
10/26/23, 4:42 PM PCI(e) Passthrough - Proxmox VE

https://pve.proxmox.com/wiki/PCI(e)_Passthrough 1/7

PCI(e) Passthrough

General Requirements
Host Device Passthrough
SR-IOV
Mediated Devices (vGPU, GVT-g)
Use in Clusters
See Also

PCI(e) passthrough is a mechanism to give a virtual machine control over a PCI device from the host. This can
have some advantages over using virtualized hardware, for example lower latency, higher performance, or
more features (e.g., offloading).

But, if you pass through a device to a virtual machine, you cannot use that device anymore on the host or in
any other VM.

Since passthrough is a feature which also needs hardware support, there are some requirements to check and
preparations to be done to make it work.

Your hardware needs to support IOMMU (I/O Memory Management Unit) interrupt remapping, this includes
the CPU and the mainboard.

Generally, Intel systems with VT-d, and AMD systems with AMD-Vi support this. But it is not guaranteed
that everything will work out of the box, due to bad hardware implementation and missing or low quality
drivers.

Further, server grade hardware has often better support than consumer grade hardware, but even then, many
modern system can support this.

Please refer to your hardware vendor to check if they support this feature under Linux for your specific setup.

Once you ensured that your hardware supports passthrough, you will need to do some configuration to
enable PCI(e) passthrough.

Contents

General Requirements

Hardware

Configuration

IOMMU

10/26/23, 4:42 PM PCI(e) Passthrough - Proxmox VE

https://pve.proxmox.com/wiki/PCI(e)_Passthrough 2/7

First, you have to enable IOMMU support in your BIOS/UEFI. Usually the corresponding setting is called
IOMMU or VT-d,but you should find the exact option name in the manual of your motherboard.

For Intel CPUs, you may also need to enable the IOMMU on the kernel command line for older (pre-5.15)
kernels by adding:

 intel_iommu=on

For AMD CPUs it should be enabled automatically.

If your hardware supports IOMMU passthrough mode, enabling this mode might increase performance. This
is because VMs then bypass the (default) DMA translation normally performed by the hyper-visor and
instead pass DMA requests directly to the hardware IOMMU. To enable these options, add:

 iommu=pt

to the kernel commandline.

You have to make sure the following modules are loaded. This can be achieved by adding them to
‘/etc/modules’

 vfio
 vfio_iommu_type1
 vfio_pci
 vfio_virqfd

After changing anything modules related, you need to refresh your initramfs. On Proxmox VE this can be
done by executing:

update-initramfs -u -k all

Finally reboot to bring the changes into effect and check that it is indeed enabled.

dmesg | grep -e DMAR -e IOMMU -e AMD-Vi

should display that IOMMU, Directed I/O or Interrupt Remapping is enabled, depending on
hardware and kernel the exact message can vary.

It is also important that the device(s) you want to pass through are in a separate IOMMU group. This can be
checked with:

find /sys/kernel/iommu_groups/ -type l

IOMMU Passthrough Mode

Kernel Modules

Finish Configuration

https://pve.proxmox.com/wiki/Host_Bootloader#sysboot_edit_kernel_cmdline
https://pve.proxmox.com/wiki/Host_Bootloader#sysboot_edit_kernel_cmdline

10/26/23, 4:42 PM PCI(e) Passthrough - Proxmox VE

https://pve.proxmox.com/wiki/PCI(e)_Passthrough 3/7

It is okay if the device is in an IOMMU group together with its functions (e.g. a GPU with the HDMI Audio
device) or with its root port or PCI(e) bridge.

PCI(e) slots

Some platforms handle their physical PCI(e) slots differently. So, sometimes it can help to put
the card in a another PCI(e) slot, if you do not get the desired IOMMU group separation.

Unsafe interrupts

For some platforms, it may be necessary to allow unsafe interrupts. For this add the following
line in a file ending with ‘.conf’ file in /etc/modprobe.d/:

 options vfio_iommu_type1 allow_unsafe_interrupts=1

Please be aware that this option can make your system unstable.

It is not possible to display the frame buffer of the GPU via NoVNC or SPICE on the Proxmox VE web
interface.

When passing through a whole GPU or a vGPU and graphic output is wanted, one has to either physically
connect a monitor to the card, or configure a remote desktop software (for example, VNC or RDP) inside the
guest.

If you want to use the GPU as a hardware accelerator, for example, for programs using OpenCL or CUDA,
this is not required.

The most used variant of PCI(e) passthrough is to pass through a whole PCI(e) card, for example a GPU or a
network card.

In this case, the host must not use the card. There are two methods to achieve this:

pass the device IDs to the options of the vfio-pci modules by adding

 options vfio-pci ids=1234:5678,4321:8765

to a .conf file in /etc/modprobe.d/ where 1234:5678 and 4321:8765 are the vendor and device
IDs obtained by:

lspci -nn

blacklist the driver completely on the host, ensuring that it is free to bind for passthrough, with

GPU Passthrough Notes

Host Device Passthrough

Host Configuration

10/26/23, 4:42 PM PCI(e) Passthrough - Proxmox VE

https://pve.proxmox.com/wiki/PCI(e)_Passthrough 4/7

 blacklist DRIVERNAME

in a .conf file in /etc/modprobe.d/.

For both methods you need to update the initramfs again and reboot after that.

To check if your changes were successful, you can use

lspci -nnk

and check your device entry. If it says

Kernel driver in use: vfio-pci

or the in use line is missing entirely, the device is ready to be used for passthrough.

To pass through the device you need to set the hostpciX option in the VM configuration, for example by
executing:

qm set VMID -hostpci0 00:02.0

If your device has multiple functions (e.g., ‘00:02.0’ and ‘00:02.1’), you can pass them through all
together with the shortened syntax ``00:02`. This is equivalent with checking the ``All Functions` checkbox in
the web-interface.

There are some options to which may be necessary, depending on the device and guest OS:

x-vga=on|off marks the PCI(e) device as the primary GPU of the VM. With this enabled the vga
configuration option will be ignored.

pcie=on|off tells Proxmox VE to use a PCIe or PCI port. Some guests/device combination require
PCIe rather than PCI. PCIe is only available for q35 machine types.

rombar=on|off makes the firmware ROM visible for the guest. Default is on. Some PCI(e)
devices need this disabled.

romfile=<path>, is an optional path to a ROM file for the device to use. This is a relative path
under /usr/share/kvm/.

Verify Configuration

VM Configuration

Example

10/26/23, 4:42 PM PCI(e) Passthrough - Proxmox VE

https://pve.proxmox.com/wiki/PCI(e)_Passthrough 5/7

An example of PCIe passthrough with a GPU set to primary:

qm set VMID -hostpci0 02:00,pcie=on,x-vga=on

You can override the PCI vendor ID, device ID, and subsystem IDs that will be seen by the guest. This is useful
if your device is a variant with an ID that your guest’s drivers don’t recognize, but you want to force those
drivers to be loaded anyway (e.g. if you know your device shares the same chipset as a supported variant).

The available options are vendor-id, device-id, sub-vendor-id, and sub-device-id. You can
set any or all of these to override your device’s default IDs.

For example:

qm set VMID -hostpci0 02:00,device-id=0x10f6,sub-vendor-id=0x0000

When passing through a GPU, the best compatibility is reached when using q35 as machine type, OVMF (EFI
for VMs) instead of SeaBIOS and PCIe instead of PCI. Note that if you want to use OVMF for GPU
passthrough, the GPU needs to have an EFI capable ROM, otherwise use SeaBIOS instead.

Another variant for passing through PCI(e) devices, is to use the hardware virtualization features of your
devices, if available.

SR-IOV (Single-Root Input/Output Virtualization) enables a single device to provide multiple VF (Virtual
Functions) to the system. Each of those VF can be used in a different VM, with full hardware features and also
better performance and lower latency than software virtualized devices.

Currently, the most common use case for this are NICs (Network Interface Card) with SR-IOV support, which
can provide multiple VFs per physical port. This allows using features such as checksum offloading, etc. to be
used inside a VM, reducing the (host) CPU overhead.

Generally, there are two methods for enabling virtual functions on a device.

sometimes there is an option for the driver module e.g. for some Intel drivers

 max_vfs=4

which could be put file with .conf ending under /etc/modprobe.d/. (Do not forget to update your
initramfs after that)

Please refer to your driver module documentation for the exact parameters and options.

PCI ID overrides

Other considerations

SR-IOV

Host Configuration

10/26/23, 4:42 PM PCI(e) Passthrough - Proxmox VE

https://pve.proxmox.com/wiki/PCI(e)_Passthrough 6/7

The second, more generic, approach is using the sysfs. If a device and driver supports this you
can change the number of VFs on the fly. For example, to setup 4 VFs on device 0000:01:00.0
execute:

echo 4 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs

To make this change persistent you can use the ‘sysfsutils` Debian package. After installation
configure it via /etc/sysfs.conf or a `FILE.conf’ in /etc/sysfs.d/.

After creating VFs, you should see them as separate PCI(e) devices when outputting them with lspci. Get
their ID and pass them through like a normal PCI(e) device.

For this feature, platform support is especially important. It may be necessary to enable this feature in the
BIOS/EFI first, or to use a specific PCI(e) port for it to work. In doubt, consult the manual of the platform or
contact its vendor.

Mediated devices are another method to reuse features and performance from physical hardware for
virtualized hardware. These are found most common in virtualized GPU setups such as Intel’s GVT-g and
NVIDIA’s vGPUs used in their GRID technology.

With this, a physical Card is able to create virtual cards, similar to SR-IOV. The difference is that mediated
devices do not appear as PCI(e) devices in the host, and are such only suited for using in virtual machines.

In general your card’s driver must support that feature, otherwise it will not work. So please refer to your
vendor for compatible drivers and how to configure them.

Intel’s drivers for GVT-g are integrated in the Kernel and should work with 5th, 6th and 7th generation Intel
Core Processors, as well as E3 v4, E3 v5 and E3 v6 Xeon Processors.

To enable it for Intel Graphics, you have to make sure to load the module kvmgt (for example via
/etc/modules) and to enable it on the Kernel commandline and add the following parameter:

 i915.enable_gvt=1

After that remember to update the initramfs, and reboot your host.

To use a mediated device, simply specify the mdev property on a hostpciX VM configuration option.

VM Configuration

Other considerations

Mediated Devices (vGPU, GVT-g)

Host Configuration

VM Configuration

https://pve.proxmox.com/wiki/Host_Bootloader#sysboot_edit_kernel_cmdline

10/26/23, 4:42 PM PCI(e) Passthrough - Proxmox VE

https://pve.proxmox.com/wiki/PCI(e)_Passthrough 7/7

You can get the supported devices via the sysfs. For example, to list the supported types for the device
0000:00:02.0 you would simply execute:

ls /sys/bus/pci/devices/0000:00:02.0/mdev_supported_types

Each entry is a directory which contains the following important files:

available_instances contains the amount of still available instances of this type, each mdev use in
a VM reduces this.

description contains a short description about the capabilities of the type

create is the endpoint to create such a device, Proxmox VE does this automatically for you, if a
hostpciX option with mdev is configured.

Example configuration with an Intel GVT-g vGPU (Intel Skylake 6700k):

qm set VMID -hostpci0 00:02.0,mdev=i915-GVTg_V5_4

With this set, Proxmox VE automatically creates such a device on VM start, and cleans it up again when the
VM stops.

It is also possible to map devices on a cluster level, so that they can be properly used with HA and hardware
changes are detected and non root users can configure them. See Resource Mapping for details on that.

PCI Passthrough Examples

Retrieved from "https://pve.proxmox.com/mediawiki/index.php?title=PCI(e)_Passthrough&oldid=11789"

This page was last edited on 20 September 2023, at 21:38.

Use in Clusters

See Also

https://pve.proxmox.com/wiki/QEMU/KVM_Virtual_Machines#resource_mapping
https://pve.proxmox.com/wiki/Pci_passthrough
https://pve.proxmox.com/mediawiki/index.php?title=PCI(e)_Passthrough&oldid=11789

