --user=hugh --password=the_password

Database server software

Network
ruttle.invyhome.com (192.168.1.2)

toorak.invyhome.com (192.168.1.4)

yazd.invyhome.com (192.168.1.6)

Figure 9-5. A simple home network with three computers, and one MySQL server

Users and Hosts | 311

Including the --host=localhost actually has no effect, since localhost is the default
anyway. Now, let’s try specifying the IP address for localhost; this is always 127.0.0.1:

$ mysql --user=hugh --host=127.0.0.1 --password=the_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 47 to server version: 5.0.22-standard-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The result is another successful connection, since localhost and 127.0.0.1 are the same
system, and MySQL matches the request for host 127.0.0.1 against the privileges for
localhost.

Now, let’s try connecting to the MySQL server on ruttle from ruttle by using its IP
address:

$ mysql --user=hugh --host=192.168.1.2 --password=the_password
ERROR 1130 (): #HY000Host '192.168.1.2' is not allowed to connect to this
 MySQL server

This time, the connection isn’t successful. If you replace 192.168.1.2 with ruttle.invy
home.com, you’ll see the same problem. Let’s explore why we can’t connect.

At the beginning of this section, we allowed access to the user 'hugh'@'localhost'.
That’s exactly what the MySQL server is enforcing: we can only connect from the
localhost, and not from anywhere else, including from the actual IP address or domain
of the localhost machine. If you want to allow access from 192.168.1.2 (and its equiv-
alent domain name ruttle.invyhome.com), you need to grant those privileges by creating
a new user with the username hugh and the host 192.168.1.2. Note that each username
and host pair is treated as a separate user and has its own password.

Log in to the monitor as the root user, and type:

mysql> GRANT ALL ON *.* TO 'hugh'@'192.168.1.2' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.00 sec)

Now, quit the monitor and try connecting as the user hugh:

$ mysql --user=hugh --host=192.168.1.2 --password=the_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 50 to server version: 5.0.22-standard-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

You’ll also find you can now connect using ruttle.invyhome.com in place of
192.168.1.2, as long as you’ve got a correctly configured domain nameserver (DNS)
setup. If you have trouble connecting to the MySQL server, refer to the checklist in
“Client Programs Can’t Connect to the Server” in Chapter 2.

312 | Chapter 9: Managing Users and Privileges

Suppose now that you want to allow toorak to access the MySQL server that’s running
on ruttle. There are several different ways to do this, some more flexible than others.
The simplest approach is to connect to the MySQL server on ruttle as the root user
and grant privileges to a new user 'hugh'@'toorak.invyhome.com' using the following
statement:

mysql> GRANT ALL ON *.* TO 'hugh'@'toorak.invyhome.com' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.00 sec)

You’ll now find that you can run a MySQL monitor on toorak and connect to ruttle
using the following command:

$ mysql --user=hugh --host=ruttle.invyhome.com --password=the_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 52 to server version: 5.0.22-standard-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Using the IP addresses 192.168.1.2 for ruttle.invyhome.com and 192.168.1.4 for
toorak.invyhome.com should work too, and it’s more secure, as IP addresses are harder
to spoof than domain names.

Our approach so far has been to create new users for each IP address. We now have
three users with the name hugh, one each for the localhost, 192.168.1.2, and
192.168.1.4. This isn’t always a good approach: we now have to remember to maintain
all three users and keep their privileges synchronized if we want the same access level
from all three locations. However, it’s also flexible: it allows you to differentiate be-
tween different remote users with the same username, or offer a flexible, customized
security policy when a user connects from different locations.

Let’s consider other ways to allow the same user to connect from several locations. You
can allow a user to connect from all computers on a network subnet by using one or
more wildcards in the GRANT statement. Suppose you want to allow jill to connect
from any of the machines in the domain invyhome.com. You can do this with:

mysql> GRANT ALL ON *.* TO 'jill'@'%.invyhome.com' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.01 sec)

As in the SQL LIKE clause, the wildcard character % matches any string, and so this entry
now matches any domain name with the suffix invyhome.com. The outcome is that
connections as jill from ruttle.invyhome.com and toorak.invyhome.com are allowed;
jill can also connect from any other machine that joins the network.

You can also use wildcards in IP addresses. For example, you can allow connections
from all machines on the invyhome.com subnet by allowing access to machines matching
the IP address range 192.168.1.%.

To do this, run the following:

Users and Hosts | 313

mysql> GRANT ALL ON *.* TO 'harry'@'192.168.1.%' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.01 sec)

Again, connections as harry from ruttle and toorak (and any other machines on the
local network) are allowed.

Table 9-3 shows different specifications of network addresses that use wildcards and
gives examples of where the user lloyd could connect from. The entry in the final row
allows lloyd to connect from anywhere and should be used with caution.

Table 9-3. Host specifications and their meanings in GRANT statements

Host specification Example Effect

Hostname 'lloyd'@'lloyd.lloydhouse.com' 1

Domain name 'lloyd'@'%.lloydhouse.com' 2

IP address 'lloyd'@'192.168.1.2' 3

IP address range 'lloyd'@'192.168.1.0/255.255.255.0' 4

Any machine 'lloyd'@'%' or 'lloyd' 5

The effect of each of these settings is as follows:

1. Connections are allowed only from the machine lloyd.lloydhouse.com.

2. Connections are allowed from any machine in the lloydhouse.com domain.

3. Connections are allowed only from the machine with the IP address 192.168.1.2.

4. The address range is specified as an IP address and a netmask. The current standard
IPv4 addresses are 32 bits long and are commonly shown in the dotted decimal
notation as 4 decimal numbers, each corresponding to 8 bits of the IP address or
netmask. For example, the IP address:

11000000101010000000000100000001

is shown as:

192.168.1.1

which is much easier to read!

The netmask specifies how many of these bits (from left) identify the network; the
remaining bits identify the hosts on that network. The smaller the netmask, the
more bits remain for the hosts, and so the greater number of hosts that fall into the
specified range. The sample specification 192.168.1.0/255.255.255.0 says that the
first 24 bits of the host IP address must match the first 24 bits of the address
192.168.1.0, so any address that starts with 192.168.1. is accepted. The netmask
specified to MySQL can only be 8, 16, 24, or 32 bits in length.

5. Connections are allowed from any machine. If you omit the host specification, %
is assumed.

314 | Chapter 9: Managing Users and Privileges

The wildcard approach typically removes the need to create multiple users, as a given
user can connect from more than one machine. However, consider the case where the
user steph wants to connect from the client hosts localhost, steph.lloydhouse.com, and
steph.hughwilliams.com. Using the techniques we’ve discussed so far, you have two
choices: have three users, one for each host; or allow access from any host using
'steph'@'%'. Neither solution is ideal. Fortunately, MySQL supports yet another way
to create one user for different hosts, but this requires knowledge of the structure of
the database tables used to manage the privilege system. We present this later in the
chapter in “Managing Privileges with SQL.”

Anonymous Users
We’ve previously seen how we can use wildcard specifications for hosts, but wildcard
characters aren’t allowed in usernames; you can’t, for example, specify
'fred%'@'localhost'. However, you can have a user with an empty username that al-
lows anonymous connections and matches all usernames.

You can create an anonymous local user who can read data from the music database as
follows:

mysql> GRANT SELECT ON music.* TO ''@'localhost';
Query OK, 0 rows affected (0.00 sec)

Note that the username is specified as two single quotes, with nothing between them.
This user allows you to connect without a username or password from the localhost:

$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 55 to server version: 5.0.22-standard-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

You can use the CURRENT_USER() function to check which user you’re logged in as:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+
1 row in set (0.00 sec)

Here, there is nothing before the @ symbol, indicating that you’re logged in as the
anonymous user ''@localhost. The MySQL server decides which user to log you in as
based on a checklist we describe in the next section.

Users and Hosts | 315

Which User Is Connected?
So far, we have created several users and deliberately chosen a different name for each.
We did this to avoid discussing an important issue: what happens if more than one
user and host combination matches when a connection is attempted?

To understand how MySQL allows connections, connect as the MySQL user root and
create two users with the same name and different host specifications:

mysql> GRANT SELECT ON music.* TO 'dave'@'%' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.06 sec)

mysql> GRANT ALL ON music.* TO 'dave'@'localhost' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.01 sec)

The first user dave can now connect from any host and run only SELECT statements on
the music database. The second user dave is specific to the localhost and is allowed all
privileges on music. The host specifications of the two users overlap: '%' means all hosts,
and so includes localhost as one of the allowed hosts. Now, let’s experiment with dave.

Let’s connect to the server using the monitor installed on localhost:

$ mysql --user=dave --password=the_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 57 to server version: 5.0.22-standard-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Now, let’s try to do more than just SELECT data:

mysql> USE music;
Database changed

mysql> INSERT INTO artist VALUES (8, "The Psychedelic Furs");
Query OK, 1 row affected (0.06 sec)

That worked, so we must be logged in as the user 'dave'@'localhost' and not
'dave'@'%'.

Here’s what the CURRENT_USER() function reports for the connection we’ve just used:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| dave@localhost |
+----------------+
1 row in set (0.00 sec)

This confirms we’re logged in as 'dave'@'localhost', and not through the more general
host specification 'dave'@'%'.

316 | Chapter 9: Managing Users and Privileges

How does MySQL decide which user to use when you establish a connection? The
answer has two parts: first, MySQL sorts the user entries by host from most to least
specific and, for duplicate hosts, any anonymous user entry appears last. Consider an
example. Suppose you have four user and host combinations:

• 'dave'@'localhost'

• 'dave'@'%'

• ''@'localhost'

• 'hugh'@'192.168.1.%'

From most specific to least, the hosts are localhost, then 192.168.1.%, and finally %.
There are two entries for users on the localhost, and, since one is anonymous, the one
with a name (dave) is more specific. Overall, this leads to the following sort order:

• 'dave'@'localhost'

• ''@'localhost'

• 'hugh'@'192.168.1.%'

• 'dave'@'%'

The second step in establishing a connection is matching your connection request
against the sorted list. The first entry that matches your connection requirements is
used; if none match, you’re denied access. Suppose you try to connect from the local
host using the username dave. The first entry in the list, 'dave'@'localhost' matches,
and so you’re authenticated and given the privileges of that user. Suppose now you try
to connect from the localhost using the username hugh. Here’s a surprise: MySQL
ignores the username you provide, and you’re connected as ''@'localhost' because,
as discussed in the previous section, the anonymous username is a wildcard that
matches all usernames! You might find this annoying, but some argue it’s a feature that
can be used to ensure users from particular hosts get at least a minimal set of privileges.

Consider a final example, where you try to connect from the network machine yazd
(192.168.1.6) as dave. The first two entries are for the localhost and so don’t match.
The third entry has a host specification that matches, but the username hugh does not.
The final entry’s host specification matches, and so does the username, and therefore
the connection is established with the privileges of the user 'dave'@'%'.

Checking Privileges
We’ve explained how to grant privileges and how to understand the scope of those
privileges. This section explains how to identify the privileges that a user has, and how
to revoke those privileges.

If you’ve been following our examples, you have created more than 10 users so far in
this chapter, and you probably can’t remember all of them. It’s important to know the
users you have defined and the privileges that these users have, and that you understand

Checking Privileges | 317

how connections are verified: without careful management, you can accidentally allow
more privileges than you planned, or allow connections by users you didn’t want to
grant access to. Fortunately, there are a few tools available to help you explore access
privileges.

The simplest method to check the privileges of a user is to use the SHOW GRANTS state-
ment. You can execute this statement to check the privileges of other users only if you
have access to the mysql database; however, you can always check your own privileges.
If you want to experiment, it’s best to log in now as the root user or another user with
sufficient global privileges. We explain the role of the mysql database in privilege man-
agement later in “Managing Privileges with SQL.”

After logging in to the monitor, you can check the current user’s privileges with:

mysql> SHOW GRANTS;
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+
1 row in set (0.00 sec)

MySQL reports the privileges as one or more GRANT statements. Not surprisingly,
'root'@'localhost' has all privileges, including GRANT OPTION.

Now let’s check the privileges of the user 'selina'@'localhost' we created earlier in
this chapter:

mysql> SHOW GRANTS FOR 'selina'@'localhost';
+---+
| Grants for selina@localhost |
+---+
| GRANT USAGE ON *.* TO 'selina'@'localhost' |
| GRANT ALL PRIVILEGES ON `music`.* TO 'selina'@'localhost' WITH GRANT OPTION |
+---+
2 rows in set (0.00 sec)

This syntax works on MySQL versions later than 4.1.2. The first GRANT statement is a
default privilege that creates the user with no privileges (yes, USAGE implies no privi-
leges!). The second statement gives all privileges for the music database.

Let’s also check the user 'partmusic'@'localhost':

mysql> SHOW GRANTS FOR 'partmusic'@'localhost';
+---+
| Grants for partmusic@localhost |
+---+
| GRANT USAGE ON *.* TO 'partmusic'@'localhost' IDENTIFIED BY |
| PASSWORD '*14E65567ABDB5135D0CFD9A70B3032C179A49EE7' |
| GRANT ALL PRIVILEGES ON `music`.`album` TO 'partmusic'@'localhost' |
| GRANT ALL PRIVILEGES ON `music`.`artist` TO 'partmusic'@'localhost' |
| GRANT SELECT (track_id, time) ON `music`.`track` TO 'partmusic'@'localhost' |
+---+
4 rows in set (0.00 sec)

318 | Chapter 9: Managing Users and Privileges

Again, the first statement creates a user with no privileges, and later statements add the
privileges. The first statement also serves another purpose: it sets the password for the
user. Since the password has been hashed with a one-way encryption function, it can’t
be decrypted, and so we repeat the encrypted password string with the statement
IDENTIFIED BY PASSWORD. We discuss passwords in detail later in this chapter.

The SHOW GRANTS statement works only for exploring exactly one user that matches the
string you provide. For example, if you’ve previously created a user 'fred'@'%', you
can list the privileges of that user with:

mysql> SHOW GRANTS FOR 'fred'@'%';

This statement doesn’t check for all users with the name fred, however. Each username
and host pair is treated separately; for example, we could have the user 'ali'@'sa
dri.invyhome.com' with all privileges on the test database, and the user 'ali'@'sa
leh.invyhome.com' with all privileges on the music database:

mysql> GRANT ALL ON test.* TO 'ali'@'sadri.invyhome.com'
 -> IDENTIFIED BY 'a_password';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL ON music.* TO 'ali'@'saleh.invyhome.com'
IDENTIFIED BY 'another_password';
Query OK, 0 rows affected (0.00 sec)

If you check the privileges with the SHOW GRANTS statement, you’ll see that the access
privileges and the stored password are different for each username and host pair:

mysql> SHOW GRANTS FOR 'ali'@'sadri.invyhome.com';
+--+
| Grants for ali@sadri.invyhome.com |
+--+
| GRANT USAGE ON *.* TO 'ali'@'sadri.invyhome.com' |
| IDENTIFIED BY PASSWORD '*5DC1D11F45824A9DD613961F05C1EC1E7A1601AA' |
| GRANT ALL PRIVILEGES ON `test`.* TO 'ali'@'sadri.invyhome.com' |
+--+
2 rows in set (0.00 sec)

mysql> SHOW GRANTS FOR 'ali'@'saleh.invyhome.com';
+--+
| Grants for ali@saleh.invyhome.com |
+--+
| GRANT USAGE ON *.* TO 'ali'@'saleh.invyhome.com' |
| IDENTIFIED BY PASSWORD '*A5CF560EBFDD483CD4162DD31FBA6AF8F5586069' |
| GRANT ALL PRIVILEGES ON `music`.* TO 'ali'@'saleh.invyhome.com' |
+--+
2 rows in set (0.00 sec)

As you can see, a connection by ali is allowed different privileges and uses a different
password according to the host the connection is coming from.

To explore all of the users available on your MySQL server, you can use the command-
line mysqlaccess utility that we describe in the next section.

Checking Privileges | 319

Another method to check current privileges is to use SQL to explore the mysql database
that manages the privileges. If you’re experienced with SQL, this is perhaps the easiest
approach, and it’s the one we usually use. We describe this approach later in “Managing
Privileges with SQL.”

mysqlaccess
To quickly see what level of access a particular user has for a particular database, you
can use the mysqlaccess script from a terminal or command prompt. Let’s see what
level of access the user partmusic has for the database music. We’ll need to specify the
MySQL superuser name (root) and password to access the information:

$ mysqlaccess --user=root --password=the_mysql_root_password partmusic music
mysqlaccess Version 2.06, 20 Dec 2000
By RUG-AIV, by Yves Carlier (Yves.Carlier@rug.ac.be)
Changes by Steve Harvey (sgh@vex.net)
This software comes with ABSOLUTELY NO WARRANTY.

Access-rights
for USER 'partmusic', from HOST 'localhost', to DB 'music'
 +-----------------------+---+ +----------------------+---+
 | Select_priv | N | | Lock_tables_priv | N |
 | Insert_priv | N | | Execute_priv | N |
 | Update_priv | N | | Repl_slave_priv | N |
 | Delete_priv | N | | Repl_client_priv | N |
 | Create_priv | N | | Create_view_priv | N |
 | Drop_priv | N | | Show_view_priv | N |
 | Reload_priv | N | | Create_routine_priv | N |
 | Shutdown_priv | N | | Alter_routine_priv | N |
 | Process_priv | N | | Create_user_priv | N |
 | File_priv | N | | Ssl_type | ? |
 | Grant_priv | N | | Ssl_cipher | ? |
 | References_priv | N | | X509_issuer | ? |
 | Index_priv | N | | X509_subject | ? |
 | Alter_priv | N | | Max_questions | 0 |
 | Show_db_priv | N | | Max_updates | 0 |
 | Super_priv | N | | Max_connections | 0 |
 | Create_tmp_table_priv | N | | Max_user_connections | 0 |
 +-----------------------+---+ +----------------------+---+
NOTE: A password is required for user `partmusic' :-(

The following rules are used:
 db : 'No matching rule'
 host : 'Not processed: host-field is not empty in db-table.'
 user : 'localhost','partmusic','652f9c175d1914f9',
 'N','N','N','N','N','N','N','N','N','N','N','N','N','N','N','N','N',
 'N','N','N','N','N','N','N','N','N','','','','','0','0','0','0'

BUGs can be reported by email to bugs@mysql.com

If you specify the wildcard character '*' in place of music, the access privileges for all
databases will be shown. Similarly, you can specify the wildcard character '*' in place

320 | Chapter 9: Managing Users and Privileges

of partmusic to see the access privileges for all users: if you specify both, you can ex-
haustively explore all users of all databases:

$ mysqlaccess --user=root --password=the_mysql_root_password '*' '*'

A particularly useful feature of mysqlaccess is that it shows what privileges a current
user would have for any new database that is created. For example, part of the output
of the previous command is:

Access-rights
for USER 'partmusic', from HOST 'localhost', to DB 'ANY_NEW_DB'
 +-----------------------+---+ +----------------------+---+
 | Select_priv | N | | Lock_tables_priv | N |
 | Insert_priv | N | | Execute_priv | N |
 | Update_priv | N | | Repl_slave_priv | N |
 | Delete_priv | N | | Repl_client_priv | N |
 | Create_priv | N | | Create_view_priv | N |
 | Drop_priv | N | | Show_view_priv | N |
 | Reload_priv | N | | Create_routine_priv | N |
 | Shutdown_priv | N | | Alter_routine_priv | N |
 | Process_priv | N | | Create_user_priv | N |
 | File_priv | N | | Ssl_type | ? |
 | Grant_priv | N | | Ssl_cipher | ? |
 | References_priv | N | | X509_issuer | ? |
 | Index_priv | N | | X509_subject | ? |
 | Alter_priv | N | | Max_questions | 0 |
 | Show_db_priv | N | | Max_updates | 0 |
 | Super_priv | N | | Max_connections | 0 |
 | Create_tmp_table_priv | N | | Max_user_connections | 0 |
 +-----------------------+---+ +----------------------+---+
NOTE: A password is required for user `partmusic' :-(

The following rules are used:
 db : 'No matching rule'
 host : 'Not processed: host-field is not empty in db-table.'
 user : 'localhost','partmusic','652f9c175d1914f9','N','N','N','N',
 'N','N','N','N','N','N','N','N','N','N','N','N','N','N','N',
 'N','N','N','N','N','N','N','','','','','0','0','0','0'

It also shows what privileges an anonymous user has for all current databases:

Access-rights
for USER 'ANY_NEW_USER', from HOST 'localhost', to DB 'ANY_NEW_DB'
 +-----------------------+---+ +----------------------+---+
 | Select_priv | N | | Lock_tables_priv | N |
 | Insert_priv | N | | Execute_priv | N |
 | Update_priv | N | | Repl_slave_priv | N |
 | Delete_priv | N | | Repl_client_priv | N |
 | Create_priv | N | | Create_view_priv | N |
 | Drop_priv | N | | Show_view_priv | N |
 | Reload_priv | N | | Create_routine_priv | N |
 | Shutdown_priv | N | | Alter_routine_priv | N |
 | Process_priv | N | | Create_user_priv | N |
 | File_priv | N | | Ssl_type | ? |
 | Grant_priv | N | | Ssl_cipher | ? |
 | References_priv | N | | X509_issuer | ? |

Checking Privileges | 321

 | Index_priv | N | | X509_subject | ? |
 | Alter_priv | N | | Max_questions | 0 |
 | Show_db_priv | N | | Max_updates | 0 |
 | Super_priv | N | | Max_connections | 0 |
 | Create_tmp_table_priv | N | | Max_user_connections | 0 |
 +-----------------------+---+ +----------------------+---+
BEWARE: Everybody can access your DB as user `ANY_NEW_USER' from host `localhost'
 : WITHOUT supplying a password.
 : Be very careful about it!!
BEWARE: Accessing the db as an anonymous user.
 : Your username has no relevance

The following rules are used:
 db : 'No matching rule'
 host : 'Not processed: host-field is not empty in db-table.'
 user : 'localhost','','','N','N','N','N','N','N','N','N','N','N','N',
 'N','N','N','N','N','N','N','N','N','N','N','N','N','N','N','',
 '','','','0','0','0','0'

BUGs can be reported by email to bugs@mysql.com

You can also check the results for all hosts by executing mysqlaccess '*' '*' '*'. Note
that mysqlaccess shows only database-level access and not finer-grained privileges such
as table- or column-level access. For this level of information, you must use SHOW
GRANTS or direct SQL access to the mysql database.

Configuring mysqlaccess

The mysqlaccess program is a Perl script; if you’re using Windows, you’ll need to follow
the instructions in “Installing Perl modules under Windows” in Chapter 2 to be able
to use Perl scripts.

A common problem occurs when mysqlaccess doesn’t know where to find your MySQL
directories. If you’ve installed MySQL in a nonstandard location, you may get an error
message saying that the script couldn’t find the MySQL client program. To resolve this
problem, you’ll need to provide the correct path to the mysql executable. Find the
mysqlaccess file in the MySQL bin directory, open it in a text editor, find the line that
sets the $MYSQL variable, and modify it to specify the correct path for your MySQL
installation.

For example, you might find the path set to /usr/bin/mysql as below:

$MYSQL = '/usr/bin/mysql'; # path to mysql executable

If you’ve installed MySQL in /usr/local/mysql, you would change this to:

$MYSQL = '/usr/local/mysql/bin/mysql'; # path to mysql executable

Now save the file and exit the editor; hopefully, everything should work now.

322 | Chapter 9: Managing Users and Privileges

Revoking Privileges
You can selectively revoke privileges with the REVOKE statement, which essentially has
the same syntax as GRANT. Consider a simple example, in which we remove the SELECT
privilege from the user 'partmusic'@'localhost' for the time column in the track table
in the music database. Here’s the statement, which we’ve run when logged in as
'root'@'localhost':

mysql> REVOKE SELECT (time) ON music.track FROM 'partmusic'@'localhost';
Query OK, 0 rows affected (0.06 sec)

The format of REVOKE is straightforward when you understand GRANT. Following the
keyword REVOKE is one or more comma-separated privileges, and these are optionally
followed by column names, comma-separated in braces; this is the same as GRANT. The
ON keyword has the same function as in GRANT and is followed by a database and table
name, both of which can be wildcards. The FROM keyword is followed by the user and
host from which the privileges are to be revoked, and the host can include wildcards.

Removing privileges using the basic syntax is laborious, since it requires that you re-
move the privileges in the same way they are granted. For example, to remove all priv-
ileges of 'partmusic'@'localhost', you would use the following steps:

mysql> REVOKE SELECT (track_id) ON music.track FROM 'partmusic'@'localhost';
Query OK, 0 rows affected (0.00 sec)

mysql> REVOKE ALL PRIVILEGES ON music.artist FROM 'partmusic'@'localhost';
Query OK, 0 rows affected (0.00 sec)

mysql> REVOKE ALL PRIVILEGES ON music.album FROM 'partmusic'@'localhost';
Query OK, 0 rows affected (0.00 sec)

You can remove all database-, table-, and column-level privileges of a user at once using
one of the following two methods. If you’re using a version of MySQL earlier than 4.1.2,
use:

mysql> REVOKE ALL PRIVILEGES FROM 'partmusic'@'localhost';
Query OK, 0 rows affected (0.00 sec)

mysql> REVOKE GRANT OPTION FROM 'partmusic'@'localhost';
Query OK, 0 rows affected (0.00 sec)

From MySQL version 4.1.2 onward, you can combine these into a single statement:

mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'partmusic'@'localhost';
Query OK, 0 rows affected (0.00 sec)

You could get a similar result using:

mysql> REVOKE ALL PRIVILEGES ON *.* FROM 'allmusic'@'localhost';

but this would not revoke any GRANT OPTION privileges that the user might have. To limit
the revocation to the music database, you would write music.* rather than *.*.

Revoking Privileges | 323

Removing Users
The previous section explained how to remove privileges, but the user is not actually
deleted from the server; you can check this using the SHOW GRANTS statement:

mysql> SHOW GRANTS FOR 'partmusic'@'localhost';
+---+
| Grants for partmusic@localhost |
+---+
| GRANT USAGE ON *.* TO 'partmusic'@'localhost' IDENTIFIED BY |
| PASSWORD '*14E65567ABDB5135D0CFD9A70B3032C179A49EE7' |
+---+
1 row in set (0.00 sec)

This means the user can still connect, but has no privileges when she does.

You can remove access to the MySQL server by removing a user. The DROP USER state-
ment (available since MySQL 4.1.1) removes a user who has no privileges. Here’s an
example that completes the removal of 'partmusic'@'localhost' that we began in the
previous section:

mysql> DROP USER 'partmusic'@'localhost';
Query OK, 0 rows affected (0.00 sec)

Prior to MySQL version 5.02, the DROP USER statement reported an error if any privileges
remained for a user:

mysql> DROP USER 'selina'@'localhost';
ERROR 1268 (HY000): Can't drop one or more of the requested users

In such a case, you must first revoke all privileges for a user before trying to DROP them.

Prior to MySQL version 4.1.1, you needed to use the SQL DELETE statement to remove
a user. Here’s how you remove the user 'partmusic'@'localhost' in these versions:

mysql> DELETE FROM mysql.user WHERE User='partmusic' and Host='localhost';
Query OK, 1 row affected (0.00 sec)

Whenever you update the grant tables in the mysql database directly, you have to use
the FLUSH PRIVILEGES instruction to tell the server to read in the updated data:

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

The structure of the mysql database and the FLUSH PRIVILEGES statement are explained
later in “Managing Privileges with SQL.”

Understanding and Changing Passwords
This section explains how user passwords work in MySQL and how they can be set,
changed, and removed. Passwords can be of any length, though practical limitations
in some operating systems necessitate that they be no longer than eight characters.
When assigning passwords, we recommend that you follow the same principles that

324 | Chapter 9: Managing Users and Privileges

you would with any other password-protected system: choose passwords that have a
mix of uppercase, lowercase, numeric, and special characters; avoid using dictionary
words; and avoid recording your password anywhere it can be easily found. We use no
passwords and simple passwords—such as the_password—in this chapter to demon-
strate concepts, but we recommend that in practice you use a more complex password
that incorporates a mix of letters, numbers, and punctuation symbols (for example,
1n1T?s313Y0). Of course, choose a password that you can remember without having to
write it down somewhere; pieces of paper often turn up in the wrong hands!

The simplest method to set a password is to use the IDENTIFIED BY clause when you
create or modify the privileges of a user. You’ve seen several examples of this so far in
this chapter. Here’s one reproduced from a previous section:

mysql> GRANT ALL ON music.* TO 'allmusic'@'localhost' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.06 sec)

This process takes the plain-text string the_password, hashes it using the MySQL
PASSWORD() function, and stores the hashed string in the user table in the mysql data-
base. Later, when a client wants a connection as this user, the plain-text password
supplied by the client is hashed with the PASSWORD() function and compared to the
string in the database. If it matches, the client is authenticated; otherwise, not. Prior to
MySQL 4.1.0, the hashed string was 16 characters in length, and since 4.1.1 it has been
41 characters; don’t use MySQL 4.1.0, which has an incompatible 45-character pass-
word and a different PASSWORD() function.

You can experiment with the PASSWORD() function to examine the strings produced
from a plain-text password. With a server older than 4.1.1, or with a new server con-
figured with the old_passwords option, you would see:

mysql> SELECT PASSWORD('the_password');
+--------------------------+
| PASSWORD('the_password') |
+--------------------------+
| 268f5b591007a24f |
+--------------------------+
1 row in set (0.07 sec)

Using exactly the same command on a MySQL server that is newer than version 4.1.1
(and that has not been configured with the old_passwords option), we get:

mysql> SELECT PASSWORD('the_password');
+---+
| PASSWORD('the_password') |
+---+
| *201716EF6717C367868F777B9C6E17796F19F379 |
+---+
1 row in set (0.02 sec)

You can still list the old-format password using the OLD_PASSWORD() function:

mysql> SELECT OLD_PASSWORD('the_password');
+--------------------------+

Understanding and Changing Passwords | 325

| PASSWORD('the_password') |
+--------------------------+
| 268f5b591007a24f |
+--------------------------+
1 row in set (0.07 sec)

It’s not possible to reverse the hashing process to derive the plain-text password from
the hashed string, so the actual passwords cannot be deduced even if you have access
to the hashed passwords in the mysql database. However, this scheme is still susceptible
to dictionary and brute-force attacks, and allowing access to any user details can have
security implications. Hence, you shouldn’t allow users to access the mysql database
unless they have administrator privileges.

There are three ways to set or change a password. One way is to issue a GRANT statement
and include the IDENTIFIED BY clause. Suppose you’ve already created the user 'seli
na'@'localhost' using this statement:

mysql> GRANT ALL ON music.* TO 'selina'@'localhost' IDENTIFIED BY 'the_password';
Query OK, 0 rows affected (0.00 sec)

If the user exists, you can change the password while you’re granting new privileges,
or simply by granting no further privileges as follows:

mysql> GRANT USAGE ON *.* TO 'selina'@'localhost' IDENTIFIED BY 'another_password';
Query OK, 0 rows affected (0.00 sec)

This statement changes the password but has no effect on the current privileges.

Another way to change a password is to use the SET PASSWORD statement. Here’s an
example:

mysql> SET PASSWORD FOR 'selina'@'localhost' = PASSWORD('another_password');
Query OK, 0 rows affected (0.00 sec)

You can set the password for the user you’re logged in as by using:

mysql> SET PASSWORD=PASSWORD('the_password');
Query OK, 0 rows affected (0.00 sec)

In both cases, remember to include the PASSWORD() function in the statement; if you
leave it out, the server will store the plain-text password instead of the hashed string.
When authenticating a user, MySQL compares the hash of the user’s input to the stored
string; if the stored string isn’t already hashed, these won’t match, and the server will
refuse access.

You can also use the mysqladmin password command to change your own password
from the command line. For example, you can change the password for the user
your_mysql_username from your_old_mysql_password to your new mysql password by
typing:

$ mysqladmin \
 --user=your_mysql_username \
 --password=your_old_mysql_password \
 password "your new mysql password"

326 | Chapter 9: Managing Users and Privileges

Notice that since the new password contains spaces, we’ve enclosed it in quotes.

The user and host options are for the user you want to connect as and the server you
want to connect to, respectively. You can use mysqladmin to change the password for
only your own username on localhost. For example, if your MySQL username is
sarah, you can change the password only for 'sarah'@'localhost'. Or if you want to
change the password for another username and host pair, such as 'sarah'@'sadri.invy
home.com or 'susan'@'localhost', you’ll need to use the MySQL monitor or another
more flexible MySQL client.

If you’re running MySQL for the first time, or if your MySQL user doesn’t have a
password already set, you don’t need to specify the current password—that is, you can
omit the password option.

You can also remove a user’s password. Here’s an example using the SET PASSWORD
statement:

mysql> SET PASSWORD FOR 'selina'@'localhost' = '';
Query OK, 0 rows affected (0.00 sec)

This stores the empty string as the password, allowing connections without a pass
word parameter. Again, it’s important to always use passwords for any production
server.

Sometimes, you’ll want to create a new user with the same password as another, or
you’ll want to re-create or migrate users from one installation to another. In these cases,
you may not know the plain-text password of all users, but if you have access to the
SHOW GRANTS statement or the mysql database, you can discover the hashed values. If
you want to create a user using a hashed password instead of asking MySQL to hash
the password for you, use the PASSWORD keyword as follows:

mysql> GRANT USAGE ON *.* TO 'partmusic'@'localhost'
 -> IDENTIFIED BY PASSWORD '*14E65567ABDB5135D0CFD9A70B3032C179A49EE7';
Query OK, 0 rows affected (0.00 sec)

The PASSWORD keyword stores the hashed string directly, rather than passing it through
the PASSWORD() function. You’ll recall from earlier that the plain-text password was
actually the_password, and you’ll find you can now connect using it:

$ mysql --user=partmusic --password=the_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 60 to server version: 5.0.22-standard-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

You can also manually set a password to its hashed version by using the SET PASS
WORD statement without the PASSWORD() function as follows:

Understanding and Changing Passwords | 327

mysql> SET PASSWORD FOR 'partmusic'@'localhost' =
 '*14E65567ABDB5135D0CFD9A70B3032C179A49EE7'
Query OK, 0 rows affected (0.00 sec)

Again, you can now connect using the plain-text password the_password.

The Default Users
This section explains the user accounts that are created when MySQL is installed and
shows you how to secure your installation by making important changes to these
default settings. The next section explains how to put together the things you’ve learned
to develop a complete user security policy.

When you install your MySQL server, it comes preconfigured with one or two default
users. The privileges of these users and the locations vary between operating systems,
but you must ensure that their privileges match your requirements, and make decisions
about the machines that connections to your database server can come from; you might
also decide to remove one or more of the default users. Before we explain how to make
these decisions, let’s discuss the users and how they access the server.

On all platforms, MySQL may come installed with two users:

root
This is the superuser, who can do anything to the server, users, databases, and
data. The superuser usually creates new users who have authority to access and
manipulate specific databases. Once you’ve installed MySQL, you must configure
the root user, and we show you how to do this later in this section.

anonymous
This user has no username; you can use it to connect to the server without sup-
plying any credentials. Also, as described earlier in “Anonymous Users,” it is used
when host credentials match but the requested username doesn’t. The anonymous
user has very limited privileges by default; in the next section, we’ll explain what
these are.

Both users have no password by default. With the anonymous user, this means you
can connect to the database server without a username and password. For the root
user, you supply the username root, but there’s no password. Again, these are user
accounts on the MySQL server, not on the operating system (Linux, Windows, or Mac
OS X).

Default User Configuration
The default installation allows the default users to access the server, but the machines
they can connect from depend on whether you’re using Windows or a Unix-like system,
such as Linux or Mac OS X. This section shows you the GRANT statements used to create
the default users and explains what they mean in practice.

328 | Chapter 9: Managing Users and Privileges

Linux and Mac OS X

For Linux, Mac OS X, and other Unix variants, the root user can access the server from
only the computer hosting the server, specified using the mnemonic localhost, using
the IP address 127.0.0.1, or by providing its actual IP address or hostname.

You can see the default configuration by listing the user- and hostnames in the user
table of the mysql database:

mysql> SELECT User,Host FROM mysql.user;
+------+---------------------+
| User | Host |
+------+---------------------+
	localhost
root	localhost
	ruttle.invyhome.com
root	ruttle.invyhome.com
+------+---------------------+
4 rows in set (0.00 sec)

When the MySQL server is installed, the root user is automatically created with the
following GRANT statements:

mysql> SHOW GRANTS for 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+
1 row in set (0.01 sec)

mysql> SHOW GRANTS for 'root'@'ruttle.invyhome.com';
+---+
| Grants for root@ruttle.invyhome.com |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'ruttle.invyhome.com' WITH GRANT OPTION |
+---+
1 row in set (0.00 sec)

Here, ruttle.invyhome.com is the network name of the localhost system.

The anonymous user can access the server from only the localhost, specified using the
mnemonic localhost, using the IP address 127.0.0.1, or by providing the actual IP
address or hostname of that machine. The anonymous user has default access to only
the test database and those databases beginning with the string test_.

When the MySQL server is installed, the anonymous user is automatically created with
the following GRANT statements:

mysql> SHOW GRANTS for ''@'localhost';
+--------------------------------------+
| Grants for @localhost |
+--------------------------------------+
| GRANT USAGE ON *.* TO ''@'localhost' |
+--------------------------------------+

The Default Users | 329

1 row in set (0.00 sec)

mysql> SHOW GRANTS for ''@'ruttle.invyhome.com';
+--+
| Grants for @hugh.local |
+--+
| GRANT USAGE ON *.* TO ''@'ruttle.invyhome.com' |
+--+
1 row in set (0.00 sec)

The anonymous user also has permission to access the test database and databases
beginning with test_, effectively as though you’d executed these statements:

mysql> GRANT ALL ON test.* TO ''@'%';
Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL ON `test_%`.* TO ''@'%';
Query OK, 0 rows affected (0.06 sec)

Note that we’ve used backtick symbols (`) on the second line to enclose the table name
to prevent the backslash, underscore, and percentage symbols from confusing MySQL.

You can verify that these privileges are in effect by running a SELECT * FROM db; query.
However, you can’t explore these privileges with the SHOW GRANTS statement because
there’s no matching user ''@'%'. It would be more secure for the default installation to
grant privileges for the test databases to only the local anonymous users
''@'localhost' and ''@'ruttle.invyhome.com', rather than to ''@'%'.

Windows

Current versions of MySQL for Windows come with only the root user defined. You
can allow anonymous access by asking the MySQL Windows installer program to cre-
ate anonymous users. Again, we recommend that you don’t do this.

The root user has permission to access the server only from the localhost machine:

mysql> SELECT User,Host from mysql.user;
+------+-----------+
| User | Host |
+------+-----------+
| root | localhost |
+------+-----------+
1 row in set (0.01 sec)

When the MySQL server is installed, the root user is automatically created with the
following GRANT statements:

mysql> SHOW GRANTS for 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+
1 row in set (0.01 sec)

330 | Chapter 9: Managing Users and Privileges

You can explicitly allow access to other specific users; for example, you can create an
anonymous user and allow anonymous access from any host by typing:

mysql> GRANT USAGE on *.* to ''@'';

Securing the Default Users
Now that you understand the default users and from which locations they can access
the database server, let’s take steps to secure the users. We recommend that you do the
following:

Always set a password for the root user
Choosing and setting a strong password for your administrator user is essential,
except in the case where you’re the only user of a machine that is unconnected to
a network and contains no valuable information.

Remove privileges for the test databases
Allowing any user to work with the test database and any database beginning with
the string test_ is insecure.

Remove anonymous access
Unless you want anyone to be able to connect to your MySQL server, it’s better to
allow access only by named users. We therefore recommend that you remove the
anonymous users. If you understand and want anonymous access, read the next
section, “Devising a User Security Policy,” to devise an appropriate access policy.

Remove remote access
Unless there’s a requirement for the server to allow client connections from other
machines, it’s better to allow access from only the localhost. If you need remote
access, read “Devising a User Security Policy” to devise an appropriate access
policy.

To perform our recommended steps to secure your server, you need to log in to the
monitor as the root user:

$ mysql --user=root --password=the_mysql_root_password

Having connected, set a password for the root user connecting from localhost:

mysql> SET PASSWORD FOR 'root'@'localhost' = password('the_mysql_root_password');
Query OK, 0 rows affected (0.22 sec)

If you’ve already set a password for the root user, this will update it. If you plan to keep
other root users who can access the server from other hosts, make sure you add pass-
words for these, too. If you don’t plan to keep them, don’t worry; our later steps will
remove them anyway.

To remove access to the test databases, type the following:

mysql> REVOKE ALL ON test.* FROM ''@'%';
Query OK, 0 rows affected (0.28 sec)

The Default Users | 331

mysql> REVOKE ALL ON `test_%`.* FROM ''@'%';
Query OK, 0 rows affected (0.16 sec)

You might also want to remove the test database; you’ll almost never need to use it,
and removing it leaves one less thing to worry about:

mysql> DROP DATABASE test;
Query OK, 0 rows affected (0.18 sec)

That’s the test issue dealt with.

The next step is to remove anonymous access. You can do this by deleting the accounts
that have no username:

mysql> DROP USER ''@'localhost';
Query OK, 0 rows affected (0.27 sec)

mysql> DROP USER ''@'host.domain

Query OK, 0 rows affected (0.00 sec)

Replace host.domain with the server’s fully qualified domain name, such as ruttle.invy
home.com.

Alternatively, you can manually update the grant tables:

mysql> DELETE FROM mysql.user WHERE User = '';
Query OK, 2 rows affected (0.26 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.20 sec)

We discuss managing privileges with SQL, including the FLUSH PRIVILEGES syntax, later
in “Managing Privileges with SQL.”

Instead of deleting the anonymous accounts, you can disable unauthenticated access
to the server by setting passwords for these accounts:

mysql> UPDATE mysql.user SET Password = PASSWORD('the_new_anonymous_user_password')
 -> WHERE User = '';
mysql> FLUSH PRIVILEGES;

This allows authenticated, minimally privileged access to the MySQL server from any
host, allowing access to test databases but nothing else. It’s rare for such a setup to be
needed, so we recommend you simply remove any anonymous accounts.

The final step we recommend is to remove remote access unless you really need it.
Allowing only local connections is more secure. As we explained in “Configuring Access
to the MySQL Server,” you can increase security even further by telling the server to
not accept incoming network connections, and to communicate with clients only
through TCP sockets (Linux and Mac OS X) or named pipes (Windows).

Since we’ve removed the anonymous user, the only remaining user is root; we can
remove remote access for root with:

332 | Chapter 9: Managing Users and Privileges

mysql> DROP USER 'root'@'host.domain'
Query OK, 0 rows affected (0.00 sec)

Replace host.domain with the server’s fully qualified domain name. For example, if your
host was called ruttle.invyhome.com, you would write:

mysql> DROP USER 'root'@'ruttle.invyhome.com'

Again, you can instead manually modify the grant tables; here, you can delete all ac-
counts that have a host other then localhost:

mysql> DELETE FROM mysql.user WHERE Host <> 'localhost';
Query OK, 1 row affected (0.26 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.20 sec)

Removing users makes us nervous, especially when a wrong keystroke in a DELETE
statement can remove all your users; you can even remove the root account! If you
make a mistake, you should restore the files for the mysql database (in the mysql direc-
tory of the data directory) from your backups. On a Linux or Mac OS X system, you
can also restore the default users with the mysql_install_db script; simply run this
command the same way you ran it in Chapter 2. We look at backups and recovery in
Chapter 10.

Devising a User Security Policy
You now understand the principles of creating, maintaining, and removing users and
their privileges. In this section, we show you how to take those basics and put them
together to develop a security policy and a maintainable, flexible, secure MySQL in-
stallation. Importantly, we also show you how to balance server performance against
security, and develop the thinking that’ll allow you to effectively manage your MySQL
server.

Flexibility and security are enemies. The most secure MySQL installation has no users
with no privileges. The most flexible installation lets everyone in as root, in case they
need to administer or change the server or its databases. Balancing security and flexi-
bility is important: you should have sufficient users and privileges to permit the user
requirements of the applications you develop, but you should constrain those users
and privileges to the minimal set that’s needed. The next section walks you through a
checklist of decisions you should make in setting up your users and their privileges.

Choosing Users and Privileges
To begin, you should decide whether you’ll have a “default allow” or “default deny”
philosophy. In the “default allow” philosophy, you decide on all of the users you might
need and grant them all privileges. You then explicitly revoke any privileges they don’t
need. In the “default deny” philosophy, you decide on the users you must have and

Devising a User Security Policy | 333

create them with no privileges. You then explicitly grant the privileges that these users
need. Security experts prefer the “default deny” approach over the “default allow” one,
since there’s a smaller chance that you’ll create users or privileges that make your server
insecure. Developers tend to prefer the “default allow” approach, since you only need
to think about the few things that you don’t want to happen, rather than the larger set
of things you do want to allow. We recommend that you use the “default deny” ap-
proach during production, but the “default allow” approach is acceptable if you’re just
experimenting on noncritical data in a relatively secure environment. We now consider
the issues you need to consider when creating users and assigning privileges using the
“default deny” philosophy:

Clients
From what computers does the database server need to be accessed? Typically, the
answer is at least the localhost, where the machine’s security protects accounts
that are used to access the database server; if you are authenticated to access the
localhost, you must have access to an account on the host, and so must have passed
an important security check. What other clients need access? Be as explicit as pos-
sible, listing client machines by their IP addresses or full domain names; avoid using
the wildcard % where possible. Avoid listing clients that may want access, and limit
your choices to only those that must have access; you can always add clients later
when you’re sure they’re needed.

Users
Who needs access to the database server? The answer always includes the root user
who administers the server. You’ll also need at least one other user who—as we
discuss in the next step—has the smallest set of privileges required to work with
your database. If possible, partition your database users into those that need more
privileges and those that need fewer. For example, can you divide the users into a
database administrator user, and then others who need fewer privileges to use the
database?

Can you separate the database users from the application users? For example, in a
web application, it’s typical that the server scripts manage the users of the appli-
cation and always access MySQL as a single user themselves. If you have more than
one application, we recommend having a different user for each application.

Privileges
What needs to be done? The section “Privileges” at the beginning of this chapter
lists all of the privileges that are available. The root user has all of the privileges for
all databases and the server. Consider which privileges are needed for your data-
base, and what components of the database each is needed for. Are the privileges
needed for columns, tables, or for the database? Don’t add any privileges you don’t
need, avoid adding privileges you only think you might want, and avoid privileges
for parts of the database that you don’t need to access. Try to avoid using the
asterisk * wildcard, and, in particular, avoid assigning global privileges with *.*
where possible.

334 | Chapter 9: Managing Users and Privileges

Now that you’ve made it through the checklist, you need to consider how the issues
are related. For each user, consider which client hosts the user must be able to access
the server from. For example, you might decide that root needs access from only local
host, while the user working with the music database needs access from localhost and
ruttle.invyhome.com. For each user and host combination, determine the minimal set
of privileges that you need.

Let’s try a simple example. Suppose you’re setting up a database server that will manage
the music database and be accessed by PHP scripts that run on a web server on the
localhost. Let’s run through the checklist:

Clients
Only the localhost needs access.

Users
We need the root user, and one other user that we’ll name musicuser to use in the
PHP script.

Privileges
After examining the list at the beginning of the chapter in “Privileges,” we identify
that the PHP scripts need the following privileges: DELETE, INSERT, SELECT, UPDATE,
and LOCK TABLES. We identify that they are needed for all tables in the database.

Now we’re ready to create musicuser.

The first step in setting up our user is to remove all other non-root users and ensure
root is allowed access from only the localhost; the steps for this were described earlier
in “Securing the Default Users.” Then, create musicuser with the following statement
(we’re setting the password as 'MiSeCr8'):

mysql> GRANT DELETE, INSERT, SELECT, UPDATE, LOCK TABLES ON music.*
 -> TO 'musicuser'@'localhost' IDENTIFIED BY 'MiSeCr8';
Query OK, 0 rows affected (0.28 sec)

Your PHP scripts now have sufficient privileges to access the database.

More Security Tips
The previous section explained a simple philosophy for creating users and privileges.
This section lists some basic tips to consider when creating users and privileges. Think
very carefully before granting these privileges:

ALTER
The ALTER privilege allows the user to change the structure of databases, permitting
operations such as renaming tables, adding and removing columns, and creating
and deleting indexes. This can allow the user to change or destroy data; for exam-
ple, reducing the size of an INT(5) column to an INT(1) destroys four digits of integer
precision. Importantly, if you grant ALTER as a global privilege, the user can subvert
the privilege-checking process by renaming the mysql database or its tables.

Devising a User Security Policy | 335

FILE
The FILE privilege allows the user to use statements that read and write disk files,
permitting access to potentially sensitive information on the server and allowing
the user to write large files. In practice, the user can only read and write files to
which the server has access; this includes all world-readable files and any file in the
database directories. Fortunately, existing files can’t be overwritten, but this is still
a powerful privilege.

CREATE, DROP, and INDEX
The CREATE and DROP privileges allow the user to create and delete databases, tables,
and indexes. At a global level, these privileges pose the same security problems as
ALTER. At a database and table level, they allow destruction of data and indexes.
The INDEX privilege is a subset of CREATE, allowing only the key-creation feature;
you should limit access to this privilege too, since a user could add unnecessary
indexes that slow down the operation of your database server.

GRANT OPTION
This privilege allows one user to pass on privileges to another. In practice, only
administrators should grant privileges, and you should avoid allowing other users
to do so. A particular problem can occur if one user shares his privileges with
another; the user receiving additional privileges will obviously end up with more
than he was initially granted—and perhaps more than he’s supposed to have.

PROCESS
This allows the user to view current processes, including the statements that started
them. In practice, this means that the user can view databases and tables being
created and changed and, importantly, statements that create users and their pass-
words.

SHUTDOWN
This allows a user to stop the server.

You should avoid granting any privileges on the special mysql database. This is a default
part of any MySQL installation that stores user privileges. Nobody other than the
MySQL root user should be able to be read, change, or delete information in this
database.

Avoid granting access to anonymous users. You should instead require that all users
be explicitly identified, along with the hosts they can connect from and the databases
that they can access.

Choose good passwords: always specify passwords when creating users, and ensure
these passwords meet the basic criteria of being hard to guess while remaining straight-
forward to remember.

Finally, use secure remote connections: if you allow remote access to the MySQL server,
require that these connections be encrypted. We don’t discuss how to do this, but you’ll
find more detail under the heading “Using Secure Connections” in the MySQL manual.

336 | Chapter 9: Managing Users and Privileges

Resource-Limit Controls
MySQL 4.0.2 added new resource-limit controls for users. These are maintained along
with the global privileges, and affect users rather than client connections. With these
controls, you can limit:

• The number of SQL statements per hour, using the MAX_QUERIES_PER_HOUR clause.
All statements executed by a user are counted toward this limit.

• The number of updates per hour, using the MAX_UPDATES_PER_HOUR clause. Any
statement that modifies a database or its tables counts toward this limit.

• The number of connections per hour, using the MAX_CONNECTIONS_PER_HOUR clause.
Any connection, from the monitor, a program, or a web script, counts toward this
limit.

These clauses can be added to a GRANT statement, or you can set them manually using
SQL as discussed later in “Managing Privileges with SQL.”

For example, to set limits for the existing user 'partmusic'@'localhost', giving this user
a maximum of 100 queries per hour, 10 updates, and 5 connections, you’d type:

mysql> GRANT USAGE ON *.* to 'partmusic'@'localhost' WITH
 -> MAX_QUERIES_PER_HOUR 100
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5;
Query OK, 0 rows affected (0.06 sec)

Since we’ve used USAGE, the privileges aren’t affected when the new limits are imposed.

After imposing these limits, you’ll find an error message is returned when you exceed
them. For example, after running and quitting the monitor five times in succession,
you’ll see this:

$ mysql --user=partmusic
ERROR 1226 (42000): User 'partmusic' has exceeded the 'max_connections'
 resource (current value: 5)

Remember, these limits apply per user and not per connection. If you start two separate
instances of the MySQL monitor client and log in to the server as the same user, both
connections contribute towards reaching the user’s hourly limits.

Another useful parameter to manage the MySQL server load is the MAX_USER_CONNEC
TIONS option. This limits the number of simultaneous clients that can access the server
and is usually set when you start mysqld or in an options file. We discuss options files
in Chapter 11.

The mysql_setpermission Program
mysql_setpermission is an interactive program that allows you to choose from a menu
of routine database and user administration tasks, such as creating a database, setting
a user password, and modifying user privileges. The program menu is shown here:

Devising a User Security Policy | 337

$ mysql_setpermission --user=root --password=the_mysql_root_password
##
Welcome to the permission setter 1.3 for MySQL.
made by Luuk de Boer
##
What would you like to do:
 1. Set password for an existing user.
 2. Create a database + user privilege for that database
 and host combination (user can only do SELECT)
 3. Create/append user privilege for an existing database
 and host combination (user can only do SELECT)
 4. Create/append broader user privileges for an existing
 database and host combination
 (user can do SELECT,INSERT,UPDATE,DELETE)
 5. Create/append quite extended user privileges for an
 existing database and host combination (user can do
 SELECT,INSERT,UPDATE,DELETE,CREATE,DROP,INDEX,
 LOCK TABLES,CREATE TEMPORARY TABLES)
 6. Create/append database administrative privileges for an
 existing database and host combination (user can do
 SELECT,INSERT,UPDATE,DELETE,CREATE,DROP,INDEX,LOCK TABLES,
 CREATE TEMPORARY TABLES,SHOW DATABASES,PROCESS)
 7. Create/append full privileges for an existing database
 and host combination (user has FULL privilege)
 8. Remove all privileges for for an existing database and
 host combination.
 (user will have all permission fields set to N)
 0. exit this program

Make your choice [1,2,3,4,5,6,7,0]:

The program’s very easy to use; for example, let’s choose option number 1 to set the
password for the user allmusic connecting from localhost:

Setting a (new) password for a user.

For which user do you want to specify a password: allmusic
Username = allmusic
Would you like to set a password for allmusic [y/n]: y
What password do you want to specify for allmusic: the_password
Type the password again: the_password
We now need to know which host for allmusic we have to change.
Choose from the following hosts:
 - localhost
The host please (case sensitive): localhost
The following host will be used: localhost.
##

That was it ... here is an overview of what you gave to me:
The username : allmusic
The host : localhost
##

Are you pretty sure you would like to implement this [yes/no]: yes
Okay ... let's go then ...

338 | Chapter 9: Managing Users and Privileges

The password is set for user 'allmusic'.

The mysql_setpermission program is a Perl script; it should run on a Linux or Mac OS
X system, but for a Windows system you will need to follow the instructions of “In-
stalling Perl modules under Windows” in Chapter 2. Using the monitor approach is
more portable, since you can use it even when mysql_setpermission isn’t installed on
a system, or where you have limited access to the server, such as on a server run by a
hosting company.

Only users who have access to the mysql database can use the mysql_setpermission
command. Usually, only the MySQL root user has this access; if you try using the script
as a user who doesn’t have access privileges for the mysql database, you’ll get an “Access
denied” message:

$ mysql_setpermission --user=unprivileged_username
Password for user unprivileged_username to connect to MySQL:
Can't make a connection to the mysql server.
The error: Access denied for user 'unprivileged_username'@'localhost' to
database 'mysql' at /usr/bin/mysql_setpermission line 70, <STDIN> line 1.

Managing Privileges with SQL
MySQL privileges are managed in five tables in the mysql database. You can manage
this database yourself, using queries to manage users and privileges rather than using
the GRANT and REVOKE statements. It’s useful to know how to do this, because it can save
you time and allow you to access features that aren’t available through GRANT and
REVOKE. This section explains how the privileges are managed and shows you how to
modify them directly.

The privileges are managed in the mysql database. As we’ve discussed previously, only
administrators should have access to this database and, therefore, you’ll usually need
to log in as the root user to follow the steps in this section. In MySQL 5.0, the database
contains 17 tables, but only 5 are relevant to privileges: user, db, tables_priv, col
umns_priv, and host.

The user Table
The user table manages users and global privileges. Its structure is straightforward,
even though it has around 30 columns. Each row includes a User, Password, and Host
column; these are the credentials that are used to match against connection attempts
and authenticate users. All three are optional; the User and Password values are optional
because MySQL includes support for anonymous access and because it’s possible for
a user to not have a password (although this isn’t recommended). We explain why the
Host value is optional later in this section. Each row also contains a Y or N for each
possible privilege—for example, Select_priv and Alter_priv might be set to Y and N,

Managing Privileges with SQL | 339

respectively—and other values associated with the user; we explain the other param-
eters that can be set for users later.

Let’s consider an example. Suppose you issue the statement:

mysql> GRANT SELECT, INSERT, UPDATE, DELETE, LOCK TABLES ON *.*
 -> TO 'fred'@'localhost' IDENTIFIED BY '4fgh6!aa';
Query OK, 0 rows affected (0.19 sec)

This creates a row in the User table of the mysql database. Select this database, and list
the table rows for fred; here’s the output, modified so that it fits on this page:

mysql> USE mysql
Database changed
mysql> SELECT * FROM user WHERE User = 'fred';
+-----------+------+---+-------------+...
| Host | User | Password | Select_priv |...
+-----------+------+---+-------------+...
| localhost | fred | *8325B39F81993E24AC6802CD33722DB8B1D64C21 | Y |...
+-----------+------+---+-------------+...
...+-------------+-------------+-------------+-------------+-----------+...
...| Insert_priv | Update_priv | Delete_priv | Create_priv | Drop_priv |...
...+-------------+-------------+-------------+-------------+-----------+...
...| Y | Y | Y | N | N |...
...+-------------+-------------+-------------+-------------+-----------+...
...+-------------+---------------+--------------+-----------+------------+...
...| Reload_priv | Shutdown_priv | Process_priv | File_priv | Grant_priv |...
...+-------------+---------------+--------------+-----------+------------+...
...| N | N | N | N | N |...
...+-------------+---------------+--------------+-----------+------------+...
...+-----------------+------------+------------+--------------+------------+...
...| References_priv | Index_priv | Alter_priv | Show_db_priv | Super_priv |...
...+-----------------+------------+------------+--------------+------------+...
...| N | N | N | N | N |...
...+-----------------+------------+------------+--------------+------------+...
...+-----------------------+------------------+--------------+...
...| Create_tmp_table_priv | Lock_tables_priv | Execute_priv |...
...+-----------------------+------------------+--------------+...
...| N | Y | N |...
...+-----------------------+------------------+--------------+...
...+-----------------+------------------+------------------+----------------+...
...| Repl_slave_priv | Repl_client_priv | Create_view_priv | Show_view_priv |...
...+-----------------+------------------+------------------+----------------+...
...| N | N | N | N |...
...+-----------------+------------------+------------------+----------------+...
...+---------------------+--------------------+------------------+----------+...
...| Create_routine_priv | Alter_routine_priv | Create_user_priv | ssl_type |...
...+---------------------+--------------------+------------------+----------+...
...| N | N | N | |...
...+---------------------+--------------------+------------------+----------+...
...+------------+-------------+--------------+---------------+-------------+...
...| ssl_cipher | x509_issuer | x509_subject | max_questions | max_updates |...
...+------------+-------------+--------------+---------------+-------------+...
...| | | | 0 | 0 |...
...+------------+-------------+--------------+---------------+-------------+...
...+-----------------+----------------------+

340 | Chapter 9: Managing Users and Privileges

...| max_connections | max_user_connections |

...+-----------------+----------------------+

...| 0 | 0 |

...+-----------------+----------------------+
1 row in set (0.00 sec)

You can see that the password is encrypted using the PASSWORD() function, and that
all privileges are N except for the four simple privileges we’ve granted. If you create a
user with no global privileges—because the privileges you grant are for a database,
tables, or columns—you’ll find that all privileges in the user table are set to N.

The user table is used to authenticate connections, as well as store global privileges. If
a connection’s parameters—its username, password, and host—don’t match an entry
in the user table, then the user isn’t authenticated and it doesn’t matter what privileges
are available in the other four tables. If the parameters do match, then the user is allowed
access to the MySQL server, and her privileges are a combination of those in the five
privilege tables. There’s no requirement for an exact match between the parameters
and the user table for authentication because a blank username allows anonymous
access from a host, and the hostname column can contain wildcards.

The db Table
When you grant privileges for a particular database, they are stored in the db table of
the mysql database. The table is similar to the user table but stores privilege values for
Host, Db, and User combinations. Consider what happens when you grant
'bob'@'localhost' privileges for the music database:

mysql> GRANT SELECT, INSERT, DELETE on music.*
 -> TO 'bob'@'localhost';
Query OK, 0 rows affected (0.00 sec)

You’ll now see these privileges in the db table:

mysql> SELECT * FROM db WHERE User = 'bob';
+-----------+-------+------+-------------+-------------+-------------+...
| Host | Db | User | Select_priv | Insert_priv | Update_priv |...
+-----------+-------+------+-------------+-------------+-------------+...
| localhost | music | bob | Y | Y | N |...
+-----------+-------+------+-------------+-------------+-------------+...
...+-------------+-------------+-----------+------------+-----------------+...
...| Delete_priv | Create_priv | Drop_priv | Grant_priv | References_priv |...
...+-------------+-------------+-----------+------------+-----------------+...
...| Y | N | N | N | N |...
...+-------------+-------------+-----------+------------+-----------------+...
...+------------+------------+-----------------------+------------------+...
...| Index_priv | Alter_priv | Create_tmp_table_priv | Lock_tables_priv |...
...+------------+------------+-----------------------+------------------+...
...| N | N | N | N |...
...+------------+------------+-----------------------+------------------+...
...+------------------+----------------+---------------------+...
...| Create_view_priv | Show_view_priv | Create_routine_priv |...
...+------------------+----------------+---------------------+...

Managing Privileges with SQL | 341

...| N | N | N |...

...+------------------+----------------+---------------------+...

...+--------------------+--------------+

...| Alter_routine_priv | Execute_priv |

...+--------------------+--------------+

...| N | N |

...+--------------------+--------------+
1 row in set (0.08 sec)

Again, we’ve modified the output so it fits in the book.

The tables_priv Table
The tables_priv table stores privileges for the table level. This is similar to the db table
but holds privilege values for Host, Db, User, and Table_name combinations. Consider
what happens when you grant 'bob'@'localhost' the INDEX privilege for the artist
table in the music database:

mysql> GRANT INDEX on music.artist TO 'bob'@'localhost';
Query OK, 0 rows affected (0.00 sec)

A SELECT statement shows the effect:

mysql> SELECT * FROM tables_priv WHERE User = 'bob';
+-----------+-------+------+------------+----------------+...
| Host | Db | User | Table_name | Grantor |...
+-----------+-------+------+------------+----------------+...
| localhost | music | bob | artist | root@localhost |...
+-----------+-------+------+------------+----------------+...
... +---------------------+------------+-------------+
... | Timestamp | Table_priv | Column_priv |
... +---------------------+------------+-------------+
... | 2006-08-21 10:03:18 | Index | |
... +---------------------+------------+-------------+
1 row in set (0.16 sec)

The structure is a little different from the other tables: the tables_priv table includes
who granted the privilege and when it was granted, and it explicitly lists the table
privileges in the Table_priv column.

The Column_priv column in the tables_priv table lists privileges that are available only
at column level for the user. Consider what happens if we grant 'bob'@'localhost' the
UPDATE privilege for the album_name column on the album table:

mysql> GRANT UPDATE (album_name) ON music.album TO 'bob'@'localhost';
Query OK, 0 rows affected (0.12 sec)

Here’s the result:

mysql> SELECT * FROM tables_priv WHERE User = 'bob';
+-----------+-------+------+------------+----------------+...
| Host | Db | User | Table_name | Grantor |...
+-----------+-------+------+------------+----------------+...
| localhost | music | bob | artist | root@localhost |...
| localhost | music | bob | album | root@localhost |...

342 | Chapter 9: Managing Users and Privileges

+-----------+-------+------+------------+----------------+...
... +---------------------+------------+-------------+
... | Timestamp | Table_priv | Column_priv |
... +---------------------+------------+-------------+
... | 2006-08-21 10:03:18 | Index | |
... | 2006-08-21 10:12:36 | | Update |
... +---------------------+------------+-------------+
2 rows in set (0.25 sec)

You can see that that the Update privilege is now available on at least one of the columns
of the album table, but the tables_priv table doesn’t show which column or columns.

The columns_priv Table
The columns_priv table lists which privileges are available for which columns. It’s only
accessed if the tables_priv table says that a privilege is available for one or more col-
umns in a table and that privilege isn’t already available at the table level. We’ve granted
UPDATE to 'bob'@'localhost' for the album_name column in the album table. Here’s what’s
stored:

mysql> SELECT * FROM columns_priv WHERE User = 'bob';
+-----------+-------+------+------------+-------------+...
| Host | Db | User | Table_name | Column_name |...
+-----------+-------+------+------------+-------------+...
| localhost | music | bob | album | album_name |...
+-----------+-------+------+------------+-------------+...
... +---------------------+-------------+
... | Timestamp | Column_priv |
... +---------------------+-------------+
... | 2006-08-21 10:12:36 | Update |
... +---------------------+-------------+
1 row in set (0.07 sec)

The table structure is much the same as tables_priv, except that it includes the Col
umn_name but no table privileges.

The host Table
The remaining privilege table is host. This table isn’t modified or accessed by the
GRANT and REVOKE statements. Therefore, it can be maintained only by SQL queries, and
so remains unused in most MySQL installations. Indeed, you can skip this advanced
section if you want.

The server verifies that users have authorization to perform an operation by checking
the global privileges listed for them in the user table. If they don’t have the required
privilege for all databases, then the server checks the db table to see whether they have
that privilege for the active database. If the Host field in the db table is blank, the user’s
privileges for the database vary depending on the host they’re connecting from. These
privileges are stored in the host table and are verified against the global settings in the
db table to determine the privileges for a database when it’s accessed from a client or

Managing Privileges with SQL | 343

range of clients. For example, you could specify that users connecting from outside the
company network do not have the privilege to delete data or drop tables.

We’ll explain how the host table works through an example. Suppose you’ve decided
to create a MySQL user for Sam (with the username sam), but you want to allow him
to access the music database from different locations, but with different privileges. As-
sume there are three scenarios you want to implement. First, when sam accesses the
server from the localhost, you want him to have all privileges for the database except
GRANT OPTION. Second, when he accesses the server from anywhere else on your network
subnet—which is all machines matching 192.168.1.%—you want him to have all simple
non-administrator privileges. Last, when he connects from anywhere else, you want
him to have the SELECT privilege only. You know how to do this by creating three users
that that have access to music.*: 'sam'@'localhost', 'sam'@'192.168.1.%, and
'sam'@'%'. However, using the host table, you can instead create just one user.

Here’s how you create one user with two or more host specifications. First, you add
the user account with a superset of the privileges you want on music.*:

mysql> GRANT ALL ON music.* TO 'sam'@'' IDENTIFIED BY 'p^R5wrD';

Notice that we’ve given the privileges to 'sam'@'', which sets the Host column value to
the empty string; don’t use just 'sam' because this is the same as 'sam'@'%'. We’ve also
set this user’s password to 'p^R5wrD'.

We’ve created an account that allows Sam to log in to the MySQL server from any host,
and he now has all privileges for the music database. Let’s now create the entries in the
host database that allow and restrict his access depending on the client from which he
connects. To begin, let’s create an entry for the localhost that doesn’t restrict his priv-
ileges at all. To do this, you need to understand the structure of the host table:

mysql> DESCRIBE host;
+-----------------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------------+---------------+------+-----+---------+-------+
Host	char(60)		PRI		
Db	char(64)		PRI		
Select_priv	enum('N','Y')			N	
Insert_priv	enum('N','Y')			N	
Update_priv	enum('N','Y')			N	
Delete_priv	enum('N','Y')			N	
Create_priv	enum('N','Y')			N	
Drop_priv	enum('N','Y')			N	
Grant_priv	enum('N','Y')			N	
References_priv	enum('N','Y')			N	
Index_priv	enum('N','Y')			N	
Alter_priv	enum('N','Y')			N	
Create_tmp_table_priv	enum('N','Y')			N	
Lock_tables_priv	enum('N','Y')			N	
+-----------------------+---------------+------+-----+---------+-------+
14 rows in set (0.21 sec)

344 | Chapter 9: Managing Users and Privileges

You can see it has an entry for a Host and a Db, as well as the usual table-level privileges.
Now, let’s add an entry for localhost that allows all privileges:

mysql> INSERT INTO host VALUES ('localhost', 'music',
 -> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');
Query OK, 1 row affected (0.00 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.29 sec)

From now on, Sam can access the server as 'sam'@'localhost' and have all privileges
for the music database. We explain how this works next.

When Sam connects as 'sam'@'localhost', the following steps occur:

1. The row in the user table for Sam is matched against the user and password cre-
dentials, giving him access to the server.

2. Global privileges are added to Sam’s permissions.

3. The db table is searched for entries that match the user sam; there’s one matching
entry for the music database that has a blank Host column.

4. The host table is searched for any specific entries for the database music; in this
case, there’s one row with a Host value of localhost. We now have two sets of
privileges for the music database: privileges for Sam, and privileges for localhost.

5. Last, the intersection—the logical AND—of the privileges is computed, and these
are added to the global permissions for Sam’s connection; if either or both rows
have an N for a privilege, then that privilege is denied unless it was granted globally.
In this case, since Sam has all privileges in both rows except GRANT OPTIONS (he
doesn’t have it for the db table row), then Sam has those privileges for accessing
the music database.

We still need to configure access so that Sam has the appropriate access privileges from
other machines on our network subnet and from the Internet. To configure for the
network subnet, we add the following entry to the host table:

mysql> INSERT INTO host VALUES ('192.168.1.%','music',
 -> 'Y','Y','Y','Y','N','N','N','N','N','N','N','Y');
Query OK, 1 row affected (0.21 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.29 sec)

When Sam connects from the local network, he has only the SELECT, INSERT, UPDATE,
DELETE, and LOCK TABLES privileges, since the intersection of this row and his row in the
db table yields a Y for only those privileges.

To configure his access for elsewhere on the Internet, we add:

mysql> INSERT INTO host VALUES ('%', 'music',
 -> 'Y','N','N','N','N','N','N','N','N','N','N','N');
Query OK, 1 row affected (0.20 sec)

Managing Privileges with SQL | 345

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.29 sec)

This limits Sam’s access to the SELECT privilege when he accesses the server from any-
where but localhost and our local subnet.

The host table allows you to configure client access controls. For example, using the
wildcard % in the Db column, you can control access for a client to all databases on the
server. Suppose you want to forbid access from your web server machine,
192.168.1.200. To do this, you add this entry to the host table:

mysql> INSERT INTO host VALUES ('192.168.1.200', '%',
 -> 'N','N','N','N','N','N','N','N','N','N','N','N');
Query OK, 1 row affected (0.20 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.29 sec)

All database privileges are denied to connections from the web server, as long as no
db table rows specify it as a valid host, and global privileges are not granted.

Activating Privileges
We’ve used SQL statements to manipulate the host table in the previous section, and
prior to that in “The Default Users” as a shortcut for removing users. You’ll find this
is useful: it’s sometimes easier to apply an SQL statement to all rows in a table, or join
tables, rather than apply successive GRANT and REVOKE statements.

You’ve also seen that whenever we manipulate the mysql database with SQL statements,
we run the FLUSH PRIVILEGES statement afterward. This clears MySQL’s internal priv-
ilege cache, causing it to reread the current privileges and cache any recent updates. If
you don’t do this, your privilege changes won’t appear until you restart the server or
carry out a GRANT or REVOKE statement that affects the same privilege table. You must
remember to run FLUSH PRIVILEGES after any privilege or user modifications are per-
formed with SQL statements; you don’t need to use FLUSH PRIVILEGES with GRANT or
REVOKE, as the server does this for you automatically.

You may also have wondered when exactly privilege changes with GRANT and REVOKE
take effect on a current connection. Any change you make at the column or table level
takes effect when you run the next statement. Changes at the database level take effect
when you next choose a database. Changes at the global level—including password
changes—take effect when the specified user next connects. Finally, all changes take
effect immediately if you stop and restart the server.

Privileges and Performance
MySQL’s user and privilege management gives you fine-grain control over who has
access to which parts of the server and its databases, as well as what that access allows.

346 | Chapter 9: Managing Users and Privileges

However, this fine-grained control comes at a price: when you implement complex user
and privilege settings, checking these for each SQL statement you execute adds a per-
formance penalty.

When you choose your users and their privileges, you should strive to balance control
and performance. Here are some basic tips:

• Keep it simple. If you follow the “default deny” philosophy, you’ll create only the
users you need; avoid creating users whom you only think you might want in the
future.

• Grant the privilege as high up the hierarchy as possible. For example, if you want
to grant a privilege for all tables in a database, grant it for the database instead.
Avoid using column and table privileges unless you really need them.

• Minimize your use of the host table.

Remember, the more comparisons required to determine permissions, the slower each
query will run on your server. However, don’t compromise your security policy for the
sake of performance; a server that has been rendered unusable by an attack has zero
performance!

Resetting Forgotten MySQL Passwords
If you’ve forgotten a MySQL user password, you can log in to the server as the MySQL
root user and update the password manually. If you’ve forgotten the root password,
you’ll need to stop the server and restart it in a special way to allow you to change the
root password.

The server is normally stopped with the mysqladmin shutdown command, but you can’t
use this command if you’ve forgotten the MySQL root user password. Instead, you’ll
need to use the /etc/init.d/mysql or /etc/init.d/mysqld script under Linux, the
MySQL_Directory/scripts/mysql.server under Linux or Mac OS X, the MySQL prefer-
ences pane under Mac OS X, or the Windows Services window to shut down the server.
If none of these are available, you can forcibly end or “kill” the server process, though
this is not recommended since it can lead to data loss. You will need to have sufficient
authorization to kill the server process, so you should be logged in under the same
username the server is running under—for example, mysql, or your own account if the
server is running under your username—or as a superuser (system root or Windows
administrator).

To kill the server under Linux or Mac OS X, you should first determine the process
identifier (or PID) of the server process. The PID is normally stored under the server
data directory in a file with the extension .pid. You can list the contents of this file using
the cat command and enclose the command in backtick symbols (`) to pass the output
directly to the kill command:

$ kill `cat MySQL_Directory/data/your_host_name.pid`

Resetting Forgotten MySQL Passwords | 347

An example of a command to kill a server running from the /usr/local/mysql directory
would be:

$ kill `cat /usr/local/mysql/data/localhost.pid`

If you specified a custom PID file location with the pid-file option, you’ll need to
specify the same location here.

To kill the server under Windows, press the Ctrl-Alt-Del keys together to open the Task
Manager, select the mysqld-nt.exe entry under the Processes tab, and click on the End
Process button.

Once the server is stopped, you need to restart it and change the database root user
password. There are two approaches that you can use. First, you can open a text editor
and create a text file containing an SQL command to update the database root user
password:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('the_mysql_root_password');

Save this file under the name reset_root_password.sql. Now, you need to start the
MySQL server with the init-file option, telling the server to execute the commands
in this file:

$ mysqld_safe --init-file=path_to_the_init_file &

For example, on a Linux or Mac OS X system, with the file in the ~/tmp directory, you
would write:

$ mysqld_safe --init-file=~/tmp/reset_root_password.sql &

while on a Windows system with the file in the C:\ directory, you would write:

C:\> mysqld-nt --init-file=C:\reset_root_password.sql &

Note that the server should have permission to access and read this file. If the server
can’t access the file, it will refuse to start and write a message such as this one in the
server log:

051009 22:12:01 [ERROR] /usr/sbin/mysqld: File '/home/adam/tmp/reset_root_passwrd.sql'
 not found (Errcode: 13)

Here, the name of the initialization file has been mistyped. Once you’ve started the
server successfully, you should shut it down and start it again normally without the
init-file option. You should then carefully delete the text file containing the pass-
word. If you drag and drop the file to the system Trash can or Recycle Bin, empty this
so that the file can’t be easily recovered. Even better, you should use a file-wiping tool
such as shred (under Linux and Mac OS X) or Eraser (under Windows) that ensures
that sensitive files—and any temporary or backup files created by your text editor—
are destroyed when they are deleted.

An alternative approach is to start the server using the skip-grant-tables option. This
tells the server not to check user passwords and access levels:

348 | Chapter 9: Managing Users and Privileges

$ mysqld_safe --skip-grant-tables

Now, anyone can have access to the server with maximum privileges and without a
password. Be very careful—it’s wise to disconnect your system from the network while
you’re doing this! Connect to the server with the MySQL monitor program:

$ mysql

(You don’t need to specify any user or password, since without the grant tables, MySQL
can’t enforce any authentication). Then immediately re-enable the grant tables so that
the authentication details will be checked if anyone else tries to connect to the server:

mysql> FLUSH PRIVILEGES;

You can then reset the root user password using the SQL query:

mysql> UPDATE mysql.user SET Password = PASSWORD('new_password') WHERE User = 'root';

or alternatively:

mysql> SET PASSWORD for 'root'@'localhost'=PASSWORD('the_new_mysql_root_password');

Now, tell MySQL to put the new privileges into effect:

mysql> FLUSH PRIVILEGES;

and exit the monitor:

mysql> QUIT

You can now restart the server normally.

Exercises
1. What’s the difference between a local and a remote user?

2. When would you grant only read access to a user?

3. Write a GRANT statement to create a user, rowena, who has privileges to execute
SELECT, UPDATE, and INSERT statements on the contacts and appointment databases.
The user should be allowed to access the server from machines in the domain
invyhome.com.

4. Write a GRANT statement that modifies the privileges of the user rowena created in
Question 3. Add privileges to SELECT from the customer table in the sales database,
and to SELECT the debtor column from the invoice table in the accounts database.

5. Three GRANT statements have been issued on your MySQL server:

GRANT ALL ON *.* TO 'hugh'@'hugh.invyhome.com';
GRANT SELECT, UPDATE, INSERT, DELETE ON *.* TO 'hugh'@'*.invyhome.com';
GRANT SELECT ON *.* TO ''@'localhost';

For each of the following attempts to connect to the server, state whether the con-
nection is allowed and, if so, which user the client is connected as. Assume all
connections are attempted from localhost:

Exercises | 349

• mysql --user=hugh --host=localhost

• mysql --user=fred

• mysql

6. You’ve been employed to evaluate the security of a MySQL installation. Assuming
that you’re already satisfied with the security configuration from the physical and
operating system perspective, list four things that you’d check about the MySQL
server. For each item, explain why you would check it and what you would expect
the outcome to be.

7. You’ve recently installed a wireless access point for visitors to your office and con-
figured it so that machines that connect through it have IP addresses in the range
192.168.1.1 to 192.168.1.254. You’ve decided you want users who connect to your
MySQL server from those IP addresses to have only the SELECT privilege on the
contacts database. What steps do you take in your MySQL privilege tables to set
this up?

350 | Chapter 9: Managing Users and Privileges

PART III

Advanced Topics

CHAPTER 10

Backups and Recovery

If you suffer a crippling attack, or your server has technical problems, you should have
backups that allow you to quickly get a server up and running with relatively up-to-
date data. The simplest way to create backups is to shut down the MySQL server and
make a copy of the data directory (we listed common locations for the data directory
in “Server Doesn’t Start” in Chapter 2) to a secure location, and copy it back if required.

With a Windows system, you can right-click on the data directory folder and select the
menu option to create a compressed folder. On a Linux or Mac OS X system, you can
make a compressed package of all the databases on the server by typing:

tar zcf /tmp/`date +"%Y.%m.%d.%H.%M"`.MySQL_Backup.tgz mysql_data_directory

The backup file is created in the /tmp directory. The segment `date +"%Y.%m.%d.%H.
%M"` is a trick to include a timestamp in the filename. The resulting compressed file will
have a name like 2006.08.16.06.08.MySQL_Backup.tgz; an explicit record of the
backup date and time is very useful when you need to recover data from a particular
point in time.

The MySQL server must be stopped when you make a backup in this way, since you
want the files on disk to be up-to-date and consistent. For a home user, this is incon-
venient; for a production database, such downtime can be very disruptive and should
be avoided when possible.

In this chapter, we explain alternative approaches to backing up and restoring your
MySQL databases, and how to configure regular automatic backups. We also explain
how to check and repair damaged database tables. Finally, we show how you can re-
create a damaged mysql database.

Dumping a Database as SQL Statements
You can make a database backup by generating a file of all the SQL commands neces-
sary to re-create the existing database structure from scratch, and (if you want) the SQL
commands to insert all the data. Note that this is different from exporting table contents
using the SELECT INTO OUTFILE syntax that we saw in “Writing Data into Comma-

353

Delimited Files” in Chapter 8 since we get the actual SQL INSERT statements, rather
than just the raw values.

SQL statements are an excellent form of backup. One of the easiest ways to safely back
up your data is to export it from MySQL, write it to stable media (such as a high-quality
recordable CD or DVD), and store it in a safe location. Since the file of SQL statements
contains just text, it can be compressed to a fraction of its original size using a com-
pression program. Suitable compression programs on Linux or Mac OS X are gzip,
bzip2, or zip; you can also use the StuffIt program under Mac OS X. Under Windows,
you can compress a file by right-clicking on the file icon and selecting “Send To” and
then “Compressed (zipped) Folder.” You can also use third-party tools such as WinZip
and PKZIP.

Let’s try a simple example to back up the music database. To do this, we’ll run the
mysqldump utility and save the output to the file music.sql:

$ mysqldump --user=root --password=the_mysql_root_password \
--result-file=music.sql music

This tries to create the file music.sql in the current directory. If you don’t have permis-
sion to write to the current directory, specify a path to another location—for exam-
ple, /tmp/music.sql under Linux or Mac OS X, or C:\music.sql under Windows.

Now open this music.sql file using a text editor; if you’re unsure about how to do this,
see the instructions in “Using a Text Editor.” In the file, you’ll see something like this:

-- MySQL dump 10.10
--
-- Host: localhost Database: music
-- --
-- Server version 5.0.22

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--
-- Table structure for table `album`
--

DROP TABLE IF EXISTS `album`;
CREATE TABLE `album` (
 `artist_id` smallint(5) NOT NULL default '0',
 `album_id` smallint(4) NOT NULL default '0',
 `album_name` char(128) default NULL,
 PRIMARY KEY (`artist_id`,`album_id`)

354 | Chapter 10: Backups and Recovery

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `album`
--

/*!40000 ALTER TABLE `album` DISABLE KEYS */;
LOCK TABLES `album` WRITE;
INSERT INTO `album` VALUES (2,1,'Let Love In'),(1,1,'Retro - John McCready FAN'),
 (1,2,'Substance (Disc 2)'),(1,3,'Retro - Miranda Sawyer POP'),
 (1,4,'Retro - New Order / Bobby Gillespie LIVE'),(3,1,'Live Around The World'),
 (3,2,'In A Silent Way'),(1,5,'Power, Corruption & Lies'),
 (4,1,'Exile On Main Street'),(1,6,'Substance 1987 (Disc 1)'),
 (5,1,'Second Coming'),(6,1,'Light Years'),(1,7,'Brotherhood');
UNLOCK TABLES;
/*!40000 ALTER TABLE `album` ENABLE KEYS */;

--
-- Table structure for table `artist`
--

DROP TABLE IF EXISTS `artist`;
CREATE TABLE `artist` (
 `artist_id` smallint(5) NOT NULL default '0',
 `artist_name` char(128) default NULL,
 PRIMARY KEY (`artist_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `artist`
--

/*!40000 ALTER TABLE `artist` DISABLE KEYS */;
LOCK TABLES `artist` WRITE;
INSERT INTO `artist` VALUES (1,'New Order'),(2,'Nick Cave & The Bad Seeds'),
 (3,'Miles Davis'),(4,'The Rolling Stones'),(5,'The Stone Roses'),
 (6,'Kylie Minogue');
UNLOCK TABLES;
/*!40000 ALTER TABLE `artist` ENABLE KEYS */;

--
-- Table structure for table `played`
--

DROP TABLE IF EXISTS `played`;
CREATE TABLE `played` (
 `artist_id` smallint(5) NOT NULL default '0',
 `album_id` smallint(4) NOT NULL default '0',
 `track_id` smallint(3) NOT NULL default '0',
 `played` timestamp NOT NULL default CURRENT_TIMESTAMP on update
 CURRENT_TIMESTAMP,
 PRIMARY KEY (`artist_id`,`album_id`,`track_id`,`played`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Dumping a Database as SQL Statements | 355

--
-- Dumping data for table `played`
--

/*!40000 ALTER TABLE `played` DISABLE KEYS */;
LOCK TABLES `played` WRITE;
INSERT INTO `played` VALUES
 (1,3,0,'2006-08-14 00:21:03'),(1,3,1,'2006-08-14 00:25:22'),
 (1,3,2,'2006-08-14 00:30:25'),(1,3,3,'2006-08-14 00:36:54'),
 (1,3,4,'2006-08-14 00:41:43'),(1,3,5,'2006-08-14 00:43:37'),
 (1,3,6,'2006-08-14 00:47:21'),(1,3,7,'2006-08-14 00:54:02'),
 (3,1,0,'2006-08-15 04:00:03'),(3,1,1,'2006-08-15 04:26:12'),
 (3,1,2,'2006-08-15 04:33:57');
UNLOCK TABLES;
/*!40000 ALTER TABLE `played` ENABLE KEYS */;

--
-- Table structure for table `track`
--

DROP TABLE IF EXISTS `track`;
CREATE TABLE `track` (
 `track_id` smallint(3) NOT NULL default '0',
 `track_name` char(128) default NULL,
 `artist_id` smallint(5) NOT NULL default '0',
 `album_id` smallint(4) NOT NULL default '0',
 `time` time default NULL,
 PRIMARY KEY (`artist_id`,`album_id`,`track_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `track`
--

/*!40000 ALTER TABLE `track` DISABLE KEYS */;
LOCK TABLES `track` WRITE;
INSERT INTO `track` VALUES (0,'Do You Love Me?',2,1,'00:05:95'),
 (1,'Nobody's Baby Now',2,1,'00:03:87'),(2,'Loverman',2,1,'00:06:37'),
 (3,'Jangling Jack',2,1,'00:02:78'),(4,'Red Right Hand',2,1,'00:06:18'),
 (5,'I Let Love In',2,1,'00:04:25'),(6,'Thirsty Dog',2,1,'00:03:81'),
...
UNLOCK TABLES;
/*!40000 ALTER TABLE `track` ENABLE KEYS */;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

356 | Chapter 10: Backups and Recovery

As we explained in Chapter 5 in “Exploring Databases and Tables with SHOW and
mysqlshow,” the text between the /*! ... */ symbols contains MySQL-specific in-
structions. Notice several features in this dump file:

• CREATE TABLE statements for all tables in the database that are identical to the output
of SHOW CREATE TABLE.

• DROP TABLE statements that precede each CREATE TABLE statement. These allow you
to load the file into your MySQL database without error, even when the tables
already exist; of course, you’ll lose any data that may already be on the server in
this table of the database.

• INSERT statements that add all of the data to the tables. There’s only such statement
per table, that is, the rows are each parenthesized and comma-separated.

• LOCK TABLES and UNLOCK TABLES statements. These ensure that you’re the only user
modifying or using a table when you’re inserting the data, and they also speed up
the inserts. We discuss locking briefly in “Transactions and Locking” in Chapter 7.

You’ll also notice two missing features:

• There’s no CREATE DATABASE statement to set up the database.

• There’s no USE statement that selects the database.

Fortunately, you can use command-line parameters to customize what mysqldump does.
We’ll show you some examples next. You might find that your mysqldump output
doesn’t exactly match what we’ve stated here, but don’t worry; the defaults change
over time, and everything can be customized.

mysqldump Options
The mysqldump program has options to control whether tables should be locked when
making the dump, whether restoring a dump should overwrite any existing tables, and
so on. These options can be appended as parameters, just like the user and password
options for the username and password, respectively. Here’s a list of the most useful
options, but the default settings should be sufficient for most cases:

add-drop-table
Includes a DROP TABLE statement for each table, ensuring that any existing table
data is removed before the dump is restored.

add-locks
Includes a LOCK TABLES statement before each data INSERT statement, and a corre-
sponding UNLOCK TABLES statement afterward. Helps speed up data restoration from
the dump file.

Dumping a Database as SQL Statements | 357

all-databases
Creates a dump of all databases on the server. This means you don’t have to supply
any database names on the command line. We’ll show you an example of this later
in this section.

create-options
Includes MySQL-specific information such as ENGINE and CHARSET in the table cre-
ation statements.

databases
Create a dump of the specified databases. This also ensures—even if you list only
one database—that CREATE DATABASE and USE statements are added to the output.

disable-keys
Tells MySQL to disable index updates during the INSERT operations for MyISAM
tables; the index is created after all the data has been loaded, which is more efficient.

extended-insert
Combines INSERT statements so that each statement inserts multiple table rows;
this helps speed up data restoration.

flush-logs
Flushes the server logs before dumping the data. This is useful in conjunction with
incremental backups, as described later in “The Binary Log.”

lock-tables
Locks all the tables in a database for the duration of the dump so that the dump is
a consistent snapshot.

no-data
Dumps only the information necessary to re-create the database structure and
leaves out the data; the dump file will have no INSERT statements.

opt
This option, which is enabled by default from MySQL version 4.1 onwards, enables
the options add-drop-table, add-locks, create-options, disable-keys, extended-
insert, lock-tables, quick, and set-charset. You can disable all these by using the
skip-opt option, or you can disable individual options by adding the prefix skip-
in front of them; for example, to disable add-locks, you’d write skip-add-locks.
However, they’re all sensible defaults that you’re likely to want in most cases.

quick
Prevents mysqldump from buffering tables in memory before writing to the file; this
speeds up dumps from large tables.

result-file
Specifies the name of the output dump file, where the SQL commands are stored.

set-charset
Specifies the character set—for example, latin1 or utf8—used by the database.

358 | Chapter 10: Backups and Recovery

tables
Creates a dump of the specified database tables.

where
Dumps only records meeting a specified WHERE clause.

You can use mysqldump in four main ways (assume you want to get the database dump
in the file outputfile.sql):

• To make a backup of all the databases on a MySQL server, use the command:

$ mysqldump --user=root --password=the_mysql_root_password \
 --result-file=outputfile.sql --all-databases

This dumps CREATE DATABASE, USE, CREATE TABLE, and INSERT statements for all data
in all databases that are accessible by the user root. If you specify a user other than
root, the output is affected by the privileges of that user.

• To make a backup of specific databases, use the command:

$ mysqldump --user=root --password=the_mysql_root_password \
 --result-file=outputfile.sql --databases database_name

This dumps CREATE DATABASE, CREATE TABLE, and INSERT statements for only the
specified databases. Use this if you want a CREATE DATABASE statement, in preference
to the variant we showed you at the beginning of this section.

You can list several databases one after the other in the command. For example,
to dump the music and wedding databases, you would type:

$ mysqldump --user=root --password=the_mysql_root_password \
 --result-file=outputfile.sql --databases music wedding

• To make a backup of specific tables from a database, use the command:

$ mysqldump --user=root --password=the_mysql_root_password \
 --result-file=outputfile.sql database_name table_name

You can list several tables, one after the other, in the command.

• To make a backup of specific data from a table in a database, use the command:

$ mysqldump --user=root --password=the_mysql_root_password \
 --result-file=outputfile.sql database_name table_name where=where_clause

For example, to use the artist table of the music database, and dump SQL state-
ments for all the artists having a name beginning with “N”, you would write:

$ mysqldump --user=root --password=the_mysql_root_password \
 --result-file=outputfile.sql \
 --where="artist_name like 'N%'" \
 music artist

Dumping a Database as SQL Statements | 359

Loading Data from an SQL Dump File
The previous section showed you how to back up your databases. Let’s see how to
restore them from those backups.

To load the structures and data in a dump file, you can tell the MySQL monitor to read
in the SQL commands from the file:

mysql> SOURCE dumpfile.sql

Alternatively, you can simply run the MySQL monitor in batch mode and execute the
instructions in the dump file:

$ mysql mysql_options < dumpfile.sql

We don’t recommend this approach, as it’s a little less portable than the SOURCE com-
mand; more importantly, it doesn’t show you any error and warning messages as the
SQL statements are processed.

If the backup file doesn’t have CREATE DATABASE and USE statements, you’ll need to type
these into the monitor before you read in the dump file, or add them to the dump file
if you want to run the monitor in batch mode. A good step prior to carrying out a restore
operation is to inspect the backup file with a text editor. Once you’ve inspected the
file, you can decide whether you need to drop and re-create databases, use databases
whether you need to take any other steps prior to a restore operation. Of course, you
can use the mysqldump options to control what’s written to the dump file when it’s
created.

You previously backed up the music database to the file music.sql. The way you did this
didn’t include any CREATE DATABASE and USE statements in the dump file, so you need
to use the monitor to enter these yourself.

Start the monitor as the root user:

$ mysql --user=root --password=the_mysql_root_password

Now, drop the existing music database:

mysql> DROP DATABASE music;

and create a new (empty) database with the same name:

mysql> CREATE DATABASE music;

Then select the music database as the active database:

mysql> USE music;

Now you can restore the data by reading in the music.sql dump file:

mysql> SOURCE music.sql;

If your music.sql file isn’t in the current directory, you should specify the full path. If
you used our earlier suggestions in “Dumping a Database as SQL Statements,” this

360 | Chapter 10: Backups and Recovery

path would be /tmp/music.sql under Linux or Mac OS X, and C:\music.sql under
Windows.

mysqlhotcopy
If you want to create a copy of a database on the same host as the server, and all the
tables in your database are of the MyISAM (or the older ISAM) type, then you may find
mysqlhotcopy handy. This is a Perl script file that’s in the scripts directory, and differs
from mysqldump in that it’s a binary copy, so you get the MySQL database files, not a
text file of SQL statements, after copying. It’s also faster.

You may wonder why you need a special command to copy the database files. After
all, they’re already there in the data directory, and you could use the operating system
copy command (e.g., cp or copy) to copy them. The problem is that if the server is
running, what you have on disk is not always consistent with the status according to
the MySQL server. The mysqlhotcopy command takes care of the locking needed to
ensure that the copies are consistent, even if the server is running.

Let’s look at an example that copies the database music to the database music_bak:

mysqlhotcopy --user=root --password=the_mysql_root_password music music_bak
Locked 4 tables in 0 seconds.
Flushed tables (`music`.`album`, `music`.`artist`, `music`.`played`, `music`.`track`)
 in 0 seconds.
Copying 13 files...
Copying indices for 0 files...
Unlocked tables.
mysqlhotcopy copied 4 tables (13 files) in 1 second (1 seconds overall).

There are two things worth mentioning here. First, the server has to be running when
you run mysqlhotcopy. Second, you must have operating-system-level access to the da-
tabase files. For example, you would need to be logged in as the user who owns the
MySQL data directory (this could be you, or the mysql user), or as the system root user.

Note that mysqlhotcopy is a Perl script, and you’ll need to follow the instructions in
“Installing Perl modules under Windows” in Chapter 2 to use this on Windows. Linux
and Mac OS X users should be able to use this script without problems.

To restore a database from the backup copy, you should stop the server, copy the
backup directory to the MySQL data directory, and restart the server. To restore all
databases on a server, you’ll need backups of all the individual databases, as well as the
mysql grants database.

Scheduling Backups
We all forget to do backups, and as Murphy’s Law would have it: “The hard drive on
your computer will crash only when it contains vital information that has not been
backed up” (for this and other interesting variations on Murphy’s Law, see http://www

Scheduling Backups | 361

http://www.murphys-laws.com

.murphys-laws.com). In this section, we’ll describe how you can configure automatic,
regular backups using mysqldump; you can also use mysqlhotcopy if you wish.

Linux and Mac OS X
Under Linux and Mac OS X, you can list the commands you want to be executed in a
crontab file; commands in the crontab file are run at the times you specify. First, you
have to edit a crontab file:

$ crontab -e

This opens the crontab file for the current user for editing; the default editor on most
systems is vi. If you’re not comfortable with this editor, you can specify your preferred
editor by setting the EDITOR variable to the name of your favorite editor. For example,
many novice users find the pico editor somewhat easier to use:

$ export EDITOR=pico
$ crontab -e

The general format of a crontab entry is:

MINUTE HOUR DAY MONTH DAYOFTHEWEEK COMMAND

If you want a dump to be created from a particular database using the mysqldump com-
mand at 4:45 A.M. every Sunday, you can add the line:

45 4 * * sun /usr/local/mysql/bin/mysqldump \
 --user=root \
 --password=the_mysql_root_password \
 --result-file=path_to_backup_file \
 database_to_dump

Note that each entry must be on one line, and you must specify full paths to executables;
the cron program might not inherit your path settings.

SQL files have a lot of repeating information that can be highly compressed. You can
create compressed SQL files by passing the mysqldump output to the gzip compression
program:

45 4 * * sun /usr/local/mysql/bin/mysqldump \
 --user=root \
 --password=the_mysql_root_password \
 database_to_dump \
 | gzip --best --to-stdout \
 > dump_directory/`date +"%Y.%m.%d.%H.%M"`.MySQL_Backup.sql.gz

Here, we’ve left out the result-file option so that the mysqldump output is passed
directly to the standard output (normally the screen), rather than to a file. The pipe
symbol (|) then sends this output to the gzip compression program. The best option
tells gzip to compress the data as much as possible, while the to-stdout option tells
gzip to pass its own output to the standard output. Finally, the greater-than symbol
(>) redirects this compressed data into a file. We’ve included the string:

362 | Chapter 10: Backups and Recovery

http://www.murphys-laws.com

`date +"%Y.%m.%d.%H.%M"`

as part of the result filename so that the filename includes a timestamp. The
resulting compressed SQL dump file will be given a name like
2006.08.16.06.08.MySQL_Backup.sql.gz;

Check that your changes have been saved by typing crontab -l (the "l" stands for list).
It’s also useful to first test the command yourself from the shell prompt. When entering
the command in the crontab file, use a time that’s near so that you can monitor that
things are working as you expect. There are few things more depressing than finding
that your regular backups weren’t being done properly, and that you can’t recover your
lost data. You can edit the file again later and set the regular backup times you actually
require.

Any output messages from the automatic execution are generally emailed to the cron
tab owner; you can specify a different address by defining the MAILTO variable at the top
of your crontab file:

MAILTO=your_email_address

Windows XP
Under Windows XP, you can add a scheduled task by selecting Scheduled Tasks by
opening the Windows Control Panel, selecting the “Performance and Maintenance”
entry, and choosing Scheduled Tasks. If you have Classic View enabled, you can choose
Scheduled Tasks directly from the Windows Control Panel. Select Add Scheduled Task,
browse to the MySQL bin directory, and select mysqldump.exe. Select how frequently
you want to run this program; at the end of the configuration process, select the check-
box for “Open advanced properties for this task when I click Finish,” and then click
the Finish button. In the Run tab, type in the full command below. When prompted
to specify your password, enter your Windows password. Note that scheduled tasks
don’t run if you don’t have a password set for your Windows account:

"C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqldump.exe" \
 --user=root \
 --password=the_mysql_root_password \
 --result-file=C:\outputfile.sql \
 database_name

Under Windows Vista, take the following steps. Open the Windows Control Panel,
and select the “System and Maintenance” entry, and then select the Administrative
Tools. If you have Classic View enabled, choose Administrative Tools directly from the
Control Panel. From the Administrative Tools, choose the Task Scheduler entry. Win-
dows may prompt you for authorization—click Continue.

From the Task Schedule window, choose the Create Task entry from the Actions menu
on the right. A dialog box will open with several tabs at the top. On the first tab (Gen-
eral), enter a name for the new task—for example, “MySQL daily dumps.”

Scheduling Backups | 363

Select the next tab (Triggers); click the “New...” button, and select the backup schedule
you want—for example, “Daily at 3.20 AM”—and click the OK button. Select the next
tab (Actions); click the “New...” button, and ensure that the Action drop-down list is
set to “Start a program.” In the “Program/script” text box, type in the full command
from before; you can use the Browse button to find select the mysqldump.exe program,
and then you can add the user, password, database, and result-file options yourself.
Click the OK button to close the New Action dialog box, and then again to close the
Create Task window. Your new task should now appear in the list of Active Tasks.

General Backup Tips
The frequency of your backups depends on how often data updates occur in your ap-
plication, and how valuable those updates are to your organization. For example, you
might be able to absorb the loss of some or all user comments on your hobby blog, but
not the sales data for your high-throughput online store, or a university student-marks
database.

When you’re backing up a database, it’s wise to ensure that MySQL isn’t being used
by other users. This allows you to get a consistent backup, where all operations that
have been intended to run have completed. You can ensure single-user access by having
mysqldump lock the tables using the lock-tables or the opt option. If for some reason
you can’t lock the database, don’t be overly concerned: having a near-perfect backup
is usually much better than no backup at all.

Make sure that the backup ends up on stable media—such as flash memory or a high-
quality writable CD or DVD—and that the stable media isn’t stored with the computer.
There’s little point in storing a backup on the same disk as the MySQL databases, since
the backup would disappear with the databases in case of a disk failure. There’s also
little point in storing the backup on a computer, CD, or flash memory device nearby,
since theft or destruction would result in the loss of everything. Get in the habit of
storing your backup offsite; we sometimes swap backups with family members who
live nearby, and often leave a home backup at work. Alternatively, copy your backups
to a trustworthy online storage site; a simple web search for “online storage service”
turns up many low-cost and free services.

Take care to regularly check that your backups are occurring correctly and are usable.
Often, the only time people look at their backups is when they need them, and there
are few things as frustrating as finding that the backups you desperately need have not
been generated correctly due to a problem such as a full backup device.

Finally, remember to treat the security of your backups with the same seriousness as
you do the server; an attacker could get access to your company’s sensitive data by
simply stealing a backup DVD from your home. Think carefully before you trust any
person or organization with your valuable data.

364 | Chapter 10: Backups and Recovery

The Binary Log
An update log contains all the information needed to re-create any changes to the da-
tabase since the server was started or the logs were flushed; this feature allows you to
always have an up-to-date backup of your database. You can keep a list of every SQL
query that changes data on the server by passing the log-bin option to the MySQL
server (mysqld_safe, mysqld-nt.exe, or mysqld).

If no preferred name and directory is specified for the logfile, the server will use the file
<hostname>-bin in the MySQL data directory. Individual logfiles will have the exten-
sions .000001, .000002, and so on; any extensions you specify to the log-bin option
are ignored. For example, on a machine with the hostname eden, the binary logfiles are
typically named eden-bin.000001, eden-bin.000002, and so on. It’s also common to see
the word mysql used in place of the hostname. The update log is saved in a compact
binary format; prior to MySQL version 5.0, the log-update option would save an update
log in text format. However, the text format is deprecated and is treated the same as
log-bin in MySQL 5.0 and later.

When the server is shut down, it ensures that all modifications to data have been written
(flushed) to the binary log. The next time the server is started, it opens a new logfile
alongside the old one with an incremented number in the extension. For example, the
current binary logfile might be called eden-bin.000012; after the server is restarted, it
creates the new logfile eden-bin.000013 to log all modifications to the database since
the restart. The logs can be manually flushed at any time using the FLUSH LOGS command
in the monitor, or the mysqladmin flush-logs command from the command line.

You can view the SQL statements in the binary log by using the msqlbinlog command
and specifying the full path to the binary logfile. For example, if on this system the
MySQL data directory is /usr/lib/mysql/data, you can view the contents of the binary
logfile eden-bin.000002 by typing:

mysqlbinlog /usr/lib/mysql/data/eden-bin.000002

You’ll need to have the necessary permissions to access the MySQL data directory and
to read the binary logfile on your host system. You might see something like this when
you open a logfile:

...
use music;
SET TIMESTAMP=1151221361;
SET @@session.foreign_key_checks=0, @@session.unique_checks=0;
SET @@session.sql_mode=524288;
/*!\C utf8 */;
SET @@session.character_set_client=33,@@session.collation_connection=33,
 @@session.collation_server=8;
DROP TABLE IF EXISTS `artist`;
at 30551
#060625 17:42:41 server id 1 end_log_pos 30794 Query thread_id=168
 exec_time=0 error_code=0
SET TIMESTAMP=1151221361;

The Binary Log | 365

CREATE TABLE `artist` (
`artist_id` smallint(5) NOT NULL default '0',
`artist_name` char(128) default NULL,
PRIMARY KEY (`artist_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
at 30794
#060625 17:42:41 server id 1 end_log_pos 30903 Query thread_id=168
 exec_time=0 error_code=0
SET TIMESTAMP=1151221361;
...

Note that the text between the /*! ... */ symbols contains MySQL-specific instruc-
tions, as described in “Exploring Databases and Tables with SHOW and mysqlshow”
in Chapter 5.

You should create regular dumps of the database using mysqldump with the flush-
logs option. In the event of a disaster, you can follow the instructions described earlier
in “Loading Data from an SQL Dump File” to restore the database to the state it was
at the time you generated the dump file. You can then use mysqlbinlog to extract the
SQL statements from all the binary logs, and the pipe symbol (|) to pass them to the
monitor in batch mode:

mysqlbinlog hostname-bin.* | mysql

The asterisk wildcard character (*) tells the operating system to read all the files that
have names starting with <hostname-bin>.

Checking and Repairing Corrupted Tables
Problems such as running out of disk space or a power failure could cause your data-
bases files to be corrupted; in these cases, the server will often not have written all
transactions to disk. It’s a good idea to check the tables before you start to use them
again. Repairing tables will not guarantee that no data will be lost, but it does allow
you to use the database again without losing any more data.

One way to check and repair tables is to use the CHECK TABLE and REPAIR TABLE com-
mands from the monitor. For example, to check the artist table in the music database,
you would write:

mysql> CHECK TABLE music.artist;
+--------------+-------+----------+------------------------------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+------------------------------+
music.artist	check	error	Checksum for key: 1 doesn't
			match checksum for records
music.artist	check	error	Corrupt
+--------------+-------+----------+------------------------------+
2 rows in set (0.00 sec)

In this example, the table is damaged; you can repair it using the REPAIR TABLE
command:

366 | Chapter 10: Backups and Recovery

mysql> REPAIR TABLE music.artist;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| music.artist | repair | status | OK |
+--------------+--------+----------+----------+
1 row in set (0.00 sec)

If the music database was previously selected with the USE music command, you can
write artist instead of music.artist.

The mysqlcheck and mysqlisamchk programs allow you to check and repair tables from
the command line.

mysqlcheck
mysqlcheck allows you to check and repair tables from the command line. In practice,
the most important options you’ll need are:

all-databases
Performs operation on all tables in all databases on the server.

repair
Tries to repair any corrupted tables.

extended
Tries harder to repair any corrupted tables (slower than just repair).

For example, to check and repair all tables in the music database, you would write:

$ mysqlcheck --user=root --password=the_mysql_root_password --repair music
music.album OK
music.artist
warning : Number of rows changed from 1 to 0
status : OK
music.played OK
music.track OK

To check and attempt to repair all databases on the server, you would write:

$ mysqlcheck --user=root --password=the_mysql_root_password --extended --all-databases

myisamchk
This tool operates directly on the MyISAM database files, and so does not require the
server to be shut down. However, you need to ensure that the server is not using the
tables while you’re trying to repair them; if you can’t stop queries to the server, it’s
probably a good idea to shut down the server before using myisamchk.

To use this utility, you need to specify the table or index file you want to check or repair.
For example, to check the artist table in the music database, give the path to the
artist.MYI file:

Checking and Repairing Corrupted Tables | 367

$ myisamchk --check /var/lib/mysql/music/artist.MYI
Checking MyISAM /var/lib/mysql/music/artist.MYI
Data records: 87 Deleted blocks: 0
- check file-size
- check record delete-chain
- check key delete-chain
- check index reference
- check data record references index: 1
myisamchk: error: Can't read indexpage from filepos: 1024
- check record links
myisamchk: error: Found wrong record at 0
MyISAM-table '/var/lib/mysql/music/artist.MYI' is corrupted
Fix it using switch "-r" or "-o"

Let’s try to repair the table:

$ myisamchk --recover /var/lib/mysql/music/artist.MYI
- recovering (with sort) MyISAM-table '/var/lib/mysql/music/artist.MYI'
Data records: 87
- Fixing index 1
Key 1 - Found wrong stored record at 0
Found block with too small length at 3060; Skipped
Found block that points outside data file at 19024
Found block that points outside data file at 19824
Found block with too small length at 20052; Skipped
Found block with too small length at 20636; Skipped
Found block that points outside data file at 22860
Found block that points outside data file at 23344
Found block that points outside data file at 30836
Found block with too small length at 30980; Skipped
Found block that points outside data file at 32628
Found block that points outside data file at 32868
Found block that points outside data file at 33660
Found block that points outside data file at 33752
Data records: 0

Now, let’s see if this had the desired effect:

$ myisamchk --check /var/lib/mysql/music/artist.MYI
Checking MyISAM /var/lib/mysql/music/artist.MYI
Data records: 0 Deleted blocks: 0
- check file-size
- check record delete-chain
- check key delete-chain
- check index reference
- check data record references index: 1
- check record links

The error has been fixed, but, of course, some data could have been lost as a result of
the problem.

368 | Chapter 10: Backups and Recovery

Re-Creating Damaged Grant Tables
If you cannot restore your mysql grants database from backup, you will need to create
a fresh one. With Windows, you can extract the mysql directory from the installation
package and place it under the MySQL data directory.

Under Linux or Mac OS X, you can use the mysql_install_db script to regenerate the
mysql database and the privilege tables in it. This is particularly handy if your mysql
database has somehow become corrupted. Note that if the user table has to be created,
the root password for the server will be reset to the default value (blank).

If mysql_install_db isn’t already in your system path, you can generally find it in the
scripts directory under your MySQL installation directory. Run mysql_install_db the
same way you ran it in Chapter 2. If you’re not sure how to run the script, try logging
in as the system superuser and running it with no parameters:

mysql_install_db

or optionally with the user=mysql parameter so that MySQL is configured to run under
the mysql system user account:

mysql_install_db --user=mysql

Resources
To learn more about backing up MySQL databases, see the “Database Backups” section
of the MySQL manual (http://dev.mysql.com/doc/mysql/en/backup.html).

Exercises
1. SQL dump files are often very large; why is this generally not a cause for worry?

2. Set up a weekly backup of all databases on your server.

3. For a production server, what time would you choose for your regular backups?

4. How can you recover modifications that have been made to your data since the
last dump?

5. For an application where any loss of data is unacceptable, how would you choose
the location of your binary logfile?

Exercises | 369

http://dev.mysql.com/doc/mysql/en/backup.html

CHAPTER 11

Using an Options File

Over the course of this book, you’ve seen that you can pass options to many of the
programs and scripts that are part of the MySQL distribution. For example, you can
pass the user and password options to the MySQL monitor. If you don’t specify a value
for an option, the default options are used. For example, most client programs try to
use the default values localhost and 3306 for the server host and port options,
respectively.

If you need to use an option value that’s not the default, you have to specify it each
time you run a program that needs that option; this is tedious and prone to errors.
Fortunately, you can save option values to an options file, also sometimes called a
configuration file, that most of the key MySQL programs and scripts can read. The
programs that read options files include: myisamchk, myisampack, mysql, mysqladmin,
mysqlbinlog, mysqlcc, mysqlcheck, mysqld, mysqld_safe, mysqldump, mysqlhotcopy,
mysqlimport, mysql.server, and mysqlshow.

We’ll start our tour of options files with an example using the MySQL monitor.

Configuring Options for the MySQL Monitor
Throughout this book, you’ve specified the user and password options when starting
the monitor program:

$ mysql --user=root --password=the_mysql_root_password
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 486 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

You can save yourself some typing by storing the username and password in an options
file and placing it in a location where the monitor will look. The monitor will auto-
matically read in the option values from the file instead of asking you.

371

In the options file, we specify the program that we’re interested in—here, it’s mysql for
the MySQL monitor—and then list each option on a line of its own:

[mysql]
user=root
password=the_mysql_root_password

If you’re using a Linux or Mac OS X system, type these lines using a text editor and
save it with the name .my.cnf in your home directory (~/.my.cnf). Under Windows, save
this file with the name my.cnf in the root of the C: drive (C:\my.cnf). You can now start
the monitor without providing the username and password options; the values are read
in automatically from the options file:

$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 486 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

This is very convenient! Unfortunately, we now have to spoil the fun and note that it’s
generally not a good idea to store passwords unencrypted (in plain-text); at the very
least, you should ensure that only you can read (and write) the file. On a Linux or Mac
OS X server, you can use the chmod command to do this:

$ chmod u=rw,g=,o= ~/.my.cnf

We discuss permission settings in “Restricting access to files and directories” in Chap-
ter 2. The trade-off between convenience and security is a recurring theme in discus-
sions of protection of systems and data. You need to assess the requirements of each
individual application.

Let’s look at another example. Say you want to use the MySQL monitor to connect to
a MySQL server running on port 57777 of the host sadri.learningmysql.com, and wish
to use the music database on this server. For this database, we have the MySQL account
name allmusic and the password the_password. The command to start the monitor
would be (all on one line):

$ mysql \
 --host=sadri.learningmysql.com \
 --port=57777 \
 --user=allmusic \
 --password=the_password \
 --database=music

This can be tiresome to type all the time, so you could save these values in the options
file as:

[mysql]
host=sadri.learningmysql.com
port=57777
user=allmusic

372 | Chapter 11: Using an Options File

password=the_password
database=music

If you’re concerned about security, you can omit specifying a password and simply
write the option password:

[mysql]
host=sadri.learningmysql.com
port=57777
user=allmusic
password
database=music

This way, the monitor knows that you want to use a password, and it’ll prompt you
for the password before trying to connect to the server.

Structure of the Options File
We saw in the last section how you can specify options for the MySQL monitor. An
options file can have a section for each program that uses it. For example, you can have
a [mysql] section for the mysql program and a [mysqldump] section for the mysqldump
program. Similarly, you can have a [mysqld] section for the MySQL server daemons
mysqld, mysqld_safe, and mysqld-nt.

Where options are common to all client programs, they can be consolidated under a
[client] section. Similarly, options common to all server programs can be listed under
a [server] section.

Be careful not to make program options too generic. For example, the mysql program
is a client and takes a database option. However, mysqladmin and mysqlshow are exam-
ples of client programs that don’t understand this option. If you include the database
option in the [client] section, like this:

[client]
database=music

these programs will just complain and quit, as below:

$ mysqladmin status
mysqladmin: unknown variable 'database=music'

You should include the database option in a separate group for the [mysql] program,
rather than including it in the [client] group.

Let’s look at a more interesting options file:

[server]
user=mysql
port=57777

basedir=/usr/local/mysql-standard-5.0.22-linux-i686

socket=/home/mysql/server1.sock

Structure of the Options File | 373

datadir=/home/mysql/data
tmpdir=/home/mysql/tmp
pid_file=/home/mysql/logs/server1.pid

log server messages to:
log=/home/mysql/logs/server1.main.log

log errors to this
log_error=/home/mysql/logs/server1.error.log

log updates to this binary logfile
log_bin=/home/mysql/logs/server1_updates.bin

[client]
socket=/home/mysql/server1.sock

[mysql]
database=mysql

[mysqldump]
all-databases
result_file=/tmp/dump.sql

There are four groups here: one for the server, one for all clients, one for the mysql
program, and one for the mysqldump program. The latter two are both clients, but the
options we want to list in the file aren’t common to all clients, so we list them separately.

If an option appears for two applicable groups (for example [client] and [mysql]), the
more specific setting (here, for [mysql]) takes precedence.

Lines starting with the hash or pound symbol (#) are ignored; this allows you to add
comments to the configuration file to explain entries. Blank lines are also ignored.

Scope of Options
The directives in an options file can apply at different levels depending on where the
options file is located:

System-wide
Settings apply for all MySQL programs on the system.

The default location for a system-wide options file is /etc/my.cnf for Linux or Mac
OS X systems. Under Linux and Mac OS X, the MySQL server and client programs
automatically read in an options file at the default location.

For a Windows system, the possible configuration file paths are <Win
dows_Directory>\my.ini, <Windows_Directory>\my.cnf, C:\my.ini, and C:
\my.cnf. The <Windows_Directory> is the directory Windows is installed in, typ-
ically C:\Windows. Under Windows, current versions of the MySQL server (version
4.1.5 and above) don’t actually read in an options file by default, so you should

374 | Chapter 11: Using an Options File

always specify one as we discuss in the section on server-wide options. Note that
Windows client programs do read in any existing options files.

Server-specific
Settings apply for the MySQL programs in a particular installation.

The default location for a server-specific options file is <MySQL_directory>/
my.cnf for Linux and Mac OS X, and <MySQL_directory>\my.ini for Windows.

The options file is sometimes placed in the data directory, but this is not recom-
mended for two reasons: first, it won’t work if you don’t use the default location
of data directory specified when the MySQL installation was compiled. Second,
the data directory must be readable by any client programs (and therefore by other
users on the system) that need to see the options file. It’s better that access to the
data directory be limited to only the server, so it’s best to keep the options file
elsewhere.

Under Windows, the MySQL installation process places a my.ini options file in the
MySQL directory. When MySQL is installed as a Windows service, the location of
this options file is also specified; a typical service entry is:

"C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld-nt"
 --defaults-file="C:\Program Files\MySQL\MySQL Server 5.0\my.ini"

If you want to use a different options file location, you’ll need to change the service
entry. For example, you could ask your server to read in the options file
C:\my.cnf by specifying the service as:

"C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld-nt"
 --defaults-file="C:\my.cnf"

If you want to start the server from the command line instead of using the Windows
service, you’ll need to specify the path to the options file; you can use the same file
or a different one. For example, you could ask your server to read in the options
file C:\my.cnf as follows:

C:\> mysqld-nt --defaults-file="C:\my.cnf"

User-specific
Settings apply for the MySQL programs run by a particular user.

The default location of a user-specific options file on a Linux or Mac OS X system
is the file .my.cnf located in the user’s home directory—that is, ~/.my.cnf. There is
currently no support for user-specific options files under Windows.

Search Order for Options Files
The MySQL server and client programs look for options files in the standard locations
and read them in order; values from later files take precedence over earlier ones. Op-
tions specified on the command line override values from options files.

Search Order for Options Files | 375

You can tell a MySQL program to ignore the default options files by telling it to read a
specific file at a location given with the defaults-file option. For example, you can
write:

$ mysql --defaults-file=path_to_options_file

If you’d like to use an options file alongside the default files, you can specify it using
the defaults-extra-file option:

$ mysql --defaults-extra-file=path_to_local_options_file

Finally, you can prevent programs from reading in any options files by adding the no-
defaults option:

$ mysql --no-defaults

On a Linux or Mac OS X system, the search order is /etc/my.cnf, then
<MySQL_Directory>/my.cnf, defaults-extra-file, and finally ~/.my.cnf. Note that for
security reasons, files that are world-writable are ignored. A generally appropriate per-
mission setting is for the file owner (user) to be able to read and write the file, but for
the group and others to be able to only read the file. You can set this level of access by
opening a terminal window and typing:

$ chmod u=rw,g=r,o=r configuration_file

Note that if you’re trying to change the permissions of a file owned by the system root
user, you’ll need to run the chmod command when logged in as the system root user, or
prefix the command with the sudo keyword.

On a Windows system, clients try to access options files in this order: first <Win
dows_Directory>\my.ini, then <Windows_Directory>\my.cnf, C:\my.ini, C:\my.cnf,
<MySQL_directory>\my.ini, <MySQL_directory>\my.cnf and then defaults-extra-
file. Again, under Windows, the server doesn’t read in the options file automatically,
and you need to tell it to do so using the defaults-file option.

Determining the Options in Effect
It can sometimes be unclear which options are in effect for a given program, particularly
if you’ve got several options files with overlapping directives. You can use the print-
defaults option to most MySQL programs to see the options in effect. For example, to
see the active options for mysqldump, you can type:

$ mysqldump --print-defaults
mysqldump would have been started with the following arguments:
 --socket=/home/mysql/server1.sock
 --all-databases
 --result_file=/tmp/dump.sql
 --host=localhost
 --port=3306
 --database=Music
 --result_file=/home/saied/dump.sql

376 | Chapter 11: Using an Options File

You can get a similar effect using the my_print_defaults program and specifying the
command groups you’re interested in. For example, to see the settings for all clients
and for the mysqldump program, you can type:

$ my_print_defaults client mysqldump
 --socket=/home/mysql/server1.sock
 --all-databases
 --result_file=/tmp/dump.sql
 --host=localhost
 --port=3306
 --database=Music
 --result_file=/home/saied/dump.sql

Exercises
1. What issues would you consider before storing your password in an options file?

2. On a Linux or Mac OS X system, under what circumstances would the [server]
section of the ~/.my.cnf options file be read?

3. How can you tell what options a program uses by default?

Exercises | 377

CHAPTER 12

Configuring and Tuning the Server

The MySQL server has many features that can be configured to best fit the needs of
your system hardware and application. The default settings are fine for most applica-
tions, but there are a few that you should be aware of. In this chapter, we look at how
you can modify server configuration to suit your setup and for improved overall
performance.

There are two types of MySQL program settings: options, which dictate what a program
should do, and variables, which dictate the amount of resources that should be set aside
for different tasks. Options and variables can be server-wide (global) or limited to a
single client session. Some variables apply to the server, while others apply to individual
processes, or threads, that handle queries. Resources are generally allocated to a thread
only if it requires them. Options and variables can be specified in an options file, or
from the command line when starting a program.

You don’t have to come up with optimal settings for each setting on your server. There
are ready-to-use configuration files in the support-files directory under the MySQL di-
rectory. The my-medium.conf file includes recommended settings for most applications
and server configurations; other distributed configuration file variants are tailored for
“small,” “large,” and “huge” installations. You can use one of these files as a starting
point for your customizations. On a Linux or Mac OS X system, you can copy the file
you want to a standard location so that it will be read by the server; on a Windows
system, you will have to explicitly tell the server to read in the file. Let’s look at the
server options in more detail.

The MySQL Server Daemon
The main MySQL server program, or MySQL server daemon, is called mysqld. Under
Windows, there are two main programs you can use: mysqld-nt.exe—which is opti-
mized for Windows XP, 2000, and NT (and probably soon, for Vista)—and
mysqld.exe, which can work on older versions of Windows.

On Linux or Mac OS X, the recommended way to start the mysqld program is by calling
the mysqld_safe script. This in turn starts mysqld or, if it’s available, mysqld-max—a

379

variant of the MySQL server that includes some more cutting-edge (and less commonly
used) features. It also turns on server error logging, which you’d otherwise need to
specify as an option to mysqld, and automatically restarts the server if it crashes. Prior
to MySQL version 4, this was called safe_mysqld. On a Linux or OS X installation, you
will still find a symbolic link called safe_mysqld pointing to mysqld_safe.

MySQL Server Options
The MySQL server is a complex piece of software and has many settings that you can
tweak to make it better fit your needs. We’ll discuss some of the more useful server
options here. mysqld_safe accepts a number of options of its own and passes on any
options it doesn’t handle to mysqld. The options specific to mysqld_safe are probably
not of interest to most readers of this book; you can find these by typing
mysqld_safe --help at the command line:

basedir
This tells mysqld where MySQL is installed on the system. If you don’t specify this
option, the program will try to use the location specified when the program was
compiled.

datadir
This tells mysqld where the database files are stored.

defaults-file
This specifies the location of the options file to read; this is particularly useful if
you want the server to read in options from a nondefault location.

enable-named-pipe
Allows a server running under Windows to use a named pipe. See
skip-networking for more information.

init-file
This specifies a text file containing SQL commands that the server must execute
when starting up. This is commonly used to reset a forgotten MySQL root pass-
word as discussed in “Resetting Forgotten MySQL Passwords” in Chapter 9.

log
This tells mysqld to use the specified file to log every client connection and query.

log-bin
This specifies where you want the binary log of commands that attempt to modify
data on the server.

log-error
This tells mysqld to use the specified file to log server startup, shutdown, and errors.
By default, this is the file <hostname>.err in the data directory. For example, the
log might show that we’ve run out of disk space:

380 | Chapter 12: Configuring and Tuning the Server

060514 12:39:11 [ERROR] /usr/local/mysql/bin/mysqld: Disk is full writing
'/usr/local/mysql/data/Moodle/mdl_user.MYI' (Errcode: 49).
Waiting for someone to free space... Retry in 60 secs

log-slow-queries
This tells mysqld to log queries that take an unusually long time to process. You
can use this information together with the EXPLAIN command to determine how
best to tune the server or optimize the tables. Queries that take a time longer than
the value of the long_query_time server variable are logged.

pid-file
For servers running on Linux and Mac OS X, this tells mysqld to save its process
ID to the specified file; by default, this is <hostname>.pid (for Linux systems) or
<hostname>.local.pid (for Mac OS X systems) and located in the MySQL data
directory.

port
This is the port the MySQL server should listen to for incoming connections. The
default MySQL port is 3306. If there’s already a server listening on that port, you’ll
need to specify a different port. We described how to do this in Chapter 2. On a
Linux or Mac OS X system, connections from a client on the same system go
through a Unix socket file rather than through this TCP port.

shared-memory-base-name
For servers running on Windows, this tells mysqld to use the specified shared
memory name. The default value is MYSQL. If you want to run multiple MySQL
servers on a single Windows host, you’ll need to specify a different value for each
server.

skip-networking
With this option, you can ask the server to not listen to a TCP port for incoming
connections. This is more secure, as only connections from clients on the same
system as the server (localhost) will be accepted. On a Linux or Mac OS X system,
clients connect through the Unix socket file (described next). Under Windows,
clients need to connect through a named pipe, so you’ll need to set the enable-
named-pipe option for this to work.

socket
The absolute path to the Unix socket file on Linux and Mac OS X, or the named
pipe under Windows, that the server uses for incoming connections from the local
host. The default path is /tmp/mysql.sock for the Unix socket, and MYSQL for the
Windows named pipe. You generally need to specify a different value only if there’s
already a server using the default socket.

tmpdir
This tells mysqld where to store its temporary files.

user
On Linux and Mac OS X, the server tries to run under your account; if you start
the server from the root account, the server will run with all the privileges of this

The MySQL Server Daemon | 381

superuser, which is dangerous. The user option tells mysqld what user account to
run under. It’s a good idea to create an account with the name mysql, with access
permissions for only the MySQL directories, and set the server to run under that
username. Don’t forget that this user should be able to read and write files in the
MySQL data and temporary directories. If you don’t specify the username, most
MySQL scripts will automatically try to use your operating system account name
as the value for the username.

Examples
Let’s look at how you might use these options in practice. Consider the case where we
need to run multiple servers on a single host; each server must have a different port,
socket, and process ID file. If we want the servers to keep logs, the logfiles for each
server should be different as well. For example, if we’ve installed MySQL under Linux
or Mac OS X in the directory /usr/local/mysql and want to run the server under the
mysql account—with the database, log, and temporary files under the /tmp/mysql di-
rectory—we could start the server with the command (all on one line):

$ mysqld_safe \
 --user=mysql \
 --port=57777 \
 --socket=/tmp/mysql/server1.sock \
 --basedir=/usr/local/mysql \
 --datadir=/tmp/mysql/data \
 --tmpdir=/tmp/mysql/tmp \
 --log=/tmp/mysql/logs/server1.main.log \
 --log-error=/tmp/mysql/logs/server1.error.log \
 --pid-file=/tmp/mysql/logs/server1.pid

Instead of typing in the settings at the command line, we can specify the required values
in an options file as:

[mysqld]
user= mysql
port= 57777
socket= /tmp/mysql/server1.sock
basedir= /usr/local/mysql
datadir= /tmp/mysql/data
tmpdir= /tmp/mysql/tmp

log server messages to:
log= /tmp/mysql/logs/server1.main.log

log errors to this file:
log-error=/tmp/mysql/logs/server1.error.log

pid-file= /tmp/mysql/logs/server1.pid

We described how to use options files in Chapter 11. Note that since these are really
options to the mysqld program, these options are listed under the mysqld group. Options
specific to mysqld_safe can be listed under the mysqld_safe group.

382 | Chapter 12: Configuring and Tuning the Server

Now consider the case where MySQL has been installed to the directory /home/adam/
mysql-5.0.22. You can imagine the directory /Users/adam/mysql-5.0.22 being used for
Mac OS X. For nonstandard installations, the mysqld_safe program should be called
from the MySQL installation directory, so we first change to that directory:

$ cd /home/adam/mysql-5.0.22

and then start the server by typing (all on one line):

$ bin/mysqld_safe \
 --port=57777 \
 --socket=/home/adam/mysql-5.0.22/logs/mysqld-new.sock.file \
 --basedir=/home/adam/mysql-5.0.22 \
 --datadir=/home/adam/mysql-5.0.22/data \
 --log=/home/adam/mysql-5.0.22/logs/main.log \
 --log-error=/home/adam/mysql-5.0.22/logs/error.log \
 --pid-file=/home/adam/mysql-5.0.22/logs/zahra.pid

The corresponding options file entries would be:

[mysqld]
port= 57777
socket= /home/adam/mysql-5.0.22/logs/mysqld-new.sock.file
basedir= /home/adam/mysql-5.0.22
datadir= /home/adam/mysql-5.0.22/data
log= /home/adam/mysql-5.0.22/logs/main.log
log-error=/home/adam/mysql-5.0.22/logs/error.log
pid-file= /home/adam/mysql-5.0.22/logs/zahra.pid

Finally, let’s look at an example for Windows, where we have MySQL installed in the
directory C:\mysql-5.0.22-win32. We want to have the MySQL datafiles placed in
C:\mysql\data, we want the logfiles placed in C:\mysql\logs, and we want the server to
listen on port 13306. So we type (all on one line):

C:\>mysqld-net.exe \
 --port=13306 \
 --basedir=C:\mysql-5.0.22-win32 \
 --datadir=C:\mysql\data \
 --log-bin=C:\mysql\logs\mysql-binary.log

Note that the specified directories must exist, and the data directory must contain the
mysql database files (the privilege tables); otherwise, MySQL will complain and abort.

Server Variables
Variables configure server resources and can be used to optimize the server settings to
suit the hardware of the host computer, and to allocate resources for improved per-
formance. For example, the variable max_connections specifies the maximum number
of clients that can be connected to the server at any one time.

When choosing a value for a server variable, you need to think carefully about the
nature of your application and your clients. For example, when setting the

Server Variables | 383

max_connections variable, you need to remember that clients can include application
web pages that interact with the database. This variable affects the number of people
who can concurrently load the database-enabled web pages; each request to load such
a page counts as a separate connection. Of course, these connections are short, typically
lasting only a few seconds while the page is generated and served to the web browser.

Some of the more important variables control how memory and files are managed.
MySQL databases are stored in files in the data directory, and the server needs to open
and close these files. However, opening and closing files is a relatively slow operation,
so the fewer times we need to do this, the better. The MySQL server variable
table_cache specifies the maximum number of tables that can be open at once. The
larger this number, the fewer times we need to close open files and open closed ones.

You also need to consider how the max_connections value influences the value you
choose for table_cache. If you allow 100 concurrent connections, and your application
has queries that perform join operations on three tables, then your table_cache should
be at least 300. Note that operating systems impose their own limitations on the max-
imum number of files that can be held open by any program, as well as for the whole
system overall, so you may run into operating system limits if you set some MySQL
variable values too high.

We mentioned earlier that opening and closing files is a relatively costly process. It’s
also far more costly to access files on disk than to access memory; if the server can keep
most of what it needs handy in memory, things will generally be much faster. In “Keys
and Indexes” in Chapter 6, we explored how an index can help MySQL to quickly find
data in a large table, just as an index page allows us to quickly find text in a book. When
data is requested from a database table that has an index, the server first looks up the
data location using the index file, then reads the data from the appropriate location in
the table file. This means that the server has to access the disk twice; if it can keep the
index file in memory, it has to read the disk only once to fetch the data, which is much
more efficient.

The MySQL server variable key_buffer_size controls the amount of memory set aside
for MyISAM table indexes. The default value is 8 MB, but you can set it to any value
up to 4 GB. Of course, you should actually have the required amount of memory on
your system, and you should leave enough memory for the operating system and other
processes. If you’re using a dedicated MySQL server, you might want to set this value
as high as 20 to 40 percent of total system memory.

Some queries can’t use an existing index. For example, entries in a telephone directory
are typically sorted by surname, then by given name. We can easily find all the people
with a surname starting with the letter “S,” but to find all the people with a first name
starting with “S,” we’d need to look at every entry in the directory. For such operations,
a thread needs to read through all the data in a database table, which involves lots of
disk reads. It’s faster to read a small number of large data chunks, so it’s good to allocate
a large value for the read_buffer_size for such whole-of-table operations. Similarly, the

384 | Chapter 12: Configuring and Tuning the Server

sort_buffer_size variable controls the amount of memory available for queries that
have an ORDER BY clause. The read_buffer_size and sort_buffer_size variables operate
on a per-thread basis.

As with options, variables can be specified on the command line or in an options file.
For example, the variable max_connections can be specified from the command line as:

$ mysqld --max_connections=200

or in an options file as:

[server]
max_connections=200

Some variables can also be set from within a client using the SET command; for example,
you could write:

mysql> SET sort_buffer_size=2000000;
Query OK, 0 rows affected (0.00 sec)

To set a variable to apply across the server, rather than to the current client session,
you need to add the GLOBAL keyword:

mysql> SET GLOBAL sort_buffer_size=2000000;
Query OK, 0 rows affected (0.01 sec)

To set GLOBAL variables, you need to have superuser privileges (in practice, you need to
be logged in as the user root):

mysql> SET max_connections=200;
ERROR 1227 (HY000): Access denied; you need the SUPER privilege for this operation

Some variables are inherently related to the server, rather than to an individual session.
MySQL will complain if you try to set a value for such variables without using the
GLOBAL keyword:

mysql> SET max_connections=200;
ERROR 1229 (HY000): Variable 'max_connections' is a GLOBAL variable and should be
 set with SET GLOBAL

The Slow Query Log
To determine what you should optimize, you should identify the frequently used quer-
ies that take a long time to complete. If you start the server with the log-slow-quer
ies option, any queries that take more than 10 seconds to complete will be logged. You
can change this duration by modifying the value of the long_query_time variable. You
can add the log-queries-not-using-indexes option to ask the server to also log queries
that don’t use an index. The default location of the slow queries log is in the data
directory, with a name in the form <hostname>-slow.log.

Let’s look at an excerpt from a slow query log:

Time: 060630 22:51:32
User@Host: root[root] @ localhost []

Server Variables | 385

Query_time: 65 Lock_time: 0 Rows_sent: 8228 Rows_examined: 16577
USE LinkTracktclick;
SELECT DISTINCT * FROM Countries, clicktable ORDER BY CLICKS DESC;

This SELECT query took 65 seconds; if it’s a query that’s used often, we should add
indexes to improve the query speed, or perhaps redesign the query in a manner that
takes less time.

It can be hard to understand the entries in the slow-query logfile; you can use the
mysqldumpslow script from the MySQL scripts directory to help summarize and or-
ganize this information. For example, we can ask for the two queries that took the
longest time using the -t option:

$ scripts/mysqldumpslow -t 2
Reading mysql slow query log from ./log-slow.log
Count: 1 Time=65.00s (565s) Lock=0.00s (0s) Rows=8228.0 (8228), root[root]@localhost
 select distinct * from tmpCountries, clicktable order by clicks desc

Count: 35 Time=12.00s (0s) Lock=0.00s (0s) Rows=3.8 (132),
 RPUser[RPUser]@redback.cs.rmit.edu.au
select distinct id, surname, firstname, position_id from
student st, supervises s where st.id = s.student_id and s.status=N
and st.active=N and st.visible=N and supervisor_id = N

The Count is the number of queries that have been executed; from this, it would prob-
ably be better to focus on optimizing the second query, since it’s been run 35 times,
rather than the top query, which has been run only once.

The script tries to process the slow-query logfile at the default location; if you’re using
a nonstandard location, you should specify the logfile location:

$ mysqldumpslow path_to_your_slow_query_log_file

If you’re using Windows, you will need to follow the steps in “Installing Perl modules
under Windows” in Chapter 2 to use this Perl script.

Query Caching
Some applications require the database to repeatedly look up and return specific data.
For example, the front page of an online store application might display all the products
in stock that have been marked as being on sale. Every visitor to the online store will
load this front page, and every page load will require the database server to look up all
the products that are on sale.

It’s much more efficient for the database server to store, or cache, the result of this
query, and simply return the cached result every time it sees the same query. If the data
is changed, the database considers the cached result to be stale and runs the query again
(and caches the new result). Query caching can have a huge effect on performance; the
MySQL manual describes a speedup of more than two times as being typical.

386 | Chapter 12: Configuring and Tuning the Server

You can configure the size of the server’s query cache by modifying the
query_cache_size variable. The larger the cache, the more queries that can be cached.
Like most other buffers, this follows the law of diminishing returns; doubling the query
cache size is unlikely to double the effectiveness of the cache. You can check the server’s
cache settings as follows:

mysql> SHOW VARIABLES LIKE '%query_cache%';
+------------------------------+---------+
| Variable_name | Value |
+------------------------------+---------+
have_query_cache	YES
query_cache_limit	1048576
query_cache_min_res_unit	4096
query_cache_size	3999744
query_cache_type	ON
query_cache_wlock_invalidate	OFF
+------------------------------+---------+
6 rows in set (0.00 sec)

Here, caching is available (have_query_cache is YES), and the query cache size is 399,360
KB. When the query cache size is nonzero, the query_cache_type setting determines
which queries should be cached; with this set to ON, almost all SELECT queries are cached.
There are main two exceptions: queries that explicitly disable caching with the
SQL_NO_CACHE keyword immediately after the SELECT, and queries that use functions that
vary with time and user—for example, queries that include the function
CURRENT_TIMESTAMP().

The query_cache_limit variable indicates the largest result to store for any given query,
while query_cache_min_res_unit specifies the allocation units in the cache (the default
is generally fine). Finally, query_cache_wlock_invalidate determines whether an active
write lock granted to one client will prevent other clients from reading cached results.

Of these settings, you will typically only need to ensure that caching is available
(query_cache_type is ON) and set an appropriate value for query_cache_size:

mysql> SET query_cache_type = ON;
Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL query_cache_size = 40000000;
Query OK, 0 rows affected (0.01 sec)

You can then check on how queries are being read from the cache:

mysql> SHOW STATUS LIKE 'qcache%';
+-------------------------+----------+
| Variable_name | Value |
+-------------------------+----------+
Qcache_free_blocks	1
Qcache_free_memory	39826928
Qcache_hits	7
Qcache_inserts	128
Qcache_lowmem_prunes	0
Qcache_not_cached	10

Server Variables | 387

| Qcache_queries_in_cache | 73 |
| Qcache_total_blocks | 178 |
+-------------------------+----------+
8 rows in set (0.00 sec)

Qcache_hits indicates how many queries have been answered directly from the cache.
Over time, you should see a fair number of hits.

The Old Variables Format
You may encounter an older way of specifying variable values from the command line
and in the options file. Under the old way, you’d use the set-variable= option from
the command line, as in:

$ mysqld_safe --set-variable=sort-buffer-size=1048576

or in an options file, as in:

set-variable=sort_buffer_size=1048576

This format still works but has been deprecated since MySQL version 4.1. In the new
format, you omit the set-variable=; we recommend you use the new method where
possible.

Checking Server Settings
The SHOW VARIABLES command lists detailed server configuration settings, including
things like the server version, paths to the different directories and files used by the
server, and maximum concurrent connections. We’ll show only a few of them here; try
them on your own server:

mysql> SHOW VARIABLES;
+---------------------------------+---+
| Variable_name | Value |
+---------------------------------+---+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	latin1
version_compile_os	mandriva-linux-gnu
...	
wait_timeout	28800
+---------------------------------+---+
185 rows in set (0.01 sec)

The mysqladmin variables command produces the same result from the command line:

388 | Chapter 12: Configuring and Tuning the Server

$ mysqladmin --user=root --password=the_mysql_root_password variables
+---------------------------------+---+
| Variable_name | Value |
+---------------------------------+---+
| auto_increment_increment | 1 |
...
| wait_timeout | 28800 |
+---------------------------------+---+

From the monitor, you can view a subset of the variables by adding a LIKE clause:

mysql> SHOW VARIABLES LIKE 'k%';
+--------------------------+----------+
| Variable_name | Value |
+--------------------------+----------+
key_buffer_size	16777216
key_cache_age_threshold	300
key_cache_block_size	1024
key_cache_division_limit	100
+--------------------------+----------+
4 rows in set (0.00 sec)

The SHOW STATUS command shows you MySQL server status information:

mysql> SHOW STATUS;
+----------------------------+------------+
| Variable_name | Value |
+----------------------------+------------+
Aborted_clients	8
Aborted_connects	0
Binlog_cache_disk_use	0
Binlog_cache_use	0
Bytes_received	858887090
Bytes_sent	8535929437
...	
Com_insert	318046
...	
Com_lock_tables	126
...	
Com_select	4541404
..	
Com_unlock_tables	126
Com_update	153656
Connections	238544
Created_tmp_disk_tables	83154
Created_tmp_files	47
Created_tmp_tables	128857
...	
Key_blocks_not_flushed	0
Key_blocks_unused	6119
Key_blocks_used	6698
Key_read_requests	45921497
Key_reads	35348
Key_write_requests	1612717
Key_writes	986186
Max_used_connections	15

Checking Server Settings | 389

...
Open_files	128
Slave_retried_transactions	0
Slow_launch_threads	0
Slow_queries	21
...	
Sort_scan	212588
Table_locks_immediate	5831792
Table_locks_waited	185
Threads_cached	0
Threads_connected	1
Threads_created	238543
Threads_running	1
Uptime	1786334
+----------------------------+------------+
157 rows in set (0.00 sec)

We’ve omitted most of the rows here for space considerations; your instance may well
show over 250 variable values.

You can also display the server status using mysqladmin status or mysqladmin extended-
status commands:

$ mysqladmin --user=root --password=the_mysql_root_password status
Uptime: 12093 Threads: 1 Questions: 7160 Slow queries: 0 Opens: 76
Flush tables: 1 Open tables: 60 Queries per second avg: 0.592

The extended-status command produces the same output as the monitor’s SHOW
STATUS command.

The SHOW PROCESSLIST command displays all running threads on the MySQL server and
is a useful tool for diagnosing problems or understanding what users are doing. Try it
on your server when you’re logged in as the root user:

mysql> SHOW PROCESSLIST;
+-------+------------+-----------------------------+--------+...
| Id | User | Host | db |...
+-------+------------+-----------------------------+--------+...
| 26533 | moodleuser | zahra.learningmysql.com:63593| Moodle |...
| 26534 | root | localhost | |...
+-------+------------+-----------------------------+--------+...
... +---------+------+-------+------------------+
... | Command | Time | State | Info |
... +---------+------+-------+------------------+
... | Sleep | 1 | | |
... | Query | 0 | | show processlist |
... +---------+------+-------+------------------+
2 rows in set (0.00 sec)

The output is fairly self-explanatory, and details are in the “SHOW syntax” section of
the MySQL manual. The mysqladmin processlist command produces the same output:

$ mysqladmin --user=root --password=the_mysql_root_password processlist
+-------+------------+-----------------------------+--------+...
| Id | User | Host | db |...
+-------+------------+-----------------------------+--------+...

390 | Chapter 12: Configuring and Tuning the Server

| 26533 | moodleuser | zahra.learningmysql.com:63593| Moodle |...
| 26534 | root | localhost | |...
+-------+------------+-----------------------------+--------+...
... +---------+------+-------+------------------+
... | Command | Time | State | Info |
... +---------+------+-------+------------------+
... | Sleep | 1 | | |
... | Query | 0 | | show processlist |
... +---------+------+-------+------------------+

You can end a problematic process using the KILL command with the number of the
process. If you somehow kill your own connection, the monitor will establish a new
connection to the server, resulting in a new process number. Here, we kill our own (the
root user’s) connection — see how the new process number (26535) is different?:

mysql> KILL 26534;
Query OK, 0 rows affected (0.02 sec)

mysql> SHOW PROCESSLIST;
ERROR 2006 (HY000): MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 26535
Current database: *** NONE ***

+-------+------------+-----------------------------+--------+...
| Id | User | Host | db |...
+-------+------------+-----------------------------+--------+...
| 26533 | moodleuser | zahra.learningmysql.com:63593| Moodle |...
| 26535 | root | localhost | |...
+-------+------------+-----------------------------+--------+...
... +---------+------+-------+------------------+
... | Command | Time | State | Info |
... +---------+------+-------+------------------+
... | Sleep | 1 | | |
... | Query | 0 | | show processlist |
... +---------+------+-------+------------------+
2 rows in set (0.00 sec)

The mysqladmin kill command does the same thing:

$ mysqladmin --user=root --password=the_mysql_root_password kill 26534

Other Things to Consider
There are many other aspects of database and application design that you can look at
when considering performance. For example, if you make large-scale changes to a table
(for example, by deleting many entries), you are likely to get better performance if you
run the OPTIMIZE TABLE command to reorganize the table file on disk. This is especially
true if the table contains variable length fields:

mysql> OPTIMIZE TABLE artist;
+--------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |

Other Things to Consider | 391

+--------------+----------+----------+----------+
| music.artist | optimize | status | OK |
+--------------+----------+----------+----------+
1 row in set (0.06 sec)

In most cases, the MySQL server handles this adequately, so you won’t need to use this
command often, if at all.

Careful design of tables and indexes can also help improve performance. In “Transac-
tions and Locking” in Chapter 7, we saw how transaction support can be useful for
some applications. However, transaction support adds overhead to database opera-
tions. If you need transaction support in some tables, but not in others, you can use
different table types within a single database. In “The EXPLAIN Statement” in Chap-
ter 8, we saw how indexes can help increase the speed of queries. Try to minimize
operations that scan all rows in a table, and try to add indexes that can be used by
frequent queries. Shorter keys are generally faster to use, so try to keep the length of
primary keys down.

We won’t discuss performance any further in this book, but if you’re setting up a pro-
duction database site, it’s definitely worth looking at the resources listed in the next
section.

Resources
Database server tuning is a complex art, and is largely beyond the scope of this book
To learn more about tuning MySQL, we recommend the following resources:

• The MySQL Manual: Optimization (http://dev.mysql.com/doc/refman/5.1/en/opti
mization.html)

• MySQL Database Design and Tuning by Robert D. Schneider (MySQL Press)

• High Performance MySQL by Jeremy D. Zawodny and Derek J. Balling (O’Reilly)

Exercises
1. Why is it important to allocate a large value to read_buffer_size?

2. What is the advantage of caching query results?

3. What does the OPTIMIZE TABLE command do?

392 | Chapter 12: Configuring and Tuning the Server

http://dev.mysql.com/doc/refman/5.1/en/optimization.html
http://dev.mysql.com/doc/refman/5.1/en/optimization.html

PART IV

Web Database Applications with
PHP

CHAPTER 13

Web Database Applications

MySQL’s most common use is in wePHPMyb database applications. It’s often teamed
with PHP—a web-enabled scripting language—and the Apache web server to develop
powerful applications including online shopping, news, sports, and blogs. Indeed, the
Apache web server, MySQL, and PHP together form three of the four components of
the most popular of all web development platforms, LAMP. The “L” stands for Linux,
but the material we cover here works with all three operating systems we look at in this
book: Linux, Windows, and Mac OS X.

The LAMP acronym is increasingly interpreted rather loosely as representing any open
source development platform for web database applications. The “P” is alternatively
taken to stand for Perl, which we introduce in Chapter 16; Python; or another of the
popular web programming languages. Similarly, MySQL can be replaced by another
open source database system, PostgreSQL (http://www.postgresql.org). PostgreSQL is
less popular than MySQL, but it has strong standards compliance, is rich in features,
and has looser licensing conditions, making it more appropriate for some applications.

We introduce the following concepts in this chapter:

• Components of a web database application

• An overview of the Apache web server

• An overview of the PHP language, including short examples

The final section of this chapter lists resources where you can find out more about
Apache and PHP. We’ll look at several PHP examples but will leave detailed explana-
tion of using PHP and MySQL to Chapter 14, and will build a complete application
with these in Chapter 15.

Building a Web Database Application
This section gives an overview of web database applications, drawing analogies and
contrasts to the conventional software that you use on your computer. As an overview,
it doesn’t discuss technical details in depth; we get to the details later. “How Web

395

http://www.postgresql.org

Software Works” briefly explains how web software works and shows you the steps
that occur when a user clicks on a link in his web browser. In “Three-Tier Architec-
tures,” we discuss web database applications more formally, describing the three-tier
architecture model and how MySQL, PHP, and Apache fit that model.

We’ll assume in this and the next two chapters that you’re familiar with basic pro-
gramming concepts, including loops, conditionals, and expressions. We’ll also assume
you’re familiar with the Web and, in particular, that you understand the basic principles
of HTML markup. It doesn’t matter if you don’t know the details of the HTML stand-
ard, but we expect you’ll understand HTML when it’s shown to you. If you’ve never
programmed or don’t know HTML, then we advise you to use one of the resources
listed in “Resources” at the end of this chapter before reading this and the next two
chapters.

How Web Software Works
Web software is very different from a conventional application. To understand, con-
sider the word processing software on your computer, an example of a traditional,
conventional tool. You start the program, then interact with it: you move between
typing, clicking on menus and widgets, and between open windows. When you’re
finished, you save your files and close the application. The software is an integrated,
interactive package: you work with your documents, surrounded by the application’s
tools and windows. The software developer has customized the environment to support
only word processing, and the tool is tailored carefully to that need; it has special-
purpose tools—such as floating toolbars—that are designed to help you when you’re
editing a document. Also, usually, you’re the only person using your word processor
on your computer.

The interface to most web software isn’t specialized in the same way as a word pro-
cessor. Instead, you use a conventional web browser—probably Mozilla Firefox, In-
ternet Explorer, or Safari—that sends requests and receive responses from standar-
dized, distributed web servers. The web servers process your requests, run scripts, and
return the output to your browser; they serve the many users that are authorized to use
the software. The interface environment is constrained: you usually move back and
forward through HTML documents—much like using a setup wizard—entering data
into HTML forms or clicking on HTML widgets. The tools you use are general-purpose
browser tools—such as the Back, Forward, Refresh, and Home buttons, and the Book-
marks or Favorites menu—that don’t vary with the application.

Web software itself is also different. It’s distributed: a small part of it—the simple web
browser interface with its limited capabilities—resides on the user’s computer, while
the majority of the application logic is captured in scripts that are on a remote web
server. The scripts aren’t an integrated, large package: they are simple parts—each
performs a specific function—that together provide the application functionality when
the user follows a series of steps. Because of this, web software is limited. It isn’t very

396 | Chapter 13: Web Database Applications

interactive, it must be fault-tolerant, it’s limited by network speed bottlenecks, and it
must work with generic browsers. The relatively recent Ajax technique relies heavily
on client-side programming to deliver a more customized user interface. However, the
basic building blocks remain the same.

The advantage of web software is its flexibility. Any user, anywhere, with almost any
browser on any platform, can use the software. Importantly, no configuration is re-
quired, and training isn’t usually needed. Web software is predictable: there are a limi-
ted number of ways you can build an application, and most users have seen the para-
digms before and know where to start. With web software, deployment is as simple as
setting up your web server, installing scripts on it, and publishing the address of your
web application page.

Figure 13-1 shows how web software works. When a user clicks on a link (or submits
a form, or types a URL), a request is sent from her web browser to a web server identified
by the URL. The web server extracts path, resource, and other information from the
URL and uses this to identify what script to run and what parameters to give it. The
script is then executed and its output sent to the browser, along with a status message
that indicates whether the operation was successful. If the request was successful, then
(usually) an HTML resource is displayed, and the request process starts again when
the user makes her next click in their browser.

Consider an example. You’ve decided to build an online store and have started to write
the scripts that compose the application. Suppose you’ve authored one script,
shop.php, which allows a user to add an item to his shopping cart. The script expects
two parameters to capture what the user wants to purchase: a productID number that
identifies the product, and a quantity value that is the amount of the product. The
script outputs a success message in HTML when everything works, and an error mes-
sage in HTML when it doesn’t.

To test your shop.php script, you can save it in a directory from which your Apache
web server serves scripts (the document root). If you’re using a Linux or Mac OS X
system, you also need to make sure that the file can be read by everyone, since the web

Database server software

User with web browserWeb database application

Web server software

Host running database
and web servers

HTTP request
(request, including any form data)

HTTP response
(content, mostly HTML)

Figure 13-1. Running a web script

Building a Web Database Application | 397

server is generally configured as a minimally privileged user who can access only those
files that everyone else can access. (We explained how to find the document root in
“The Apache Document Root” and how to set the correct file permissions in “Checking
Whether Your Apache Installation Supports PHP,” both in Chapter 2.

Now, you’re ready to test the script by requesting it with a web browser. Suppose the
web server serves pages for the domain http://www.invyhome.com. You can request
shop.php by loading the URL http://www.invyhome.com/shop.php with your web
browser. If you’re trying things out on your own development system (localhost), you
can use http://localhost/shop.php.

To supply the required parameters, you (or typically, another script) can add them
after a question-mark character in the URL, as in http://www.invyhome.com/shop.php
?productID=12&quantity=4 and send a request for this address to the server. The re-
quest asks for 4 units of productID 12 to be added to the cart. When you request the
URL, the web server looks in the directory /var/www/html/, finds the script shop.php,
starts the PHP script processor, runs the script and supplies the parameters, and cap-
tures the output. The output is then sent to the browser, which displays the response:
in this case, an HTML success message that shows 4 units of productID 12 have been
successfully added to the cart. Figure 13-2 illustrates these steps.

Three-Tier Architectures
Figure 13-3 shows the architecture of a typical web database application. The web
browser is the client tier, providing the interface to the application but very little of the
application logic itself. The middle tier is the web server, the script processor, and the
scripts; most of the application logic resides here, typically including user authentica-

User’s computer

Host running invyhome.com
(running database and web servers)

Web server software

shop.php PHP software
(component of web server)

4. Process

2. Find the file shop.php
 in the document root

3. Pass the parameters
- item = 12

 - quantity = 4

1. Connect to www.invyhome.com
request /shop.php?item=12&quantity=4

6. Return output to client

5. Return output of shop.php
(generally HTML)

Web browser software

Figure 13-2. The steps to run shop.php

398 | Chapter 13: Web Database Applications

http://www.invyhome.com
http://www.invyhome.com/shop.php
http://localhost/shop.php
http://www.invyhome.com/shop.php?productID=12&quantity=4
http://www.invyhome.com/shop.php?productID=12&quantity=4

tion, security features, input validation, user session management, the database access
library, SQL queries, and other functionality. The database tier is the database server
itself, along with its databases, indexes, and utilities. For the applications we discuss
in this chapter, the MySQL server is the database tier, and the Apache web server and
PHP are the middle tier. Any popular browser can be used as a client.

We’ve previously broadly discussed what makes three-tier-architecture software—that
is, web database applications—different from conventional software. In the context of
a three-tier architecture, the browser is a very thin client—that is, very little of the
application logic resides there. Instead, the middle tier carries out almost all of the
application functions, and the browser usually displays only static HTML content. The
exception is when the HTML page contains embedded JavaScript—or scripts written
in another client-side language—that adds basic interactive features to the web pages;
for example, JavaScript is often used to animate menus, highlight options as the mouse
passes over them, alert the user with pop-up windows, and perform other simple tasks.
We don’t discuss client-side scripting further in this book; there are several good re-
sources listed on the topic at the end of this chapter.

Most of the application logic is captured in PHP scripts in the middle tier. These are
invoked when a user requests a resource from the web server, and the web server calls
the PHP engine that runs the script. Of course, because all the scripts are accessible
with a web browser, users can request any script, any time, from anywhere. This creates
unique problems. Web database applications must robustly handle users making un-
expected requests; bookmarking and returning to pages later; reloading or refreshing
pages when they shouldn’t; or simply disappearing, never to be seen again. Applications
must also protect against the threat of accidental damage or malicious attacks. All this
is made more difficult by the HTTP protocol that’s used for communication between
web browsers and servers. HTTP has no high-level concept of state. Every request from
a browser must contain all information needed to answer the request, since the server
forgets all about it once the request is answered. We explain solutions to some of these
problems in Chapter 14.

The database tier is very similar to that in nonweb applications. The MySQL server
listens for connections from clients, such as the MySQL monitor, and authenticates
users when they connect. Once the connection is established, the user can run queries,

Database server

Web server

User with web browser

Host running web
and database servers

Figure 13-3. A three-tiered web database application

Building a Web Database Application | 399

disconnecting when she’s finished. Using MySQL from a PHP script is conceptually
similar to using it through the MySQL monitor. The key difference is that you don’t
type queries into an interface but instead use PHP library functions to carry out actions
such as connecting to the database server, choosing a database, running a query, and
retrieving the results. We show you an example later in this chapter.

The Apache Web Server
The LAMP platform includes the Apache web server. While it isn’t necessary to use
Apache—PHP and MySQL can be used with other web servers—it’s our server of
choice in this book. There are several reasons for this: it’s free in a monetary and open
source sense, it’s the most popular server on the Web, it’s robust and scalable, it is the
web server most commonly used with PHP, and it works on all popular platforms,
including Linux, Windows, and Mac OS X. This section briefly explains web servers
and Apache. We discussed how to configure Apache in Chapter 2.

Web servers are also known as HTTP servers. This describes their function: a web
browser or other web client makes a request for a web resource to a web server using
the HTTP protocol; the web server then serves this request and sends an HTTP response
to the browser. There are essentially two classes of request that web servers can handle:
first, requests for static resources, such as HTML, XML, or PDF documents, and, sec-
ond, requests to run a script—often with parameters provided by the browser request
—and return the output in a response. The latter class is central to web database
applications.

Web browsers send textual requests to web servers. An HTTP request is a text de-
scription of a required resource. For example, the following is what the Lynx browser
sends as a request for the resource http://www.invyhome.com/artist.php on the web
server:

GET /artist.php HTTP/1.0
Host: www.invyhome.com
Accept: text/html, text/plain, audio/mod, image/*, video/*, video/mpeg,
application/pgp, application/pgp, application/pdf, message/partial,
message/external-body, application/postscript, x-be2,
application/andrew-inset, text/richtext, text/enriched
Accept: x-sun-attachment, audio-file, postscript-file, default, mail-file,
sun-deskset-message, application/x-metamail-patch, application/msword,
text/sgml, */*;q=0.01
Accept-Encoding: gzip, compress
Accept-Language: en
User-Agent: Lynx/2.8.4dev.16 libwww-FM/2.14 SSL-MM/1.4.1 OpenSSL/0.9.6

The request lists all information required to serve the request: a method to use (GET),
the required resource, the HTTP version, the host server, and details of the browser
and what types of responses it can receive.

400 | Chapter 13: Web Database Applications

http://www.invyhome.com/artist.php

In response, the web server returns an HTTP header, and then the requested resource
if the request is satisfied. Continuing the example, the server looking after http://www
.invyhome.com returns the following response:

HTTP/1.1 200 OK
Date: Wed, 02 Aug 2006 14:55:15 GMT
Server: Apache/2.2.3 (Mandriva Linux/PREFORK-1mdv2007.0)
Last-Modified: Tue, 27 Jul 2006 18:27:45 GMT
ETag: "3fc424-1e5-be72aa40"
Accept-Ranges: bytes
Content-Length: 1485
Content-Type: text/html
X-Pad: avoid browser bug

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
 <title>Artists</title>
 </head>
 <body>
 <h1>Artists</h1>

 <table>
 <tr>
 <th>artist_id</th>
 <th>artist_name</th>
 </tr>
...
 </table>
 </body>
</html>

As with a request, the response includes the HTTP standard version, whether the re-
quest was satisfied (200 OK), server details, the response type, and then the response
itself.

A key feature of HTTP is that each request and response is self-contained. You’ll notice
that the request includes all the information needed to respond to the request, and the
response includes all information needed for the browser to process it. If a browser
makes subsequent requests to the same server, it will again provide all of the informa-
tion. The process is unlike traditional communications protocols where a handshak-
ing phase establishes the credentials and then communication takes place until the line
is closed. When we talk about HTTP lacking state, this is what we mean: nothing is
assumed when a browser and server communicate, each exchange is separate, and
everything is specified exhaustively each time.

Lack of state means speed. Since servers don’t have to remember anything, they can
process a request and respond immediately without having to restore information

The Apache Web Server | 401

http://www.invyhome.com
http://www.invyhome.com

about the client. This means they adapt to changes in load and can handle very large
numbers of requests on modest hardware. The stateless model is ideal for fast, one-off
communications where you want to retrieve a document or run one script.

At the same time, lack of state makes application development harder. If you need state,
then you have to add it programmatically so that it can be restored with subsequent
requests. For example, if you want to lead a user through a series of steps, ensure they
don’t access certain parts of the web site without logging in, or make sure they only
run a script once, then you need state. PHP provides tools for this purpose—embedded
in the sessions functions and features discussed in Chapter 14—but they need to be
used carefully. Adding state to web database applications isn’t straightforward, and it
must carefully follow rules so that it’s robust and secure.

Web Server Index Files
The browser may simply request a directory rather than a specific filename. For exam-
ple, the address http://www.invyhome.com/ corresponds to the document root direc-
tory, while the address http://www.invyhome.com/shop/ corresponds to the the shop
directory under the document root. When the web server receives such a request, it
searches for an index file in the directory. The index file is typically used as the starting
point for a web site or web application and has the filename index.html (for plain
HTML), index.php (for a PHP script), or index.pl (for a Perl script). If there is no index
file present in the directory, the web server returns a listing of all files in the directory,
or, if the server has been configured for greater security, tells the browser that access
to the directory contents is denied.

You can check what filenames your Apache server treats as index files by looking inside
the Apache configuration file and searching for the DirectoryIndex directive. For ex-
ample, you might see:

DirectoryIndex default.htm Default.htm index.cgi index.htm index.html index.php
 index.php3 index.php4 index.php5 index.phtml index.pl index.xml

If there are multiple index files in a directory, the server will use the one that appears
first in its DirectoryIndex list.

If the requested address doesn’t end with a forward slash symbol (/), the web server
has to first check if the address corresponds to a file or a directory. For example, for
the address http://www.invyhome.com/shop, the server needs to check whether it should
return the file shop in the document root, or the index file in the shop directory under
the document root.

Introducing PHP
PHP is a scripting language that is designed to be embedded into the HTML markup
used for web pages; it can be used for other purposes, but that’s outside the scope of

402 | Chapter 13: Web Database Applications

http://www.invyhome.com/
http://www.invyhome.com/shop/
http://www.invyhome.com/shop

our discussions. It works on almost all Unix platforms—including Linux and Mac OS
X—and with Windows 32-bit environments, such as Windows 2000, XP, and Vista.
Web pages that contain PHP scripts are preprocessed by the PHP scripting engine, and
the source code is replaced with the output of the script. Indeed, the acronym PHP
obliquely suggests just that—PHP: Hypertext Preprocessor.

PHP is extremely popular for several reasons: it’s easy to include PHP scripts in HTML
documents, PHP is free in a monetary and open source sense, it has a large number of
powerful but easy-to-use function libraries, and it shares syntax with C or Perl-like
languages. PHP is also widely supported; there are a very large number of books, web
sites, and add-on products available. You’ll find that moving from simple examples to
advanced material is made easy by this wide-ranging support.

Example 13-1 shows simple PHP script embedded in an HTML document:

Example 13-1. PHP Script to say “Hello, world!”

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head>
 <title>Hello, world</title>
 </head>
 <body>
 <?php echo "Hello, world"; ?>
 </body>
</html>

When preprocessed by the PHP scripting engine, the short (and not very useful) script:

<?php echo "Hello, world"; ?>

is replaced with its output:

Hello, world

The text before and after the script is HTML; the first three lines define that HTML
version 4 is being used. Any number of PHP scripts can be embedded in an HTML
document, as long as each PHP script is surrounded by the begin tag <?php and the end
tag ?>. Other tags can also be used to delimit PHP scripts, but the tags we use are the
most common and reliable.

One of the best language features of PHP is how it decodes user data and automatically
initializes variables. Consider a sample script stored in the file printuser.php:

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head>
 <title>Saying hello</title>
 </head>

Introducing PHP | 403

 <body>
 <?php
 echo "Hello, {$_GET["username"]}";
 ?>
 </body>
</html>

Let’s assume that the file is stored on the web server in the document root of the web
server. The script can be retrieved using a web browser—in the case where it is running
on the same machine as the web server (localhost)—by requesting the URL http://
localhost/printuser.php?username=Selina. In response to the request, the PHP engine
replaces the script:

<?php
 echo "Hello, {$_GET["username"]}";
?>

with the output:

Hello, Selina

In this example, the URL is automatically decoded and an array variable $_GET initial-
ized. The array contains an element username, which matches the name of the attribute
in the URL, and its value is set to the value in the URL, Selina. This automatic regis-
tration of variables is an excellent feature; we explain how to use it securely in “Un-
tainting User Data” in Chapter 14, and we revisit the issue of how to pass information
to scripts using the URL in “Passing a Message to a Script” in Chapter 15. Don’t worry
too much now about arrays, elements, and the PHP syntax; we’ll return to the details
in the next two chapters.

Files that contain PHP scripts usually have the extension .php instead of the HTML file
extension of .html or .htm. The .php extension is the trigger for the web server to invoke
the PHP scripting engine to preprocess the file. This is controlled by a directive in the
web server’s configuration file, which we discussed briefly in “Configuring and Con-
trolling the Apache Web Server” in Chapter 2.

Passing variables and values using a URL is one way of transferring data from a web
browser to a web server. However, the most common technique is to use an HTML
form such as the following:

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<html>
 <head>
 <title>Saying hello</title>
 </head>

 <body>
 <form method="GET" action="printuser.php" />
 Enter your name: <input type="text" name="username" />

<input type="submit" value="Show it!" />

404 | Chapter 13: Web Database Applications

http://localhost/printuser.php?username=Selina
http://localhost/printuser.php?username=Selina

 </form>
 </body>
</html>

When this HTML document is rendered by a web browser, as shown in Figure 13-4,
the user is able to enter their name into an input widget. Below the widget is a button
labeled “Show it!”. When the user presses the button, the script listed as the action
attribute of the form element is requested, and the data in the input widget is sent to
the server as part of the URL.

For example, if the user enters the name Selina into the input widget and presses the
“Show it!” button, then the URL http://localhost/printuser.php?username=Selina is re-
quested. The web server runs the script printuser.php and passes the submitted data to
it. This script takes the submitted name and uses the echo statement to generate the
message “Hello,” followed by the text typed into the form. The web server returns any
output produced by the PHP script to the user’s browser, which then displays it. In our
example, the user would see the message:

Hello, Selina

Example: Displaying the Artists from the Music Collection
We now look at another example that illustrates how you can use a PHP script, which
is accessible with a web browser, to run a query on a MySQL server and return a list of
artists from the music database; the script then formats this list as an HTML table for
display on the browser. We don’t discuss the details of the process here, or the syntax
of the language; these are covered in the next two chapters. The aim of this section is
to give you a taste for how PHP and the web environment fit together with MySQL to
build a web database application.

You used the MySQL monitor in Chapter 5 to run basic queries on the music database.
Using it, you know how to display all artists:

mysql> USE music;
Database changed
mysql> SELECT * FROM artist;

Figure 13-4. A form that requests the script printuser.php

Introducing PHP | 405

http://localhost/printuser.php?username=Selina

+-----------+---------------------------+
| artist_id | artist_name |
+-----------+---------------------------+
1	New Order
2	Nick Cave & The Bad Seeds
3	Miles Davis
4	The Rolling Stones
5	The Stone Roses
6	Kylie Minogue
+-----------+---------------------------+
6 rows in set (0.00 sec)

Example 13-2 uses PHP to do the same thing: use the music database, run the SELECT
query, and display the results formatted in a table.

Example 13-2. Querying the music database with PHP

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
 <title>Artists</title>
 </head>
 <body>
 <h1>Artists</h1>

 <table>
 <tr>
 <th>artist_id</th>
 <th>artist_name</th>
 </tr>
 <?php
 // Connect to the MySQL server
 if (!($connection = @ mysql_connect("localhost", "root",

 "the_mysql_root_password")))

 die("Cannot connect");

 if (!(mysql_select_db("music", $connection)))
 die("Couldn't select music database");

 // Run the query on the connection
 if (!($result = @ mysql_query("SELECT * FROM artist", $connection)))
 die("Couldn't run query");

 // Until there are no rows in the result set, fetch a row into
 // the $row array and ...
 while ($row = @ mysql_fetch_array($result, MYSQL_ASSOC))
 {
 // Start a table row
 print "<tr>\n";

406 | Chapter 13: Web Database Applications

 // ... and print out each of the columns
 foreach($row as $data)
 print "\t<td>{$data}</td>\n";

 // Finish the row
 print "</tr>\n";
 }
 ?>
 </table>
 </body>
</html>

This script doesn’t take parameters, and so returns the same results every time unless
you change the data. Its output is shown in Figure 13-5.

To edit the file, you can use any text editor. See “Using a Text Editor” in Chapter 2 for
a discussion of text editors for different operating systems. Once you’ve typed in the
contents and saved this as the file query_artists.php in the document root of our Apache
web server installation, you can test that it works by loading the URL http://localhost/
query_artists.php in a web browser.

If you do so and get a message like:

Fatal error: Call to undefined function mysql_connect()

you should ensure that your installation of PHP has the MySQL libraries installed. If
you’re using RPMs, the libraries are typically in the php-mysql package.

Figure 13-5. Output of query_artists.php shown in a web browser

Introducing PHP | 407

http://localhost/query_artists.php
http://localhost/query_artists.php

The first 16 lines of the file are HTML. Of these, the first eight lines of the script are
the preamble, which starts an HTML document, defines the content type, and sets the
page title. The following eight lines start a table, displaying column headings for the
data that follows. The final three lines of the file close the HTML document. The re-
mainder of the file—producing the content inside the HTML table—is the PHP script.

The PHP script is encapsulated in the <?php and ?> tags. The script itself carries out
four main steps:

1. Connect to MySQL, using the mysql_connect() MySQL library function

2. Select the database, using the mysql_select_db() MySQL library function

3. Run the SQL query, using the mysql_query() MySQL library function

4. Retrieve and display the data, using a while loop, the mysql_fetch_array() MySQL
library function, the print statement, and a foreach loop

With the exception of the last step, you already know how to carry out these steps using
the MySQL monitor.

The first step in the PHP script is to connect to MySQL. This is performed with the
following fragment:

if (!($connection = @ mysql_connect("localhost", "root", "the_mysql_root_password")))
 die("Cannot connect");

The function mysql_connect() opens a connection, and the three parameters to the
function—"localhost", "root", and "the_mysql_root_password"—are the hostname of
the server, the MySQL user, and the user’s password, respectively. The function does
the same thing as running the MySQL monitor: it authenticates you, giving you access
to the MySQL server so that you can run SQL statements. The other important feature
is that a connection resource handle is returned and saved in a PHP variable
$connection; this is used in the following two steps. The at symbol (@) tells PHP not to
display its own error messages. If we discover a critical error, we call the die() function
to display an error message and stop processing the script. We look at error handling
in detail in “Handling MySQL Errors” in Chapter 4.

The second step is to use a database. This occurs through this fragment:

if (!(mysql_select_db("music", $connection)))
 die("Couldn't select music database");

The function mysql_select_db() is the PHP library equivalent of the USE command. In
this fragment, the music database is selected as the current database. The second
parameter to the function, $connection, is the database connection resource handle
returned from the first step; it’s used to identify the connection to the database server.

The third step runs the query. It performs the same function as typing it into the MySQL
monitor does, but it doesn’t retrieve or display the results. Here’s the code fragment:

if (!($result = @ mysql_query("SELECT * FROM artist", $connection)))
 die("Couldn't run query");

408 | Chapter 13: Web Database Applications

The function that does the actual work is mysql_query(), and it takes two parameters:
first, the SQL query, and, second, the database connection resource handle that
identifies the connection to use. It returns a database result resource that is used to
identify the rows to be retrieved in the next step; in this example, it’s saved in the
variable $result. Unlike with the MySQL monitor, there’s no need to add a semicolon
symbol (;) at the end of the query.

The fourth step retrieves and displays the results; it’s the most complicated step and
spans 14 lines in the script:

// Until there are no rows in the result set, fetch a row into
// the $row array and ...
while ($row = @ mysql_fetch_array($result))
{
 // Start a table row
 print "<tr>\n";

 // ... and print out each of the columns
 foreach($row as $data)
 print "\t<td>{$data}</td>\n";

 // Finish the row
 print "</tr>\n";
}

It works as follows:

• The while loop fetches each result row, one by one, from the MySQL server using
mysql_fetch_array(). The parameter to the function is $result, which references
the results from the query that was executed in the third step. Each row returned
by the function is saved in the variable $row and then processed in the loop body
as detailed next. The loop stops when there are no more rows to retrieve.

• Inside the body of the while loop, three steps occur for each retrieved row:

1. The first print statement produces an HTML <tr> tag to start a new table row.

2. The foreach loop processes each column value for the row and uses a print
statement to surround each column value with <td> and </td> tags.

3. The last print statement produces an HTML </tr> tag to end the row.

Because there are always two columns in every row of output—and they’re always in
the same order—the artist_id and artist_name column values line up with the head-
ings, as shown in Figure 13-5. When all of the artists have been printed, the while loop
ends, and the script finishes.

We haven’t discussed many of the features of PHP that we’ve used. For example, the
script has error-handling capabilities, so it’ll report a message to the user when some-
thing goes wrong. Statements such as foreach require some explanation, but don’t
worry about the details for now. The next two chapters explain all you need to build a
basic application.

Introducing PHP | 409

Using a PHP-Enabled Web Hosting Site
There are a large number of companies that offer low-cost or free web hosting packages
with PHP and MySQL support. To start looking for one, perform a web search for
“php mysql web hosting.” These hosting packages usually include FTP access to copy
files to your web directory, and a web-based MySQL client such as phpMyAdmin.

To get your site up and running on such a site, first copy your files across to the server
using FTP. Under Linux, the KDE Konqueror and GNOME Nautilus file managers
both support FTP. Under Mac OS X, select “Connect to Server” from the Finder Go
menu; you can also use the free Cyberduck program. Under Windows, you’ll need to
download an FTP tool such as FileZilla (http://sourceforge.net/projects/filezilla).

To connect to the server, enter your username and the name of your FTP server—for
example, ftp://adam@isp_ftp_server.net. If you’re a power user and want command-
line control, including possibly scripting file transfers, you can use the ncftp tool set
(http://www.ncftp.com/ncftp), especially the ncftpput program. This is the tool we use
ourselves, and is available for Linux, Windows, and Mac OS X.

Now, how do you set up the database? Well, there are two ways. You could create the
database on the web host; this is likely to be tedious. A better solution is to create the
database on your own machine and then export it to the web host.

You can export data from a database into an SQL dump file using the mysqldump com-
mand discussed in Chapter 10. Once you have the dump file, you can upload it to the
server as an SQL query text file. The server will run all the SQL queries in the file and
re-create the database.

Hosting companies generally don’t give subscribers access to the MySQL server root
account and instead allocate each subscriber a non-root username and password. You’ll
need to modify your scripts to use the authentication details provided to you.

Most web-hosting packages with MySQL support allow you to access the MySQL
server using the phpMyAdmin web-based MySQL administration tool. As you can see
from Figure 13-6, phpMyAdmin allows you to perform common operations such as
creating, browsing, editing, and dropping database tables by clicking on links in your
browser. You can run SQL queries on the database by typing them into the phpMyAd-
min text box or by uploading a text file that contains the query. You can upload a
complete database in this way by telling phpMyAdmin to run the queries in a database
dump file created using mysqldump.

Similarly, you can download a dump file of selected tables or the complete database by
selecting the “Save as file” option under the “View dump” section.

The XAMPP integrated package includes an installation of phpMyAdmin. Note that if
you configure web tools such as phpMyAdmin to access the server, you should take
great care to authenticate users, since you are effectively publishing your database on
the Web.

410 | Chapter 13: Web Database Applications

http://sourceforge.net/projects/filezilla
ftp://adam@isp_ftp_server.net
http://www.ncftp.com/ncftp

Resources
To learn more about the origins of LAMP, and related technologies, visit the http://
www.onlamp.com web site run by O’Reilly Media.

To learn more about PHP and PHP programming, we recommend the following books:

• Learning PHP 5 by David Sklar (O’Reilly). This is an excellent introductory book.

Figure 13-6. The phpMyAdmin graphical MySQL administration tool

Resources | 411

http://www.onlamp.com
http://www.onlamp.com

• Programming PHP by Rasmus Lerdorf et al. (O’Reilly). A reference-style book that
covers the core libraries.

• PHP Pocket Reference by Rasmus Lerdorf (O’Reilly).

• PHP Cookbook by David Sklar and Adam Trachtenberg (O’Reilly). This contains
solutions to tricky PHP problems.

• PHP Essentials by Julie Meloni (Premier Press). A good introductory book covering
programming basics.

Other books are listed on the http://www.php.net/books.php web page.

To learn more about Apache, we recommend:

• The Apache web site (http://httpd.apache.org).

• Apache: The Definitive Guide by Ben Laurie and Peter Laurie (O’Reilly). This really
is the definitive guide to Apache configuration.

• Apache Cookbook by Ken Coar and Rich Bowen (O’Reilly). Solutions to problems
with Apache.

To learn more about building web database applications that use PHP, Apache, and
MySQL, read Hugh’s other book:

• Web Database Applications with PHP and MySQL by Hugh E. Williams and David
Lane (O’Reilly).

You might also find it interesting to learn about the relatively new Ajax programming
paradigm, which relies heavily on client-side processing: (http://en.wikipedia.org/wiki/
AJAX)

To learn more about client-side programming with JavaScript, see:

• The W3Schools JavaScript tutorial at http://www.w3schools.com/js.

• JavaScript: The Definitive Guide by David Flanagan (O’Reilly).

To learn more about phpMyAdmin, see the program’s web site at http://www.phpmyad
min.net.

You might also be interested in Ruby on Rails, which is designed for easy development
of web database applications using the Ruby scripting language; to learn more, visit
the Ruby on Rails web site at: http://www.rubyonrails.org.

Exercises
1. What does the acronym LAMP stand for?

2. Draw a diagram that explains a three-tier architecture. For each tier, list the LAMP
components that make up that tier.

412 | Chapter 13: Web Database Applications

http://www.php.net/books.php
http://httpd.apache.org)
http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
http://www.w3schools.com/js
http://www.phpmyadmin.net
http://www.phpmyadmin.net
http://www.rubyonrails.org

3. HTTP is a stateless protocol. What does this mean? What are the advantages and
disadvantages of statelessness?

4. How does Apache know when to start the PHP engine? What steps would you take
if PHP code itself were displayed in the browser rather than the result of running
the PHP code?

Exercises | 413

CHAPTER 14

PHP

In Chapter 13, we discussed how the triad of MySQL, PHP, and the Apache web server
is one of the most popular web development platforms. In this chapter, we introduce
you to building web database applications for this platform. We cover the following
topics:

• An introduction to the PHP language

• How the commonly used MySQL library functions are used to access the MySQL
DBMS

• How to handle MySQL DBMS errors, use include files to modularize code, and
secure user data

• How to write data to databases and manage sessions in applications

PHP has a large set of libraries available that can be used for tasks as diverse as string
manipulation, network communications, data compression, and disk access. We can
only touch on some of these in this book; you’ll find the PHP manual and the resources
listed at the end of this chapter invaluable as you learn more about the language.

Language Basics
This section is a short introduction to the basic syntax of PHP. If you’re familiar with
high-level languages such as C, C++, Java, JavaScript, or Perl, then you’ll find PHP very
easy to learn. PHP began its life as a simple, procedural language that was designed to
be embedded into HTML pages, and that’s mostly what we focus on this chapter. More
recently, it has become a full-fledged object oriented (OO) language that can be used
for nonweb and cross-platform applications, including both scripts that run from the
command-line and programs with graphical user interfaces (see the PHP-GTK web site,
http://gtk.php.net). You’ll find pointers to comprehensive PHP resources in “Resour-
ces” at the end of this chapter.

As discussed previously, PHP scripts are surrounded by the PHP start tag <?php and the
PHP end tag ?>. You’ll sometimes see the start tag abbreviated to <?, but this conflicts

415

http://gtk.php.net

with the XHTML standard and should be avoided. Statements in a script are terminated
with a semicolon. Statements can be formatted for readability by including any amount
of whitespace—such as space characters, tab characters,or blank lines—in a script.

Comments can be included in a PHP script using the following styles:

// One-line comment

Another one-line comment

/* A
multiple-line
comment */

Anything that appears after the // or #, or between the /* and */ characters, is ignored.

Variables are prefixed with a dollar sign ($) and variable names are case-sensitive. PHP
has several variable types. Scalar variables contain one value; scalar types are integer,
Boolean, string, and float (floating-point number). There are two compound types of
variable, array and object, that themselves contain scalar variables—possibly of dif-
ferent types.

Variables are automatically declared and given a type when they’re first used. You don’t
have to declare them beforehand; the type of a variable can change in a script. Values
are assigned to variables with a single = character:

// $x is an integer with the value 4
$x = 4;

// Now $x is a float
$x = 3.142;

// Now $x is a string
$x = "Selina";

// Now $x is a Boolean
$x = true;

// $y is an array of integers, strings, and Booleans
$y = array("hello", 1, 2, true, false, "cat");

Strings
PHP Strings are enclosed in double or single quotes. The following are identical:

$string = "Hello world";
$string = 'Hello world';

You can switch between quote styles for the convenience of including the other type
of quote in the string:

$string = "This string includes a single ' quote";
$string = 'This string includes a double " quote';

416 | Chapter 14: PHP

You can also include quotes using the backslash character as an escape code:

$string = "This string includes a double \" quote";
$string = 'This string includes a single \' quote";

To include a backslash character, escape it with a backslash:

$string = "Here's a \\ blackslash character";

Unlike most other languages, you can incorporate carriage returns and line feeds di-
rectly into strings:

$string = "Here's a string spread over
 two lines";

You can also include carriage return, line feed, and tab characters using the \n, \r, and
\t shortcuts, respectively:

$string = "This string is spread over\n two lines. And it has a \t tab in it.";

Adding newlines and tabs in content sent to the browser makes the HTML source more
readable. However, such whitespace has no significance in HTML unless you enclose
the text in <pre> tags to mark it as preformatted content. Adding such whitespace
characters often comes in handy when developing and debugging an application, but
you can also safely omit them in production code.

Arrays
Arrays can be accessed by their numeric or associative index. Numeric indexes are
numbered from zero. Consider two sample arrays:

// This is an associative array
$x = array("one" => 1,
 "two" => 2,
 "three" => 3);

// The value 1 from the array $x is placed into the variable $y
$y = $x["one"];

// This is a numerically indexed array
$a = array(10, 20, 30);

// This places the value 20 from the array $a in the variable $b
// (since arrays begin with an index of 0)
$b = $a[1];

You can create and manipulate arrays using the indexes. For example, in addition to
using the array() syntax:

$x = array(10, 20, 30);

you can access the elements directly and get the same result by writing:

Language Basics | 417

$x[0] = 10;
$x[1] = 20;
$x[2] = 30;

The style you use is a personal preference; the former style is compact and simple, while
the second style is familiar to most programmers.

Manipulating Variables
You can manipulate variables to modify the values they contain. For example, you can
add the values in two variables and place this value in a third variable:

$x = 4;
$y = 7;
$z = $x + $y;

You could in fact place the sum into an existing variable, such as $x:

$x = $x + $y;

Of course, this would overwrite the previous value (4) with the sum (11).

The arithmetic shortcuts that work in many other languages also work in PHP:

$x = 4;

// add one to $x in three different ways
$x = $x + 1;
$x++;
$x += 1;

// subtract one from $x in three different ways
$x = $x - 1;
$x--;
$x -= 1;

// Multiply $x by two in two ways
$x = $x * 2;
$x *= 2;

// Divide $x by three in two ways
$x = $x / 3;
$x /= 3;

To concatenate strings, use the . operator:

$x = "Hello";
$y = "world";

// $z contains "Hello world";
$z = $x . " " . $y;

418 | Chapter 14: PHP

Displaying Information
To display information, we can use the PHP statements print, echo, or printf. The first
two are interchangeable; the third is for more complex output, and its use is identical
to that in programming languages such as C, and in scripting languages such as awk.
Consider a few examples:

// These are the same; all display the text: [This is output]
echo "This is output";
print "This is output";
printf("This is output");

The printf command can be used with placeholders, or format specifiers. For example,
%d represents an integer number, %f represents a floating-point (decimal) number, and
%s represents a string of characters:

// This displays: [6 inches x 2.540000 = 15.240000 centimeters]
printf("%d %s x %f = %f %s", 6, "inches", 2.54, 6*2.54, "centimeters");

We can modify the format specifiers to control formatting; for example, we can space
values out and limit the number of decimal digits displayed:

// This displays: [6 inches x 2.54 = 15.2 centimeters]
printf("%10d %s x %10.2f = %-10.1f %20s", 6, "inches", 2.54, 6*2.54, "centimeters");

The %10d specifies that 10 characters should be set aside for displaying the integer value
—in this case, 6; since the number is only one character long, there are nine blank
spaces to the left of the displayed value. If you add a minus sign just after the percent
symbol, the spaces appear to the right of the value. With floating-point numbers, we
can control the number of decimal places to be displayed; here, we’re limiting the first
floating-point number (2.54) to two digits, and the second floating point number
(6*2.54) to one decimal place. You can learn more about format specifiers from http://
www.php.net/manual/en/function.sprintf.php.

You can print variables using print or echo using several styles. The most convenient
is to incorporate the variable into a string enclosed in double quotes:

$x = 4;

// Prints "x is 4";
echo "x is {$x}";

The braces, { and }, form an escape sequence that tells PHP to process the enclosed
value as a variable expression. You don’t always need to use the braces; the following
works equally well:

$x = 4;

// Prints "x is 4";
echo "x is $x";

However, using braces is useful to avoid ambiguity, and you can even display values
from an associative array without needing to escape the double quotes:

Language Basics | 419

http://www.php.net/manual/en/function.sprintf.php
http://www.php.net/manual/en/function.sprintf.php

// This is an associative array
$x = array("one" => 1,
 "two" => 2,
 "three" => 3);

// This prints "x is 1"
echo "x is {$x["one"]}";

Adding braces allows all variables to be included directly into strings that are delimited
by double quotation marks. If a variable can be unambiguously parsed from within a
double-quoted string, then the braces can be omitted. Here, the double quotes around
the array index ("one") can be confused with the double quotes surrounding the com-
plete string, and so the braces are necessary; you can also include braces to help make
your code more readable, even when they’re not strictly needed.

If you wanted to avoid using braces, you would need to append the associative array
value to the string with the period symbol (.):

echo "x is ".$x["one"];

If you actually want to display a brace, you need to escape it with the backslash symbol
(\):

echo "A left brace: \{";

Variable substitution in strings doesn’t work with single-quoted strings: whatever is
included in a single-quoted string is printed out literally:

// Doesn't work as expected. It prints: ["x is {$x}"]
echo 'x is {$x}';

Conditional Statements
You can have parts of a PHP script executed only if certain conditions are met. The
most frequently used conditional statement in PHP is if:

if ($x < 5)
 echo "x is less than 5";

Frequently used expressions are less-than (<); greater-than (>); less-than-or-equals
(<=); greater-than-or-equals (>=); and not-equals (!=).

You can implement more complex conditions using the else keyword:

if ($x < 5)
 echo "x is less than 5";
else if ($x > 5)
 echo "x is greater than 5";
else
 echo "x is equal to 5";

You can write else if as one word, elseif.

420 | Chapter 14: PHP

The switch...case construct allows you to easily select between several possible values,
as in the following example:

switch ($x)
{
 case 1:
 echo "x is 1";
 break;
 case 2:
 echo "x is 2";
 break;
 case 3:
 echo "x is 3";
 break;
 default:
 echo "x is not 1, 2, or 3";
}

The default section is executed if the switch value doesn’t match any of the case values.
The break keyword tells PHP to leave the switch construct; if you leave it out, processing
will drop through to the next case condition, and the statements there will also be
executed. For example, if $x is one, and the first break is missing, the program would
print “x is 1”, and then continue into the next case, and also print “x is 2”.

Equality is tested with the double-equals (==) syntax:

$x = 4;

if ($x == 4)
 echo "x is four!";

It’s a very common mistake to forget to write the second equals symbol (=) in an equality
test. PHP considers a variable assignment operation to have a true value, so the test
will always succeed. For instance, the test below will always succeed, and so the mes-
sage "x is four!" will be printed whatever the value of x—for example, 3:

$x = 3;

if ($x = 4)
 echo "x is four!";

A triple-equals operator (===) can also be used to test if the parameters are both equal
and of the same type:

$x = 0;

// This prints, since 0 and false are the same value
if ($x == false)
 echo "$x is false";

// This doesn't print, because 0 and false aren't the same type
if ($x === false)
 echo "$x is false";

Language Basics | 421

The not-equals operator (!=) is the opposite of the equality operator (==). Similarly,
the !== operator is a type-sensitive not-equals and is the opposite of ===.

There are two handy functions—isset() and empty()—for checking the state of a
variable:

// Has the variable been declared?
if (isset($x))
 echo "x is set";

// Is the variable empty?
if (empty($x))
 echo "x is empty";

A variable that doesn’t exist (is not set) is always empty. However, a variable that’s
empty may or may not exist, but if it does, it has a NULL value. A third function, unset(
), can be used to destroy a variable:

$x = 5;

unset($x);

// Prints "not set"
if (isset($x))
 echo $x;
else
 echo "not set";

Loops
The standard loop constructs are for, while, and do...while. Let’s look at different
ways to print out the integers 0 to 9 using these constructs.

The for statement has three parameters: an instruction to initialize any variables, a
condition that must be met for the loop to continue, and an instruction that is executed
after each round of the loop. To count from 0 to 9, we can start by setting the variable
$x to 0 ($x=0). We increment $x one by one ($x++) as long as it is less than 10 ($x<10):

for ($x=0; $x<10; $x++)
 echo "$x\n";

The while loop can take the same parameters, but here they are placed at different
locations in the code:

$x = 0;
while ($x < 10)
{
 echo "$x\n";
 $x++;
}

422 | Chapter 14: PHP

Notice that when more than one statement forms the body of the loop, the statements
are enclosed in braces. Braces are also used with the conditional if when there’s more
than one statement you want to execute.

The do...while loop is almost identical to the while loop:

$x = 0;
do
{
 echo "$x\n";
 $x++;
} while ($x < 10);

However, there is one important difference between while and do...while: in the latter
construct, the condition is checked after the body of the loop, so the instructions be-
tween the braces are always executed at least once; if the condition is false, the loop is
not repeated.

The foreach statement is a different type of loop construct that is used to simplify
iteration through an array:

// $x is an array of strings
$x = array("one", "two", "three", "four", "five");

// This prints out each element of the array
foreach ($x as $element)
 echo $element;

Functions
PHP has a large number of built-in functions that you can use to perform common
tasks. A function call is followed by parentheses that contain zero or more arguments
to the function. The following fragment uses the library function count() to display
the number of elements in an array:

// $x is an array of strings
$x = array("one", "two", "three", "four", "five");

// Displays 5
print count($x);

The count() function takes one parameter, which should be an array type. Functions
can return nothing or a value of any type; the previous example returns an integer value,
which is then output using print. When a value is returned, the function can be used
in an expression. For example, the following uses count() in an if statement:

// $x is an array of strings
$x = array("one", "two", "three", "four", "five");

if (count($x) >= 3)
 echo "This array has several elements";
else
 echo "This array contains less than three elements";

Language Basics | 423

The PHP manual web site (http://www.php.net/manual) has excellent search and
browse features for locating details on functions. When you visit this page, you’ll see
a search box at the top right. By default, if you type text and press Enter (or click the
small right-arrow icon), you’ll search the function library names for exact or near
matches. For example, if you type print and press Enter, you’ll be taken directly to the
manual page for the print statement. If instead you type prin, you’ll be taken to a page
of near matches, including links to print, printf, sprintf, and related entries. Very
close matches are shown in bold, while less likely matches are shown without bold
(and, in this example, include functions such as phpinfo, phpinfo, and pi that make
passing reference to printing in their descriptions).

You can also define your own functions. User-defined functions are created with the
keyword function and enclosed in braces. Here’s an example of a user-defined function
do-math() that itself calls PHP math library functions to output interesting values:

function do-math($x)
{
 if ($x > 0)
 {
 print "log10(x) = " . log($x,10);
 print "logN(x) = " . log($x);
 print "sqrt(x) = " . sqrt($x);
 print "x^2 = " . pow($x, 2);
 return true;
 }
 else
 return false;
}

// Print out interesting math for the value 10
$ret = do-math(10);

// This test should fail, since the function should return true for 10
if ($ret == false)
 print "Can't do math for <=0";

// Now, try to print out interesting math for the value 0
$ret = do-math(0);

// This test should succeed and print the error message,
// since the function should return false for 0
if ($ret == false)
 print "Can't do math for <=0";

The function returns true when the parameter is greater than 0, and false otherwise.
In the example, the return value is assigned to $ret and used in the subsequent if test.

Passing variables by reference

If you add the ampersand symbol (&) before the name of a variable in a function dec-
laration, a reference to the variable will be passed to the function, rather than the var-

424 | Chapter 14: PHP

http://www.php.net/manual

iable value itself. This allows the function to change the variable, and the main program
can use the new value. Consider Example 14-1.

Example 14-1. Passing variables to function by value and by reference

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <title>Passing variables to a function by value or by reference</title>
 </head>
 <body>
 <table border='1'>
 <tr>
 <th>
 Step
 </th>
 <th>
 Variable Value
 </th>
 </tr>
 <?php
 // Set initial value for the variable
 $Variable=110;

 // Display the initial variable value.
 echo "<tr>
 <td>Initial value</td>
 <td align='right'>$Variable</td>
 </tr>";

 // Pass the variable by value to the AddNineteen_value() function.
 AddNineteen_value($Variable);

 // Display the variable value after passing it by value.
 echo "<tr>
 <td>After passing by value</td>
 <td align='right'>$Variable</td>
 </tr>";

 // Pass the variable by reference to the AddNineteen_reference() function.
 AddNineteen_reference($Variable);

 // Display the variable value after passing it by reference.
 echo "<tr>
 <td>After passing by reference</td>
 <td align='right'>$Variable</td>
 </tr>";

 // Function to add 19 to the received variable;
 // the function receives the variable value.
 function AddNineteen_value($MyVariable)
 {
 $MyVariable+=19;

Language Basics | 425

 }

 // Function to add 19 to the received variable;
 // the function receives a reference to the variable
 // (note the ampersand before the variable name).
 function AddNineteen_reference(&$MyVariable)
 {
 $MyVariable+=19;
 }
 ?>
 </table>
 </body>
</html>

The output of the program is shown in Figure 14-1.

When the variable is passed by value, the function makes its own copy, and any oper-
ations it performs on the variable are limited to the function itself. When the variable
is passed by reference, any changes that the function makes (in this case, adding 19 to
the value) are seen by the main program. Note that the name of the variable used by
the function can be different from the name used by the main program when calling
the function; here, the AddNineteen_value() and AddNineteen_reference() functions
use the name $MyVariable internally.

Handling Errors in PHP
Sadly, every programmer—however experienced—makes mistakes. PHP tries to help
in finding and rectifying these mistakes by providing detailed error messages when it
detects a problem. It’s useful to have PHP report detailed information on all errors
during development, but it’s best to avoid displaying much of this information to the
end user in a production system. This will reduce the amount of confusion and also
hide information that an attacker could find useful.

PHP is configured through a php.ini configuration file that includes two important
directives that affect error reporting: error_reporting and display_errors. The former
controls what types of errors are trapped, and the latter controls whether error messages
are reported. When PHP is configured, display_errors is set to On and
error_reporting lists selected errors that can occur; by default, in PHP4 and PHP5, it

Figure 14-1. Web page produced when running Example 14-1

426 | Chapter 14: PHP

reports all errors except those in the insignificant NOTICE class. Your PHP installation
may be configured differently.

If you find that you’re not seeing PHP error messages, you can find the php.ini file and
ensure that it contains the line:

display_errors = On

Add this line if necessary. Whenever you make a change to the php.ini file, you should
restart the Apache web server to put the changes into effect. To ensure that all errors
are reported, make sure the error_reporting line in php.ini file is set to:

error_reporting = E_ALL

and restart Apache.

If you don’t have control of the web server (for example, on a web-hosting site), you
won’t be able to modify the php.ini file. You can instead enable error reporting by
adding the two lines:

ini_set("display_errors", true);
error_reporting(E_ALL);

to the top of each PHP file, just after the PHP opening tag (<?php). There’s no harm in
doing this even if the PHP configuration is suitable, and it allows your scripts to be
portable independent of the PHP settings on the web server.

When you’re ready to deploy, turn off display_errors or change error_reporting to a
setting that won’t show the user minor (or perhaps, at your discretion, any) internal
error messages. For example, you can use:

error_reporting(E_ALL & ~E_NOTICE & ~E_WARNING);

to force PHP to display only critical error messages. You’ll find a description of the
error-setting choices at http://www.php.net/error_reporting.

Throughout the rest of this book, we assume your PHP installation is configured to
report all errors, or at least everything more serious than a notice.

Accessing MySQL Using PHP
Because this book is about MySQL, this chapter focuses on how to use PHP to access
a MySQL database. Since the release of MySQL 4.1, there have been two PHP libraries
that you can use: the original MySQL library and the MySQL Improved (MySQLi)
library.

This creates a dilemma: which library should you use? If you’re working on legacy code
or a MySQL server older than version 4.1, you may not have a choice and will need to
use the original library. If you’re developing new code, you do have a choice: you can
go with the original MySQL library that most developers still understand and use, or
the MySQLi library that has additional features and better performance. We recom-

Accessing MySQL Using PHP | 427

http://www.php.net/error_reporting

mend that you use the new library for new code, but you should also learn about the
older library because you’re likely to encounter it as you develop and modify PHP code.

The Original PHP MySQL Library
This section describes the original PHP library designed for MySQL versions earlier
than 4.1. In most PHP installations, it works with later versions, although you can’t
take advantage of some newer MySQL features.

In Chapter 13, we showed you a simple PHP code example that uses the original MySQL
library. It’s reproduced in Example 14-2.

Example 14-2. Querying the music database with PHP

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
 <title>Artists</title>
 </head>
 <body>
 <h1>Artists</h1>

 <table>
 <tr>
 <th>artist_id</th>
 <th>artist_name</th>
 </tr>
 <?php
 // Connect to the MySQL server
 if (!($connection = @ mysql_connect("localhost", "root",

 "the_mysql_root_password")))

 die("Cannot connect");

 if (!(mysql_select_db("music", $connection)))
 die("Couldn't select music database");

 // Run the query on the connection
 if (!($result = @ mysql_query("SELECT * FROM artist",
 $connection)))
 die("Couldn't run query");

 // Until there are no rows in the result set, fetch a row into
 // the $row array and ...
 while ($row = @ mysql_fetch_array($result, MYSQL_ASSOC))
 {
 // Start a table row
 print "<tr>\n";

428 | Chapter 14: PHP

 // ... and print out each of the columns
 foreach($row as $data)
 print "\t<td>{$data}</td>\n";

 // Finish the row
 print "</tr>\n";
 }
 ?>
 </table>
 </body>
</html>

This example uses four key MySQL functions that we’ll describe here. Each function
takes one or more arguments and returns a value when it’s completed the required
operation. In the list below, we’ve adhered to convention by writing the return type
first, and then the function name, which is followed by parentheses enclosing the ar-
guments that can be passed to the function:

resource mysql_connect(string hostname, string username, string password)
Opens a connection to the MySQL server. Conceptually, this is the same as running
the MySQL monitor, and it requires the same parameters: a hostname that identifies
the server machine, a username of a MySQL user, and a password for the MySQL
user. The hostname can be an IP address, the mnemonic localhost, or a fully
qualified machine and domain, such as ruttle.invyhome.com.

By default, a MySQL server listens for incoming connections on port 3306; if your
MySQL server has been configured to use a different port, you can append this to
the hostname as hostname:port.

If the hostname is localhost, PHP makes a fast direct connection through a Unix
socket (under Linux or Mac OS X) or a named pipe (under Windows) rather than
through the network. If your server has been configured with a nonstandard socket
path, you can also append this to the hostname parameter after the port, as in
localhost:port:path_to_socket. We discussed sockets and named pipes briefly in
“Configuring Access to the MySQL Server” in Chapter 2.

The return value of the function is a resource handle that is usually stored in a
variable. The variable is then passed as a parameter to other MySQL functions—
such as mysql_query()—to identify the connection to use. If the function fails, it
returns false instead of a connection handle.

Boolean mysql_select_db(string database, resource connection)
Selects a database to use. This is conceptually identical to typing the USE command
in the MySQL monitor. The first parameter is a database name to use, and the
second is the MySQL server connection to use. The connection is the return value
from a previous call to the mysql_connect() function. The function returns true
on success and false on failure.

Accessing MySQL Using PHP | 429

mixed mysql_query(string query, resource connection)
Executes an SQL query on a connection. This is conceptually the same as typing
an SQL query into the MySQL monitor and pressing the Enter key. The first pa-
rameter is an SQL query, and the second is a connection resource handle that was
returned from mysql_connect().

The function does not return or display the results. Instead, for SELECT, SHOW,
EXPLAIN, or DESCRIBE queries, it returns a resource handle that can be assigned to a
variable and used to access the results. The mysql_fetch_array() function dis-
cussed next is usually used for this task. For UPDATE, INSERT, DELETE, and other
queries that do not produce output, the return value is either true (indicating suc-
cess) or false (indicating failure). Note that you don’t need to include a semicolon
(;) at the end of the query string, though there are no problems if you do. In the
MySQLi library, the order of the parameters is reversed.

array mysql_fetch_array(resource result[, int type])
Returns an array containing one row of results from a previously executed query.
The result handle parameter is the return value from a previously executed
mysql_query() function, and the optional type controls what type of array is re-
turned; this is discussed later in this chapter in “Accessing Query Results with
mysql_fetch_array(  ) and mysqli_fetch_array(  ).” Each call to the function returns
the next available row of results as an array, with false returned when no further
rows are available.

The four previous functions are sufficient to build simple applications. The three func-
tions discussed next are also important, and you’ll find them helpful in all but the most
basic applications.

When you run queries, the MySQL monitor reports useful information that helps you
make decisions about what to do next. To access this information from PHP scripts,
you need to use functions. Three functions you’ll find useful are:

int mysql_insert_id(resource connection)
If you use the AUTO_INCREMENT feature, this function allows you to access the unique
identifier value associated with the most recent INSERT statement on a connection.
The database connection is passed as a parameter, and the return value is an integer
that uniquely identifies the new row. A value of 0 is returned if AUTO_INCREMENT
wasn’t used by the most recent query.

int mysql_affected_rows(resource connection)
Reports the number of rows that were modified by the last query on the connection
identified by the resource handle connection. We describe this function in more
detail later in “Finding the Number of Changed Rows Using mysql_affected_rows
and mysqli_affected_rows.”

430 | Chapter 14: PHP

int mysql_num_rows(resource result)
Reports the number of rows returned by a SELECT query identified by a result
resource handle. The function doesn’t work for queries that modify the database;
mysql_affected_rows() should be used there instead.

The PHP Improved MySQL Library
This section discusses the Improved MySQL library, which we refer to as MySQLi. This
library was introduced with PHP 5 and is designed to work with MySQL version 4.1.3
and above. We use the same conventions in this section as in the last one so that you
can use them as independent references.

Example 14-3 rewrites Example 14-2 to use the new MySQLi library.

Example 14-3. Querying the music database with the MySQLi library

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
 <title>Artists</title>
 </head>
 <body>
 <h1>Artists</h1>

 <table>
 <tr>
 <th>artist_id</th>
 <th>artist_name</th>
 </tr>
 <?php
 // Connect to the MySQL server
 if (!($connection = @ mysqli_connect("localhost", "root",

 "the_mysql_root_password")))

 die("Cannot connect");

 if (!(mysqli_select_db($connection, "music")))
 die("Couldn't select music database");

 // Run the query on the connection
 if (!($result = @ mysqli_query($connection, "SELECT * FROM artist")))
 die("Couldn't run query");

 // Until there are no rows in the result set, fetch a row into
 // the $row array and ...
 while ($row = @ mysqli_fetch_array($result, MYSQL_ASSOC))
 {
 // Start a table row

Accessing MySQL Using PHP | 431

 print "<tr>\n";

 // ... and print out each of the columns
 foreach($row as $data)
 print "\t<td>{$data}</td>\n";

 // Finish the row
 print "</tr>\n";
 }
 ?>
 </table>
 </body>
</html>

The example uses three key MySQLi functions, described next in a simplified form. As
with the standard MySQL library, each function takes one or more arguments and
returns a value when it’s completed the required operation. Again, we follow conven-
tion and write the return type first, then the function name, and, in parentheses, the
list of arguments that can be passed to the function:

resource mysqli_connect(string hostname, string username, string password,
string database)

Opens a connection to the MySQL server and uses a database. Conceptually, this
is the same as running the MySQL monitor and issuing a USE command. It requires
the same parameters and input: a hostname that identifies the server machine, a
username of a MySQL user, a password for the MySQL user, and the database to
use. The hostname can be an IP address, the mnemonic localhost, or a fully quali-
fied machine and domain such as ruttle.invyhome.com.

By default, a MySQL server listens for incoming connections on port 3306; if your
MySQL server has been configured to use a different port, you can specify this as
an additional parameter to mysqli_connect() after the database name. If the host-
name is localhost, PHP makes a fast direct connection through a Unix socket
(under Linux or Mac OS X) or a named pipe (under Windows) rather than through
the network. If your server has been configured with a nonstandard socket path,
you can also append this as an additional parameter after the port. We discussed
sockets and named pipes briefly in “Configuring Access to the MySQL Server” in
Chapter 2.

The return value of the function is a resource handle that is usually stored in a
variable. The variable is passed as a parameter to other MySQL functions—such
as mysqli_query()—to identify the connection to use. If the function fails, it re-
turns false instead of a connection handle.

The database is selected when the connection is established. You can change the
active database using the mysqli_select_db() function, but you normally just use
the database that you activated in the call to mysqli_connect().

432 | Chapter 14: PHP

mixed mysqli_query(resource connection, string query)
Executes an SQL query on a connection. This is conceptually the same as typing
an SQL query into the MySQL monitor and pressing the Enter key. The first pa-
rameter is a connection resource handle that was returned from mysqli_connect(
) and the second is an SQL query; note that the parameter order is the opposite of
the original MySQL library’s mysql_query() function.

The function does not return or display the results. Instead, for SELECT, SHOW,
EXPLAIN, or DESCRIBE queries, it returns a resource handle that can be assigned to a
variable and used to access the results. The mysqli_fetch_array() function dis-
cussed next is usually used for this task. For UPDATE, INSERT, DELETE, and other
queries that do not produce output, the return value is either true (indicating suc-
cess) or false (indicating failure). Note that you don’t need to include a semicolon
(;) at the end of the query string, though there are no problems if you do.

array mysqli_fetch_array(resource result[, int type])
Returns an array containing one row of results from a previously executed query.
The result handle parameter is the return value from a previously-executed
mysqli_query() function. Each call to the function returns the next available row
of results as an array, with false returned when no further rows are available. This
function is explained in detail later in “Accessing Query Results with
mysql_fetch_array(  ) and mysqli_fetch_array(  ).”

The three previous functions are sufficient to build simple applications. The three
functions discussed next are also important, and you’ll find them helpful in all but the
most basic applications.

When you run queries, the MySQL monitor reports useful information that helps you
make decisions about what to do next. To access this information from PHP scripts,
you need to use functions. Three functions you’ll find useful are:

int mysqli_insert_id(resource connection)
If you use the AUTO_INCREMENT feature, this function allows you to access the unique
identifier value associated with the most recent INSERT statement on a connection.
The database connection is passed as a parameter, and the return value is an integer
that uniquely identifies the new row. A value of 0 is returned if AUTO_INCREMENT
wasn’t used by the most recent query.

int mysqli_affected_rows(resource connection)
Reports the number of rows that were modified by the last query on the connection
identified by the resource handle connection. We describe this function in more
detail later in “Finding the Number of Changed Rows Using mysql_affected_rows
and mysqli_affected_rows.”

int mysqli_num_rows(resource result)
Reports the number of rows returned by a SELECT query identified by a result
resource handle. The function doesn’t work for queries that modify the database;
mysqli_affected_rows() should be used there instead.

Accessing MySQL Using PHP | 433

The descriptions in this section are simplified. We’ve omitted function parameters that
are rarely used, avoided some of the details of how the functions are used, and shown
some optional parameters as mandatory. We’ve also shown only the procedural style
for the library, which means we’ve shown the features of the library as functions; you
can also use the new library in an object-oriented programming style, but that’s outside
the scope of this book. You’ll find more detail on MySQLi functions in the PHP manual
at http://www.php.net/manual/en/ref.mysqli.php and in the resources listed in “Resour-
ces” at the end of this chapter.

What’s New in MySQLi
The examples and functions we’ve discussed don’t show the differences between the
MySQL and MySQLi libraries; let’s look at these now. The most significant difference
between the libraries is under the hood. The MySQLi library is a complete rewrite of
the MySQL library, designed to offer better performance. This means that even if you’re
not using the advanced features it offers, it’s always better to use MySQLi when you’re
not constrained by other issues (such as maintaining legacy code). Other features of
MySQLi include:

Support for encrypted and compressed connections
These allow faster, secure connections between PHP and MySQL over a network.
Encryption using SSL is highly secure and ensures that hackers can’t eavesdrop on
your data as it is being transmitted. Compression means that less data is transferred
between the web server and the MySQL server, which for moderate or high rates
of data transfer means that communications are faster.

Prepared statements
These allow you to prepare (parse, optimize, and plan) an SQL statement once and
reuse it many times, saving that cost each time you use it. This is useful if you want
to repeat a query with different parameters—for example, when bulk inserting
data.

Object-oriented methods
As discussed previously, you can now use an object-oriented style with the MySQLi
library in addition to the procedural style shown in this section.

Transaction control
Transactions are discussed in “Transactions and Locking” in Chapter 7. The
MySQLi library gives you functions to turn the autocommit feature on or off, and
also start, commit, and roll back transactions.

Profiling
Allows you to view statistics and debugging information from your MySQL server.
This includes timing details for function calls, the output of the EXPLAIN statement
that describes how the queries are evaluated, and so on.

434 | Chapter 14: PHP

http://www.php.net/manual/en/ref.mysqli.php

Distribution and replication functions
Many new functions have been added to allow you to manage many MySQL servers
that perform the same tasks. This allows you to build highly scalable systems that
can handle hundreds of thousands or millions of requests each day.

We don’t discuss these features in detail as they’re outside the scope of this book.

Accessing Query Results with mysql_fetch_array() and
mysqli_fetch_array()
The mysql_fetch_array() and mysqli_fetch_array() functions retrieve result rows
from queries that produce output. These functions are typically used to retrieve the
results output by an SQL SELECT statement. This section uses examples to show how.
To keep our description simple, we’ll use the standard MySQL library, but our ex-
planations apply to mysqli_fetch_array() as well.

As with the array examples described previously, you can access elements returned with
mysql_fetch_array() using either numeric or associative access. For numeric access,
attributes are numbered in the order they are specified in the SQL statement. If you use
a SELECT * FROM table statement, then the attributes are ordered first by the table
names and then by the order they were created with the CREATE TABLE statement (which
is as listed by the output of the DESCRIBE or SHOW statements). Let’s explore three ex-
amples of numeric access that illustrate these ideas.

We’ll begin with a simple example that uses the music database. Suppose you want to
output the artist_id column and then the artist_name column for all rows from the
artist table. You can do this with the following PHP fragment:

// Tell the browser to expect preformatted text
print "<pre>";

// Run the query on the connection
if (!($result = @ mysql_query("SELECT artist_id, artist_name FROM artist",
 $connection)))
 die("Couldn't run query");

// Until there are no rows in the result set, fetch a row into
// the $row array.
while ($row = @ mysql_fetch_array($result))
{
 // Start a new line
 print "\n";

 // Print out the columns
 print "{$row[0]} {$row[1]}";
}

// Tell the browser that the preformatted text has ended
print "</pre>";

Accessing MySQL Using PHP | 435

This produces the following output:

1 New Order
2 Nick Cave & The Bad Seeds
3 Miles Davis
4 The Rolling Stones
5 The Stone Roses
6 Kylie Minogue

You can see that the artist_id column is output by printing the first element of the
array $row by referencing $row[0]. The artist_name is output by referencing $row[1].

Note that we enclosed the output in HTML <pre> tags; if we hadn’t, the browser would
have ignored the newline (\n) character during display. You could still have used your
browser’s View Source option to see the lines as they were sent to the browser by the
PHP script.

Consider another example from the music database. This time, let’s examine the struc-
ture of the artist table:

mysql> DESCRIBE artist;
+-------------+-----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-----------+------+-----+---------+-------+
| artist_id | int(5) | | PRI | 0 | |
| artist_name | char(128) | YES | | NULL | |
+-------------+-----------+------+-----+---------+-------+
2 rows in set (0.00 sec)

The following code fragment selects all rows from the artist table and prints the col-
umns after a call to mysql_fetch_array(). In this example, rather than explicitly print-
ing the individual elements, we print all elements of the row starting with the first:

// Tell the browser to expect preformatted text
print "<pre>";

// Run the query on the connection
if (!($result = @ mysql_query("SELECT * FROM artist", $connection)))
 die("Couldn't run query");

// Count the number of columns in the results
$count = @ mysql_num_fields($result);

// Until there are no rows in the result set, fetch a row into
// the $row array.
while ($row = @ mysql_fetch_array($result))
{
 print "\n";
 // Print out the columns
 for($x=0; $x<$len; $x++)
 print "{$row[$x]} ";
}

// Tell the browser that the preformatted text has ended
print "</pre>";

436 | Chapter 14: PHP

The output looks identical to the previous example:

1 New Order
2 Nick Cave & The Bad Seeds
3 Miles Davis
4 The Rolling Stones
5 The Stone Roses
6 Kylie Minogue

You can see that the columns appear in the order they do in the table—that is, the
artist_id appears before the artist_name. Notice also that we used the
mysql_num_fields() function described in the previous example to figure out how
many columns there were in the results.

Suppose that you want to to run the following query that uses two tables:

SELECT * FROM artist, album WHERE artist.artist_id = album.artist_id

With the monitor, you’d get:

mysql> SELECT * FROM artist, album WHERE artist.artist_id = album.artist_id;
+-----------+---------------------------+-----------+----------+...
| artist_id | artist_name | artist_id | album_id |...
+-----------+---------------------------+-----------+----------+...
| 1 | New Order | 1 | 1 |...
| 1 | New Order | 1 | 2 |...
| 1 | New Order | 1 | 3 |...
| 1 | New Order | 1 | 4 |...
| 1 | New Order | 1 | 5 |...
| 1 | New Order | 1 | 6 |...
| 1 | New Order | 1 | 7 |...
| 2 | Nick Cave & The Bad Seeds | 2 | 1 |...
| 3 | Miles Davis | 3 | 1 |...
| 3 | Miles Davis | 3 | 2 |...
| 4 | The Rolling Stones | 4 | 1 |...
| 5 | The Stone Roses | 5 | 1 |...
| 6 | Kylie Minogue | 6 | 1 |...
+-----------+---------------------------+-----------+----------+...
...+--+
...| album_name |
...+--+
...| Retro - John McCready FAN |
...| Substance (Disc 2) |
...| Retro - Miranda Sawyer POP |
...| Retro - New Order / Bobby Gillespie LIVE |
...| Power, Corruption & Lies |
...| Substance 1987 (Disc 1) |
...| Brotherhood |
...| Let Love In |
...| Live Around The World |
...| In A Silent Way |
...| Exile On Main Street |
...| Second Coming |
...| Light Years |
...+--+
13 rows in set (0.01 sec)

Accessing MySQL Using PHP | 437

The PHP code you’d write to run this query would be as follows:

// Run the query on the connection
if (!($result = @ mysql_query(
 "SELECT * FROM artist, album WHERE artist.artist_id = album.artist_id",
 $connection)))
 die("Couldn't run query");

// Count the number of columns in the results
$count = @ mysql_num_fields($result);

// Until there are no rows in the result set, fetch a row into
// the $row array.
while ($row = @ mysql_fetch_array($result))
{
 print "\n";
 // Print out the columns
 for ($x=0;$x<$count;$x++)
 print "{$row[$x]} ";
}

We’ve used nested loops here; the outer while loop iterates over each result row, while
the inner for loop iterates over each column in the row. The output you get is as follows:

1 New Order 1 1 Retro - John McCready FAN
1 New Order 1 2 Substance (Disc 2)
1 New Order 1 3 Retro - Miranda Sawyer POP
1 New Order 1 4 Retro - New Order / Bobby Gillespie LIVE
1 New Order 1 5 Power, Corruption & Lies
1 New Order 1 6 Substance 1987 (Disc 1)
1 New Order 1 7 Brotherhood
2 Nick Cave & The Bad Seeds 2 1 Let Love In
3 Miles Davis 3 1 Live Around The World
3 Miles Davis 3 2 In A Silent Way
4 The Rolling Stones 4 1 Exile On Main Street
5 The Stone Roses 5 1 Second Coming
6 Kylie Minogue 6 1 Light Years

You can see that the two columns from artist appear before the three columns from
album, since artist is listed before album in the SELECT statement.

Numeric access is clumsy when you want to print out columns in nonsequential order.
For example, continuing the previous example, if you want to print the artist_name
and album_name columns, then you need to know they’re referenced as $row[1] and
$row[4], respectively. If you change the SQL query or change the table structure, then
you also need to modify the PHP code that works with the array. A better approach is
to access the columns using their names, but this has a few catches as we show you in
the next few examples.

Let’s start with a simple associative access example. Suppose you want to do what we
just discussed: print the artist_name and album_name columns after a join between the
artist and album tables. Here’s the code fragment you need:

438 | Chapter 14: PHP

// Run the query on the connection
if (!($result = @ mysql_query(
 "SELECT * FROM artist, album WHERE artist.artist_id = album.artist_id",
 $connection)))
 die("Couldn't run query");

// Until there are no rows in the result set, fetch a row into
// the $row array.
while ($row = @ mysql_fetch_array($result))
{
 print "\n";
 // Print out the columns
 print "{$row["artist_name"]} {$row["album_name"]}";
}

You can see that to access the artist_name column, you provide the column name as
an associative key into the $row array as $row["artist_name"]. As you’d expect, the code
outputs the following:

New Order Retro - John McCready FAN
New Order Substance (Disc 2)
New Order Retro - Miranda Sawyer POP
New Order Retro - New Order / Bobby Gillespie LIVE
New Order Power, Corruption & Lies
New Order Substance 1987 (Disc 1)
New Order Brotherhood
Nick Cave & The Bad Seeds Let Love In
Miles Davis Live Around The World
Miles Davis In A Silent Way
The Rolling Stones Exile On Main Street
The Stone Roses Second Coming
Kylie Minogue Light Years

This is a flexible, powerful method: you use the database column names directly, and
it makes your code readable and robust to most database and SQL query changes.

However, there are some cases where associative access is tricky. If both a table and
attribute name are used in a SELECT statement, only the attribute name is used to access
the data associatively. For example, if two or more tables contain columns with the
same name, only the one that occurs last in the query result can be accessed associa-
tively. You can get around this problem by using aliases as described in Chapter 7. For
example, to access the artist_id columns from both the artist and album tables, you’d
write:

// Run the query on the connection
if (!($result = @ mysql_query(
 "SELECT artist.artist_id AS id1,
 album.artist_id AS id2
 FROM artist, album
 WHERE artist.artist_id = album.artist_id",
 $connection)))
 die("Couldn't run query");

// Until there are no rows in the result set, fetch a row into

Accessing MySQL Using PHP | 439

// the $row array.
while ($row = @ mysql_fetch_array($result))
{
 print "\n";
 // Print out the columns
 print "{$row["id1"]} {$row["id2"]}";
}

You can see that the columns are accessed in the $row array using their aliases, id1 and
id2.

You can’t solve the name-clash problem using table or database names as prefixes. For
example, suppose you run the following query:

if (!($result = @ mysql_query(
 "SELECT artist.artist_id,
 album.artist_id
 FROM artist, album
 WHERE artist.artist_id = album.artist_id",
 $connection)))
 die("Couldn't run query");

If you try to access the column with the table name:

print "{$row["artist.artist_id"]}";

you’ll get a PHP notice telling you that you’re using an undefined index. If you omit
the table name, like this:

print "{$row["artist_id"]}";

you’ll see the value for the last artist_id returned by the query, which is
album.artist_id. The best solution is to use aliases; you could design tables that avoid
duplicate names for columns you want to retrieve, but this could lead to a more con-
voluted design that’s less clear and could lead to other problems.

The array returned by mysql_fetch_array() contains two elements for each column,
one each for numeric and associative access. You can see this when you use the fore
ach statement to output data:

// Run the query on the connection
if (!($result = @ mysql_query(
 "SELECT * FROM artist, album
 WHERE artist.artist_id = album.artist_id",
 $connection)))
 die("Couldn't run query");

// Until there are no rows in the result set, fetch a row into
// the $row array.
while ($row = @ mysql_fetch_array($result))
{
 print "\n";
 // Print out the columns
 foreach($row as $element)

440 | Chapter 14: PHP

 print $element;
}

In part, this displays:

11New OrderNew Order111Retro - John McCready FANRetro - John McCready FAN
11New OrderNew Order122Substance (Disc 2)Substance (Disc 2)
11New OrderNew Order133Retro - Miranda Sawyer POPRetro - Miranda Sawyer POP

Each column value is printed twice. If you want to use foreach or you have another
reason for wanting only one copy, you can force mysql_fetch_array() to return one
copy by passing a second parameter to the function. If you want only associatively
accessed elements, you use:

while ($row = @ mysql_fetch_array($result, MYSQL_ASSOC))

For numeric access, you use:

while ($row = @ mysql_fetch_array($result, MYSQL_NUM))

The same problem occurs with other array functions such as count(). If you try
count($row) on a row returned from mysql_fetch_array() without the second param-
eter, you’ll get twice the number of columns that were returned by the query—that is,
twice the value reported by mysql_num_fields().

MySQL function values can be accessed associatively. Suppose you want to count the
number of rows returned by a SELECT statement:

// Run the query on the connection
if (!($result = @ mysql_query(
 "SELECT count(*) FROM artist",
 $connection)))
 die("Couldn't run query");

// There is only one row to fetch
$row = @ mysql_fetch_array($result);

print "There are {$row["count(*)"]} rows.";

This outputs:

There are 6 rows.

You can obtain the same result using SELECT * FROM artist and then using the
mysql_num_rows() function. However, for large result sets, it’s more efficient to use the
MySQL function count() instead, since it doesn’t buffer an entire result set that you’re
not using.

Finding the Number of Changed Rows Using mysql_affected_rows
and mysqli_affected_rows
We’ve seen how the mysql_num_rows() and mysqli_num_rows() return the number of
rows retrieved by a SELECT query. However, some operations, such as UPDATE, DELETE,

Accessing MySQL Using PHP | 441

or INSERT, do not return a result set. For these, we have another pair of functions that
we can use.

The mysql_affected_rows() and mysqli_affected_rows() functions report the number
of rows affected by queries that change data, such as INSERT, UPDATE, and DELETE. If no
rows were actually changed by a query, these functions return zero, but this doesn’t
mean an error has occurred. For example, a zero is returned if a DELETE query with a
WHERE clause doesn’t match any rows, or if an UPDATE doesn’t require any values to be
changed. If an error does occur, the function returns the value –1. You can add code
to check for these return values and handle any problems.

A REPLACE query updates an existing row or inserts a new row in a table. If there is an
existing row in the table with the same key, that row is deleted before the new row is
inserted. The insertion counts as one row affected, and a deletion would count as an-
other affected row. Hence, a REPLACE query may be reported as affecting one or two
rows.

Handling MySQL Errors
We provided an introductory discussion of PHP error handling earlier in “Handling
Errors in PHP.” In this section, we take a detailed look at the classes of problems that
can occur when you’re developing a script that works with MySQL. Errors that occur
in PHP scripts could be related to general PHP issues, the PHP MySQL functions, or
MySQL data:

General PHP issues
These include syntax errors in scripts, problems with the script engine, runtime
errors, and programmer-triggered errors. In turn, these are divided into the insig-
nificant NOTICE class, the significant WARNING class, and the critical ERROR class.

For example, if you leave out a quote in a PHP statement:

echo "This is output;

a PHP error message such as:

Parse error: syntax error, unexpected T_STRING, expecting ',' or ';' in
 /var/www/html/test.php on line 22

is displayed when the page is loaded in a web browser. These problems aren’t
related to MySQL and are usually related to mistyped statements or flawed pro-
gram logic.

PHP MySQL functions
These errors can occur during many operations; for example, the MySQL server
might be unavailable, it might not be possible to establish a connection because
the authentication credentials are incorrect, or an SQL query might be incorrectly
formed. These are not PHP errors, but PHP can report them.

442 | Chapter 14: PHP

For example, if an attempt to connect to the MySQL server fails, the
mysqli_connect() function returns FALSE and displays an error message, as below:

Warning: mysqli_connect() [function.mysqli-connect.html]: (28000/1045):
Access denied for user 'fred'@'localhost' (using password: YES)
in /var/www/html/wedding/index.php on line 68

MySQL data
These are error conditions that are detected programmatically, but are neither PHP
nor MySQL problems. For example, deleting rows that don’t exist, returning in-
correct numbers of rows, and concurrency-related problems fall into this class.
Typically, these are design problems that are common to any database system.

You can use PHP to handle MySQL errors by testing for a FALSE return value from calls
to functions such as mysqli_connect() and mysqli_query():

if(!($connection=@mysqli_connect
 ($DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 die("Failed while trying to connect to the database.");

Here, we’ve used the PHP die() function to display an error message and stop the
program if mysqli_connect() returns FALSE. It’s common to suppress the default PHP
error messages by adding the at symbol (@) just before the call to MySQL functions;
without it, you’ll get both a message from PHP’s own error handler, which is cryptic
to a user, and your message from the die() function. Here’s another example:

// Run the query on the connection
if (!($result = @ mysqli_query($connection, "SELECT * FROM artist")))
 die("Couldn't run query");

Handling errors using the MySQLi library

PHP provides error-reporting functions that provide the text error message and the
numeric error code for a MySQL error that has occurred. Error numbers make it easier
to look up information in the MySQL manual list of error codes and messages at http:
//dev.mysql.com/doc/mysql/en/Error-handling.html

The functions mysqli_connect_error() and mysqli_connect_errno() provide the error
message and numeric code corresponding to the latest error that occurred while
trying to initialize a given MySQL connection. If no error has occurred,
mysqli_connect_error() returns an empty string (""), and mysqli_connect_errno()
returns 0.

Similarly, the PHP functions mysqli_error() and mysqli_errno() provide the error
message and numeric code corresponding to the latest error on an active connection.
They do not report connection errors; the previous two functions do that instead.

Together, these can be used to report errors to the programmer, or to trigger code that
displays useful messages to the user. You could use these error-handling functions in
your own custom function; for example, you could display the error number and the
error message:

Accessing MySQL Using PHP | 443

http://dev.mysql.com/doc/mysql/en/Error-handling.html
http://dev.mysql.com/doc/mysql/en/Error-handling.html

// Custom error handler function
function showerror($connection)
{
 // Was there an error during connection?
 if(mysqli_connect_errno())
 // Yes; display information about the connection error
 die("Error " .
 mysqli_connect_errno($connection) . " : ".
 mysqli_connect_error($connection));
 else
 // No; display the error information for the active connection
 die("Error " .
 mysqli_errno($connection) . " : ".
 mysqli_error($connection));
}

You could then call the showerror() function whenever you encounter a database
error:

if(!($connection= @ mysqli_connect
 ($DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 showerror($connection);

This would display a message such as:

Error 1146 : Table 'music.art' doesn't exist

Consider the following code fragment that uses the MySQLi error functions.

// Connect to the MySQL server
$connection = @ mysqli_connect("localhost", "root",
 "the_mysql_root_password", "vapor");

if (mysqli_connect_errno() != 0)
 die("Connection problem: " .
 mysqli_connect_error() . " (" .
 mysqli_connect_errno() . ")");

$result = @ mysqli_query($connection, "SELECT * FROM artis");

if (mysqli_errno($connection) != 0)
 die("Query problem: " .
 mysqli_error($connection) . " (" .
 mysqli_errno($connection) . ")");

If the mysqli_connect statement fails—as it will in this example, because the database
vapor doesn’t exist—then mysqli_connect_errno() reports a nonzero value and you
see:

Connection problem: Unknown database 'vapor' (1049)

If the database did exist, the mysqli_query() statement would fail because the table
artis doesn’t exist, and the code would report:

Query problem: Table 'vapor.artis' doesn't exist (1146)

444 | Chapter 14: PHP

Handling errors using the older MySQL library

The default MySQL (as opposed to MySQLi) library has two similar error-handling
functions that you can use to check for problems. The function mysql_errno() returns
an error number for the most recent MySQL function that used the specified connec-
tion; if no error occurred, it returns 0. Similarly, the function mysql_error() returns a
string describing an error for the most recent MySQL function that used the specified
connection; if no error occurred, it returns the empty string "". Note that neither works
for the mysql_connect() function; both need a working connection as a parameter to
interrogate the MySQL server about the error. The old MySQL function library doesn’t
have any equivalents for the MySQLi functions mysqli_connect_error() and
mysqli_connect_errno(), so you need to check for a failed connection yourself, perhaps
by calling the die() function to print an error message and stop processing.

Let’s look at an example. Suppose you have the following fragment that tries to use the
nonexistent vapor database:

// Connect to the MySQL server
if (!($connection = @ mysql_connect("localhost", "root",
 "the_mysql_root_password")))
 die("Cannot connect");

if (!(@ mysql_select_db("vapor", $connection)))
 die(mysql_error($connection) . " (" . mysql_errno($connection) . ")");

The final line of the fragment concatenates a string that describes the error using
mysql_error() and then includes in parentheses the error number using
mysql_errno(). When you run the fragment, you get the output:

Unknown database 'vapor' (1049)

As with the MySQLi library, you could write a simple function to handle MySQL errors:

// Custom error handler function
function showerror($connection)
{
 die(mysql_error($connection) . " (" . mysql_errno($connection) . ")");
}

You could then call this function instead of the die() function and pass it the
$connection parameter:

// Connect to the MySQL server
if (!($connection = @ mysql_connect("localhost", "root",
 "the_mysql_root_password")))
 die("Cannot connect");

if (!(@ mysql_select_db("vapor", $connection)))
 showerror($connection);

Accessing MySQL Using PHP | 445

Handling errors in production code

Production code needs to handle errors gracefully. As mentioned earlier, it’s very useful
to allow PHP error messages to be displayed while you’re developing and debugging
your code. However, when you’re ready to deploy your application, we recommend
that you customize the messages that are displayed so that they’re more polite and also
give away fewer details about your system to potential attackers.

We can have our showerror() function simply display a generic message as follows:

// Custom error handler function
function showerror($connection)
{
 // Display a message to the user
 echo "<h3>Failure</h3>
 Unfortunately we're having technical difficulties.
 Please try again later.";
}

However, as the administrator, you won’t know anything about the error unless your
users complain.

You can configure PHP to record errors to a logfile. To do this, you’ll need to edit the
php.ini configuration file and enable the log_errors option:

log_errors = On

You should also specify the location of the logfile with the error_log option. The web
server should be able to write to this file, so you should check the permission settings
of the directory you use. For example, we can specify the file /tmp/php_errors.log for a
Linux or Mac OS X system:

error_log = /tmp/php_errors.log

On a Windows system, use a path such as C:\php_errors.log. If you modify the PHP
configuration, you will need to restart the web server to activate the changes.

You can also log errors using the PHP error_log() function; let’s modify our
showerror() function to log errors:

// Custom error handler function
function showerror($connection)
{
 // Display a message to the user
 echo "<h3>Failure</h3>
 Unfortunately we're having technical difficulties; this has been logged.
 Please try again later.";

 // Create message with the current timestamp and the MySQL error.
 $sMessage= date("Y.m.d_H:i:s").": ".mysqli_error($connection)."\n";

 // Log the timestamp and error description to the file /tmp/php_errors.log
 error_log(
 $sMessage,
 3,

446 | Chapter 14: PHP

 "/tmp/php_errors.log");
 exit;
}

The first parameter to the error_log() function is the message string. The second
parameter is the type of logging we want; 3 means write to the specified file. The last
parameter is the path to the logfile. In building up the message, we’ve used the
date() function to get the current timestamp (for example, 2006.07.17_04:34:27) and
then append the error message to this. The logfile would contain error messages like
this:

2006.07.17_04:38:00: Can't connect to local MySQL server through socket
 '/var/lib/mysql/mysql.sock' (2)
2006.08.05_11:52:37: Unknown column 'artist' in 'where clause'

Ideally, you wouldn’t want to regularly check the logfile to learn about problems. You
can ask the error_log() function to send you an email for each error:

// Define the email address separately from the code, making it easier to maintain.
// This line can be placed in a separate configuration file.
define("ADMINISTRATOR_EMAIL_ADDRESS", "support@learningmysql.com");

// Custom error handler function
function showerror($connection)
{
 // Display a message to the user
 echo "<h3>Failure</h3>
 Unfortunately we're having technical difficulties; this has been logged.
 Please try again later.";

 // Create message with the current timestamp and the MySQL error.
 $sMessage= date("Y.m.d_H:i:s").": ".mysqli_error($connection)."\n";

 // Log the timestamp and error description to the specified email address
 error_log(
 $sMessage,
 1,
 ADMINISTRATOR_EMAIL_ADDRESS);
 exit;
}

Here, the second parameter is set to 1, indicating that we want to send an email, and
the third parameter is the destination email address. In case you were wondering, using
0 for the second parameter writes the message to the default log specified in the
php.ini file, while using 2 writes the message to a TCP port for use with a PHP debugging
tool. We don’t think either of these options is particularly useful for you at this stage.
Note that we’ve used the define() function to define the constant ADMINISTRA
TOR_EMAIL_ADDRESS outside the body of the function. This allows us to specify the email
address somewhere easy to access and modify (perhaps in a header file), rather than
having to search complex code for the email address.

Accessing MySQL Using PHP | 447

Writing files and sending emails using PHP

We’ve just seen how the error_log() function can be used to write messages to a logfile
or to email them to a specified address. This is a good time to look at how PHP generally
accesses files and sends emails.

To write to a file, we first need to use the fopen() function to open the file for writing;
this function returns a file pointer that we use for all further access to the file. We write
the data using the fwrite() function, and then close the file using the fclose() func-
tion. Consider how we can use the PHP file-access functions to write error messages to
file:

function showerror($connection)
{
 // Display a message to the user
 echo "<h3>Failure</h3>
 Unfortunately we're having technical difficulties; this has been logged.
 Please try again later.";

 // Create message with the current timestamp and the MySQL error.
 $sMessage= date("Y.m.d_H:i:s").": ".mysqli_error($connection)."\n";

 // Save the message to the logfile
 // Open the file php_errors.log in the /tmp directory for appending:
 $fp=fopen("/tmp/php_errors.log", "a+");
 // Write the message out, up to a maximum of 10000 bytes
 fwrite($fp, $sMessage, 10000);
 // Close the file
 fclose($fp);
}

PHP has a mail() function that allows you to send emails with a configurable message
and using different addresses. You can add a few more lines to the showerror() function
to also send you an email:

...
 // Assign the target email address and subject
 $ToAddress = "System administrator <".ADMINISTRATOR_EMAIL_ADDRESS.">";
 $Subject = "System error";

 // Assign extra headers to improve appearance and handling in email programs.
 $From = "From: System <".ADMINISTRATOR_EMAIL_ADDRESS.">\n";
 $ReplyTo = "Reply-To: System <".ADMINISTRATOR_EMAIL_ADDRESS.">";
 $Sender = "Sender: System <".ADMINISTRATOR_EMAIL_ADDRESS.">\n";
 $ExtraHeaders = "$From$ReplyTo$Sender";

 // Send the message
 if(!mail($ToAddress, $Subject, wordwrap($sMessage, 78), $ExtraHeaders))
 // If we couldn't send the message, tell the user to contact
 // the administrator himself
 die("Problems sending email - please send an email to the system administrator: ".
 ADMINISTRATOR_EMAIL_ADDRESS);
}

448 | Chapter 14: PHP

The $ExtraHeaders string configures who the email appears to be coming from and
where replies to the email will go. If you’re using the error_log() function to send
emails, you can pass this same string as an optional fourth parameter.

Modularizing Code
A common requirement in PHP development is to reuse parameters and functions
across many scripts. For example, you might want to use the username and password
credentials many times to connect to the MySQL server, or you might have a function
such as showerror() (described earlier in “Handling MySQL Errors”) that you want to
call from many different places. This section shows you how to do this effectively.

PHP has four built-in functions for including scripts in other scripts. These allow you
to share variables and functions between those scripts without duplicating them, mak-
ing it much easier to maintain code and decreasing the chance of bugs through dupli-
cation and redundancy. The functions are include(), require(), require_once(), and
include_once(). We discuss the two require variants here, which are identical to the
include variants in every way, except what happens when an error occurs: include()
triggers a PHP WARNING (which, by default, doesn’t stop the script), while require()
triggers a fatal ERROR that stops script execution.

Suppose you have the following code that you want to reuse across several scripts:

<?php
 $username = "root";
 $password = "the_mysql_root_password";
 $database = "music";
 $host = "localhost";

 // Custom error handler function
 function showerror($connection)
 {
 die(mysqli_error($connection) . " (" . mysqli_errno($connection) . ")");
 }
?>

It’s stored in the file db.php. You can reuse it with the require() directive. Here’s an
example, in which the file artists.php reads in and uses the contents of the db.php file:

<?php
 require "db.php";

 // Connect to the MySQL server
 if (!($connection = @ mysql_connect($host, $username, $password)))
 die("Cannot connect");

 if (!(mysql_select_db($database, $connection)))
 showerror($connection);

 // Run the query on the connection
 if (!($result = @ mysql_query("SELECT * FROM artist", $connection)))

Modularizing Code | 449

 showerror($connection);
 ...
?>

The code in db.php can be used as if it were incorporated directly in artists.php, and
the showerror() function is accessible to the code in artist.php.

The difference between require() and require_once() is what happens when a file is
incorporated twice. Suppose you decide to create a new file, musicheader.php, that has
a function to connect to the MySQL server:

<?php
 require "db.php";

 function musicconnect()
 {
 // Connect to the MySQL server
 if (!($connection = @ mysql_connect($host, $username, $password)))
 die("Cannot connect");

 if (!(mysql_select_db($database, $connection)))
 showerror($connection);

 return $connection;
 }
?>

The function allows you to establish a connection, and it makes uses of the parameters
and functions in db.php. Suppose you then write a script that uses musicheader.php but
also uses require() to incorporate db.php:

<?php
 require "db.php";
 require "musicheader.php";

 $conn = musicconnect();

 ...
?>

When you execute the script, you see the following error message:

Fatal error: Cannot redeclare showerror() (previously declared in
/Library/WebServer/Documents/mysql/db.php:7) in
/Library/WebServer/Documents/mysql/db.php on line 10

This occurs since the db.php file is included twice, once by the script and again by
musicheader.php; this means that the function showerror() is defined twice, which
causes PHP to stop processing.

Unfortunately, it’s sometimes difficult to ensure you avoid doing this; for example, it’s
common that you want to include two header files in a script, and that those header
files include the contents of a third because it’s needed in both. Fortunately, there’s an
easy way around this with require_once(): you can use it as many times as you like

450 | Chapter 14: PHP

for a particular file; the file will only be read in once. Here’s how you’d rewrite the
previous examples with require_once(). First, there’s musicheader.php:

<?php
 require_once "db.php";

 function musicconnect()
 {
 // Connect to the MySQL server
 if (!($connection = @ mysql_connect($host, $username, $password)))
 die("Cannot connect");

 if (!(mysql_select_db($database, $connection)))
 showerror($connection);

 return $connection;
 }
?>

Second, there’s the script:

<?php
 require_once "db.php";
 require_once "musicheader.php";

 $conn = musicconnect();

 ...
?>

The script now works as desired. We use require_once() in preference to require()
because it automatically looks after the problem we’ve shown, and we recommend you
do the same.

There are rare cases where you do actually want a header file to be included and pro-
cessed multiple times; for example, you could have a set of statements that are loaded
and run in the body of a loop, as in:

for($i=0; $i<10; $i++)
{
 // Load the header file
 require("myfile.php");
}

However, this code isn’t efficient (a custom function would be faster), so you’re gen-
erally better off avoiding require().

Protecting Script and Header Files
Web database applications need to store the database user credentials in the PHP pro-
gram code. Users with accounts on your web server can access script and header files
directly from disk, so you should set the file permissions such that only the web server

Modularizing Code | 451

has permission to read any files that contain sensitive information, such as the database
server password.

PHP scripts are executed by the server before content is sent to a requesting web
browser, so people won’t see the password when they load a PHP page. However,
included files are sometimes given names with the .inc extension. The web server only
processes files with the .php extension, and sends other text files untouched to the web
browser. This presents a worrisome security problem if the file contains sensitive in-
formation; if a user correctly types in the URL of a header file, she’ll be able to see its
contents.

We recommend that you always use the .php extension for header files. The web server
will provide the output produced by running this script, and since the script doesn’t
actually print anything, a user who directly requests the include file will see only a blank
page.

If you choose to use an extension other than .php, you should place the include files
outside the web server document tree, so that the web server does not serve the file to
users; this can lead to difficulties with maintenance because the application files won’t
all be located together. Alternatively, you can tell the web server to refuse access to files
with that particular extension. For the Apache web server, you can do this by adding
the following directives to the httpd.conf configuration file and restarting the server:

<Files ~ "\.inc$">
 Order allow,deny
 Deny from all
 Satisfy All
</Files>

Processing and Using User Data
Up to this point, we’ve shown you how to query and return results from MySQL.
However, all our examples are simple because they don’t take user input and use it in
the querying process. Indeed, unless you change the data in the database, the queries
we’ve shown produce the same results each time. This section shows you the basics of
securely and effectively including user data in the process to customize your query input
and output.

Consider an example of an HTML page. Example 14-4 contains a form that’s designed
to capture details about a new artist and album to add to the music database.

Example 14-4. A simple HTML form

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

452 | Chapter 14: PHP

 <title>Add an Artist and Album</title>
 </head>
 <body>
 <form action="add.php" method="GET">
 Artist name: <input type="text" name="artist" />

 Album name: <input type="text" name="album" />

 <input type="submit" />
 </form>
 </body>
</html>

When it’s rendered in the Firefox web browser, the HTML page looks as shown in
Figure 14-2. You can see we’ve entered the artist name Morrissey and the album You
are the Quarry in the fields.

In our HTML example, the <form> tag has two attributes, action and method. The
action attribute tells the browser what resource to request when the user submits the
form. In this example, it’s add.php. The method attribute tells the browser how to send
the data entered into the form to the web server. With the GET method that’s used in
the example, the data is appended to the URL. For example, if the user types
Morrissey and You are the Quarry in the fields and the web server runs at the address
localhost, the URL that’s requested when the form submits is:

http://localhost/add.php?artist=Morrissey&album=You+are+the+Quarry

Notice that the name attributes of the <input> elements, artist and album, are paired
with the values that the user typed in the fields. You can also see that the space char-
acters in You are the Quarry are translated into + characters, since the HTTP standard
doesn’t allow spaces in URLs.

Figure 14-2. The HTML entry form shown in the Firefox web browser

Processing and Using User Data | 453

The alternative to the GET method is POST. You should always use the POST method to
submit confidential information from forms. If you use the GET method, any informa-
tion typed into the form—including passwords—will appear in plain view in the
browser’s address bar, and in any bookmarks of pages that receive the submitted data.

In the target PHP script, submitted form data is placed in the predefined $_GET or
$_POST array variable, depending on the method that was used to submit the form. For
example, the form variable artist would be accessible as $_GET['artist'] with a form
submitted using the GET method, and as $_POST['artist'] with a form submitted using
the POST method. The type of quotes—single or double—does not matter. The $_GET
and $_POST arrays are superglobal variables, meaning that they’re automatically created
and accessible anywhere in your PHP script.

Let’s now consider how add.php—the script that’s requested—accesses and uses the
values from the form. You can display the values of the artist and album elements with
the following short script stored in the file add.php:

<html>
 <body>
 <pre>
 <?php
 print $_GET["artist"] . "\n";
 print $_GET["album"];
 ?>
 </pre>
 </body>
</html>

When run, this displays the text:

Morrissey
You are the Quarry

Our add.php script isn’t very useful because it doesn’t access the database to add the
form data to it. Here’s a new version that does what we want:

<?php
 // Connect to the MySQL server
 if (!($connection = @ mysql_connect("localhost", "root",
 "the_mysql_root_password")))
 die("Cannot connect");

 if (!(mysql_select_db("music", $connection)))
 die("Couldn't select music database");

 // Add the artist, using the next available artist_id
 if (! @ mysql_query(
 "INSERT INTO artist (artist_id, artist_name)
 SELECT MAX(artist_id)+1, \"{$_GET["artist"]}\" FROM artist",
 $connection))
 die("Couldn't add artist");

 // Discover the artist_id of the row we added
 if (!($result = @ mysql_query(

454 | Chapter 14: PHP

 "SELECT artist_id FROM artist WHERE
 artist_name = \"{$_GET["artist"]}\"",
 $connection)))
 die("Couldn't find artist");

 $row = @ mysql_fetch_array($result);

 $artist_id = $row["artist_id"];

 // Add the album, setting album_id to 1 and using the $artist_id
 if (! @ mysql_query(
 "INSERT INTO album (artist_id, album_id, album_name)
 VALUES ({$artist_id}, 1, \"{$_GET["album"]}\")",
 $connection))
 die("Couldn't add album");

 print "Added artist: {$_GET["artist"]}, with album: {$_GET["album"]}.";

?>

The script adds a new row to the artist table using an INSERT ... SELECT statement
and the MAX() function described in Chapter 8. The artist value entered by the user
is stored in $_GET["artist"]. It then uses SELECT to find the artist_id of the newly
added row. The final step is to insert a row into the album table, using the new
artist_id and the album name stored in $_GET["album"], and setting the album_id to
1 (since this is the first album for the artist). Finally, the script displays a success message
or an error message depending on how things went.

The script has three serious problems. First, it’s not secure: no steps are taken to ensure
that users pass sensible parameters to the script, and this can have serious consequences
for some scripts; we show you basic steps to guard against this next. Second, it suffers
from the reload problem that’s discussed in “The Reload Problem,” later in this chapter.
When you request the add.php script a second time, it adds the same information to
the database again. Last, it doesn’t have validation or error handling; for example, you
can insert the same artist more than once, each will be allocated a new artist_id, and
you won’t see an error message. In Chapter 15, we’ll look at examples of how to handle
such errors.

The PHP Predefined Superglobal Variables
Superglobal variables are automatically created and initialized by the PHP engine, and
are accessible throughout the script. We’ve already seen the $_GET and $_POST associa-
tive arrays that contain data passed to the script from a form using the GET or POST
method, respectively.

The array $_SESSION contains data related to a user’s interaction with a web application
within a single session; we describe sessions and this variable in “Sessions,” later in this
chapter.

The PHP Predefined Superglobal Variables | 455

The $_COOKIE array contains cookie data provided by the user’s browser. Cookies are
strings that are passed back and forth between the web server and browser to maintain
a unique key. They are useful for storing information on a user on the user’s computer;
you can use the PHP set_cookie() function to send a cookie to the user’s browser.
Each subsequent time the user visits your site, his browser automatically provides the
cookie data. Cookies can be set to expire once the user closes their browser, at a later
date, or never. A good use for cookies is to remember what news articles users have
read and to show them new articles that they haven’t read yet. Note that cookies should
never be used to store confidential information, as they are not secure. In addition, they
shouldn’t be used to store information critical to your application, since users can move
among computers, or modify or delete cookies at any time. Cookies have been widely
abused by companies trying to track user web surfing and shopping habits, and so
informed users tend to treat them with suspicion and often block them. For these rea-
sons, we recommend you don’t make extensive use of cookies, and we don’t go into
details of cookies in this book.

There’s one more superglobal array that you should know about. The $_SERVER array
contains information on the server configuration and the currently executing script. In
this book, we use one item from this array: the $_SERVER["PHP_SELF"] variable, which
contains the relative path from the document root to the currently executing script. For
example, the $_SERVER["PHP_SELF"] value for the script http://www.invyhome.com/shop/
process.php will be /shop/process.php. You can find a full list of PHP variables in the
output of the phpinfo.php page that you created in “Checking Whether Your Apache
Installation Supports PHP” in Chapter 2.

Untainting User Data
When you make scripts accessible from the Web, they are vulnerable to security prob-
lems caused by deliberate or accidental abuse from users all over the world. When your
scripts process input provided by users, you must be even more vigilant and validate
the data to ensure that it is in the format and size your scripts expect and must handle.
Let’s look at three issues.

Limiting the Size and Type of Input Data
Many problems are caused by the system encountering data that it can’t handle; for
example, a user may try to log in to the system with a login name that is longer than
the database can handle, resulting in unexpected behavior. An attacker may try to
overload your script with more data than it can handle and in this way cause something
to break. You should limit the amount of data that you accept and process. There are
server variables that you can configure to do this, but we won’t look at those. Instead,
we’ll look at how your script can reject excess data.

456 | Chapter 14: PHP

http://www.invyhome.com/shop/process.php
http://www.invyhome.com/shop/process.php

The PHP substr() function returns a specified portion of a string. You can limit the
data passed from a form using this function; for example, you can choose to use just
the first 15 characters:

// Reduce the length of the artist name to at most 15 characters
$_GET["artist"] = substr($_GET["artist"], 0, 15);

The 0 indicates that the returned substring should start from the initial character (char-
acter 0), and the 15 specifies the maximum number of characters to be returned.

Before processing input data, you should check that some data has in fact been passed
to you:

// Check that an artist name has been passed to us
if(empty($_GET["artist"]))
 die("You should have entered an artist name.");

When data has a specific type, you should consider adding extra steps in the validation
process. For example, suppose you’re expecting a user to type in a currency amount in
dollars and cents, and this is available as $_GET["money"] in your script. You can validate
it by checking that the data isn’t longer than expected and also that it contains only
digits and period characters. There are many ways to do this, but let’s use one with the
techniques we’ve shown in this chapter:

$len = strlen($_GET["money"]);

for($x=0; $x&<$len; $x++)
{
 if (
 (
 ($_GET["money"][$x] < "0" || $_GET["money"][$x] > "9")
 &&
 ($_GET["money"][$x] != ".")
)
 ||
 ($x > 6)
)
 die("Invalid parameter: {$_GET["money"]}");
}

The strlen() function is a string library function that reports the length of a string as
an integer value. The for loop goes through each character in the input, which is ac-
cessed as $_GET["money"][$x]. If the character is less than 0 or greater than 9 and isn’t
a period character, an error is generated. Also, if the loop is repeated more than six
times, an error is generated because the input is too long.

Another common way to validate data is to use regular expressions; we won’t go into
the detail of that approach here.

Untainting User Data | 457

Abusing Calls to Shell Commands
Another way attackers can compromise your server is by adding extra parameters to
scripts that run programs on the web server. For example, the semicolon character is
used to separate commands on Unix-like operating systems such as Linux and Mac OS
X. If a script passes user input directly to a shell command, it’s easy to manipulate the
script using this character.

Consider this example: the system() function runs a program on the server host and
returns the resulting text. For example, the following line runs the fortune program
from the /usr/games/ directory and displays the result:

system("/usr/games/fortune");

The fortune program displays random quotes and jokes; if you loaded this script in
your browser, you might see something like:

Rudeness is a weak man's imitation of strength.

You might decide to have a script that is more useful. For example, you might write a
script that allows users to enter mathematical queries; the script passes the query to
the bc program and displays the answer:

system("/bin/echo {$_GET['query']} | /usr/bin/bc");

Let’s say your script is called calculate.php; a user could load the page:

http://somehost.net/calculate.php?query=3*2

Not surprisingly, the server will display the answer 6.

What would happen if a user used the semicolon character as part of the query, followed
by a command to list all accounts on the server?

http://somehost.net/calculate.php?query=3*2;/bin/cat%20/etc/passwd;echo%201

The system() function would execute the command:

/bin/echo 3*2;/bin/cat /etc/passwd;echo 1 | /usr/bin/bc

which is actually three commands. The first just prints 3*2, the second displays the
contents of the /etc/passwd file, while the third passes the dummy value 1 to the bc
program for it to calculate.

The simplest way to prevent this type of attack is to ensure that the semicolon and other
special characters aren’t passed directly to the system() function but are escaped by
adding a backslash in front of them so that they are interpreted differently. The
escapeshellcmd() function does this for you:

// Escape any characters that could be used to trick a shell command
$query = escapeshellcmd($_GET["query"]);
system("/bin/echo {$query} | /usr/bin/bc");

In this way, the previous query would become:

458 | Chapter 14: PHP

/bin/echo 3*2\;/bin/cat /etc/passwd\;echo 1 | /usr/bin/bc

which is an incorrectly formed shell command that won’t be executed properly, so the
attack will fail. We recommend that you completely avoid using any shell commands
if possible, as the risk to security is relatively high.

Preventing SQL Injection Attacks
Another type of problem to protect against is the SQL injection attack, where a mali-
cious user tries to insert additional SQL fragments into your SQL statements, and in
this way cause the script to add, update, delete, or expose data that shouldn’t be modi-
fied or seen. Consider a PHP script that authenticates the user by verifying that the
username and password entered by the user exist in the database users; the script might
execute the following SQL query:

$query="SELECT * FROM USERS WHERE username='{$_POST["username"]}' AND
 password='{$_POST["password"]}'";

The PHP script replaces the placeholders {$_POST["username"]} and
{$_POST["password"]}' with the contents of the username and password fields entered
in the form. If the query returns any matching rows, the user is authenticated.

Now, imagine if a malicious user enters:

' OR '' = '

for both the username and password. The SQL query composed by the PHP program
would then be:

$query="SELECT * FROM users WHERE username='' OR '' = '' AND password='' OR '' = ''";

Since this is always true, the attacker will be authenticated and granted access to the
system.

The attacker could likewise specify the username as:

testusername'; DELETE FROM users

The statement would then be:

$query="SELECT * FROM users WHERE username='testusername'; DELETE FROM users";

which would delete all entries in the users table!

To prevent this type of attack, we must ensure that characters that have special meaning
in SQL, such as the single quote (') or the semicolon (;), are neutralized by adding a
backslash before them.

We can use the PHP mysqli_real_escape_string() function to do this for us:

$input=mysqli_real_escape_string($connection, $_POST["username"])

The equivalent function in the old MySQL library is mysql_real_escape_string(),
which doesn’t require the connection parameter:

Untainting User Data | 459

$input=mysql_real_escape_string($_POST["username"])

Consider how each of the sample input strings is processed. Without the escaping step,
the input:

' OR '' = '

for both username and password produces the SQL query:

SELECT * FROM users WHERE username='' OR '' = '' AND password='' OR '' = ''

but after the escaping step, we get the query:

SELECT * FROM users WHERE username='\' OR \'\' = \'' AND password='\' OR \'\' = \''

Similarly, the input string:

testusername'; DELETE FROM users;

results in the SQL query:

SELECT * FROM users WHERE username='testusername'; DELETE FROM users;'
 AND password='testusername'; DELETE FROM users;'

without escaping, but:

SELECT * FROM users WHERE username='testusername\'; DELETE FROM users;'
 AND password='testusername\'; DELETE FROM users;'

after it.

Note that the escaping step also helps avoid problems with input strings that legiti-
mately have an apostrophe in them; for example, if we have an SQL query to select
users by surname, the surname “D’Arcy” would result in an invalid query:

SELECT * FROM users WHERE surname='D'Arcy'

Escaping the backslash before the apostrophe solves the problem.

SELECT * FROM users WHERE surname='D\'Arcy'

PHP has a magic_quotes_gpc directive that, if set in the php.ini configuration file, au-
tomatically escapes single quotes and double quotes in data sent from the client’s
browser from web forms or cookies. However, this in turn causes other problems and
is disabled in the upcoming PHP version 6.

We can write a function to limit the length of the input data, and escape semicolons
and, if needed, single and double quotes. This function—let’s call it clean()—takes
two arguments—the input data to be cleaned, and the maximum length the data is
allowed to have:

// Secure the user data by escaping characters and shortening the
// input string
function clean($input, $maxlength)
{
 // Access the MySQL connection from outside this function.
 global $connection;

460 | Chapter 14: PHP

 // Limit the length of the string
 $input = substr($input, 0, $maxlength);

 // Escape semicolons and (if magic quotes are off) single and
 // double quotes
 if(get_magic_quotes_gpc())
 $input = stripslashes($input);

 $input = mysqli_real_escape_string($connection, $input);

 return $input;
}

We can pass the input string and the maximum permissible length to the function, and
obtain the processed string as the return value, for example:

$username = clean($_POST["username"], 30);

Remember that there must be an active connection to the MySQL server for
mysqli_real_escape_string() to work, and so we must connect to the MySQL server
before we ever use the clean() function. On a high-volume application, you can avoid
unnecessary connections to the MySQL server by validating the input in two
steps. First, the script can perform simple checks that don’t use
mysqli_real_escape_string(). Then, the script can connect to the MySQL server, es-
cape the input using mysqli_real_escape_string(), and then continue with other da-
tabase operations.

The global keyword tells PHP to use the $connection variable from outside the
clean() function; without it, PHP would create a new, completely different variable
with the name $connection that would be in effect inside the function, which would be
useless for our function. We could instead have defined the function as:

function clean($input, $maxlength, $connection)
{
...
}

so that the value of the $connection variable is passed to the function as part of the
function call, for example:

$username = clean($_POST["username"], 30, $connection);

Using Data from the Client
You should also be careful how you use data that is received from the browser. For
example, it is unwise to use the price of an item from a form widget to calculate an
invoice; even if the price is hidden or read-only, the user can still change it by modifying
the form or the URL. The correct approach is to verify the price against the database
before calculating the invoice. Similarly, don’t embed SQL in HTML—even if it is
hidden—as the user can browse the HTML source, understand the database structure,

Untainting User Data | 461

and then modify the statements. This may sound silly, but several companies have
actually made such mistakes—and lost a lot of money as a result!

Validation, error checking, and security are large topics. Resources that discuss them
in more detail can be found in “Resources,” at the end of this chapter.

Sessions
The Web was designed for browsing documents, where each request from a web
browser to a web server was intended to be independent of each other interaction. To
develop applications for the Web, additional logic is required so that different requests
can be related. For example, code is required to allow a user to log in, use the applica-
tion, and log out when she’s finished. In PHP, this logic is provided by the sessions
library. Sessions allow variables to be stored on the server, so that these variables can
be restored each time a user requests a script. Consider a short example:

<?php
 // Initialize the session
 session_start();

 // If there is no "count" session variable, create one, and welcome
 // the user.
 if (!isset($_SESSION["count"]))
 {
 $_SESSION["count"] = 0;
 echo "Welcome new user!";
 }
 // Otherwise, increment the number of visits and display a message.
 else
 {
 $_SESSION["count"]++;
 echo "Hello! You've visited this page {$_SESSION["count"]} times before.";
 }
?>

The session_start function activates an existing session or, if none exists, creates a
new one. When the user requests the script for the first time, the $_SESSION["count"]
variable does not exist, so the isset() function returns the value FALSE. A new session
is created, and a new session variable count is defined in the $_SESSION superglobal
array, with its value set to 0. Session variables are stored on the web server; when the
user next requests the script, the isset() function returns TRUE, the $_SES
SION["count"] variable is automatically restored by the PHP engine, and the count in-
cremented. For example, on the fifth request of the script, the output is:

Hello!
You've visited this page 4 times before.

With its default configuration, the sessions library relies on cookies to maintain a
unique key. This key is used on the server to locate the variables associated with the
session. If cookies are disabled or unsupported by the browser, sessions won’t work;

462 | Chapter 14: PHP

this problem can be solved by storing the session key in the URL, but we don’t discuss
that here.

Sessions can be destroyed by calling the session_destroy() function. This is typically
done to end a user’s session in an application:

<?php
 // Logout of the system
 session_start();
 session_destroy();

 print "You've logged out!";
?>

Note that a session must be started before it can be destroyed.

In a web environment, there is no guarantee that users will actually log out. They may
forget to log out of an application, leaving the session active, and thus allow another
person using the same browser to access the restricted sections of the application.
Moreover, since the browser is tied to the session data on the server through a cookie
value, an attacker could fake the cookie information to gain access to the target session.

To reduce the risk of unauthorized users gaining access to a session, PHP sessions have
a timeout. This means that if a user doesn’t access the web server within a predeter-
mined period, the session is destroyed. By default, the timeout is set to 1,440 seconds
or 24 minutes, after which time the session is a candidate for being cleaned up. This
can be adjusted—along with other session parameters—through the php.ini configu-
ration file.

The Reload Problem
In “Processing and Using User Data,” earlier in this chapter, we showed you an example
that writes data to the music database. This section briefly discusses a common problem
that can arise when writing to web databases and shows you a simple way to avoid it.

Consider a simple script, process.php, that writes an artist to the music database:

<?php
if(!empty($_GET))
{
 // Include database parameters and related functions
 require_once("../db.php");
 $DB_databasename='music';
 // Connect to the MySQL DBMS and use the wedding database - credentials are
 // in the file db.php
 if(!($connection= mysqli_connect($DB_hostname, $DB_username, $DB_password,
 $DB_databasename)))
 showerror($connection);

 // Untaint the artist name, and use at most 15 characters
 $artist_name = clean($_GET["artist_name"], 15);

The Reload Problem | 463

 // Add the artist, using the next available artist_id
 $query="INSERT INTO artist (artist_id, artist_name) ".
 "SELECT MAX(artist_id)+1, '$artist_name' FROM artist";
 if (! @ mysqli_query($connection, $query))
 die("Couldn't add artist");

 print "Added artist: ".$_GET['artist_name'];
}
else
{
 print "No artist name was provided";
}
?>

Note that we’ve included the db.php file for the database parameters and the definition
of the clean() function to untaint data from the user.

Figure 14-3 shows what happens when the user submits the form we described earlier
in “Processing and Using User Data.” The web browser submits the artist name and
the album name provided by the user, and requests the process.php script.A new artist
row is added to the database each time the process.php script runs, which is each time
the PHP page is requested by a web browser. There are many ways that the page can
be requested by a web browser. The user can press the Refresh or Reload button; type
in the URL and press the Enter key; print the page; visit the page again using the Back
or Forward buttons or browser history; or resize the browser window.

Web server

User system (browser)

form.html

2. Server sends
 form.html

1. Browser requests
 form.html

HTML content (form)

process.php
Inserts a new artist entry
into the database

3. Browser submits form
 data and requests
 process.php

4. Server sends
 process.php output

HTML content (confirmation)

process.php executed each time
the confirmation page is loaded

Figure 14-3. The reload problem

464 | Chapter 14: PHP

This is a common problem in web applications, known as the reload problem; it affects
not only writing to databases, but also tasks such as registering session variables,
charging credit cards, logging data, and every other situation in which an action has a
lasting effect. Fortunately, it’s easy to avoid by not sending any content to the browser
from the script that actually performs the action, but to instead produce the output
from a different script.

Here’s the previous script, rewritten to avoid the reload problem:

<?php
if(!empty($_GET))
{
 // Include database parameters and related functions
 require_once("../db.php");
 $DB_databasename='music';
 // Connect to the MySQL DBMS and use the wedding database
 // - credentials are in the file db.php
 if(!($connection= mysqli_connect($DB_hostname, $DB_username, $DB_password,
 $DB_databasename)))
 showerror($connection);

 // Untaint the artist name, and use at most 15 characters
 $artist_name = clean($_GET["artist_name"], 15);

 // Add the artist, using the next available artist_id
 $query="INSERT INTO artist (artist_id, artist_name) ".
 "SELECT MAX(artist_id)+1, '$artist_name' FROM artist";
 if (! @ mysqli_query($connection, $query))
 die("Couldn't add artist");

 // Silently send the browser to the receipt page
 header("Location: receipt.php?Status=OK&artist_name=$artist_name");
}
else
{
 print "No artist name was provided";
}
?>

This modified script adds the artist but doesn’t produce HTML output. Instead, it sends
an HTTP header to the web browser using the PHP library header() function:

header("Location: receipt.php?Status=OK&artist_name=$artist_name");

The Location HTTP header instructs the web browser to go to another page, in this
case receipt.php. The receipt.php script performs no database activity, but simply
displays a confirmation message:

<?php
 print "Added artist: ".$_GET['artist_name'];
?>

Figure 14-4 illustrates how the modified script works. Reloading this receipt page has
no effect on the database; users can reload it as many times as they wish.

The Reload Problem | 465

Before we end this section, we should point out that the header() function is associated
with the very common error in which the PHP engine complains that it cannot send
any header information:

Warning: Cannot modify header information
 - headers already sent by (output started at logout.php:2)

This error occurs because the web server sends headers as soon as any output is sent
to the browser. If you generate any output, or even accidentally leave a blank line or
even a single space character before the PHP start tag, the server treats this output as
content, and sends it to the browser along with the HTTP headers. You must ensure
you don’t generate any output before the call to the header() function. The
session_start() function sends its own headers to the browser, and so you’ll run into
the same problem if you have any output before a call to this function.

Using PHP for Command-Line Scripts
PHP scripts don’t need to be run from a web server—although that’s how the majority
of PHP scripts are deployed. In this section, we’ll briefly look at how you can run PHP
scripts from the command line. This allows you to query the MySQL server from the
command line to generate reports and to import or export data.

Consider Example 14-5, which simply says “Hello, world!”.

Web server

User system (browser)

form.html

2. Server sends
 form.html

1. Browser requests
 form.html

HTML content (form)

process.php
Inserts a new artist entry
into the database

3. Browser submits form
 data and requests
 process.php

4. Server sends
 Location: receipt.php
 header

process.php not executed each time
the confirmation page is loaded,
only when receipt.php is executed

receipt.php

5. Browser requests
 receipt.php

6. Server sends
 receipt.php
 output

HTML content
(confirmation)

Figure 14-4. A solution to the reload problem

466 | Chapter 14: PHP

Example 14-5. A PHP script to say hello

<?php
echo "Hello, world\n";
?>

Type this in an editor and save it to a file called hello.cl.php.

You can run PHP scripts from the shell prompt or command window by running the
PHP executable and passing the name of the script to it:

$ php hello.cl.php
Hello, world

If the operating system can’t find the php executable, you’ll need to specify the full path
to the file. On a Linux or Mac OS X system, this may be available as the file /usr/bin/
php. If you’ve installed XAMPP, you can use the program /opt/lampp/bin/php on Li-
nux, /Applications/xampp/xamppfiles/bin/php on Mac OS X, and C:\Program Files
\xampp\php\php.exe on Windows.

You can also have the operating system call the PHP program automatically when you
run a PHP script from the command line. To do this on a Linux or Mac OS X system,
you need to add this line to the top of each script to specify the PHP program to use:

#!path_to_the_php_executable

For example, you could specify the /usr/bin/php program in the hello.cl.pl script as
follows:

#!/usr/bin/php
<?php
echo "Hello, world\n";
?>

You must add the “executable” permission to the file so that the operating system can
execute this script:

$ chmod u=rwx,g=,o= hello.cl.php

We explained permission settings in “Restricting access to files and directories” in
Chapter 2.

You can now run the script by just typing in its name:

$./hello.cl.php
Hello, world

The initial ./ tells the operating system that the file is in the current working directory.
If the script is in a directory that’s also listed in your system PATH, you can omit these
characters. See “Error Message About MySQL Executable Programs Not Being Found
or Recognized” in Chapter 2 for details on setting the system PATH.

For a Windows system, you should associate PHP files with the PHP program. Open
a command-prompt window and type in these two lines:

Using PHP for Command-Line Scripts | 467

C:\> ASSOC .php=PHPScript
C:\> FTYPE PHPScript=C:\Program Files\xampp\php\php.exe %1 %*

You can now type in the name of the script, and it should run automatically:

C:\> hello.cl.php
Hello, world

You can run almost any PHP script from the command line, although some function-
ality, such as sessions, is useful only in the context of web applications. Let’s try running
the scripts of Examples 14-2 or 14-3 from the command line; these connect to the
music database and display the artist_id and artist_name:

$ php query_artists.php

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
 <title>Artists</title>
 </head>
 <body>
 <h1>Artists</h1>

 <table>
 <tr>
 <th>artist_id</th>
 <th>artist_name</th>
 </tr>
 <tr>
 <td>1</td>
 <td>New Order</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Nick Cave & The Bad Seeds</td>
 </tr>
 <tr>
 <td>3</td>
 <td>Miles Davis</td>
 </tr>
 <tr>
 <td>4</td>
 <td>The Rolling Stones</td>
 </tr>
 <tr>
 <td>5</td>
 <td>The Stone Roses</td>
 </tr>
 <tr>
 <td>6</td>
 <td>Kylie Minogue</td>

468 | Chapter 14: PHP

 </tr>
 </table>
 </body>
</html>

We get the output, but it’s HTML code that’s not very useful from the command line.
If you want to run PHP scripts from the command line, you don’t need to include
HTML tags in the output, but you should make good use of the \n newline character.

Example 14-6 rewrites Example 14-3 without the HTML tags.

Example 14-6. Querying the music database from the command line

<?php
print "Artists\n=======\n";

printf("%-40s %-40s\n".
 "-- ".
 "--\n",
 "artist_id", "artist_name");

// Connect to the MySQL server
if (!($connection = @ mysqli_connect("localhost", "root",
 "")))
 die("Cannot connect");

if (!(mysqli_select_db($connection, "music")))
 die("Couldn't select music database");

// Run the query on the connection
if (!($result = @ mysqli_query($connection, "SELECT * FROM artist")))
 die("Couldn't run query");

// Until there are no rows in the result set, fetch a row into
// the $row array and ...
while ($row = @ mysqli_fetch_array($result, MYSQL_ASSOC))
{
// print out each of the columns
 foreach($row as $data)
 printf("%-40s ", $data);

 // Start a new line
 print "\n";
}
?>

This will produce output as shown below:

Artists
=======
artist_id artist_name
-- --
1 New Order
2 Nick Cave & The Bad Seeds
3 Miles Davis
4 The Rolling Stones

Using PHP for Command-Line Scripts | 469

5 The Stone Roses
6 Kylie Minogue

Using Command-Line Arguments
You can pass arguments to PHP scripts from the command line. You can use command-
line arguments to modify the behavior of a program, or to provide information. The
$argc variable indicates the count of the arguments passed, and the $argv array contains
the argument values. The first entry in the $argv array ($argv[0]) is always the command
that was used to run the script. The second entry in this array ($argv[1]) is the first
argument typed in after the command name. The third entry ($argv[2]) is the second
argument, and so on. This means that the the number of values in the $argv array will
always be one more than the number of arguments typed after the command. If one
argument is entered, the count will be 2.

Let’s modify our hello.cl.php script to use command-line arguments, as shown in Ex-
ample 14-7.

Example 14-7. PHP command-line program that prints a message using the first command-line
argument

#!/usr/bin/php
<?php
if($argc==2)
 echo "Hello, {$argv[1]}!\n";
else
 echo "Syntax: {$argv[0]} [Your First Name]\n";
?>

To use any number of entered arguments rather than just one, Example 14-8 uses the
foreach() function to iterate over every argument. For each entry in the $argv array,
the $index => $argument construct places the entry index (also known as the key) in
the $index variable, and the entry value in the $argument variable. If the index is not
zero, we print out the value. We don’t print the value for index zero, as that is the name
of the command itself. Notice how we’ve included a space before each argument, and
how we add an exclamation mark and newline after all the arguments have been
printed.

Example 14-8. PHP command-line program that prints a message using all the provided command-
line arguments.

#!/usr/bin/php
<?php
if($argc==1)
 echo "Syntax: {$argv[0]} [Your Name]\n";
else
{
 echo "Hello";
 foreach($argv as $index => $argument)
 if($index!=0)

470 | Chapter 14: PHP

 echo " $argument";
 echo "!\n";
}
?>

Now when you type in any number of arguments after the command name, they will
be displayed as part of the greeting:

$./hello.cl.all_args.php
Syntax: ./hello.cl.args.php [Your Name]
$./hello.cl.all_args.php Somayyeh
Hello, Somayyeh!
$./hello.cl.all_args.php Somayyeh Sadat Sabet
Hello, Somayyeh Sadat Sabet!

Resources
We listed several resources on web database applications and PHP at the end of Chap-
ter 13. This section lists resources you can read that contain more about using PHP
with MySQL.

The descriptions we’ve provided in this chapter are simplified: we’ve omitted function
parameters that are rarely used, avoided some of the details of how the functions are
used, and shown some optional parameters as mandatory. See the MySQL manual
(http://www.php.net/manual/en/ref.mysql.php) for more detail on MySQL functions.

There are also many useful web sites that include tutorials, sample code, online dis-
cussion forums, and links to sample PHP applications. The official PHP site links page
(http://www.php.net/links.php) points to most of these sites. These include:

http://dev.mysql.com/usingmysql/php
The MySQL AB web page on using PHP with MySQL

http://php.net/manual/en/ref.mysql.php
The PHP manual section on MySQL

Exercises
1. In a PHP script, how can we access data entered by a user in an HTML form?

2. Why is it important to untaint information that arrives from the client?

3. What is the difference between the PHP library functions mysqli_num_rows() and
mysqli_affected_rows()?

4. When would you pass a variable to a function by reference rather than by value?

5. What does this program do?

#!/usr/bin/php
<?php
 $Time="2006-06-20 19:00:00";

Exercises | 471

http://www.php.net/manual/en/ref.mysql.php
http://www.php.net/links.php

 TimeDifference($Time, $seconds, $hours, $minutes, $days);
 echo "\n".sprintf("%3d days, %2d hours, %2d minutes, and %2d seconds",
 $days, $hours, $minutes, $seconds);
 echo " since you left ... :(";

 $Time="2006-11-15 20:00:00";
 TimeDifference($Time, $seconds, $hours, $minutes, $days);
 echo "\n".sprintf("%3d days, %2d hours, %2d minutes, and %2d seconds",
 $days, $hours, $minutes, $seconds);
 echo " till I see you again... :)";

 echo "\n";

 function TimeDifference($ReferenceTime, &$seconds, &$hours, &$minutes, &$days)
 {
 $seconds=abs(strtotime($ReferenceTime) - mktime());
 $days =intval(($seconds) /(24*60*60));
 $hours =intval(($seconds-($days*24*60*60)) /(60*60));
 $minutes=intval(($seconds-($days*24*60*60)-($hours*60*60)) /(60));
 $seconds=intval(($seconds-($days*24*60*60)-($hours*60*60)-($minutes*60)));
 }
?>

You should use the PHP manual at http://www.php.net/manual/ to look up infor-
mation on new functions. To get you started, here are some short explanations:

abs()
Returns the absolute value of a number passed to it (it removes the minus sign
for negative numbers).

intval()
Converts a floating number into an integer.

mktime()
Returns the current time in the Unix timestamp format.

sprintf()
Creates a string from the values passed to it using the format specifiers.

strtotime()
Converts a string into the Unix timestamp format.

What does the line at the top of the file indicate? What would happen if you tried
to run this program from a web server?

472 | Chapter 14: PHP

http://www.php.net/manual/

CHAPTER 15

A PHP Application: The Wedding Gift
Registry

In the previous chapter, we looked at the basics of the PHP language and how it can
interact with a MySQL database. In this chapter, we explore how to access and ex-
change information with a MySQL server from within a practical PHP application. As
a running example, we present a simple wedding gift registry application that allows
wedding guests to log in, view a list of gifts wanted by the bride and groom, and reserve
gifts that they plan to purchase by putting them on a shopping list.

In the process, we show how the common database functions are used in practice,
including how to:

• Call PHP library functions to connect to the MySQL DBMS and handle MySQL
errors with PHP

• Manage DBMS credentials with include files

• Execute queries through the DBMS connection, and retrieve query result sets

• Present query results using HTML

• Create HTML form environments using PHP

• Interact with the user and preprocess user data to minimize security risks

• Add session support to an application so that a user can log in and log out

• Pass data between scripts by creating embedded hypertext links in HTML

• Use HTTP headers

The database and script files for this example are available from the book’s web site;
we recommend you download these and look at them while reading through this chap-
ter. Even better, set up the application on your system and try it out. The program
source code is also listed in the Appendix.

473

Designing and Creating the Wedding Database
Let’s say Jack and Jill are getting married and would rather not receive the traditional
7 toasters and 11 electric kettles. Instead, they’ve decided to lists things they actually
do want on a web site and let wedding guests select something useful to buy from the
list.

Thinking about the problem carefully, we come across several requirements. Our ap-
plication should:

• Allow Jack and Jill to add to or modify the list of required gifts

• Allow users to view the gifts that can be selected

• Allow users to select gifts to buy, or to deselect gifts they have previously reserved

• Not allow users to select gifts that are already reserved

• Authenticate users to identify them and prevent one user modifying the selections
of another

There are two entities here: users and gifts. Each user has a unique username and
password, while each gift has a unique gift ID number, a description, desired quantity,
color, place of purchase, and price. A gift may be reserved by a user, so each gift record
can have a username associated with it. A one-to-many relationship is maintained be-
tween the two tables: each gift can be reserved by only one user; each user can reserve
zero or more gifts. Figure 15-1 shows the ER model in the MySQL Workbench. Our
database needs to contains only two tables—users, which stores a unique username
and password for each wedding guest:

Figure 15-1. The wedding registry ER model using the MySQL Workbench

474 | Chapter 15: A PHP Application: The Wedding Gift Registry

CREATE TABLE `users` (
 `username` VARCHAR(30) NOT NULL,
 `password` VARCHAR(30) NOT NULL,
 PRIMARY KEY (`username`)
);

and gifts, which stores data about gifts:

CREATE TABLE `gifts` (
 `gift_id` SMALLINT NOT NULL AUTO_INCREMENT,
 `description` VARCHAR(255) NOT NULL,
 `shop` VARCHAR(100) NOT NULL,
 `quantity` SMALLINT NOT NULL,
 `color` VARCHAR(30) DEFAULT NULL,
 `price` VARCHAR(30) DEFAULT NULL,
 `username` VARCHAR(30) DEFAULT NULL,
 PRIMARY KEY (`gift_id`)
);

The username is unique for each user and is used as a foreign key in the gifts table.
Since this is a relatively simple application, we won’t use a separate user ID field; for a
complex application with heavy usage, it would be more efficient to have a small user
ID field in the declaration, as shown here:

CREATE TABLE `users` (
 `username` VARCHAR(30) NOT NULL,
 `password` VARCHAR(30) NOT NULL,
 `user_id` INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`user_id`)
);

and use the user_id field as a foreign key in other tables.

Instead of typing in the CREATE statements, you can conveniently create the database by
running the create_wedding_database.sql file, which you can download from the book’s
home page:

$ mysql --user=root --password=the_mysql_root_password \
< create_wedding_database.sql

You’ll find these lines near the beginning of the file:

DROP DATABASE IF EXISTS wedding;
CREATE DATABASE wedding;
USE wedding;

These delete any existing wedding database before creating the new one from scratch.

We should also allow access to the database from a client; in our application, the client
is primarily the PHP engine that executes our code. We can create the MySQL user
fred who has a password shhh. This user is set up using the following SQL GRANT
statement:

GRANT SELECT, INSERT, DELETE, UPDATE
 ON wedding.*

Designing and Creating the Wedding Database | 475

 TO fred@localhost
 IDENTIFIED by 'shhh';

You can enter this statement in the MySQL monitor, or download the grant_privi
leges.sql from the book’s home page and run it:

$ mysql --user=root --password=the_mysql_root_password < grant_privileges.sql

The Login Form
As the start page for our application, we will show a login form asking users for their
username and password. The HTML source for the login form is show below, and
Figure 15-2 shows the page rendered in a web browser:

<html>
 <head>
 <title>Jack and Jill's Wedding Gift Registry</title>
 </head>
 <body bgcolor='LIGHTBLUE'>
 <h2>Jack and Jill's Wedding Gift Registry</h2>
 (if you've not logged in before, make up a username and password)
 <form action="process.php" method="POST">

Please enter a username: <input type="text" name="username" />

Please enter a password: <input type="password" name="password" />

<input type="submit" value="Log in" />
 </form>
 </body>
</html>

Figure 15-2. The wedding registry login page

476 | Chapter 15: A PHP Application: The Wedding Gift Registry

When the user types in information and clicks the Submit button, the form passes the
data to the script specified in the form action attribute; in our example, the data is sent
to the script process.php.

Our form has three input fields: username, password, and submit. Since the form submits
the data using the POST method, we can look inside the $_POST superglobal array in
process.php to access the corresponding values as $_POST["username"],
$_POST["password"], and $_POST["submit"]. The data from the submit field will just be
Log In (as specified in the form), and this field isn’t very useful; however, it’s important
to know that it exists.

Using One Script for the Form and for Processing
It’s common to use a single PHP script to both generate the HTML form and to receive
the submitted form data. When the user submits the form, the browser sends the user
data along with the request. The script can decide what to do by checking for the user
data: if there’s no user data, it generates and sends the HTML login form; if there is
some user data, it processes it. We can use the count() function to count the number
of entries in the $_POST array. If the count is nonzero, we know that some data has been
submitted using the POST method:

// If the number of elements in the $_POST array is nonzero...
if(count($_POST))
{
 // Process form data
}
// otherwise...
else
{
 // Generate HTML form
}
?>

We can improve this code a bit. If a user clicks the Submit button without typing in a
username or password, the $_POST array will still contain one item: the data from the
Submit button itself ($_POST["submit"]). We can try to read the username and password
from the $_POST array; if the form has not been submitted, this array will be uninitialized,
and so the username and password entries will be empty. The username and password
can also be left blank by the user. In either case, our script will detect an empty username
or password, and will show the form. If the username and password aren’t empty, the
script will process the data and try to log the user in to the application:

// Pre-process the authentication data from the form for security
// and assign the username and password to local variables
if(count($_POST))
{
 $username = clean($_POST["username"], 30);
 $password = clean($_POST["password"], 30);
}

The Login Form | 477

// If no username or password has been entered,
// show the login page
if(empty($username) ||
 empty($password))
{
 // Generate HTML form
}
else
{
 // Process form data
}
?>

In script files that both generate the form and process the submitted data, the form
action is set to the name of the script file itself. As our login form is the start page of
our application, we’ll call the script index.php so that it’s the index file. We described
index files in “Web Server Index Files” in Chapter 13. The form action in the in
dex.php script is then also index.php:

<form action="index.php" method="POST">

Instead of typing the name of the script into the form action field, we can simply access
the PHP_SELF entry from the $_SERVER superglobal array that we first saw in “The PHP
Predefined Superglobal Variables” in Chapter 14:

<form action="<?php echo $_SERVER["PHP_SELF"];?>" method="POST">

When the PHP script is processed, the form action is set to the address of the script
before the HTML is sent to the browser.

Passing a Message to a Script
If the user submits the form without providing any authentication details, or submits
details that are incorrect, we should display the form again with an appropriate error
message. We can modify our index.php script to display the login form if a message has
been passed to it for display, in addition to the previous check for an empty username
or password:

// If no username or password has been entered, or there's a message
// to display, show the login page
if(empty($username) || empty($password) || isset($message))
{
 // Display the message (if any), and the login form
}
else
{
 // Try to authenticate the user against the database
 ...
 // If unsuccessful, pass an error message and call the form again.
}
?>

478 | Chapter 15: A PHP Application: The Wedding Gift Registry

Here, we’ve used the empty() function to ensure that the $username and $password
variables are not empty, and the isset() function to check whether the $message var-
iable has been initialized. Note that these functions are slightly different: a variable can
be initialized (set) to an empty string. Since we set the first two variables earlier in the
script, they will always be initialized, so we need to check whether their contents are
empty or not. The $message variable will be initialized if a message has been passed to
us for display; let’s see how this is done.

To pass nonsensitive information from one script to another, we can create our own
GET request by adding a query string to the name of the target script. The query string
consists of list of value assignments separated by ampersands, and is separated from
the address of the script by a question mark symbol (?). For example, we can pass the
value Problem to the script index.php by assigning it to the variable message in this way:

index.php?message=Problem

We can call this URL using the header() function we first saw in “The Reload Prob-
lem” in Chapter 14.

In the target script, we can then access these values through the $_GET superglobal array.
Even though we’re creating this message, we depend on the browser to send it to us.
Since it arrives from the client, it can be manipulated, and so we must treat it with
caution and should apply the clean() function before using it:

// Pre-process the message data for security
if(count($_GET))
{
 $message = clean($_GET["message"], 128);
 echo "The message is: ".$message;
}

To avoid confusing the browser with symbols such as spaces and tabs that have special
meaning in URL strings, we can process messages with the PHP urlencode() function
before appending them to the requested URL. The encoded string can then be safely
used as part of a URL string. For example, the following two lines:

$message="Please choose a username and password that are ".
 "at least four characters long";
$target_URL="index.php?message=".urlencode($message);

produce the $target_URL variable with the value:

index.php?message=Please+choose+a+username+and+password+that+are+
 at+least+four+characters+long

If we want to pass multiple values, we can use the ampersand symbol (&) as a separator
between each variable name and value pair, as in this example:

search.php?search_term=truth&display_results=50&language=english

Most web search engines use this technique as part of their Previous and Next links in
the search results page.

Passing a Message to a Script | 479

Logging Users In and Out
In our application, we can check the username and password obtained from the login
form against the authentication details in the database; if we find a matching row, the
user is authorized to access the system. Given the limited need for security in our ap-
plication, we can reasonably have it automatically register new users the first time they
enter their authentication details. The next time they visit, the application will authen-
ticate them against the stored data.

Before trying to authenticate the user, we can check to ensure that the entered username
and password aren’t too short; in general, the longer the authentication strings, the
harder they are to subvert by a malicious user. If either the username or the password
are less than four characters long, we redirect the browser to the login page with an
appropriate error message:

// Check that the username and password are each at least three
// characters long.
if((strlen($username)<4) ||
 (strlen($password)<4))
{
 // No, they're not; create an error message and redirect
 // the browser to the index page to display the message
 $message = "Please choose a username and password that are ".
 "at least four characters long";
 header("Location: index.php?message=" . urlencode($message));
 exit;
}

Once we’re happy with the length of the username and password, we can check whether
the username already exists in the database; if it does, we check to see whether the
provided password is correct. If no such username exists, we add the new username
and password pair to the database.

To access the database using PHP, we first set up a connection to the MySQL server
using the mysqli_connect() function. This takes four arguments: the name of the host
the MySQL server is running on, the username and password to use to connect to the
server (these are the same username and password that are used to access the DBMS
though the command-line monitor), and the database to use:

$DB_hostname = "localhost";
$DB_username = "fred";
$DB_password = "shhh";
$DB_databasename = "wedding";

$connection=mysqli_connect($DB_hostname, $DB_username, $DB_password,
 $DB_databasename);

As described in “Accessing MySQL Using PHP” in Chapter 14, the
mysqli_connect() function can additionally take parameters that specify the port
number and socket path to use.

480 | Chapter 15: A PHP Application: The Wedding Gift Registry

In our environment, the web server and the MySQL DBMS are running on the same
host machine, so the user needs access only from localhost. Having the DBMS and
web server on the same machine is a good decision for small- to medium-size web
database applications because there is no network communications overhead between
the DBMS and the web server. For high-traffic or complex web database applications,
it may be desirable to have dedicated hardware for each application.

Verifying New Users
In our simple application, we’ve allowed users to create new accounts for themselves.
For applications where security is more important, new accounts might need to be
added or approved by the system administrator. To ensure that the email address is
valid and owned by the person requesting the account, you can also ask new users to
authenticate themselves through an email verification step. For each new account re-
quest, you can generate and store a random verification key, and then send an email
with a verification link, specifying the user and key:

http://www.invyhome.com/verify.php?user_id=313&key=b114bcf8e4a110a786f19f5

When the user reads the email and opens this address in their browser, the application
can check that the key matches the one stored in the database for this user; if so, the
account can be activated. This is still vulnerable to a brute-force attack, where an at-
tacker tries all possible permutations of characters to find the correct one—rather like
trying all possibilities on a combination lock. For added security, you can count how
many times you receive verification attempts for a particular user and block the account
(and notify the administrator) if there are more than, say, 10 attempts.

Authenticating the User
Once we have successfully created an active connection to the MySQL server, we can
use it in conjunction with other PHP functions to run queries on the database and
retrieve data. We can execute an SQL query on the MySQL server using the
mysqli_query() function. This function takes two parameters: the DBMS connection
to use and the query to execute.

The query does not need to be terminated with a semicolon. For a successful query that
returns no answer rows, it returns TRUE; for a successful SELECT, SHOW, DESCRIBE, or
EXPLAIN query, it returns the query results for later processing. For an unsuccessful
query, it returns FALSE:

// Create a query to find any rows that match the provided username
$query = "SELECT username, password FROM users WHERE username = '$username'";

// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

Logging Users In and Out | 481

An SQL query may be successful but return no matching rows. The
mysqli_num_rows() function returns the number of rows that have been returned by a
SELECT query; we can use this to test whether our search for the specified username
returned any rows:

// Were there any matching rows?
if (mysqli_num_rows($result) == 0)
{
 // No, so insert the new username and password into the table
 ...
}
else
{
 // Yes, so check that the supplied password is correct
 ...
}

We store the username and password pair in the users table, but with a twist; instead
of storing the actual password, we store the result of passing the password through the
crypt() one-way encryption function. It’s impossible to reverse the one-way encryp-
tion function to recover the password from the stored encrypted data.

This approach is more secure, as an attacker who gets hold of the database will not be
able to determine what the passwords are and will need to try encrypting different
possible passwords—perhaps using a “dictionary” of words—to find ones that appear
in the table. We can further complicate any attack by using a variety of ways to encrypt
the passwords; the attacker would then need to encrypt the dictionary as many times
as the number of encryption methods used.

To add some variation to the one-way encryption, we use a salt in conjunction with
the crypt() function. The salt is a parameter to the encryption routine that modifies
the encryption behavior; we can use the first two characters from the username to
obtain a reasonable number of variations to make it more difficult to use a dictionary
attack on all the passwords. For example:

echo crypt("My secret password", "ss");

returns sstCejlom2fqI, while:

echo crypt("My secret password", "st");

returns steYkLCBz8Ir.. Note that the salt is prepended to the start of the encrypted
string returned by the crypt() function.

To verify that the user has provided the correct password, we take the password, apply
the same one-way encryption, and compare the result with the encrypted password
stored in the database; if they match, we know that the user has provided the correct
password—even though we don’t know what the correct password is. This is similar
to the way MySQL stores passwords for its own users.

482 | Chapter 15: A PHP Application: The Wedding Gift Registry

Encrypted passwords on the server are only part of the overall security
picture. With an ordinary web server, usernames and passwords are
transferred between the web browser and web server as unencrypted
text, so it’s trivial for an attacker to listen in on the communications to
determine the authentication details—without the need to grapple with
the encrypted passwords. For an application that has higher security
requirements, communications should be encrypted by requiring a Se-
cure Sockets Layer (SSL) connection between the web browser and web
server.

To implement this authentication process with PHP, we use the
mysqli_fetch_array() function to retrieve the rows of data one at a time from the
result-set handle returned by the mysqli_query() function. The function returns
false when there are no more rows to fetch. Since the username field is the primary
key of the users table, we expect at most one matching row, and so need to call the
mysqli_fetch_array() function only once. We place the retrieved row data in a variable
—here we use the variable $row—and access the fields associatively using the field
names. For example, the username field can be accessed through the variable
$row["username"].

If the authentication step fails, we redirect the browser to the same login page but ask
PHP to display the error message we pass using the query string:

// Were there any matching rows?
if (mysqli_num_rows($result) == 0)
{
 // No, so insert the new username and password into the table
 $query = "INSERT INTO users SET username =".
 "'$username', password='".crypt($password, substr($username, 0, 2))."'";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);
}
else
{
 // Yes, so check that the supplied password is correct

 // Fetch the matching row
 // If we don't get exactly one answer, then we have a problem
 $matchedrows=0;
 while($row = @ mysqli_fetch_array($result))
 $matchedrows++;
 if($matchedrows!=1)
 die("We've just experienced a technical problem - ".
 "please notify the administrator.");

 // Does the user-supplied password match the password in the table?
 if (crypt($password, substr($username, 0, 2)) != $row["password"])
 {
 // No, so redirect the browser to the login page with a

Logging Users In and Out | 483

 // message
 $message = "This user exists, but the password is incorrect. ".
 " Choose another username, or fix the password.";
 header("Location: index.php?message=" . urlencode($message));
 exit;
 }
}

We can be pretty certain that we’ll get only a single match when we search for the user
and password pair, since username is the primary key of the users table. However, we
add an extra check to count the number of rows retrieved; if we get more than one,
something odd has happened, and we stop processing. This is an example of defensive
programming—thinking through all the possibilities that can occur and trying to en-
sure that your code can handle problems gracefully. The more effort you put into in-
serting checks into your code, the easier it will be to identify problems before they cause
irretrievable damage to your data or your relationship with your customers!

Incidentally, you could rewrite these three lines:

$matchedrows=0;
while($row = @ mysqli_fetch_array($result))
 $matchedrows++;

in a for loop with an empty body (but note the semicolon at the end):

for($matchedrows=0; ($row = @ mysqli_fetch_array($result)) ; $matchedrows++);

In this loop, $matchedrows is initialized to 0, and the loop is repeated as long as the
condition:

($row = @ mysqli_fetch_array($result))

is true (not zero). This will be the case as long as mysqli_fetch_array() finds another
row to fetch from the results. Each time the loop iterates, the value of matchedrows is
incremented by one. This code is more compact, but is also slightly harder to under-
stand. Try to avoid writing code that’s too difficult to understand, and always add clear
comments to explain what the code is doing. It’s very hard to understand badly com-
mented code, even if you wrote the code yourself.

Starting the User Session
After inserting a new username and password pair into the users table, or after verifying
that the provided username and password pair is correct, we know that the user is
authorized to access the system. We start a new session with the session_start()
function and store the username in a session variable. We then redirect the browser to
the gift list page with a welcome message:

// Everything went OK. Start a session, store the username in a session variable,
// and redirect the browser to the gift list page with a welcome message.
session_start();
$_SESSION['username']=$username;
$message = "Welcome {$_SESSION['username']}! ".

484 | Chapter 15: A PHP Application: The Wedding Gift Registry

 "Please select gift suggestions from the list to add to your shopping list!";
header("Location: list.php?message=" . urlencode($message));
exit;

We can use the $_SESSION['username'] variable to determine whether the guest is log-
ged in and, if so, what their username is. Since we’d like to check that the user is
authorized to check each page, we can define a PHP function logincheck() to verify
that the user is logged in, and redirect the user to the login page if they are attempting
to access a page without being logged in, or after their session has expired:

// Check if the user is logged in. If not, send them to the login
// page
function logincheck()
{
 session_start();

 if (empty($_SESSION["username"]))
 {
 // redirect to the login page
 header("Location: index.php");
 exit;
 }
}

We call this function near the beginning of each script in our application to prevent
people from sidestepping the authentication process; we could include an error mes-
sage saying something like “You must log in to access that page.”

Logging the User Out
To end a user’s session with our gift registry application, we can have a “log out” link
that calls the logout.php script. This script initializes the session and then destroys it.
It then redirects the browser to the application main page:

<?php
 // Log out of the system by ending the session and load the main
 // page

 session_start();
 session_destroy();

 // Redirect to the main page
 header("Location: index.php");
?>

As you can see, the script doesn’t produce any HTML output. Instead, it uses the
header() function to send a Location header line to the browser. When the browser
receives this, it loads the specified web page—in this case, the index.php file in the same
directory as the logout.php script.

Logging Users In and Out | 485

The db.php Include File
As discussed in Chapter 14 in “Modularizing Code,” include files can be used to provide
a single definition for variable values or function declarations used by multiple scripts
in an application. In our application, all our scripts need to use the same connection
and authentication credentials to communicate with the database. We have previously
described the custom clean() and logincheck() functions in “Untainting User
Data,” in Chapter 14 and “Authenticating the User,” earlier in this chapter, and before
that we wrote the showerror() function in “Handling MySQL Errors” in Chapter 14.
Since these functions are used across several PHP scripts, we can place the function
definitions in a common include file that is loaded by the scripts that need it. This helps
to keep code easy to maintain; any change to data or definitions in an include file is
automatically in effect for the scripts that use it.

We can place the function definitions, along with the database connection details, in
the file db.php:

<?php
 // These are the DBMS credentials and the database name
 $DB_hostname = "localhost";
 $DB_username = "fred";
 $DB_password = "shhh";
 $DB_databasename = "wedding";

 // Show an error and stop the script
 function showerror($connection)
 {
 // Was there an error during connection?
 if(mysqli_connect_errno())
 // Yes; display information about the connection error
 die("Error " . mysqli_connect_errno($connection) .
 " : " .mysqli_connect_error($connection));
 else
 // No; display the error information for the active connection
 die("Error ".mysqli_errno($connection) . " : "
 .mysqli_error($connection));
 }

 // Secure the user data by escaping characters and shortening the
 // input string
 function clean($input, $maxlength)
 {
 // Access the MySQL connection from outside this function.
 global $connection;

 // Limit the length of the string
 $input = substr($input, 0, $maxlength);

 // Escape semicolons and (if magic quotes are off) single and
 // double quotes
 if(get_magic_quotes_gpc())
 $input = stripslashes($input);

486 | Chapter 15: A PHP Application: The Wedding Gift Registry

 $input = mysqli_real_escape_string($connection, $input);

 return $input;
 }

 // Check if the user is logged in. If not, send them to the login
 // page
 function logincheck()
 {
 session_start();

 if (empty($_SESSION["username"]))
 {
 // redirect to the login page
 header("Location: index.php");
 exit;
 }
 }
?>

We can incorporate this file as required using the require_once() directive; for exam-
ple, we can add the line:

require_once("db.php");

in the file index.php to have the db.php file included in it.

Editing the List of Gifts
Jack and Jill, our bride and groom, need to set up the list of gifts for wedding guests to
choose from. Our application includes an edit.php file that allows the user to add or
remove gifts, or modify existing gifts. In this section, we describe how we can prevent
users other than Jack and Jill from accessing the editing page, and how the script enables
gifts to be added, updated, and deleted.

Restricting Edit Access
To prevent unauthorized access, we ensure that only the users jack and jill can access
this file; other users attempting to access this page are redirected to the gift list page
list.php:

<?php
 // edit.php: Show the user the available gifts and the gifts in
 // their shopping list

 // Include database parameters and related functions
 require_once('db.php');

 // Check if the user is logged in
 // (this also starts the session)
 logincheck();

Editing the List of Gifts | 487

 // Check that the user is Jack or Jill (username is 'jack' or
 // 'jill'); other users are not allowed to edit the gifts.
 if($_SESSION['username']!="jack" && $_SESSION['username']!="jill")
 {
 $message = "You are not authorized to edit the gift details. ".
 " Please select gift suggestions from the list to add to your shopping list!";
 header("Location: list.php?message=".urlencode($message));
 exit;
 }

 // Other code to display and edit the gifts
...
?>

Note that our application automatically creates an account and grants access the first
time a user registers a particular username. It’s technically possible for a user other than
the real Jack or Jill to access the application first and create an account with the
username jack or jill, and so gain access to the edit page. Since the username is the
primary key to the users table, new accounts can’t be added with the privileged user-
names jack and jill once both these accounts have been created. If the user provides
a username that already exists, our code assumes that they are trying to log in and
checks whether the provided password matches the stored password for that username.
Obviously, this is not particularly secure but is probably sufficient for the level of se-
curity our application requires.

Role-Based Authentication
We’ve hardcoded the usernames jack and jill into the script; if, for example, we wan-
ted to grant edit access to another user, we would need to modify the code in the
edit.php file. A more scalable solution is to authorize users according to their roles; for
example, users who have an administrator role could be allowed to edit the gifts, while
users who have a normal_user role could be allowed only to choose gifts for the couple.
This would require us to add an extra role field to the users table and to modify
edit.php to allow access to users who are administrators.

Role-based authentication helps maintainability, since we don’t have to change pro-
gram code according to individual users. In a large organization with people frequently
changing roles or perhaps leaving the organization altogether, we need only to change
the role of a particular user to change the level of access. For our application, we can
consider two roles: administrator and guest. Jack and Jill are administrators, and ev-
eryone else is a guest. In role-based authentication, the test for the users jack and jill:

// Check that the user is Jack or Jill (username is 'jack' or
// 'jill'); other users are not allowed to edit the gifts.
if($_SESSION['username']!="jack" && $_SESSION['username']!="jill")
 ...

would instead be something like this:

488 | Chapter 15: A PHP Application: The Wedding Gift Registry

// Look up this user's role in the database
$query="SELECT role FROM users WHERE username=".$_SESSION['username'];
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

// Fetch the matching row
// If we don't get exactly one answer, then we have a problem
for($matchedrows=0; ($row = @ mysqli_fetch_array($result)); $matchedrows++);
if($matchedrows!=1)
 die("We've just experienced a technical problem - ".
 "please notify the administrator.");

// Save the role into a session variable for use
// in other parts of the application
$_SESSION['role']=$row['role'];

// Check that the user is an administrator;
// other users are not allowed to edit the gifts.
if($_SESSION['role']!="administrator")
 ...

In this example, we’ve assumed that the users table has a role column. Role-based
authentication is probably overkill for our simple wedding gift registry, but it’s a good
approach for most other applications.

The Gift Editing Form
edit.php The edit.php script displays a list of the gifts in the system for editing or dele-
tion, and a blank gift entry to allow a new gift item to be added. Figure 15-3 shows the
application gift editing page loaded in a web browser. The HTML source of the file
includes a link to the logout.php script that ends the user session and a link to the

Figure 15-3. The wedding registry gift editing page

Editing the List of Gifts | 489

application main page. The form then incorporates the output of the
showgiftsforedit() function that we describe next:

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <title>Jack and Jill's Wedding Gift Registry</title>
 </head>
 <body bgcolor="LIGHTBLUE">
 <?php
 // Show a logout link and a link to the main page
 echo "Logout | Gift list";

 echo "\n<h3>Gift editing page</h3>";

 // Show the existing gifts for editing
 showgiftsforedit($connection);
 ?>
 </body>
</html>

Note the \n in the HTML <h3> header string; this adds a newline in the HTML source
to help when developing the application, but you can safely omit it.

The core text of the edit page is produced by the showgiftsforedit() function. This
generates an HTML form with an action set to $_SERVER["PHP_SELF"]; this means that
the form data is passed back to the edit.php script, which must then process it:

// Create an HTML form pointing back to this script
echo "\n<form action='{$_SERVER["PHP_SELF"]}' method='POST'>";
...
echo "</form>";

The form input fields are prefilled with the gift details retrieved from the database; for
neatness, we create an HTML table and arrange the form fields in the table.

// Create an HTML table to neatly arrange the form inputs
echo "\n<table border='1'>";

// Create the table headings
echo "\n<tr>" .
 "\n\t<th bgcolor='LIGHTGREEN'>ID</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Description</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Quantity</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Color</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Available from</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Price</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Delete?</th>" .
 "\n</tr>";
...
echo "</table>";

490 | Chapter 15: A PHP Application: The Wedding Gift Registry

Once we’ve created the table, we run an SQL query to list all the gifts in the gifts table,
and order the results by the alphabetical order of the gift descriptions. If no gifts are
found, we display a suitable message; if any gifts are found, we display them for editing:

// Create an SQL query to list the gifts in the database
$query = "SELECT * FROM gifts ORDER BY description";

// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

// Check whether we found any gifts
if(!mysqli_num_rows($result))
 // No; display a notice
 echo "\n\t<tr><td colspan='7' align='center'>".
 "There are no gifts in the database</td></tr>";
else
 // Display the results for editing...

To display the results, we execute a while() loop that repeatedly calls the
mysqli_fetch_array() function to fetch the results a row at a time as an associative
array. We assign this array to the $row variable, allowing us to access the result fields
by using the field name as the array index. For example, we can access the descrip
tion field data for a gift row as $row["description"]. When no more rows are available,
the function returns FALSE; when our while loop encounters this value, it ends the loop.

For each gift item, we compose an HTML table row with form input fields, and prefill
the fields with the gift data from the database. We have multiple gifts, each with a
description, quantity, and so on; we could create the HTML as below:

<tr>
 <td>6</td>
 <td><input name='description' value='Avanti Twin Wall Mixing Bowls 2.8 Ltr'
 size='60' /></td>
 <td><input name='quantity' value='2' /></td>
 <td><input name='color' value='Silver' /></td>
 <td><input name='shop' value='Myer' size='30' /></td>
 <td><input name='price' value='41.65ea (83.30 total)' /></td>
</tr>
<tr>
 <td>10</td>
 <td><input name='description' value='Baileys Comet 6 Ladder' size='60' /></td>
 <td><input name='quantity' value='1' /></td>
 <td><input name='color' value='Silver' /></td>
 <td><input name='shop' value='Bunnings' size='30' /></td>
 <td><input name='price' value='97.50' /></td>
</tr>

This form contains as many description, quantity, color, shop, and price fields as there
are gifts. However, we can access only one set through $_POST["description"],
$_POST["quantity"], and so on. An easy way to resolve this problem is to name the form
fields as arrays, with the ID of each gift used as the index of the array. Thus, for example,
the form input for the description of gift 6 is named description[6].

Editing the List of Gifts | 491

This is the PHP code to generate the HTML form:

// Yes; fetch the gift details a row at a time
while($row = @ mysqli_fetch_array($result))
 // Compose the data for this gift into a row of form inputs in the table.
 // Add a delete link in the last column of the row.
 echo "\n<tr>" .
 "\n\t<td>{$row["gift_id"]}</td>".
 "\n\t<td><input name='description[{$row['gift_id']}]' ".
 "value='{$row["description"]}' size='60' /></td>".
 "\n\t<td><input name='quantity[{$row['gift_id']}]' ".
 "value='{$row["quantity"]}' /></td>".
 "\n\t<td><input name='color[{$row['gift_id']}]' ".
 "value='{$row["color"]}' /></td>".
 "\n\t<td><input name='shop[{$row['gift_id']}]' ".
 "value='{$row["shop"]}' size='30' /></td>".
 "\n\t<td><input name='price[{$row['gift_id']}]' ".
 "value='{$row["price"]}' /></td>".
 "\n\t<td><a href='{$_SERVER['PHP_SELF']}?action=delete&".
 "gift_id={$row["gift_id"]}'>Delete</td>".
 "\n</tr>";

In the last column of each table row, we create an HTML link to the same script with
a query string containing values for two variables: the action is set to delete, and the
gift_id is set to the ID of the gift displayed in the current row. Clicking on this link
will cause the script to delete the gift with that ID; we describe how this is done later
in this chapter.

A sample output of the while loop for two gifts—with IDs 6 and 10—is shown below:

<tr>
 <td>6</td>
 <td><input name='description[6]'
 value='Avanti Twin Wall Mixing Bowls 2.8 Ltr' size='60' /></td>
 <td><input name='quantity[6]'
 value='2' /></td>
 <td><input name='color[6]'
 value='Silver' /></td>
 <td><input name='shop[6]'
 value='Myer' size='30' /></td>
 <td><input name='price[6]'
 value='41.65ea (83.30 total)' /></td>
 <td>Delete</td>
</tr>
<tr>
 <td>10</td>
 <td><input name='description[10]'
 value='Baileys Comet 6 Ladder' size='60' /></td>
 <td><input name='quantity[10]'
 value='1' /></td>
 <td><input name='color[10]'
 value='Silver' /></td>
 <td><input name='shop[10]'
 value='Bunnings' size='30' /></td>
 <td><input name='price[10]'

492 | Chapter 15: A PHP Application: The Wedding Gift Registry

 value='97.50' /></td>
 <td>Delete</td>
</tr>

Note that the whitespace we added to make the source code more readable doesn’t
affect the formatting of the output. We’ve also shown each value starting on a new line
for readability.

After displaying all the existing gifts, we add a row of empty form input fields to the
table; Jack or Jill can enter gift attributes into these fields and submit the form to add
a new gift to the database. Since the gift_id field in our database is an auto-incremented
field that starts from 1, we can conveniently use the index 0 to identify fields for the
new gift. We could use a different name for the new gift fields—for example,
newgift_description, newgift_quantity, and so on, but we’d then need to add more
code to process these additional variables on the action page. Once we’ve printed this
last table row, we end the table, add a Submit button, and end the form. This ends our
showgiftsforedit() function:

...
echo "\n<table border='1'>";
...

// Display a row with blank form inputs to allow a gift to be added
echo "\n<tr><td></td>" .
 "\n\t<td><input name='description[0]' size='60' /></td>".
 "\n\t<td><input name='quantity[0]' /></td>".
 "\n\t<td><input name='color[0]' /></td>".
 "\n\t<td><input name='shop[0]' size='30' /></td>".
 "\n\t<td><input name='price[0]' /></td>".
 "\n</tr>";

// End the table
echo "\n</table>";

// Display a submit button and end the form.
echo "\n<input name='update' type='submit' value='Update data' />";
echo "</form>";

Deleting a Gift
If the user clicks on a Delete link for a form, the same edit.php script is called with the
query string action=delete&gift_id=the_gift_id; the script must detect that some data
has been passed to it to process. As we mentioned earlier in “Logging Users In and
Out,” the query-string attribute and value pairs are available in the called script as
elements in the $_GET superglobal array. The edit.php script checks whether the $_GET
array contains any data; if it does, the script creates and executes an SQL query to delete
the corresponding gift from the database. Once the query has been executed, the pro-
gram proceeds to display the existing gifts for editing as before:

// See if we've arrived here after clicking the delete link
if(count($_GET) && (clean($_GET['action'], 10)=='delete'))

Editing the List of Gifts | 493

{
 // Yes; compose a query to delete the specified gift from the gifts table
 $query = "DELETE FROM gifts WHERE gift_id=".clean($_GET['gift_id'], 10);

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);
}

We must also call the logincheck() function at the top of the edit.php script to identify
the user and use this information to prevent anybody but Jack or Jill from deleting gifts.

Processing the Submitted Form
When the user clicks on the “Update data” button to submit the gift editing form, the
data is sent by the POST method to the same edit.php script. The form data is accessible
through the $_POST superglobal array. For example, the Submit button was created in
the HTML form as:

<input name='update' type='submit' value='Update data' />

When the form is submitted, this is available as the variable $_POST["update"], which
has the value Update data. We can assume that when the $_POST["update"] variable
exists (is set), the user has just submitted the HTML form. If this is the case, we can
try to update the information in the gifts table. The script iterates through all existing
gift IDs in the database and checks whether there’s any corresponding data in the
$_POST array. If there is any submitted data for a given gift ID, we call the
update_or_insert_gift() function to update the database.

Normally, each existing gift ID will have a corresponding entry in the HTML form, and
so there will be data for it in the $_POST array. However, we have to check for this; we
should ensure we don’t run into problems if no data is submitted for a particular gift.

This might happen if you add a new gift and submit the form, then make your browser
resubmit the original form data again by reloading the form action page (most browsers
warn you if you try to do this with a POST form); the ID of the new gift will not be in
the submitted form data. It could also happen if another user adds a new gift between
the time that you load the form and the time that you submit it.

To avoid problems, we use the isset() function on each of the POST fields for each of
the gift IDs that appear in the database. Since we’ve named the form fields as array
elements with the gift ID as the array index, the data items we obtain from the $_POST
array are themselves arrays. For example, to access the quantity entered for the gift with
ID 7, we would use the variable $_POST["quantity"][7].

After updating the existing gifts, we can call the update_or_insert_gift() function
with the fake gift ID of 0 to read any entered information for a new gift and add it to
the database:

494 | Chapter 15: A PHP Application: The Wedding Gift Registry

// See if we've arrived here after clicking the update button;
// if so, update the gift details.
if(isset($_POST['update']))
{
 // Define an SQL query to list the gift IDs in the database
 $query = "SELECT gift_id FROM gifts";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Process the submitted data for each gift ID in the database
 while($row = @ mysqli_fetch_array($result))
 {
 $gift_id=$row["gift_id"];

 // Update an existing gift if there is corresponding data
 // submitted from the form
 if(
 isset($_POST["quantity"][$gift_id]) &&
 isset($_POST["description"][$gift_id]) &&
 isset($_POST["color"][$gift_id]) &&
 isset($_POST["shop"][$gift_id]) &&
 isset($_POST["price"][$gift_id])
)
 update_or_insert_gift_data($connection, $gift_id);
 }

 // Process the data submitted in the form fields for the new
 // gift; we had assigned this the index 0 in the HTML form.
 update_or_insert_gift_data($connection, 0);
}

Now let’s look at update_or_insert_gift(). This function extracts and cleans the data
of the various form fields from the $_POST array. It then verifies that all the fields contain
some data; if any field is empty, an error message is displayed, and the database is not
updated. The error message is not displayed if the data items belong to the last table
row—which is a blank row allowing the user to optionally enter data for a new gift—
and all the fields are empty. We check for this by concatenating all the fields with the
period or dot symbol (.). We display the message if we’re processing any row but the
last one, and one of the fields is empty, or if it is the last row and the combined length
of all the concatenated strings is not zero.

If some data is available for each gift attribute, the script runs a REPLACE INTO query to
update the database. A REPLACE INTO query replaces any existing data for a given key,
or automatically creates a new entry if no data already exists for that key:

// Update the data for a gift with the specified gift ID; for a
// gift ID of 0, add a new gift to the database.
function update_or_insert_gift_data($connection, $gift_id)
{
 // Extract the data items for the gift attributes from the $_POST array
 $quantity =clean($_POST["quantity"][$gift_id], 5);

Editing the List of Gifts | 495

 $description=clean($_POST["description"][$gift_id], 255);
 $color =clean($_POST["color"][$gift_id], 30);
 $shop =clean($_POST["shop"][$gift_id], 100);
 $price =clean($_POST["price"][$gift_id], 30);

 // If the gift_id is 0, this is a new gift, so set the
 // gift_id to be empty; MySQL will automatically assign a
 // unique gift_id to the new gift.
 if($gift_id==0)
 $gift_id='';

 // If any of the attributes are empty, don't update the database.
 if(
 !strlen($quantity) ||
 !strlen($description) ||
 !strlen($color) ||
 !strlen($shop) ||
 !strlen($price)
)
 {
 // If this isn't the blank row for optionally adding a new gift,
 // or if it is the blank row and the user has actually typed something in,
 // display an error message.
 if(!empty($gift_id)
 ||
 strlen(
 $quantity.
 $description.
 $color.
 $shop.
 $price)
)
 echo "There must be no empty fields - not updating:
".
 "([$quantity], [$description], [$color], [$shop], [$price]
";
 }
 else
 {
 // Add or update the gifts table
 $query = "REPLACE INTO gifts ".
 "(gift_id, description,shop,quantity,color,price,username)".
 " values ('$gift_id', '$description', '$shop', $quantity,
 '$color', '$price', NULL)";

 // Run the query through the connection
 if (@ mysqli_query($connection, $query)==FALSE)
 showerror($connection);
 }
}

Notice that in our SQL query, we explicitly list field names before specifying the values.
The order of the values must match the order that the field names are listed in, but
these don’t need to match the order of the fields in the database table; if we had omitted
the initial list of field names, the field values would need to be in the same order as the
fields in the table. Note also that we haven’t stored the result of the REPLACE INTO query

496 | Chapter 15: A PHP Application: The Wedding Gift Registry

as we would have done for a SELECT query, since only SELECT queries return an answer
set.

Loading Sample Gifts
Earlier in “Editing the List of Gifts,” we saw how the administrator can manually add
gifts to the database. You can, of course, add gifts by running SQL INSERT queries using
the MySQL monitor. For example, you can type:

mysql> INSERT INTO gifts VALUES
 -> (NULL,'Acme 48-piece dinner set','SomeShop',1,'White','102.10',NULL);

Specifying a NULL value for the first field, gift_id, lets the MySQL server automatically
assign an auto-incremented ID; the first gift inserted into the table will have a
gift_id of 1, the next one will have a gift_id of 2, and so on.

We also specify a NULL value for the last field, username, since gifts newly loaded in the
database are not reserved by any user. When a user reserves a gift, her username is
stored in the username field for that gift.

To help save you some typing, we’ve generated a few sample gifts that you can load
into your database by running the SQL queries in the populate_wedding_database.sql
file that you can download from the book’s home page:

$ mysql --user=fred --password=shhh < populate_wedding_database.sql

Note that this file includes the statement:

DELETE FROM gifts;

to first delete any existing gift entries from the database.

Listing Gifts for Selection
After logging in to the application, users are sent to the list.php page that displays all
the gifts that are still available (not yet reserved by a wedding guest). The page also
displays the gifts that the user has already reserved.

As with the gift editing page, we create the outline of an HTML page and call on a
custom function—in this case, the function showgifts()—to read the gift information
from the database and generate the required HTML:

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <title>Jack and Jill's Wedding Gift Registry</title>
 </head>
 <body bgcolor='LIGHTBLUE'>
 <?php

Listing Gifts for Selection | 497

 // Show a logout link
 echo "Logout";

 // Check whether the user is Jack or Jill (username is 'jack' or
 // 'jill'); if so, show a link to the gift editing page.
 if($_SESSION['username']=="jack" || $_SESSION['username']=="jill")
 echo " | Edit gifts";

 // Connect to the MySQL DBMS and use the wedding database -
 // credentials are in the file db.php

 if(!($connection= @ mysqli_connect(
 $DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 showerror($connection);

 // Pre-process the message data for security
 if(count($_GET))
 $message = clean($_GET["message"], 128);

 // If there's a message to show, output it
 if (!empty($message))
 echo "\n<h3>".
 urldecode($message)."</h3>";

 echo "\n<h3>Here are some gift suggestions</h3>";

 // Show the gifts that are still unreserved
 showgifts($connection, SHOW_UNRESERVED_GIFTS);

 echo "\n<h3>Your Shopping List</h3>";

 // Show the gifts that have been reserved by this user
 showgifts($connection, SHOW_GIFTS_RESERVED_BY_THIS_USER);
 ?>
 </body>
</html>

The showgifts() function is defined as:

// Show the user the gifts
//
// Parameters:
// (1) An open connection to the DBMS
// (2) Whether to show the available gifts or the current user's
// shopping list.
function showgifts($connection, $show_user_selection)
{
 // Show the gifts...
}

and takes two arguments: an open connection to the MySQL server, and a value to
indicate whether to show available gifts (these can be added to the user’s selection) or
the gifts reserved by this user (these can be removed from the user’s selection). We
could use 0 and 1 for this indicator value. However, these values are not meaningful in
this context; does 0 mean we want to show reserved gifts or unreserved gifts? You might

498 | Chapter 15: A PHP Application: The Wedding Gift Registry

be tempted to use the constants FALSE and TRUE here; this doesn’t solve the problem,
however, since there’s no clear connection between either of these values and the re-
served or unreserved status of a gift.

One useful technique in writing code that is self-documenting—that is, code that is easy
to read and understand on its own—is to define and use constants that have meaningful
names. For example, instead of 0 and 1, we can use SHOW_UNRESERVED_GIFTS and
SHOW_GIFTS_RESERVED_BY_THIS_USER. In “Handling errors in production code” in Chap-
ter 14, we used the define() function to store the administrator’s email address in a
constant. We can also use this function to define the two constants we need here:

define("SHOW_UNRESERVED_GIFTS", 0);
define("SHOW_GIFTS_RESERVED_BY_THIS_USER", 1);

To show the gifts that are unreserved, and then the gifts that have been reserved by the
current user, we call the function once with the last parameter set to SHOW_UNRE
SERVED_GIFTS, and once with it set to SHOW_GIFTS_RESERVED_BY_THIS_USER.

The function itself first tests whether there are any gifts in the database and displays an
error message if there aren’t any:

// Show the user the gifts
//
// Parameters:
// (1) An open connection to the DBMS
// (2) Whether to show the available gifts or the current user's
// shopping list.

// Define constants for use when calling showgifts
define("SHOW_GIFTS_RESERVED_BY_THIS_USER", TRUE);
define("SHOW_UNRESERVED_GIFTS", FALSE);

function showgifts($connection, $show_user_selection)
{
 // See whether there are any gifts in the system
 $query = "SELECT * FROM gifts";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Check whether any gifts were found
 if (@ mysqli_num_rows($result) == 0)
 // No; print a notice
 echo "\n<h3>".
 "There are no gifts described in the system!</h3>";
 else
 {
 // Yes; display the gifts
 }
}

Listing Gifts for Selection | 499

In normal operation, there will be gift descriptions in the system; depending on how
the function was called, we run a query to list all the unreserved gifts (those that have
their username field set to NULL), or all the gifts reserved by the current user (those that
have their username field set to $_SESSION['username']):

// If we're showing the available gifts, then set up
// a query to show all unreserved gifts (where username IS NULL)
if ($show_user_selection == SHOW_UNRESERVED_GIFTS)
 $query = "SELECT * FROM gifts WHERE username IS NULL ORDER BY description";
else
 // Otherwise, set up a query to show all gifts reserved by
 // this user
 $query = "SELECT * FROM gifts WHERE username = '".
 $_SESSION['username']."' ORDER BY description";

// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

If the query doesn’t retrieve any results, we display a message indicating that no unre-
served gifts are available or that the user has not reserved any gifts, depending on which
list we’re showing:

// Did we get back any rows?
if (@ mysqli_num_rows($result) == 0)
{
 // No data was returned from the query.
 // Show an appropriate message
 if ($show_user_selection == SHOW_UNRESERVED_GIFTS)
 echo "\n<h3>No gifts left!</h3>";
 else
 echo "\n<h3>Your Basket is Empty!</h3>";
}
else
{
 // Yes, so show the gifts as a table
}

If we do find some gifts to show, we compose an HTML table and iterate through the
results to display the gift attributes:

echo "\n<table border=1 width=100%>";

// Create some headings for the table
echo "\n<tr>" .
 "\n\t<th>Quantity</th>" .
 "\n\t<th>Gift</th>" .
 "\n\t<th>Colour</th>" .
 "\n\t<th>Available From</th>" .
 "\n\t<th>Price</th>" .
 "\n\t<th>Action</th>" .
 "\n</tr>";

// Fetch each database table row of the results
while($row = @ mysqli_fetch_array($result))

500 | Chapter 15: A PHP Application: The Wedding Gift Registry

{
 // Display the gift data as a table row
 echo "\n<tr>" .
 "\n\t<td>{$row["quantity"]}</td>" .
 "\n\t<td>{$row["description"]}</td>" .
 "\n\t<td>{$row["color"]}</td>" .
 "\n\t<td>{$row["shop"]}</td>" .
 "\n\t<td>{$row["price"]}</td>";

 // Display a link to allow an unreserved gift to be added or
 // a reserved gift to be removed...

 echo "\n</tr>";
}
echo "\n</table>";

In the last column of each row, we show a link to “Add to Shopping List” if we’re
displaying unreserved gifts, or a link to “Remove from Shopping List” if we’re display-
ing gifts reserved by the user:

// Are we showing the list of gifts reserved by the
// user?
if ($show_user_selection == SHOW_UNRESERVED_GIFTS)
 // No. So set up an embedded link that the user can click
 // to add the gift to their shopping list by running
 // action.php with action=add
 echo "\n\t<td><a href=\"action.php?action=add&" .
 "gift_id={$row["gift_id"]}\">Add to Shopping List</td>";
else
 // Yes. So set up an embedded link that the user can click
 // to remove the gift from their shopping list by running
 // action.php with action=remove
 echo "\n\t<td><a href=\"action.php?action=remove&" .
 "gift_id={$row["gift_id"]}\">Remove from Shopping list</td>";

The links include a query string to specify the action to perform (add an unreserved gift
or remove a reserved gift) and the ID of the gift to process; for example, we might have
a link:

Add to Shopping List

Clicking on the link calls the action.php script with this action and gift ID. We describe
the operation of this script in the next section.

Selecting and Deselecting Gifts
Users add gifts to their shopping list or remove them by clicking on links in the
list.php page. The links call the action.php script with the gift ID and the action pa-
rameter set to add or remove. For add, the script attempts to reserve the gift with the
specified gift_id for the current guest. Similarly, for remove, the script attempts to

Selecting and Deselecting Gifts | 501

remove the gift with the specified gift_id from the current guest’s shopping list. The
user is identified by the username session variable ($_SESSION['username']).

The script checks that the user is authenticated using the logincheck() function and
that the URL requested by the browser includes attributes and values in a query string.
As discussed earlier, the query-string attributes can be accessed as elements of the
$_GET superglobal array. The action.php script first cleans the values in
$_GET['gift_id'] and $_GET['action'] and assigns them to the variables $gift_id and
$action:

<?php
 // action.php: Add or remove a gift from the user's shopping list

 // Include database parameters and related functions
 require_once("db.php");

 // Check if the user is logged in
 // (this also starts the session)
 logincheck();

 // Secure the user data
 if(count($_GET))
 {
 // Connect to the MySQL DBMS and use the wedding database
 // - credentials are in the file db.php
 if(!($connection= @ mysqli_connect(
 $DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 showerror($connection);

 $gift_id = clean($_GET['gift_id'], 5);
 $action = clean($_GET['action'] , 6);

 // ...

The script then checks whether the requested action is either add or remove. If it isn’t,
we stop processing to avoid corrupting the database, and also to block an attacker trying
to manipulate the behavior of our script. The script will proceed beyond this point only
if a valid action has been requested, so we don’t need to add an else clause to the if
statement:

// Is the action something we know about?
if($action != "add" && $action != "remove")
 // No, it's not; perhaps someone's trying to manipulate the
 // URL query string?
 die("Unknown action: ".$action);

// The program should reach this point only if the action is add
// or remove, since otherwise processing stops with the die()
// instruction.

// What did the user want us to do?
if ($action == "add")
{

502 | Chapter 15: A PHP Application: The Wedding Gift Registry

 // The user wants to add a new item to their shopping list.
 ...

 }
else // The action is not add, so it must be remove
{
 // The user wants to remove an existing item from their shopping list.

}

// Redirect the browser back to list.php
header("Location: list.php?message=" . urlencode($message));
exit;

At the end of the script, after adding or removing the gift, we redirect the user’s browser
back to the gift selection page (list.php) with the message we prepared earlier indicating
the success or failure of the operation. In practice, when the user clicks on the add or
remove link in list.php, the browser requests the action.php script; this quietly performs
the update and redirects the browser to the list.php page, leaving the user with the
impression that they never left the list page:

// Redirect the browser back to list.php
header("Location: list.php?message=" . urlencode($message));
exit;

Figure 15-4 shows the list of gifts and reserved gifts.

Adding a Gift
If the requested action is to add the gift to the user’s shopping list, we should ensure
that we reserve the gift only if it is still free. The gift was free when it was listed by the
list.php script; however, another user could have been viewing the list of gifts at the

Figure 15-4. The wedding registry list page showing reserved gifts

Selecting and Deselecting Gifts | 503

same time, and they might have selected the same gift first. This gift would then be
marked as taken in the database, but the first user wouldn’t know this, because the list
of gifts they loaded in their browser was generated when the gift was still free. This is
another example of where defensive programming is needed; when developing for the
Web, each script is independent, and there are no time limits or controls in our appli-
cation on when a user can request a script.

If we grant the LOCK TABLES privilege to the MySQL user fred, we can use locks for this
part of the code:

1. Run a query to apply a write lock to the gifts table; this prevents any changes to
the data in this table until we release the write lock:

// Lock the gifts table for writing
$query = "LOCK TABLE gifts WRITE";
// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

2. Read the username associated with the specified gift_id:

// Create a query to retrieve the gift.
$query = "SELECT * FROM gifts WHERE gift_id = {$gift_id}";
// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

3. If the username associated with the gift is not empty and is not the same as the
current user, create a message to tell the user that the gift has just been taken:

// Has someone already reserved this? (a race condition)
if (!empty($row["username"]) && $row["username"] != $_SESSION['username'])
 // Yes. So, record a message to show the user
 $message = "Oh dear... Someone just beat you to that gift!";
else
{
 // No...reserve the gift for this user
}

4. If the check shows that the gift is still free, we add the current user’s username to
the gift data to indicate that the gift has been reserved:

// No. So, create a query that reserves the gift for this user
$query = "UPDATE gifts SET username = '{$_SESSION['username']}' ".
 "WHERE gift_id = {$gift_id}";

// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

5. Finally, unlock the gifts table:

$query = "UNLOCK TABLES";
// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

504 | Chapter 15: A PHP Application: The Wedding Gift Registry

When developing an application, you should carefully consider whether you can design
the process to minimize the duration that locks are held, or avoid locking altogether.
This is particularly important if you’re using MyISAM tables, since MyISAM locks are
table-level. If you apply a write lock to a MyISAM table, nobody else can write to that
table or read from it until you release the lock.

In the approach we’ve just discussed, we lock the gifts table, ensure that the specified
gift is not reserved, update the gifts table to reserve the specified gift, and then unlock
the gifts table. Thinking through the operation, we realize that we’re in fact worried
about trying to reserve a gift that is reserved between the time that our application lists
it as unreserved and the time that the application tries to reserve it for a particular user.
We can design a single SQL query that will only UPDATE the gifts table if the gift is not
reserved:

$query = "UPDATE gifts SET username = '{$_SESSION['username']}' ".
 "WHERE gift_id = {$gift_id} AND username IS NULL";

A gift that is reserved by another user—or by the current user—will have a username
that is not NULL. If the MySQL server finds a row with the specified gift_id and with
no username, it will update it to set the username to that of the current user.

We can check whether the gift was reserved by examining the number of rows affected
by the update. Only one row, the one for the gift with the specified gift_id, should be
modified. If we identify that the number of affected rows is not 1, then there are two
possibilities: the gift was already reserved by another user or by the current user. We
can run an additional query to see which of these it is:

// If we found the row and updated it, create a confirmation
// message to show the user
if (mysqli_affected_rows($connection) == 1)
{
 $message = "Reserved the gift for you, {$_SESSION['username']}";
}
else // Couldn't reserve the gift because it wasn't free;
{
 // Check whether it's already booked by someone other
 // than the current user.
 $query = "SELECT * FROM gifts ".
 "WHERE gift_id = {$gift_id} ".
 "AND username = '{$_SESSION['username']}'";
 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Create a message to show the user
 if (mysqli_num_rows($result))
 $message = "The gift is already reserved for you, ".
 "{$_SESSION['username']}";
 else
 $message = "Oh dear... someone just beat you to that gift!";
}

Selecting and Deselecting Gifts | 505

Removing a Gift
If the requested action is not add, it can only be remove, since only these two values are
accepted for further processing by our script. The script checks that the gift is actually
reserved by the current guest before freeing it; this check should never fail in practice,
unless the same user is logged in twice. This is another example of defensive
programming.

As with the add operation, we prepare a message confirming that the gift has been
removed if the number of affected rows is one, and an error message if it isn’t:

// Create a query to retrieve the gift.
$query = "SELECT * FROM gifts WHERE gift_id = {$gift_id}";

// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

// Get the matching gift row;
// (there's only one since the gift_id is the primary key)
// If we don't get exactly one answer, then we have a problem
for($matchedrows=0;($row = @ mysqli_fetch_array($result));$matchedrows++);
if($matchedrows!=1)
 die("We've just experienced a technical problem - ".
 "please notify the administrator.");

// Double-check they actually have this gift reserved
if (!empty($row["username"]) && $row["username"] != $_SESSION['username'])
 // They don't, so record a message to show the user
 $message = "That's not your gift, {$_SESSION['username']}!";
else
{
 // They do have it reserved. Create a query to unreserve it.
 $query = "UPDATE gifts SET username = NULL WHERE gift_id = {$gift_id}";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Create a message to show the user
 if (mysqli_affected_rows($connection) == 1)
 $message = "Removed the gift from your shopping list, ".
 "{$_SESSION['username']}";
 else
 $message = "There was a problem updating. ".
 "Please contact the administrator.";
}

An alternative approach would be to include a check for the username in the UPDATE
statement, and to execute this statement first. We could then determine whether the
gift was in fact reserved by this user by counting the number of affected rows:

// Try to unreserve the gift with the matching username and gift ID
$query = "UPDATE gifts SET username = NULL WHERE gift_id = {$gift_id}".

506 | Chapter 15: A PHP Application: The Wedding Gift Registry

 " AND username='{$_SESSION['username']}'";

// Run the query through the connection
if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

// Create a message to show the user
if (mysqli_affected_rows($connection) == 1)
 $message = "Removed the gift from your shopping list, ".
 "{$_SESSION['username']}";
else
 $message = "Couldn't unreserve the gift - perhaps you hadn't reserved it?";

Resources
There are many excellent resources available for you to learn more about PHP, its
libraries, web servers, and building web database applications. We have listed several
of these resources at the end of the previous two chapters. You might find the following
additional resources helpful:

• Web Database Applications with PHP and MySQL by Hugh E. Williams and David
Lane (O’Reilly)

• A Programmer’s Introduction to PHP 4.0 by W. Jason Gilmore (Apress)

• PHP Black Book by Peter Moulding (The Coriolis Group)

• PHP Functions Essential Reference by Zak Greant et al. (Sams)

• PHP and MySQL Web Development by Luke Welling and Laura Thomson (Sams)

• Professional PHP4 Programming by Deepak Thomas et al. (Wrox Press)

• PHP Developer’s Cookbook by Sterling Hughes and Andrei Zmievski (Sams)

There are also many useful web sites that include tutorials, sample code, online dis-
cussion forums, and links to sample PHP applications. The official PHP site has an
excellent manual at http://www.php.net/manual, and the links page at http://www.php
.net/links.php points to many of these sites, including:

• http://www.phpbuilder.com

• http://www.devshed.com/Server_Side/PHP

• http://www.hotscripts.com/PHP

• http://php.resourceindex.com

Exercises
1. How can you refer to a PHP script file from within itself?

2. Would you use the urlencode() function with data submitted through the POST
method?

Exercises | 507

http://www.php.net/manual
http://www.php.net/links.php
http://www.php.net/links.php
http://www.phpbuilder.com
http://www.devshed.com/Server_Side/PHP
http://www.hotscripts.com/PHP
http://php.resourceindex.com

3. Why is it a good idea to use the crypt() function on user passwords before storing
them?

4. Why is it better to avoid locks where possible?

508 | Chapter 15: A PHP Application: The Wedding Gift Registry

PART V

Interacting with MySQL Using
Perl

CHAPTER 16

Perl

One of the most useful functions of a database is allowing regular reports to be created
that reflect important trends that a user wants to track. For example, a business might
be interested in the relative increase in sales that can be directly attributed to a television
advertising campain; similarly, a university academic might be interested in identifying
the exam questions on which students struggle. Report generation is best automated
in a program that issues SQL statements and summarizes and formats the results into
something easier to digest. You can create powerful tools that allow users to interact
with the data, and also to interchange data with applications such as statistical analysis
tools.

A general-purpose client such as the MySQL monitor allows you to execute any SQL
query you like. However, most applications use only a limited set of SQL queries to
add data to a database, modify existing data, or list data, so you can write a custom
client to perform these frequent queries.

Perl has been a hugely popular scripting language since its first release in 1987; while
newer languages such as PHP, Python, and Ruby have appeared since then, Perl remains
very popular. Perl is very flexible; in fact, the Perl motto is, “There’s more than one way
to do it,” often mentioned as the acronym TMTOWTDI.

Perl is also one of the most portable languages, with support available on a large number
of operating systems, including the three that we focus on in this book. This means
that you generally don’t need to rewrite your Perl scripts if you want to use them on a
different operating system.

It also benefits from many function libraries for applications as diverse as data manip-
ulation programs for Personal Digital Assistants (PDAs), word processors and spread-
sheet programs, network programming applications, and even full-color graphical
games such as Frozen Bubble (http://www.frozen-bubble.org). More than 10,500 such
libraries are available from the Comprehensive Perl Archive Network (CPAN) (http://
www.cpan.org).

Perl includes powerful support for data manipulation and interfacing with databases,
and is the scripting language most closely linked to MySQL. Most of the scripts that

511

http://www.frozen-bubble.org
http://www.cpan.org
http://www.cpan.org

are distributed with MySQL are written in Perl. Over the next three chapters, you’ll
learn how to write simple Perl scripts that can be run from the command line, such as
the Linux or Mac OS X shell, the Windows command prompt, and CGI scripts that
run on a web server.

Command-line scripts are typically used to import data from other software or export
data from the database. For example, you can import data from a spreadsheet program
or export data from the database to a spreadsheet program.

You can also write command-line join applications to run reporting queries. For ex-
ample, using the GeoIP (http://www.maxmind.com/app/perl) database, you can write a
script that takes an IP address of a computer and looks up the country the computer is
located in.

You’ll also see how to use Perl to access to your database from the Web. For example,
you can use the techniques you learn to design a music store application in Perl that
reads product data from a backend MySQL database and generates a web page con-
taining this information. Note that PHP is a more appropriate choice for new large-
scale web database applications.

Writing Your First Perl Program
In this section, we’ll take a very quick look at the Perl language. A Perl script is simply
a text file containing statements that the Perl interpreter reads and executes. As with
most things, the best way to learn is by doing, so we’ll walk you through your very first
Perl script. Open a text editor following the instructions in “Using a Text Editor” in
Chapter 2 and create a text file containing the following lines:

#!/usr/bin/perl
print "Hello,\nworld!\n1\t2\t3\n";

The first two characters on the first line should be the pound or hash symbol (#) fol-
lowed by the exclamation mark symbol (!). Together, these two characters form the
“shebang” or “hash-bang” marker that tells the shell how to run the script. Immediately
after these two characters, specify the path to the location of the Perl interpreter (called
perl) on your system. If you’re not sure where this is, check the instructions in “Check-
ing Your Existing Setup” in Chapter 2. Save this text file as HelloWorld.pl in your current
directory; you can exit your editor if you wish.

On a Linux or Mac OS X system, add the executable permission for the user who owns
the file (you) using the chmod program. Here, we grant read, write, and executable
permissions for the owning user, and no permissions to the group or other users:

$ chmod u=rwx,g=,o= HelloWorld.pl

You need to do this only once for a file; the permissions don’t change if you edit or
move the file. We discuss permission settings in “Restricting access to files and direc-
tories” in Chapter 2.

512 | Chapter 16: Perl

http://www.maxmind.com/app/perl

You can now run your program from the Linux or Mac OS X command line by typing
its name:

$./HelloWorld.pl
Hello,
world!
1 2 3

Most Linux distributions and Mac OS X do not look for programs in the current di-
rectory, so the the initial dot and slash (./) is needed to tell the operating system where
to find the program file. Windows doesn’t use the shebang line, but to improve the
portability of your scripts, it’s good to include a line such as #!/usr/bin/perl at the top
of any scripts you write. You should follow the instructions of “Installing Perl modules
under Windows” in Chapter 2 and associate your Perl interpreter with the .pl extension.
Windows always looks for the program file in the current directory, so you can simply
type:

C:\> HelloWorld.pl
Hello,
world!
1 2 3

Congratulations! You’ve just written and executed your first Perl script.

Scripting With Perl
Let’s examine the first line of Perl that you wrote earlier:

print "Hello, world!\n";

The print command or function takes the text in the quotes (known as a string of
characters) and displays it. Be sure to put a semicolon at the end of each Perl statement;
if you forget one, it gets quite confused and prints error messages that can in turn
confuse you!

You’ve probably noticed already that the \n and \t weren’t printed on the screen. The
backslash indicates an escape character that should be handled in a special way. A \n
indicates that a new line should be started at this point. Similarly, a \t tells Perl to jump
ahead to the next tab stop, which is useful if you want to show columns of information.
Note that the print command doesn’t insert any line breaks on its own, even when a
program finishes; you have to tell it to do so explicitly through \n.

A program that prints out exactly what we’ve written isn’t very exciting. Perl, like most
programming languages, allows us to use placeholders, or variables, to store values; we
can manipulate these variables and then display them. For example, we can define a
variable called $TemperatureToday to store today’s temperature:

my $TemperatureToday;

Scripting With Perl | 513

The keyword my is used to declare the variable for the first time. Variables that contain
a single value are known as scalar variables and are identified with a dollar ($) symbol.
We’ll discuss other types of variables later in this chapter. We can assign a value to this
variable; for example, we can set today’s temperature to be 33 (Celsius):

$TemperatureToday=33;

The equals (=) symbol assigns the value on the righthand side (33) to the variable. We
can also merge the declaration and the assignment into a single statement:

my $TemperatureToday=33;

We can define another variable, $TemperatureYesterday, to store yesterday’s
temperature:

my $TemperatureYesterday=30;

We can use mathematical operations on variables; therefore, to display the difference
in temperature between today and yesterday, we can write:

print "\nThe temperature difference is: " .
 $TemperatureToday-$TemperatureYesterday. "\n";

Here, we’ve used the concatenation (.) operator to connect several strings of characters
together and display the resulting string with a single print statement. We’ve also used
the subtraction (-) operator to find the difference between the two values. Let’s have a
quick look at some other common mathematical operators.

Mathematical Operators
Mathematical operators can be used to manipulate numbers and variables. There are
a few that are easy enough to understand:

=
Assigns the value on the right to the variable on the left, for example:

$Today="23rd November";
$Age=33;

+
Adds one value to another, for example:

$RetailPrice=$CostPrice+$Profit+$Tax;
$Answer=2+2;

-
Subtracts one value from another, for example:

$Loss=$PriceSold-$PriceBought;

*
Multiplies one value by another, for example:

$TemperatureInFahrenheit=$TemperatureInCelsius*1.8+32;

514 | Chapter 16: Perl

/
Divides one value by another, for example:

$CakePortionSize=1/$NumberOfPeople;

%
Calculates the remainder of dividing one number by another, for example:

print "Dividing 27 by 4 leaves: ". 27%4;

If we want to change the value of a variable based on its existing value, we would use
the variable on both the lefthand side and the righthand side of the assignment
operator:

$CakesLeft=$CakesLeft-$CakesEaten;
$Counter=$Counter+1;

This syntax is so common that there’s a shorthand way to write it that omits the same
variable on the righthand side by merging the two operators:

$CakesLeft -= $CakesEaten;
$Counter += 1;

It’s also very common to increment or decrement a value, so +=1 and -=1 can be written
simply as ++ and --, respectively:

++
Increments a number by one, for example:

$Counter++;

--
Decrements a number by one, for example:

$SecondsLeft--;

Finally, there are logical operators that are used to compare two values and return true
or false depending on the result of the comparison. Perl considers a zero value or empty
string to be false, and a nonzero value to be true. If we try to print the result of a
comparison, we’ll get a 1 for a true outcome, and nothing (an empty string) for a false
outcome:

==
Tests whether two values are equal:

print "Equal to 33: [". $TemperatureToday==33. "]\n";

produces the result:

Equal to 33: [1]

!=
Tests whether two values are unequal:

print "Not equal to 33: [". $TemperatureToday!=33. "]\n";

Scripting With Perl | 515

produces the result:

Not equal to 33: []

The false result is displayed as an empty string.

<
Tests whether the first value is less than the second:

print "Less than 33: [". $TemperatureToday <33. "]\n";

produces the result:

Less than 33: []

>
Tests whether the first value is greater than the second:

print "Greater than 33: [". $TemperatureToday >33. "]\n";

produces the result:

Greater than 33: []

<=
Tests whether the first value is less than or equal to than the second:

print "Less than or equal to 33: [". $TemperatureToday<=33. "]\n";

produces the result:

Less than or equal to 33: [1]

>=
Tests whether the first value is greater than or equal to the second:

print "Greater than or equal to 33: [". $TemperatureToday>=33. "]\n";

produces the result:

Greater than or equal to 33: [1]

Operator precedence

The instructions we’ve looked at so far have been simple, with only one operator. What
happens if we have complex expressions with multiple operators? For example, what’s
the the value of answer after this statement is executed?

$answer=1+2-3*4/5;

You may remember from your high school math that mathematical operators have an
order of precedence: multiplication and division are performed before addition and
subtraction. However, relying on the order of precedence can try your memory, and
your code will be hard to read. Parentheses override the order of precedence, allowing
you to be sure that expressions will be evaluated as you expect. Our example would
actually be evaluated as:

516 | Chapter 16: Perl

$answer=(1+2)-(3*4/5);

but using parentheses, you could specify that it should be evaluated as:

$answer=1+((2-3)*4)/5;

We recommend that you make liberal use of parentheses to keep your code readable
and to avoid ambiguity.

More on Variables
Variables can be used to store things other than numbers. In Example 16-1, we use
variables to store and display text and numbers.

Example 16-1. Perl script to add several variables and display the totals

#!/usr/bin/perl
use strict;

Declare variables to store animal names, and assign values to them
my $AnimalNameOne="cats";
my $AnimalNameTwo="dogs";
my $AnimalNameThree="fish";

Declare variables to store animal counts, and assign values to them
my $AnimalCountOne=3;
my $AnimalCountTwo=7;
my $AnimalCountThree=4;

Calculate the sum of the animal counts
my $Total=$AnimalCountOne+$AnimalCountTwo+$AnimalCountThree;

Display the counts and total
print "Pet roll call:\n".
 "===========\n".
 "$AnimalNameOne:\t$AnimalCountOne\n".
 "$AnimalNameTwo:\t$AnimalCountTwo\n".
 "$AnimalNameThree:\t$AnimalCountThree\n".
 "===========\n".
 "Total:\t$Total\n";

In this program, we store animal names and counts in variables, and place the total
count into the $Total variable. Save this program as animals.pl and run it; you’ll see the
following output:

Pet roll call:
===========
cats: 3
dogs: 7
fish: 4
===========
Total: 14

Scripting With Perl | 517

The second line of this script is a use strict; instruction (also known as a pragma) to
the Perl interpreter to ensure that all variables are explicitly declared with the my key-
word before they are used. This helps avoid problems with mistyped variable names.
You should try to include this line in all your scripts. Otherwise, if you mistype a variable
name in one place, Perl assumes you want to create a new variable and doesn’t warn
you about the problem, so the program could fail or produce incorrect output that’s
hard to detect.

Any braces (also known as curly brackets) enclosing the variable declaration limit the
scope of the declaration. For example, here the $Time variable is declared only inside
the braces and is not available outside them:

my $Seconds=97;
{
 my $Time=$Seconds+1;
 print "\nTime: ", $Time;
}

However, the variable $Seconds is available both outside and inside the braces.

A variable defined inside braces will override any existing variable with the same name
outside the braces. For example, we can have two different variables called $counter:

#!/usr/bin/perl

my $counter=10;
print "Before braces: $counter\n";
{
 my $counter=33;
 print "Within braces: $counter\n";
}

print "After braces: $counter\n";

This produces the results:

Before braces: 10
Within braces: 33
After braces: 10

It’s generally not good practice to use different variables with the same names, so avoid
doing so when you can. We’ve just shown this here to help you understand existing
code and possible causes of problems.

Notice that we’ve left blank lines between several statements and substrings; Perl ig-
nores such whitespace outside strings. Perl also ignores any lines starting with the hash,
or pound, symbol (#); this allows us to write explanatory comments alongside the code.
Judicious use of whitespace and comments can help keep your programs readable and
easy to understand.

518 | Chapter 16: Perl

Single and double quotes

Till now, we’ve used the double-quote (") character to indicate the start and end of a
string. We can also enclose strings with the single-quote (') character, but there is an
interesting difference. If you run the script:

#!/usr/bin/perl
use strict;

my $Answer=42;

print "The answer is: $Answer\n";
print 'The answer is: $Answer\n';

you’ll see the following output:

The answer is: 42
The answer is: $Answer\n

When the string is enclosed in single quotes, variables are not replaced by their values,
and escape characters are treated as normal text.

You may wonder how we can include one of the quote symbols within a string. For
example, you can’t have the string:

print 'This is Sarah's bag.';

since the string would end immediately after “Sarah”, and the remainder of the sentence
would confuse Perl.

The solution is to enclose one type of quote in a string enclosed by the other type:

print "This is Sarah's bag.";
print 'He said, "This is fun!"';

or to add a backslash symbol to escape the quote symbol and indicate that it should be
processed in a special way:

print 'This is Sarah\'s bag.';
print "He said, \"This is fun!\"";

There is a third way of creating strings that is peculiar to Perl. The constructs q(text)
and qq(text) have the same effect as enclosing the text in single and double quotes,
respectively, but have the advantage that quotes don’t need to be escaped. Thus, for
example, the following two statements work as expected:

print q(This is Sarah's bag.);
print qq(He said, "This is fun!");

Arrays and Hashes
Let’s look again at our our addition script. We used a different variable to store the
name and count of each animal:

Scripting With Perl | 519

my $AnimalNameOne="cats";
my $AnimalNameTwo="dogs";
my $AnimalNameThree="fish";

my $AnimalCountOne=3;
my $AnimalCountTwo=7;
my $AnimalCountThree=4;

Such scalar variables work well enough for three animals but would be difficult to use
if we were trying to keep track of the hundreds of species in a zoo. A better way to
manage similar values is to store them as a list in a single array variable, with the data
on each animal stored in a numbered element in the array. Example 16-2 rewrites the
script in Example 16-1 accordingly.

Example 16-2. Perl script using array variables

#!/usr/bin/perl
use strict;

my @AnimalName=("cats", "dogs", "fish");
my @AnimalCount=(3, 7, 4);
my $Total=$AnimalCount[0]+$AnimalCount[1]+$AnimalCount[2];

print "Pet roll call:\n".
 "===========\n".
 "$AnimalName[0]:\t$AnimalCount[0]\n".
 "$AnimalName[1]:\t$AnimalCount[1]\n".
 "$AnimalName[2]:\t$AnimalCount[2]\n".
 "===========\n".
 "Total:\t$Total\n";

The @AnimalName array contains three elements with the values cats, dogs, and fish.
Elements in the list are labeled starting from zero, so the first element is element 0, the
second is element 1, the third is element 2, and so on. Array variables are indicated by
the at (@) symbol; the individual elements in the array are scalar variables, so they are
indicated with the dollar ($) symbol. For example, the second element in the
@AnimalName array is $AnimalName[1], with the value dogs.

Instead of referring to elements by their index number, we can use a third type of
variable: the hash, that allows us to map elements using a text identifier or key. As
shown in Example 16-3, we can store the animal counts in a hash called %Animals, with
the animal names as the key.

Example 16-3. Perl script using hash variables

#!/usr/bin/perl
use strict;

print "\nHash:\n";

my %Animals=(cats=>3, dogs=>7, fish=>4);

my $Total= $Animals{cats}+ $Animals{dogs}+ $Animals{fish};

520 | Chapter 16: Perl

print "Pet roll call:\n".
 "===========\n".
 "cats:\t$Animals{cats}\n".
 "dogs:\t$Animals{dogs}\n".
 "fish:\t$Animals{fish}\n".
 "===========\n".
 "Total:\t$Total\n";

Notice that the hash is indicated by a percentage (%) symbol and that, like for arrays,
the individual scalar elements are indicated by a dollar symbol. For example, the num-
ber of cats is contained in $Animals{cats}; it’s common to enclose the identifier in single
or double quotes, as in $Animals{'cats'} or $Animals{"cats"}.

Note that array elements are enclosed in square brackets—$AnimalName[1]—whereas
hash elements are enclosed in curly braces—$Animals{'cats'}.

In this example, we’ve written the hash keys in the program itself. This is called hard-
coding and is not good practice. Any change to the keys requires a change to the pro-
gram. If we don’t know the keys, we can still access the elements by first extracting the
keys into an array using the keys keyword. We can then use the elements in this array
to access the hash elements; for example, instead of typing $Animals{"cats"}, we can
write $Animals{ $AnimalName[0] }. This may be hard to read, but think of it this way:
Perl looks inside the braces and finds $AnimalName[0]. This denotes the first element of
the @AnimalName array, which is cats. Perl then plugs cats in where $AnimalName[0] was,
in order to select the proper value from the %AnimalName hash. Using this syntax in a
program, we can do calculations and printouts:

Extract the keys of the Animals hash into the AnimalName array
my @AnimalName = keys %Animals;

my $Total=
 $Animals{$AnimalName[0]}+
 $Animals{$AnimalName[1]}+
 $Animals{$AnimalName[2]};

print "Pet roll call:\n".
 "===========\n".
 "$AnimalName[0]:\t$Animals{$AnimalName[0]}\n".
 "$AnimalName[1]:\t$Animals{$AnimalName[1]}\n".
 "$AnimalName[2]:\t$Animals{$AnimalName[2]}\n".
 "===========\n".
 "Total:\t$Total\n";

While it’s nice to be able to use a single variable to store the data, there’s still a lot of
ugly manual referencing going on in the print statement; if we had a hundred types of
animals, we’d need to reference them all individually. If you thought that we don’t
really have to do this, you’re right! In the next section, we’ll look at how loops can help
simplify processing of arrays.

Scripting With Perl | 521

Before we end our discussion of arrays and hashes, we note that they can also be created
with the qw “quote word” construct. For example, the following two statements to
create an array are equivalent:

my @AnimalName=("cats", "dogs", "fish");
my @AnimalName=qw(cats dogs fish);

and the following two statements to create a hash are equivalent:

my %Animals=(
 "cats"=>3,
 "dogs"=>7,
 "fish"=>4);

my %Animals=qw(
 cats 3
 dogs 7
 fish 4);

You need to be comfortable with only one approach, but it’s good to understand what’s
happening if you see the other format in other people’s code.

Control Structures: Loops and Conditionals
We often require computers to do a single task many times; for example, we might
write a program to count the number of cars that travel along a particular road, or the
number of seconds left till a space rocket blasts off. Instead of writing out statements
many times, we can write them out once and use a loop construct to repeat them as
many times as required.

There are several flavors of loop in Perl; we’ll look at these in the context of a simple
example: counting from 1 to 10. The simplest is the for loop:

for(my $counter=1; $counter<=10; $counter++)
{
 print "\nThe value is: $counter";
}

Here, we initialize the $counter variable to 1, then execute the statement between the
braces (the body of the loop) as long as the counter is less than or equal to 10. Each
time we pass through the loop, we increment the counter using the ++ operator. The
body of the loop contains a single statement that displays the value of the counter.

In the while loop, the body is executed as long as the condition in the parentheses is
true. We can write the previous counter as:

my $counter=1;
while($counter<=10)
{
 print "\nThe value is: $counter";
 $counter++;
}

522 | Chapter 16: Perl

Notice that the while loop does not include a particular place for initializing or incre-
menting the counter. In fact, we generally use the for loop when we know exactly how
many times we want to run the loop, and we use other loop constructs such as the
while loop when we don’t.

The do...while loop is almost identical to the while loop, with one difference: the
condition is first evaluated only after the loop body has been executed once. This means
that the body is executed even if the condition is not true, which is useful in some
circumstances:

my $counter=1;
do
{
 print "\nThe value is: $counter";
 $counter++;
}while($counter<=10);

Finally, the until loop is identical to the while loop but inverts the condition; the loop
is executed as long as the condition is false:

my $counter=1;
until($counter>10)
{
 print "\nThe value is: $counter";
 $counter++;
}

Iterating Through Arrays and Hashes
Earlier in “Arrays and Hashes,” we accessed the individual scalar elements in the
@Animals array by their index numbers—for example:

my $Total=
 $Animals{$AnimalName[0]}+
 $Animals{$AnimalName[1]}+
 $Animals{$AnimalName[2]};

We can use the foreach construct to walk through all the keys of the %Animals hash
(given by keys %Animals) and assign each value in turn to the scalar variable
$AnimalName:

my %Animals=("cats"=>3, "dogs"=>7, "fish"=>4);

my $Total=0;

print "Pet roll call:\n".
 "===========\n";

foreach my $AnimalName (keys %Animals)
{
 $Total+=$Animals{$AnimalName};
 print "$AnimalName:\t$Animals{$AnimalName}\n";
}

Scripting With Perl | 523

print "===========\n".
 "Total:\t$Total\n";

For each value of $AnimalName, the statements between the braces are executed. First,
the += operator is used to increase the value of the $Total variable by the count of that
animal, and then the name and count of each animal is printed. Note that we initialized
the value of $Total to zero before we start adding values to it.

The foreach construct shown here extracts the keys of the %Animals hash, but we have
to use the hash together with the key to find each value. The following while statement
does the same thing, but in a cleaner way:

while((my $AnimalName, my $Count) = each(%Animals))
{
 print "$AnimalName:\t$Count\n";
 $Total+=$Count;
}

Each time round the loop, the each construct assigns the animal name (the key) and
count (the value) to the $AnimalName and $Count variables. The loop is repeated, and
the statements within the braces are executed until all the items in the hash are ex-
hausted.

Conditional Statements
Sometimes, we want to execute a statement only if something is true, or only if it’s false.
The if construct allows this:

Numerical comparison

my $var1=786;

if($var1 < 786)
{
 print "The value is less than 786.\n";
}

if($var1 >= 786)
{
 print "The value is greater than or equal to 786.\n";
}

if($var1 == 786)
{
 print "The value is equal to 786.\n";
}

If we want to compare strings, rather than numbers, we need to use the string com-
parison operators. The important ones are eq (equal), lt (alphabetically earlier than),
and gt (alphabetically later than):

524 | Chapter 16: Perl

String comparison

my $username="Ali";

if($username lt "N")
{
 print "The username appears in the first half of the alphabet.\n";
}

With the if...else construct, we can have some code that is executed when the con-
dition is true, and other code that’s executed when the condition is false:

if($username eq "Ali")
{
 print "Hi Dad!\n";
}
else
{
 print "Hello!\n";
}

If the $username variable has the value "Ali", the "Hi Dad!" message will be displayed;
otherwise, the message “Hello!” is displayed instead.

To handle other possible conditions, we can use the if...elsif...else construct. For
example:

if($username eq "Ali")
{
 print "Hi Dad!\n";
}
elsif($username eq "Sadri")
{
 print "Hi Mom!\n";
}
else
{
 print "Hello!\n";
}

If the $username variable has the value "Ali", the "Hi Dad! message will be displayed
(and the later checks will not be performed); if the $username variable has the value
"Sadri", the "Hi Mom!" message will be displayed, and if neither condition is satisfied,
the "Hello!" message will be displayed.

We can combine conditions using the Boolean operators AND (&&), OR ||(|| OR), and
NOT (!). For example, we can print a message if two conditions are met:

Combining conditions
my $temperature=19;

Boolean AND
if(($temperature > 18) && ($temperature < 35))
{

Scripting With Perl | 525

 print "The weather is fine.\n";
}

or if either condition is met:

Boolean OR
if(($temperature < 18) || ($temperature > 35))
{
 print "The weather isn't fine.\n";
}

or if a condition is not met:

Boolean NOT (negating the condition)
if(!($temperature < 18))
{
 print "The weather isn't cold.\n";
}

You will often see the Boolean operators written in the long form: and, or, and not. For
example, you can write:

Symbolic and long form of Boolean expressions
my $value=74;

A combined expression...
if(($value > 80) || (($value < 75) && ! ($value == 73)))
{
 print "The value is greater than 80 or less than 75, but is not 73\n";
}

as:

...and the equivalent in long form
if(($value > 80) or (($value < 75) and not ($value == 73)))
{
 print "The value is greater than 80 or less than 75, but is not 73\n";
}

The long forms and and or aren’t in fact identical to their symbolic counterparts && and
||. Perl assigns the long forms a very low operator precedence; as we noted earlier in
“Operator precedence,” it’s best to use parentheses to express the precedence you want.

Reading Input from the Command Line and from Files
Consider our sample animals script; the names of the animals and the numbers of each
are hardcoded into the program. A better solution is to allow the program to use values
provided by the user from the command line or from a file.

526 | Chapter 16: Perl

Reading in values from the command line

One option is to specify values after the program name on the command line; these
values are called command-line arguments and are saved in the special ARGV array vari-
able. For example, if we type:

$./program.pl Argument_1 Argument_2 Argument_3

$ARGV[0] will contain Argument_1, $ARGV[1] would contain Argument_2, and $ARGV[2]
would contain Argument_3. The number of arguments entered at the command line is
the same as the number of elements in the @ARGV array; you can find this number by
referring to the name of the array—for example, @ARGV will be 3 if three arguments are
typed in at the command line.

Example 16-4 modifies our Animals script to read in the number of cats, dogs, and fish
as command-line arguments.

Example 16-4. Reading in numbers from the command line

#!/usr/bin/perl
use strict;

my %Animals;
If the user hasn't provided the correct number of command-line
arguments, provide a helpful error message.
if(@ARGV!=3)
{
 die("Syntax: $0 [count of cats] [count of dogs] [count of fish]\n");
}

If the user has provided the command-line arguments, fill in the
Animals hash with the corresponding values.
%Animals=(
 "cats"=>$ARGV[0],
 "dogs"=>$ARGV[1],
 "fish"=>$ARGV[2]);

Process the data to calculate the total; code beyond this point is
identical to our previous example, and doesn't deal with the
command-line arguments.
my $Total=0;
print "Pet roll call:\n".
 "===========\n";
while ((my $Animal, my $Count) = each(%Animals))
{
 print "$Animal:\t$Count\n";
 $Total+=$Count;
}
print "===========\n".
 "Total:\t$Total\n";

If an incorrect number of arguments is provided, the die statement prints the message
string between the parentheses and then stops the program. Since the program will run

Scripting With Perl | 527

beyond this point only if a correct number of arguments is provided, there’s no need
to include an else clause to handle such a case.

Save this script as animals.commandline.pl and run it with command-line arguments:

$./animals.commandline.pl 3 7 4
Pet roll call:
===========
cats: 3
dogs: 7
fish: 4
===========
Total: 14

As part of the error message, we’ve used the $0 variable, which is the command used
to run the script. If, by mistake, you use too many or too few arguments, you get the
helpful error message shown below:

$./animals.commandline.pl 3 7 4 1
Syntax: ./animals.commandline.pl [count of cats] [count of dogs] [count of fish]

Here, $0 is replaced by ./animals.commandline.pl.

Notice that we still have the animal names hardcoded in the program; each time we
want to change the list of animals, we need to change the program code. We can instead
change our program to read in both the animal names and counts from the command
line, as shown in Example 16-5:

Example 16-5. Reading in both the animal names and counts from the command line

#!/usr/bin/perl
use strict;

my %Animals;
If the user hasn't provided a nonzero, even number of command-line
arguments, provide a helpful error message.
if((@ARGV==0) || ((@ARGV%2)!=0))
{
 die("Syntax: $0 [Animal One Name] [Animal One Count] ".
 "[Animal Two Name] [Animal Two Count] ...\n");
}
If the user has provided the command-line arguments, fill in the
Animals hash with the corresponding values.
while(@ARGV)
{
 # Read in an argument and take this as the animal name
 my $AnimalName=shift(@ARGV);

 # Read in another argument and take this as the count for this animal
 my $AnimalCount=shift(@ARGV);

 # Add an entry to the Animals hash for this animal name and
 # count pair:
 $Animals{$AnimalName}=$AnimalCount;
}

528 | Chapter 16: Perl

Process the data to calculate the total; code beyond this point is
identical to our previous example and doesn't deal with the
command-line arguments.
my $Total=0;
print "Pet roll call:\n".
 "===========\n";
while ((my $Animal, my $Count) = each(%Animals))
{
 print "$Animal:\t$Count\n";
 $Total+=$Count;
}
print "===========\n".
 "Total:\t$Total\n";

This compact program combines many of the features of Perl you’ve learned so far.
Loops allow you to process as many data items as required; when you’re writing a
program, you generally don’t know exactly how many rows of data will be returned by
the database. The example also illustrates the if control statement, the || logical OR
operator, and an appropriately used array and hash.

You can also see how the program uses scope to limit the visibility of its variables. The
first while block defines two variables ($AnimalName and $AnimalCount) that can be used
only within the loop. The second while block defines two more variables within the
while statement itself; these can be used only within that block. Because these variables
serve a temporary function inside the loop and aren’t needed outside it, defining them
within the scope of the block is good coding practice.

In our test for command-line arguments, we print the error message if the user hasn’t
provided any command-line arguments (the number of arguments is zero), or if there
aren’t an integer number of animal name and count pairs (which we’ll know because
there will be a remainder when we divide the number of arguments by two: @ARGV%2).

To read in the command-line arguments, we use the shift function to pick up one
argument from the list. We expect a name and a count, so we call shift twice for each
animal. The while loop continues as long as there are additional arguments, so we can
provide data for as many animals as we like.

Let’s try the program out:

$./animals.commandline.types.pl dogs 7 fish 33 elephants 1 giraffes 3
Pet roll call:
===========
giraffes: 3
cats: 4
elephants: 1
dogs: 7
fish: 33
===========
Total: 48

Scripting With Perl | 529

Notice that the counts aren’t aligned properly; this is because the longer animal names
(giraffes and elephants) reach the end of the first tab column, and so the \t in the
print statement moves the count into the next tab column.

Reading in values from a file

Instead of typing in the data as command-line arguments, we can ask our program to
read in the data from a file. A popular and simple format for data interchange between
applications is the comma-separated values (CSV) format. This is a plain-text format
with the data separated by commas. Create the following CSV file in a text editor and
save it as animals.csv:

cats,2
dogs,5
fish,3
emus,4

Now, let’s write a simple program to read in a specified file and print the contents on
the screen. Example 16-6 uses the open function to open the file and a while loop to
read it in line by line.

Example 16-6. Perl script to read in a text file and display the contents

#!/usr/bin/perl
use strict;

If the user hasn't provided one command-line argument, provide a
helpful error message.
if(@ARGV!=1)
{
 die("Syntax: $0 [Input file]\n");
}
Open the file specified on the command line; if we can't open it,
print an error message and stop.
open(INPUTFILE, $ARGV[0])
 or die("Failed opening $ARGV[0]\n");

Read in the input file line by line
while(my $Line=<INPUTFILE>)
{
 print $Line;
}
Close the input file
close(INPUTFILE);

Here, we’ve used the open() function to open the file with the name specified on the
command line and configure a file handler to access this file; in our example, we’ve
used INPUTFILE for the file handler. Note that unlike other types of Perl variables, file
handlers don’t have a symbol such as the dollar symbol ($) or the at symbol (@) before
them.

530 | Chapter 16: Perl

Every standard Perl function ends by passing back a value to the code that called it. In
fact, many functions do nothing but return a value. The open() function returns a
nonzero value to indicate that it succeeded in opening the file, and returns zero if it
failed. Common causes of file-access errors include mistyped filenames and insufficient
privileges to access a particular file or directory. We can use an if statement to check
for a zero value; if the file-open operation failed, we can use the die() function to
display an error message and stop the script:

if(!open(INPUTFILE, $ARGV[0]))
{
 die("Failed opening $ARGV[0]\n");
}

This combination of an if statement and an open function is worth noting; we’ve pre-
viously used if on logical tests such as $Username == "Ali", but if is flexible enough
to directly test a single value, or the result of a function such as open. We can also use
the simpler or construct to call the die() function if the open() function fails:

open(INPUTFILE, $ARGV[0])
 or
 die("Failed opening $ARGV[0]\n");

Save this program as readfile.pl, and then get it to read in and display the contents of
the animals.csv file:

$./readfile.pl animals.csv
cats,2
dogs,5
fish,3
emus,4

Instead of simply printing out the file contents, let’s load them into our own data
structures and process the data. We have to remove the invisible newline at the end of
each line of the text file using the chomp() function, then load the contents of each line
into array elements by the location of the commas using the split() function. For
convenience, we assign the first value to the scalar variable $AnimalName and the second
value to the scalar variable $AnimalCount. We then use these to populate the %Animals
hash.

For example, the line:

cats,2

is split at the comma into the @AnimalData array, with:

AnimalsData[0]: cats
AnimalsData[1]: 2

and these values are assigned to the variables:

AnimalName: cats
AnimalCount: 2

The statement:

Scripting With Perl | 531

$Animals{$AnimalName}=$AnimalCount;

is effectively:

$Animals{cats}=2;

In this way, we add entries to the %Animals hash for each animal. The complete program
code is listed in Example 16-7.

Example 16-7. Perl script to read in data from a CSV file

#!/usr/bin/perl
use strict;

If the user hasn't provided one command-line argument, provide a
helpful error message.
if(@ARGV!=1)
{
 die("Syntax: $0 [Input file]\n");
}
Open the file specified on the command line; if we can't open it,
print an error message and stop.
if(!open(INPUTFILE, $ARGV[0]))
{
 die("Failed opening $ARGV[0]\n");
}

my %Animals;

Read in from input file line by line; each line is
automatically placed in $_
while(<INPUTFILE>)
{
 # Remove the newline at the end of the line
 chomp($_);

 # Split the line by commas and load into the AnimalsData array
 my @AnimalsData=split(",", $_);

 # Assign the text before the first comma to the name
 my $AnimalName=$AnimalsData[0];

 # Assign the text between the first comma and the second comma
 # (if any) to the count
 my $AnimalCount=$AnimalsData[1];

 # Add an entry to the Animals hash for this animal name and
 # count pair:
 $Animals{$AnimalName}=$AnimalCount;
}
Close the input file
close(INPUTFILE);

Process the data to calculate the total; code beyond this point is
identical to our previous example and doesn't deal with the
command-line arguments.

532 | Chapter 16: Perl

my $Total=0;
print "Pet roll call:\n".
 "===========\n";
while ((my $Animal, my $Count) = each(%Animals))
{
 print "$Animal:\t$Count\n";
 $Total+=$Count;
}
print "===========\n".
 "Total:\t$Total\n";

Reading in values from standard input

The console’s standard input is a special file that captures data typed in at the console,
sent to the program using a pipe (|), or read from a redirection operator (<). Using the
standard input, we can skip the process of opening and closing the file using the file
pointer (INPUTFILE in our example), and instead use the built-in Perl STDIN file handle,
as shown in Example 16-8.

Example 16-8. Perl script to read in data from a CSV file from standard input

#!/usr/bin/perl
use strict;

my %Animals;

Read in from standard input line by line; each line is
automatically placed in $_
while(<STDIN>)
{
 # Remove the newline at the end of the line
 chomp($_);

 # Split the line by commas and load it into the AnimalsData array
 my @AnimalsData=split(",", $_);

 # Assign the text before the first comma to the name
 my $AnimalName=$AnimalsData[0];

 # Assign the text between the first comma and the second comma
 # (if any) to the count
 my $AnimalCount=$AnimalsData[1];

 # Add an entry to the Animals hash for this animal name and
 # count pair:
 $Animals{$AnimalName}=$AnimalCount;
}

Process the data to calculate the total; code beyond this point is
identical to our previous example and doesn't deal with the
command-line arguments.
my $Total=0;
print "Pet roll call:\n".
 "===========\n";

Scripting With Perl | 533

while ((my $Animal, my $Count) = each(%Animals))
{
 print "$Animal:\t$Count\n";
 $Total+=$Count;
}
print "===========\n".
 "Total:\t$Total\n";

We can then run this as:

$./Animals.command_line.tofile.pl < animals.csv

or as:

$ cat animals.csv | Animals.command_line.tofile.pl

on a Linux or Mac OS X system, or as:

$ type animals.csv | Animals.command_line.tofile.pl

on a system running Windows.

Writing values to a file or standard output

You’ll often want to permanently store the output of your program in a file. Exam-
ple 16-9 modifies the program to take a second command-line argument to specify the
name of the output file.

Example 16-9. Perl script to read in data from a CSV file and save results to an output file

#!/usr/bin/perl
use strict;

my %Animals;
If the user hasn't provided any command-line arguments, provide a
helpful error message.
if(@ARGV!=2)
{
 die("Syntax: $0 [Input file] [Output file]\n");
}
Open the file specified on the command line; if we can't open it,
print an error message and stop.
if(!open(INPUTFILE, $ARGV[0]))
{
 die("Failed opening $ARGV[0]\n");
}

Open the output file specified on the command line; if we can't open it,
print an error message and stop.
if(!open(OUTPUTFILE, ">$ARGV[1]"))
{
 die("Failed opening $ARGV[1]\n");
}

Read in from input file line by line; each line is
automatically placed in $_

534 | Chapter 16: Perl

while(<INPUTFILE>)
{
 # Remove the newline at the end of the line
 chomp;

 # Split the line by commas
 my @AnimalsData=split(",", $_);

 # Assign the text before the first comma to the name
 my $AnimalName=@AnimalsData[0];

 # Assign the text between the first comma and the second comma
 # (if any) to the count
 my $AnimalCount=@AnimalsData[1];

 # Add an entry to the Animals hash for this animal name and
 # count pair:
 $Animals{$AnimalName}=$AnimalCount;
}
close(INPUTFILE);

Process the data to calculate the total, then write to the output file
my $Total=0;
print OUTPUTFILE "Pet roll call:\n".
 "===========\n";
while ((my $Animal, my $Count) = each(%Animals))
{
 print OUTPUTFILE "$Animal:\t$Count\n";
 $Total+=$Count;
}
print OUTPUTFILE "===========\n".
 "Total:\t$Total\n";

We’re providing the name of the output file as the second command-line argument
(ARGV[1]). The interesting part of this program starts from the second open() statement;
since we want to write to the file, we add a greater-than (>) symbol before the name of
the output file. We also specify the output file handle OUTPUTFILE immediately after the
print command.

If we don’t specify an output file handle, program output is sent to the system standard
output, known as STDOUT. This is almost always the display screen. As with STDIN, we
can use STDOUT without needing to explicitly open and close it. We can also print to
standard output by putting STDOUT as the file handle in the print statement:

print STDOUT "$Animal:\t$Count\n";

Since the program output is sent to standard output by default anyway, STDOUT is as-
sumed when no other file handle is specified, and we can safely omit it (as we have in
all our previous scripts):

print "$Animal:\t$Count\n";

Scripting With Perl | 535

Writing Your Own Perl Functions
As we’ve seen, a function is a statement such as print() or open() that performs an
operation for your program. Functions can take arguments within parentheses, and
can return a value.

You can define your own functions in Perl. Sometimes, you might want to perform a
task in several places of your program, such as to repeatedly display messages or per-
form calculations. You can define your own function to perform the task and then call
the function whenever you need the task to be performed.

Example 16-10 is a program with two small functions: one called sum() to calculate
the sum of a list of numbers, and the other called average() to average a list of numbers.
The average() function uses the sum() function in its calculations.

Example 16-10. Perl script with functions to sum and average numbers

#!/usr/bin/perl
use strict;

print "\nThe total is: ", sum(1, 5, 7);
print "\nThe average is: ", average(1, 5, 7);

Function to calculate the sum of all the numbers passed to it
sub sum
{
 my $Total=0;
 while(my $value=shift)
 {
 $Total+=$value;
 }
 return $Total;
}

Function to calculate the average of all the numbers passed to it
This function calls the sum function internally.
sub average
{
 return sum(@_)/(@_);
}

The sum() function uses the shift keyword to iterate through the provided values one
by one, assigning them in turn to the $value variable. When all the values have been
seen and added to the $Total, the function returns the $Total value to the part of the
program that called it. This means that sum(1, 5, 7) has the value of $Total, which is
13.

The special array @_ contains all the values passed to the function when it is called. The
average() function passes this list—in this example 1, 5, 7—to the sum() function
to get the total, and then divides this total by the number of values in the list, given by
the array name @_. Finally, the statement returns the resulting average:

536 | Chapter 16: Perl

return sum(@_)/(@_);

Note that the $Total variable is defined only within the sum() function, since it’s en-
closed by the function braces.

Save this program as sum_average.floating.pl and then run it by typing:

$./sum_average.functions.pl
The total is: 13
The average is: 4.33333333333333

Of course, we can use variables instead of hardcoding values in the program. For ex-
ample, to accept the list of numbers from the command line, we can rewrite the two
print lines as:

print "\nThe total is: ", sum(@ARGV);
print "\nThe average is: ", average(@ARGV);

allowing us to call this program as:

$./sum_average.functions.pl 19 313 110
The total is: 442
The average is: 147.33333333333333

The value for the average has more precision than we’d generally need, and the numbers
aren’t aligned. We can use the printf function to format the values using a format
specifier before printing them. The format specifiers you are most likely to come across
are:

%d
Integer number (decimal)

%f
Number with a decimal fraction (floating point)

%s
String of characters

For our example, we could write:

printf "\nThe total is: %10d", sum(1, 5, 7);
printf "\nThe average is: %10.2f", average(1, 5, 7);

The value of sum(1, 5, 7) is mapped to the format specifier %10d, which sets aside 10
decimal places for the sum. Similarly, in the second statement, the value of
average(1, 5, 7) is mapped to the format specifier %10.2f, which sets aside 10 char-
acters total for the average and specifies that only 2 decimal places should be displayed.
In other words, we leave room for 7 places to the left of the decimal point, 1 character
for the decimal point itself, and 2 places for the decimal part of the number. With these
statements, the program output would be:

The total is: 13
The average is: 4.33

which looks much nicer.

Scripting With Perl | 537

Adding a minus (-) symbol immediately after the percentage symbol makes the display
left-aligned. For example the statement:

printf("\n%15s", "hello");

would display:

(ten spaces) hello

whereas adding the minus symbol as shown here:

printf("\n%-15s", "hello");

would display:

hello (ten spaces)

It’s typical to display numbers right-aligned, and to display text left-aligned.

Resources
To learn more about Perl, we recommend these resources:

• The Perl.org page for people learning Perl (http://learn.perl.org)

• Learning Perl by Randal L. Schwartz et al. (O’Reilly)

• The Comprehensive Perl Archive Network web site (http://www.cpan.org)

Exercises
1. What are the strengths of Perl?

2. What is the difference between an array and a hash?

3. What does the following Perl script do?

#!/usr/bin/perl
use strict;

my $Answer;
while(@ARGV)
{
 $Answer+=shift(@ARGV);
}
print "Answer: $Answer\n"

538 | Chapter 16: Perl

http://learn.perl.org
http://www.cpan.org

CHAPTER 17

Using Perl with MySQL

Now that you can find your way about Perl, let’s see how you can use it to connect to
a MySQL server. In this chapter, we look at how we can use the Perl scripting language
to connect to a MySQL database and interchange data with it. We create command-
line clients to import data into a database, and to query a database and display results.

The Perl DBI module supports a variety of database drivers. Naturally, we’re interested
in the MySQL driver for this book, but there are others. Theoretically, you should be
able to simply change the driver referenced by your script to get your script to work
with another supported database management system, such as Oracle. In practice,
however, you’ll need to put in some additional thought into writing your scripts so that
you don’t use MySQL-specific constructs such as SHOW TABLES that won’t necessarily
work on other database servers. Of course, this isn’t an issue if you’re certain you won’t
ever change databases, but it’s a good idea to think carefully about how your application
is likely to be used in a few years’ time.

Connecting to the MySQL Server and Database

To access the MySQL server from a Perl script, we need the DBI module discussed in
“Setting up Perl” in Chapter 2. In the script, we must tell Perl that we want to use this
module:

use DBI;

Then, we provide connection parameters to the DBI connect() function and store the
returned connection in a database handler (dbh):

my $dbh=DBI->connect("DBI:mysql:host=localhost;database=mysql",
 "the_username",
 "the_password");

For a Mac OS X server using the XAMPP Perl installation, you would write:

my $dbh=DBI->connect("DBI:mysql:
 host=localhost;mysql_socket=/Applications/xampp/xamppfiles/var/mysql/mysql.sock;

539

 database=mysql",
 "the_username",
 "the_password");

Don’t add a new line before the database=mysql parameter; we had to do this so that
the instruction would fit on the page. If you followed our XAMPP installation instruc-
tions in “Installing Perl modules under Mac OS X” in Chapter 2 to create a symbolic
link to the default MySQL socket file location (/tmp/mysql.sock), you can omit the
mysql_socket parameter.

We can follow this with Perl instructions to carry out the main functions of the script.
Finally, being good citizens, we disconnect from the server before we end the script:

$dbh->disconnect();

The arrow (arrow -> operator) operator is used to call functions that are associated
with a class of objects. In the connection code, we’ve called on the connect() function
of the DBI class. We also call on functions associated with the database handler and the
statement handler in the same way. We don’t describe object-oriented design and pro-
gramming in detail in this book.

Handling Errors When Interacting with the Database
If the connection to the database fails, the dbh variable will contain an undefined (ef-
fectively false) value. We should test for this and stop the program if the connection
failed; otherwise, we’ll run into difficulties once the program tries to use the database,
generating unhelpful error messages such as:

Can't call method "prepare" on an undefined value at ./select.pl line 9.

One way to test for connection failure is simply to check the value of the database
handler variable:

my $dbh=DBI->connect("DBI:mysql:host=localhost;database=$DB_Database",
 "$DB_Username", "$DB_Password");
if(!$dbh)
{
 die("Failed connecting to the database.");
}

If the database handler is not valid, we use the die() function to print an error message
and stop the program.

A more compact way is to use the or keyword to execute the die() function if the
connection failed:

my $dbh=DBI->connect("DBI:mysql:host=localhost;database=$DB_Database",
 "$DB_Username", "$DB_Password")
or
 die("Failed connecting to the database.");

540 | Chapter 17: Using Perl with MySQL

Finally, we can modify problem-handling behavior by setting the attributes
PrintError and RaiseError in the call to the connect() function. Setting the
PrintError attribute to 1 displays error messages; setting it to 0 disables this. Similarly,
setting the RaiseError attribute to 1 displays an error message and stops processing if
an error occurs; setting it to 0 disables this. If both are set to 0, no error messages are
displayed, and the program tries to continue even if the connection to the MySQL
database could not be established. We can use this setting to suppress the default Perl
messages and display only our own custom messages:

my $dbh=DBI->connect("DBI:mysql:host=localhost;database=mysql", "the_username",
 "the_password", {PrintError=>0, RaiseError=>0})
or
 die("Failed connecting to the database");

By default, PrintError is 1 and RaiseError is 0.

The DBI module includes the special variables $DBI::err and $DBI::errstr to store
information if a problem occurs. These contain, respectively, the error code and human-
readable error message returned by the database server. The two colons are a Perl con-
vention for separating the name of a package (in this case, DBI) from the name of a
variable defined in the package (err and errstr).

We can use these variables in our own error-handling code. For example, we can write:

my $dbh=DBI->connect("DBI:mysql:host=localhost;database=mysql",
 "the_username",
 "the_password", {PrintError=>0, RaiseError=>0})
or
 die("Failed connecting to the database (error number $DBI::err):
 $DBI::errstr\n");

If RaiseError is set to 1, a failure to connect to the database might produce the error
message:

DBI connect('host=localhost;database=mysql','root',...) \
 failed: Can't connect to local MySQL server through socket \
 '/var/lib/mysql/mysql.sock' (2) at ./select.pl line 5

whereas our custom error message above would be displayed as:

Failed connecting to the database (error number 2002): \
Can't connect to local MySQL server through socket \
'/var/lib/mysql/mysql.sock' (2)

While detailed error messages are very useful when debugging code under develop-
ment, it’s generally prudent to hide errors from your users in production code, espe-
cially in applications that are published to the Web. Instead, have the program log error
messages to a file or email them to you. That way, users aren’t exposed to unsightly
and possibly confusing error messages, and the internals of your system are not as
exposed to potential attackers. When your program does encounter a problem, display
a generic error message such as “We are experiencing technical difficulties; please con-
tact the system administrator or try again later.”

Handling Errors When Interacting with the Database | 541

Using Queries That Return Answer Sets
Most of the queries used for database access—for example, SELECT queries—read in-
formation from the database for display or processing. For such queries, you first call
the prepare() function to set up a statement handler and send it to the server, and then
call the execute() function function to run the query:

my $sth=$dbh->prepare("SELECT * FROM artist");
$sth->execute();

You can examine the result of a query by using the fetchrow_hashref() function to
fetch the answer rows one by one and place them in a hash; thus, you can access the
individual hash elements for processing, as for the artist_id and artist_name fields
below:

while(my $val=$sth->fetchrow_hashref())
{
 printf ("%-5s %-128s\n", $ref->{artist_id}, $ref->{artist_name});
}

Finally, you deallocate resources assigned to the statement handler:

$sth->finish();

Example 17-1 lists the artists and their ID numbers from the artist database.

Example 17-1. Perl script to select data from the database

#!/usr/bin/perl
use DBI;
use strict;

my $DB_Database="music";
my $DB_Username="root";
my $DB_Password="the_mysql_root_password";
my $dbh=DBI->connect("DBI:mysql:host=localhost;database=$DB_Database",
"$DB_Username", "$DB_Password",
{PrintError=>0, RaiseError=>0})
or
 die("Failed connecting to the database ".
 "(error number $DBI::err):$DBI::errstr\n");

my $count=0;

my $Query="SELECT * FROM artist";
my $sth=$dbh->prepare($Query);
$sth->execute();

printf ("%-5s %-30s\n", "ID:", "Name:");
printf ("%-5s %-30s\n", "---", "------------------------");
while(my $ref=$sth->fetchrow_hashref())
{
 printf ("%-5s %-128s\n", $ref->{artist_id}, $ref->{artist_name});
 $count++;
}

542 | Chapter 17: Using Perl with MySQL

printf ("\nTotal:%d\n", $count);

$sth->finish();
$dbh->disconnect();

Save this script as select.pl and run it as:

$./select.pl

You should get a display similar to this:

ID: Name:
--- ------------------------
1 New Order
2 Nick Cave & The Bad Seeds
3 Miles Davis
4 The Rolling Stones
5 The Stone Roses
6 Kylie Minogue

Total:6

With fetchrow_hashref(), the example obtains a hash for each row. There are other
ways to access the query results. The fetchrow_array() function returns an array,
where you access elements by index rather than by key. The elements in the array are
in the order returned by the SELECT statement. In our example, the SELECT * FROM
artist statement returns the artist table fields in the order that they appear in the
database; you can find this by running the query from the MySQL monitor or looking
at the table description (here it has been truncated to fit the page):

mysql> DESCRIBE artist;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| artist_id | smallint(5) | NO | PRI | 0 | |
| artist_name | char(128) | YES | | | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.22 sec)

If we wanted to print the artist name before the artist ID, we would access array element
1 first for the artist name and then array element 0 for the artist ID:

while(my @val=$sth->fetchrow_array())
{
 printf ("%-128s %-5s\n", $val[1], $val[0]);
 $count++;
}

We can also return a reference to the results array, rather than the array itself, using
the fetchrow_arrayref() function. Here, we find another application of the arrow op-
erator; the elements in the array can be accessed through the array reference:

while(my $ref=$sth->fetchrow_arrayref())
{

Using Queries That Return Answer Sets | 543

 printf ("%-5s %-128s\n", $ref->[0], $ref->[1]);
 $count++;
}

Both fetchrow_array() and fetchrow_arrayref() are faster than using
fetchrow_hashref(), but are more prone to problems in mixing up column index
numbers. They may also have problems if you alter the order of fields—for example,
with an ALTER TABLE statement. We recommend that you use fetchrow_hashref() for
all but the most time-sensitive applications.

Perl is case-sensitive, so accessing the fetched results using incorrect capitalization
won’t work. In our example, we’re interested in the artist_id and artist_name fields
of the music.artist table. If we try to access the results using, say, uppercase names:

printf ("%-5s %-128s\n", $ref->{ARTIST_ID}, $ref->{ARTIST_NAME});

blanks will be printed where we expect the field values to be, because ref-
>{ARTIST_ID} is not the same as ref->{artist_id}. If in doubt, try out a SHOW CREATE
TABLE table_name; or DESCRIBE table_name statement from the MySQL monitor to see
exactly how to capitalize field names.

Alternatively, you can use all uppercase or all lowercase field names and ask the
fetchrow_hashref() function to force all the names to uppercase or lowercase when it
retrieves them:

while(my $ref=$sth->fetchrow_hashref("NAME_uc"))
{
 printf ("%-5s %-128s\n", $ref->{ARTIST_ID}, $ref->{ARTIST_NAME});
 $count++;
}

If you use "NAME_uc", your Perl code should use all uppercase labels; you should use all
lowercase labels if you force everything to lowercase with "NAME_lc".

Before we end our discussion on accessing result sets, let’s look at a couple of high-
level ways of performing all the prepare and execute operations together. The
selectall_arrayref() function returns a two-dimensional array containing the query
results. For example, a query to list the contents of the music.artist table might return
the following array:

+---+---------------------------+
| 0 | 1 |
+---+---------------------------+
| 0 | New Order |
| 1 | Nick Cave & The Bad Seeds |
| 2 | Miles Davis |
| 3 | The Rolling Stones |
| 4 | The Stone Roses |
| 5 | Kylie Minogue |
+---+---------------------------+

Each row of the array is itself an array containing the result fields. The rows and columns
can be addressed with an index starting from 0.

544 | Chapter 17: Using Perl with MySQL

The following snippet of code shows how to use the selectall_arrayref() function:

print "\n\nselectall_arrayref:\n";
my $ref=$dbh->selectall_arrayref($Query);
while(my $row=shift(@$ref))
{
 printf ("%-5s %-128s\n", $row->[0], $row->[1]);
 $count++;
}

We use the shift() function to fetch the rows from the array one at a time and then
access the columns by their index—0, 1, 2, and so on. There is a corresponding hash-
based selectall_hashref() function that you can also use:

my $ref = $dbh->selectall_hashref($Query, 'artist_id');
foreach my $artist_id (keys %$ref)
{
 printf ("%-5s %-128s\n", $artist_id, $ref->{$artist_id}->{artist_name});
 $count++;
}

The call to selectall_hashref() specifies the query and the hash key, and returns a
reference to a hash. Rows with identical hash keys are overwritten by later rows, so it’s
important that the hash keys passed to selectall_hashref() be unique.

Using Queries That Don’t Return Answer Sets
For queries such as INSERT, UPDATE, REPLACE, and DELETE that do not return a result set,
we can use the do() function to perform the query without the need for a prior call to
prepare().

The do() function returns the number of rows affected by the query; if the query could
not be performed successfully, the function returns zero. If the query was performed
successfully but no rows were affected, the function returns the value 0E0, which is 0
times 10 to the power 0 (for instance, 1E3 is 1000). Perl treats 0E0 as having the numerical
value zero but the Boolean value true, so if the query returns this value, we know that
the operation succeeded (true) but that zero rows were affected:

my $rowsaffected=$dbh->do($Query);
if($rowsaffected && $rowsaffected==0E0)
{
 print "Operation was successful but no rows were affected\n";
}
elsif($rowsaffected)
{
 print "Operation was successful ($rowsaffected rows)\n";
}
else
{
 print "Operation failed: $DBI::errstr\n";
}

Using Queries That Don’t Return Answer Sets | 545

Let’s explore this by looking at four possibilities. Imagine you have a database called
perltest and it includes a table called testtable with two string columns; these could
have been created from the monitor with the following statements:

mysql> CREATE DATABASE perltest;
Query OK, 1 row affected (0.23 sec)

mysql> USE perltest;
Database changed
mysql> CREATE TABLE testtable (col1 CHAR(40), col2 CHAR(40));
Query OK, 0 rows affected (0.01 sec)

If the query is:

my $Query="INSERT INTO testtable (col1, col2) VALUES ('abcd1', 'abcd2')";

we’d get the message:

Operation was successful (1 rows)

reflecting the number of rows inserted.

Deleting matching rows with the query:

my $Query="DELETE FROM testtable WHERE col1='abcd1' AND col2='abcd2'";

would give us:

Operation was successful (1 rows)

reflecting the number of rows deleted.

Trying to delete data items that don’t exist in the database:

my $Query="DELETE FROM testtable WHERE col1='xabcd1' AND col2='abcd2'";

would return 0E0, so the success message is printed:

Operation was successful but no rows were affected

Finally, if the do() operation could not be performed for any reason (for example, an
incorrect SQL query, duplicate key, or a nonexistent table), the failure message would
be printed. If we tried to access the nonexistent table nosuchtable:

my $Query="DELETE FROM nosuchtable WHERE col1='abcd1' and col2='abcd2'";

This would result in the message:

Operation failed: Table 'perltest.nosuchtable' doesn't exist

Binding Queries and Variables
The Perl DBI module offers a convenient way to write SQL queries with placeholders
that can be replaced by arguments to the execute() statement. Similarly, results from
a query can be mapped to Perl variables. In this section, we describe how you can use
placeholders in your queries.

546 | Chapter 17: Using Perl with MySQL

Binding Variables to a Query
Consider the script we wrote earlier in “Reading in values from a file” in Chapter 16 to
read in a list of animals and their counts from the animals.csv file of comma-separated
values, and load them into the Animals hash. We’ve reproduced the main part of the
script in Example 17-2.

Example 17-2. Perl script to load data from a CSV file into the AnimalDB database

#!/usr/bin/perl
use strict;

If the user hasn't provided one command-line argument, provide a
helpful error message.
if(@ARGV!=1)
{
 die("Syntax: $0 [Input file]\n");
}
Open the file specified on the command line; if we can't open it,
print an error message and stop.
open(INPUTFILE, $ARGV[0])
or
 die("Failed opening $ARGV[0]\n");

my %Animals;

Read in from input file line by line; each line is
automatically placed in $_
while(<INPUTFILE>)
{
 # Remove the newline at the end of the line
 chomp($_);

 # Split the line by commas and load into the AnimalsData array
 my @AnimalsData=split(",", $_);

 # Assign the text before the first comma to the name
 my $AnimalName=$AnimalsData[0];

 # Assign the text between the first comma and the second comma
 # (if any) to the count
 my $AnimalCount=$AnimalsData[1];

 # Add an entry to the Animals hash for this animal name and
 # count pair:
 $Animals{$AnimalName}=$AnimalCount;
}
Close the input file
close(INPUTFILE);

Let’s modify the script to load the data into a MySQL table. First, using the MySQL
monitor, create a new AnimalDB database and a new Animals table:

Binding Queries and Variables | 547

mysql> CREATE DATABASE AnimalDB;
Query OK, 1 row affected (0.02 sec)
mysql> USE AnimalDB;
Database changed
mysql> CREATE TABLE Animals (Name CHAR(10), Count SMALLINT);
Query OK, 0 rows affected (0.01 sec)

To load the Animals hash into the Animals table in the database, we can create and
execute an SQL query for each animal name and count pair:

while ((my $Animal, my $Count) = each(%Animals))
{
 my $Query="INSERT INTO Animals (Name, Count) VALUES ($Animal, $Count)";
 my $sth=$dbh->prepare($Query);
 $sth->execute($Animal, $Count);
}

This requires us to prepare as many queries as there are data rows, which is inefficient.

A better way is to prepare a single query with placeholders and execute the query in
turn with the different parameters:

my $Query="INSERT INTO Animals (Name, Count) VALUES (?, ?)";
my $sth=$dbh->prepare($Query);
while ((my $Animal, my $Count) = each(%Animals))
{
 $sth->execute($Animal, $Count);
}

Here, the question-mark (?) symbols in the query are placeholders. The placeholders
are replaced by the values passed to the execute() function. For each iteration of the
while loop in our example, the $Animal and $Count values passed to the execute()
function are plugged into the INSERT query, and the query is executed. This is known
as binding; besides being more efficient, binding variables to a query in this way helps
to prevent some types of security problems.

Binding Query Results to Variables
Binding can work the other way too: we can bind the results of a query to Perl variables.
Earlier in this chapter, we saw how we can access the results of a query using
fetchrow_hashref() and its related functions; for example, to access the Animals table
data, we could have a script that uses the fetchrow_arrayref() function, as shown in
Example 17-3.

Example 17-3. Perl script to read data from the Animals database

#!/usr/bin/perl
use DBI;
use strict;

my $DB_Database="AnimalDB";
my $DB_Username="root";
my $DB_Password="the_mysql_root_password";

548 | Chapter 17: Using Perl with MySQL

my $dbh=DBI->connect("DBI:mysql:host=localhost;database=$DB_Database",
 "$DB_Username", "$DB_Password", {PrintError=>0, RaiseError=>0})
 or
 die("Failed connecting to the database ".
 "(error number $DBI::err): $DBI::errstr\n");

Process the data to calculate the total;

my $Animal_Name;
my $Animal_Count;

my $Total=0;
print "Pet roll call:\n".
 "===============\n";

my $Query="SELECT Name, Count FROM Animals";
my $sth = $dbh->prepare($Query);
$sth->execute ();

while(my $ref=$sth->fetchrow_arrayref())
{
 printf("%-10d %-20s\n", $ref->[1], $ref->[0]);
 $Total+=$ref->[0];
}
print "===============\n".
 "Total:\t$Total\n";

$sth->finish();
$dbh->disconnect();

Example 17-4 removes the need for the $ref variable by using the bind_columns()
function to bind the result columns to the Animal_Name and Animal_Count variables.

Example 17-4. Perl fragment to read and display data from the Animals database, using binding

my $Total=0;
print "Pet roll call:\n",
 "===========\n";

my $Query="SELECT Name, Count from Animals";
my $sth = $dbh->prepare($Query);
$sth->execute ();

my $Animal_Name;
my $Animal_Count;

Bind query results to variables
$sth->bind_columns(\$Animal_Name, \$Animal_Count);

while($sth->fetchrow_arrayref())
{
 print "$Animal_Name:\t$Animal_Count\n";
 $Total+=$Animal_Count;
}

Binding Queries and Variables | 549

print "===========\n",
 "Total:\t$Total\n";

The values are assigned to variables in the bind_columns() function in the order they
appear in the results of the SELECT, so we fetch the query results with the
fetchrow_arrayref() function, rather than fetchrow_hashref(). While
fetchrow_hashref() is often more convenient in other circumstances, there is no ad-
vantage to it here, and it would run more slowly. Note that when passing the variable
names to the bind_columns() function, we add a backslash symbol (\) in front of the
dollar symbol so that Perl leaves the variable name intact and doesn’t replace it with
the value of the variable.

The Complete Script Using Both Types of Binding
For our example of loading data into the database, we can put both parts together to
write a single script that loads data into the database and accesses this data, using both
types of binding, as shown in Example 17-5.

Example 17-5. Perl script with both types of binding

#!/usr/bin/perl
use DBI;
use strict;

If the user hasn't provided any command-line arguments, provide a
helpful error message.
if(@ARGV!=1)
{
 die("Syntax: $0 [Input file]\n");
}
If the user has provided the command line arguments, fill in the
Animals hash with the corresponding values.

Open the file specified on the command line; if we can't open it,
print an error message and stop.
open(INPUTFILE, $ARGV[0])
 or die("Failed opening $ARGV[0]\n");

##
Load data from the CSV file into the Animals hash
my %Animals;
while(<INPUTFILE>)
{
 # Remove the newline at the end of the line
 chomp;

 # Split the line by commas
 my @AnimalsData=split(",", $_);

 # Assign the text before the first comma to the name
 my $AnimalName=@AnimalsData[0];

550 | Chapter 17: Using Perl with MySQL

 # Assign the text between the first comma and the second comma
 # (if any) to the count
 my $AnimalCount=@AnimalsData[1];

 # Add an entry to the Animals hash for this animal name and
 # count pair:
 $Animals{$AnimalName}=$AnimalCount;
}
close(INPUTFILE);

##
Connect to the database
my $DB_Database="AnimalDB";
my $DB_Username="root";
my $DB_Password="the_mysql_root_password";
my $dbh=DBI->connect("DBI:mysql:host=localhost;database=$DB_Database",
 "$DB_Username", "$DB_Password", {PrintError=>0, RaiseError=>0})
 or
 die("Failed connecting to the database (error count $DBI::err): $DBI::errstr\n");

##
Load the data into the database; variables bound to query
my $Query="INSERT INTO Animals (Name, Count) values (?, ?)";
my $sth=$dbh->prepare($Query);
while ((my $Animal, my $Count) = each(%Animals))
{
 $sth->execute($Animal, $Count);
}

##
Read the data from the database; query results bound to variables
my $Total=0;
print "Pet roll call:\n",
 "===========\n";

my $Query="SELECT Name, Count from Animals";
my $sth = $dbh->prepare($Query);
$sth->execute ();

my $Animal_Name;
my $Animal_Count;

Bind query results to variables
$sth->bind_columns(\$Animal_Name, \$Animal_Count);

while($sth->fetchrow_arrayref())
{
 print "$Animal_Name:\t$Animal_Count\n";
 $Total+=$Animal_Count;
}
print "===========\n",
 "Total:\t$Total\n";

Free the statement handler and disconnect from the database

Binding Queries and Variables | 551

$sth->finish();
$dbh->disconnect();

Importing and Exporting Data
From time to time, you may need to transfer data into the database from external
sources, or to generate data in a format that other applications can use. A common file
format for this is the comma-separated values (CSV) format discussed in “Loading Data
from Comma-Delimited Files” in Chapter 8. Data import and export is one of the areas
in which Perl is very strong, and programs in Perl can read and write data in a large
number of formats. For example, you can generate plain text, HTML, XML, or Rich
Text Format (RTF) documents. RTF documents are more complex but can contain
formatting instructions that most word processors understand. There are even Perl
modules to process binary (nontext) formats, such as the Microsoft Excel spreadsheet
file format.

Earlier, in “Binding Variables to a Query,” we explained how to import data from a
CSV file. Let’s now look at an example to export data from our Animals database to a
CSV file. All we need to do is to use the print statement to write to the output file, with
the data separated by a comma, as shown in Example 17-6.

Example 17-6. Perl script to export data from the Animals database, using binding

#!/usr/bin/perl
use DBI;
use strict;

If the user hasn't provided any command-line arguments, provide a
helpful error message.
if(@ARGV!=1)
{
 die("Syntax: $0 [Output file]\n");
}

my $DB_Database="AnimalDB";
my $DB_Username="root";
my $DB_Password="the_mysql_root_password";
my $dbh=DBI->connect("DBI:mysql:host=localhost;database=$DB_Database",
 "$DB_Username", "$DB_Password", {PrintError=>0, RaiseError=>0})
or
 die("Failed connecting to the database ".
 "(error number $DBI::err): $DBI::errstr\n");

my $Query="SELECT Name, SUM(Count) FROM Animals GROUP BY Name";
my $sth = $dbh->prepare($Query);
$sth->execute();

Bind query results to variables
my $Animal_Name;
my $Animal_Count;

552 | Chapter 17: Using Perl with MySQL

$sth->bind_columns(\$Animal_Name, \$Animal_Count);

Open the file specified on the command line; if we can't open it,
print an error message and stop.
open(OUTPUTFILE, ">$ARGV[0]")
or
 die("Failed opening $ARGV[0]\n");

Write header row with column names
print OUTPUTFILE "Name,Count\n";

Iterate through the results and write them as comma-separated values
to the output file
while($sth->fetchrow_arrayref())
{
 print OUTPUTFILE "$Animal_Name,$Animal_Count\n";
}
$sth->finish();
$dbh->disconnect();

close(OUTPUTFILE);

If the data could contain a comma, the resulting file could be unusable. For example,
if we want to export names and telephone numbers in the format:

Name,Number

we’d have difficulty if the data in the MySQL database were allowed to have commas,
as it does here:

+-----------------+-----------------+
| Name | Number |
+-----------------+-----------------+
| Hamzeh Abdollah | +61 3 1234 5678 |
| Bloggs, Fred | +61 3 8795 4321 |
...
+-----------------+-----------------+

If we exported this data to a CSV file, we would have:

Hamzeh Abdollah,+61 3 1234 5678
Bloggs, Fred,+61 3 8795 4321

The spreadsheet program would take the second row to have the name “Bloggs” and
the telephone number “ Fred”. To avoid this problem, we can enclose the data in double
quotes when writing it out:

print OUTPUTFILE "\"$Name\",\"$Count\"\n";

Note that since the text to be written to file is already enclosed in double quotes, we’ve
escaped (placed a backslash symbol before) the quotes surrounding the data. The ex-
ported data would be:

"Hamzeh Abdollah","+61 3 1234 5678"
"Bloggs, Fred","+61 3 8795 4321"

Importing and Exporting Data | 553

which is handled correctly by most spreadsheet programs.

Handling NULL Values
MySQL operations return undef for fields that have a NULL value; however, Perl handles
these values as empty strings, so if we ask it to print the results, we’ll simply get blanks
for NULL values. Example 17-7 checks whether fields are NULL and handles them, perhaps
by setting them to the string "NULL".

Example 17-7. Perl script to handle NULL values

#!/usr/bin/perl -w
use DBI;
use strict;

my $DB_Database="AnimalDB";
my $DB_Username="root";
my $DB_Password="the_mysql_root_password";
my $dbh=DBI->connect("DBI:mysql:host=localhost;database=$DB_Database",
"$DB_Username", "$DB_Password", {PrintError=>0, RaiseError=>0})
 or
 die("Failed connecting to the database ".
 "(error number $DBI::err): $DBI::errstr\n");

my $Query="SELECT Count from Animals";
my $sth=$dbh->prepare($Query);
$sth->execute();
while(my $ref=$sth->fetchrow_hashref("NAME_uc"))
{
 my $Count=$ref->{COUNT};
 if(!defined($Count))
 {
 $Count="NULL";
 }
 print "Count=$Count\n";
}
$sth->finish();
$dbh->disconnect();

Resources
See the MySQL AB page (http://dev.mysql.com/usingmysql/perl) and the DBI module
documentation (http://search.cpan.org/~timb/DBI/DBI.pm).

Exercises
1. What does the Perl DBI module do?

2. When would you prefer to use fetchrow_array() over fetchrow_hashref()?

554 | Chapter 17: Using Perl with MySQL

http://dev.mysql.com/usingmysql/perl
http://search.cpan.org/~timb/DBI/DBI.pm

3. What are the advantages of binding variables to a query?

4. How should you handle NULL values in answers returned by MySQL?

Exercises | 555

CHAPTER 18

Serving Perl Pages to the Web

In this chapter, we’ll see how to write simple web database clients using Perl. Web
applications written using Perl can take advantage of the Apache module mod_perl and
the HTTP::Mason library for robust and high-performance web sites. We don’t discuss
these in detail in this book. We should note that unlike Perl, PHP was designed from
the start to be used for scripting web pages and is probably a better choice for any major
new web application.

In Chapter 2, we saw how to install the Apache web server on a Linux system, and the
XAMPP package on Windows and Mac OS X. We can make our Perl scripts accessible
from a web server by placing them in a location that the web server can access.

On a Linux system, the scripts should be placed in the cgi-bin directory under the web
server document root, typically /var/www/cgi-bin or /usr/local/apache/htdocs/cgi-bin.
For a Windows system, the scripts should be placed in C:\Program Files\xampp\cgi-
bin. For a Mac OS X system using XAMPP, use /Applications/xampp/htdocs.

Depending on the system configuration, you may need to have system root or admin-
istrator privileges to write files to this location. You can assume these privileges under
Linux by typing su -, under Windows by logging in as a user with Windows Admin-
istrator privileges, or under Mac OS X prefacing commands with the sudo keyword.

Let’s write a small script to generate the following HTML page:

<html>
 <head>
 <title>My first Perl CGI script</title>
 </head>
 <body>
 Hello, World!

 This is very interesting!
 </body>
</html>

We can use the print comand to generate the HTML page. Since the web server sends
the script output directly to the browser, we need to add a bit of extra information to
tell the web browser to expect HTML text, rather than, say, a JPEG image:

557

print "Content-type: text/html; charset=UTF-8\n\n";

The charset tells the browser that the server will send text using the UTF-8 character set.

Example 18-1 is the complete script to generate the HTML page.

Example 18-1. A first CGI Perl script that just displays some text

#!/usr/bin/perl
print "Content-type: text/html; charset=UTF-8\n\n";

print "
<html>
 <title>My first Perl CGI script</title>
 <body>
 Hello, World!

 This is very interesting!
 </body>
</html>
";

For CGI scripts to work properly, they must print the Content-type line before sending
any other data to the browser. Save this file as HelloWorld.cgi.pl in the appropriate
location under the web server document root as discussed earlier.

The CGI approach requires the web server to execute the program and display the
results; this means that the web server should have the necessary access permissions to
read and execute the Perl scripts. On Linux or Mac OS X systems, permissions are
assigned by three categories:

• The user who owns the file (user)

• Users in the group that the file is in (group)

• Everyone else (other)

The Apache web server typically runs as the user nobody, who isn’t in any group, so if
you want the web server to be able to run a file, you’ll need to give permission for
everybody (the o permission, which stands for “other”) to read and execute the script.

For example, you can set appropriate permissions for the file HelloWorld.cgi.pl by typ-
ing the command:

$ chmod u=rwx,g=rx,o=rx HelloWorld.cgi.pl

We discuss permission settings in “Restricting access to files and directories” in Chap-
ter 2. The permissions for the XAMPP web server directories on Windows are less
stringent, and a nonprivileged user can place files in the cgi-bin directory for delivery
by the server.

Ensure your web server is running, then open the file in a web browser. On a Linux
system or a Windows system using XAMPP, the script can be accessed at http://host
name/cgi-bin/HelloWorld.cgi.pl, while on a Mac OS X system using XAMPP, the address
to use is http://hostname/xampp/HelloWorld.cgi.pl. The hostname is the name of the

558 | Chapter 18: Serving Perl Pages to the Web

http://hostname/cgi-bin/HelloWorld.cgi.pl
http://hostname/cgi-bin/HelloWorld.cgi.pl
http://hostname/xampp/HelloWorld.cgi.pl

computer containing the scripts. If the web server is on the same computer as your web
browser, you can use the value localhost for the hostname, so the address to use would
be http://localhost/cgi-bin/HelloWorld.cgi.pl on a Linux system, and http://localhost/
xampp/HelloWorld.cgi.pl on a Windows or Mac OS X system using XAMPP.

If your browser reports that you don’t have authorization to access the page, you should
check the permission settings for the file or the directory it’s in. It’s often helpful to
check the Apache error logfile; we describe how to find this file in “The Apache Error
Log” in Chapter 2. Open the error logfile in a text editor and look near the bottom; you
might find a line such as this one:

[Thu Jun 29 02:26:35 2006] [error] [client 127.0.0.1]
 Options ExecCGI is off in this directory:
 /var/www/cgi-bin/mysql.cgi.animals.popup.pl

This means that Apache has not been configured to allow CGI scripts to be run in this
directory. The solution is to put the scripts in a directory where CGI scripts are allowed
or to configure your server to allow CGI scripts to run in the directory you want. To
do the latter, you need to create a new entry in the Apache configuration file; we describe
how to locate this file in “The Apache Configuration File” in Chapter 2. For example,
to allow CGI scripts to be executed in the directory /var/www/cgi-bin, you would write:

<Directory "/var/www/cgi-bin">
 AllowOverride All
 Options ExecCGI
 Order allow,deny
 Allow from all
 AddHandler cgi-script.pl
</Directory>

Back to our script. This first web page was not dynamic; for a slightly more complex
example, let’s write a CGI script that connects to the MySQL database and lists the
animals in our pet database, as shown in Example 18-2.

Example 18-2. A CGI Perl script that lists animals from the MySQL database

#!/usr/bin/perl
use strict;

Connect to the MySQL server, run the query, store the result
use DBI;
my $dbh=DBI->connect("DBI:mysql:host=localhost;database=AnimalDB",
 "the_username",
 "the_password",
 {PrintError=>0, RaiseError=>1});
my $results = $dbh->selectall_hashref('SELECT * FROM Animals', 'Name');
$dbh->disconnect();

my $result=
 "Content-Type: text/html; charset=UTF-8\n\n".
 "<html>".
 "<head>".

Serving Perl Pages to the Web | 559

http://localhost/cgi-bin/HelloWorld.cgi.pl
http://localhost/xampp/HelloWorld.cgi.pl
http://localhost/xampp/HelloWorld.cgi.pl

 "<title>List of Animals</title>".
 "</head><body>".
 "<h1>Pet roll call</h1>".
 "<table border='true'>".
 "<tr align='CENTER' valign='TOP' bgcolor='LIGHTGREEN'>".
 "<th>Name</th><th>Count</th></tr>";

foreach my $Name (keys %$results)
{
 $result.=
 "<tr>".
 "<th align='left' bgcolor='SKYBLUE'>$Name</th>".
 "<td bgcolor='PINK'>".$results->{$Name}->{Count}."</td>".
 "</tr>";
}

$result.=
 "</table>".
 "</body></html>";

print $result;

Here, we build up the HTML content as a string in the $result variable and print this
string out at the end of the script. We’ve made liberal use of whitespace to help make
the script clearer. If it’s still daunting to you, try replacing the variable $Name with an
animal’s name, and $results->{$Name}->{Count} with a number. The results will then
be essentially HTML markup, with some Perl wrapping—for example:

<tr>
<th align='left' bgcolor='SKYBLUE'>cats</th>
<td bgcolor='PINK'>2</td>
</tr>

The Perl CGI Module
The Perl CGI module has some helpful functions to simplify generating common snip-
pets of HTML. We can enable all these by modifying our use statement to:

use CGI ':all'

We can then generate HTML elements by calling the corresponding function. For ex-
ample, we can include text within a level-one heading tag pair (<h1>text</h1>) by writ-
ing h1("text").

Many of these functions take attributes that are reflected in the generated HTML. For
example, to generate the tag <th align="LEFT" bgcolor="SKYBLUE">, we would write:

th({-align=>"LEFT", -bgcolor=>"SKYBLUE"}, $Name).

Example 18-3 rewrites our our previous example using CGI functions.

560 | Chapter 18: Serving Perl Pages to the Web

Example 18-3. The CGI Animal list script rewritten with CGI functions

#!/usr/bin/perl
use strict;

Connect to the MySQL server, run the query, store the result
use DBI;
my $dbh=DBI->connect("DBI:mysql:host=localhost;database=AnimalDB",
 "the_username",
 "the_password",
 {PrintError=>0, RaiseError=>1});

my $results = $dbh->selectall_hashref('SELECT * FROM Animals', 'Name');
$dbh->disconnect();

Prepare and display the results in HTML format
use CGI ':all';

my @AnimalsDataArray;
foreach my $Name (keys %$results)
{
 my $AnimalsDataArrayRow =
 th({-align=>"LEFT", -bgcolor=>"SKYBLUE"}, $Name).
 td({-bgcolor=>"PINK"}, [$results->{$Name}->{Count}]);
 push @AnimalsDataArray, $AnimalsDataArrayRow;
}

my $result=
 header(-type=>"text/html", -charset=>'UTF-8').
 start_html(-title=>"List of Animals", -encoding => 'UTF-8').
 h1("Pet roll call").
 table(
 {-border=>'true'},
 Tr({-align=>"CENTER",-valign=>"TOP", -bgcolor=>"LIGHTGREEN"},
 [th(['Name','Count'])]),
 Tr([@AnimalsDataArray])
).
 end_html;
print $result;

Instead of printing out the table rows one by one, this example defines the array
$AnimalsDataArray, and uses the push command to append each row of data to this
array. We build up the $result string using functions provided by the CGI module and
place @AnimalsDataArray in a table row. Finally, we print the whole $result string.

The charset parameter of the header() function and the encoding parameter of the
start_html() function are optional, and are used to specify the character encoding
that’s used in the document. Together, they help the browser determine the appropriate
fonts to use to correctly display the page. If you omit these parameters, the default value
ISO-8859-1 will be used.

The Perl CGI Module | 561

Note that the CGI function to create a table row is Tr() rather than tr(); this is to
avoid confusion with a completely different “transliteration replacement” function tr
that is available by default in Perl.

Processing User Input
User interaction with a web application is typically a two-way affair; the system displays
content to the user, who provides input, such as through a web form, that the system
uses in further processing. For example, an online store application displays items for
sale; the user chooses items and enters purchase information, and the system displays
a receipt.

For our pet roll call example, we could allow the user to enter the name of an animal.
The system could then process this information and return the number of animals of
that type. This requires two web pages. First, a form is displayed to accept user input.
When this form is submitted, a second page is displayed with the query result.

You can generate an HTML form that passes the submitted values to the proc-
ess_form.pl file using the HTTP POST method by writing:

print
 start_form(-action=>"process_form.pl", -method=>'POST').
 ...form content....
 end_form;

Example 18-4 generates a web form with a simple text input field.

Example 18-4. A CGI Perl script that generates a simple form

#!/usr/bin/perl
use strict;
use CGI ':all';

print
 header(-type=>"text/html", -charset=>'UTF-8').
 start_html(-title=>"Search Page", -encoding => 'UTF-8');

if(param())
{
 print "
The string you entered was: '".param('query')."'";
 print "
Dumping all the submitted data...";
 foreach my $Name (param())
 {
 print "
$Name: $Name);
 }
}
else
{
 #start_form can take -action, -method...
 print
 start_form.
 "Query String: ".

562 | Chapter 18: Serving Perl Pages to the Web

 textfield(-name=>'query', -value=>'type your query here').
 submit(-name=>'submit_button', -value=>'Submit query').
 end_form;
}
print end_html;

The param() function can access data submitted through a web form. Our script checks
to see whether the param() function returns a nonzero value—that is, whether any data
has been received. If the function returns a nonzero value, we know that the form has
been submitted and can then access the submitted data. Here, we print out the value
from the form’s query field, which we can access as param('query'). For good measure,
we then iterate through each submitted item using the foreach loop and print the name
and value of the field.

The generated web page would look something like this (we’ve added some whitespace
for readability):

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
 <head>
 <title>Search Page</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 </head>
 <body>

The string you entered was: 'type your query here'

 Dumping all the submitted data...

 query: type your query here
submit_button: Submit query
 </body>

</html>

We’ve started a new line before Dumping and query: for readability; you won’t
see these in the output of the program if you run it.

If you have a relatively small number of possible values, it’s probably more helpful for
the user if you generate a drop-down list populated with values from the database. The
CGI module has a useful popup_menu function that generates a drop-down list. To use
this, you need to first load the list entries into an array:

@results = @{ $dbh->selectcol_arrayref ("SELECT Name FROM Animals")};

and then pass this array to the popup_menu function’s values parameter:

print
 start_form(-action=>"process_form.pl", -method=>'POST').
 "Animal Name: ".
 popup_menu(-name => "Name", -values => \@results).
 submit.
 end_form;

The resulting form would look like this:

Processing User Input | 563

<form method="post" action="http://localhost/cgi-bin/mysql.cgi.animals.popup.pl"
 enctype="multipart/form-data">
 Animal Name:
 <select name="Name" tabindex="1">
 <option value="cats">cats</option>
 <option value="dogs">dogs</option>
 <option value="emus">emus</option>
 <option value="fish">fish</option>
 </select>

 <input type="submit" tabindex="2" name="submit_button" value="Submit query" />
</form>

Figure 18-1 shows a screenshot of this form.

Using One Script for the Form and for Processing
It’s convenient to write a single script to generate both the form and the results web
pages. The script tests whether there is any form data. If there isn’t any form data, the
form is displayed; otherwise, the results are shown. In such a script, the value used for
the form action field will be the name of the script itself. For example, the script
query.pl would have:

start_form(-action=>"query.pl", -method=>'POST')

Rather than hardcoding the filename into the program code, we can use the url()
function to automatically provide the address of the current script:

start_form(-action=>url(), -method=>'POST')

Note that the url() function provides the absolute URL of the current script, for
example:

http://localhost/cgi-bin/query.pl

Figure 18-1. The animals form using the CGI pop-up menu

564 | Chapter 18: Serving Perl Pages to the Web

while the related self_url() function returns the URL of the script, together with the
query string that preserves entered form information—for example:

http://localhost/cgi-bin/popup_menu.pl?Username=saied;Host=wombat.cs.rmit.edu.au

Example 18-5 is a single script to display a drop-down list of animal names, and display
the count of the animal that the user selects.

Example 18-5. A CGI Perl script that generates a form with a drop-down list

#!/usr/bin/perl
use strict;

Connect to the MySQL server, run the query, store the result
use DBI;
my $dbh=DBI->connect("DBI:mysql:host=localhost;database=AnimalDB",
 "the_username",
 "the_password",
 {PrintError=>0, RaiseError=>1});

Prepare and display the results in HTML format
use CGI ':all';

print header(-type=>"text/html", -charset=>'UTF-8');

my @results;
if(!param())
{
 @results = @{ $dbh->selectcol_arrayref
 ("SELECT Name FROM Animals ORDER BY Name")};

 print
 start_html(-title=>"Animal Selection Page", -encoding => 'UTF-8').
 h1("Select Animal").
 p("Select the animal name from the list: ").
 start_form(-action=>url(), -method=>'POST').
 "Animal Name: ".
 popup_menu(-name => "Name", -values => \@results).
 br().
 submit(-name=>'submit_button', -value=>'Submit query').
 end_form;
}
else
{
 my $Query="SELECT Count FROM Animals where Name='".param("Name")."'";
 @results = @{ $dbh->selectcol_arrayref ($Query)}
 or die("Problem with query $Query: ".$DBI::errstr);
 print
 start_html(-title=>"Animal Counts Page", -encoding => 'UTF-8').
 h1("Query result").
 "The count of ".
 b(param("Name")).
 " is: ".
 @results;
}

Processing User Input | 565

$dbh->disconnect();

print
 hr().
 a({-href=>"http://www.ora.com"}, "O'Reilly Media").
 end_html;

The bulk of this script consists of two blocks executed on different runs of the script.
The first block follows the if(!param()) statement; this block runs when the user first
calls up the URL without parameters, and it simply displays the form with the initial
animal listing. The second block follows the else statement; this block runs after the
user has filled out the form and submitted it.

The page includes a horizontal rule (hr) and link to the O’Reilly Media home page at
the bottom.

A Note on mod_perl
The mod_perl Apache module moves the processing of Perl scripts into the Apache web
server itself. This has two advantages. First, it’s more efficient, because the Perl inter-
preter doesn’t need to be started each time a script is called. Second, you don’t need to
include the path to the Perl interpreter on an initial #! line at the top of each file.

We won’t go into the details of mod_perl here, but we recommend you use it for any
production site that uses Perl CGI scripts running on an Apache web server. You can
find more information on this at perl.apache.org (http://perl.apache.org) and in partic-
ular on the http://perl.apache.org/docs/2.0/user/intro/start_fast.html web page.

Perl Security
Programmers often assume that their script will be used in a particular way and that
users will behave as expected. When writing a script, you should always keep in mind
that everybody makes mistakes, and some people deliberately try to break things. For
example, if your script expects the number 2 but the user types two, what will happen?
This is particularly important if you make your scripts available via the Web. You
should never trust user input and use it directly for sensitive operations such as opening
files or running commands on the server.

Perl has a taint mode that warns you if the script injects user input directly into a sensitive
operation. You can turn on the Perl taint mode by adding the -T switch after the path
to the Perl interpreter at the top of your script, for example:

#!/usr/bin/perl -T

Unfortunately, this taint mode does not recognize variables passed to the script from
a web form via the param() function, so you’ll need to manually check that the user

566 | Chapter 18: Serving Perl Pages to the Web

http://perl.apache.org
http://perl.apache.org
http://perl.apache.org/docs/2.0/user/intro/start_fast.html

input is what you expect. This is typically performed using regular expressions, where
we match a string against a template.

For example, we can ensure that the form variable Age is a number between 10 and 99:

if(param())
{
 if(!(param('Age')=~/^([1-9][0-9])$/))
 {
 print
 font({-color=>'red'}, 'Invalid age: must be between 10 and 99 inclusive.');
 exit;
 }
 my $user_age = "$1";
 print $user_age;
}

Perl offers some cryptic syntax for regular expressions, but they make the expressions
very easy to integrate into a program. The =~ operator means “check the item on the
left against the regular expression on the right.” The regular expression itself is enclosed
in forward slashes, although you can choose another character if you find this incon-
venient (for instance, if the regular expression itself contains a slash). Thus, the if
statement just shown checks whether the Age parameter matches the regular expres-
sion /^([1-9][0-9])$/. The expression itself is simpler than it at first appears.

The numbers in the brackets express a range. Here, we want two digits: the first between
one and nine, and the second between zero and nine. The parentheses delimit the part
of the string that matches these two characters. The caret (^) symbol marks the start of
the string, and the dollar ($) symbol marks the end of the string; together, these two
anchors ensure that there’s nothing before or after the two digits. After the regular
expression check, the substring enclosed in the first set of parentheses is available as
$1, the substring enclosed between the second set of parentheses is available as $2, and
so on. We can assign this to a variable and use it; here, we’re just printing it on the
screen. If the check fails, we print an error message and stop the program with the
exit keyword. Note that the die() function won’t produce the display you want in a
web environment because its message is sent to the system standard error location,
rather than to standard output.

As another example, we can check that an entered name is less than 10 characters long
and that only its first letter is capitalized; we allow an initial character in the range
A-Z, and between 0 and 9 characters in the range a-z:

if(param())
{
 if(!(param('Name')=~/^([A-Z][a-z]{0,9})$/))
 {
 print
 font({-color=>'red'},
 'Invalid name: must comprise only letters, '.
 'be at most ten characters long, ',
 'and have only the first letter capitalized.');

Perl Security | 567

 exit;
 }
 my $Name = "$1";
 print $Name;
}

The square brackets and braces have very different meanings in regular expressions.
The square brackets around [a-z] mean “any character in the range from a to z,” while
the braces around {0,9} means “where the preceding item appears zero to nine times.”

Resources
• For more on the CGI module, read the documentation at http://search.cpan.org/

dist/CGI.pm/CGI.pm.

• For more on web scripting security, read the WWW security FAQ at http://www
.w3.org/Security/faq.

• Regular expressions are a powerful tool. There are many good books on regular
expressions, but try to choose one that focuses on Perl (there are slight variations
in the regular expression syntax used in different tools). We recommend you read
Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly).

Exercises
1. How is a Perl CGI script different from a command-line one?

2. What does the Perl CGI module do?

3. Write a regular expression that matches any word starting with “tele”; the match
should not be case-sensitive.

568 | Chapter 18: Serving Perl Pages to the Web

http://search.cpan.org/dist/CGI.pm/CGI.pm
http://search.cpan.org/dist/CGI.pm/CGI.pm
http://www.w3.org/Security/faq
http://www.w3.org/Security/faq

PART VI

Appendix

APPENDIX

The Wedding Registry Code

Overview
In this appendix, we list the complete code of the wedding registry application we
developed in Chapter 15. This code is also available for download from the book’s web
site.

Example A-1 contains the code in action.php; Example A-2 contains the code in db.php;
Example A-3 contains the disclaimer code; Example A-4 contains the code in edit.php;
Example A-5 contains the code in index.php; Example A-6 contains the text in li
cense.txt; Example A-7 contains the code in list.php; and Example A-8 contains the
code in logout.php.

Example A-1. action.php

<?php
 // action.php: Add or remove a gift from the user's shopping list

 // Include database parameters and related functions
 require_once("db.php");

 // Check if the user is logged in
 // (this also starts the session)
 logincheck();

 // Secure the user data
 if(count($_GET))
 {
 // Connect to the MySQL DBMS and use the wedding database - credentials are
 // in the file db.php
 if(!($connection= @ mysqli_connect(
 $DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 showerror($connection);

 $gift_id = clean($_GET['gift_id'], 5);
 $action = clean($_GET['action'] , 6);

 // Is the action something we know about?

571

 if($action != "add" && $action != "remove")
 // No, it's not; perhaps someone's trying to manipulate the
 // URL query string?
 die("Unknown action: ".$action);

 // The program should reach this point only if the action is add
 // or remove, since otherwise processing stops with the die()
 // instruction.

 // What did the user want us to do?
 if ($action == "add")
 {
 // The user wants to add a new item to their shopping list.

 // Update the gifts table if we find the gift and it is not
 // taken by any user.
 // This query avoids the need to lock the table.
 $query = "UPDATE gifts SET username = '{$_SESSION['username']}' ".
 "WHERE gift_id = {$gift_id} AND username IS NULL";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // If we found the row and updated it, create a confirmation
 // message to show the user
 if (mysqli_affected_rows($connection) == 1)
 {
 $message = "Reserved the gift for you, {$_SESSION['username']}";
 }
 else // Couldn't reserve the gift because it wasn't free;
 {
 // Check whether it's booked by someone else
 $query = "SELECT * FROM gifts ".
 "WHERE gift_id = {$gift_id} ".
 "AND username != '{$_SESSION['username']}'";
 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Create a message to show the user
 if (mysqli_num_rows($result))
 $message = "Oh dear... someone just beat you to that gift!";
 else
 $message = "The gift is already reserved for you, ".
 "{$_SESSION['username']}";
 }
 }
 else // The action is not add, so it must be remove
 {
 // The user wants to remove an existing item from their shopping list.

 // Create a query to retrieve the gift.
 $query = "SELECT * FROM gifts WHERE gift_id = {$gift_id}";

572 | Appendix: The Wedding Registry Code

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Get the matching gift row;
 // (there's only one since the gift_id is the primary key)
 // If we don't get exactly one answer, then we have a problem
 for($matchedrows=0;($row = @ mysqli_fetch_array($result));$matchedrows++);
 if($matchedrows!=1)
 die("We've just experienced a technical problem - ".
 "please notify the administrator.");

 // Double-check they actually have this gift reserved
 if (!empty($row["username"]) && $row["username"] != $_SESSION['username'])
 // They don't, so record a message to show the user
 $message = "That's not your gift, {$_SESSION['username']}!";
 else
 {
 // They do have it reserved. Create a query to unreserve it.
 $query = "UPDATE gifts SET username = NULL WHERE gift_id = {$gift_id}";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Create a message to show the user
 if (mysqli_affected_rows($connection) == 1)
 $message = "Removed the gift from your shopping list, ".
 "{$_SESSION['username']}";
 else
 $message = "There was a problem updating. ".
 "Please contact the administrator.";
 }
 }

 }

 // Redirect the browser back to list.php
 header("Location: list.php?message=" . urlencode($message));
 exit;
?>

Example A-2. db.php

<?php
 // These are the DBMS credentials and the database name
 $DB_hostname = "localhost";
 $DB_username = "fred";
 $DB_password = "shhh";
 $DB_databasename = "wedding";

 // Show an error and stop the script
 function showerror($connection)
 {
 // Was there an error during connection?
 if(mysqli_connect_errno())

Overview | 573

 // Yes; display information about the connection error
 die("Error " . mysqli_connect_errno($connection) .
 " : " .mysqli_connect_error($connection));
 else
 // No; display the error information for the active connection
 die("Error " .mysqli_errno($connection) . " : "
 .mysqli_error($connection));
 }

 // Secure the user data by escaping characters and shortening the
 // input string
 function clean($input, $maxlength)
 {
 // Access the MySQL connection from outside this function.
 global $connection;

 // Limit the length of the string
 $input = substr($input, 0, $maxlength);

 // Escape semicolons and (if magic quotes are off) single and
 // double quotes
 if(get_magic_quotes_gpc())
 $input = stripslashes($input);

 $input = mysqli_real_escape_string($connection, $input);

 return $input;
 }

 // Check if the user is logged in. If not, send them to the login
 // page
 function logincheck()
 {
 session_start();

 if (empty($_SESSION["username"]))
 {
 // redirect to the login page
 header("Location: index.php");
 exit;
 }
 }
?>

Example A-3. disclaimer

<?php
echo "\n<table width=\"60%\">";
echo "\n<tr><td>\n<hr />";
echo "\n<i>This is not really a wedding registry.
 It's a system that demonstrates the concepts of web database systems,
 and is downloadable source code that you can use freely under this
 license. It pretends to
 allows wedding guests to log in, view a list of gifts wanted
 by the bride and groom, and reserve gifts that they plan to
 purchase by putting them on a shopping list.</i>";

574 | Appendix: The Wedding Registry Code

echo "\n</td>\n</tr>\n</table>\n
";
?>

Example A-4. edit.php

<?php
 // edit.php: Show the user the available gifts and the gifts in
 // their shopping list

 // Include database parameters and related functions
 require_once("db.php");

 // Check if the user is logged in
 // (this also starts the session)
 logincheck();

 // Check that the user is Jack or Jill (username is 'jack' or
 // 'jill'); other users are not allowed to edit the gifts.
 if($_SESSION['username']!="jack" && $_SESSION['username']!="jill")
 {
 $message = "You are not authorized to edit the gift details. Please ".
 "select gift suggestions from the list to add to your shopping list!";
 header("Location: list.php?message=".urlencode($message));
 exit;
 }

 // Connect to the MySQL DBMS and use the wedding database - credentials are
 // in the file db.php
 if(!($connection= @ mysqli_connect(
 $DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 showerror($connection);

 // See if we've arrived here after clicking the delete link
 if(count($_GET) && (clean($_GET['action'], 10)=='delete'))
 {
 // Yes; compose a query to delete the specified gift from the
 // gifts table
 $query = "DELETE FROM gifts WHERE gift_id=".clean($_GET['gift_id'], 10);

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);
 }
 // See if we've arrived here after clicking the update button; if
 // so, update the gift details.
 elseif(isset($_POST['update']))
 {
 // Define an SQL query to list the gift IDs in the database
 $query = "SELECT gift_id FROM gifts";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Process the submitted data for each gift ID in the database
 while($row = @ mysqli_fetch_array($result))

Overview | 575

 {
 $gift_id=$row["gift_id"];

 // Update an existing gift if there is corresponding data
 // submitted from the form
 if(
 isset($_POST["quantity"][$gift_id]) &&
 isset($_POST["description"][$gift_id]) &&
 isset($_POST["color"][$gift_id]) &&
 isset($_POST["shop"][$gift_id]) &&
 isset($_POST["price"][$gift_id])
)
 update_or_insert_gift_data($connection, $gift_id);
 }

 // Process the data submitted in the form fields for the new
 // gift; we had assigned this the index 0 in the HTML form.
 update_or_insert_gift_data($connection, 0);

 }

 // Update the data for a gift with the specified gift ID; for a
 // gift ID of 0, add a new gift to the database.
 function update_or_insert_gift_data($connection, $gift_id)
 {
 // Extract the data items for the gift attributes from the $_POST array
 $quantity =clean($_POST["quantity"][$gift_id], 5);
 $description=clean($_POST["description"][$gift_id], 255);
 $color =clean($_POST["color"][$gift_id], 30);
 $shop =clean($_POST["shop"][$gift_id], 100);
 $price =clean($_POST["price"][$gift_id], 30);

 // If the gift_id is 0, this is a new gift, so set the
 // gift_id to be empty; MySQL will automatically assign a
 // unique gift_id to the new gift.
 if($gift_id==0)
 $gift_id='';

 // If any of the attributes are empty, don't update the database.
 if(
 !strlen($quantity) ||
 !strlen($description) ||
 !strlen($color) ||
 !strlen($shop) ||
 !strlen($price)
)
 {
 // If this isn't the blank row for optionally adding a new gift,
 // or if it is the blank row and the user has actually typed
 // something in, display an error message.
 if(!empty($gift_id)
 ||
 strlen(
 $quantity.
 $description.

576 | Appendix: The Wedding Registry Code

 $color.
 $shop.
 $price)
)
 echo "".
 "There must be no empty fields - not updating:
".
 "([$quantity], [$description], [$color], [$shop], [$price])".
 "
";
 }
 else
 {
 // Add or update the gifts table
 $query = "REPLACE INTO gifts ".
 "(gift_id, description,shop,quantity,color,price,username) values (".
 "'$gift_id', '$description', '$shop', $quantity,
 '$color', '$price', NULL)";

 // Run the query through the connection
 if (@ mysqli_query($connection, $query)==FALSE)
 showerror($connection);

 }
 }

 // Show the user the gifts for editing
 //
 // Parameters:
 // (1) An open $connection to the DBMS
 function showgiftsforedit($connection)
 {
 // Create an HTML form pointing back to this script
 echo "\n<form action='{$_SERVER["PHP_SELF"]}' method='POST'>";

 // Create an HTML table to neatly arrange the form inputs
 echo "\n<table border='1'>";

 // Create the table headings
 echo "\n<tr>" .
 "\n\t<th bgcolor='LIGHTGREEN'>ID</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Description</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Quantity</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Color</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Available from</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Price</th>" .
 "\n\t<th bgcolor='LIGHTGREEN'>Delete?</th>" .
 "\n</tr>";

 // Create an SQL query to list the gifts in the database
 $query = "SELECT * FROM gifts ORDER BY description";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Check whether we found any gifts

Overview | 577

 if(!mysqli_num_rows($result))
 // No; display a notice
 echo "\n\t<tr><td colspan='7' align='center'>".
 "There are no gifts in the database</td></tr>";
 else
 // Yes; fetch the gift details a row at a time
 while($row = @ mysqli_fetch_array($result))
 // Compose the data for this gift into a row of form inputs
 // in the table.
 // Add a delete link in the last column of the row.
 echo "\n<tr>" .
 "\n\t<td>{$row["gift_id"]}</td>".
 "\n\t<td><input name='description[{$row['gift_id']}]' ".
 "value='{$row["description"]}' size='60' /></td>".
 "\n\t<td><input name='quantity[{$row['gift_id']}]' ".
 "value='{$row["quantity"]}' /></td>".
 "\n\t<td><input name='color[{$row['gift_id']}]' ".
 "value='{$row["color"]}' /></td>".
 "\n\t<td><input name='shop[{$row['gift_id']}]' ".
 "value='{$row["shop"]}' size='30' /></td>".
 "\n\t<td><input name='price[{$row['gift_id']}]' ".
 "value='{$row["price"]}' /></td>".
 "\n\t<td><a href='{$_SERVER['PHP_SELF']}?".
 "action=delete&gift_id={$row["gift_id"]}'>Delete</td>".
 "\n</tr>";

 // Display a row with blank form inputs to allow a gift to be added
 echo "\n<tr><td>New item</td>" .
 "\n\t<td><input name='description[0]' size='60' /></td>".
 "\n\t<td><input name='quantity[0]' /></td>".
 "\n\t<td><input name='color[0]' /></td>".
 "\n\t<td><input name='shop[0]' size='30' /></td>".
 "\n\t<td><input name='price[0]' /></td>".
 "\n</tr>";

 // End the table
 echo "\n</table>";

 // Display a submit button and end the form.
 echo "\n<input name='update' type='submit' value='Update data' />";
 echo "</form>";
 }
?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Jack and Jill's Wedding Gift Registry</title>
</head>
<body bgcolor="LIGHTBLUE">
<?php
 // Show a logout link and a link to the main page
 echo "Logout | Gift list";

578 | Appendix: The Wedding Registry Code

 echo "\n<h3>Gift editing page</h3>";

 // Show the existing gifts for editing
 showgiftsforedit($connection);
?>
</body>
</html>

Example A-5. index.php

<?php
 // index.php: Show the user the login screen for the application, or
 // log in a user with correct authentication details.

 // Include database parameters and related functions
 require_once("db.php");

 // Connect to the MySQL DBMS and use the wedding database -
 // credentials are in the file db.php
 if(!($connection= @ mysqli_connect(
 $DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 showerror($connection);

 // Pre-process the authentication data from the form for security
 // and assign the username and password to local variables
 if(count($_POST))
 {
 $username = clean($_POST["username"], 30);
 $password = clean($_POST["password"], 30);
 }

 // Pre-process the message data for security
 if(count($_GET))
 {
 $message = clean($_GET["message"], 128);
 }

 // If no username or password has been entered, or there's a message
 // to display, show the login page
 if(empty($username) ||
 empty($password) ||
 isset($message))
 {
 ?>
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
 <html>
 <head>
 <title>Jack and Jill's Wedding Gift Registry</title>
 </head>
 <body bgcolor='LIGHTBLUE'>
 <h2>Jack and Jill's Wedding Gift Registry</h2>
 <?php
 // If an error message is stored, show it...
 if (isset($message))
 echo "<h3>{$message}</h3>";

Overview | 579

 ?>
 (if you've not logged in before, make up a username and password)
 <form action="<?php echo $_SERVER["PHP_SELF"];?>" method="POST">

Please enter a username:
 <input type="text" name="username"
 value="<?php if(isset($_POST['username']))
 echo $_POST['username'];?>" />

Please enter a password:
 <input type="password" name="password" />

<input type="submit" value="Log in">
 </form>

 <?php require "disclaimer"; ?>
 </body>
 </html>
 <?php
 }
 else
 {
 // Check that the username and password are each at least four
 // characters long.
 if((strlen($username)<4) ||
 (strlen($password)<4))
 {
 // No, they're not; create an error message and redirect
 // the browser to the index page to display the message
 $message = "Please choose a username and password that are ".
 "at least four characters long";
 header("Location: index.php?message=" . urlencode($message));
 exit;
 }

 // Create a query to find any rows that match the provided username
 $query = "SELECT username, password FROM users WHERE username = '$username'";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Were there any matching rows?
 if (mysqli_num_rows($result) == 0)
 {
 // No, so insert the new username and password into the table
 $query = "INSERT INTO users SET username = '$username', password='".
 crypt($password, substr($username, 0, 2))."'";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);
 }
 else
 {
 // Yes, so check that the supplied password is correct

 // Fetch the matching row

580 | Appendix: The Wedding Registry Code

 // If we don't get exactly one answer, then we have a problem
 for($matchedrows=0;($tmprow = @ mysqli_fetch_array($result));$matchedrows++) $row=$tmprow;
 if($matchedrows!=1)
 die("We've just experienced a technical problem - ".
 "please notify the administrator.");

 // Does the user-supplied password match the password in the table?
 if (crypt($password, substr($username, 0, 2)) != $row["password"])
 {
 // No, so redirect the browser to the login page with a
 // message
 $message = "This user exists, but the password is incorrect. ".
 "Choose another username, or fix the password.";
 header("Location: index.php?message=" . urlencode($message));
 exit;
 }
 }

 // Everything went OK. Start a session, store the username in a
 // session variable, and redirect the browser to the gift list
 // page with a welcome message.
 session_start();
 $_SESSION['username']=$username;
 $message = "Welcome {$_SESSION['username']}! Please select gift suggestions".
 " from the list to add to your shopping list!";
 header("Location: list.php?message=" . urlencode($message));
 exit;
 }
?>

Example A-6. license.txt

Source code example for Learning MySQL

Unless otherwise stated, the source code distributed with this book can be
redistributed in source or binary form so long as an acknowledgment appears
in derived source files.
The citation should list that the code comes from
S.M.M. (Saied) Tahaghoghi and Hugh E. Williams,
"Learning MySQL" published by O'Reilly Media.
This code is under copyright and cannot be included in any other book,
publication, or educational product without permission from O'Reilly &
Associates.
No warranty is attached; we cannot take responsibility for errors or fitness
for use.

Example A-7. list.php

<?php
 // list.php: Show the user the available gifts and the gifts in
 // their shopping list

 // Include database parameters and related functions
 require_once("db.php");

 // Check if the user is logged in

Overview | 581

 // (this also starts the session)
 logincheck();

 // Show the user the gifts
 //
 // Parameters:
 // (1) An open connection to the DBMS
 // (2) Whether to show the available gifts or the current user's
 // shopping list.

 // Define constants for use when calling showgifts
 define("SHOW_UNRESERVED_GIFTS", 0);
 define("SHOW_GIFTS_RESERVED_BY_THIS_USER", 1);

 function showgifts($connection, $show_user_selection)
 {
 // See whether there are any gifts in the system
 $query = "SELECT * FROM gifts";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Check whether any gifts were found
 if (@ mysqli_num_rows($result) == 0)
 // No; print a notice
 echo "\n<h3>".
 "There are no gifts described in the system!</h3>";
 else
 {
 // Yes; display the gifts

 // If we're showing the available gifts, then set up
 // a query to show all unreserved gifts (where username IS NULL)
 if ($show_user_selection == SHOW_UNRESERVED_GIFTS)
 $query = "SELECT * FROM gifts WHERE username IS NULL ".
 "ORDER BY description";
 else
 // Otherwise, set up a query to show all gifts reserved by
 // this user
 $query = "SELECT * FROM gifts WHERE username = '".
 $_SESSION['username']."' ORDER BY description";

 // Run the query through the connection
 if (($result = @ mysqli_query($connection, $query))==FALSE)
 showerror($connection);

 // Did we get back any rows?
 if (@ mysqli_num_rows($result) == 0)
 {
 // No data was returned from the query.
 // Show an appropriate message
 if ($show_user_selection == SHOW_UNRESERVED_GIFTS)
 echo "\n<h3>No gifts left!</h3>";
 else

582 | Appendix: The Wedding Registry Code

 echo "\n<h3>Your Basket is Empty!".
 "</h3>";
 }
 else
 {
 // Yes, so show the gifts as a table
 echo "\n<table border=1 width=100%>";

 // Create some headings for the table
 echo "\n<tr>" .
 "\n\t<th>Quantity</th>" .
 "\n\t<th>Gift</th>" .
 "\n\t<th>Colour</th>" .
 "\n\t<th>Available From</th>" .
 "\n\t<th>Price</th>" .
 "\n\t<th>Action</th>" .
 "\n</tr>";

 // Fetch each database table row of the results
 while($row = @ mysqli_fetch_array($result))
 {
 // Display the gift data as a table row
 echo "\n<tr>" .
 "\n\t<td>{$row["quantity"]}</td>" .
 "\n\t<td>{$row["description"]}</td>" .
 "\n\t<td>{$row["color"]}</td>" .
 "\n\t<td>{$row["shop"]}</td>" .
 "\n\t<td>{$row["price"]}</td>";

 // Are we showing the list of gifts reserved by the
 // user?
 if ($show_user_selection == SHOW_UNRESERVED_GIFTS)
 // No. So set up an embedded link that the user can click
 // to add the gift to their shopping list by running
 // action.php with action=add
 echo "\n\t<td><a href=\"action.php?action=add&" .
 "gift_id={$row["gift_id"]}\">".
 "Add to Shopping List</td>";
 else
 // Yes. So set up an embedded link that the user can click
 // to remove the gift to their shopping list by running
 // action.php with action=remove
 echo "\n\t<td><a href=\"action.php?action=remove&" .
 "gift_id={$row["gift_id"]}\">".
 "Remove from Shopping list</td>";
 }
 echo "\n</table>";
 }
 }
 }
?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>

Overview | 583

<head>
<title>Jack and Jill's Wedding Gift Registry</title>
</head>
<body bgcolor='LIGHTBLUE'>
<?php
 // Show a logout link
 echo "Logout";

 // Check whether the user is Jack or Jill (username is 'jack' or
 // 'jill'); if so, show a link to the gift editing page.
 if($_SESSION['username']=="jack" || $_SESSION['username']=="jill")
 echo " | Edit gifts";

 // Connect to the MySQL DBMS and use the wedding database -
 // credentials are in the file db.php
 if(!($connection= @ mysqli_connect(
 $DB_hostname, $DB_username, $DB_password, $DB_databasename)))
 showerror($connection);

 // Pre-process the message data for security
 if(count($_GET))
 $message = clean($_GET["message"], 128);

 // If there's a message to show, output it
 if (!empty($message))
 echo "\n<h3>".
 urldecode($message)."</h3>";

 echo "\n<h3>Here are some gift suggestions</h3>";

 // Show the gifts that are still unreserved
 showgifts($connection, SHOW_UNRESERVED_GIFTS);

 echo "\n<h3>Your Shopping List</h3>";

 // Show the gifts that have been reserved by this user
 showgifts($connection, SHOW_GIFTS_RESERVED_BY_THIS_USER);
?>
</body>
</html>

Example A-8. logout.php

<?php
 // Log out of the system by ending the session and load the main
 // page

 session_start();
 session_destroy();

 // Redirect to the main page
 $message = "Thank you for using this system - you have now logged out.";
 header("Location: index.php?message=" . urlencode($message));
?>

584 | Appendix: The Wedding Registry Code

Index

Symbols
! exclamation mark, 14
! NOT (Perl), 525
!= (Perl), 515
!= (PHP), 420, 422
!== (PHP), 422
$ (PHP), 416
$connection (PHP), 461
$DBI::errstr, 541
$ref, 549
$result string (Perl), 561
$_COOKIE (PHP), 456
$_GET (PHP), 404, 454
$_POST (PHP), 454
$_SERVER (PHP), 456
$_SESSION (PHP), 455
% (Perl), 515, 521
&& (Perl), 525
* (Perl), 514
+ (Perl), 514
++ (Perl), 515, 522
- (Perl), 514
-- (Perl), 515
->, 540
/ (Perl), 515
< (Perl), 516
< (PHP), 420
<= (Perl), 516
<?php (PHP), 403, 415
= (Perl), 514
== (Perl), 515
== (PHP), 421
=== (PHP), 421
> (Perl), 516

> (PHP), 420
>= (Perl), 516
>= (PHP), 420
?> (PHP), 403, 415
@ (Perl), 520
@_ (Perl), 536
\n (Perl), 513
\n (PHP), 469
\t (Perl), 513
|| OR (Perl), 525

A
access privileges, 297–349
action.php, 501, 502
activating privileges, 346
ADD keyword, 216
add.php (PHP), 454
administrator, 12
AFTER keyword, 217
aggregate functions, 228–236, 263

DISTINCT, 229
GROUP BY, 230–234
HAVING, 234

aggregating values, 161
aliases, 223–228

column, 224
restrictions, 226
table, 226

ALL, 255
ALTER, 335
ALTER TABLE statement, 215, 217, 270, 544
AND && (Perl), 525
AND operation, 146
anonymous users, 315, 328
ANY, 253

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

585

Apache error logfile, 559
Apache Foundation, 5
Apache web server, 5, 400–402

configuration file, 85
configuring, 83–88
document root, 84
mod_perl, 557, 566
nobody, 558
PHP, supporting, 86
relation to database, 6
starting and stopping, 85
web server index files, 402

apt-get, 75
array, Perl, 520, 523
arrays (PHP), 417
AS, 225, 226
ASC keyword, 153
ASCII sorting, 153, 154
associate entity, 119
atomic entity, 273
attribute versus entity, 117
attributes, 112

artificial, 114
domain of legal values, 113
empty, 114
multiple values, 113

AUTOCOMMIT, 267
AUTO_INCREMENT, 187, 208–212, 433
awk, 282

B
B-tree, 272
backslash, Perl, 513
backtick symbol, 181, 183
backups, 353–369

compressing, 354
dumping a database as SQL statements,

353–359
general tips, 364
mysqldump utility, 354
scheduling, 361

Linux, 362
Mac OS X, 362
Windows Vista, 363
Windows XP, 363

batch versus interactive mode, 101
Berkeley Database (BDB), 274

table types, 268
BIGINT type, 156, 199

bin directory, 81
binaries, 9
BINARY binary string type, 201
BINARY keyword, 153
binary log, 365
binary strings, 201
binding query results to variables, 548
binding variables to a query, 547
bind_columns(  ) function, 549
BLOB binary string type, 201
BOOLEAN integer type, 198
braces (Perl), 518
break (PHP), 421
bulk-loading, 163, 165
bulk-replacing data, 293

C
C language, 5
cardinality, 115
Cartesian product, 239
case, operating systems and, 180
cd command, 17
CGI scripts, 560–568

Content-type line, 558
CHANGE keyword, 216
CHAR column type, 195
character sets, 184
charset, 561
CHECK TABLE, 366
checksums, 22
chmod command, 16, 376
chown command, 16
clean(  ) function (PHP), 486
client tier, 398
client-server architecture, 95
clients, 5
coarse-grained control, 298
Codd, Edgar Frank, 3
collation, 184

case-insensitive, 185
column aliases, 224
column names, 183
column subquery, 254
column-level privileges, 304
columns

adding to an existing table, 216
identifier, 250
maximum name length, 184
modifying, 215

586 | Index

removing, 217
renaming, 215
specifying, 183
types, 188

CHAR, 195
DATE, 190
DECIMAL, 189
INT, 188
modifying, 216
TIME, 191
TIMESTAMP, 183, 193
tuning, 198

columns, choosing, 141
columns_priv table, 343
comma-delimited files, 281–285

loading data from, 281
writing data into, 284

comma-delimited format (CDF), 282
comma-separated values (CSV), 281
Command Prompt Window, 13
command-line interface, 13–18

Linux, 13–16
command completion, 14
restricted operations, 14
restricting access, 15

Mac OS X, 13–16
command completion, 14
restricted operations, 14
restricting access, 15

Windows command prompt, 17–18
command completion, 17

committing transactions, 267
Comprehensive Perl Archive Network (CPAN),

511
concatenation, 225
CONCAT(  ), 225
conceptual design, 111
conditional statements (Perl), 524–526
conditional statements (PHP), 420
configuration file (see options file)
consolidated result set, 239
Content-type line, 558
cookies, 462
correlated subquery, 257, 259, 289
COUNT(  ), 232
count(  ) function (PHP), 477
CREATE DATABASE statement, 179
CREATE privilege, 336

CREATE TABLE statement, 176, 182, 186,
286

CREATE TEMPORARY TABLE, 187
creating a database, 179–222
creating and using new users, 299
creating tables, 181
creating tables with queries, 285–288
crontab file, 362
crypt(  ) function (PHP), 482, 508
CSV file, exporting, 552
curly brackets (Perl), 518
CURRENT_USER(  ), 315

D
daemon, 379–383
data

bulk-replacing, 293
MySQL data types, 188–204
replacing, 292

data directory, 81
database design process, 111
database names, 180

semicolons and, 181
database names, restrictions, 181
database tier, 399
database-level privileges, 303
databases

how not to develop, 109
removing, 220

datbase design tools, 130
DATE column type, 190
DATETIME number type, 190, 200
db table, 341
db.opt file, 180
db.php, 449
DBI connect(  ) function, 539
DECIMAL column type, 189
default files, 376
DEFAULT keyword, 168, 183
default users, 328–333

configuration, Linux or Mac OS X, 328
securing, 331

define(  ) function (PHP), 447, 499
DELETE, 289, 324
DELETE FROM, 290
DELETE statement, 168
deleting all the data in a table, preventing, 104
deleting multiple tables, 288
DESC statement, 137, 152

Index | 587

DESCRIBE statement, 137
DESCRIBE TABLE, 279
Dia database design tool, 130
die(  ), 540
dir command, 17
directory permissions, 15
display_errors (PHP), 426
DISTINCT, 228
do-math(  )(PHP), 424
do...while (PHP), 423
do...while loop (Perl), 523
docs directory, 81
dollar sign (PHP), 416
DOS format, 283
DOUBLE number type, 199, 200
downloads, of MySQL, 22
do(  ) function, 545
DROP DATABASE, 220
DROP keyword, 217
DROP privilege, 336
DROP TABLE, 221, 357
DROP USER, 324
dropping a database, 220
dummy columns in tables, 195

E
echo (PHP), 419
empty(  ) function (PHP), 422, 479
enable-named-pipe option, 74
encoding parameter, 561
ENGINE clause, 188
entity

associate, 119
intermediate, 119

Entity Relationship Model
mapping to database tables, 128
representing entities, 112

entity versus attribute, 117
entity versus relationship, 117
ENUM enumerated string type, 202
eq (Perl), 524
error messages (PHP), 426
error messages, installation, 75–80
error_log(  ) (PHP), 446
error_reporting (PHP), 426
exclamation mark, 14
execute(  ) function, 542
EXISTS keyword, 258, 261
EXPLAIN statement, 294

extended-status, 390

F
fclose(  ) (PHP), 448
fetchrow_arrayref(  ) function, 543, 548
fetchrow_array(  ) function, 543
fetchrow_hashref(  ) function, 542, 543
FIELDS TERMINATED BY, 284
FILE, 336
file permissions, 15
finding string matches, 145
fine-grained control, 298
FIRST keyword, 216
fixed-length strings, 195
flight database example, 126
FLOAT number type, 199, 200
floating-point numbers, 200
FLUSH PRIVILEGES, 324
fopen(  ) (PHP), 448
for loop (Perl), 522
for loop (PHP), 422
foreach (Perl), 524
foreach (PHP), 423
foreign keys, 287
foreign-key support, 268
FROM, 262
Frozen Bubble, 511
functions, 423–426
fwrite(  ) (PHP), 448

G
Generally Available (GA) release, 22
GET, 453
global (PHP), 461
GLOBAL server variables, 385
global-level privileges, 303
GRANT, 299, 323, 326
GRANT OPTION, 306, 336
grant tables, 369
grant_privileges.sql, 476
graphical clients, 104
GROUP BY, 230–234
groups, 15

H
hash, 520

Perl, 523
hash index, 272

588 | Index

hash symbol, 20, 374
hash-bang, 512
HAVING, 234

when not to use, 236
header(  ) function (Perl), 561
header(  ) function (PHP), 465, 466, 479
host table, 343
HTML, 6

simple HTML form, 452
HTTP POST method, 562
HTTP request, 400
HTTP servers, 400
HTTP::Mason, 557

I
IBM, 7
IDENTIFIED BY, 325
identifier columns, 250
IF NOT EXISTS, 186, 286
if statement (Perl), 531
if statement (PHP), 420
if...else (Perl), 525
IGNORE, 280
importing and exporting data, 552
IN, 254, 257
.inc files, 452
include (PHP), 449
include directory, 82
index files, web server, 402
INDEX keyword, 206, 336
index.php, 478
indexes, 205, 287

adding a new, 218
and keys, 204–208
modifying once created, 219
names, 206
removing, 218

INNER JOIN keywords, 157, 159, 237, 290
inner query, 251
InnoDB, 271
INSERT statement, 278

basics, 163
INSERT INTO, 278

inserting data using queries, 277–281
installation, 4, 9–94

binaries, 9
choices and platforms, 9–12
components, 5
ISP, provided by, 69

Linux, 10, 25–51
Mac OS X, 11, 61–69
source code, 9
troubleshooting, 75–80
Windows, 11, 51–61

INT column type, 188
integer types, alternative, 198
integrity of packages, verifying, 22
interface, 5
intermediate entity, 119
internationalization, 186
Internet Explorer, 396
isset(  ) function (PHP), 422, 462, 479, 494

J
joining two tables, 156–162
joins

inner join, 237–239
left join, 246–249
natural join, 249–250
right join, 246–249
union, 239–246

K
key constraints, 115
KEY keyword, 206
key, Perl, 520
keys, 113

candidate, 113
primary, 113

keys and indexes, 204–208
key_buffer_size, 384
KILL command, 391
Knoppix, 11
konsole, 13

L
LAMP, 6, 395
LEFT JOIN, 246, 290
left joins, 246–249, 246
LEFT OUTER JOIN, 249
lib directory, 82
LIKE statement, 145, 174, 286
LIMIT statement, 155–156, 170, 172, 242, 251,

290
Linux, 10

Perl, 512
scheduling backups, 362

Index | 589

Linux x86 RPM downloads, 26
live CDs, 11
LOAD DATA INFILE, 283
local user, 309
localhost, 404
locks, 267, 270
log-queries-not-using-indexes, 385
log-slow-queries, 385
logical design, 111
log_errors (PHP), 446
LONGBLOB binary string type, 202
LONGTEXT string type, 202
long_query_time, 385
loops

Perl, 522
PHP, 422

M
Mac OS X, 11

Perl, 512
scheduling backups, 362

magic_quotes_gpc (PHP), 460
mail(  ) (PHP), 448
man directory, 82
managing users and privileges, 297–349
mathematical operators (Perl), 514–517
max_connections, 384
MD5

Mac OS X, 24
md5sum (Linux), 23
verifying package integrity with, 22

MEDIUMBLOB binary string type, 202
MEDIUMINT integer type, 199
MEDIUMTEXT string type, 202
Memory table type, 271
Microsoft .NET, 5
Microsoft Excel, 281
middle tier, 398
mirror servers, 22
MODIFY keyword, 215
mod_perl, 557, 566
monitor program, 95

help, 98
Mozilla Firefox, 396
msqlbinlog, 365
multiple tables, 288

deleting, 288
updating, 291

Murphy’s Law, 361

music database example, 121, 129
music.sql, 212
my-medium.conf file, 379
MyISAM, 270

database files, 367
myisamchk, 367
MySQL

accessing using PHP (see PHP, accessing
MySQL using)

basics, 135–177
CREATE TABLE statement, 176
DEFAULT keyword, 168
default value of table columns, 167
DELETE statement, 168
INSERT, 163
INSERT IGNORE, 165
LIKE statement, 174
LIMIT statement, 170, 172
MAX(  ) function, 163
ORDER BY clause, 170, 172
SET keyword, 168
SHOW COLUMNS statement, 175
SHOW CREATE TABLE statement,

176
SHOW statement, 173
TRUNCATE TABLE statement, 170
UPDATE statement, 171
VALUES syntax, 166
WHERE clause, 169, 172

common problems, 75
client programs can’t connect to server,

79
error message about MySQL executable

programs not being found or
recognized, 75

error message running mysql_install_db,
78

server doesn’t start, 78
downloads, 22
Perl (see Perl and MySQL together)
table names and, 97

mysql, 83
MySQL AB, 4
MySQL AB web site, 22
MySQL Administrator program, 105
MySQL commands, 98
MySQL Control Center, 105
MySQL directory, 81–83

bin, 81

590 | Index

configuring access, 74
COPYING, 81
data, 81
docs, 81
enable-named-pipe, 74
EXCEPTIONS-CLIENT, 81
include, 82
INSTALL-BINARY, 81
lib, 82
man, 82
mysql-test, 82
mysql_secure_installation, 74
README, 81
scripts, 82
share, 82
skip-networking, 74
sql-bench, 82
support-files, 82
tests, 83

MySQL Improved (MySQLi) library (see
MySQLi)

MySQL library (PHP), 428–431
errors, 445

MySQL monitor, 5, 136, 371
MySQL Query Browser program, 105
MySQL server

configuring and tuning, 379–392
options, 380

basedir, 380
datadir, 380
defaults-file, 380
init-file, 380
log, 380
log-bin, 380
log-error, 380
log-slow-queries, 381
pid-file, 381
port, 381
shared-memory-base-name, 381
skip-networking, 381
socket, 381
tmpdir, 381
user, 381

performance, 391
query caching, 386
server settings, 388

mysqladmin variables, 388
transaction support, 392
upgrading existing, 69–75

variables, 383–388
GLOBAL, 385
key_buffer_size, 384
log-queries-not-using-indexes, 385
log-slow-queries, 385
long_query_time, 385
max_connections, 384
old variables format, 388
overview, 383
query_cache_limit, 387
query_cache_min_res_unit, 387
query_cache_size, 387
query_cache_wlock_invalidate, 387
read_buffer_size, 384
slow query log, 385
sort_buffer_size, 385

MySQL Workbench, 131, 474
mysql-test directory, 82
mysqlaccess, 320

configuring, 322
mysqladmin, 83
mysqladmin extended-status, 390
mysqladmin kill, 391
mysqladmin password, 326
mysqladmin processlist, 390
mysqladmin shutdown, 347
mysqladmin status, 390
mysqladmin variables, 388
mysqlcheck, 367
mysqld, 379
mysqld-nt.exe, 75
mysqld.exe, versus mysqld-nt.exe, 379
mysqldump, 354, 362

making a backup of all the databases on a
MySQL server, 359

making a backup of specific data from a table
in a database, 359

making a backup of specific databases, 359
making a backup of specific tables from a

database, 359
options, 357

add-drop-table, 357
add-locks, 357
all-databases, 358
create-options, 358
databases, 358
disable-keys, 358
extended-insert, 358
flush-logs, 358

Index | 591

lock-tables, 358
no-data, 358
opt, 358
quick, 358
result-file, 358
set-charset, 358
tables, 359
where, 359

mysqldumpslow script, 386
mysqld_safe, 75, 83
mysqld_safe script (Linux or Mac OS X), 379
mysqlhotcopy (Perl), 361, 362
MySQLi, 427, 431–434

distribution and replication functions, 435
errors, 443
mysqli_connect(  ), 432
mysqli_fetch_array, 433
mysqli_query, 433
new features, 434–435
object-oriented methods, 434
prepared statements, 434
profiling, 434
querying the music database with, 431
support for encrypted and compressed

connections, 434
transaction control, 434

mysqli_affected_rows (PHP), 433
mysqli_connect_errno(  ) (PHP), 443, 445
mysqli_connect_error(  ) (PHP), 443, 445
mysqli_connect(  ) function (PHP), 432, 480
mysqli_fetch_array(  ) function (PHP), 433,

491
accessing query results with, 435–441

mysqli_insert_id (PHP), 433
mysqli_num_rows (PHP), 433
mysqli_query (MySQLi), 433
mysqli_query(  ) function (PHP), 481, 483
mysqli_real_escape_string(  ) (PHP), 459, 461
mysqlshow program, 173
mysql_connect (PHP), 445
mysql_connect(  ) function (PHP), 408
mysql_errno(  ) (PHP), 445
mysql_fetch_array(  ), 408

accessing query results with, 435–441
mysql_install_db, 78, 369
mysql_query(  ), 408
mysql_secure_installation option, 74
mysql_select_db(  ), 408
mysql_setpermission (Perl), 337

N
name field, 183
natural joins, 249
NATURAL LEFT JOIN, 250
NATURAL LEFT OUTER JOIN, 250
NATURAL RIGHT JOIN, 250
NATURAL RIGHT OUTER JOIN, 250
nested queries, 250–263
no-defaults option, 376
nobody, Apache web server, 558
non-transaction-safe tables (NTSTs), 268
NOT ! (Perl), 525
NOT EXISTS, 258, 289
NOT IN, 255
NOT LIKE operator, 150
NOT NULL clause, 183, 288
NOT operator, 149
NULL (PHP), 422
NULL values, 554

O
OLD_PASSWORD(  ), 325
OmniGraffle diagramming tool, 130
ON, 238
Open Database Connectivity (ODBC)

standard, 5
opening file in a web browser, 558
OpenOffice Calc, 281
operator precedence, Perl, 516
operators, 144
OPTIMIZE TABLE, 391
optimizing, EXPLAIN, 294
options, 379
options file, 371–377

configuring for MySQL monitor, 371
default files, alongside, 376
Linux, 372
Mac OS X, 372
no-defaults option, 376
scope of, 374
search order, 375
server-specific, 375
structure of, 373
system-wide, 374
user-specific, 375

OR operator, 146
OR ||(Perl), 525
ORDER BY clause, 170, 172, 242, 290

592 | Index

ORDER BY RAND(  ), 279
OUTER, 249
outer query, 251, 261
overwriting data, 292

P
param(  ) function, 563, 566
parentheses, 147
partial participation, 116
participation constraints, 116
PASSWORD keyword, 327
password options, 371
passwords, 324–328

errors, 103
hiding, 103
resetting forgotten, 347

PASSWORD(  ) function, 325
performance, 391

privileges and, 346
Perl, 5, 511–538

! NOT, 525
!=, 515
$result, 561
%, 515, 521
&&, 525
*, 514
+, 514
++, 515, 522
-, 514
--, 515
/, 515
<, 516
<=, 516
=, 514
==, 515
>, 516
>=, 516
@, 520
@_, 536
AND &&, 525
array, 520, 523
backslash, 513
braces, 518
CGI or DBI modules, installing, 89

error messages, 91
Linux, 89
Mac OS X, 91
Windows, 90

checking existing setup, 88

Comprehensive Perl Archive Network
(CPAN), 511

conditional statements, 524–526
curly brackets, 518
do...while loop, 523
double-quote, 519
eq, 524
escape character, 513
for loop, 522
foreach, 524
hash, 520, 523
hash-bang, 512
if...else, 525
installing, 88–92
key, 520
Linux, 512
loop, 522
Mac OS X, 512
mathematical operators, 514–517
MySQL (see Perl and MySQL together)
NOT !, 525
operator precedence, 516
OR ||, 525
print, 537
printf, 537
push command, 561
reading in both animal names and counts

from the command line, 528
reading in numbers from the command line,

527
reading in values from a file, 530–533
reading in values from standard input, 533
reading in values from the command line,

527–530
scalar, 514
scope, 518
script using array variables, 520
script using hash variables, 520
script with both types of binding, 550
scripting, 513–538
security, 566
semicolon, 513
setting up, 88
shebang, 512
shift, 536
single-quote, 519
sum, 536
variables, 513, 517

Index | 593

web applications (see web applications
using Perl)

while loop, 522
whitespace, 518
Windows, 513
writing Perl functions, 536–538
writing values to file or standard output,

534
\n, 513
\t, 513
|| OR, 525

Perl and MySQL together, 539–555
$DBI::errstr, 541
$ref, 549
ALTER TABLE, 544
arrow (->) operator, 540
binding query results to variables, 548
binding variables to a query, 547
bind_columns(  ) function, 549
connecting to the MySQL Server and

database, 539
CSV file, exporting, 552
DBI connect(  ) function, 539
die(  )(Perl), 540
do(  ) function, 545
execute(  ), 542
fetchrow_arrayref(  ) function, 543, 548
fetchrow_array(  ) function, 543
fetchrow_hashref(  ) function, 542, 543
handling errors when interacting with

database, 540
importing and exporting data, 552
NULL values, 554
Perl script with both types of binding, 550
prepare(  ) function, 542
PrintError, 541
queries that don’t return answer sets, 545
queries that return answer sets, 542–545
RaiseError, 541
selectall_arrayref(  ) function, 544, 545
shift(  ) function, 545
use DBI;, 539

Perl CGI module, 560
Perl, resources, 538
permissions, 15
Personal Digital Assistants (PDAs) , 511
PHP, 5

!=, 420, 422
!==, 422

$, 416
$connection, 408, 461
$result, 409
$_COOKIE, 456
$_GET, 404, 454
$_POST, 454
$_SERVER, 456
$_SESSION, 455
<, 420
<?php, 403, 415
==, 421
===, 421
>, 420
>=, 420
?>, 403, 415
accessing MySQL using, 427–449
add.php, 454
arrays, 417
AUTO_INCREMENT, 433
break, 421
clean(  ) function, 486
command line scripts, 466–471
conditional statements, 420
count(  ) function, 477
crypt(  ) function, 482, 508
db.php, 449
define(  ) function, 447, 499
displaying artists from music collection,

405–409
displaying information, 419
display_errors, 426
do-math(  ), 424
do...while, 423
dollar sign, 416
echo, 419
empty(  ) function, 422, 479
error messages, 426
error_log(  ), 446
error_reporting, 426
fclose(  ), 448
fopen(  ), 448
for loop, 422
foreach, 423
functions, 423–426

user-defined, 424
fwrite(  ), 448
global, 461
handling MySQL errors, 442–449

General PHP issues, 442

594 | Index

MySQL data, 443
MySQL library, 445
MySQLi, 443
PHP MySQL functions, 442
production code, 446

header(  ) function, 465, 466, 479
if, 420
.inc files, 452
include, 449
included files, 452
introducing, 402–409
isset(  ) function, 422, 462, 479, 494
language basics, 415–427
localhost, 404
logincheck(  ) function, 486, 494, 502
log_errors, 446
loops, 422
magic_quotes_gpc, 460
mail(  ), 448
manual web site, 424
modularizing code, 449–452
MySQL library, 428–431
MySQL monitor, 433
MySQLi, 427
mysqli_affected_rows, 433
mysqli_connect_errno(  ), 443, 445
mysqli_connect_error(  ), 443, 445
mysqli_connect(  ) function, 480
mysqli_fetch_array(  ) function, 491
mysqli_insert_id, 433
mysqli_num_rows, 433
mysqli_query(  ) function, 481, 483
mysqli_real_escape_string(  ), 459, 461
mysql_connect, 445
mysql_errno(  ), 445
NULL, 422
PHP-GTK web site, 415
php.ini, 426, 446, 460
phpMyAdmin, 410
predefined Superglobal variables, 455–456
print, 419
printf, 419
printuser.php, 403, 405
process.php, 464
processing and using user data, 452–455
protecting script and header files, 451
querying the music database, 406, 428

from the command line, 469
receipt.php, 465

reload problem, 463–466
solution to, 465

require, 449
versus require_once, 450

require_once(  ) function, 449, 487
role-based authentication, 488
scalar types, 416
script to say hello, 466
security problems, 456–462

abusing calls to shell commands, 458
limiting size and type of input data, 456
preventing SQL injection attacks, 459
using data from client, 461

sending emails, 448
sessions, 462–463
sessions functions, 402
session_destroy(  ), 463
session_start(  ) function, 462, 466, 484
set_cookie(  ), 456
showerror(  ) function, 446, 448, 486
simple HTML form, 452
strings, 416
strlen(  ), 457
substr(  ), 457
switch...case, 421
system(  ), 458
unset(  ), 422
update_or_insert_gift(  ) function, 495
urlencode(  ) function, 479, 507
using a PHP-enabled web hosting site, 410
variables, 418

passing by reference, 424
wedding registry application (see wedding

registry application)
while(  ) function, 422, 491
writing files, 448
\n, 469

PHP-GTK web site, 415
php.ini (PHP), 426, 446, 460
phpMyAdmin, 12, 410
pi, storing, 199
port, nonstandard, 96
POST, 454
PostgreSQL, 395
pound symbol, 20, 374
prepare(  ) function, 542
primary keys, 205

changing, 218
PRIMARY KEY clause, 204

Index | 595

print
Perl, 537
PHP, 419

print-defaults option, 376
printf

Perl, 537
PHP, 419

printuser.php, 403, 405
privileges, 303–308, 317–324

checking, 317–322
CREATE, 336
global, 303
GRANT OPTION, 306
interaction of, 307
levels, 303
revoking, 323

PROCESS, 336
process identifier (PID), 347
process.php (PHP), 464
push command (Perl), 561
Python, 5

Q
Qcache_hits, 388
query caching, 386
querying, 223–275

aggregate functions, 228–236
aliases, 223–228
ALL, 255
ANY, 253
column aliases, 224
column subquery, 254
consolidated result set, 239
correlated subquery, 257, 259
creating tables with, 285–288
EXISTS, 258, 261
FROM, 262
IN, 254
inner query, 251
inserting data, 277–281
joins, 237–250
left joins, 246–249
locks, 266
natural joins, 249
nested, 250–263
NOT EXISTS, 258
NOT IN, 255
outer query, 251, 261
right joins, 248

row subquery, 256
SOME, 254
table aliases, 226
transactions, 267
UNION, 239–246
user variables, 263

querying techniques, 139–162
query_cache_limit, 387
query_cache_min_res_unit, 387
query_cache_size, 387
query_cache_wlock_invalidate, 387
QUIT, 300

R
RAND(  ), 279
rational number types, 199
read lock, 267
read_buffer_size, 384
receipt.php (PHP), 465
regular expressions, 567
relational database management systems

(RDBMs), 3
relationship set, 116
relationship versus entity, 117
relationships

attributes and, 115
cardinality, 115
key constraints, 115
many-to-many, 115
one-to-many, 115
one-to-one, 115
participation constraints, 117
representing, 115

remote users, 309
creating, 311

removing users, 324
removinig a table, 221
REPAIR TABLE, 366
repairing corrupted tables, 366
REPLACE, 292
replacing data, 292
require (PHP), 449

versus require_once, 450
requirements analysis, 111
require_once(  ) function (PHP), 449, 487
resource handle, 408
resource-limit controls, 337
resources, Perl, 538
result resource, 409

596 | Index

REVOKE, 323
revoking privileges, 323
RIGHT JOIN, 248
RIGHT OUTER JOIN, 249
rolling back transactions, 267
root, 14, 297
root users, 328
row subquery, 256
Ruby, 5
rxvt, 13

S
Safari, 396
safe update mode, 104
scalar operand, 252
scalar vaiables (PHP), 416
scripts directory, 82
security policy for users, 333
sed, 282
SELECT, 139, 142, 207, 235, 265, 277, 284,

294
duplication issues, 280

SELECT INTO OUTFILE, 284
selectall_arrayref(  ) function, 544, 545
self_url(  ) function, 565
semicolon character, 97

Perl, 513
PHP, 416

server, 5
server-specific options file, 375
sessions functions (PHP), 402
session_destroy(  ) (PHP), 463
session_start(  ) function (PHP), 462, 466, 484
SET keyword, 168, 264, 291
SET PASSWORD, 327
SET string type, 203
set-variable=, 388
set_cookie(  ) (PHP), 456
share directory, 82
shebang, 512
shift(  ) function (Perl), 536, 545
Shirky, Clay, 3
shop.php, 397

steps to run, 398
SHOW, 173
SHOW COLLATION, 185
SHOW COLUMNS FROM keyword, 137
SHOW COLUMNS statement, 175
SHOW CREATE TABLE, 279

SHOW CREATE TABLE statement, 176
SHOW ENGINES, 269
SHOW GRANTS, 324
SHOW PRIVILEGES, 303
SHOW PROCESSLIST, 390
SHOW STATUS, 389
SHOW TABLE STATUS, 268
SHOW VARIABLES, 388
SHOW VARIABLES LIKE, 185
SHOW WARNINGS command, 191
showerror(  ) function (PHP), 446, 448, 486
shuffle.sql, 278
SHUTDOWN, 336
single table SELECTs, 139
size, 4
skip-grant-tables, 348
skip-networking option, 74
Sleepycat Software, 274
SMALLINT integer type, 198
socket file, nonstandard, 96
SOME, 254
sorting, 170, 186

collisions, 153
sort_buffer_size, 384
source code, 9
speed, 4
spreadsheet files, importing from, 282
SQL (Structured Query Language), 7
SQL dump file, loading data from, 360
SQL injection attacks, 459
SQL-92, 7
sql-bench directory, 82
SQL:1999, 7
SQL:2003, 7
stale cache, 386
standards, 4
start_html(  ) function, 561
storage engines (see table types)
storing values from a list of predefined values,

202
STRAIGHT JOIN, 239
strings (PHP), 416
strlen(  ) (PHP), 457
Structured Query Language (SQL), 3
subquery, 251
substr(  ) (PHP), 457
sum (Perl), 536
superuser, 12, 14
superuser privileges, 297

Index | 597

support-files directory, 82, 379
switch...case (PHP), 421
syntax alternatives, 150
system root user, 12
system(  ) (PHP), 458

T
Tab key, 99
table columns, default value of NULL, 167
table types, 267–275

Archive, 270
Berkeley Database (BDB), 274
CSV, 270
Example, 270
Federated, 270
Heap, 268
InnoDB, 268, 271
Memory, 268, 270
Merge, 268
MyISAM, 267, 270
NDB Cluster, 270

table-level privileges, 304
tables

advanced options, 187
columns_priv, 343
corrupted, repairing, 366
creating, 181
db, 341
host, 343
indexes, creating, 205
joining, 157–162
multiple, 288
recreating damaged grant tables, 369
removing, 221
renaming, 219
replacing data in, 292

bulk-replacing, 293
tables_priv, 342
types, 188

tables_priv table, 342
table_cache, 384
taint mode (Perl), 566
TEMPORARY, 286
Terminal program, 13
tests directory, 83
text editors

Linux, 19
Mac OS X, 19
Windows, 19

word processors versus, 19
thin client, 399
threads, 379
three-tier architectures, 398

client tier, 398
database tier, 399
middle tier, 398
thin client, 399

TIME column type, 191
TIMESTAMP column type, 190, 193

automatic-update feature, 194
TINYBLOB binary string type, 201
TINYINT integer type, 198
TINYTEXT string type, 201
TMTOWTDI, 511
TO keyword, 219
total participation, 116
trailing spaces, 201
transaction support, 392
transaction-safe tables (TSTs), 268, 269
transactions, 267
TRUNCATE TABLE statement, 170
Tr(  ) function (Perl), 562
tuning column types, 198

U
unary operator, 148
underscore character, 145
UNION, 239–246
UNIQUE, 288
university database example, 124
unset(  ) (PHP), 422
update log, 365
UPDATE statement, 171, 291, 307
update_or_insert_gift(  ) function (PHP), 495
updating multiple tables, 291
urlencode(  ) function (PHP), 479, 507
url(  ) function, 564
use DBI;, 539
user options, 371
user table, 339
user variables, 263
user-specific options file, 375
users, 15
users and hosts, 308–317

anonymous, 328
configuring default users, 328
creating a remote user, 311
creating an anonymous local user, 315

598 | Index

default users, 328–333
local and remote users, 309
passwords, 324
removing users, 324
root, 328
securing default users, 331
user security policy, 333

users and privileges
activating, 346
choosing, 333
management tools, 297–349
managing with SQL, 339
new users, creating, 299–303
overview, 298
performance and, 347
resource-limit controls, 337
superuser privileges, 297

USING keyword, 157, 290

V
VALUES, 166
VARBINARY binary string type, 201
VARCHAR string type, 201
variable-length strings, 201
variables, 379

Perl, 517
variables (PHP), 418
Visio, diagramming tool, 130

W
weak entities, 120
web applications using Perl, 557–568

administrator privileges, 557
Apache error logfile, 559
CGI scripts (see CGI scripts)
charset, 558, 561
encoding parameter, 561
header(  ) function, 561
HTTP POST method, 562
HTTP::Mason, 557
installing scripts, 557
mod_perl, 557, 566
opening file in a web browser, 558
param(  ) function, 563, 566
Perl CGI module, 560

popup_menu function, 563
Perl security, 566
print command, 557

processing user input, 562–566
regular expressions, 567
self_url(  ) function, 565
start_html(  ) function, 561
system root priviledges, 557
taint mode, 566
Tr function(  ) (Perl), 562
url(  ) function, 564
using one script for form and for processing,

564
web browser, 396
web database applications, 395–413

Apache web server, 400–402
building, 395–400
how web software works, 396–398
running a web script, 397
shop.php, 397
steps to run shop.php, 398
three-tier architectures, 398
three-tiered web database application

diagram, 398
web server index files, 402
web software, advantages, 397

web server index files, 402
wedding registry application, 473–508

action.php, 501, 502
adding gift, 503–505
authenticating users, 481–484
db.php include file, 486–487
deleting gift, 493
designing and creating wedding database,

474–476
editing list of gifts, 487–497
gift editing form, 489–493
grant_privileges.sql, 476
index.php, 478
listing gifts, 497–501
loading sample gifts, 497
logging users in and out, 480–485
login form, 476–478

one script for form and processing, 477
MySQL Workbench, 474
passing message to a script, 478–479
processing submitted form, 494–497
removing gift, 506
restricting edit access, 487
role-based authentication, 488
selecting and deselecting gifts, 501–507
starting user session, 484

Index | 599

verifying new users, 481
wedding registry ER model using the

MySQL Workbench, 474
wedding registry gift editing page, 489
wedding registry list page showing reserved

gifts, 503
wedding registry login page, 476

wedding registry code, 571–584
wget, 75
WHERE clause, 142, 169, 172, 218, 238, 291
while loop

Perl, 522
PHP, 422, 491

whitespace, 98, 183
wildcard character, 141
Windows, 11

Command Prompt Window, 13
Perl, 513

Windows Vista, scheduling backups, 363
Windows XP, scheduling backups, 363
winMd5Sum (Windows), 23
write lock, 267

X
XAMPP, 10

integrated package
installing (Linux), 44
installing (Mac OS X), 68
installing (Windows), 59

XAMPP Perl installation, 91
xls2csv script, 282
XOR operator, 150
xterm, 13

Y
YEAR number type, 200
yum, 75

Z
zero date, 190
zero time, 193
ZEROFILL, 188

600 | Index

About the Authors
Saied Tahaghoghi is a senior lecturer at the RMIT University School of Computer
Science and Information Technology. He has a bachelor’s degree in electronics engi-
neering, a master’s degree in computer engineering, and a PhD in computer science,
and loves tinkering with both hardware and software. Saied is a member of the RMIT
Search Engine Group, and supervises research on text, image, video, and code retrieval.
He teaches courses on web technologies and security, and is frequently asked to consult
on projects by industry. Saied was born in Iran but has spent almost equal parts of his
life in Iran, England, Pakistan, and Australia, and is a fervent advocate of dialogue
between civilizations. His home page is http://saied.tahaghoghi.com.

Hugh E. Williams is a software design engineer at Microsoft’s Windows Live Search
in Redmond, Washington. Previously, he was an Associate Professor in Information
Retrieval at RMIT University in Melbourne, Australia. He’s published over 70 research
papers and holds around 10 patents, mostly in the search engine area. When not at
work, Hugh likes to hang out with his family, exercise, watch Richmond play footy,
and learn about baseball. Hugh has a PhD from RMIT University. His home page is
http://hughwilliams.com.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The type of butterfly on the cover of Learning MySQL is the blue spotted crow (euploea
midamus). One of more than 15,000 species of butterfly, this member of the brush-
footed family Nymphalidae (which also is home to the Monarch) is native to the Orient
and can be found in a region that spreads from Afghanistan to Australia. As its name
suggests, the crow is distinguished by its blue tint, as well as a series of white spots that
line the hind edge of its large wings.

In the course of their lives, butterflies go through four development stages: egg, larva,
pupa, and adult. Butterfly eggs, ovate or spherical in shape, are attached to leaves by a
powerful, quickly hardening glue until they hatch. In the larval stage, butterflies are
commonly referred to as caterpillars, and their bodies are divided into many small
segments, each possessing up to four pairs of legs. Caterpillars have insatiable appetites,
feeding practically nonstop on plant matter and molting approximately four or five
times before becoming pupae. At this third phase, the caterpillar becomes a chrysalis,
typically cleaving to the underside of a leaf. The chrysalis then consumes foodstuffs
that enable it to develop its wing structures and make the metamorphosis into an adult
butterfly. In this final stage of development, the butterfly is known as an imago, a four-
winged creature with six legs. Imagos subsist mainly on flower nectar; some supplement
their diets with nutrients from sap, pollen, rotten fruit, or dung.

http://saied.tahaghoghi.com
http://hughwilliams.com

In Japanese culture, butterflies are somewhat paradoxically mythologized as both har-
bingers of prosperity and impending doom. One superstition stipulates that a single
butterfly flying into one’s bedroom presages the arrival of one’s dearest love, while an
encounter with a swarm of butterflies is thought to be a precursor to ominous events.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	Who This Book Is for
	What’s in the Book
	Introduction
	Using MySQL
	Advanced Topics
	Web Database Applications with PHP
	Interacting with MySQL Using Perl
	Appendix

	Conventions Used in This Book
	Resources
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments
	Saied Tahaghoghi
	Hugh Williams

	Part I. Introduction
	Chapter 1. Introduction
	Why Is MySQL so Popular?
	Elements of MySQL and Its Environment
	The LAMP Platform
	Structured Query Language

	MySQL Software Covered in This Book
	The Book’s Web Site

	Chapter 2. Installing MySQL
	Installation Choices and Platforms
	Linux
	Live CDs

	Windows
	Mac OS X
	So, What Should I Do?

	Using the Command-Line Interface
	The Linux and Mac OS X Shell
	Command completion and history
	Performing restricted operations
	Restricting access to files and directories

	The Windows Command Prompt
	Command completion and history

	Using a Text Editor
	Following the Instructions in This Book
	Downloading and Verifying Files from the MySQL AB Web Site
	Downloading MySQL from the MySQL AB Web Site
	Verifying Package Integrity with MD5

	Installing Under Linux
	Installing MySQL on Linux Using RPM Packages from MySQL AB
	Installing MySQL on Linux Using a gzipped Tar Archive from MySQL AB
	Installing MySQL on Linux by Compiling the Source Code from MySQL AB
	Installing MySQL, Apache, PHP, and Perl on Linux Using Distribution Packages
	Installation on Red Hat and Fedora Core
	Installation on Mandriva
	Installing under Debian-based systems
	Uninstalling MySQL

	Installing MySQL, Apache, PHP, and Perl on Linux Using the XAMPP Integrated Package
	Configuring a Newly Installed Server
	Configuring a server installed using RPM or Debian packages
	Configuring a system-wide server installed from tarball or source
	Configuring a local server
	Configuring MySQL for automatic start

	Installing Under Windows
	Installing Only MySQL Using Packages from MySQL AB
	Windows installation using the installer
	Starting and stopping MySQL as a service
	Starting and stopping MySQL from the command line

	Installation with the “no-install” .zip Archive
	Installing MySQL, Apache, PHP, and Perl on Windows Using the XAMPP Integrated Package

	Installing Under Mac OS X
	Installing only MySQL Using the Installer from MySQL AB
	Configuring the installed server

	Installing Only MySQL Using the no-installer Package from MySQL AB
	Installing MySQL, Apache, PHP, and Perl on Mac OS X Using the XAMPP Integrated Package

	Using a MySQL Installation Provided by an ISP
	Upgrading an Existing MySQL Server
	Should I Upgrade to MySQL 5.1?
	How to Upgrade
	Steps to Upgrade an Existing MySQL Server

	Configuring Access to the MySQL Server
	What If Things Don’t Work?
	Can’t Download Files from Behind a Proxy
	Error Message About MySQL Executable Programs Not Being Found or Recognized
	Error Message Running mysql_install_db
	Server Doesn’t Start
	Client Programs Can’t Connect to the Server
	Server Doesn’t Stop

	The Contents of the MySQL Directory
	Configuring and Controlling the Apache Web Server
	The Apache Document Root
	The Apache Configuration File
	The Apache Error Log
	Starting and Stopping Apache
	Checking Whether Your Apache Installation Supports PHP

	Setting up Perl
	Checking Your Existing Setup
	Installing the Perl DBI and CGI Modules
	Installing Perl modules under Linux
	Installing Perl modules under Windows
	Installing Perl modules under Mac OS X
	Problems installing the Perl modules

	Resources
	Exercises

	Chapter 3. Using the MySQL Monitor
	Starting the Monitor
	Style, Case, and Semicolons
	The Monitor Help
	Running the Monitor in Batch Mode
	Loading the Sample Databases
	MySQL Monitor Program Options
	Graphical Clients
	Exercises

	Part II. Using MySQL
	Chapter 4. Modeling and Designing Databases
	How Not to Develop a Database
	The Database Design Process
	The Entity Relationship Model
	Representing Entities
	Representing Relationships
	Partial and Total Participation
	Entity or Attribute?
	Entity or Relationship?
	Intermediate Entities
	Weak and Strong Entities

	Entity Relationship Modeling Examples
	The Music Database
	What it doesn’t do

	The University Database
	What it doesn’t do

	The Flight Database
	What it doesn’t do

	Using the Entity Relationship Model
	Mapping Entities and Relationships to Database Tables
	Map the entities to database tables
	Map the relationships to database tables

	Converting the Music Database ER Model to a Database Schema

	Using Tools for Database Design
	Resources
	Exercises

	Chapter 5. Basic SQL
	Using the Music Database
	The SELECT Statement and Basic Querying Techniques
	Single Table SELECTs
	Choosing Columns
	Choosing Rows with the WHERE Clause
	WHERE basics
	Combining conditions with AND, OR, NOT, and XOR

	ORDER BY Clauses
	The LIMIT Clause
	Joining Two Tables

	The INSERT Statement
	INSERT Basics
	Alternative Syntaxes

	The DELETE Statement
	DELETE Basics
	Using WHERE, ORDER BY, and LIMIT
	Removing All Rows with TRUNCATE

	The UPDATE Statement
	Examples
	Using WHERE, ORDER BY, and LIMIT

	Exploring Databases and Tables with SHOW and mysqlshow
	Exercises

	Chapter 6. Working with Database Structures
	Creating and Using Databases
	Creating Tables
	Basics
	Collation and Character Sets
	Other Features
	Column Types
	Common column types
	Other integer types
	Other rational number types
	Other date and time types
	Other string types

	Keys and Indexes
	The AUTO_INCREMENT Feature

	The Sample Music Database
	Altering Structures
	Adding, Removing, and Changing Columns
	Adding, Removing, and Changing Indexes
	Renaming Tables and Altering Other Structures

	Deleting Structures
	Dropping Databases
	Removing Tables

	Exercises

	Chapter 7. Advanced Querying
	Aliases
	Column Aliases
	Table Aliases

	Aggregating Data
	The DISTINCT Clause
	The GROUP BY Clause
	Other aggregate functions

	The HAVING Clause

	Advanced Joins
	The Inner Join
	The Union
	The Left and Right Joins
	The Natural Join

	Nested Queries
	Nested Query Basics
	The ANY, SOME, ALL, IN, and NOT IN Clauses
	Using ANY and IN
	Using ALL
	Writing row subqueries

	The EXISTS and NOT EXISTS Clauses
	EXISTS and NOT EXISTS basics
	Correlated subqueries

	Nested Queries in the FROM Clause

	User Variables
	Transactions and Locking
	Table Types
	MyISAM
	Memory or Heap
	InnoDB
	Transaction examples

	BDB

	Exercises

	Chapter 8. Doing More with MySQL
	Inserting Data Using Queries
	Loading Data from Comma-Delimited Files
	Writing Data into Comma-Delimited Files
	Creating Tables with Queries
	Updates and Deletes with Multiple Tables
	Deletion
	Updates

	Replacing Data
	The EXPLAIN Statement
	Exercises

	Chapter 9. Managing Users and Privileges
	Understanding Users and Privileges
	Creating and Using New Users
	Privileges
	The GRANT OPTION Privilege
	How Privileges Interact
	Users and Hosts
	Local and Remote Users
	Creating a New Remote User
	Anonymous Users
	Which User Is Connected?

	Checking Privileges
	mysqlaccess
	Configuring mysqlaccess

	Revoking Privileges
	Removing Users
	Understanding and Changing Passwords
	The Default Users
	Default User Configuration
	Linux and Mac OS X
	Windows

	Securing the Default Users

	Devising a User Security Policy
	Choosing Users and Privileges
	More Security Tips
	Resource-Limit Controls
	The mysql_setpermission Program

	Managing Privileges with SQL
	The user Table
	The db Table
	The tables_priv Table
	The columns_priv Table
	The host Table
	Activating Privileges

	Privileges and Performance
	Resetting Forgotten MySQL Passwords
	Exercises

	Part III. Advanced Topics
	Chapter 10. Backups and Recovery
	Dumping a Database as SQL Statements
	mysqldump Options

	Loading Data from an SQL Dump File
	mysqlhotcopy
	Scheduling Backups
	Linux and Mac OS X
	Windows XP
	General Backup Tips

	The Binary Log
	Checking and Repairing Corrupted Tables
	mysqlcheck
	myisamchk

	Re-Creating Damaged Grant Tables
	Resources
	Exercises

	Chapter 11. Using an Options File
	Configuring Options for the MySQL Monitor
	Structure of the Options File
	Scope of Options
	Search Order for Options Files
	Determining the Options in Effect
	Exercises

	Chapter 12. Configuring and Tuning the Server
	The MySQL Server Daemon
	MySQL Server Options
	Examples

	Server Variables
	The Slow Query Log
	Query Caching
	The Old Variables Format

	Checking Server Settings
	Other Things to Consider
	Resources
	Exercises

	Part IV. Web Database Applications with PHP
	Chapter 13. Web Database Applications
	Building a Web Database Application
	How Web Software Works
	Three-Tier Architectures

	The Apache Web Server
	Web Server Index Files

	Introducing PHP
	Example: Displaying the Artists from the Music Collection

	Using a PHP-Enabled Web Hosting Site
	Resources
	Exercises

	Chapter 14. PHP
	Language Basics
	Strings
	Arrays
	Manipulating Variables
	Displaying Information
	Conditional Statements
	Loops
	Functions
	Passing variables by reference

	Handling Errors in PHP

	Accessing MySQL Using PHP
	The Original PHP MySQL Library
	The PHP Improved MySQL Library
	What’s New in MySQLi
	Accessing Query Results with mysql_fetch_array() and mysqli_fetch_array()
	Finding the Number of Changed Rows Using mysql_affected_rows and mysqli_affected_rows
	Handling MySQL Errors
	Handling errors using the MySQLi library
	Handling errors using the older MySQL library
	Handling errors in production code
	Writing files and sending emails using PHP

	Modularizing Code
	Protecting Script and Header Files

	Processing and Using User Data
	The PHP Predefined Superglobal Variables
	Untainting User Data
	Limiting the Size and Type of Input Data
	Abusing Calls to Shell Commands
	Preventing SQL Injection Attacks
	Using Data from the Client

	Sessions
	The Reload Problem
	Using PHP for Command-Line Scripts
	Using Command-Line Arguments

	Resources
	Exercises

	Chapter 15. A PHP Application: The Wedding Gift Registry
	Designing and Creating the Wedding Database
	The Login Form
	Using One Script for the Form and for Processing

	Passing a Message to a Script
	Logging Users In and Out
	Verifying New Users
	Authenticating the User
	Starting the User Session
	Logging the User Out

	The db.php Include File
	Editing the List of Gifts
	Restricting Edit Access
	Role-Based Authentication
	The Gift Editing Form
	Deleting a Gift
	Processing the Submitted Form

	Loading Sample Gifts
	Listing Gifts for Selection
	Selecting and Deselecting Gifts
	Adding a Gift
	Removing a Gift

	Resources
	Exercises

	Part V. Interacting with MySQL Using Perl
	Chapter 16. Perl
	Writing Your First Perl Program
	Scripting With Perl
	Mathematical Operators
	Operator precedence

	More on Variables
	Single and double quotes

	Arrays and Hashes
	Control Structures: Loops and Conditionals
	Iterating Through Arrays and Hashes
	Conditional Statements
	Reading Input from the Command Line and from Files
	Reading in values from the command line
	Reading in values from a file
	Reading in values from standard input
	Writing values to a file or standard output

	Writing Your Own Perl Functions

	Resources
	Exercises

	Chapter 17. Using Perl with MySQL
	Connecting to the MySQL Server and Database
	Handling Errors When Interacting with the Database
	Using Queries That Return Answer Sets
	Using Queries That Don’t Return Answer Sets
	Binding Queries and Variables
	Binding Variables to a Query
	Binding Query Results to Variables
	The Complete Script Using Both Types of Binding

	Importing and Exporting Data
	Handling NULL Values
	Resources
	Exercises

	Chapter 18. Serving Perl Pages to the Web
	The Perl CGI Module
	Processing User Input
	Using One Script for the Form and for Processing

	A Note on mod_perl
	Perl Security
	Resources
	Exercises

	Part VI. Appendix
	Appendix. The Wedding Registry Code
	Overview

	Index

