
Practical Rust
Projects

Build Serverless, AI, Machine Learning,
Embedded, Game, and Web Applications
—
Second Edition
—
Shing Lyu
Andrew Rzeznik

Practical Rust Projects
Build Serverless, AI, Machine

Learning, Embedded, Game, and
Web Applications

Second Edition

Shing Lyu
Andrew Rzeznik

Practical Rust Projects: Build Serverless, AI, Machine Learning, Embedded, Game,
and Web Applications

ISBN-13 (pbk): 978-1-4842-9330-0		 ISBN-13 (electronic): 978-1-4842-9331-7
https://doi.org/10.1007/978-1-4842-9331-7

Copyright © 2023 by Shing Lyu and Andrew Rzeznik

This work is subject to copyright. All rights are reserved by the publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Editorial Assistant: Gryffin Winkler
Copy Editor: April Rondeau

Cover designed by eStudioCalamar

Cover image designed by xb100 on freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is
a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/apress). For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Shing Lyu
Amsterdam, The Netherlands

Andrew Rzeznik
Arlington, MA, USA

https://doi.org/10.1007/978-1-4842-9331-7

iii

Table of Contents

About the Authors��� ix

About the Technical Reviewer�� xi

Introduction�� xiii

Chapter 1: �Welcome to the World of Rust�� 1

1.1 Who Is This Book For?�� 2

1.2 Who Is This Book Not For?��� 3

1.3 Criteria for Selecting Libraries��� 3

Pure Rust�� 4

Maturity�� 4

Popularity��� 5

1.4 How to Use This Book�� 5

Chapters Overview��� 5

1.5 Source Code��� 7

1.6 Topics Not Covered�� 8

Chapter 2: �Building a Command-line Program�� 9

2.1 What Are You Building?�� 10

2.2 Creating a Binary Project��� 11

2.3 Reading Command-line Arguments with std::env::args��� 12

2.4 Handling Complex Arguments with Clap�� 13

2.5 Adding Binary Flags��� 17

2.6 Printing to STDERR��� 18

2.7 Printing with Color��� 19

2.8 Reading the Cat Picture from a File��� 21

2.9 Handling Errors�� 24

iv

2.10 Piping to Other Commands�� 27

Piping to STDOUT Without Color��� 28

Accepting STDIN��� 29

2.11 Integration Testing��� 30

2.12 Publishing and Distributing the Program��� 34

Install from Source��� 34

Publish to crates.io��� 35

Building Binaries for Distribution�� 36

2.13 Conclusion��� 38

Chapter 3: �Creating Graphical User Interfaces (GUIs)�� 39

3.1 What Are You Building?�� 40

3.2 Building a Text-based User Interface��� 41

3.3 Showing a Dialog Box�� 43

3.4 Handling Simple Keyboard Inputs�� 45

3.5 Adding a Dialog�� 46

3.6 Multi-step Dialogs�� 47

3.7 Reading User Input��� 50

3.8 Moving to Graphical User Interfaces (GUIs)�� 52

3.9 Creating a Window��� 53

3.10 Displaying an Image��� 55

3.11 Using Glade to Design the UI�� 58

3.12 Accepting Inputs and Button Clicks��� 68

3.13 Reading a gtk::Switch��� 72

3.14 Alternatives�� 75

3.15 Conclusion��� 77

Table of Contents

v

Chapter 4: �High-Performance Web Frontend Using WebAssembly�������������������������� 79

4.1 What Is WebAssembly?�� 79

4.2 What Are You Building?�� 81

4.3 Hello WebAssembly!�� 81

Setting Up the Development Environment�� 82

Creating the Project�� 83

Creating the Frontend��� 88

4.4 Resizing an Image with WebAssembly�� 93

Loading an Image File onto the <canvas>��� 97

Passing the Image to Wasm��� 100

4.5 Writing the Whole Frontend in Rust��� 106

4.6 A Hello World Example��� 107

4.7 A Cat Management Application�� 112

CSS Styling��� 118

Deleting Files�� 120

4.8 Wasm Alternatives��� 124

4.9 Conclusion��� 126

Chapter 5: �REST APIs��� 127

5.1 What Are You Building?�� 129

5.2 Hello Backend World!��� 130

5.3 Serving Static Files�� 134

5.4 Converting the Cats List to a REST API��� 141

5.5 Using a Database��� 146

5.6 Adding Cats with a POST Command�� 157

5.7 API Testing�� 165

5.8 Building the Cat Detail API��� 169

5.9 Input Validation�� 173

Table of Contents

vi

5.10 Error Handling�� 176

Using the actix_web::error Helpers��� 177

Using a Generic Error That Has Implemented the ResponseError Trait����������������������������� 179

Using a Custom-Built Error Type��� 179

5.11 Customizing the web::Path Extractor Error��� 184

5.12 Logging�� 185

5.13 Enabling HTTPS�� 193

5.14 Framework Alternatives��� 196

5.15 Conclusion��� 199

Chapter 6: �Going Serverless with the Amazon AWS Rust SDK������������������������������ 201

6.1 What Are You Building?�� 202

6.2 What Is AWS Lambda?��� 202

6.3 Registering an AWS Account�� 203

6.4 Hello World in Lambda��� 204

6.5 The Full Architecture�� 210

6.6 Using the AWS Serverless Application Model (AWS SAM)�� 211

6.7 Setting Up AWS SAM CLI Credentials��� 212

6.8 Creating the Catdex Serverless Project��� 212

6.9 Building the Upload API�� 219

6.10 Building the /cats API�� 224

6.11 Uploading the Image Using S3 Pre-signed URL��� 228

6.12 Adding the Frontend��� 235

6.13 A Note on Security��� 245

6.14 Next Steps�� 246

6.15 Conclusion��� 246

Chapter 7: �Building a Game��� 247

7.1 What Are We Building?��� 247

7.2 Bevy and the Entity Component System Pattern��� 248

7.3 Creating a Bevy Project�� 252

7.4 See the World Through a Camera�� 254

Table of Contents

vii

7.5 Adding the Cats�� 256

7.6 Loading a Spritesheet�� 260

7.7 Moving the Cats��� 265

7.8 Creating the Ball�� 269

7.9 Can’t Defy Gravity�� 272

7.10 Making the Ball Bounce��� 274

7.11 Keeping Score�� 280

7.12 Let There Be Music�� 288

7.13 Alternatives�� 291

7.14 Conclusion��� 292

Chapter 8: �Physical Computing in Rust��� 293

8.1 What Are You Building?�� 293

8.2 Physical Computing on Raspberry Pi��� 294

Getting to Know Your Raspberry Pi��� 295

Installing Raspberry Pi OS Using Raspberry Pi Imager�� 296

Installing the Rust Toolchain��� 298

Understanding the GPIO Pins�� 299

Building an LED Circuit��� 300

Controlling the GPIO Output with Rust�� 302

Reading Button Clicks�� 306

8.3 Cross-Compiling to Raspberry Pi��� 312

8.4 How Does the GPIO Code Work?�� 314

8.5 Where to Go from Here?��� 318

Chapter 9: �Artificial Intelligence and Machine Learning��������������������������������������� 321

9.1 Types of Machine Learning Models�� 322

9.2 What Are You Building?�� 323

9.3 Introducing linfa and rusty-machine�� 325

9.4 Clustering Cat Breeds with K-means��� 326

Introduction to the K-means Algorithm�� 326

The Training Data�� 329

Table of Contents

viii

Exporting as a CSV��� 334

Moving the Configuration into a File��� 337

Setting the Configuration File at Runtime�� 340

Visualizing the Data�� 341

Details on Adding More Entries�� 344

Setting Up K-means��� 346

9.5 Detecting Cats Versus Dogs with a Neural Network�� 355

Introduction to Neural Networks�� 355

Preparing the Training Data and Testing Data�� 357

Setting Up the Neural Network Model�� 362

Reading the Training and Testing Data��� 363

Normalizing the Training Data�� 365

Training and Predicting��� 367

Making the Prediction�� 370

9.6 Alternatives�� 372

9.7 Conclusion��� 373

Chapter 10: �What Else Can You Do with Rust?�� 375

10.1 The End Is Just the Beginning�� 375

10.2 Server-side Rendered Website��� 375

10.3 Web Browser and Crawler��� 376

10.4 Mobile�� 378

10.5 Operating Systems and Embedded Devices�� 381

10.6 The Cloud��� 382

10.7 Blockchains and Cryptocurrencies�� 383

10.8 Unlimited Possibilities of Rust��� 384

Index�� 385

Table of Contents

ix

About the Authors

Shing Lyu is a software engineer who is passionate about

open source software. He’s worked on Rust professionally

at Mozilla on the Firefox (Gecko) and Servo browser engine

project. Currently, he works at Amazon Web Services (AWS)

as a solutions architect. Previously, Shing worked at DAZN,

a sports streaming platform, as a backend developer, with a

focus on AWS and serverless technology. Shing has worked

for other world-famous brands such as Intel. He is also

active in the open source community. Being one of the

founders of the Taiwan Rust community, he loves to share

his enthusiasm for Rust with people.

Andrew Rzeznik is a software development engineer at

AWS Cryptography with interests in distributed systems,

languages, tooling, Internet of Things (IoT), and low-level

programming. His primary working language is Rust, but

he considers himself a polyglot, having worked in C, C++,

Python, Java, C#, and many others. Before AWS Andrew

worked in various software positions, with a primary focus

in factory automation. He developed robust yet accessible

distributed machine control frameworks to bring advanced

software patterns and techniques to manufacturing. He also served as a consultant,

where he debugged manufacturing issues at various firms. Andrew received his PhD

in mathematics from the Massachusetts Institute of Technology (MIT), where he wrote

simulations for ocean mining plumes and tested them aboard a research vessel at sea.  

xi

About the Technical Reviewer

Satej Kumar Sahu works in the role of senior software data

architect at Boeing. He is passionate about technology,

people, and nature. He believes that through technology

focused on sustainability and conscientious decision making

each of us has the power to make this world a better place.

In his free time, he can be seen reading books, playing

basketball, and having fun with friends and family.  

xiii

Introduction

Almost every programming language has one or more books about it that provide a

deep dive into fundamental syntax, semantics, and functionality. These books are

amazing as both an introduction and a reference. It’s important to be able to dive deep

and fully immerse yourself in a topic to gain a thorough understanding of it. Whenever

I am starting to learn a new language, I look for this kind of foundational text to start my

journey.

After completing this first stage, however, there is a question of where to move next.

Sometimes you’ve learned a language for a very specific purpose, so you focus all your

energies toward using the language for that task. But breadth of learning is also very

important, and can sometimes be harder to find. The best programmers don’t just

know their own specialty, but also have a broad foundation of knowledge along with

background on adjacent subjects. Learning different applications of a language can open

your mind to new ideas both within that language and outside of it. It’s also really fun to

throw together a new project that does something you’ve never done before.

This book was created to provide some of these projects, which will let you take your

core Rust knowledge and apply it to several different areas. Its goal is to expose you to

new ideas and different ways of thinking, and show, not tell, you how Rust can be used.

One of the big reasons I was drawn to Rust as a programming language was how it

embodies the “general purpose” paradigm. If you ask ten different people why they like

the language, you’ll frequently get ten different answers. Some people like it because it’s

low level; it compiles directly to machine code in the same way as C, with all of the fine

control afforded there. However, some people like it because it’s high level, with a strong

type system and advanced macros for working with abstract constructs. Some people

like Rust because it feels like a safer C++, while others learn it as a more performant

alternative to Python. Some people like Rust for its large selection of available packages,

while others like how powerful the core language feels even when the standard library

has been disabled.

xiv

A lot of these different views are because Rust exists in a big ecosystem with wildly

different applications, especially for being such a comparatively young language. On

one end, it’s possible to write tiny bare-metal programs whose compiled size can be

measured in hundreds of bytes (not megabytes, not kilobytes, but bytes). On the other

end, people are currently building operating systems, language compilers, and large

distributed systems in Rust. This book was written to share with you a small set of these

interesting applications, and hopefully show you the benefits (and joy) of writing them

in Rust.

A drawback to the approach taken here is that we can’t go into great depth on any

of the topics. A whole book could be written for each single-chapter project we present

here, diving deep into advanced theory, design, and tradeoffs. We chose to instead

focus only on the core essence of each project, providing you with a scaffold that does

something useful and that you can later extend with your own ideas. As any programmer

knows, frequently the hardest parts of a new project are the initial setup, architecture,

and library choices. We’ve tried to provide these components to you as a solid

foundation for your projects, while also trying to include some interesting examples that

touch on important issues in each of the topics.

We hope that this book lets you see the many faces of the Rust programming

language, where it shines, and in some cases the places where a person like you can

make things better. Many programmers feel that the gap between a novice and an expert

is insurmountable, and that the people who build “real” production applications must

have some unique gifts. Hopefully the examples here will help build your confidence

and show you that anyone can build real, practical projects in Rust with a little guidance

and determination.

�Source Code
All code used in this book can be found at github.com/apress/practical-rust-

projects-2e.

Introduction

1

CHAPTER 1

Welcome to the World
of Rust
If you’re reading this book, you’re probably as excited about Rust as we are. Since its

first stable release in 2015, Rust has come a long way in terms of features and stability.

Developers around the world are fascinated by how Rust can combine features that

were once thought of as unavoidable trade-offs: performance with memory safety, and

low-level control with productivity. Despite its infamous steep learning curve, Rust has

gained popularity over the years. It was named the “most loved programming language”

in a StackOverflow survey eight years in a row, from 2016 to 2023. In 2022, it was also

named the “most wanted programming language,” just beating out Python. Many big

companies and organizations like Amazon, Facebook, Google, Microsoft, Dropbox, and

npm use Rust in production. The Android platform supports writing native components

in Rust, and, perhaps most interesting of all, Rust is the first language after C to be added

to the Linux Kernel.

How large is the Rust ecosystem currently? If we take a look at crates.io, the official

Rust crates (libraries) registry, there are over 100,000 crates and over fifty million

downloads a day. There are 55 categories on crates.io,1 ranging from command-line

interfaces and cryptography to databases, games, operating systems, web programming,

and more. What does it feel like to use these libraries? How does Rust’s syntax and design

philosophy affect the design of these crates? How can you get started writing some cool

code with real use cases? This book will try to answer these questions.

1 https://crates.io/categories

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_1

https://crates.io/categories
https://doi.org/10.1007/978-1-4842-9331-7_1

2

1.1 � Who Is This Book For?
This book will be useful for

•	 people who already know basic Rust syntax, but want to learn how to

build applications in Rust;

•	 people who are considering using Rust to build production-ready

systems and want a tour of some of the options; and

•	 people who wish to have a quick overview of high-level architecture

and programming interface design in other fields.

You might have learned Rust out of curiosity. After finishing all the tutorials and

beginner books, you might have been left wondering, “What should I do next? What

can I build with Rust?” This book will walk you through a few different applications of

Rust, which will help you move beyond basic language theory and into building real

applications. Rust has a fascinating design and many interesting language features, but

simply knowing how to write basic algorithms and data structures won’t necessarily

prepare you for building useful applications. We’ve tried to find the most production-

ready but also modern Rust libraries to do the job, so you’ll be able to judge if Rust is

ready for the application you’ve envisioned. If it’s not, you might find opportunities to

contribute back to Rust’s community by improving the existing libraries and frameworks,

or by designing and building new ones.

You might have learned Rust for a specific project, like a CLI tool for work or an open-

source browser engine that happens to use Rust. Once you master Rust for that domain,

it’s beneficial to learn Rust for other domains—say, building a game or a website. This will

open you to new ideas that you can apply to the original domain. For example, by building

a game, you’ll know how game engine designers organize their code to make it decoupled

and easy to maintain, while also being very performant. You may never build a game for

work, but that knowledge might influence the architecture of your next project. As another

example, learning how to cross-compile code to a Raspberry Pi might help you understand

how compiling to WebAssembly works. This book aims to take you through a tour of

various applications of Rust like this. You’ll learn what their application programming

interfaces (APIs)2 look like and how they organize their code and architecture.

2 We use the term “API” in a general sense. This includes the functions, structs, and command-line
tools exposed by each library or framework.

Chapter 1 Welcome to the World of Rust

3

1.2 � Who Is This Book Not For?
This book might not be that useful for

•	 people who want to learn the Rust programming language itself;

•	 people who want to dive deep into one particular field; or

•	 people who are looking for the most experimental and cutting-edge

Rust use cases.

This book is not a course on the Rust programming language itself, nor is it trying to

teach Rust’s syntax via examples. We’ll focus on the applications themselves and their

domain knowledge, assuming you already know Rust’s syntax and language features

(though we’ll stop to review more advanced features as they are needed by a project).

There are many excellent books on Rust itself, like The Rust Programming Language by

Steve Klabnik and Carol Nichols. You can also find online books, interactive tutorials,

and videos on the Learn Rust section of the official website.3 Each of the topics in this

book can easily be expanded into a book on its own, so we will try to give you a high-level

understanding of the topic, but won’t go too deep into any of them. We aim to give you a

broad overview of what is possible with Rust and what the developer experience is like.

Therefore, the examples are simplified so people without a background in that particular

field can still get a taste of the mental models used. Also, we’re not advocating that the

methods presented in this book are the “best” or most trendy way of building those

applications. We’ve tried to strike a balance between being modern and being pragmatic.

In the end, each of the examples should give you the core of a functioning project, touch

upon some common pain points, and show you how Rust can be used in a new domain.

1.3 � Criteria for Selecting Libraries
Though Rust has already been used in many production-grade projects, it’s still a

relatively young language with constant innovation. This means it can sometimes

be a challenge to select the libraries or frameworks to use in each chapter. There are

experimental pure-Rust implementations for almost every domain, and just as many

Rust bindings of popular libraries in other languages (especially in the C and C++

spaces). In some areas, a clear leader has emerged and a particular library acts as a

3 https://www.rust-lang.org/learn

Chapter 1 Welcome to the World of Rust

https://www.rust-lang.org/learn

4

de-facto standard. In other areas, many proof of concept packages exist without any

clear winner. The early adopters of Rust are usually adventurous developers; they are

comfortable with rough edges in the libraries and find workarounds (the Rust ecosystem

makes it easy to download and inspect the source code of any library used). Some

libraries focus on innovation and experimentation, while others value stability and

production readiness. In this book, we’re trying to demonstrate the core concepts in

each field, and how these translate into an idiomatic Rust API. Therefore, we select the

libraries we use by the following criteria.

�Pure Rust
We generally try to find libraries that are built purely in Rust. Rust’s FFI (foreign

function interface) allows you to call existing C libraries (and many other languages)

from Rust. This in turn means that the easiest way to build Rust applications quickly

is often to leverage existing libraries from other languages. These libraries are usually

designed with other languages in mind, so wrapping them in Rust results in a weird and

non-idiomatic Rust API. If there is a purely Rust library or a library that uses existing

technology but is built from scratch using Rust, we tend to choose those.

�Maturity
However, not every purely Rust library is very mature. Because many Rust libraries are

built from a clean slate, the developers often try to experiment with the latest technology,

and that might mean that the architecture and API design is very experimental and

changes frequently. Some libraries show great potential in their early days, but then

development slows down, and the projects eventually go into maintenance mode or

are abandoned. We aim to build useful software rather than experiment with exciting

technologies and throw the code away. Therefore, we need to be pragmatic and choose

a library that is mature enough and uses widely accepted design patterns, rather than

being dogmatic about using pure-Rust libraries. We chose to use a GTK+-based library in

Chapter 3 for this reason.

Chapter 1 Welcome to the World of Rust

5

�Popularity
If two or more candidate libraries meet the preceding criteria, we’ll choose the most

popular one. The popularity is based on a combination of factors like the following:

•	 Number of downloads on crates.io

•	 Pace of development and releases

•	 Discussions on issue trackers and discussion forums

•	 Media coverage

Although popularity is not a guarantee of success, a popular project is more likely to

have a big community that supports it and keeps it alive. This can help us find a library

that has the most potential to stick around longer in the future. You are also more likely

to get support and answers online.

1.4 � How to Use This Book
The chapters in this book are independent of each other, so you may read them in any

order you want. However, some of the ideas or design patterns are used in multiple

chapters. We try to introduce these ideas in the chapter where the design originated, or

where they make the most sense. For example, the concept of using event handlers to

build a responsive user interface is introduced in the “Text-based User Interface” section

in Chapter 3, and is then referenced in Chapter 7. So, reading the book from cover to

cover might help you build up this knowledge in an incremental way.

�Chapters Overview
In Chapter 2, we start with the easiest application we can build with Rust: a command-

line interface (CLI). Building a CLI requires very minimal setup and background

knowledge but can produce very powerful applications. We first introduce how to read

raw arguments using the standard library, then we show how to use Clap to manage

arguments better. We also see how to get features like generating a help message for free.

Then we touch upon topics like piping, testing, and publishing the program to crates.io.

Chapter 1 Welcome to the World of Rust

6

In Chapter 3, we build two-dimensional interfaces. We first build a text-based 2D

interface using the Cursive text-based user interface system. This allows us to build

interactive user interfaces like popups, buttons, and forms. The experience in the text-

based user interface (TUI) paves the way for a graphical user interface (GUI). We’ll be

introducing the Rust bindings for the popular GTK+ 3 library, gtk-rs. We then build the

same interactive form using the GUI library.

In Chapter 4, we compile Rust to WebAssembly, a combination of bytecode and

sandboxed environment meant to run on platforms such as web browsers. We write

some simple WebAssembly code to offload large, heavy operations in the browser from

JavaScript to Rust. Then we explore yew-rs, a Rust front-end web framework that

leverages WebAssembly to create responsive single-page applications. We create a

single-page application that can receive and display user data, maintaining state in the

web browser.

In Chapter 5, we explore Rust in the more traditional context of server-side rendered

web pages and REST APIs. We recreate the web page from the previous chapter, except

this time as a server-side page served by the Rust actix-web framework. We integrate a

Postgres database to store and retrieve user-provided data. We then modify the project to

use stand-alone REST APIs, which allows for programmatic calling of our APIs between

different web services. We further refine our project to explore testing and error handling

in the context of Rust.

In Chapter 6, we explore the cutting edge of web service development by deploying

a REST API to AWS Lambda Functions and the AWS SDK for Rust. This lets us work with

the web without individual servers. We use an AWS DynamoDB table to store user-

provided info, and use an S3 Bucket to store larger files, with the Lambda functions

interacting with both. We then use S3 to serve a static website with callbacks into our

Lambda API, to give a complete website that deploys from a single project and scales to

massive numbers of users.

In Chapter 7, we build a game in Rust. We use the Bevy game engine to make a cat

volleyball game. You’ll learn the design philosophy and architecture behind Bevy, called

the entity-component system. You’ll also learn how to create 2D games, rendering

the characters and items with a spritesheet. We implement game logic like collision

detection, keeping score, and adding sound effects and background music.

In Chapter 8, we connect the virtual world with the physical world by introducing

physical computing on a Raspberry Pi development board. We start by installing a full

operating system and the whole Rust toolchain on the device, and introduce how to use

Chapter 1 Welcome to the World of Rust

7

Rust to control an LED and how to take inputs from a physical button. Then we show

you how to cross-compile Rust on another computer to produce a binary that runs on a

Raspberry Pi.

In Chapter 9, we shift our focus to artificial intelligence and machine learning.

We show how to implement unsupervised and supervised machine learning models

using the linfa and rusty-machine crates. For the unsupervised model we introduce

K-means, and for the supervised model we demonstrate a neural network. We also show

how to do some data-processing tasks like test data generation, reading/writing CSV

files, and visualization.

Finally, in Chapter 10, we give a broad overview of other exciting fields in Rust

that can’t fit in this book. We point you to cool projects in areas like operating systems,

programming languages, and distributed systems. This chapter acts as a guide book for

your future exploration into the vast world of Rust.

1.5 � Source Code
All source code for this book is available on GitHub: https://www.github.com/apress/

practical-rust-projects-2e.

When we include source code in the book, we only highlight the parts that are

relevant to the point being discussed. The non-relevant parts will be omitted with a

comment like this:

// ...

Therefore, not all code examples can be compiled successfully. To check the fully

working example, check the source code on GitHub.

Most of the examples are developed and tested on a Linux (Ubuntu 22.04) machine.

The Rust version is stable-x86_64-unknown-linux -gnu - rustc 1.68.2. The stable

version is used as much as possible, but certain libraries might require us to use the

nightly version.

Chapter 1 Welcome to the World of Rust

https://www.github.com/apress/practical-rust-projects-2e
https://www.github.com/apress/practical-rust-projects-2e

8

1.6 � Topics Not Covered
We’ve chosen to leave out some important Rust development topics as they don’t

generally fit in with the subject of this book.

Firstly, we’re not going to go in depth into general unit testing for every project

(though we will cover some integration testing). Basic unit tests are covered in

introductory Rust books, and you can read about advanced unit testing (like mocking

dependencies) in various other places, so we won’t cover it here. We also don’t go very in

depth into cargo usage and other build tools; while we do have to sometimes reach for

a less commonly used command to build our projects, we don’t spend a lot of time on

the many features cargo has. Finally, we also don’t go into any IDE setup or Rust syntax

highlighting features. We assume you’re already familiar with the basics of working with

Rust, which includes some form of editor. Besides, people tend to have very different

preferences for editors, and rather than trying to list all the options we’ve left it up to you.

With that, we’re ready to go. Let’s dive in and put the Rust language to work.

Chapter 1 Welcome to the World of Rust

9

CHAPTER 2

Building a Command-line
Program
Command-line programs, also known as CLIs (command-line interfaces), are probably

one of the most natural applications of Rust. A CLI is a piece of software that operates

from the command line. You interact with it through textual input and output. When

you compile your first “Hello World” program, you are already building a command-

line program. A typical command-line program usually takes arguments, flags, and

sometimes standard input as the input. It then executes its main algorithm and outputs

to the standard output or file. All these operations are well supported by the Rust

standard library and third-party crates on crates.io, the Rust community’s package

registry.

There are a few advantages to building a CLI in Rust. Firstly, the rich collection of

libraries on crates.io will enable you to achieve many things without reinventing the

wheel. Secondly, its outstanding performance and safety guarantees compared to other

popular scripting languages let you mitigate many performance bottlenecks and bugs.

Finally, Rust programs can be compiled into a single, small, binary-containing, platform-

specific machine code file for easy distribution so users don’t need to have a language

runtime on their system.

One example Rust CLI is the ripgrep1 project. It is a line-oriented search tool like

GNU grep, ack, or The Silver Searcher. The ripgrep crate has exceptional performance.

It outperforms C-based GNU grep in many benchmarks.2 The project utilizes many

existing libraries on crates.io, like the regex crate (regular expression parsing, compiling,

and execution) and the clap crate (command-line argument parsing). This is a perfect

example of how Rust can be productive and produce performant software.

1 https://github.com/BurntSushi/ripgrep
2 https://blog.burntsushi.net/ripgrep/

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_2

https://github.com/BurntSushi/ripgrep
https://blog.burntsushi.net/ripgrep/
https://doi.org/10.1007/978-1-4842-9331-7_2

10

2.1 � What Are You Building?
Cowsay is a funny little command-line program originally written in Perl. It takes a text

message and renders an ASCII-art cow (looks more like a horse to me, to be honest)

saying that message in a speech bubble (Figure 2-1). Although this program seems pretty

useless, it’s still quite popular among Unix server administrators, who use it to print

light-hearted welcome messages to the user.

Figure 2-1.  Example output of cowsay

Cowsay has a very simple algorithm, so by using it as an example, you can focus

on the mechanisms and tooling to build a command-line program. Since cats are the

“unofficial mascot of the internet,”3 you are going to build a catsay tool that makes a cat

say our message. Its features will include the following:

•	 Take a message string as the positional argument.4

•	 Take a -h/--help flag to print a help message.

•	 Take a -d/--dead flag that makes the cat’s eyes become xx, which is

the comical expression of dead eyes.

•	 Print in color.

•	 Print the error message to STDERR for error handling.

3 “Why The Internet Chose Cats.” Thought Catalog. https://thoughtcatalog.com/
leigh-alexander/2011/01/why-the-internet-chose-cats/
4 A positional argument is a CLI argument that is denoted by its location relative to other
arguments. For example, for the cli call mycli a b c, arguments a, b, and c are arguments in
positions 1, 2, and 3. However, a CLI might have arguments like mycli --argument value. Here
value is NOT a positional argument; instead, it acts as a keyword argument, and will be assigned
to the same keyword --argument regardless of other arguments in the command.

Chapter 2 Building a Command-line Program

https://thoughtcatalog.com/leigh-alexander/2011/01/why-the-internet-chose-cats/
https://thoughtcatalog.com/leigh-alexander/2011/01/why-the-internet-chose-cats/

11

•	 Accept STDIN for piping input and pipe the output to other

programs.

•	 Perform integration tests.

•	 Package and publish to crates.io.

2.2 � Creating a Binary Project
Although you can simply write a .rs file and compile it with rustc, handling

dependencies this way would be a nightmare. Therefore, we are going to use Cargo,

Rust’s package manager, to manage Rust projects and handle the dependencies for us.

Cargo is capable of creating two kinds of projects, binary and library. A library is used to

build a package that is intended to be used a building block for other programs. A binary

is a standalone program that is used independently, which is what you are building in

this chapter. To create a binary program named catsay, run the following command in

your terminal:

$ cargo new --bin catsay

The --bin flag stands for “binary,” which tells Cargo to create the package as a binary

executable. You can omit the flag because it is the default. Once the command runs, you

should see the following output:

Created binary (application) 'catsay' package

The command creates a catsay folder and some basic files, including a git repo, as

follows:

catsay

|-- Cargo.toml

|-- .git

|-- .gitignore

+-- src

 +-- main.rs

Open main.rs in any text editor of your choice, and you should see a Hello World

program template created by cargo. To run the Hello World example, first move inside

the ‘catsay‘ folder by running:

Chapter 2 Building a Command-line Program

12

$ cd catsay

Then, run this to ask cargo to compile and run the program:

$ cargo run

You should see output similar to this:

 Compiling catsay v0.1.0

 Finished dev [unoptimized + debuginfo] target(s) in 1.77s

 Running 'target/debug/catsay'

Hello, world!

2.3  Reading Command-line Arguments with
std::env::args
The first thing you are going to implement is the code to print an ASCII-art cat that says

whatever string you pass to it as an argument. The expected output looks like this:

$ cargo run -- "Hello I'm a cat"

 Compiling catsay v0.1.0

 Finished dev [unoptimized + debuginfo] target(s) in 1.18s

 Running 'target/debug/catsay 'Hello I'\"m a cat"

Hello I'm a cat

 \

 \

 /_/\

 (o o)

 =(I)=

Note T he -- following cargo run signifies the end of options (to cargo); all
the arguments following the -- will be passed to the main program in main.rs,
which gets compiled into the binary target/debug/catsay. The final line of the
Cargo output you see before your program output starts will be the following:

Running 'target/debug/catsay 'Hello I'\"m a cat"

Chapter 2 Building a Command-line Program

13

The input "Hello I'm a cat" is passed to target/debug/catsay. Also,
keep in mind that the “Compiling ...,” “Finished ...,” and “Running ...” lines are the
logs from Cargo itself. Our program’s output starts after the “Running ...” line.

Printing the text and the cat is pretty straightforward with println!(), but how do

you actually read the command-line argument? Thanks to the Rust standard library, you

can use std::env::args() to read the arguments. Replace the code in src/main.rs as

follows:

// src/main.rs

fn main() {

 let message = std::env::args().nth(1)

 .expect("Missing the message. Usage: catsay <message>");

 println!("{}", message);

 println!(" \\");

 println!(" \\");

 println!(" /_/\\");

 println!(" (o o)");

 println!(" =(I)=");

}

The std::env::args() function returns an iterator to the command-line arguments.

You can call the .nth() function on it to get the nth argument. The zeroth argument is

the name of the binary itself, catsay. The first argument is the string argument you are

looking for, so you can call .nth(1) to retrieve it. The .nth() function might fail (e.g., if n

is larger than the number of arguments). Because it returns an Option, you need to call

.unwrap() or .expect() to get the contained value. Then, assign this value to a variable

named message and print it out using println!(), along with the cat ASCII-art.

2.4 � Handling Complex Arguments with Clap
The std::env::args() works well for small programs with only a few options. But

once we have more and more options, it becomes cumbersome to parse them by hand.

For example, you might want to have flags that have both a long and a short form; e.g.,

--version and -v. The long form is great for readability, while the short form saves

you a few keystrokes when you are already familiar with the options. Or we might have

Chapter 2 Building a Command-line Program

14

optional arguments that take values (e.g., --option value). These types of arguments

are prevalent in command-line tools, but implementing them from scratch every time

is a real pain. One solution is to use the clap crate.5 You declare the arguments’ names

and types in Rust code or YAML, then clap generates the command-line parser based on

your specification. It also adds a few common options like the --help message.

To make our life even easier, we are going to use the derive feature of the clap crate.

The derive feature adds a derive macro that automatically generates some parsing

code on any struct. You can define a struct containing the arguments’ names and type

definitions, and then annotate it with #[derive(Parser)]. A macro defined by the clap

crate automatically generates the required parser code for the struct from command-line

arguments. The parser outputs the parsed arguments in the struct format you defined.

It’s much more declarative than writing all the parsing code by hand, and the parser

output struct is easier to manipulate than individual variables.

To use clap, add the clap crate to the [dependencies] section in the Cargo.toml file

by running

cargo add clap --features derive

Your Cargo.toml should look like the following (with some additional possible

comments). Make sure that the Clap version is the same. You can always manually

modify it if you messed up the preceding command, or if you don’t feel like running it:

Cargo.toml

[package]

name = "catsay"

version = "0.1.0"

edition = "2021"

[dependencies]

clap = { version = "4.2.1", features = ["derive"] }

Once you have added the dependency, change src/main.rs to the following:

// src/main.rs

use clap::Parser;

#[derive(Parser)]

5 “Clap” stands for Command Line Argument Parser. https://clap.rs/

Chapter 2 Building a Command-line Program

https://clap.rs/

15

struct Options {

 message: String // [1]

}

fn main() {

 let options = Options::parse(); // [2]

 let message = options.message;

 println!("{}", message);

 // ... print the cat

}

In [1], you define a struct named Options (not to be confused with

std::option::Option) that has one String field called message. The struct is

annotated with the custom derive attribute #[derive(Parser)], indicating the struct

is our command-line arguments definition. The Parser derive macro generates the

argument parser accordingly. To use this parser to parse the arguments in main(),

you call Options::parse(), which returns an Options struct populated with the

parsed argument values. You can then access an individual argument by accessing the

corresponding field of that struct (e.g., options.message).

Let’s see how that looks in action. One nice thing you get for free from clap is an

automatically generated --help command:

$ cargo run -- --help

 Finished dev [unoptimized + debuginfo] target(s) in 0.11s

 Running 'target/debug/catsay --help'

Usage: catsay <MESSAGE>

Arguments:

 <MESSAGE>

Options:

 -h, --help Print help

As you can see in the help message, there is a positional argument named <MESSAGE>

under the Arguments section.

If you forget to provide the message argument, clap is smart enough to show an error

message:

$ cargo run

Chapter 2 Building a Command-line Program

16

 Finished dev [unoptimized + debuginfo] target(s) in 0.11s

 Running 'target/debug/catsay'

error: The following required arguments were not provided:

 <MESSAGE>

Usage: catsay <MESSAGE>

For more information, try '--help'.

However, the current help message only tells you that there is an argument called

message, but does not say what it is for. It is also unclear to a new user what the format of

the argument should be. To improve the help message, you can include a description for

that field and add a default value. If the user does not provide the message argument, the

default value will be used. The default value also serves as an example for the format of

the field. To add the description and the default value for the message argument, modify

the Options struct in src/main.rs as follows:

// src/main.rs

// ...

struct Options{

 #[clap(default_value = "Meow!")]

 /// What does the cat say?

 message: String,

}

// ...

The default value is set by annotating the field with #[clap(default_value="

Meow!")]. The next line looks like a comment in Rust, but it starts with a triple “/”

instead of double. This is a documentation comment, which is usually used for Rust

documentation (e.g., for generating documentation using the rustdoc tools). Clap uses it

as the description for that field.

The help message now becomes:

Usage: catsay [MESSAGE]

Chapter 2 Building a Command-line Program

17

Arguments:

 [MESSAGE] What does the cat say? [default: Meow!]

Options:

 -h, --help Print help

2.5 � Adding Binary Flags
Clap also makes it easy to add binary flags, also known as toggles or switches, used to

toggle a feature on and off. Cowsay has a flag called --dead (-d), which changes the cow’s

eye from an o symbol to x, a classic comical expression of dead characters. You can easily

implement this by adding the following field to the Options struct in src/main.rs:

// src/main.rs

// ...

struct Options {

 // ...

 #[clap(short = 'd', long = "dead")]

 /// Make the cat appear dead

 dead: bool,

}

You add a field of type bool named dead. You can assign the long and short versions

of the flag by annotating the field with:

#[clap(short = 'd', long= "dead")]

If you run cargo run -- --help now, the help message should include the newly

added --dead flag:

Options:

 -d, --dead Make the cat appear dead

 -h, --help Print help

Chapter 2 Building a Command-line Program

18

For now the flag is not doing anything. To change the behavior of the application

based on the flag, you can modify the main() function in src/main.rs as follows:

// src/main.rs

//...

fn main() {

 let options = Options::parse();

 let message = options.message;

 let eye = if options.dead { "x" } else { "o" }; // [1]

 println!("{}", message);

 println!(" \\");

 println!(" \\");

 println!(" /_/\\");

 println!(" ({eye} {eye})"); // [2]

 println!(" =(I)=");

}

When a flag has the bool type, its value is determined by its presence. If the flag is

present, its value will be true, otherwise, the value will be false. In [1] you assign the

eye variable to either “o” or “x” based on whether options.dead is true or false. Then,

in [2] you use println!() to substitute the “{eye}” part with the desired eye character.

Boolean options will be true if the flag is supplied or false otherwise, but there are

other types of arguments. Another common case is taking a name and a value (e.g.,

-- name value). This will be discussed shortly in section 2.8. Let’s first shift our focus to

handling the output.

2.6 � Printing to STDERR
Up until now, you’ve generated output using println!(), which prints to the standard

output (STDOUT). However, in Unix-like systems, there is also the standard error

(STDERR) stream for printing errors. Rust provides a STDERR equivalent of println!(),

called eprintln!(). (The e prefix stands for “error.”) For example, you can print an error

if the user tries to make the cat say “Woof”:

// src/main.rs

fn main() {

Chapter 2 Building a Command-line Program

19

 // ...

 if message.to_lowercase() == "woof" {

 eprintln!("A cat shouldn't bark like a dog.")

 }

 // ...

}

You can test by redirecting the STDOUT and STDERR to separate files:

cargo run "woof" 1> stdout.txt 2> stderr.txt

You can print the content of these files using the cat command:

$ cat stdout.txt

woof

 \

 \

 /_/\

 (o o)

 =(I)=

$ cat stderr.txt

 Compiling catsay v0.1.0 (~/catsay)

 Finished dev [unoptimized + debuginfo] target(s) in 1.89s

 Running 'target/debug/catsay woof'

A cat shouldn't bark like a dog.

An interesting fact is that cargo run prints its log (i.e., the “Compiling..., Finished...”

message) to STDERR. That’s why you’ll see the cargo logs before your own error message

in the stderr.txt file. If you wish to print without a new line at the end of each line, you

can use print!() and eprint!() instead.

2.7 � Printing with Color
Nowadays, terminals (or terminal emulators) are usually capable of printing in color. So

you can make catsay more colorful by using the colored crate. First, run

cargo add colored

Chapter 2 Building a Command-line Program

20

to add the crate to the Cargo.toml file.

The crate should be added to your Cargo.toml file; confirm that the version matches

the following:

// Cargo.toml

[dependencies]

// ...

colored = "2.0.0"

The colored crate defines a Colorize trait, which is implemented on a &str and

String. This trait provides various chainable coloring functions, as follows:

•	 Coloring the text: .red(), .green(), .blue(), etc.

•	 Coloring the background: .on_red() (i.e., text on red background),

.on_green (), .on_blue(), etc.

•	 Brighter version: .bright_red(), .on_bright_green(), etc.

•	 Styling: .bold(), .underline(), .italic(), etc.

Modify src/main.rs as follows to use these coloring functions:

// src/main.rs

use colored::Colorize;

//...

fn main() {

 // ...

 println!(

 "{}",

 message.bright_yellow().underline().on_purple()

);

 println!(" \\");

 println!(" \\");

 println!(" /_/\\");

 println!(" ({eye} {eye})", eye=eye.red().bold());

 println!(" =(I)=");

}

Chapter 2 Building a Command-line Program

21

This makes the message text turn bright yellow with an underline, on a purple

background. The cat’s eyes are bloody red and bold. Run cargo run and the output

should look like Figure 2-2.

Figure 2-2.  Example output of the colored catsay

2.8 � Reading the Cat Picture from a File
Another common operation in command-line applications is reading from a file. Cowsay

has an -f option that allows you to pass in a custom cow picture file. You are going to

implement a simplified version of this to learn how to read files in Rust.

First, add an optional argument so we can specify the path of the picture file:

// src/main.rs

// ...

#[derive(Parser)]

struct Options {

 // ...

 #[clap(short = 'f', long = "file")]

 /// Load the cat picture from the specified file

 catfile: Option<std::path::PathBuf>,

}

// ...

There are a few important points about this code snippet:

•	 In the #[clap(...)] annotation, the short and long versions of

the option (-f/--file) are named differently from the field name

(catfile) in the Options struct. You can name the options and flags

in user-friendly terms while keeping the variable names meaningful.

Chapter 2 Building a Command-line Program

22

•	 Inside the Option<T> we use a std::path::PathBuf instead of a

raw string. PathBuf can help us handle paths to files more robustly

because it hides away many differences in how the operating systems

represent paths (like forward versus back slashes).

•	 This catfile option is optional, so it’s wrapped in an Option<T>. If

the field is not provided, it will simply be an Option::None.

Note T here are other option types, like Vec<T>, which represents a list
of arguments, and u64, which indicates the number of occurrences of a
parameter; for example -v, -vv, and -vvv, which are commonly used to set the
verbosity level.

Now if you run cargo run -- --help again, you should see a new section called

“OPTIONS”:

$ cargo run -- --help

...

Usage: catsay [OPTIONS] [MESSAGE]

Arguments:

 [MESSAGE] What does the cat say? [default: Meow!]

Options:

 -d, --dead Make the cat appears dead

 -f, --file <CATFILE> Load the cat picture from the specified file

 -h, --help Print help

Once you have the --file options in place, you can read the file at the specified path

in main() to load the external file and render it. Modify src/main.rs as follows:

// src/main.rs

fn main() {

 // ...

 match &options.catfile {

 Some(path) => {

Chapter 2 Building a Command-line Program

23

 let cat_template = std::fs::read_to_string(path)

 .expect(

 &format!("could not read file {:?}", path)

);

 let eye = format!("{}", eye.red().bold());

 let cat_picture = cat_template.replace("{eye}", &eye);

 println!(

 "{}",

 message.bright_yellow().underline().on_purple()

);

 println!("{}", &cat_picture);

 },

 None => {

 // ... print the cat as before

 }

 }

}

In this example, you use a match statement to check whether the options.catfile

is a Some(PathBuf) or None. If it’s None, just print out the default cat as before. But if it

is a Some(PathBuf), use std::fs::read_to_string(path) to read the file contents to

a string. You can see an example catfile in Listing 2-1. To support different eyes, a

placeholder {eye} is written in place of the eyes. But you cannot simply use format!() to

replace it with o or x, because format!() needs to know the formatting string at compile-

time, but the cat_template string is loaded at runtime. Therefore, you need to use the

String.replace() function to replace the eye placeholder with either o or x.

Chapter 2 Building a Command-line Program

24

Listing 2-1.  An example catfile

 \

 \ /)

 \ (__/) ((

){eye} {eye} ())

 ={ Y }= / /

) `-------/ /

 (/

 \ |

 ,'\ , ,'

 `-'\ ,---\ | \

 _)) `. \ /

 (__/))

 (_/

To test this out, save an example catfile like the one included here at the top

directory of your project as catfile.txt and then run the following:

cargo run -- -f catfile.txt

2.9 � Handling Errors
Until now, you have always used unwrap() or expect() on functions that might fail (e.g.,

std::fs::read_to_string). When the return value is a Result:: Err, using unwrap()

on it causes the program to crash with panic!(). This is not always desirable, because

you lose the ability to recover from the failure or provide a better error message so the

user can figure out what happened. The human_panic crate6 can help you produce a

more human-readable panic message, but it’s still hard-crashing the program. A better

way is to use the ? operator.

By changing std::fs::read_to_string(path).expect(...) to std:: fs::read_

to_string(path)? (notice the ? at the end), the code will behave like the following

(Note: this change by itself won’t compile yet):

let cat_template = match std::fs::read_to_string(path) {

6 https://github.com/rust-cli/human-panic

Chapter 2 Building a Command-line Program

https://github.com/rust-cli/human-panic

25

 Ok(file_content) => file_content,

 Err(e) => return e.into(), // e: std::io::Error

};

The ? operator performs a match on the Result returned by read_to_string(). If

the value is Ok(), it unwraps the value inside it. If the value is Err(), the function early

returns with the error wrapped inside, possibly converted into the error type of the

wrapping function. This is particularly useful if you have multiple potential points of

failure in your function. Any one of them failing will cause an early return with the Err(),

and the function caller can then handle the error or further escalate the error to its caller.

However, you might notice that the main() function currently doesn’t return

anything, and if you just start using the ? operator, the code won’t compile. By using

the ? operator, the main() function might return a std::io::Error. To handle this

case, its function signature must be changed to fn main() -> Result<(), Box<dyn

std::error::Error>>. If the main() function finishes successfully, it does not return

anything; therefore, the type for T in Result<T, E> is (). The E is a weird-looking

Box<dyn std::error::Error>. This is a boxed trait object, which means any type that

implements the std::error::Error trait can be used here. You can think of the type as

a container that holds any type that implements the std::error::Error trait. By using

this trait object, you can use multiple ?’s in the main() function, with each returning

a different kind of error, and they all will be placed inside the Box. Also, don’t forget to

return an Ok(()) at the end of the function to satisfy T in the function signature. Modify

the src/main.rs file so the main() function has the correct function signature, as

follows:

// src/main.rs

// ...

fn main() -> Result<(), Box<dyn std::error::Error>> {

 // ...

 let cat_template = std::fs::read_to_string(path)?

 // ...

 Ok(())

}

Chapter 2 Building a Command-line Program

26

If you trigger an error now by providing an invalid file path, you should get this error

message:

cargo run -- -f no/such/file.txt

 Finished dev [unoptimized + debuginfo] target(s) in 0.05s

 Running 'target/debug/catsay -f no/such/file.txt'

Error: Os { code: 2, kind: NotFound, message: "No such file or

 directory" }

If you want to define a more user-friendly error, you can use the anyhow crate

(Listing 2.9). First, add the anyhow crate by running cargo add anyhow. It should be

added to the Cargo.toml file like so:

// Cargo.toml

[package]

// ...

[dependencies]

// ...

anyhow = "1.0.70"

The anyhow crate provides a Context trait, which wraps the original error with a

human-readable and user-facing explanation of the error, called context. You can choose

to look into the machine-readable error to try to recover from it or simply present the

human-readable context to the user. To use Context, you can call the with_context()

function on std::result::Result so you can define a context message. This is how you

can modify src/main.rs to add a context to the error:

// main.rs

use anyhow::{Context, Result};

// ...

fn main() -> Result<()> {

 // ...

 std::fs::read_to_string(path).with_context(

 || format!("Could not read file {:?}", path)

Chapter 2 Building a Command-line Program

27

)?

 // ...

 Ok(())

}

Notice that the E type in Result<T, E> is now gone. In actuality, the Result from std

is shadowed by anyhow::Result. This struct contains the std::io::Error from read_

to_string() and the “could not read file filename” error message (i.e., the context). The

anyhow crate allows you to ignore the specifics of what error type you want to use, and

easily put all the information in a single Result type with different context data.

Now the error message looks better:

$ cargo run -- -f no/such/file.txt

// ... regular cargo compile output

Error: Could not read file "catfiles.txt"

Caused by:

 No such file or directory (os error 2)

Tip T he anyhow crate and its context are much more than just printing a human-
friendly error message. If we have a function call chain, we can have a nested
chain of errors; each has a context that is relevant to the layer of abstraction. It
also gives ergonomic ways to manipulate the chain of errors and backtraces. It
also allows easier downcasting from a generic Error to a specific type, compared
to the built-in std::error::Error. It’s worth considering using anyhow if your
command-line program grows more and more complex.

2.10 � Piping to Other Commands
Piping is one of the most powerful features in Unix-like operating systems, in which

the text output of one command can be sent directly to another command as an input.

This allows a command-line program to be designed in a modular way and multiple

programs to work together easily without specialized protocols. To make the catsay tool

pipe-friendly, you need to make some modifications to the program.

Chapter 2 Building a Command-line Program

28

�Piping to STDOUT Without Color
The first obstacle in piping the output to other programs comes from the coloring. In

a previous section, you used the colored crate to add color to the STDOUT output. It

works by adding ANSI color escape codes to the output, and the terminal interprets

these color codes and applies the colors onto the text. You can see the raw color codes by

piping the output to a file:

cargo run > output.txt

The content of the output.txt should look like this:

^[[4;45;93mMeow!^[[0m

 \

 \

 /_/\

 (^[[1;31mo^[[0m ^[[1;31mo^[[0m)

 =(I)=

While not all command-line tools handle these color codes, many do (and in fact,

depending on your development environment, you might have a hard time finding a

text editor that will show you the file as just shown). They may treat the color codes

as raw characters, which would result in unexpected behavior. To avoid this kind of

situation, you can set the NO_COLOR environment variable to 1 to turn off the coloring.

This NO_COLOR environment variable is an informal standard7 to toggle coloring on and

off. The colored crate and many other command-line tools or libraries have already

implemented this standard.

If you run NO_COLOR=1 cargo run, you should not see colors anymore. If you pipe

the output to a file, you’ll also notice that the color code is no longer present. This should

come in handy if you wish to pipe a colored output to other command-line programs.

7 https://no-color.org/

Chapter 2 Building a Command-line Program

https://no-color.org/

29

�Accepting STDIN
Taking input from STDIN is another way to interact with other programs. You can make

catsay take a string from STDIN as the message argument. You can create a switch

--stdin that enables this behavior. For example, you can receive a string from the echo

command-line tool, which prints a string to STDOUT:

echo -n "Hello world" | catsay --stdin

The -n flag for echo is to tell echo not to add a new line to the end of its

STDOUT output.

You can add a Boolean flag --stdin into the Options struct in src/main.rs:

// src/main.rs

#[derive(Parser)]

struct Options {

 // ...

 #[clap(short = 'i', long = "stdin")]

 /// Read the message from STDIN instead of the argument

 stdin: bool,

}

Then in the main() function, whenever options.stdin is true (i.e., when --stdin is

present), you need to read the message from STDIN. If options.stdin is false, keep the

old behavior and read from the argument options.message. Modify the src/main.rs as

follows to implement this new logic:

// src/main.rs

use std::io::{self, Read};

// ...

fn main() -> Result<()> {

 let options = Options::parse();

 let mut message = String::new(); // [2]

 if options.stdin {

 io::stdin().read_to_string(&mut message)?; // [1]

Chapter 2 Building a Command-line Program

30

 } else {

 message = options.message;

 };

 // ...

}

On line [1], you read from STDIN and store it in a string message, using io::stdin().

read_to_string(). The read_to_string() function does not return the string. Instead,

it copies the string into the &mut String argument passed to it. Because the argument

needs to be mutable so the function can modify it, you have to add a mut on [2].

This allows you to read the message from the standard input. Being able to interact

with other programs through piping will make your program much more flexible and

expandable. If you now pipe the output of echo into catsay you should be able to see

something like this:

$ echo -n "Hello World" | cargo run -- --stdin

 Finished dev [unoptimized + debuginfo] target(s) in 0.03s

 Running 'target/debug/catsay --stdin'

Meow!

 \

 \

 /_/\

 (o o)

 =(I)=

2.11 � Integration Testing
Automated testing is a vital tool to improve code quality and catch bugs early. Until now you

have written everything in the main() function in src/main.rs. But that’s not very testable.

To unit test the business logic, it’s better to split the functionality into a separate library crate,

and let our main.rs file import and use that crate. Then you can unit test the other crate

internally, which contains most of the business logic. These kinds of unit tests are relatively

easy to write. You can follow the official Rust documentation or any introductory Rust book/

course to learn how to unit test your code. In this section, we are going to focus on how to

write an integration test that is specific to command-line programs.

Chapter 2 Building a Command-line Program

31

Testing a command-line program usually involves running the command, then

verifying its return code and its STDOUT/STDERR output. This can be easily done by

writing a shell script. But writing a shell script means that you have to implement your

own assertion and test result aggregation and reporting, which Rust already supports in

its unit testing framework. The std::process::Command struct and assert_cmd8 crate are

going to help to test the program.

First, run the command

$ cargo add assert_cmd

to add the new crate. It should match the version here (update this if it does not match):

Cargo.toml

[package]

name = "catsay"

version = "0.1.0"

edition = "2021"

[dependencies]

// ...

assert_cmd = "2.0.10"

Next, create a folder called tests in the project’s root directory to hold the tests.

Then, create a file named integration_test.rs, and paste following code into it:

// tests/integration_test.rs

use std::process::Command; // Run programs

use assert_cmd::prelude::*; // Add methods on commands

#[test]

fn run_with_defaults() {

 Command::cargo_bin("catsay")

 .expect("binary exists")

 .assert()

 .success();

}

8 https://crates.io/crates/assert_cmd

Chapter 2 Building a Command-line Program

https://crates.io/crates/assert_cmd

32

You brought in two different modules with the use command: the

std::process::Command and assert_cmd::prelude::*. The std::process::Command

crate gives you a Command struct that can help us run a program in a newly spawned

process. The assert_cmd::prelude::* module imports a few useful traits that extend

Command to be more suitable for integration testing, like cargo_bin(), assert(), and

success(), which will be discussed shortly.

In the test function run_with_defaults(), you first initialize the command using

Command::cargo_bin(), which takes a cargo-built binary name, in this case, “catsay.” It

will return an Err(CargoError) in cases like if the binary doesn’t exist. Therefore, you

need to unwrap it with .expect(). Then you call assert() on the command, which

produces an Assert struct. The Assert struct gives you various utility functions for

assertions of the status and output of the executed command. In this example, a very

basic assertion success(), which checks if the command succeeded or not, is used.

You can run this test by running cargo test in the terminal. You should get an

output like this:

$ cargo test

 Compiling catsay v0.1.0

 Finished dev [unoptimized + debuginfo] target(s) in 1.04s

 Running target/debug/deps/catsay-bf24a9cbada6cbf2

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Running target/debug/deps/integration_test- cce770f212f0b7be

running 1 test

test run_with_defaults ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filterd out

The test you just wrote was not very exciting, nor did it test much more than making

sure the code runs. The next step is to check the STDOUT and see if it contains the

expected output. When you run the catsay program without any argument, it prints

out a cat saying “Meow!”, so you can verify if there is the string “Meow!” in the standard

output. To do this, you can use the stdout() function from assert_cmd to get the

STDOUT output. Then, use the utilities provided by the predicates crate to verify if the

STDOUT string contains what you are looking for.

Chapter 2 Building a Command-line Program

33

Add the predicates crate by running the following:

$ cargo add predicates

The Cargo.toml file should now look like this:

// Cargo.toml

[package]

// ...

[dependencies]

// ...

predicates = "3.0.2"

Then, modify tests/integration_test.rs as follows:

// tests/integration_test.rs

// ...

use predicates::prelude::*;

#[test]

fn run_with_defaults() {

 Command::cargo_bin("catsay")

 .expect("binary exists")

 .assert()

 .success()

 .stdout(predicate::str::contains("Meow!"));

}

You can test not only positive cases but also negative cases and error handling. For

example, the next example checks if an invalid -f argument is handled correctly by the

program:

#[test]

fn fail_on_non_existing_file()

 -> Result<(), Box<dyn std::error::Error>> {

 Command::cargo_bin("catsay")

 .expect("binary exists")

 .args(&["-f", "no/such/file.txt"])

 .assert()

Chapter 2 Building a Command-line Program

34

 .failure();

 Ok(())

}

You pass an invalid file no/such/file.txt to the -f argument using the .args()

function. This is equivalent to calling catsay -f no/such/file.txt. It is expected that

the program will exit with an error because it fails to read the file. Therefore, you call

.assert().failure() to check whether it actually fails.

2.12 � Publishing and Distributing the Program
Once you are happy with the program, you might want to package it in a way that anyone

can easily install and use it as a command in their shell. There are several ways you

can do this. Each method has some trade-offs between the ease of use from the user’s

perspective and the effort to publish from the developer’s perspective.

�Install from Source
If you run cargo install –path ./ in the project folder, Cargo will compile the code in

release mode, then install it into the ~/.cargo/bin folder. You can then append this path

to your PATH environment variable, and the catsay command should be available in

your shell.

Tip T he location where Cargo installs your program can be overridden by setting
the CARGO_HOME environment variable. By default it’s set to $HOME/.cargo.

You can publish the code onto any public code repository service like GitHub, or

even publish it as a tarball on a web page you manage, then ask your user to download

the source code and run cargo install --path ./. But there are several drawbacks to

this method:

•	 It’s hard for the user to find the program themselves.

•	 The user needs the Rust toolchain and a powerful computer to

compile the source code.

Chapter 2 Building a Command-line Program

35

•	 It requires knowledge of how to download the source code and

compile it.

•	 It’s difficult to manage different versions of the program, and

upgrading is hard.

�Publish to crates.io
Nowadays, most Rust programmers find packages on crates.io. So, to make your program

easier to find, you can publish it to crates.io. It’s very easy to publish your program on

crates.io, and users can easily run cargo install <crate name> to download and

install it.

To be able to publish on crates.io, you need to have an account and get an access

token. Here are the steps to acquire one:

•	 Open https://crates.io in a browser.

•	 Click the Log in with GitHub link (You need a GitHub account. If you

don’t have one, sign up at https://github.com/signup first.)

•	 Add an email address and verify it.

•	 Once logged in to crate.io, click on your avatar on the top right and

select Account Settings.

•	 Under the API Tokens section, you can generate a token with New
Token. Copy that token and keep it handy.

Once you get the token, you can run cargo login <token> (replace <token> with

the token you just created) to allow Cargo to access crates.io on your behalf. Then you

can run cargo package in the project directory, which will package your program into a

format that crates.io accepts. You can check the target/package folder to see what was

generated.

There’s one more step you need to take to publish to crates.io; you need to add

a license and description field to the Cargo.toml file, and commit all of your code into

your local git repository (if you need to, install git with sudo apt install git).

The MIT/Apache licenses effectively let anyone use your code for any reason without

having to keep it open source; if you’re interested in what licenses are out there and

available you can take a look at https://choosealicense.com/licenses/.

Chapter 2 Building a Command-line Program

https://crates.io
https://github.com/signup
https://choosealicense.com/licenses/

36

Cargo.toml

[package]

// ...

license = "MIT OR Apache-2.0"

description = "A catsay cli"

// ...

Once the package is ready, simply run cargo publish to publish it to crates.io.

Keep in mind that once the code is uploaded to crates.io, it stays there forever and can’t

be removed or overwritten. To update the code, you need to increase the version number

in Cargo.toml and publish a new version. If you accidentally publish a broken version, you

can use the cargo yank command to “yank” it. That means your users can no longer create

new dependencies against that version, but existing ones still work. And even though the

version is yanked, the code still stays public. So never publish any secret (e.g., a password,

an access token, or any personal information) in your crates.io package.

Although publishing to crates.io solves the discoverability issue and takes away the

burden for the users to manually download your code, the code is still compiled from

scratch every time a user installs. So the user still needs to have the full Rust toolchain

installed on their machine. To make it even easier for the users, we can pre-compile the

project into binaries and release them directly.

�Building Binaries for Distribution
Rust compiles to machine code and by default links statically, so it doesn’t require a

heavy runtime like a Java virtual machine or a Python interpreter. If you run cargo build

––release, Cargo compiles your program in release mode, which means a higher level of

optimization and less verbose logging than the default debug mode. You’ll find the built

binary in target/release/catsay. This binary can then be shared with a user using the

same platform as yours. They can execute it directly without installing anything.

Notice the assumption about “”using the same platform.” This is because the binary

might not run on another CPU architecture and operating system combination. In

theory, you can cross-compile for a different target platform. For example, if you are

running a Linux machine with an x86_64 CPU, we can compile our program for an

embedded device with an ARM processor. Cross-compilation is generally simple with

Rust, and there are many resources built right into Cargo; see https://rust-lang.

Chapter 2 Building a Command-line Program

https://rust-lang.github.io/rustup/cross-compilation.html

37

github.io/rustup/cross-compilation.html. There is also the cross9 project, which

solves this problem by wrapping all the cross-compilation environments into Docker

images. This spins up a lightweight virtual machine in Docker, with all the cross-

compilation toolchain and libraries configured to cross-compile the most portable

binaries.

Alternatively, you can also use cargo-zigbuild.10 This crate uses Zig, another

programming language famous for its cross-compile capability, as a linker for Cargo.

This makes cross-compiling much easier.

If you don’t wish to set up a Linux machine with Docker just for the compilation, you

can easily offload that task to a hosted continuous integration (CI) service. Nowadays,

you can easily get free access to CI services like Aws CodePipelines and connect them

with GitHub. The trust11 project provides templates to set up Travis CI and AppVeyor CI

pipelines to build your binaries. For Linux builds, it actually uses cross underneath. For

Windows builds, it relies on the Windows-based AppVeyor CI.

Once the binaries are built, you can put them online for users to download. But

usually different platforms have their specific package format, which comes with

package repositories and package managers. Users can effortlessly search, download,

install, and update binaries using them. For example, macOS has Homebrew formulae,

Debian uses apt for .deb packages, and RedHat Linux hat uses yum for .rpm packages. It’s

a good idea to submit your program into each package repository for discoverability and

easier updating. Different platforms have different ways of packaging and submission,

so they are out of scope for this book. You can find some helper tools on crates.io to help

you pack for a specific format; for example, cargo-deb and cargo-rpm.

9 https://github.com/rust-embedded/cross
10 https://crates.io/crates/cargo-zigbuild
11 https://github.com/japaric/trust

Chapter 2 Building a Command-line Program

https://rust-lang.github.io/rustup/cross-compilation.html
https://github.com/rust-embedded/cross
https://crates.io/crates/cargo-zigbuild
https://github.com/japaric/trust

38

2.13 � Conclusion
In this chapter, you learned how to build a command-line program in Rust. You started

with how to create a binary project and read simple command-line arguments. Then you

improved the command-line parser and started to parse more complex arguments with

Clap. You looked at how to add positional arguments, binary flags, and options; and how

to add description and default values to them. You also learned how to build common

command-line features like coloring, reading from a file, accepting standard input, and

output to standard output and standard error. Then you ran integration tests on your

command-line program. Finally, you saw various ways to publish and distribute your

program.

Chapter 2 Building a Command-line Program

39

CHAPTER 3

Creating Graphical User
Interfaces (GUIs)
Command-line tools are handy in situations that don’t require too much visual

interaction, like batch processing. But because a command-line program can only

handle text input/output and files, it is not ideal if 3D (or even 2D) visual interaction is

required. So, in this chapter you’ll break out of the constraints of the command line and

implement graphical user interfaces (GUIs).

The goal of this chapter is to show you how to build a cross-platform desktop

application with a GUI. Although there are frameworks like Electron,1 which allows

you to build a desktop app in HTML, CSS, and JavaScript, they are actually wrapping a

browser engine inside. Therefore, the developer experience will be closer to building

a website or web app than to coding a native desktop application. In this chapter,

you’ll use the GTK framework, which showcases the experience of building a native

application in Rust.

As a bridge between command-line programs and actual GUI apps, you’ll first learn

about the text-based user interface (TUI). A TUI looks like a GUI, but it’s drawn with text

characters. Thus, it can be created in a terminal environment. But because a TUI draws

with text characters, the resolution is low, and the screen real estate is very limited.

Nevertheless, a TUI is a good way to understand the high-level concept of event-driven

architecture that is common in GUI programs. Once you acquire the knowledge of how a

TUI program is structured, you can apply that knowledge in implementing a full-fledged

GUI program in GTK.

1 https://electronjs.org/

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_3

https://electronjs.org/
https://doi.org/10.1007/978-1-4842-9331-7_3

40

3.1 � What Are You Building?
To avoid the distraction of complex business logic and to focus on the structure of the

code, you’ll build a simplified version of the catsay program as a TUI and GUI. For the

TUI, you’ll build the following:

•	 An interactive form to receive the message. (Figure 3-1)

Figure 3-1.  The input form of the TUI program

•	 A checkbox for the --dead option.

•	 A dialog box that shows a cat saying the message. (Figure 3-2)

Figure 3-2.  The dialog box of the TUI program

You’ll then build a GUI that has the same input as the TUI program. But this time,

instead of the ASCII-art cat, a photo of a real cat will be used (Figure 3-3).

Chapter 3 Creating Graphical User Interfaces (GUIs)

41

Figure 3-3.  The GUI program with a photo of a cat (cat image from
https://pix-abay.com/photos/cat-kitten-to-sit-isolated-red-2669554/,
Pixabay license)

You’ll be building the GUI using gtk3-rs, which is a Rust binding for the GTK3

library and its underlying libraries. You’ll first build the GUI in pure Rust code and then

switch to Glade, a user interface design tool that can help you design the layout in a more

intuitive and easy-to-manage way.

3.2 � Building a Text-based User Interface
In Chapter 2, you used println!() for most of the output. The problem with it is that you

can only output one line at a time. Although you can create ASCII-art images by carefully

aligning the lines you print, it is hard to scale if you want to draw windows, dialog boxes,

and buttons—not to mention handle keyboard input and mouse clicks and have the

UI react to these inputs. Thankfully, a category of libraries known as text-based user

interface libraries can help you build UI components easily. One example is the ncurses

Chapter 3 Creating Graphical User Interfaces (GUIs)

https://pix-abay.com/photos/cat-kitten-to-sit-isolated-red-2669554/
https://pix-abay.com/photos/cat-kitten-to-sit-isolated-red-2669554/

42

library for Unix-like systems. The ncurses name stands for “new curses” because it was

the “new” (in the 1990s) version of the old curses library in System V Release 4.0 (SVr4).

You’ll be using the cursive crate. It hides away many low-level details, so it’s very easy to

work with.

The cursive crate provides an abstraction layer over different TUI backend libraries.

In this chapter, you’ll use the default ncurses backend for simplicity, but if you need

cross-system support for Windows and/or macOS, you can choose other backends,

like pancurses or crossterm. To use ncurses you need to install it on your system. On

Ubuntu, run the following command in the shell:

$ sudo apt install libncursesw5-dev

You can create a new project with cargo new and add the cursive crate to Cargo.

toml by running these commands:

$ cargo new catsay-tui

$ cd catsay-tui

$ cargo add cursive

The Cargo.toml file should contain the cursive crate in the dependencies section.

The version of cursive in your application may be different; you should double-check

the version and set it to match the example.

Cargo.toml

...

[dependencies]

cursive = "0.20.0"

Now, replace the src/main.rs file with this minimal skeleton code:

// src/main.rs

fn main() {

 let mut siv = cursive::default();

 siv.run(); // starting the event loop

}

In the main() function, you create a Cursive root object with cursive::default()

and start the event loop with siv.run(). The event loop is a fundamental concept in

Chapter 3 Creating Graphical User Interfaces (GUIs)

43

building user interfaces. For a command-line program, interactions are usually limited

to one input and one output at a time. If you need to take user input, you have to pause

the execution of the program and wait for the user input to finish. No other operations or

output can be processed at that time. But a GUI program might be listening to multiple

inputs from the keyboard and mouse. Since you can’t predict which input will be

triggered first, the program (conceptually) runs in an infinite loop that handles whatever

input that is triggered first. If you have registered an event handler for that particular

event, then the event loop will invoke the handler when that event happens. For

example, if you have an OK button in a dialog box, clicking it will trigger a button-click

event, which might be handled by a handler function that closes this dialog box.

3.3 � Showing a Dialog Box
If you now run cargo run, you will see a blue screen (Figure 3-4). But that’s not very

exciting. To close the program you have to press Ctrl+C in the terminal where you are

running cargo run, which will send an interrupt signal and force it to terminate. To display

the cat ASCII-art on the screen, you can add the code listed below to src/main.rs:

Figure 3-4.  An empty Cursive screen

// src/main.rs

use cursive::views::TextView;

fn main() {

 let mut siv = cursive::default();

Chapter 3 Creating Graphical User Interfaces (GUIs)

44

 let cat_text = "Meow!

 \\

 \\

 /_/\\

 (o o)

 =(I)=";

 // Declaring the app layout

 siv.add_layer(TextView::new(cat_text));

 siv.run();

}

Notice that before calling siv.run(), you set up the content of the app with the

following:

siv.add_layer(TextView::new(cat_text));

You created a TextView to hold the cat ASCII-art. Views are the main building blocks

of a cursive TUI program. There are many pre-built views in the cursive::views

module; for example, buttons, checkboxes, dialogs, progress bars, etc. You can also

implement custom views by implementing the View trait on your struct. TextView is

used to hold a static text, which was passed in as a constructor parameter. But the newly

created TextView is not visible yet because it is not part of the main program. You can

add it as a layer to the main cursive program, siv, by calling siv.add_layer(). Cursive

uses layers to create a stacked view of the components (i.e., Views). Layers are stacked

together such that the top-most one will be active and can receive input. They are also

rendered with a shadow, so they look like 3D layers stacked together. You can see a

TextView in action in Figure 3-5.

Figure 3-5.  A TextView showing the cat ASCII-art

Chapter 3 Creating Graphical User Interfaces (GUIs)

45

3.4 � Handling Simple Keyboard Inputs
Up until now the TUI program has only produced output and can’t handle any input.

A good starting point for input is to make the program respond to the ESC key press

by closing itself after cleaning up its state gracefully (currently the only way to close

our program is by using Ctrl+C or closing the containing terminal, both of which will

abruptly stop the program without any cleanup). Modify the src/main.rs file as follows:

// src/main.rs

// ...

use cursive::event::Key;

fn main() {

 let mut siv = cursive::default();

 let cat_text = // ...

 siv.add_layer(TextView::new(cat_text));

 // Listen to Key::Esc and quit

 siv.add_global_callback(Key::Esc, |s| s.quit());

 siv.run();

}

In the code, you set up a global callback with siv.add_global_callback(). This

function takes two arguments: an event and a callback function. Whenever the event

occurs, the callback function will be executed. The cursive::event::Key::Esc is

assigned as the event, which is triggered when the ESC key is pressed. In the callback

argument, you passed a closure, |s| s.quit(). The s argument is a mutable reference to

the Cursive struct itself, so s.quit() will gracefully quit the program.

The callback does not execute right away. The siv.add_global_callback() function

also does not block the execution. The line simply registers the callback and continues

the execution of the program. When the next line siv.run() is executed, the event loop

starts and waits for keypresses and mouse clicks. By using a non-blocking event-based

architecture, the user interface becomes more responsive to user input, and you are not

limited to one kind of interaction at a time. You can set up multiple event handlers so

they can handle different kinds of events regardless of the order. You will see more event

handlers in the coming sections.

Chapter 3 Creating Graphical User Interfaces (GUIs)

46

3.5 � Adding a Dialog
To give the program a more sophisticated look and feel, you can wrap the TextView with

a Dialog (Figure 3-5). Change the file src/main.rs like this:

// src/main.rs

use cursive::views::{Dialog, TextView};

fn main() {

 let mut siv = cursive::default();

 let cat_text = // ...

 siv.add_layer(

 Dialog::around(TextView::new(cat_text))

 .button("OK", |s| s.quit())

);

 siv.run();

}

You use Dialog::around() to wrap the TextView, which will add a Dialog around

the TextView (Figure 3-6). You can also add a button to the dialog with the label “OK”

and a callback (|s| s.quit()). This callback will be triggered when the button is

clicked. One nice feature of Cursive is that it supports keyboard and mouse interaction

out-of-the-box, so you can close the program by either hitting the ENTER (Return) key

when the focus is on the button or by double-clicking the button with a mouse.

Figure 3-6.  Displaying a dialog with an OK button

Chapter 3 Creating Graphical User Interfaces (GUIs)

47

Since it’s very common to wrap a TextView inside Dialog to show a text dialog,

cursive offers a shorthand syntax, Dialog::text(). So, you can rewrite the line in src/

main.rs like this:

siv.add_layer(

 Dialog::text(cat_text).button("OK", |s| s.quit())

);

3.6 � Multi-step Dialogs
You are not limited to just one static layer at a time. You can actually build a multistep

flow. In the first step, the user is prompted to fill in a form and press “OK,” then you

hide the form and display the cat ASCII-art using the information provided in the form.

Modify the src/main.rs file like in Listing 3-1.

Listing 3-1.  Multi-step form

// src/main.rs

use cursive::traits::Nameable;

use cursive::views::{Checkbox, Dialog, EditView, ListView};

use cursive::Cursive;

// Wrap all form fields value in one struct

// so we can pass them around easily

struct CatsayOptions<'a> {

 message: &'a str,

 dead: bool,

}

fn input_step(siv: &mut Cursive) {

 siv.add_layer(

 Dialog::new()

 .title("Please fill out the form for the cat")

 .content(

 ListView::new()

 .child(

 "Message:",

Chapter 3 Creating Graphical User Interfaces (GUIs)

48

 EditView::new().with_name("message")

)

 .child(

 "Dead?",

 Checkbox::new().with_name("dead")

),

)

 .button("OK", |s| {

 let message = s

 .call_on_name(

 "message",

 |t: &mut EditView| t.get_content()

).unwrap();

 let is_dead = s

 .call_on_name(

 "dead",

 |t: &mut Checkbox| t.is_checked()

).unwrap();

 let options = CatsayOptions {

 message: &message,

 dead: is_dead,

 };

 result_step(s, &options) // [2]

 }),

);

}

fn result_step(siv: &mut Cursive, options: &CatsayOptions) {

 let eye = if options.dead { "x" } else { "o" };

 let cat_text = format!(

 "{msg}

Chapter 3 Creating Graphical User Interfaces (GUIs)

49

 \\

 \\

 /_/\\

 ({eye} {eye})

 =(I)=",

 msg = options.message,

 eye = eye

);

 siv.pop_layer(); // [3]

 siv.add_layer(// [4]

 Dialog::text(cat_text)

 .title("The cat says...")

 .button("OK", |s| s.quit()),

);

}

fn main() {

 let mut siv = cursive::default();

 input_step(&mut siv); // [1]

 siv.run();

}

This example is slightly more complex, so let’s break it down a little bit. The following

is the high-level flow:

•	 main(): Creates Cursive object and calls input_step()

•	 input_step(): Sets up the form layout and callbacks

•	 result_step(): When “OK” is clicked, hides the form and shows the

cat dialog

In the main() function, instead of directly setting up the layout with add_layer(),

you move all the layout code into the input_step(&mut siv) function ([1]).

Inside input_step() you set up a form, which will be discussed in detail later. Notice

that it has a button called “OK.” In the callback function of the button, you call result_

step(s, &options)([2]), which handles the next step.

Chapter 3 Creating Graphical User Interfaces (GUIs)

50

In result_step(), you first hide the form by calling siv.pop_layer() ([3]). This

“pops” the existing layer (i.e., the form layer) from the layers stack, and then you add the

layer that displays the cat in a TextView ([4]). These actions combined allow for a nice

dialog that works the user through multiple stages.

3.7 � Reading User Input
Now you understand how the program goes from one layer to another, but how does

the user’s input (the message and the “Dead?” flag) get carried from the form to the

cat picture dialog? If you take a closer look at the input_step() in Listing 3-1, you

will find that the step consists of two parts. First, you set up the input fields with the

following code:

siv.add_layer(

 Dialog::new()

 .title("Please fill out the form for the cat")

 .content(

 ListView::new()

 .child(

 "Message:",

 EditView::new().with_id("message")

)

 .child(

 "Dead?",

 Checkbox::new().with_id("dead")

),

)

)

As before, you create a layer and add a Dialog element to it. You set the content

of the Dialog using .content(). Inside the Dialog you create two input elements, an

EditView and a Checkbox. To place them properly, you wrap them in a ListView, which

is a layout container that will display its children in a scrollable list. Notice that you call

.with_name() on the EditView and Checkbox, which gives each of them a unique name

that you can use to identify and retrieve them later.

Chapter 3 Creating Graphical User Interfaces (GUIs)

51

Then you add a button to the Dialog like so:

Dialog::new()

 .title(...)

 .content(...)

 .button("OK", |s| {

 let message = s

 .call_on_name(

 "message",

 |t: &mut EditView| t.get_content()

).unwrap();

 let is_dead = s

 .call_on_name(

 "dead",

 |t: &mut Checkbox| t.is_checked()

).unwrap();

 let options = CatsayOptions {

 message: &message,

 dead: is_dead,

 };

 result_step(s, &options)

 }),

In this button’s callback, you read the message and the status of the “Dead?” flag,

collect them into a CatsayOptions struct, then pass the CatsayOptions struct to the

result_step() to display the final output. This is when the names come in handy. The

first argument ("message") of the s.call_on_name() call is the name you just set for the

first widget. call_on_name() will try to find the element and pass its mutable reference

into the callback closure (the second argument). Inside the closure you use t.get_

content() (where t is &mut EditView) to get the text inside the EditView. You might

fail to find any element with the given name, in which case call_on_name() returns an

Option wrapping the return value of the closure, which is why you have to unwrap it to

get the actual string. You do similarly for the Checkbox. By calling is_checked() on a

Checkbox, it will return a Boolean indicating whether the checkbox is checked or not.

Chapter 3 Creating Graphical User Interfaces (GUIs)

52

Then you simply wrap the two values into a CatsayOptions struct so you can pass

them to the result_step(). Inside the result_step() (Listing 3-1), you display the cat

ASCII-art in a Dialog using the options from the previous step.

There are many more callbacks and UI patterns to talk about. But a TUI is relatively

limited due to its low resolution. There is very limited space on the screen if you have

to render each pixel as a character. Also, it’s not very aesthetically pleasing for modern

users, sometimes even a little bit intimidating. However, a TUI is still very useful if you

want to build some small tools that require simple interactions. Also, it might be useful

on servers with only SSH access. Due to these limitations, you are going to conclude the

journey in TUIs and move on to a GUI, or graphical user interface.

3.8 � Moving to Graphical User Interfaces (GUIs)
In the next half of this chapter, you’ll be building a GUI version of the TUI program

you just built. This time you’ll be able to display a real cat photo! For this purpose,

you are going to use the gtk crate, which is a Rust binding for the GTK3 library. GTK,

originally known as GTK+ and GIMP Toolkit, is a free and open-source widget toolkit for

building GUIs. It is written in C and supports multiple platforms, like Linux, Microsoft

Windows, and macOS. It provides many UI widgets out of the box so you can easily

assemble them into a GUI program. Many popular programs like the GNOME desktop

environment use it.

Note  Currently, there are two active versions of GTK: GTK3 and GTK4. GTK4
has quite a few breaking changes from GTK3, so it requires quite some effort to
migrate from GTK3 to GTK4. At the time of writing, GTK4 doesn’t have an official
visual user interface designer tool like Glade, which will be discussed in the “Using
Glade to Design the UI” section. Also, GTK3 is still being actively maintained and
has a long track record of powering popular GUI programs like the GNOME desktop
environment. Therefore, we are sticking with GTK3 in this book.

The Rust bindings for GTK3 are in the gtk crate on crates.io, while the GTK4
binding is in the gtk4 crate. Do not confuse it with the name gtk-rs, which is the
umbrella project that covers gtk and gtk4. Sometimes the projects are referred to
as gtk3-rs and gtk4-rs, which are their GitHub repository names.

Chapter 3 Creating Graphical User Interfaces (GUIs)

53

There are many other GUI toolkits for Rust, but you’ll use gtk-rs for its popularity

and maturity. It’s one of the most downloaded GUI crates on crates.io, and it is one of

the most mature libraries in the domain because of the maturity of GTK itself. It can

potentially support cross-platform development (by installing GTK libraries for the

target platform). An additional benefit of using gtk-rs is its nice documentation and

community support. Because it’s a wrapper around the C-based GTK library, whenever

the Rust documentation is not clear, you can always find the C documentation and many

discussions online. We’ll discuss alternatives in the section “Alternatives.”

3.9 � Creating a Window
First, you’ll create a window with GTK. Gtk3-rs relies on the system GTK library. To

install it on Ubuntu,2 run the following command in a terminal:

$ sudo apt install libgtk-3-dev

Then, create a new project with cargo and add gtk as a dependency:

$ cargo new catsay-gui

$ cd catsay-gui

$ cargo add gtk --features v3_24

Then add the gtk crate to Cargo.toml by directly editing the file:

Cargo.toml

[package]

name = "catsay-gui"

version = "0.1.0"

edition = "2021"

[dependencies.gtk]

gtk = { version = "0.17.1", features = ["v3_24"] }

2 You can find installation instructions for other platforms here: https://www.gtk.org/docs/
installations/.

Chapter 3 Creating Graphical User Interfaces (GUIs)

https://www.gtk.org/docs/installations/
https://www.gtk.org/docs/installations/

54

Because gtk3-rs relies on the system gtk library, it uses the Cargo “feature”

to control which version of the system gtk library it is targeting. Therefore, we use

an advanced Cargo.toml syntax to pass these version configurations to the gtk

dependency. The version = "0.17.1" is specifying the version of the gtk crate itself,

while the features=["v3_24"] line is specifying the version of the system gtk library. In

case you don’t know which version of the system gtk library was installed, you can run

the following command to find out:

$ apt list libgtk-3-0

OR

$ dpkg -l libgtk-3-0

You now have done the groundwork and are ready to code. Open the src/main.rs

file and copy-paste the following code:

// src/main.rs

use gtk::prelude::*;

use gtk::{Application, ApplicationWindow};

fn main() {

 let app = Application::new(

 Some("com.shinglyu.catsay-gui"),

 Default::default()

);

 app.connect_activate(|app| {

 let window = ApplicationWindow::new(app);

 window.set_title("Catsay");

 window.set_default_size(350, 70);

 window.show_all();

 });

 app.run();

}

You might notice that the code has a very similar structure to that of the TUI program.

First, you created a GTK application using Application::new(). You have to set an

application ID in the first argument. A GTK application ID follows the “reverse DNS” style.

Chapter 3 Creating Graphical User Interfaces (GUIs)

55

So, let’s say the application has a public website at https://catsay-gui.shinglyu.com;

you should use com.shinglyu.catsay-gui for the ID. When the application starts up,

the activate event is triggered. You should set up the application’s content inside the

activate event handler. In this case, you create an ApplicationWindow and set its title

and size. Then window.show_all() shows the window that was initially hidden when

created. Finally, app.run() starts the main event loop of the application and shows

the window.

Now if you run cargo run, you should see an empty window like in Figure 3-7.

Figure 3-7.  An empty GTK window

3.10 � Displaying an Image
Now put a cat image in the window by adding the code in Listing 3-2 to src/main.rs.

Listing 3-2.  Showing text and a cat picture

// src/main.rs

use gtk::{Application, ApplicationWindow,

 Box as GtkBox, Image, Label, Orientation};

// ...

fn main() {

 // ...

 app.connect_activate(|app| {

 let window = ApplicationWindow::new(app);

 // ...

 // [1]

 let layout_box = GtkBox::new(Orientation::Vertical, 0);

 let label = Label::new(

 Some("Meow!\n \\\n \\")

Chapter 3 Creating Graphical User Interfaces (GUIs)

https://catsay-gui.shinglyu.com

56

);

 layout_box.add(&label);

 // [2]

 let cat_image = Image::from_file(

 "./images/cat.png"

);

 layout_box.add(&cat_image);

 window.add(&layout_box); // [3]

 window.show_all();

 });

 // ...

}

The code example is trying to display a text (Label) and an image (Image). But

to properly control the layout, you need to wrap them in a GtkBox. This is not a

std::box::Box that you are probably already familiar with. A GtkBox is a container

that can display widgets in a single row or column. On line [1], you create a box with

Orientation::Vertical, which displays the widgets from top to bottom in a vertical

column. The second parameter 0 is the spacing between each widget, which is set

to none.

Figure 3-8.  Displaying the text and text image in a GTK window

Chapter 3 Creating Graphical User Interfaces (GUIs)

57

Then you create the text in a Label, which is similar to TextView in the TUI example.

You also created an Image using Image::from_file(). This creates a GTK image widget

that shows a PNG file. You need to create a folder in the same project called images and

put the cat.png image in there. These two elements are not showing yet, and you have

to add them to the container with layout_box.add(&label) and layout_box.add(&cat_

image), then add the layout box to the window (window.add(&layout_box)).

Before you can run this code, you should create the top-level directory images and

then save an image as images/cat.png. Now run cargo run, and the new window

should look like Figure 3-8.

Tip  You defined the layout of the widgets in Rust code. But sometimes, when the
widgets are positioned incorrectly, it’s pretty hard to figure out why they go astray
just by reading the code. GTK3 has a visual debugger so you can see the widget
tree and have them highlighted in the application window. Simply run your GTK
application with the environment variable GTK_DEBUG set to interactive. For
example, GTK_DEBUG=interactive cargo run. You’ll see the program starts
along with the debugger window (Figure 3-9). In the Objects tab in the debugger,
you can see the hierarchy of the widgets. If you click on one of the widgets, that
widget will flash in the main application window to show its position and size.
In Figure 3-10 the GtkLabel widget is selected, and you can see it is being
highlighted. This can help us debug and tweak the layout of the widgets much easier.

Figure 3-9.  GTK debugger that highlights the GtkBox

Chapter 3 Creating Graphical User Interfaces (GUIs)

58

Figure 3-10.  GTK debugger that highlights the GtkLabel

3.11 � Using Glade to Design the UI
In Listing 3-2, you built the UI procedurally. That means you have to use code to do

everything, including creating widgets, putting them in containers, putting containers

into bigger containers, attaching them to the window, and displaying them. This way

of working is very error-prone and hard to maintain as the program grows larger. An

alternative is to define the UI layout declaratively and let GTK figure out how to create

the underlying widgets and containers. The hierarchy of the widgets should be like the

following:

•	 GtkApplicationWindow

–– GtkBox

* GtkLabel

* GtkImage

GTK provides a way to make the declaration by using an XML (eXtensible Markup

Language) markup. The XML file contains the static declaration of the layout of the

widgets and can be loaded using the GTKBuilder object, and it builds the UI at runtime.

If you write the example application in the previous section in the XML format, it will

look like Listing 3-3. You can clearly see the hierarchy of a GtkBox containing a GtkLabel

and a GtkImage.

Chapter 3 Creating Graphical User Interfaces (GUIs)

59

Listing 3-3.  An example of Glade XML

<?xml version="1.0" encoding="UTF-8"?>

<interface>

 <requires lib="gtk+" version="3.12"/>

 <object class="GtkApplicationWindow" id="applicationwindow1">

 <child>

 <object class="GtkBox" id="box1">

 <property name="orientation">vertical</property>

 <child>

 <object class="GtkLabel" id="label1">

 <property name="label" translatable="yes">

 Meow!

 </property>

 </object>

 </child>

 <child>

 <object class="GtkImage" id="image1">

 <property name="pixbuf">./images/cat.png</property>

 </object>

 </child>

 </object>

 </child>

 </object>

</interface>

But writing this XML by hand is very tedious. Instead, you can use Glade

(Figure 3-11), the UI design tool that comes with GTK3, to generate the XML. You can

install Glade with this command on Ubuntu: sudo apt install glade. In Glade, you

can drag and drop widgets in a WYSIWYG (What-You-See-Is-What-You-Get) editor.

You can also tweak the parameters of individual widgets and get instant feedback. With

Glade (and the XML layout definition), you can separate the visual presentation from the

behavior. You can keep most of the visual design and layout in the XML and leave only

event handler logic in Rust code.

Chapter 3 Creating Graphical User Interfaces (GUIs)

60

Figure 3-11.  Glade UI design tool

So, let’s build a simple form with Glade. You can start by playing around with the

Glade UI design tool, looking at the example in Listing 3-3. Laying out basic forms in

Glade, you can drag and drop a form that looks like Figure 3-12; its widgets are organized

as in Figure 3-13. Then you can click the menu File, then Save as... to save this to a new

XML file. You won’t actually use this file (to ensure the demo works properly you’ll copy-

paste the XML file in Listing 3-4), so you can save it wherever just to practice.

Figure 3-12.  Building the form with Glade

Chapter 3 Creating Graphical User Interfaces (GUIs)

61

Figure 3-13.  Widget hierarchy of the form

Listing 3-4.  Glade layout XML

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated with glade 3.18.3 -->

<interface>

 <requires lib="gtk+" version="3.12"/>

 <object class="GtkApplicationWindow" id="applicationwindow1">

 <property name="can_focus">False</property>

 <property name="title" translatable="yes">Catsay</property>

 <child>

 <object class="GtkBox" id="global_layout_box">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="orientation">vertical</property>

 <child>

 <object class="GtkBox" id="form_box">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="orientation">vertical</property>

Chapter 3 Creating Graphical User Interfaces (GUIs)

62

 <child>

 <object class="GtkBox" id="message_input_box">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="resize_mode">

 immediate

 </property>

 <property name="homogeneous">True</property>

 <child>

 <object class="GtkLabel"

 id="message_input_bo">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="label" translatable="yes">

 What does the cat say:

 </property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">0</property>

 </packing>

 </child>

 <child>

 <object class="GtkEntry" id="message_input">

 <property name="visible">True</property>

 <property name="can_focus">True</property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">1</property>

 </packing>

 </child>

 </object>

Chapter 3 Creating Graphical User Interfaces (GUIs)

63

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">0</property>

 </packing>

 </child>

 <child>

 <object class="GtkBox" id="is_dead_switch_box">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="homogeneous">True</property>

 <child>

 <object class="GtkLabel"

 id="is_dead_switch_label">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="label" translatable="yes">

 Dead?

 </property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">0</property>

 </packing>

 </child>

 <child>

 <object class="GtkSwitch" id="is_dead_switch">

 <property name="visible">True</property>

 <property name="can_focus">True</property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">1</property>

Chapter 3 Creating Graphical User Interfaces (GUIs)

64

 </packing>

 </child>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">1</property>

 </packing>

 </child>

 <child>

 <object class="GtkButton" id="generate_btn">

 <property name="label" translatable="yes">

 Generate

 </property>

 <property name="visible">True</property>

 <property name="can_focus">True</property>

 <property name="receives_default">

 True

 </property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">2</property>

 </packing>

 </child>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">0</property>

 </packing>

 </child>

 <child>

 <object class="GtkSeparator" id="separator1">

Chapter 3 Creating Graphical User Interfaces (GUIs)

65

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">1</property>

 </packing>

 </child>

 <child>

 <object class="GtkBox" id="output_box">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="orientation">vertical</property>

 <child>

 <object class="GtkLabel" id="message_output">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="ellipsize">end</property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">0</property>

 </packing>

 </child>

 <child>

 <object class="GtkImage" id="image_output">

 <property name="can_focus">False</property>

 <property name="pixbuf">images/cat.png</property>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">1</property>

Chapter 3 Creating Graphical User Interfaces (GUIs)

66

 </packing>

 </child>

 </object>

 <packing>

 <property name="expand">False</property>

 <property name="fill">True</property>

 <property name="position">2</property>

 </packing>

 </child>

 </object>

 </child>

 </object>

</interface>

Now you can start a new project for the Glade-based GUI. Create a new Rust project

and then add the gtk crate as before:

$ cargo new catsay-gui-glade

$ cargo add gtk –features v3_24

Then, copy the layout.glade file in Listing 3-4 into the catsay-gui-glade/src/

folder. Also, copy and paste the following code into src/main.rs:

// src/main.rs

use gtk::prelude::*;

fn build_ui(app: >k::Application) {

 let glade_src = include_str!("layout.glade");

 let builder = gtk::Builder::from_string(glade_src);

 let window: gtk::Window = builder.object(

 "applicationwindow1"

).unwrap();

 window.set_application(Some(app));

 window.show_all();

}

Chapter 3 Creating Graphical User Interfaces (GUIs)

67

fn main() {

 let application = gtk::Application::new(

 Some("com.catsay-gui-glade"),

 Default::default()

);

 application.connect_activate(build_ui);

 application.run();

}

For this example, you should make sure the cat.png file is in the folder catsay-gui-

glade/images. If you run the program with cargo run, you should see a GTK application

that looks like Figure 3-14. Note you’ll see a few warnings; you can ignore those for this

example.

Figure 3-14.  GTK application created by Glade

Notice how the connect_active() handler is much simpler than the previous

example where you set up the app layout by code. You no longer need to build up

the widget hierarchy inside Rust code. Instead, you load the Glade XML file using

include_str!() in the build_ui() function. The built-in macro include_str!() loads

a file into the string variable glade_src. You then use gtk::Builder::from_string()

to build the GTK program using the Glade XML definition string. However, because

Chapter 3 Creating Graphical User Interfaces (GUIs)

68

you are not building the widgets in Rust code, you don’t have any Rust variable that

points to the individual widgets, so you cannot call functions like window.show_all(),

because the window is not defined. You can identify the widgets by their IDs inside

the application built by the builder. In Listing 3-4, the ApplicationWindow has an

id="applicationwindow1" that was auto-generated by Glade. You can use builder.

object("applicationwindow1") to get the widget. Because you might provide an ID that

doesn’t exist, the function returns an Option, so please remember to unwrap() it, and to

handle the error cases properly. The window created by the builder also doesn’t know

which gtk::Application it belongs to. You have to use window.set_application(app)

to associate the application with the window. To do this you pass the gtk::Application

created in the main() function into the build_ui() function.

3.12 � Accepting Inputs and Button Clicks
You can add interactivity to the GTK application in a way similar to what you did for the

TUI application. Let’s add some event handlers to the inputs and buttons in the build_

ui() function (note that this code won’t compile just yet):

// src/main.rs

fn build_ui(app: >k::Application) {

 let glade_src = include_str!("layout.glade");

 let builder = gtk::Builder::from_string(glade_src);

 let window: gtk::Window = builder.object(

 "applicationwindow1"

).unwrap();

 window.set_application(Some(app));

 // Inputs

 let message_input: gtk::Entry = builder.object(

 "message_input"

).unwrap();

 // Submit button

 let button: gtk::Button = builder.object(

 "generate_btn"

).unwrap();

Chapter 3 Creating Graphical User Interfaces (GUIs)

69

 // Outputs

 let message_output: gtk::Label = builder.object(

 "message_output"

).unwrap();

 let image_output: gtk::Image = builder.object(

 "image_output"

).unwrap();

 button.connect_clicked(|_| {

 message_output.set_text(&format!(

 "{}\n \\\n \\",

 message_input.text().as_str()

));

 image_output.show();

 });

 window.show_all();

 image_output.hide();

}

First, you get the handles for all the widgets you need using the builder.object()

function, just like you did for getting the ApplicationWindow:

let message_input: gtk::Entry = builder.object(

 "message_input"

).unwrap();

You have to create a callback function on the Generate button to show the cat and

the text message. You call button.connect_clicked() to set the callback for the button’s

clicked event:

button.connect_clicked(|_| {

 message_output.set_text(&format!(

 "{}\n \\\n \\",

 message_input.text().as_str()

));

 image_output.show();

});

Chapter 3 Creating Graphical User Interfaces (GUIs)

70

The callback is a closure, in which you do the following:

•	 Read the input from message_input.text() (text() returns a glib::

GString, so you convert it to &str using .as_str()).

•	 Set the message_output text using the text in message_input.

•	 Show the image with image_output.show().

You also want the cat image to remain hidden until you click the Generate button.

So you call image_output.hide() right after window.show_all(). The order is important

here because you first show everything and then hide the image. If you hide the image

first, then call window.show_all(), the image will be shown again.

Although the structure of the code looks OK, the code won’t compile. You’ll receive

the following error when you try to compile via cargo build:

error[E0373]: closure may outlive the current function, but it borrows

'image_output', which is owned by the current function

 --> src/main.rs:36:28

 |

36 | button.connect_clicked(|_| {

 | ^^^ may outlive borrowed value 'image_output'

...

41 | image_output.show();

 | ------------ 'image_output' is borrowed here

 |

note: function requires argument type to outlive ''static'

 --> src/main.rs:36:5

 |

36 | / button.connect_clicked(|_| {

37 | | message_output.set_text(&format!(

38 | | "{}\n \\\n \\",

39 | | message_input.text().as_str()

40 | |));

41 | | image_output.show();

42 | | });

 | |______^

Chapter 3 Creating Graphical User Interfaces (GUIs)

71

help: to force the closure to take ownership of 'image_output' (and any

other referenced variables), use the 'move' keyword

 |

36 | button.connect_clicked(move |_| {

 | ++++

This is because once the callback function is set, it might get triggered at any time

during the application’s lifetime. But by the time the callback is triggered, the build_

ui() function is probably already finished and the image_output variable has gone out

of scope. To mitigate this, you have to move the ownership of the variable to the closure,

so the closure can keep it alive. But if you simply add a move keyword to the closure, the

image_output variable won’t be accessible after you move it into the closure, because

the ownership has already been moved to the closure. For example:

let image_output: gtk::Image = builder.get_object(

 "image_output"

).unwrap();

button.connect_clicked(move |_| {

 // ...

 image_output.show();

});

image_output.hide(); // This will fail!

// error[E0382]: borrow of moved value: 'image_output'

However, because gtk3-rs is a wrapper around the C GTK library, doing a Rust

clone on a gtk3-rs object only copies the pointer. So, since it’s not a costly, deep clone

of the whole data structure, you can simply clone the handle and move it into the

closure.3 You can see here how we create the image_output_clone and then call show on

it inside the closure:

let image_output: gtk::Image = builder.get_object(

 "image_output"

).unwrap();

3 We are not cloning the message_input and message_output simply because we don’t need to
use them after defining the callback function. But if you need to use them after moving them into
the callback, you should clone them just like you did for image_output.

Chapter 3 Creating Graphical User Interfaces (GUIs)

72

let image_output_clone = image_output.clone(); // low-cost clone

button.connect_clicked(move |_| {

 message_output.set_text(&format!(

 "{}\n \\\n \\",

 message_input.text().as_str()

));

 // the clone is moved into the closure

 image_output_clone.show();

});

image_output.hide(); // you still keep the ownership of it

Ok(())

3.13 � Reading a gtk::Switch
There is only one thing missing in the Glade-based design—the “Dead?” switch. The

code change is pretty straightforward. Modify the src/main.rs file as follows:

// src/main.rs

fn build_ui(app: >k::Application) {

 // ...

 let is_dead_switch: gtk::Switch = builder.object(

 "is_dead_switch"

).unwrap();

 let image_output: gtk::Image = builder.object(

 "image_output"

).unwrap();

 let image_output_clone = image_output.clone();

 button.connect_clicked(move |_| {

 // ...

 let is_dead = is_dead_switch.is_active();

Chapter 3 Creating Graphical User Interfaces (GUIs)

73

 if is_dead {

 image_output_clone.set_from_file(

 Some("./images/cat_dead.png")

)

 } else {

 image_output_clone.set_from_file(

 Some("./images/cat.png")

)

 }

 image_output_clone.show();

 });

 window.show_all();

 image_output.hide();

}

As before, you get the handle of the switch with the following code:

let is_dead_switch: gtk::Switch = builder.object(

 "is_dead_switch"

).unwrap();

Then you can check if it’s activated or not by reading is_dead_switch.is_active().

Based on whether it’s true or false you can load different cat images using image_

output_clone.set_from_file(). This allows you to change the image at runtime. Note

that you’ll also need to add the image images/cat_dead.png.

Finally, the end product will look like Figure 3-15 to Figure 3-17.

Figure 3-15.  The form created with Glade

Chapter 3 Creating Graphical User Interfaces (GUIs)

74

Figure 3-16.  After clicking Generate with Dead? off

Figure 3-17.  After clicking Generate with Dead? on

Chapter 3 Creating Graphical User Interfaces (GUIs)

75

3.14 � Alternatives
This concludes the journey from building a text-based user interface (TUI) to creating a

graphical user interface (GUI). You learned the ncurses-based TUI library and GTK-based

GUI library because they are mature and stable. And the corresponding Rust library is also

more production-ready. However, there are many exciting new Rust libraries out there that

provide a more idiomatic Rust interface or better cross-platform support.

On the TUI side, tui-rs is also a good alternative to Cursive, but it doesn’t support

input handling out of the box, so it’s better suited for building applications that don’t

require user interaction, like a monitoring dashboard. There are also some pure-Rust

alternatives, like termion4 (part of ReduxOS) and crossterm,5 which provide backends

to tui-rs. If you are looking for cross-system support, including Linux and Windows,

pancurses6 is an abstraction layer above the platform-specific layers. It uses ncurses-rs7

for Linux and pdcurses-sys8 for Windows underneath.

On the GUI side, there are many different crates with different design philosophies.

Since GUI is a very mature field in software development, there are many existing GUI

frameworks there were not designed specifically for Rust. But there are Rust bindings to

these crates. Choosing this kind of library will give you the maturity and stability of the

underlying GUI framework, but the API might not be that Rusty. These libraries include

Qt, a cross-platform GUI library written in C++. There are Rust bindings for it, like

4 https://crates.io/crates/termion
5 https://crates.io/crates/crossterm
6 https://crates.io/crates/pancurses
7 https://crates.io/crates/ncurses-rs
8 https://crates.io/crates/pdcurses-sys

Chapter 3 Creating Graphical User Interfaces (GUIs)

https://crates.io/crates/termion
https://crates.io/crates/crossterm
https://crates.io/crates/pancurses
https://crates.io/crates/ncurses-rs
https://crates.io/crates/pdcurses-sys

76

Ritual9 and QMetaObject.10 Other bindings include FLTK11 (for the C++-based FLTK12),

iui13 (for libui14), sciter-rs15 (for Sciter16), and Slint17 (for Slint,18 formerly known as

SixtyFPS).

Another popular source of design inspiration comes from Elm, a functional

programming language that compiles to JavaScript. It is used to build web apps, but its

main design principle, the Elm Architecture, inspires a few Rust GUI libraries, like Relm19

and iced.20 The Yew library in Chapter 4 is also based on the Elm architecture.

The GTK library you learned in this chapter belongs to a category of GUI libraries

called retained-mode GUI. There is another category called immediate-mode GUI. In

a retained-mode GUI library, you create widgets, like a button, then attach callbacks

on them. The button stays around (i.e., is retained) and expects click events. But in an

immediate-mode GUI, the button is redrawn every time a new frame is rendered. This

is a common design pattern in game GUIs. Immediate-mode GUI results in simpler

code. For example, the retained widgets and callbacks creates lifetime headaches for

Rust. But managing the layout is generally harder in immediate-mode than in retained-

mode. Immediate-mode Rust GUI libraries include egui21 and imgui22 (bindings for Dear

ImGui, a C++ immediate-mode GUI library).

There are also projects that aim to create Rust-native GUI libraries, like Druid23 and

OrbTk,24 which is part of the ReduxOS project.

9 https://rust-qt.github.io/qt/
10 https://crates.io/crates/qmetaobject
11 https://crates.io/crates/fltk
12 https://www.fltk.org/
13 https://crates.io/crates/iui
14 https://github.com/andlabs/libui
15 https://crates.io/crates/sciter-rs
16 https://sciter.com/
17 https://crates.io/crates/slint
18 https://slint-ui.com/
19 https://crates.io/crates/relm
20 https://crates.io/crates/iced
21 https://crates.io/crates/egui
22 https://crates.io/crates/imgui
23 https://crates.io/crates/druid
24 https://crates.io/crates/orbtk

Chapter 3 Creating Graphical User Interfaces (GUIs)

https://rust-qt.github.io/qt/
https://crates.io/crates/qmetaobject
https://crates.io/crates/fltk
https://www.fltk.org/
https://crates.io/crates/iui
https://github.com/andlabs/libui
https://crates.io/crates/sciter-rs
https://sciter.com/
https://crates.io/crates/slint
https://slint-ui.com/
https://crates.io/crates/relm
https://crates.io/crates/iced
https://crates.io/crates/egui
https://crates.io/crates/imgui
https://crates.io/crates/druid
https://crates.io/crates/orbtk

77

It is worth mentioning Tauri.25 Tauri is not strictly a GUI library; it allows you to build

a desktop application and define the user interface using any web-based technology.

The UI is rendered by an embedded web browser engine, and the frontend interacts with

the Rust-based core that controls the native platform. This is similar to the concept of the

popular Electron framework.

There are so many options for building TUIs and GUIs in Rust. Based on the

complexity of your project and your preferred API design, you can almost always find a

library that suits your project needs.

3.15 � Conclusion
In this chapter you created three projects to act as visual interfaces for a simple catsay

program. The first application, catsay-tui, used ncurses to create a text-based user

interface. You learned how to handle input and output with text-based user interfaces

and how to customize them with multi-step dialogs. Then you moved to a full GUI,

creating the catsay-gui project that used gtk bindings to create a simple GUI from

Rust. After this, you moved on to the catsay-gui-glade project, where you used a

more complicated XML-based editor to define the UI presentation, and then linked in

behavior from the Rust side.

25 https://tauri.studio/

Chapter 3 Creating Graphical User Interfaces (GUIs)

https://tauri.studio/

79

CHAPTER 4

High-Performance
Web Frontend Using
WebAssembly
We’ve just seen how Rust can help us write a graphical user interface as a desktop

program. But what if we wanted to write interactive websites? Rust also excels in this

domain. With the introduction of WebAssembly1 (abbreviated Wasm), you can compile a

Rust program to run in a browser alongside JavaScript.

4.1 � What Is WebAssembly?
WebAssembly is an open standard for a binary instruction format that runs on a stack-

based virtual machine. Its original design goal was to provide near-native performance

in web browsers. You can think of it as an assembly language for the web. WebAssembly

is a World Wide Web Consortium (W3C) recommendation, and it’s implemented in all

major browsers.

WebAssembly is designed to run at near-native speed. It doesn’t require you to use

a garbage collector (GC).2 It can be a compile target for many languages, like C, C++,

and Rust. Therefore, you can write frontend applications in the high-level programming

language you prefer and get predictable performance.

1 https://webassembly.org/
2 Although there are discussions under way to add GC as an optional feature.

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_4

https://webassembly.org/
https://doi.org/10.1007/978-1-4842-9331-7_4

80

There are a few reasons why you might want to use Rust to compile to WebAssembly:

•	 Enjoy the high-level syntax and low-level control of Rust in browsers.

•	 Save bandwidth while downloading the small .wasm binary because

of Rust’s minimal runtime.

•	 Reuse the extensive collection of existing Rust libraries.

•	 Use familiar frontend web tools, like ES6 modules, npm, and

webpack, through the wasm-pack toolchain.

There are also some common misconceptions about WebAssembly:

•	 WebAssembly is not aiming to replace JavaScript. It is designed to run

alongside JavaScript and simplify some tasks in the browser, along

with providing extra performance where needed.

•	 WebAssembly is not limited to only the browser, although that was

the initial target. The WebAssembly runtime can potentially run

anywhere, like on servers or in Internet of Things (IoT) devices.

These applications also benefit from the isolation guarantees of the

runtime. This usage as a more secure container/virtual machine

technology is currently seeing a lot of growth.3

A common use for WebAssembly is to speed up a performance bottleneck in

JavaScript-based web applications. The user interface (UI) can be built in HTML, CSS,

and JavaScript, with CPU-intensive tasks or functions being written in WebAssembly.

The result of the computation can then be passed back to JavaScript for display.

Some frameworks take this idea a step further and let you write your whole frontend

application in Rust, like Sycamore, Yew, or Percy. They usually take inspiration from

other popular frontend frameworks, like React and Elm, and use a Virtual DOM.4 The

Rust code is compiled to Wasm and rendered to the screen by finding any difference

between the virtual and real DOMs and then making adjustments to the real DOM

accordingly. This is a relatively efficient and fast method, as only changes need to be re-

rendered.

3 https://www.docker.com/blog/why-containers-and-webassembly-work-well-together/
4 https://reactjs.org/docs/faq-internals.html#what-is-the-virtual-dom

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://www.docker.com/blog/why-containers-and-webassembly-work-well-together/
https://reactjs.org/docs/faq-internals.html#what-is-the-virtual-dom

81

4.2 � What Are You Building?
First, you’ll be building a simple Hello World application. This application will create

a browser alert() from Rust. This example will show you the process of getting a

WebAssembly program up and running. You’ll also learn how WebAssembly works with

JavaScript.

In the catsay example from Chapter 3, you wrote an application to add text to a cat

photo. This application used a previously chosen cat, but now you might want to have a

website where you can upload different cat photos to use for different applications (the

internet can always use more cat photos). Some of these photos could be very large,

however, which would use up a lot of bandwidth and future storage space. You’ll be

building a frontend application for reducing the size of a cat image for upload. Since

reducing the size of an image is a CPU-intensive job, it makes sense to implement the

resize algorithm in WebAssembly.

Once you have a basic understanding of how WebAssembly can work with

JavaScript, you can start to use a fully Rust-based frontend web framework. You’ll first

start with a hello-world-style example to get familiar with the setup and build process.

This example will have a button that can increase a counter.

Finally, you’ll be building a simple Catdex application that will let you interactively

add cat images to and remove them from a single-page application with the Yew5

framework.

4.3 � Hello WebAssembly!
There are quite a few steps to running a Hello World program in WebAssembly.

Conceptually, this is how you get some Rust code running in the browser as

WebAssembly:

	 1.	 Write the Rust code to expose functionality to JavaScript, and to

handle data passing between JavaScript and Wasm.

5 https://yew.rs

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://yew.rs

82

	 2.	 Use the compiler toolchain to compile Rust code into a

.wasm binary.

	 3.	 Serve the .wasm file on a web server

	 4.	 Write an HTML and JavaScript page to load this .wasm file.

	 5.	 In the JavaScript file, fetch6 the .wasm file and use the

WebAssembly.instantiateStreaming()7 API to compile and

instantiate the .wasm module.

	 6.	 In JavaScript, make calls to the functions that the .wasm module

exports.

These steps are tedious and do not feel as ergonomic as what cargo or npm8 offer.

Thankfully, there is a tool called wasm-pack that bundles many other tools that make

this process smoother. Also, to avoid writing boilerplate code, you can use the template

wasm-pack-template9 to quickly generate a project.

�Setting Up the Development Environment
To set up wasm-pack, head to https://rustwasm.github.io/wasm-pack/installer/.

For Linux, it’s as simple as executing the following command in the terminal10:

curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf | sh

6 Fetch is a web API that allows you to download additional resources. It’s a successor of the old
XMLHttpRequest.
7 Check https://developer.mozilla.org/en-US/docs/WebAssembly/Loading_and_running for
more detail.
8 npm is the de facto standard package manager used for JavaScript development, similar to how
cargo is the package manager used for Rust development (https://www.npmjs.com/).
9 https://github.com/rustwasm/wasm-pack-template
10 curl is a popular command-line HTTP client. If you don’t have it yet you can almost certainly
find it in your Linux distribution’s package directory.

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://rustwasm.github.io/wasm-pack/installer/
https://developer.mozilla.org/en-US/docs/WebAssembly/Loading_and_running
https://www.npmjs.com/
https://github.com/rustwasm/wasm-pack-template

83

Wasm-pack helps you package the project into an npm (Node Package Manager)

package, so developers who are familiar with modern JavaScript development can easily

pick it up. To properly create and publish the package, you need to install the command-

line npm using the following steps (if you are not using Ubuntu you can find directions for

installing npm on your platform at https://nodejs.org/en/download). For this chapter,

we use npm version 8.5.1, though any newer version should work fine.

sudo apt update

sudo apt install npm

�Creating the Project
Now you have all the required tools installed. You can start creating the project by

running the following:

wasm-pack new hello-wasm

You should see the following code in the terminal:

[INFO]: Installing cargo-generate...

 Generating a new rustwasm project with name 'hello-wasm'...

 Creating project called 'hello-wasm'...

 Done! New project created /home/user/hello-wasm

[INFO]: Generated new project at /hello-wasm

Internally, this command makes cargo-generate download the wasm-pack-

template from GitHub and create a project locally. Cargo-generate will ask you for the

project name; you can name it “hello-wasm.” After cargo-generate finishes, you’ll see a

hello-wasm folder in the current directory.

In the hello-wasm folder, you’ll find a fairly typical Cargo library project, with a

Cargo.toml and src/lib.rs. But if you look closely at the Cargo.toml file’s contents

listed below, you’ll see it has a few interesting features:11

[package]

name = "hello-wasm"

version = "0.1.0"

11 The wasm-pack-template is being updated from time to time. The versions of the dependencies
might be newer than the ones listed here.

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://nodejs.org/en/download

84

edition = "2018"

[lib]

crate-type = ["cdylib", "rlib"]

[features]

default = ["console_error_panic_hook"]

[dependencies]

wasm-bindgen = "0.2.63"

The 'console_error_panic_hook' crate provides better debugging

of panics by logging them with 'console.error'. This is great

for development, but requires all the 'std::fmt' and

'std::panicking' infrastructure, so isn't great for code size

when deploying.

console_error_panic_hook = {version = "0.1.6", optional = true}

'wee_alloc' is a tiny allocator for wasm that is only ~1K in

code size compared to the default allocator's ~10K. It is

slower than the default allocator, however.

#

Unfortunately, 'wee_alloc' requires nightly Rust when

targeting wasm for now.

wee_alloc = { version = "0.4.5", optional = true }

[dev-dependencies]

wasm-bindgen-test = "0.3.13"

[profile.release]

Tell 'rustc' to optimize for small code size.

opt-level = "s"

You should also make sure that you change the Rust edition in the Cargo.toml file to

2021. This will ensure you’re using the newest version of all the available crates.

The crate-type is cdylib (C Dynamic Library) and rlib (Rust Library). Cdylib

ensures that the output is a dynamic library that follows the C FFI convention. All the

Rust-specific information is stripped away. This will help the “Low Level Virtual Machine”

(LLVM) compiler that compiles your code to Wasm understand the exported interfaces.

Rlib is added for running unit tests; it’s not required for compiling to WebAssembly.

Chapter 4 High-Performance Web Frontend Using WebAssembly

85

Since browsers will download the .wasm binary through the internet, it’s crucial to

keep the binary size small so that the download is fast. You’ll notice that in [profile.

release], the opt-level options are set to s, which means optimize for small code

size. The template also chooses to use a custom memory allocator wee_alloc that is

optimized for code size.

The template also adds the wasm-bindgen crate, which is used to generate binding

between WebAssembly and JavaScript. You can see the wasm-bindgen crate being used

in the src/lib.rs file:

mod utils;

use wasm_bindgen::prelude::*;

// When the 'wee_alloc' feature is enabled, use 'wee_alloc'

// as the global allocator.

#[cfg(feature = "wee_alloc")]

#[global_allocator]

static ALLOC: wee_alloc::WeeAlloc = wee_alloc::WeeAlloc::INIT;

#[wasm_bindgen]

extern {

 fn alert(s: &str);

}

#[wasm_bindgen]

pub fn greet() {

 alert("Hello, hello-wasm!");

}

The first few lines of src/lib.rs set up the wee_alloc allocator, which we don’t need

to go into more detail about here.

The next two blocks are the key to this Hello World example. What this file is trying to

do is as follows:

	 1.	 Expose the JavaScript DOM API window.alert() to Rust/Wasm.

	 2.	 Expose a Wasm function named greet() to JavaScript.

	 3.	 When JavaScript calls the greet() Wasm function, call the alert()

function from Wasm to display a pop-up message in the browser.

Chapter 4 High-Performance Web Frontend Using WebAssembly

86

The following block in Listing 4-3 exposes the window.alert() function to Wasm:

#[wasm_bindgen]

extern {

 fn alert(s: &str);

}

The extern block tells Rust this function exists somewhere and can be called via

a foreign function interface (FFI). Rust can then call this foreign JavaScript function

defined elsewhere.

Notice that the alert function takes a &str. This matches the JavaScript alert,

which takes a JS String. However, in Wasm’s specification, you are only allowed to pass

integers and floating-point numbers between JavaScript and Wasm. So, how can you

pass a &str as the parameter? This is the magic of wasm_bindgen. The #[wasm_bindgen]

attribute tells wasm_bindgen to create a binding. The Wasm_bindgen crate generates

Wasm code that encodes the &str into an integer array, passes it to JavaScript, then

generates JavaScript code that converts the integer array back into a JavaScript string.

This is because in Rust String is UTF-8 encoded, meaning that each character is

between 1and 4 bytes and the common Latin alphabet/ASCII keyset takes 1 byte per

character. On the other hand, JavaScript holds strings in the UTF-16 format, where each

character is either 2 or 4 bytes (Figure 4-1). An array of integers is used as a simple set

of bytes that can be passed between the two languages. This is just one example of the

complexities of converting data representations between two programming languages,

and a good example of why it’s useful to have a good library to handle these conversions.

Wasm_bindgen also works the other way around: you can expose a Rust function

using pub fn greet() and annotate it with the #[wasm_bindgen] attribute. Wasm_

bindgen will compile this function to Wasm and expose it to JavaScript.

Note Y ou might be wondering what’s the purpose of src/utils.rs and the
console_error_panic_hook feature defined in Cargo.toml. When Rust
code panics, you’ll only see a generic Wasm error message in the browser’s
console. The console_error_panic_hook feature prints a more informative
error message about the panic to the browser’s console, which helps you with
debugging. The console_error_panic_hook needs to be explicitly initialized
once, and so the src/utils.rs provides a small function to do that.

Chapter 4 High-Performance Web Frontend Using WebAssembly

87

If you now run wasm-pack build, wasm-pack will ensure that you have the correct

toolchain (for example, download the correct compilation target with rustup) and

compile your code to Wasm. You’ll see the output in the pkg folder. Wasm-pack generates

a few files:

•	 hello_wasm_bg.wasm: The compiled Wasm binary, containing the

Rust function you exposed.

•	 hello_wasm.js: Some JavaScript binding wrapper around the Wasm

functions that makes passing values easier.

•	 hello_wasm_bg.d.ts: TypeScript type definitions. Useful if you want

to develop the frontend in TypeScript.

•	 hello_wasm_bg.js: Generated JavaScript bindings; we won’t be

directly working with this file.

•	 hello_wasm.d.ts: TypeScript definitions.

•	 package.json: The npm project metadata file. This will be useful

when you publish the package to npm.

•	 README.md: A short introductory note to the package user. It will be

shown on the npm website if you publish this package.

Figure 4-1.  Conversion between Rust UTF-8 and JavaScript UTF-16 strings

Chapter 4 High-Performance Web Frontend Using WebAssembly

88

Note T ypeScript is a programming language that builds on JavaScript by
adding static type definitions. As a Rust developer, you already know the power
of static types. Since the Rust code you write for Wasm is typed, it makes sense
to use it with TypeScript instead of JavaScript to enjoy the power of end-to-end
static typing.

Wasm-pack doesn’t force you to use TypeScript, so it generates a .js file
containing the implementation, and a .d.ts definition file that contains TypeScript
type definitions. If the frontend uses JavaScript, it can use the .js file only and
ignore the .d.ts file. But if the frontend uses TypeScript it can reference the
.d.ts file to enforce the types.

Because TypeScript is a topic that deserves its own book, we’ll stick with
JavaScript here.

�Creating the Frontend
Now you have the Wasm package ready, but how do you make it work on a web page?

Since Wasm does not support the ECMAScript 6 (ES6, the formal name for the Javascript

standard) import statement yet, you’ll have to perform a fetch to download the .wasm

file, then call the WebAssembly.instantiateStreaming() web API to instantiate it. This

is quite cumbersome and doesn’t feel natural to the npm-style workflow. Instead, you

can use Webpack to simplify the way you import the Wasm package into a JavaScript

application.

Webpack is a versatile tool for bundling your JavaScript files. It can analyze the

dependency of your various JavaScript files and packages installed from npm and package

them into a single .js file. This reduces the overhead of downloading multiple JavaScript

files, and reduces the risk of missing dependencies in runtime. The most important feature

you want from Webpack is using the ES6 import statement to import a Wasm package. This

allows you to avoid all the boilerplate code of fetching the .wasm file and instantiating it.

Chapter 4 High-Performance Web Frontend Using WebAssembly

89

Webpack requires some configuration to work with Wasm. To save you this trouble, you are

going to use another template, create-wasm-app.12 This template creates a frontend web page

project with Webpack configuration for Wasm. To initiate a project based on this template,

simply run the following command in the command line inside the hello-wasm folder:

npm init wasm-app client

This will ask you to install create-wasm-app; go ahead and approve the installation.

The command will then download the create-wasm-app template13 and create the

project in a folder called client.

Tip  When you run cargo generate, Cargo will initialize a git project in the
created project directory. When you run npm init wasm-app client, npm will
also initialize a separate git repository inside the client folder. You end up with
two git repositories, one inside the other. If you want to version control the whole
project in one git repository, you can delete the inner client/.git folder.

Since this template creates a frontend project, there should be an HTML file as the

entry point. You can find an index.html file in the client folder, shown below:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Hello wasm-pack!</title>

 </head>

 <body>

 <noscript>

 This page contains webassembly and javascript content,

 please enable javascript in your browser.

 </noscript>

12 https://github.com/rustwasm/create-wasm-app
13 An npm template, officially called an initializer, is an npm package with a prefix create- in the
name. The command npm init foo is a shorthand for npm init create-foo. npm will look for
the npm package named create-foo.

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://github.com/rustwasm/create-wasm-app

90

 <script src="./bootstrap.js"></script>

 </body>

</html>

The index.html file is a very minimal HTML page. It includes the bootstrap.js file

with a <script> tag. This needs to be imported as below:

// A dependency graph that contains any wasm must

// all be imported asynchronously. This 'bootstrap.js'

// file does the single async import, so that no one

// else needs to worry about it again.

import("./index.js")

 .catch(e => console.error("Error importing 'index.js':", e));

This bootstrap.js file imports the index.js file asynchronously. This is a limitation

of Webpack v4; the file can not be imported synchronously. The index.js file below is

what actually uses the Wasm package.

import * as wasm from "hello-wasm-pack";

wasm.greet();

In index.js, the template imports a demo Wasm package on npm called

hello-wasm-pack. But you want to use the Wasm project you just built in the parent

directly. How do you change that? You’ll need to open the package.json file and add a

dependencies section:

{

 "name": "create-wasm-app",

 // ...

 "dependencies": {

 "hello-wasm": "file:../pkg"

 },

 "devDependencies": {

 // Removed the hello-wasm-pack package

 "webpack": "^4.29.3",

 "webpack-cli": "^3.1.0",

 "webpack-dev-server": "^3.1.5",

Chapter 4 High-Performance Web Frontend Using WebAssembly

91

 "copy-webpack-plugin": "^5.0.0"

 }

}

In dependencies, you defined a new package called hello-wasm, and the file:../

pkg means the package is located in the pkg folder, one directory up from the current

file’s location (this means the pkg folder in the hello-wasm directory). Don’t forget to

remove the unused hello-wasm-pack demo package from devDependencies as well.

Then you can go back to index.js and change the first line to:

import * as wasm from "hello-wasm";

This will load the hello-wasm package. The next line calls the greet function you

exported from Rust:

wasm.greet();

As mentioned before, the import statement won’t work without Webpack. This

template already has all the Webpack configuration you need, including the following:

•	 webpack.config.js: Webpack-specific configurations.

•	 package.json

–– devDependencies: This section specifies all the dependencies, like webpack,

webpack-cli, webpack-dev-server, and copy-webpack-plugin.

–– scripts: This section provides two commands:

* build: Use Webpack to bundle the source code into the ./dist14 folder.

* start: Start a development server that will bundle the code and serve it

right away. It also monitors source code changes and re-bundles if needed.

You need to install Webpack and its dependencies by going into the client folder

and running the following command sequence:

npm install

npm run build

npm run start

14 This is the default location, so you won’t find that mentioned in the code or configuration.

Chapter 4 High-Performance Web Frontend Using WebAssembly

92

Figure 4-2.  The pop-up alert

15 https://www.cve.org/About/Overview

Running npm install will install the packages. Then you should run npm run build

to build the package. Once the dependencies are installed and the package is built, you

can run npm run start, which will call webpack-dev-server. This development server

runs Webpack to bundle your code whenever your code changes, and serves it at the

address http://localhost:8080. When you open that URL in a web browser, you should

see an alert pop up with the message “Hello, hello-wasm!” (Figure 4-2).

The development server, as the name suggests, is for development only. If you want

to put this website into production, you’ll have to

•	 run npm run build, and

•	 deploy to a production-ready web server the files created in the

‘./dist’ folder.

As a final note, it’s worth mentioning the command npm audit and its specialization

npm audit fix. Too often security is put off with the excuse that it’s only a small toy

project, only to have that toy project result in a Common Vulnerabilities and Exposures

report (CVE)15 and a flurry of exploits and patching. The npm audit command checks

your npm dependencies and ensures that none of the versions in your project are using

known vulnerabilities, and the npm audit fix command will update them. This is

one small step that helps prevent deploying a vulnerable web app that could lead to a

data breach.

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://www.cve.org/About/Overview

93

4.4 � Resizing an Image with WebAssembly
The Hello World project you just implemented might seem a bit trivial. Why should

JavaScript call Wasm, then let Wasm call the JavaScript web API alert, instead of

just letting JavaScript call alert directly? Well, now that you’ve got a simple example

running, you can dive deeper with a project that showcases the power of Wasm. Wasm

is best suited for replacing performance bottlenecks in JavaScript applications. Because

Wasm is designed to run at near-native speed, it makes sense to offload performance-

critical parts of a JavaScript application to Wasm, while keeping the rest in JavaScript

for flexibility and ease of development. And while we’ll focus on the performance use

case here, the integration of WebAssembly in the Rust ecosystem means that a huge

number of general Rust utility crates can be compiled into the web browser with it. The

ability to use relatively arbitrary Rust code (anything that generally doesn’t use CPU- or

OS-specific features) in the web browser opens up a whole world that was previously

limited to JavaScript libraries. After you’ve worked through this example, we encourage

you to try your favorite Rust library and see if you can get it working in a browser using

WebAssembly.

A common performance-critical job is image processing, especially in frontend

applications. Image-processing algorithms are usually computationally intensive, and

performing those computations in Wasm instead of JavaScript can frequently result in a

good performance improvement.

Following up on the CLI and GUI programs for working with cat images, you’re going

to build a very basic image-processing tool using JavaScript and Wasm. Let’s start with

one of the simplest types of image manipulation functionality: resizing.

The most common way to represent an image on a computer is to store the color

values of each pixel. As you might have learned in basic physics class, different colors

can be created by adding red, green, and blue lights together at different intensities. If

you represent each color component’s intensity with an 8-bit integer, you can represent

28 × 28 × 28 = 256 × 256 × 256 = 1,677,216 different colors.

The simplest way to store an image is using triplets of 8-bit numbers to represent

each pixel (so a total of 24 bits or 3 bytes per pixel). With this naive format a single

HD resolution image (1920x1080 pixels) would take up almost 6 megabytes. To save

storage space, images are usually stored in some form of more advanced compressed

format. There are hundreds of file formats for storing image data, with some of the most

common being PNG, JPEG, and GIF. Since this is not a book on digital image processing,

Chapter 4 High-Performance Web Frontend Using WebAssembly

94

you are going to rely on an existing Rust crate called image to handle all the nitty-gritty of

image formats. The image crate not only helps you read and write various image formats,

it also provides several image-processing algorithms, like resize, rotate, invert, etc. This

also demonstrates one of the benefits of compiling Rust to Wasm: you can build on top

of Rust’s vibrant crates ecosystem for reliable and high-performance libraries.

First, you need to create a Wasm project using the same command as before:

wasm-pack new wasm-image-processing

This time, you can name the project wasm-image-processing. Then you can add the

image crate to the [dependencies] section in the Cargo.toml by running the following

command in your new wasm-image-processing directory:

cargo add image

[package]

name = "wasm-image-processing"

//...

edition = "2021"

//...

[dependencies]

wasm-bindgen = "0.2.63"

image = "0.24.5"

// ... Other dependencies ...

You’ll want to make sure that the versions for the dependencies in Cargo.toml match

the versions specified to ensure the code doesn’t have any issues with newer versions.

You also should make sure that edition = "2021" is specified in the Cargo.toml file.

Let’s first think about what the API exposing the JavaScript should look like. The first

feature you want to expose to JavaScript is a function that can resize an image. To make

this example easier, you can make the function shrink the image by half, so you don’t

have to deal with passing different resize ratios.

Before we dive deep into the Rust side of things, you’ll need to figure out what you

need to scaffold out on the JavaScript side. Since the main thing you’ll use Rust for is

resizing an image, you should figure out the type for the original_image and the image

Chapter 4 High-Performance Web Frontend Using WebAssembly

95

it returns. You can take a hint from the resize function you’ll be using from the image

crate. The function is located in image::imageops, and its function signature is shown in

Listing 4-4.16

pub fn resize<I: GenericImageView>(

 image: &I,

 nwidth: u32,

 nheight: u32,

 filter: FilterType

) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>

where

 I::Pixel: 'static,

 <I::Pixel as Pixel>::Subpixel: 'static,

The image parameter takes an image that implements the GenericImageView trait.

So you know you need some kind of image data that can be transformed into a type

that implements GenericImageView. The return type is an ImageBuffer, which can be

transformed into something that JavaScript can interpret as an image. It also takes the

new width (nwidth) and new height (nheight) as u32’s. The final parameter filter takes

an enum FilterType. This allows you to select which algorithm to use to scale down the

image. You can choose the Nearest Neighbor algorithm17 for its simplicity and speed.

Now you know that you need a type that can be transformed into another type

that implements the GenericImageView trait. You are ready to move to the JavaScript

frontend and see if there’s an appropriate type there that can be sent to the Wasm

backend. You can create a frontend project inside the current wasm-image-processing

folder as before:

npm init wasm-app client

Inside the client/index.html file, you can copy and paste the following HTML code

(Listing 4-4):

<!DOCTYPE html>

<html>

 <head>

16 https://docs.rs/image/0.23.3/image/imageops/fn.resize.html
17 https://en.wikipedia.org/wiki/Image_scaling#Nearest-neighbor_interpolation

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://docs.rs/image/0.23.3/image/imageops/fn.resize.html
https://en.wikipedia.org/wiki/Image_scaling#Nearest-neighbor_interpolation

96

 <meta charset="utf-8">

 <title>Cat image processor</title>

 </head>

 <body>

 <noscript>

 This page contains webassembly and javascript content,

 please enable javascript in your browser.

 </noscript>

 <input type="file"

 name="image-upload"

 id="image-upload"

 value=""

 >

 <button id="shrink">Shrink</button>

 <canvas id="preview"></canvas>

 <script src="./bootstrap.js"></script>

 </body>

</html>

The page consists of the following elements:

•	 <input type="file">: This is the file selector that allows you to

select an image from your computer.

•	 <button>Shrink</button>: When this button is clicked, you should

call the Wasm function to shrink the image.

•	 <canvas>: This canvas is used the display the image.

The <canvas> is an HTML element that can be used to draw images with JavaScript.

You can render an image onto it using JavaScript APIs. It also provides some APIs to read

the rendered image data, which will be handy for converting an image into something

Rust/Wasm can understand.

Chapter 4 High-Performance Web Frontend Using WebAssembly

97

Let’s break this process into three steps:

	 1.	 Use the <input type="file"> element to load a local image onto

the <canvas>.

	 2.	 Extract the image data from the <canvas> and pass it to Wasm for

resizing.

	 3.	 Receive the resized image data from Wasm and display it onto the

<canvas>.

�Loading an Image File onto the <canvas>
You can load the image file onto the <canvas> just with JavaScript. Open the index.js18

and add the code in Listing 4-4 (and while you’re at it, remove the wasm.greet() line

added by the template).

function setup(event) {

 const fileInput = document.getElementById('image-upload')

 fileInput.addEventListener('change', function(event) {

 const file = event.target.files[0]

 const imageUrl = window.URL.createObjectURL(file)

 const image = new Image()

 image.src = imageUrl

 image.addEventListener('load', (loadEvent) => {

 const canvas = document.getElementById('preview')

 canvas.width = image.naturalWidth

 canvas.height = image.naturalHeight

 canvas.getContext('2d').drawImage(

 image,

 0,

 0,

 canvas.width,

 canvas.height

)

18 This file is loaded in index.html through bootstrap.js, thanks to the template.

Chapter 4 High-Performance Web Frontend Using WebAssembly

98

 })

 })

}

if (document.readState !== 'loading') {

 setup()

} else {

 window.addEventListener('DOMContentLoaded', setup);

}

This code defines a setup() function. The function is called immediately if the page

is loaded (document.readyState !== 'loading'); otherwise, it will be called when the

DOMContentLoaded event fires.

In the setup() function, you monitor the change event on the <input type="

file">. Whenever the user selects a new file with the <input>, the change will fire. The

<input type="file"> has an attribute .files, which returns a list of files you selected

as JavaScript File objects. You can reach this FileList by referencing the event.target

object (i.e., the <input type="file">).

To draw the image file onto the <canvas>, you need to convert it to an

HTMLImageElement (which is a JavaScript representation of an element). When

writing HTML, you set the src attribute on the element to specify the URL of the

image. But the file you just loaded is from a local file system; how can you get a URL for

it? The window.URL.createObjectURL()19 method is designed for exactly this purpose.

It takes a File object as input and returns a temporary URL for the object. The URL’s

lifetime is tied to the document in which it was created. With this the following code turns

the loaded image file into an HTMLImageElement:

const file = event.target.files[0]

const imageUrl = window.URL.createObjectURL(file)

const image = new Image()

image.src = imageUrl

After you set the src attribute and the file is loaded, a load event will fire. In

Listing 4-4, the code listens for the load event and draws the image onto the canvas.

Because you didn’t specify the width and height of the <canvas> element in HTML,

19 https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL

99

it has a default pixel size of 300 x 150. The image might have a different size, so you

can set the canvas’s width and height to the naturalWidth and naturalHeight of the

HTMLImageElement. These two values represent the intrinsic size of the image.

Finally, you can draw the image onto the <canvas>. But you can’t draw directly to the

HTMLCanvasElement (i.e., the return value of document.getElementById ('preview')).

You’ll first need to get a 2D drawing context by calling canvas.getContext('2d'). Only

after that can you call the .drawImage() function on that context. The drawImage()

function can take the following arguments:

•	 image: the HTMLImageElement you created from the file.

•	 dx: the x-axis coordinate of the top-left corner of the image’s position.

•	 dy: the y-axis coordinate of the top-left corner of the image’s position.

Both dx and dy are set to 0 so the image’s top-left corner matches the canvas’s top-

left corner.

To test this code, run wasm-pack build in the wasm-image-processing folder, which

generates the Wasm module for the client to consume. This should build with some

warnings for now. Then run npm install followed by npm run start inside the wasm-

image-processing/client directory. The pre-configured webpack-dev-server will start

running. You can open a browser and visit http://localhost:8080 to see the page in

action (Figure 4-3). You should be able to upload an image and have it display in the

browser, but the shrink button will currently do nothing.

Figure 4-3.  Loading a local image onto the <canvas>

Chapter 4 High-Performance Web Frontend Using WebAssembly

100

�Passing the Image to Wasm
You now have a basic JavaScript application that can load an image onto a <canvas>,

but how do we get this data into our Wasm code? As mentioned before, images can be

represented as a collection of pixels; each pixel’s color can be represented by integers.

Both JavaScript and Rust are very adept at working with arrays of integers, so we’ll use

this format to pass data between the JavaScript and Rust code.

You learned before that a pixel can be represented with three pieces of color data:

Red, Green, and Blue values, each as an 8-bit u8. In this case we are going to add a little

bit of additional information and use the following modified format:

•	 R: the intensity of the red channel

•	 G: the intensity of the green channel

•	 B: the intensity of the blue channel

•	 A: the Alpha channel, meaning the transparency of the pixel.

Alpha of 0% means totally transparent, and Alpha of 100% means

totally opaque.

If a u8 represents each value, then it can range between 0 and 255. On the Rust side,

this can be represented by a Vec<u8>. On the JavaScript side, it can be represented by a

Uint8ClampedArray. The term “clamped” in the name means the value is “clamped” to

the range from 0 to 255. If you set a value larger than 255 it will become 255, and if you

set a negative number it will become 0.

On the Rust side, you can now complete the function definition, updating the lib.rs

file as below:

use image::{RgbaImage};

use image::imageops;

use wasm_bindgen::prelude::*;

// When the 'wee_alloc' feature is enabled, use 'wee_alloc'

// as the global allocator.

#[cfg(feature = "wee_alloc")]

#[global_allocator]

static ALLOC: wee_alloc::WeeAlloc = wee_alloc::WeeAlloc::INIT;

#[wasm_bindgen]

Chapter 4 High-Performance Web Frontend Using WebAssembly

101

pub fn shrink_by_half(

 original_image: Vec<u8>,

 width: u32,

 height: u32

) -> Vec<u8> {

 let image: RgbaImage =

 image::ImageBuffer::from_vec(

 width, height, original_image

).unwrap();

 let output_image = imageops::resize(

 &image,

 width / 2,

 height / 2,

 imageops::FilterType::Nearest

);

 output_image.into_vec()

}

The original_image parameter is a 1D Vec<u8>. To reconstruct an 2D image

from a 1D array, you need to also pass the width and height.20 You can use the

image::ImageBuffer::from_vec() function to turn the Vec<u8> back into an RgbaImage.

Because the RgbaImage type implements the GenericImageView trait, you can pass this

RgbaImage to imageops::resize to resize the image. Once you’ve received the resized

image, it can then be turned back into a Vec<u8> with .into_vec() and returned to

JavaScript.

On the frontend page, you can add an event listener on the “Shrink” button, so it

triggers a call to shrink_by_half() Wasm function. You can modify the index.js file to

follow the code below, adding the import to the top of the file and the additional code to

the setup function:

20 In theory you only need to pass either the width or the height, because the other one can be
calculated from the size of the array and the specified dimension. But passing in both in this
example helps makes your code simpler and easier to read.

Chapter 4 High-Performance Web Frontend Using WebAssembly

102

import * as wasmImage from "wasm-image-processing"

function setup(event) {

 // ... Previous code in setup function...

 //

 const shrinkButton = document.getElementById('shrink')

 shrinkButton.addEventListener('click', function(event) {

 const canvas = document.getElementById('preview')

 const canvasContext = canvas.getContext('2d')

 const imageBuffer = canvasContext.getImageData(

 0, 0, canvas.width, canvas.height

).data

 const outputBuffer = wasmImage.shrink_by_half(

 imageBuffer, canvas.width, canvas.height

)

 const u8OutputBuffer = new ImageData(

 new Uint8ClampedArray(outputBuffer), canvas.width / 2

)

canvasContext.clearRect(

0, 0, canvas.width, canvas.height

);

 canvas.width = canvas.width / 2

 canvas.height = canvas.height / 2

 canvasContext.putImageData(u8OutputBuffer, 0, 0)

 })

}

// ...

Notice that you imported the wasm-image-processing, which is the crate in the

top-level folder. When the button is clicked, you need to first get the 2D context from

the canvas. The context exposes a function getImageData, which can retrieve part of the

canvas as an ImageData object. The first two parameters specify the X and Y coordinates

of the top-right corner of the area you want to retrieve. The next two parameters specify

the width and height of that area. Here you get the whole canvas. The ImageData has

Chapter 4 High-Performance Web Frontend Using WebAssembly

103

a read-only data attribute that contains the Uint8ClampedArray representation of the

RGBA values.

You can pass this Uint8ClampedArray to the wasmImage.shrink_by_half() Wasm

function imported at the beginning of the file. The return value will be a Vec<u8>

representation of the shrunken image. You can convert it back to Uint8ClampedArray

and wrap it in an ImageData.

To show this shrunken image on the <canvas>, you can follow the three steps shown

in the code:

	 1.	 Clear the canvas with clearRect().

	 2.	 Set the canvas size to the new shrunken size.

	 3.	 Draw the new ImageData onto the <canvas> using

putImageData().

As a final modification, you need to ensure that the package.json file in the client

directory has the Rust-generated Wasm as a dependency. While at it, you can also

remove the hello-wasm-pack dev dependency:

{

 "name": "create-wasm-app",

 // ...

 "dependencies": {

 "wasm-image-processing": "file:../pkg"

 },

 "devDependencies": {

 // remove hello-wasm-pack

 "webpack": "^4.29.3",

 "webpack-cli": "^3.1.0",

 "webpack-dev-server": "^3.1.5",

 "copy-webpack-plugin": "^5.0.0"

 }

}

Chapter 4 High-Performance Web Frontend Using WebAssembly

104

To test this application, follow these steps:

	 1.	 In the wasm-image-processing folder, run wasm-pack build. This

compiles the Rust code into Wasm, located in the pkg folder.

	 2.	 Change directories to the client folder, run npm install && npm

run start.

	 3.	 Open a browser, go to http://localhost:8080 (Figure 4-3).

	 4.	 Click the “Choose File” button. A file selector window will pop up.

Select an image file (PNG) from your computer (Figure 4-4).

	 5.	 Click the “Shrink” button. See Figure 4-5.

Figure 4-4.  File selected

Chapter 4 High-Performance Web Frontend Using WebAssembly

105

Figure 4-5.  After clicking the Shrink button

Note T he method shown in this section is not the most efficient way of
moving data between JavaScript and Wasm. As a general rule you want to avoid
unnecessary copying between JavaScript memory and the WebAssembly linear
memory. Quoting from the official Rust and WebAssembly book21:

... a good JavaScript-WebAssembly interface design is often one where large, long-lived
data structures are implemented as Rust types that live in the WebAssembly linear memory
and are exposed to JavaScript as opaque handles. JavaScript calls exported WebAssembly
functions that take these opaque handles, transform their data, perform heavy computations,
query the data, and ultimately return a small, copy-able result.

Therefore you might want to try loading the image directly in Rust/Wasm, like this
great open-source project demonstrates: https://www.imagproc.com/main.

21 https://rustwasm.github.io/book/game-of-life/implementing.html

Chapter 4 High-Performance Web Frontend Using WebAssembly

http://www.imagproc.com/main
https://rustwasm.github.io/book/game-of-life/implementing.html

106

Another potential improvement is that you can offload the computation to a Web
Worker. Currently, our JavaScript code calls the image-processing function on the
main event loop. While the image-processing function is running, it might block
further user interaction. Web Workers are a web technology that allows you to run
scripts in a background thread so that they won’t block the user interface event loop.
You can also find an example of a Web Worker in the www.imageproc.com code.

4.5 � Writing the Whole Frontend in Rust
Up until now, you’ve been building a web page in JavaScript and calling Wasm functions

when needed. But is it possible to write everything in Rust? The answer is yes, but it relies

on a programming pattern called the Virtual Document Object Model (Virtual DOM).

The Virtual DOM is a concept popularized by the popular JavaScript framework

React.22 When you build a web page in plain JavaScript and need to change something

on the screen, you need to call many DOM APIs imperatively. That means you need to

say, “Get me this <p> element and change its text to ‘foobar,’ then get that button and

turn it red.” But as a page grows more and more complicated this approach can lead to

chaos and human errors (a.k.a. bugs). Instead, React uses a declarative approach. You

instead say, “”I want this <p> to contain ‘foobar,’ and I want the button to be red,” and

React needs to figure out how to get the page from the current state to your desired state.

Whenever the desired state changes, React will “render” the page to a Virtual DOM,

which is an in-memory representation of the real DOM. The Virtual DOM can figure

out which parts of the page changed compared to the previous state, and calls the

DOM API to update (or reconcile in React terminology) only the required parts of the

real DOM. This allows the developer to focus on the overall UI declaration instead of

worrying about which parts of the DOM to update.

If you build a Virtual DOM in Rust and compile it to Wasm, you can write the rest

of the page in Rust, which interacts with the Virtual DOM. Then the Virtual DOM uses

crates like web-sys to interact with the real DOM API to reconcile the difference. There

have been many different Rust frameworks that support this architecture. You’ll use one

22 https://reactjs.org/docs/faq-internals.html#what-is-the-virtual-dom

Chapter 4 High-Performance Web Frontend Using WebAssembly

http://www.imageproc.com/
https://reactjs.org/docs/faq-internals.html#what-is-the-virtual-dom

107

of the most popular frameworks called Yew.23 Yew is heavily influenced by the design of

React and Elm24; feel free to examine these other frameworks to better understand the

general idea of the Virtual DOMs and the reactive architecture paradigm.

4.6 � A Hello World Example
First, you’ll set up a minimal Hello World project with Yew. Unlike your previous project

where we used wasm-pack, you can get everything you need using only Cargo and some

add-ons (meaning we won’t have any npm calls here). Run the following commands to

download the helper programs and create the new Rust crate:

$ cargo new hello-yew-world

$ cd hello-yew-world

$ cargo add yew --features csr

Now you should move into the new hello-yew-world directory created and update

the Cargo.toml file to follow Listing 4-6. Just as in other projects, make sure that the

dependency versions in your file match those listed here.

[package]

name = "yew-app"

version = "0.1.0"

edition = "2021"

[dependencies]

yew = { version = "0.20.0", features = ["csr"] }

With the dependency imported you can now update your main.rs file to follow the

code below. You start by importing the yew::prelude::* to bring in the commonly used

features.

use yew::prelude::*;

#[function_component(App)]

fn app() -> Html {

23 https://yew.rs/docs/
24 Another popular web framework/language for building frontend applications

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://yew.rs/docs/

108

 html! { <Button value=0/> }

}

#[derive(Properties, PartialEq)]

struct ButtonProp {

 value: i64

}

#[function_component(Button)]

fn increment_button(button: &ButtonProp) -> Html {

 let counter = use_state(|| button.value);

 let on_click = {

 let counter = counter.clone();

 move |_| {

 let new_value = *counter + 1;

 counter.set(new_value);

 }

 };

 html! {

 <div>

 <button onclick={on_click}>

 { "+1" }

 </button>

 <p>{*counter}</p>

 </div>

 }

}

fn main() {

 yew::Renderer::<App>::new().render();

}

Finally, to actually run the project, you need to add an index.html file in the hello-

yew-world directory. This file should match that listed below. This index file will serve as

the extremely basic bare-bones HTML skeleton that the rest of your Rust code will add to:

<!DOCTYPE html>

<html lang="en">

Chapter 4 High-Performance Web Frontend Using WebAssembly

109

 <head> </head>

 <body></body>

</html>

Now you’ve got all the basic files set, and you are ready to build the project. For this

you need to install trunk using cargo:

$ cargo install trunk

The trunk package is a Wasm web application bundler. Now you can simultaneously

build and run your app using the command

$ trunk serve --open

which will build your project, start a web server, and open a web browser to connect

to this server at the local host address http://127.0.0.1:8080 (see Figure 4-6). The

trunk package will also automatically recompile and reload your web page as you make

changes to the Rust code, giving you a fast feedback loop to iterate on design changes.

Note you must connect via http and not https. Some web browsers (like Chrome) will

by default switch to https so it may seem like your code is not loading. In this case, just

type the address directly into the search bar while trunk is running in the background.

The core of this example is in src/main.rs, which defines two components, one

called App and one called Button.

Just like a standard Rust program, your Yew app starts by calling the main() function,

defined in src/main.rs. This function contains a single line,

yew::Renderer::<App>::new().render();

This line starts the Yew application by mounting the app::App component onto the

<body> of the HTML page.

Our App is defined by the following function:

#[function_component(App)]

fn app() -> Html {

 html! { <Button value=0/> }

}

Chapter 4 High-Performance Web Frontend Using WebAssembly

110

This is called a “functional component” in yew. It’s created by writing a function

that returns the Html type, and then annotating the function with a #[function_

component(Name)] attribute where Name is the name you assign to the component. The

body of the function defines the html to return for this component.

The html!{} macro allows you to write HTML syntax inside Rust, similar to JSX25 in

React. This app() function defines the HTML that will render a <Button value=0/>. Let’s

examine the button component now to see how it works.

First, the Button component has a value property that defines its start value. More

generally, properties (or props) are how parent components pass information down to

child components, including both initial static values and values that can change over

time. You represent a component’s properties in Yew as a struct.

#[derive(Properties, PartialEq)]

struct ButtonProp {

 value: i64

}

The ButtonProp struct contains fields for each property of the Button component.

Note the derived attributes. The Properties attribute is needed to let Yew know that this

struct represents properties of the component, and PartialEq is required by the Yew

framework for any properties.

Finally, we can get to the actual function that defines our component:

Figure 4-6.  Browser brought up by trunk serve – open

25 https://reactjs.org/docs/glossary.html#jsx

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://reactjs.org/docs/glossary.html#jsx

111

#[function_component(Button)]

fn increment_button(button: &ButtonProp) -> Html {

 let counter = use_state(|| button.value);

 let on_click = {

 let counter = counter.clone();

 move |_| {

 let new_value = *counter + 1;

 counter.set(new_value);

 }

 };

 html! {

 <div>

 <button onclick={on_click}>

 { "+1" }

 </button>

 <p>{*counter}</p>

 </div>

 }

}

The increment_button function takes a single argument of type &ButtonProp,

which provides the properties for our component. The first line in the function defines

a counter using the use_state function. The return value of use_state is what Yew

calls a “hook.” The hook stores state (with the initial state determined by evaluating the

closure provided to use_state). Why can’t you use a regular variable that holds a value?

First, since our entire component is defined in a function, any local variable would be

dropped as soon as the function completed. Creating a hook tells the Yew framework to

create a place to store the state information required for this component (in our case, a

simple counter). Second, whenever the value in the hook is updated, Yew is aware which

components display data based on that hook, and it can trigger a rerender of only those

components. This is the critical idea behind the reactive programming paradigm (most

well known from React web framework). The programmer defines components and the

data they depend on, and then lets the framework figure out which components need to

be updated/rerendered as different pieces of data change. Yew’s version of hooks closely

follows the idea behind the original React implementation.

Chapter 4 High-Performance Web Frontend Using WebAssembly

112

After the hook we define a callback on_click. To properly set up this callback, a new

scope is defined with curly brackets {...} and then the counter is cloned and assigned

to a new variable that shadows itself from the outer scope. Hooks are reference-counted

and work similar to Arc’s from Rust’s standard library. We initially set up a new scope

here and clone the counter hook in order to move ownership of this cloned hook into

the callback. If we didn’t have the inner scope and moved our counter into the callback

directly, we wouldn’t have been able to refer to it in the html! macro afterward. The

callback itself simply dereferences the counter (retrieving its value), adds one, and then

uses the set method on the counter to update its value. This set method ties into the

rest of the Yew framework and will automatically trigger a rerender of any component

that displays data from that hook.

Finally, let’s move on to the html! macro. Notice that the text inside the <p> is not

hardcoded, but refers to a variable *counter, wrapped inside a pair of curly brackets.

This tells Yew to substitute the text with the value inside the hook when the component

is rendered. The callback on_click is also attached to the button here. Now, whenever

the counter changes value (for example due to the on_click callback), Yew will update

the component in the virtual DOM, and the Virtual DOM will reconcile the change to the

DOM and show it on screen.

At this point you can call trunk serve --open on the command line, and a web

browser should open displaying your page. Every time you click the button the counter

will increment by one.

4.7 � A Cat Management Application
Now that you’ve gotten a basic Yew application under your belt, you can create something

a bit more complicated. In the game Pokémon, there is a device called a Pokédex, which is

an index/encyclopedia of all Pokémon. In the rest of this chapter, we are going to build a

(you guessed it) cat index called Catdex. The Catdex should have the following features:

•	 Showing a list of cats. This demonstrates how to render a list using a

template.

•	 Uploading new cats. This shows how we can take input and store

state in our application.

•	 Delete a specific cat. This shows how we can use props to pass

information to child components, and callbacks to pass it back up to

parents.

Chapter 4 High-Performance Web Frontend Using WebAssembly

113

Let’s take a quick detour regarding the terminology referencing “props” and

“callbacks.” The term “props” is short for “properties,” and is a term used in many UI

frameworks. We won’t go into extreme technical detail on this, so for our purposes you

can think of props as the input arguments to your UI components. They are set up to

pass parent component data down to child components, and critically to automatically

and efficiently be able to update the child components upon a change. Callbacks are a

more familiar concept. A parent component passes a function or closure down to a child.

When the child then needs to pass information back to the parent, it calls the callback

with the information to be passed up to the parent as arguments. These two concepts

together make up the core means of communication between different components that

don’t involve some shared global state.

In this section, we’re focusing on how the preceding set of operations can be done in

a client-side application, but you’ll see in the next chapter how a similar application can

be created using server-side methods.

First, let’s create a new project and bring in our Yew dependency with

$ cargo new catdex-yew

$ cd catdex-yew

$ cargo add yew --features csr

You should add an index.html file at the top level of the project exactly like you did

in the previous project; you can once again use the index used previously.

Next, let’s clean up src/main.rs to build up a skeleton Yew component for

displaying a list of cats:

use yew::prelude::*;

#[function_component(App)]

fn app() -> Html {

 let cat_list = use_state(|| Vec::<CatDetails>::new());

 let on_change = {

 let cat_list = cat_list.clone();

 // ...

 };

 html! {

 <div>

Chapter 4 High-Performance Web Frontend Using WebAssembly

114

 <h1>{"Catdex"}</h1>

 <input

 type="file"

 accept="image/*"

 onchange={on_change}

 />

 <section class="cats">

 { for cat_list.iter().map(cat) }

 </section>

 </div>

 }

}

#[derive(Clone)]

struct CatDetails {

 name: String,

 image: Vec<u8>,

}

fn cat(file: &CatDetails) -> Html {

 // ...

}

fn main() {

 yew::Renderer::<App>::new().render();

}

In the App component function you use a hook use_state to hold the current list

of CatDetails, which includes the cats’ names and their image data. You also have a

callback on_change (which we’ll fill in momentarily), which will trigger upon changes to

the file input. We then have an html! macro that provides the basic skeleton, including a

file input to upload files, and then a section that iterates over the list of cats. Note how we

can directly use a for iterator in the html! block to template out multiple HTML entries.

In this case, the cat function provides a simple way of converting CatDetails to HTML

and can be applied to each CatDetails to generate the HTML to display that specific cat.

CatDetails itself simply stores the name of a cat and its image.

Chapter 4 High-Performance Web Frontend Using WebAssembly

115

You can flesh out this skeleton by starting with the cat function below. For this to

work, you’ll need to pull in the base64 crate with cargo add base64. The Vec<u8> of

binary image data can then be base-64 encoded and displayed as an image.

use base64::{engine::general_purpose, Engine};

// ...

fn cat(cat: &CatDetails) -> Html {

 html! {

 <article class="cat">

 <h3>{ format!("{}", cat.name)}</h3>

 <img src={

 format!("data:image;base64,{}",

 general_purpose::STANDARD.encode(&cat.image))

 } />

 </article>

 }

}

The final and trickiest part of this initial setup is uploading the files and saving them

in the cat list. You can look at the rust code below to go over the final steps. Note quite a

few additional crates are needed for these finals steps, and these crates can be added to

Cargo with the following commands:

$ cargo add js-sys

$ cargo add gloo-file --features futures

$ cargo add wasm-bindgen-futures

$ cargo add web-sys

We’ve already seen web-sys before as a library to access low-level JavaScript

primitives from Rust. The js-sys crate is similar, while the gloo_file crate provides a

higher level of abstraction around the traditional JavaScript interfaces. All three of these

are needed in one form or another to work with the files being loaded into the browser.

Finally, because at the time of writing Yew does not support direct use of async in hooks,

we need to use a local async executor to run the read_as_bytes function that will

actually read the file’s contents into memory.

Chapter 4 High-Performance Web Frontend Using WebAssembly

116

use std::ops::Deref;

use gloo_file::File;

use wasm_bindgen_futures::spawn_local;

use web_sys::{FileList, HtmlInputElement};

// ...

fn app() -> Html {

 // ...

 let on_change = {

 let cat_list = cat_list.clone();

 move |e: Event| {

 let cat_list = cat_list.clone();

 spawn_local(async move {

 let input: HtmlInputElement = e.target_unchecked_into();

 let files = upload_file(input.files());

 let mut interior_cat_list = cat_list.deref().clone();

 for file in files {

 let new_details = CatDetails {

 name: file.name(),

 image: gloo_file::futures::read_as_bytes(&file)

 .await

 .unwrap(),

 };

 interior_cat_list.push(new_details)

 }

 cat_list.set(interior_cat_list);

 })

 }

 };

 // ..

}

// ...

Chapter 4 High-Performance Web Frontend Using WebAssembly

117

fn upload_file(files: Option<FileList>) -> Vec<File> {

 files

 .map(|files| {

 js_sys::try_iter(&files)

 .unwrap()

 .unwrap()

 .map(|v| web_sys::File::from(v.unwrap()))

 .map(File::from)

 .collect()

 })

 .unwrap_or_default()

}

// ...

Figure 4-7.  Uploading images

Chapter 4 High-Performance Web Frontend Using WebAssembly

118

The on_change callback needs a few levels of nested closures to get lifetimes to work

out properly. First, the cat_list is cloned so that the cloned copy can be passed into

the actual callback, which starts on the line with move |e: Event|. We need to again

clone the cat_list inside the closure because of its being passed into the async block

used in spawn_local. There, we convert the event into the HtmlInputElement that we

know it was emitted from, and pass its file list into the upload_file helper function.

This function extracts the File types from the list and converts them into a Vec<File>,

which is easier to work with in Rust. This vector in turn is iterated upon in order to pull

out the name and read in the bytes. To get that data into our hook, we first clone the

current state in the hook, push the new cat onto the back of the vector, and then set the

hook state to the newly enlarged vector with the additional cat. This process can be a

little performance intensive (copying all cat image data just to add a new cat is a lot of

extra work), and Yew has other hooks that are more complicated but can be optimized

for modifying larger data like images without copies. For now you can stick to the simple

use_state hook since the performance is still pretty good and it keeps this example a bit

simpler.

�CSS Styling
We’ve got a basic example, but it’s pretty bland, and the cat images can end up all

different sizes, with each image loading in a vertical list at its native size. We want our

Catdex to have nice clean cats arrayed in a regular grid. For this we can bring in some

CSS to spruce things up.

Yew itself doesn’t have an official CSS support built into its crate. However, there is

a large ecosystem of crates that allow CSS to be integrated into a Yew project. For this

project you’ll use the stylist crate with the yew and parser features enabled:

$ cargo add stylist --features yew

$ cargo add stylist --features parser

The changes needed to get added styling are relatively minor. We’ll only perform

them on our App component, but in general you can apply styling individually on any

component as desired.

// ...

use stylist::{yew::styled_component, Style};

Chapter 4 High-Performance Web Frontend Using WebAssembly

119

#[styled_component(App)]

fn app() -> Html {

 const CSS: &str = include_str!("index.css");

 let stylesheet = Style::new(CSS).unwrap();

 // ...

 html! {

 <div class= {stylesheet}>

 <h1>{format!("Catdex")}</h1>

 <label for="file-upload"/>

 <input

 id="file-upload"

 type="file"

 accept="image/*"

 onchange={on_change}

 />

 <section class="cats">

 { for cat_list.iter().map(cat) }

 </section>

 </div>

 }

}

Figure 4-8.  The Catdex with CSS added for styling

Chapter 4 High-Performance Web Frontend Using WebAssembly

120

In our Rust code we’ve replaced function_component with styled_component.

We then use the (include_str!) macro to load index.css from the src folder, and

then convert this string into a stylesheet. Finally, the top-level div is provided with this

stylesheet as a class attribute. These relatively simple steps allow any component to

have it’s own styling, and for parent components to apply their styling to children in the

normal cascading manner. You can see the result of these added sheets in Figure 4-8.

.cats {

 display: flex;

}

.cat {

 border: 1px solid grey;

 min-width: 200px;

 min-height: 350px;

 margin: 5px;

 padding: 5px;

 text-align: center;

}

.cat > img {

 width: 190px;

}

At this point you can once again run trunk serve --open and you should see the

page load. Try uploading a few cats and see how the styling boxes and sizes them.

�Deleting Files
There’s a glaring issue with the current page design: You can add cats to your page, but

you can’t delete any of the cats that you’ve added (say, because of a mistaken upload).

It’s time to fix that.

First, we need to create a callback in our top-level App component that will remove a

cat from the cat list when provided with the file name:

// ...

fn app() -> Html {

Chapter 4 High-Performance Web Frontend Using WebAssembly

121

 let delete_cat = {

 let cat_list = cat_list.clone();

 Callback::from(move |name: String| {

 let interior_cat_list = cat_list.deref().clone();

 let new_cat_list: Vec<_> = interior_cat_list

 .into_iter()

 .filter(|cat| cat.name != name).collect();

 cat_list.set(new_cat_list);

 })

 };

 html! {

 <div class= {stylesheet}>

 <h1>{"Catdex"}</h1>

 <input

 type="file"

 accept="image/*"

 onchange={on_change}

 />

 <section class="cats">

 { for cat_list.iter().map(

 |val| cat(val, delete_cat.clone())

) }

 </section>

 </div>

 }

}

// ...

Creating a Yew Callback requires passing it a closure that will run when the callback

is triggered. Like we did when creating a closure to add cats, here we make a clone of

the cat_list and pass it into the closure. The closure itself is relatively straightforward:

given the name of a cat to be removed, the closure will search the cat list and remove that

cat, collecting the remaining cats and using them to set the hook with a new cat list. This

callback can then be passed to the cat function to be added to each cat being displayed

Chapter 4 High-Performance Web Frontend Using WebAssembly

122

Next, you’ll need a button component that will trigger this callback when clicked.

Similar to the button in the Hello World example, the code below creates a Button

functional component that can be embedded in the larger app. Using the props on the

component, you can pass in the button text, the name to be emitted to the callback, and

the callback to be triggered. This general button component will trigger the callback on

a click, emitting whatever string has been set in name. The cat function is modified to

also accept a callback in addition to CatDetails, and the button is added to the article

for each cat. Note critically how data goes down to child components and up to parent

components: Setting values in properties will allow a parent component to set the values

of a child, while providing callbacks in properties gives a method for child components

to send information back to parents.

#[derive(Properties, PartialEq)]

struct ButtonProp {

 text: String,

 name: String,

 on_click: Callback<String>

}

#[function_component(Button)]

fn delete_button(button: &ButtonProp) -> Html {

 let on_click = {

 let name = button.name.clone();

 let callback = button.on_click.clone();

 move |_| {

 callback.emit(name.clone())

 }

 };

 html! {

 <div>

 <button onclick={on_click}>

 { {button.text.clone()} }

 </button>

 </div>

 }

}

Chapter 4 High-Performance Web Frontend Using WebAssembly

123

fn cat(cat: &CatDetails, callback: Callback<String>) -> Html {

 html! {

 <article class="cat">

 <h3>{ format!("{}", cat.name)}</h3>

 <Button text= {"Delete".to_string()}

 name={cat.name.clone()}

 on_click={callback}

 />

 <img src={format!(

 "data:image;base64,{}",

 general_purpose::STANDARD.encode(&cat.image)

)} />

 </article>

 }

}

The final result with the interactive Delete buttons can be seen in Figure 4-9. After

adding cats, clicking the Delete button will remove the cat from the page.

Figure 4-9.  The Catdex with delete functionality

Chapter 4 High-Performance Web Frontend Using WebAssembly

124

4.8 � Wasm Alternatives
WebAssembly is a versatile platform for many applications, so there are many different

tools and frameworks that focus on different topics.

The tools introduced in this chapter are mostly maintained by the Rust and

WebAssembly Working Group.26 That includes the web-sys and js-sys crates. But web-

sys provides a very low-level API, which might not be user friendly. Their APIs are also

a direct mapping to JavaScript APIs, so the syntax is not idiomatic Rust. It also uses a

different build system called cargo-web,27 which doesn’t rely on npm and web-pack like

wasm-bindgen. Stdweb has had wasm-bindgen compatibility since version 0.4.16. You

can start using stdweb in wasm-bindgen-based projects, and it can be built using wasm-

bindgen tooling. We ended up using trunk28 for packaging and deployment, as it’s the

default suggested tool for building and deploying Yew applications.

There has also been an effort from the Rust and WebAssembly Working Group to

build a high-level toolkit, called gloo,29 which we used here for file handling. While

development on gloo is a bit slower than that on some of the other low-level libraries, it’s

still an important and useful library and does see updates.

There are also many frontend frameworks similar to Yew. They are mostly inspired

by popular frontend frameworks and patterns in other languages, like Elm, React, and

Redux. Just to name a few (in alphabetical order):

•	 Darco30: Inspired by Elm and Redux.

•	 Percy31: Supports isomorphic web application, meaning the same

code runs both on the server side and client side.

•	 Seed32: Inspired by Elm, React, and Redux

•	 Smithy33

26 https://github.com/rustwasm/team
27 https://github.com/koute/cargo-web
28 https://trunkrs.dev/
29 https://github.com/rustwasm/gloo
30 https://github.com/utkarshkukreti/draco
31 https://github.com/chinedufn/percy
32 https://seed-rs.org/
33 https://github.com/rbalicki2/smithy

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://github.com/rustwasm/team
https://github.com/koute/cargo-web
https://trunkrs.dev/
https://github.com/rustwasm/gloo
https://github.com/utkarshkukreti/draco
https://github.com/chinedufn/percy
https://seed-rs.org/
https://github.com/rbalicki2/smithy

125

•	 rust-dominator34

•	 squark35

•	 willow36: Inspired by Elm

But WebAssembly is not limited to the browser only. In theory, the Wasm runtime

can be embedded (or run stand-alone) almost everywhere. Some interesting examples

include:

•	 Serve as backend web servers

•	 Power Istio37 plugins

•	 Run on Internet of Things devices

•	 Drive robots

There is a cross-industry alliance called the Bytecode Alliance38 that is driving the

development of WebAssembly foundation outside of the browser. Their projects include

the following:

•	 Wasmtime39: a Wasm runtime

•	 Cranelift40: A code generator that powers Wasmtime

•	 Lucet41: A Wasm compiler and runtime that allows you to execute

untrusted Wasm code in a sandbox

•	 WAMR42: WebAssembly Micro Runtime

Many of these projects are built with Rust or work with Rust. So, if you are interested

in the development of WebAssembly, you should keep a close eye on their development.

34 https://github.com/Pauan/rust-dominator
35 https://github.com/rail44/squark
36 https://github.com/sindreij/willow
37 Istio is a service mesh, which allows you to control, manage, and observe the network traffic
between a network of microservices.
38 https://bytecodealliance.org/
39 https://wasmtime.dev/
40 https://github.com/bytecodealliance/wasmtime/tree/master/cranelift
41 https://github.com/bytecodealliance/lucet/
42 https://github.com/bytecodealliance/wasm-micro-runtime

Chapter 4 High-Performance Web Frontend Using WebAssembly

https://github.com/Pauan/rust-dominator
https://github.com/rail44/squark
https://github.com/sindreij/willow
https://bytecodealliance.org/
https://wasmtime.dev/
https://github.com/bytecodealliance/wasmtime/tree/master/cranelift
https://github.com/bytecodealliance/lucet/
https://github.com/bytecodealliance/wasm-micro-runtime

126

4.9 � Conclusion
In this chapter you learned how to compile Rust to WebAssembly and leverage it on the

web. You started with a simple Hello World project that showed you how you can trigger

browser functionality from Rust. You then used Rust to compile a Wasm module that

took over some heavier computational lifting from a JavaScript image-resizing frontend.

From this you moved to writing the entire frontend in Rust using the yew crate, creating

an application that can load, display, and delete cat images from a web page. In the next

couple of chapters you’ll see new ways of working with Rust on the web focused more on

the backend.

Chapter 4 High-Performance Web Frontend Using WebAssembly

127

CHAPTER 5

REST APIs
You’ve just completed building a web page frontend in Rust. But the web is massive, in

content types, technologies used, and raw quantity. At the time of writing this book there

are over 1.8 billion websites on the World Wide Web. And if you look at job boards for

software developers, web developers take up a large proportion of the open positions.

Since you’ve seen how Rust can replace JavaScript frameworks in the frontend, the next

obvious question is what can it do on the backend (i.e., server side)? There are already

many established programming languages for building backend applications: Java, PHP,

Python, Ruby, Node.js, and Go, to name a few of the popular ones. But Rust’s popularity

for backend development has been growing recently, thanks largely to a few major

features that are hard to find together in other available languages, as follows:

•	 Security

•	 Concurrency

•	 Low-level control

Web security has only increased in importance in recent years after multiple high-

profile hacks were featured on the news. Having good developer coding practices can have

a large effect on the types of bugs that may arise, as can the language choices made for

backend development. Rust prevents a large class of vulnerabilities thanks to its robust type

system and borrow checker, like null-pointer errors or use-after-free memory corruption.

By having Rust check your code at compile time, you can prevent many runtime

vulnerabilities that might otherwise go undetected and end up exploited by malicious

parties. Safe Rust guarantees memory safety, meaning if you don’t use the unsafe keyword

in your code, you shouldn’t have any bugs related to accessing or misinterpreting low-level

computer memory (which are possible and common in languages like C or C++).

But security isn’t the only thing that makes Rust a good choice. Popular websites

need to handle a large number of concurrent users, so concurrency and efficiency are

crucial for web server software. Rust’s focus on “fearless concurrency” makes it easier

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_5

https://doi.org/10.1007/978-1-4842-9331-7_5

128

to handle a large number of concurrent requests. The powerful async/await syntax

also makes asynchronous Input/Ouput (async I/O) more accessible to the average Rust

programmer. On top of thread safety and async I/O, Rust’s ability to control low-level

CPU and memory opens up the possibility of squeezing more performance out of the

server hardware.

Rust also has a vibrant ecosystem that provides both high-level frameworks and low-

level control over networking, database access, and type-safe templating. It’s hard to find

any other programming language that supports security, performance, and control at the

level of Rust, especially with its great existing ecosystem. We are going to leverage this as

we explore how to build a REST API and web server in Rust.

In the previous chapter, you learned how to build an interactive frontend website that

leverages the powerful yew.rs framework. You packaged an initial set of cats with the app

and allowed users to add new cats, but refreshing the page brought users back to the initial

app state. In most web applications, the frontend makes requests to one or more backend

servers to get information or submit forms. The most common way to retrieve information

from or send information to a web server is via a REST API,1 which defines a standard

method of communication on the web. The core ideas of a REST API are very simple:

A server exposes endpoints that allow a client to either send or request information via

an HTTP request. There are a lot of design principles suggested about what should and

shouldn’t go into a REST API, but the core point is that the API is stateless. Any single

request receives a response only based on the parameters of that request, and not based

on the particular client or any of its previous requests. The API might have some state

due to changing information in a database, but it doesn’t require a complicated series of

requests and responses to get to that data. If you know the right information to put in your

request, you can always get what you want back in a single response.

A benefit of this architecture for the development team is that the backend and

frontend can be built independently. The team only needs to negotiate an API contract

and not step on each other’s toes. The frontend also doesn’t need to be served by the

application server. Instead, it can be deployed in a separate server or a managed service

like AWS S3, and be served through a CDN for maximum performance. The frontend can

even asynchronously make REST calls to the backend to get data while displaying nice

interactive screens, without having to reload an entire page.

1 You can also use other protocols, like SOAP, GraphQL, or gRPC, but we’ll stick with REST in this
chapter.

Chapter 5 REST APIs

129

Note this design (a JavaScript frontend and REST API backend) is not the only way

websites can be created. You could render all the HTML on the server and send it along

with the data as a single package when a user visits your website. Such server-side

rendering does have some benefits, such as with search engine optimization.2 A simple

server-rendered HTML page can also be faster to load and requires less processing

power on the client side, and is useful for quick debugging information. Still, most

flagship web applications tend to choose some flavor of JavaScript frontend and REST

API backend as a basis for their web services.

5.1 � What Are You Building?
In this chapter, you’ll build a web server that serves a REST API. This API will work with

the same type of cat information that you used in the previous frontend chapter, but

this time with a focus on getting that information to and from a server. After you get the

end-points working, you’ll update your server with additional features that are important

for a production-grade application, like input validation, error handling, logging, and

testing. You’ll be building the following:

•	 A RESTful API that returns a list of cats from a database in

JSON format

•	 A frontend in HTML and JavaScript that consumes the API to

display cats

•	 Integration tests for the list of cats’ API endpoint

•	 An API endpoint to POST a new cat to the database

•	 An API endpoint that returns a cat’s detail in JSON, given that cat’s ID

•	 Input validation to check the ID is valid, and that returns a 400 Bad

Request response if not

2 Since the server renders the full page, the web crawlers employed by search engines don’t
have to run any JavaScript to render such pages, making it easier and faster to extract pertinent
information from them and build and index. But in recent years this hasn’t been as much of
a benefit as the large players in the search engine space have made their web crawlers more
capable.

Chapter 5 REST APIs

130

•	 Custom error handling to prevent users from seeing unexpected

errors from the server

•	 Logging using the Logging middleware

•	 Enabling HTTPS

We’ll be using the Actix-web framework (version 4) as our web framework. As a

backend web framework, Actix-web focuses on receiving and responding to HTTP

requests. The data in an HTTP response can take many forms. If serving a REST API,

the body is commonly (but not always) JSON data. If the response is a more standard

web page, the body can contain some mix of HTML rendered on the server itself and

JavaScript that will render the page in the browser. After a quick HTML example,

you’ll be spending most of the time in this chapter focusing on a REST API. We’ll also

need a database to store our cat pictures. For that we’ll use the PostgreSQL database

through the Diesel ORM and r2d2 connection pool. Since the focus of this chapter is

backend development, we’ll write our test page for the API in simple vanilla JavaScript.

In a production application, we’d probably call our API from some framework-based

frontend app (like what you built in the previous chapter), but here we’ll stick to the

backend to not get distracted.

5.2 � Hello Backend World!
To start an Actix application, you first need to create an empty project with cargo, then

add actix-web as a dependency. Run the following commands in your terminal:

$ cargo new catdex-api

$ cd catdex-api

$ cargo add actix-web

Once cargo has added the dependency, your Cargo.toml should look like

Listing 5-1. If the version numbers don’t match, you should replace them in your file

with those listed here.

Chapter 5 REST APIs

131

Listing 5-1.  Cargo.toml for a Hello World Actix application

[package]

name = "catdex-api"

...

[dependencies]

actix-web = "4.3.1"

Now, open the src/main.rs file and copy Listing 5-2 into it.

Listing 5-2.  Hello World Actix application

use actix_web::{web, App, HttpResponse, HttpServer, Responder};

async fn hello() -> impl Responder {

 HttpResponse::Ok().body("Hello world")

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 println!("Listening on port 8080");

 HttpServer::new(|| {

 App::new()

 .route("/hello", web::get().to(hello))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

The core of Listing 5-2 is the App builder in the main() function. The App struct

uses the builder pattern to build a new application instance. When you call route(),

you specify which handler should be called when the user visits a specific path under

the website. In this example, when the user visits /hello with an HTTP GET method

(web::get()), it invokes the hello() handler.

Chapter 5 REST APIs

132

The hello() handler is an async function that returns something that implements a

Responder trait. A Responder is something that can be converted into an HTTP response.

It’s implemented on common types like &str, String, and &[u8] slices. In this simple

example, we respond with an HttpResponse::Ok() (i.e., status code 200) and the string

body “Hello world.”

An HttpServer wraps the App. It handles the incoming requests and passes them

to the App. You bind() an address (127.0.0.1:8080) to the server so it will listen on the

specific IP and port. Finally, you call run() to start the server and await on it. Notice

that the HttpServer doesn’t take an App instance. Instead, it takes an App factory, which

is a simple closure that creates a new App instance when called. This is because the

HttpServer will create multiple worker threads, each running one instance of the App.

This way it can better utilize multiple CPU cores and achieve higher scalability.

You might also notice that the main() function is annotated with #[actix_

web::main] attribute macro. This attribute tells Actix to execute the main() function in

the actix_rt runtime, which is built on top of the popular Tokio3 runtime. The actix_

rt::main macro is re-exposed in the actix_web crate as actix_web::main, which is why

we didn’t need to add actix_rt as a dependency.

Note  You might have noticed that the functions in the Hello World program all
have async in front, and you need to put .await after them when calling. This is
an important language feature that makes it possible to build highly efficient web
servers. When you call a normal (i.e., blocking) function, the whole thread blocks
and waits for the function to return. But if the function is async, it immediately
returns a Future instead of blocking. While you .await that Future, the
program asynchronously waits for it to complete, which allows other tasks on the
same thread to make progress.

This is extremely important for building web servers. A modern web server usually
needs to handle a large number of clients at the same time. If the server only
processes one thing at a time and blocks whenever it’s waiting for I/O (input/
output), like in a socket communication, it will essentially be doing nothing as it
waits on a single message. One way to solve this is to use an operating system
(OS) construct called a process. A process is an instance of a program, and the OS

3 https://tokio.rs/

Chapter 5 REST APIs

https://tokio.rs/

133

allows you to start multiple processes (like when you open up multiple separate
web browsers). This way, you can have one process handling one client. But
processes have a high overhead so it won’t scale very well (just like having many
different web browser windows open can slow down your system).

Another alternative is to use several threads. A thread is a series of instructions
(and their surrounding execution context) that can run independent of other
threads. Threads and processes are implemented differently in each operating
system, but in general a thread is a component of a process. Threads in the same
process share some common resources like memory space, so they have a lower
overhead to run than a process (which as a general rule shares nothing with other
duplicate processes). Therefore, we can run more threads than processes on the
same hardware, serving more clients.

However, because network I/O is much slower than CPU, most of the time the
threads are sitting idle, waiting for network I/O (such as waiting for the result of
a request to the database). Although threads are lighter than processes, they still
have some overhead. By using async/await, we can potentially serve multiple
clients per thread. When the server is waiting for a client’s network I/O, it can yield
the execution to other clients served by the same thread. As soon as the current
task gets stuck waiting for something that generally takes a long time (like a
network request), it informs the runtime. The runtime can then check if any new
network responses came in that other tasks were waiting on, and if one did, the
appropriate tasks gets resumed with the result of that task. All this can happen on
a single thread, meaning that there is no superfluous thread context switching at
the operating system level. This in turn generally translates to better performance.

This is an overly simplified explanation of async/await and how it can help web
development. If you wish to learn more about the history and rationale of Rust’s
async/await design, you can watch Steve Klabnik’s talk, “Rust’s Journey to Async/
await.”4 You can also read the Asynchronous Programming in Rust book.5

4 https://www.infoq.com/presentations/rust-2019/
5 https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html

Chapter 5 REST APIs

http://www.infoq.com/presentations/rust-2019/
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html

134

To run this example, simply run the command cargo run in the terminal under this

project directory. A web server will start on 127.0.0.1:8080 as we specified. Once the

server is running, open a web browser and go to http://127.0.0.1:8080/hello, and

you’ll see the text “Hello world” (Figure 5-1).

Figure 5-1.  Web server responding “Hello world”

Building out an actix-web project (and many other backend web framework

projects) at its core is defining functions to handle requests, and mapping these

functions to routes in the main application. Over the rest of this chapter we will add

additional handlers with their own routes.

5.3 � Serving Static Files
In the Hello World example we respond with a simple string. But most web services are

built with HTML (as we saw in the previous chapter) or JSON (as we’ll see here). You

could write HTML as a very long string in the Rust code and serve it that way, but this

would quickly become very hard to manage. A more common technique is to store any

HTML responses as separate .html files and serve them with the web server. An HTML

file usually also references other CSS, JavaScript, or media files (e.g., images, videos).

Actix allows you to serve all these files easily without explicitly writing code to read the

file from disk.

You can create a folder called “static” in your project with the mkdir static

command, which will hold the static files. Within this folder you should also create a

css folder with mkdir static/css. Then you can add the files static/index.html

(Listing 5-3) and static/css/index.css (Listing 5-4) to your project. Since there is no

JavaScript in there yet, the page won’t show any cats.

Chapter 5 REST APIs

135

Listing 5-3.  index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>Catdex</title>

 <link

 rel="stylesheet"

 href="static/css/index.css"

 type="text/css"

 >

 </head>

 <body>

 <h1>Catdex</h1>

 <section class="cats">

 <p>No cats yet</p>

 </section>

 </body>

</html>

Listing 5-4.  index.css

.cats {

 display: flex;

}

.cat {

 border: 1px solid grey;

 min-width: 200px;

 min-height: 350px;

 margin: 5px;

 padding: 5px;

 text-align: center;

}

Chapter 5 REST APIs

136

.cat > img {

 width: 190px;

}

Tip  We serve the static files in the static folder of the same server that will
serve the REST APIs. This is just for ease of development. In production, you should
consider serving the static resources (HTML, CSS, JavaScript) from another server
(e.g., Nginx) dedicated to serving static files. This gives you a few benefits, as
follows:

•	 You can aggressively cache the static resources using a CDN
(content delivery network).

•	 Your static server and API server can scale independently.

•	 Deployment and maintenance might be easier.

To serve the HTML file you need to install the actix-files crate using cargo

add actix-files (for this project we use version 0.6.2). Next, paste following code in

src/main.rs (Listing 5-5).

Listing 5-5.  Serving the index.html file

use actix_files::{NamedFile};

use actix_web::{web, App, HttpServer, Result};

async fn index() -> Result<NamedFile> {

 Ok(NamedFile::open("./static/index.html")?)

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 println!("Listening on port 8080");

 HttpServer::new(|| {

 App::new()

 .route("/", web::get().to(index))

 })

Chapter 5 REST APIs

137

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

The code is almost the same as the Hello World example, except

•	 the path is now / (root); and

•	 the handler, named index(), now returns a NamedFile from the

actix-files crate.

The NamedFile::open() function opens the file in read-only mode. Because

NamedFile implements Responder, we can return it directly in the handler. It’s wrapped

in a Result just in case the file reading failed.

Figure 5-2.  Serving the index at the root address

If you run cargo run in a terminal, a server should start on port 8080. Then you can

open a browser and go to http://127.0.0.1:8080/ (since we are using the root / as our

route) and see the contents of index.html being rendered (Figure 5-2).

At this point we don’t see any cats. Since we are building a cat encyclopedia, we

should add some cat pictures. You can update static/index.html to the following

HTML (Listing 5-6).

Listing 5-6.  index.html with external image and CSS

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

Chapter 5 REST APIs

138

 <title>Catdex</title>

 <link

 rel="stylesheet"

 href="static/css/index.css"

 type="text/css"

 >

 </head>

 <body>

 <h1>Catdex</h1>

 <section class="cats">

 <article class="cat">

 <h3>British short hair</h3>

 </article>

 <article class="cat">

 <h3>Persian</h3>

 </article>

 <article class="cat">

 <h3>Ragdoll</h3>

 </article>

 </section>

 </body>

</html>

This file now imports the following extra resources:

•	 image/british-short-hair.jpg

•	 image/persian.jpg

•	 image/ragdoll.jpg

Chapter 5 REST APIs

139

You should create an image folder with mkdir image, and then put some cat images

in the folder. When complete, your directory layout should look as follows:

.

+-- Cargo.lock

+-- Cargo.toml

+-- src

| +-- main.rs

+-- static

| +-- css

| | +-- index.css

| +-- index.html

+-- image

| +-- british-short-hair.jpg

| +-- persian.jpg

| +-- ragdoll.jpg

If you run the project now you’ll see that the images fail to load. We’ll need to create

path handlers for the image paths. It’s not scalable to write a custom path and handler

for each individual resource as we did for the index, so instead we’ll tell Actix to serve

every file under the static and image folders automatically. To achieve this, you can

use the actix-file::Files service, which handles static files for you with some simple

configuration. You need to register this service when you create the App. Add the code in

Listing 5-7 to src/main.rs.

Listing 5-7.  Using the Files service to serve static files

use actix_files::{Files, NamedFile};

use actix_web::{web, App, HttpServer, Result};

async fn index() -> Result<NamedFile> {

 Ok(NamedFile::open("./static/index.html")?)

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 println!("Listening on port 8080");

 HttpServer::new(|| {

Chapter 5 REST APIs

140

 App::new()

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .route("/", web::get().to(index))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

In the App factory, you can use the .service() function to attach a service to the

application. The Files service will serve the files in a folder (the second parameter

static or image) under a certain URL path (the first parameter /static or /image).

You might notice that we also enabled .show_files_listing(). When this feature is

turned on, you’ll see an HTML list (Figure 5-3) of all the files under the folder if you open

the /static or /image paths. This is handy for debugging, but should be turned off in

production to avoid security vulnerabilities.6

Now if you run cargo run and visit http://localhost:8080/ in a browser, you’ll see

the Catdex now has images (Figure 5-4).

Figure 5-3.  File listing generated by .show_files_listing()

6 https://cwe.mitre.org/data/definitions/548.html

Chapter 5 REST APIs

https://cwe.mitre.org/data/definitions/548.html

141

Figure 5-4.  Catdex with hard-coded images

5.4 � Converting the Cats List to a REST API
Now you have a basic web server working that serves some static HTML and images. The

data is all served in HTML format, which is great for humans, but not ideal for other web

services that might want to retrieve the data. Let’s convert the server to provide data with

a REST API.

With REST APIs we return some structural data that frontend JavaScript (or another

web service that requested it) can easily process. JSON (JavaScript Object Notation) is

one of the most popular options. To construct a JSON response, you can use actix-web’s

web::Json helper to turn any serializable (i.e., impl serde::Serialize) Rust object into

an HTTP response. For example, a minimal REST API endpoint that returns a hard-

coded list of cats can be implemented like in Listing 5-8. Notice that because web::Json

implements the Responder trait, you can simply return a web::Json from a handler and

actix-web will convert it to a proper HTTP response for you. Make the following changes

to expose a REST API endpoint in your web server (note you’ll also need to run cargo

add serde --features derive to add serde with derive macros to your project).

Chapter 5 REST APIs

142

Listing 5-8.  A minimal JSON API that returns hard-coded data

use actix_files::{Files, NamedFile};

use actix_web::{web, App, HttpServer, Result, Responder};

use serde::Serialize;

async fn index() -> Result<NamedFile> {

 Ok(NamedFile::open("./static/index.html")?)

}

#[derive(Serialize)]

pub struct Cat {

 pub id: i32,

 pub name: String,

 pub image_path: String,

}

async fn cats_endpoint() -> impl Responder {

 let cats = vec![

 Cat {

 id: 1,

 name: "British Short Hair".to_string(),

 image_path: "image/british-short-hair.jpg"

 .to_string(),

 },

 Cat {

 id: 2,

 name: "Persian".to_string(),

 image_path: "image/persian.jpg".to_string(),

 },

 Cat {

 id: 3,

 name: "Ragdoll".to_string(),

 image_path: "image/ragdoll.jpg".to_string(),

 },

];

 return web::Json(cats);

}

Chapter 5 REST APIs

143

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 println!("Listening on port 8080");

 HttpServer::new(|| {

 App::new()

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .service(

 web::scope("/api")

 .route("/cats", web::get().to(cats_endpoint)),

)

 .route("/", web::get().to(index))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

Now you can run cargo run to start the server. You can test the API using curl.7 Note

that the data you see will be the same JSON as shown here but may not all be on nice

separate lines:

$ curl localhost:8080/api/cats

[{"id":1,"name":"British Short Hair","image_path":"image/british-

short-hair.jpg"},

{"id":2,"name":"Persian","image_path":"image/persian.jpg"},

{"id":3,"name":"Ragdoll","image_path":"image/ragdoll.jpg"}]

7 curl might not be installed in your distribution by default. For example, for Ubuntu you can
install it with sudo apt-get install curl.

Chapter 5 REST APIs

144

Now we can revisit our frontend page and make the page call the API (Listing 5-9).

To stay focused on the backend you’ll embed plain JavaScript into your HTML response.

This JSON will query the REST API you constructed. These API calls can also be made

from a full-fledge frontend framework (like the yew.rs example we had in the previous

chapter) where the code can be much more declarative in stye. In many cases, your REST

API server might not serve any HTML at all, only exposing an endpoint returning JSON

data for other services to use. You’ll serve a simple page here to both show the core idea

of how JavaScript can call our API, and to have a useful tool in debugging.

Listing 5-9.  Making the frontend call the API

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8" />

 <title>Catdex</title>

 <link

 rel="stylesheet"

 href="static/css/index.css"

 type="text/css"

 >

</head>

<body>

<h1>Catdex</h1>

<section class="cats" id="cats">

 <p>No cats yet</p>

</section>

<script charset="utf-8">

 document.addEventListener("DOMContentLoaded", () => {

 fetch('/api/cats')

 .then((response) => response.json())

 .then((cats) => {

 // Clear the "No cats yet"

 document.getElementById("cats").innerText = ""

Chapter 5 REST APIs

145

 for (cat of cats) {

 const catElement = document.createElement("article")

 catElement.classList.add("cat")

 const catTitle = document.createElement("h3")

 const catLink = document.createElement("a")

 catLink.innerText = cat.name

 catLink.href = 'static/cat.html?id=${cat.id}'

 const catImage = document.createElement("img")

 catImage.src = cat.image_path

 catTitle.appendChild(catLink)

 catElement.appendChild(catTitle)

 catElement.appendChild(catImage)

 document.getElementById("cats")

 .appendChild(catElement)

 }

 })

 })

</script>

</body>

</html>

We use the fetch() API to make the GET call, and draw the cats we received onto the

page with a series document.createElement() and element.appendChild() calls. This

page now looks like Figure 5-5.

Chapter 5 REST APIs

146

Figure 5-5.  The client-rendered index.html

You server will now provide the cat data in JSON format when the /api/cats

endpoint is called. This in turn is tested by the index.html served at the website root.

5.5 � Using a Database
So far we’ve hard-coded the cat data into our Rust program. If the cat list never changes

this is fine, but an API that always returns the same data isn’t very useful. A more full-

featured and interactive API would let users add, update, and remove cats, and store

all that changing data somewhere. A naive way to implement this is to store the data in

a mut variable. This will work fine until we need to restart the server, and then all data

would be lost. The most common way to persist data past an application’s lifetime is to

use a database. It not only persists the data between server restarts, but also provides

more efficient query ability.

In this example we are going to use PostgreSQL, a popular open-source

relational database. The database runs as a separate server, and our Actix application

communicates with it over TCP/IP. In theory we can write code that connects directly

to the database with TCP/IP and issues raw SQL queries, but that would be very low-

level and bog us down with a lot of unnecessary details. Instead, we are going to use an

object-relational mapping (ORM) library to bridge between Rust code and our database.

An ORM allows you to manipulate data in the database as native Rust objects (structs

and enums). The ORM will convert the Rust code to raw SQL under the hood and

Chapter 5 REST APIs

147

communicate with the database. It abstracts away the database so you can work with

familiar Rust syntax. It also allows you to change the SQL engine (e.g., MySQL, SQLite)

without rewriting all the Rust code. The ORM we are going to use is called Diesel.8

Before starting to use Diesel you need to set up a PostgreSQL database. Most of

the Linux distributions have it in their package repository, but they might not have the

latest version. The database usually starts automatically as a background daemon and

consumes disk space, so installing it on an OS you use daily might be a little awkward.

To make things simple we’ll use a PostgreSQL installation that’s packaged as a Docker

image. Docker is a container technology, which you can think of as a lightweight virtual

machine. From the PostgreSQL server’s perspective, the container provides an isolated

OS where it can run. But it’s lightweight because the container shares the host machine’s

OS kernel. This allows us to spin up a disposable Linux environment with PostgreSQL

preinstalled. This will be easier to set up and clean up during development.

First, you’ll need to install Docker. Because this process varies drastically across

Linux distributions, you’ll need to find the instructions for your specific OS.9 For

Debian-based Linux distributions, you can install it with apt-get after adding the

repository.10

After Docker is ready, you can start a Docker container containing a PostgreSQL

server with the following command (note that, depending on how you installed Docker,

you may need to run this with all other Docker commands with sudo as root):

$ docker run \

 --name catdex-db \

 -e POSTGRES_PASSWORD=mypassword \

 -p 5432:5432 \

 -d \

 postgres:12.3-alpine

8 https://diesel.rs/
9 https://docs.docker.com/engine/install/
10 https://docs.docker.com/engine/install/debian/

Chapter 5 REST APIs

https://diesel.rs/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/debian/

148

Note  You might be frustrated if you are on a platform where you need to constantly
call sudo to use Docker. On Ubuntu you can fix this by running the following:

$ sudo usermod -aG docker $USER

You’ll then need to log out and log back in with your user. You can search for
post-installation steps for other platforms to remove the need for sudo.

This simple line of code packs a lot of information:

•	 postgres:12.3-alpine is the name of the Docker image11 used.

This is an official image provided by Docker. The “alpine” in the

name suggests it’s built on top of Alpine Linux, a lightweight Linux

distribution.

•	 -name catdex-db creates the Docker container with a custom name

so we can identify it later.

•	 -e POSTGRES_PASSWORD=mypassword passes an environment variable

into the container. In this case the POSTGRES_PASSWORD variable will

set the PostgreSQL database’s default password.

•	 -p 5432:5432 maps the host machine’s port 5432 to the container’s

port 5432. 5432 is the default port used by PostgreSQL.

•	 -d runs the container in detached mode, so it will run in the

background without blocking the console.

You can verify that the container has been created and started by running

docker ps.

Before we use Rust code to interact with the database, we can use the command-line

client to test the database. Install the PostgreSQL command-line client psql with the

following command12:

sudo apt install postgresql-client

11 https://hub.docker.com/_/postgres
12 The psql version you get from apt might not match your PostgreSQL server version, or you may
not be using a Debian-based distribution like Ubuntu. If you are experiencing any issues, please
try installing the psql client with the matching version from https://www.postgresql.org/
download/.

Chapter 5 REST APIs

https://hub.docker.com/_/postgres
https://www.postgresql.org/download/
https://www.postgresql.org/download/

149

Then you can connect to the database with the following:13

psql -h localhost -p 5432 --username=postgres

The command will prompt you for a password, for which you can enter

“mypassword.” You should then be connected to the database with an interactive

prompt. You can issue the command \dt to see the tables in the database (which should

be empty at the moment). You can exit with either the \q command or Ctrl + D.

Once the database is up and running, we can start setting up Diesel. Diesel provides

a command-line tool that you can install using the following command (see the next

paragraph if you get an error):

cargo install diesel_cli --no-default-features --features postgres

Diesel can work with different databases, like MySQL and SQLite. By default, the CLI

will work with all of them, but here we use --no-default-features and --features

postgres flags to tell Cargo to only install the PostgreSQL integration. You might get an

error warning about the ld linker not being able to find the library pg.

This is because, during the installation process, the tool needs to compile with the

PostgreSQL headers. For non-Debian-based operating systems you can get more install

help at https://www.postgresql.org/download/. If you are on Debian/Ubuntu, you

can install the header files with the following:

sudo apt-get install libpq-dev

We need to tell the “diesel” command-line tool about the database’s URL through

an environment variable. Run this command in the terminal to set it (note you’ll need to

rerun this command in any new terminal that you open):

export DATABASE_URL=postgres://postgres:mypassword@localhost

Then, run the command diesel setup in the catdex-api project directory. This

will create a migration folder to keep the schema migration files, and a diesel.toml

configuration file to tell the “diesel” tool to update the src/schema.rs file every time the

schema updates.

13 The username postgres is the default created by the postgres:12.3-alphine image.

Chapter 5 REST APIs

https://www.postgresql.org/download/

150

Schema migration is a way to version control your database schema. In the old days,

database schema changes were made by database administrators (DBAs) or developers

as ad-hoc SQL commands. Making changes like this without proper version control

prevents quick rollbacks or rebuilding the same database from scratch. When using

schema migration, you write a SQL script to apply the schema change (up.sql) and

another script to revert the change (down.sql). By using such scripts, you should be able

to change and revert your database schema easily. You can also bring an old database to

the latest schema by applying all the migrations it missed. A migration tool will usually

determine which migration needs to be applied so you don’t have to worry about

figuring it out manually.

Let’s create our first migration to set up our initial schema. Run this command to

create a migration named create_cats:

diesel migration generate create_cats

This creates a folder in migrations/{yyyy-mm-dd-HHMMSS}_create_cats, with two

files in it named up.sql and down.sql.

In up.sql, let’s write the SQL code to create the cats table (Listing 5-10).

Listing 5-10.  up.sql

CREATE TABLE cats (

 id SERIAL PRIMARY KEY,

 name VARCHAR NOT NULL,

 image_path VARCHAR NOT NULL

)

In down.sql we need to write SQL that can undo what up.sql does (Listing 5-11).

Listing 5-11.  down.sql

DROP TABLE cats

Note that, for simplicity in our model, we are only storing the filepath to the images

on disk. In a real production system you’d probably store the images directly in the

database, or possibly in a different database that’s more optimized for image data storage

(in which case appropriate paths could be stored here). Once the migration code is

written, you can run diesel migration run to apply it. This should run the up.sql file.

Chapter 5 REST APIs

151

Tip T he other two useful commands around migrations are as follows:

•	 diesel migration revert: runs the down.sql of the most
recent migration

•	 diesel migration redo: runs the down.sql followed by up.
sql of the most recent migration. After running it your database
schema should be unchanged (but you might lose some data if
down.sql drops a table!). This is useful for verifying that your
down.sql works as intended.

Now if you connect to the database with psql again, and issue the command \dt,

you should be able to see the cats table, along with another table labeled __diesel_

schema_migrations, which you should ignore for now.

Since we haven’t implemented the page to add new cats, let’s insert some test data

using psql. Run this SQL command in psql:

INSERT INTO cats (name, image_path)

VALUES ('Ragdoll', '/image/ragdoll.jpg');

Once we have some data in the database we need to define the Rust struct that

represents a row of the table. Create a new file src/models.rs and paste the following

code into it (Listing 5-12). You should also remove the Cat struct from main.rs.

Listing 5-12.  Defining the ORM model

use serde::Serialize;

use diesel::Queryable;

#[derive(Queryable, Serialize)]

pub struct Cat {

 pub id: i32,

 pub name: String,

 pub image_path: String

}

Chapter 5 REST APIs

152

The fields of the Cat model match the database schema. It also derives the Queryable

trait so that we can use this type for SQL query results, and the Serializable trait which

we’ll need for it to be used in the HTML template. Along those lines, we add another

struct in models.rs called IndexTemplateData, which is the top-level struct we’ll pass in

to fill out our template (it also implements Serializable as that’s required for template

input). This struct has a Vec of Cats, which will be filled out when we query the database.

Thus, we can structure our data in a straightforward way as it goes from the database to

our HTML template.

To use it in the src/main.rs file, please add the module import directive and the use

directive at the beginning of the file. We also add the schema.rs that was auto-generated

earlier to make it available to our main function (note that the project will still not

compile until we make more changes).

mod model;

mod schema;

use self::model::*;

use self::schema::cats::dsl::*;

It might be tempting to create a database connection inside the cats_endpoint()

handler, right before we query the database. But the server will create a new connection

whenever a new client makes a request. Establishing a connection to the database

has a high overhead, so it would be more efficient to keep a small pool of long-lived

connections to the database, so that every time a cats_endpoint() handler needs to

make a database query, it gets an available connection from the pool, then returns it

to the pool when it’s done. This not only reduces the overhead of creating connections

but also reduces the stress on the database server because it has fewer connections to

manage. There is a connection pool implementation in Rust called r2d2.14 It works with

Diesel using the diesel::r2d2 adapter crate.

Another inefficiency regarding the database connection is that Diesel only supports

synchronous I/O. If we make a synchronous call to Diesel, the thread that is running the

request handler will be blocked. The thread pool will soon be depleted, and the server

won’t be able to serve more requests. To mitigate this problem, we can use the function

actix_web::web::block(). This function takes a blocking function and executes it

on a separate thread pool, which is different from the Actix thread pool that executes

14 https://github.com/sfackler/r2d2

Chapter 5 REST APIs

https://github.com/sfackler/r2d2

153

request handlers. The web::block() function returns a future that gets resolved when

the blocking database call finishes. This way, the request handler can yield the execution

to other handlers while it waits for the future to be resolved, thus increasing overall

efficiency.

To add the r2d2 and diesel dependencies to the Rust project, you need to edit the

Cargo.toml file as in Listing 5-13. You also need to add serde_json. You can use the

cargo add command to add all of these, but given the specific versions and features,

manually updating the file ensures the versions match what is included here.

Listing 5-13.  Add r2d2, diesel, and serde_json to Cargo.toml

[package]

name = "catdex"

...

[dependencies]

actix-files = "0.6.2"

actix-web = "4.2.1"

diesel = { version = "2.0.2", features = ["postgres", "r2d2"] }

handlebars = { version = "4.3.5", features = ["dir_source"] }

r2d2 = "0.8.10"

serde = { version = "1.0.159", features = ["derive"] }

serde_json = "1.0.89"

We not only add the r2d2 crate, but also enable the r2d2 feature on diesel. This

enables the diesel::r2d2 adapter.

Now we need to set up the connection pool in our main function, before setting up

the App. Modify the main() function from Listing 5-8 to follow Listing 5-14.

Listing 5-14.  Setting up r2d2 thread pool

// ...

use actix_files::{Files, NamedFile};

use actix_web::{web, App, HttpServer, HttpResponse,

 Result, error, Error};

Chapter 5 REST APIs

154

use diesel::pg::PgConnection;

use diesel::prelude::*;

use diesel::r2d2::{self, ConnectionManager};

use std::env;

type DbPool = r2d2::Pool<ConnectionManager<PgConnection>>;

// ...

// Move "Cat" struct to "models.rs"

// ...

async fn cats_endpoint(

 pool: web::Data<DbPool>,

) -> Result<HttpResponse, Error> {

 //...

}

//

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 // Setting up the database connection pool

 let database_url = env::var("DATABASE_URL")

 .expect("DATABASE_URL must be set");

 let manager =

 ConnectionManager::<PgConnection>::new(&database_url);

 let pool = r2d2::Pool::builder()

 .build(manager)

 .expect("Failed to create DB connection pool.");

 println!("Listening on port 8080");

 HttpServer::new(move || {

 App::new()

 .app_data(web::Data::new(pool.clone()))

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

Chapter 5 REST APIs

155

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .service(

 web::scope("/api")

 .route("/cats",

 web::get().to(cats_endpoint)),

)

 .route("/", web::get().to(index))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

We first load the environment variable DATABASE_URL using env::var. This

database URL is then passed to a ConnectionManager’s new() function. The

ConnectionManager implements the ManageConnection trait, which is how r2d2 keeps

track of which connection is still active. This connection manager is passed to an

r2d2::Pool::builder(), which actually builds the thread pool. The Pool created by

r2d2::Pool::builder() is in an Arc so it can be cloned and attached to the App using

App::data.

Note  What’s the difference between App::app_data and App::data? Both
App::app_data() and App::data() are for creating states in your Actix
application. Because Actix creates a thread pool and runs one App instance per
thread, you need to decide if the state needs to be shared across threads.

If you only want local states, which means each thread get its own state and the
states work independent of each other, you can use App::data().

If you want a global state that is shared across all threads, you need to construct
a thread-safe pointer (usually an Arc) and clone() it to all threads. However, the
App::data() function will wrap the state in an Arc internally, so it will result

Chapter 5 REST APIs

156

in an Arc wrapping another Arc. To avoid this double Arc, Actix allows you to
construct a shared state with web::Data::new() and pass it using App::app_
data(). App::app_data() won’t wrap your shared state in an Arc.

There have been discussions15 around clarifying or even simplifying the behavior of
these two APIs, so it might change in the future.

The cats handler no longer needs to create connections itself, but instead gets a

connection from the pool (Listing 5-15).

Listing 5-15.  Using the connection pool in the cats endpoint handler

// ...

async fn cats_endpoint(

 pool: web::Data<DbPool>,

) -> Result<HttpResponse, Error> {

 let mut connection =

 pool.get().expect("Can't get db connection from pool");

 let cats_data = web::block(move || {

 cats.limit(100).load::<Cat>(&mut connection)

 })

 .await

 .map_err(error::ErrorInternalServerError)?

 .map_err(error::ErrorInternalServerError)?;

 Ok(HttpResponse::Ok().json(cats_data))

}

// ...

15 https://github.com/actix/actix-web/issues/1454

Chapter 5 REST APIs

https://github.com/actix/actix-web/issues/1454

157

Now, if we restart the server and call it with curl again, you can see that the API

returns cats from the database (note we’ve formatted the JSON output for better

readability):

% curl localhost:8080/api/cats

[

 {

 "id":1,

 "name":"Ragdoll",

 "image_path":"/static/image/ragdoll.jpg"

 }

]

If you prefer to see this API in action graphically, you can navigate to the root page at

127.0.0.1:8080, where you’ll see the single cat you added to the database displayed.

5.6 � Adding Cats with a POST Command
You can now dynamically retrieve cats from the database, but there is no way to add new

cats. You will next create an endpoint that can be used to handle HTTP POST requests to

the backend. The POST will use a multipart request to provide the required image and

data and upload it to the database.

You can start by creating the /add_cat endpoint that will receive the HTTP POST. As

before, we add an async function handler and register it in App. In the handler, we need

to do the following:

	 1.	 Parse the request to get the cat name and the image file.

	 2.	 Save the image file into the static folder.

	 3.	 Get a database connection from the connection pool.

	 4.	 Insert a new row into the database.

	 5.	 Return a proper HTTP response.

Let’s start with extracting the fields from the payload. To extract information from

the request in a type-safe way, we can use extractors. The web::Data parameter we had

in the index handler is an example of an extractor. Other extractors can get information

Chapter 5 REST APIs

158

from the path, the query parameters, the JSON payload, and the application/

x-www-form-urlencoded form. The multipart payload extractor is available through

the actix-multipart crate. However, the crate provides a low-level API, which is quite

cumbersome to use. We’ll use a higher-level crate that is built on actix-multipart,

called awmp.

To add awmp, simply run cargo add awmp, or manually add awmp = "0.8.1" to

your Cargo.toml. Create a new add_cat_endpoint handler and add the awmp::Parts

extractor as a parameter (Listing 5-16).

Listing 5-16.  Using the awmp::Parts extractor

use std::collections::HashMap;

//...

async fn add_cat_endpoint(

 pool: web::Data<DbPool>,

 mut parts: awmp::Parts,

) -> Result<HttpResponse, Error> {

 let file_path = parts

 .files

 .take("image")

 .pop()

 .and_then(|f| f.persist_in("./image").ok())

 .unwrap_or_default();

 let text_fields: HashMap<_, _> =

 parts.texts.as_pairs().into_iter().collect();

 // TODO: Get a connection

 // TODO: Insert a row into the DB

 // TODO: Return a proper response

}

Because our input will contain both textual and file fields (the cat name, image path,

and image file), the Parts extractor puts them into files and texts, respectively. From

files we can take() a field named “image,” which returns a Vec<File>. Because we

know we only have one field named “image,” we pop() the first File. Because pop()

Chapter 5 REST APIs

159

returns an Option, we use and_then() to get the file contained in it. Awmp stores this file

as a temporary file using the tempfile crate, so we can call f.persist_in() to save it

permanently in the ./image folder.

Note  In this example, we directly save the user-uploaded image into the image
folder, which makes it available to be retrieved immediately. But in production, this
violates many security best practices. For instance:

•	 An attacker might be able to upload a malicious executable or
script file disguised as an image.

•	 An attacker can also use carefully crafted filenames to place the
file into a folder where they are not supposed to be.

•	 An attacker can also overwrite other people’s images by uploading
a file with the same name.

If you don’t have enough security expertise, using a third-party file upload service
is the easiest and most secure way. They usually provide some kind of SDK
(software development kit), so you can easily integrate them into your website. If
you must build it in-house, there are a few ways you can secure the website:

•	 Only allow certain file extensions.

•	 Do not trust the file extension. Detect the file type to see if they
match the file extension.

•	 Scan the file with anti-virus software before saving.

•	 Sanitize the file name.

•	 Randomize the file name.

You can find many more attack and defense strategies on the OWASP page
for “Unrestricted File Upload”: https://owasp.org/www-community/
vulnerabilities/Unrestricted_File_Upload.

Chapter 5 REST APIs

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

160

The texts field contains all the text-based input fields. It has an as_pairs() function

that returns all the fields as a Vec of (key, value) tuples. We can easily convert it to a

HashMap so we can get a particular key without scanning, as follows:

let text_fields: HashMap<_, _> = parts

 .texts

 .as_pairs()

 .into_iter()

 .collect();

// Example of getting a key's value:

text_fields.get("name").unwrap()

Now that we’ve stored the file into the image folder and have all the text fields in

a HashMap, we need to insert the row into the database. Since we are using an ORM,

we need to construct a Cat struct and use diesel::insert_into().values(). But a

problem quickly arises: The Cat struct we defined has three fields:

#[derive(Queryable, Serialize)]

pub struct Cat {

 pub id: i32,

 pub name: String,

 pub image_path: String

}

If we construct a Cat struct for insertion, we need to give it an id. But in our

migration script, we declare the type of id to be SERIAL. PostgreSQL will auto-increment

a SERIAL field whenever a new row is inserted. If we manually set ids, PostgreSQL will

lose track of which id is used by the application, and this will generate conflicts. To let

PostgreSQL generate the id, we need to define a new struct that omits the id field for

insert. You can open the src/models.rs and add a new struct like in Listing 5-17 (don’t

forget to add the use directives during your update).

Listing 5-17.  Model for inserting to cats

use serde::Serialize;

use diesel::{Queryable, Insertable};

use crate::schema::cats;

// ...

Chapter 5 REST APIs

161

#[derive(Insertable, Serialize)]

#[diesel(table_name = cats)]

pub struct NewCat {

 // id will be added by the database

 pub name: String,

 pub image_path: String,

}

Not only is the id field omitted, but the traits we defined are also a little different.

Besides the Serialize trait that’s required for serialization, we also derive the

Insertable trait. This tells diesel that it’s a valid struct for inserting into the database.

By default, diesel assumes your struct name matches the table name. But since Cats

is already taken, we can only name it NewCat. Therefore, we need to annotate it with

#[diesel(table_name = cats)] to specify which table it maps to.

Once you have this new struct, inserting the row into the database is as simple as in

Listing 5-18.

Listing 5-18.  Inserting a new cat into the database

async fn add_cat_endpoint(

 pool: web::Data<DbPool>,

 mut parts: Parts

) -> Result<HttpResponse, Error> {

 let file_path = // ...

 let text_fields: HashMap<_, _> = // ...

 let mut connection = pool.get()

 .expect("Can't get db connection from pool");

 let new_cat = NewCat {

 name: text_fields.get("name").unwrap().to_string(),

 image_path: file_path.to_string_lossy().to_string()

 };

 web::block(move ||

 diesel::insert_into(cats)

 .values(&new_cat)

 .execute(&mut connection)

Chapter 5 REST APIs

162

)

 .await

 .map_err(error::ErrorInternalServerError)?

 .map_err(error::ErrorInternalServerError)?;

 // TODO: Return a proper response

}

Finally, we need to respond with a proper HTTP response. We can simply respond

with a 201 Created status code indicating that the new resource (i.e., the cat) was

created. You also now can add the endpoint to the API service in main.

Note that depending on your system, you may need to change the temporary

directory of awmp to get the project to run properly. To do this, first run mkdir tmp in your

project directory, and then add the following app_data entry to your App:

.app_data(

 awmp::PartsConfig::default().with_temp_dir("./tmp")

)

The awmp crate needs a temporary directory to move temporary files as it works with

them, and here we set it to be a directory within our project. At this point you should

have the full add_cat endpoint ready to run, following Listing 5-19.

Listing 5-19.  The complete add_cat_endpoint() handler

// ...

async fn add_cat_endpoint(

 pool: web::Data<DbPool>,

 mut parts: awmp::Parts,

) -> Result<HttpResponse, Error> {

 let file_path = parts

 .files

 .take("image")

 .pop()

 .and_then(|f| f.persist_in("./image").ok())

 .unwrap_or_default();

 let text_fields: HashMap<_, _> =

 parts.texts.as_pairs().into_iter().collect();

Chapter 5 REST APIs

163

 let mut connection = pool.get()

 .expect("Can't get db connection from pool");

 let new_cat = NewCat {

 name: text_fields.get("name").unwrap().to_string(),

 image_path: file_path.to_string_lossy().to_string()

 };

 web::block(move ||

 diesel::insert_into(cats)

 .values(&new_cat)

 .execute(&mut connection)

)

 .await

 .map_err(error::ErrorInternalServerError)?

 .map_err(error::ErrorInternalServerError)?;

 Ok(HttpResponse::Created().finish())

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 // ...

 println!("Listening on port 8080");

 HttpServer::new(move || {

 App::new()

 .app_data(web::Data::new(pool.clone()))

 .app_data(

 awmp::PartsConfig::default()

 .with_temp_dir("./tmp")

)

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

Chapter 5 REST APIs

164

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .service(

 web::scope("/api")

 .route(

 "/cats",

 web::get().to(cats_endpoint)

)

 .route(

 "/add_cat",

 web::post().to(add_cat_endpoint)

)

)

 .route("/", web::get().to(index))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

To test the API, first remove all images that aren’t already in the database from

the image directory. Then from a directory with the images, run the following curl

command (while the server is running):16

curl -F "name=Persian" \

-F "image=@persian.jpg" \

localhost:8080/api/add_cat

This will post an image with a name to the add_cat endpoint, which saves the image

in the image folder and the metadata in the database. If you navigate to the website

you should now see the new cat appearing on the front page. Note this is loading the

cat images.

16 If you are running from a shared or network folder the code might not function properly; in this
case, ensure that you are running the code on a file system mounted directly on a local disk.

Chapter 5 REST APIs

165

5.7 � API Testing
So far we’ve been testing our APIs manually. Automating this test process will not

only help you reduce human labor, but also urge the developer to test more often and

provide quick feedback. Rust comes with unit testing capability. You can unit test all your

functions individually with it, and you can learn about it from the official Rust book.17 In

this book, however, we’ll be focusing on the integration test, in which you spin up a real

HTTP server and test it with test requests.

Actix-web provides a few helper functions to set up the test server and create test

requests. A simple test that calls the /api/cats API should look like Listing 5-20.

Listing 5-20.  An integration test that calls the /api/cats API, added to

src/main.rs

// src/main.rs

// ...

fn setup_database() -> DbPool {

 let database_url = env::var("DATABASE_URL")

 .expect("DATABASE_URL must be set");

 let manager =

 ConnectionManager::<PgConnection>::new(&database_url);

 r2d2::Pool::builder()

 .build(manager)

 .expect("Failed to create DB connection pool.")

 }

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 let pool = setup_database();

 // ...

}

17 https://doc.rust-lang.org/book/ch11-00-testing.html

Chapter 5 REST APIs

https://doc.rust-lang.org/book/ch11-00-testing.html

166

#[cfg(test)]

mod tests {

 use super::*;

 use actix_web::{test, App};

 #[actix_web::test]

 async fn test_cats_endpoint_get() {

 let pool = setup_database();

 let mut app = test::init_service(

 App::new().app_data(

 web::Data::new(pool.clone())

).route(

 "/api/cats",

 web::get().to(cats_endpoint),

),

)

 .await;

 let req = test::TestRequest::get()

 .uri("/api/cats")

 .to_request();

 let resp = test::call_service(&mut app, req).await;

 assert!(resp.status().is_success());

 }

}

There are a few things to focus on in this example. First, we create a test module

(mod tests) and add test cases as async functions. The test case functions need to be

annotated with #[actix_web::test] so they will be run in the Actix runtime. Before

running the test, you need to add the actix_rt crate using the command cargo add

actix_rt.

Since we are doing an integration test, which involves starting a real HTTP server

that communicates to a real database (as opposed to stubbing/mocking), we can reuse

the code that sets up the database and connection pool by extracting it into a function

named setup_database.

Chapter 5 REST APIs

167

To start the test server, you construct an App instance as you would do in the main()

function and pass it to test::init_service(). Of course, you can omit unrelated

routes to make the code more readable and easier to debug. Then you can use the

test::TestRequest builder to create a test request. Here we create a GET request for

/api/cats. You can make the call with test::call_service and get the response.

Finally, we can check if the response is a success (i.e., status code is in the 200–299

range) with an assert!().

Tip  For a test run to not interfere with any future test runs, you need to clean the
database between every test run. You could create a test PostgreSQL database and
use Rust code to set up and clean up before and after each test. But since we are
using Docker and it’s relatively easy to create new databases, you can consider
creating a fresh PostgreSQL container for every test run, and destroy it after the
test finishes.

You might notice that the code that sets up the /api/cats route is duplicated in the

main() function and in the test function. As your service gets more and more routes,

this repetition will start making maintenance hard. Actix-web provides a way to reuse

configurations using the App::configure function. You pass a configuration function

to App::new().configure(). The function needs to take one parameter of the type

web::ServiceConfig. The ServiceConfig struct has the same interface as App, which

has the methods data(), service, route(), etc. We can create a function called api_

config that sets up everything under the /api scope. This function can then be reused in

the main() function and the integration test, as shown in Listing 5-21. The api_config()

function can also be extracted into a separate module, so you can keep the configuration

in a separate file to improve readability.

Listing 5-21.  Reusing configuration using App::configure()

// ...

fn api_config(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/api")

 .route("/cats", web::get().to(cats_endpoint))

Chapter 5 REST APIs

168

 .route("/add_cat", web::get().to(add_cat_endpoint)),

);

}

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 let pool = setup_database();

 println!("Listening on port 8080");

 HttpServer::new(move || {

 App::new()

 .app_data(web::Data::new(pool.clone()))

 .app_data(

 awmp::PartsConfig::default()

 .with_temp_dir("./tmp")

)

 .configure(api_config) // Used here

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .route("/", web::get().to(index))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

 }

#[cfg(test)]

mod tests {

 use super::*;

 use actix_web::{test, App};

Chapter 5 REST APIs

169

 #[actix_web::test]

 async fn test_cats_endpoint_get() {

 let pool = setup_database();

 let mut app = test::init_service(

 App::new().app_data(web::Data::new(pool.clone()))

 .configure(api_config),

)

 .await;

 let req = test::TestRequest::get()

 .uri("/api/cats")

 .to_request();

 let resp = test::call_service(&mut app, req).await;

 assert!(resp.status().is_success());

 }

}

.

Now you can run your tests just like with any other Rust crate by typing cargo test

into the command line.

5.8 � Building the Cat Detail API
The cats API is too simple for demonstrating advanced use cases like query parameters,

input validation, and error handling, so we are going to rebuild the cat API that returns a

single cat’s details.

First, let’s take a look at how the frontend is supposed to call the API. You might have

noticed that in Listing 5-9, each cat’s name is a link that points to /cat.html?id=

${cat.id}. This page doesn’t exist yet, so you need to create it in static/cat.html and

paste the code in Listing 5-22 into it.

Chapter 5 REST APIs

170

Listing 5-22.  Single cat detail page

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8" />

 <title>Cat</title>

</head>

<body>

<h1 id="name">Loading...</h1>

<p>

 Back

</p>

<script charset="utf-8">

 const urlParams = new URLSearchParams(window.location.search)

 const cat_id = urlParams.get("id")

 document.addEventListener("DOMContentLoaded", () => {

 fetch('/api/cat/${cat_id}')

 .then((response) => response.json())

 .then((cat) => {

 document.getElementById("name").innerText = cat.name

 document.getElementById("image").src = cat.image_path

 document.title = cat.name

 })

 })

</script>

</body>

</html>

The preceding link opens the cat.html page and passes a query parameter (e.g.,

?id=1). This id query parameter is extracted as an object in JavaScript by creating a new

URLSearchParams(window.location.search) and then calling the .get () function on

it. With the cat’s ID at hand, we can call the /api/cat/${cat_id} API using fetch. The

API has one path parameter for the ID, and it should return the cat’s detail (including the

name and the image path) in JSON format.

Chapter 5 REST APIs

171

The most naive implementation for this API would be like that in Listing 5-23.

Listing 5-23.  A naive implementation of the cat API

use serde::Deserialize;

// ...

#[derive(Deserialize)]

struct CatEndpointPath {

 id: i32,

}

async fn cat_endpoint(

 pool: web::Data<DbPool>,

 cat_id: web::Path<CatEndpointPath>,

) -> Result<HttpResponse, Error> {

 let mut connection =

 pool.get().expect("Can't get db connection from pool");

 let cat_data = web::block(move || {

 cats.filter(id.eq(cat_id.id))

 .first::<Cat>(&mut connection)

 })

 .await?.map_err(error::ErrorInternalServerError)?;

 Ok(HttpResponse::Ok().json(cat_data))

}

// ...

fn api_config(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/api")

 .route("/cats", web::get().to(cats_endpoint))

 .route("/add_cat", web::get().to(add_cat_endpoint))

 .route("/cat/{id}", web::get().to(cat_endpoint)),

);

}

Chapter 5 REST APIs

172

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 // ...

}

This code extracts the cat_id using the web::Path<CatEndpointPath> extractor and

tries to find it in the PostgreSQL database. If you run this after adding a new cat and then

navigate to that cat’s page, you’ll see an image like in Figure 5-6.

But there are a few issues with this implementation, as follows:

•	 If it fails to get a connection from the connection pool, it will panic!

due to the expect and return a 500 error.

•	 If the ID does not exist in the database, we get a 500 Internal

Server Error.

•	 If the ID in the path is not an integer (e.g., /api/cat/abc), it will

return a 404 error with a message can not parse "abc" to a i16.

Figure 5-6.  Cat detail page, rendered from data retrieved from the cat endpoint

Chapter 5 REST APIs

173

•	 If the ID is an integer, but is not in the correct range (e.g., negative

number), we get a 400 Bad Request error.

•	 It’s not very obvious where and why the error occurs in the

source code.

500 Internal Server Error is not very informative for the frontend. The frontend only

knows that something went wrong on the server side, but it can’t generate a helpful error

message that will help the user work around the problem. There are a few ways to do

it better:

•	 Return a 40018 error when the ID is invalid (e.g., not a number, out

of bound).

•	 Return a 404 error when the ID doesn’t exist in the database.

•	 Return a 500 error when we can’t get a connection from the pool.

•	 Be able to customize the error message ourselves.

•	 Make it clear in the code where and why an error occurs.

5.9 � Input Validation
Let’s deal with the input validation first. We know that the cat’s ID can be wrong in many

ways. If it’s not an integer, Actix-web’s type-safe extractor will return a 404 error. This

error can be customized, but we’ll get back to it later. Let’s first handle the case where the

ID is an integer, but it’s not in the sensible range.

Because our cat ID has the schema id SERIAL PRIMARY KEY, we know that

PostgreSQL will start with 1 and increase it by 1 every time we insert a new row.

Therefore, the ID can’t go below 1. Also for the sake of the example, if we only allow a

user to add unique cat breeds to the website, then there are only 71 standardized breeds

recognized by The International Cat Association (TICA). If we keep some buffer and

assume that the cat breeds might double in the future, then we will have about 71 × 2 =

142 ≈ 150 breeds. Therefore, we can check if the cat’s ID is between 1 and 150 (inclusive),

and if not we can simply reject the request without even querying the database.

18 There are many debates about whether a 400 or a 422 is more appropriate in this case. We’ll
stick with the more generic 400 error.

Chapter 5 REST APIs

174

To validate the input parameter in a more declarative way, you can use the

validator crate. Add the crates with the command cargo add validator --features

derive. Let’s then derive that onto the cat’s ID, as shown in Listing 5-24.

Listing 5-24.  Using validator on cat’s ID

use validator::Validate;

// ...

#[derive(Deserialize, Validate)]

struct CatEndpointPath {

 #[validate(range(min = 1, max = 150))]

 id: i32,

}

async fn cat_endpoint(

 pool: web::Data<DbPool>,

 cat_id: web::Path<CatEndpointPath>,

) -> Result<HttpResponse, Error> {

 cat_id

 .validate()

 .map_err(error::ErrorBadRequest)?;

 // ... getting a connection and query from database

 Ok(HttpResponse::Ok().json(cat_data))

}

In this code snippet, the web::Path extractor now tries to extract the CatEndpointPath

struct from the URL. The CatEndpointPath is marked to have a Validate auto-derive

trait provided by the validate crate. This means you can call CatEndpointPath.

validate() to validate all its fields. Each field’s validation rule can be annotated on

them individually. For our id we specify that it should be a number in the range of 1 to

150: #[validate(range(min=1, max=150))]. The validator crate also provides some

common checks like whether the field is an email, IP, URL, or has a certain length.

Chapter 5 REST APIs

175

Inside the cat_endpoint handler, we call cat_id.validate() to validate. If

the validation passes, it returns an Ok<()> and we just allow the code to continue.

If the validation fails, it returns an Err<ValidationError>, and we convert it to a

HttpResponse::BadRequest and force it to early return with the ? operator.

Now if you start the server again with cargo run and make a call to the API with

an ID outside of the range (e.g., curl -v localhost:8080/api/cat/9999 or curl -v

localhost:8080/api/cat/-1),19 you should see the 400 Bad Request response.

$ curl -v localhost:8080/api/cat/9999

* Trying 127.0.0.1:8080...

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET /api/cat/9999 HTTP/1.1

> Host: localhost:8080

> User-Agent: curl/7.81.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 400 Bad Request

< content-length: 95

< content-type: text/plain; charset=utf-8

< date: Mon, 03 Apr 2023 18:06:28 GMT

<

* Connection #0 to host localhost left intact

id: Validation error: range [{

 "max": Number(150.0),

 "min": Number(1.0),

 "value": Number(9999)

}]

19 The ‘-v’ option is an abbreviation of --verbose. It will make curl print extra information like
HTTP status code.

Chapter 5 REST APIs

176

5.10 � Error Handling
You’ve just seen how invalid input for the cat_endpoint handler can cause an error,

but there are many other ways that this simple endpoint can have problems. We can go

through the list to see how each error is handled in kind:

•	 The parameter validation might fail (dealt with in previous section).

•	 Getting a connection from the connection pool might fail.

•	 Querying the cat from the database might fail because

–– web::block() might fail for unexpected reasons;

–– the Diesel ORM might fail for unexpected reasons; or

–– the Diesel query might fail because the cat doesn’t exist.20

Each of these errors might come from different libraries (actix-web, r2d2, diesel),

and you’ve been converting them to HTTP responses with .map_err() and ?. But it’s

worth taking a step back to look at how Actix-web handles errors in general.

Let’s first look at the API endpoint handler’s return type: Result<HttpResponse,

Error>. The Error here refers to Actix-web’s own actix_web::Error21, rather than the

standard library std::error::Error. An actix_web::Error contains a trait object

of the trait ResponseError. The ResponseError contains metadata (e.g., status code)

and helper functions to construct an HTTP response so Actix-web can easily convert a

actix_web::Error into an HTTP error response.

Since most of the errors returned by our dependent libraries are not actix_

web::Error, if we have to handle them with match and construct an actix_web::Error

by hand, the control flow will soon be very verbose. But in our previous example we

could do something like .map_err(error::ErrorBadRequest)?;. How does this work?

Actix-web provides many helper functions and implicit type conversions to help

you handle errors more fluently. Error handling can get confusing and overwhelming

because of all the options. To simplify things, we’ll break error handling down into three

main categories:

20 Although we make sure the ID is within 1 to 150, we might only have 70 cats in the database, and
someone might try to find a cat with ID 71.
21 It’s actually a re-export of actix_http::error::Error. It’s re-exported by actix_web for
convenience. actix_web::error::Error is also the same thing.

Chapter 5 REST APIs

177

•	 Using the actix_web::error helper functions like actix_

web::error:: ErrorBadRequest

•	 Using a generic error that has implemented the ResponseError trait

•	 Using a custom-built error type

�Using the actix_web::error Helpers
The first and probably most straightforward method is to use the actix_web::error

helpers. In the actix_web::error module there are helper functions for most of the

commonly used HTTP status codes. For example:

•	 ErrorBadRequest(): 400

•	 ErrorNotFound(): 404

•	 ErrorInternalServerError(): 500

•	 ErrorBadGateway(): 502

These error helpers wrap any error and return an actix_web::Error. For example,

the signature of ErrorBadRequest is as follows:

pub fn ErrorBadRequest<T>(err: T) -> Error

where

 T: Debug + Display + 'static,

Therefore, if we make a function call that may return a Result<T, E>, we can use

the .map_err() function to convert the E into an actix_web::Error. Then, we can use

the ? operator to force the handler function to return early with the converted actix_

web::Error.

cat_id

 .validate()

 .map_err(|e| error::ErrorBadRequest(e))?;

Or simply replace the closure with the helper function:

cat_id

 .validate()

 .map_err(error::ErrorBadRequest)?;

Chapter 5 REST APIs

178

Note  If you are not familiar with the .map_err() function, its purpose is to
convert the Err value of a Result from one type to another, leaving the Ok value
unchanged. For example, if we pass a function that converts a value of type E to
type F, the .map_err() will convert a Result<T, E> to Result<T, F>. This is
useful for passing through the Ok value and handling the Err. In our example, we
use it to convert the error to a type that Actix-web accepts.

Figure 5-7 visualizes the error-handling flow we have so far been using.

Figure 5-7.  The current error-handling flow

Chapter 5 REST APIs

179

�Using a Generic Error That Has Implemented the
ResponseError Trait
The previous method converts (or wraps) the error we got into an actix_web::Error.

But the type definition of Responder only requires the error to be Into<Error>. And

since there is an implementation of impl<T: ResponseError + 'static> From<T> for

Error, you can return anything that implements the ResponseError trait.

Actix-web already implements ResponseError for many of the common error types

you’ll encounter in web services, such as the following:

•	 std::io::error::Error: when reading files

•	 serde_json::error::Error: when serialize/deserialize JSON

•	 openssl::ssl::error::Error: when making HTTPS connections

Therefore, if you have some very simple handlers that have only one error, you can

just return it directly. For example, if you are serving the index.html by reading it in

the handler with NamedFile::open, you can simply return std::io::Result<T> (i.e.,

Result<T, std::io::error::Error>), and the io::error::Error will be converted to

an HTTP response error without writing anything extra (Listing 5-25).

Listing 5-25.  Returning a io::Result, which implements ResponseError

use actix_files::NamedFile;

use std::io;

async fn index() -> io::Result<NamedFile> {

 Ok(NamedFile::open("./static/index.html")?)

}

�Using a Custom-Built Error Type
The built-in implementation of impl ResponseError for T and impl From <T> for

Error are helpful if you want to quickly return some error and don’t want to deal with the

conversion. But because many of the error types can be converted too easily, you might

accidentally return some error that exposes too much detail to the user. When building

an API you need to carefully choose how much detail you expose. A very detailed error

is useful for debugging, but it may expose too many implementation details and give an

Chapter 5 REST APIs

180

attacker some hints on hacking your system. For example, if the application server fails

to connect to the database, it might be tempting to respond with an error describing why

the database connection failed, the database IP and port, or if you are really not careful,

the database username and password. All these are useful pieces of information for the

attacker to plan an attack based on the known vulnerabilities of the kind of database

you use. Instead, you should just return a generic 500 Internal Server Error and not let

the client know why. In other words, it’s important to distinguish the internal error (e.g.,

database connection failed for a particular reason) and the user-facing error (e.g., 500

Internal Server Error).

To achieve this separation, we can implement our custom error type that implements

the ResponseError trait. The error type can be an enum with a detailed reason that helps

debugging, but the ResponseError implementation can convert these detailed errors

into generic user-facing errors. We can also customize the error message instead of

relying on the default provided by the actix_web::error helpers or ResponseBuilder.

To define our custom error, let’s first create a new file called src/errors.rs and

create an enum called UserError, as shown in Listing 5-26.

Listing 5-26.  Custom error definition

#[derive(Debug)]

pub enum UserError {

 ValidationError,

 DBPoolGetError,

 NotFoundError,

 UnexpectedError,

}

Then, let’s declare this module in src/main.rs and use them in our cat_endpoint

(Listing 5-27).

Listing 5-27.  Declaring and using the UserError in the cat_endpoint

// ...

mod errors;

use self::errors::UserError;

// ...

Chapter 5 REST APIs

181

async fn cat_endpoint(

 pool: web::Data<DbPool>,

 cat_id: web::Path<CatEndpointPath>,

) -> Result<HttpResponse, UserError> {

 cat_id.validate().map_err(|_| UserError::ValidationError)?;

 let mut connection =

 pool.get().map_err(|_| UserError::DBPoolGetError)?;

 let query_id = cat_id.id.clone();

 let cat_data = web::block(move || {

 cats.filter(id.eq(query_id))

 .first::<Cat>(&mut connection)

 })

 .await

 .map_err(|_|UserError::UnexpectedError)?

 .map_err(|e| match e {

 diesel::result::Error::NotFound => {

 UserError::NotFoundError

 }

 _ => UserError::UnexpectedError,

 })?;

 Ok(HttpResponse::Ok().json(cat_data))

}

// ...

Notice that the cat_endpoint now returns the type Result<HttpResponse,

UserError>. The .map_err() now converts the errors into UserError, instead of the

error helper or ResponseBuilder. We also make a match in the .map_err() of the

database query call, so we can isolate the special case where Diesel reports it can’t find

the cat (diesel::result::Error::NotFound).

The UserError has not implemented the ResponseError trait yet, so it can’t be

turned into an HTTP response. We can implement it in src/errors.rs, as shown in

Listing 5-28. You’ll also notice that we used the derive_more crate so we can auto-derive

the Display trait on the UserError enum. You can add these crates by running cargo

add derive_more.

Chapter 5 REST APIs

182

Listing 5-28.  Implementing ResponseError for UserError

use actix_web::http::StatusCode;
use actix_web::{error, HttpResponse};
use derive_more::Display;
use serde_json::json;

#[derive(Display, Debug)]
pub enum UserError {
 #[display(fmt = "Invalid input parameter")]
 ValidationError,
 #[display(fmt = "Internal server error")]
 DBPoolGetError,
 #[display(fmt = "Not found")]
 NotFoundError,
 #[display(fmt = "Internal server error")]
 UnexpectedError,
}

impl error::ResponseError for UserError {
 fn error_response(&self) -> HttpResponse {
 HttpResponse::build(self.status_code())
 .json(json!({ "msg": self.to_string() }))
 }
 fn status_code(&self) -> StatusCode {
 match *self {
 UserError::ValidationError => {
 StatusCode::BAD_REQUEST
 }
 UserError::DBPoolGetError => {
 StatusCode::INTERNAL_SERVER_ERROR
 }
 UserError::NotFoundError => StatusCode::NOT_FOUND,
 UserError::UnexpectedError => {
 StatusCode::INTERNAL_SERVER_ERROR
 }
 }
 }
}

Chapter 5 REST APIs

183

An HTTP response has two key elements: the status code and the body. The status

code is determined by the status_code() function. The function is a simple match

that converts the enum variant to the appropriate status code. For the body we want to

respond with a JSON object of the following format:

{

 "msg": "An error message"

}

The HTTP response is generated in the error_response() function using

the HttpResponse builder. The message body is created by calling self.to_

string(). We derive the Display trait on the enum and annotate each variant with

#[display(fmt="...")] so that the .to_string() function will convert the enum

variant to the string we specified. The JSON body is serialized using json!() macro from

serde_json.

With this custom error, we can create as many internal errors as we want while

converting them to something general for the user. Because the return type is

Result<HttpResponse, UserError>, the compiler will prevent you from accidentally

returning a random error that just happens to implement ResponseError.

Figure 5-8 visualizes the new error-handling flow after using UserError.

Chapter 5 REST APIs

184

Figure 5-8.  The error-handling flow after using UserError

5.11 � Customizing the web::Path Extractor Error
We now have control over most of the errors, but we missed one case. If the ID cannot

be converted to i32, the web::Path extractor will return a 404 Not Found with a default

error message. But that error can also be customized through web::PathConfig::error_

handler(). When we construct the App (or a ServiceConfig), we can define a custom

error handler for web::Path extractors that returns custom errors. We can add it to the

api_config() function as shown in Listing 5-29.

Chapter 5 REST APIs

185

Listing 5-29.  Custom error handler for web::Path extractor error

fn api_config(cfg: &mut web::ServiceConfig) {

 cfg.service(

 web::scope("/api")

 .app_data(web::PathConfig::default().error_handler(

 |_, _| UserError::ValidationError.into(),

))

 .route("/cats", web::get().to(cats_endpoint))

 .route("/add_cat", web::post().to(add_cat_endpoint))

 .route("/cat/{id}", web::get().to(cat_endpoint))

);

}

You’ve thus configured a custom error handler that returns a

UserError::ValidationError, which will be converted to a 400 Bad Request error

thanks to our ResponseError implementation from the previous section:

UserError::ValidationError => {

 StatusCode::BAD_REQUEST

}

5.12 � Logging
Good error handling helps us provide meaningful error status codes and messages to

the frontend. But to really understand what happened as developers, we need to rely on

logging. When the server is small and the business logic is simple, you can easily try a

few requests and reproduce a bug. But when you have thousands of concurrent users,

all going through different code paths, it can be hard to pinpoint exactly where the

bug is. With proper logging, you can gain visibility into what happened to the requests

and easily identify problems and bugs. It might also give you a view into user behavior

and trends.

There is a key concept you need to understand before jumping into logging: logging

facade versus logging implementation. A logging facade defines an “interface” for

logging. A logging implementation adopts that “interface” and does the actual logging

(e.g., writing to STDOUT; writing to a file). A logging facade gives an extra layer of

Chapter 5 REST APIs

186

abstraction so you can swap different implementations without rewriting the whole

code. This is particularly useful when building libraries. A Rust library can log using

a logging facade but not choose a concrete implementation. An application that uses

libraries can choose an implementation, and as long as all the libraries adopt the same

logging facade, they can use the same chosen implementation.

A commonly used facade is the log crate, and env_logger is a simple but effective

logging implementation. The env in the name suggests that you can configure the

logging level using environment variables. Actix-web also provides a Logger middleware

that produces access logs using the log facade.

To enable the Logger, you .wrap() the App with the Logger middleware as shown in

Listing 5-30. Don’t forget to run cargo add env_logger to import the crate.

Listing 5-30.  Using the Logger middleware

//...

use actix_web::middleware::Logger;

// ...

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 env_logger::init(); // Initialize env_logger

 let pool = setup_database();

 println!("Listening on port 8080");

 HttpServer::new(move || {

 App::new()

 .wrap(Logger::default()) // Set the logger

 .app_data(web::Data::new(pool.clone()))

 .app_data(awmp::PartsConfig::default()

 .with_temp_dir("./tmp")

)

 .configure(api_config) // Used here

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

Chapter 5 REST APIs

187

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .route("/", web::get().to(index))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

 }

The Logger middleware uses the log facade, but you need to provide a logger

implementation for it to work. (For this example you’ll want to check that the added

version is 0.10.0.)

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 env_logger::init();

 // ...

}

In the example, we use Logger::default() to get the default format. But you can

also customize the log format when you initialize it.

The log facade defines the following log levels, ordered by priority:

•	 Error: Designates very serious errors.

•	 Warn: Designates hazardous situations.

•	 Info: Designates useful information.

•	 Debug: Designates lower priority information.

•	 Trace: Designates very low priority, often extremely verbose,

information.

When you choose a log level, any log that has priority above it and includes that level

will be shown. Because the env_logger’s log level is configured through environment

variables, we can run the server with log level set to debug in this way:

RUST_LOG=debug cargo run

Chapter 5 REST APIs

188

When you try calling the http://localhost:8080/api/cats API, the Logger

middleware should log this request (note on your system some of the specifics may be

different):

[2022-12-19T17:52:11Z INFO actix_server::builder]

 Starting 8 workers

[2022-12-19T17:52:11Z INFO actix_server::server]

 Actix runtime found; starting in Actix runtime

[2022-12-19T17:52:41Z INFO actix_web::middleware::logger]

 127.0.0.1 "GET /api/cats HTTP/1.1" 200

 712 "-" "Mozilla/5.0 (X11; Linux x86_64)

 AppleWebKit/537.36 (KHTML, like Gecko)

 Chrome/107.0.0.0 Safari/537.36" 0.002274

You can also log custom messages. The log crate exposes logging macros for logging

at a particular level: error!(), warn!(), info!(), debug!(), and trace!(). You can add

logs to all the places where errors are handled (Listing 5-31). Note that we can also use

this opportunity to go back and change the error type of the cats_endpoint and add_

cat_endpoints functions to UserError.

Listing 5-31.  Custom logging

//...

use log::{error, info, warn};

use actix_web::{web, App, HttpServer, HttpResponse,

 Result}; // Remove error, Error

// ...

async fn cats_endpoint(

 pool: web::Data<DbPool>,

) -> Result<HttpResponse, UserError> {

 let mut connection =

 pool.get().expect("Can't get db connection from pool");

 let cats_data = web::block(move || {

 cats.limit(100).load::<Cat>(&mut connection)

 })

Chapter 5 REST APIs

189

 .await

 .map_err(|_| {

 error!("Blocking Thread Pool Error");

 UserError::UnexpectedError

 })?

 .map_err(|_| {

 error!("Failed to get DB connection from pool");

 UserError::DBPoolGetError

 })?;

 return Ok(HttpResponse::Ok().json(cats_data));

}

// ...

async fn cat_endpoint(

 pool: web::Data<DbPool>,

 cat_id: web::Path<CatEndpointPath>,

) -> Result<HttpResponse, UserError> {

 cat_id.validate().map_err(|_| {

 warn!("Parameter validation failed");

 UserError::ValidationError

 })?;

 let mut connection =

 pool.get().map_err(|_| {

 error!("Failed to get DB connection from pool");

 UserError::DBPoolGetError

 })?;

 let query_id = cat_id.id.clone();

 let cat_data = web::block(move || {

 cats.filter(id.eq(query_id))

 .first::<Cat>(&mut connection)

 })

 .await

 .map_err(|_|{

 error!("Blocking Thread Pool Error");

 UserError::UnexpectedError

 })?

Chapter 5 REST APIs

190

 .map_err(|e| match e {

 diesel::result::Error::NotFound => {

 error!("Cat ID: {} not found in DB",

 &cat_id.id);

 UserError::NotFoundError

 }

 _ => {

 error!("Unexpected error");

 UserError::UnexpectedError

 },

 })?;

 Ok(HttpResponse::Ok().json(cat_data))

}

// ...

async fn add_cat_endpoint(

 pool: web::Data<DbPool>,

 mut parts: awmp::Parts,

) -> Result<HttpResponse, UserError> {

 let file_path = parts

 .files

 .take("image")

 .pop()

 .and_then(|f| f.persist_in("./image").ok())

 .ok_or_else(|| {

 error!("Error in getting image path");

 UserError::ValidationError

 })?;

 let text_fields: HashMap<_, _> =

 parts.texts.as_pairs().into_iter().collect();

 let mut connection = pool.get()

 .map_err(|_| {

 error!("Failed to get DB connection from pool");

 UserError::DBPoolGetError

 })?;

Chapter 5 REST APIs

191

 let new_cat = NewCat {

 name: text_fields.get("name").ok_or_else(|| {

 error!("Error in getting name field");

 UserError::ValidationError

 }

)?.to_string(),

 image_path: file_path.to_string_lossy().to_string()

 };

 web::block(move ||

 diesel::insert_into(cats)

 .values(&new_cat)

 .execute(&mut connection)

)

 .await

 .map_err(|_| {

 error!("Blocking Thread Pool Error");

 UserError::UnexpectedError

 })?

 .map_err(|_| {

 error!("Failed to get DB connection from pool");

 UserError::DBPoolGetError

 })?;

 Ok(HttpResponse::Created().finish())

}

// ...

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 env_logger::init();

 let pool = setup_database();

 info!("Listening on port 8080"); // New logging line

 HttpServer::new(move || {

 App::new()

Chapter 5 REST APIs

192

 .wrap(Logger::default())

 .app_data(web::Data::new(pool.clone()))

 .app_data(awmp::PartsConfig::default()

 .with_temp_dir("./tmp")

)

 .configure(api_config)

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .route("/", web::get().to(index))

 })

 .bind("127.0.0.1:8080")?

 .run()

 .await

}

This makes our code longer and more verbose, but is critical to being able to debug a

problem in production.

You can start the server with logging by running

RUST_LOG=debug cargo run

If you try to trigger a validation error (e.g., by calling curl localhost:8080/api/

cat/-1), you should see a custom log like the following:

[2022-12-19T18:07:46Z INFO catdex-api]

 Listening on port 8080

[2022-12-19T18:07:46Z INFO actix_server::builder]

 Starting 8 workers

[2022-12-19T18:07:46Z INFO actix_server::server]

 Actix runtime found; starting in Actix runtime

[2022-12-19T18:07:49Z WARN catdex-api]

 Parameter validation failed

Chapter 5 REST APIs

193

[2022-12-19T18:07:49Z DEBUG actix_web::middleware::logger]

 Error in response: ValidationError

[2022-12-19T18:07:49Z INFO actix_web::middleware::logger]

 127.0.0.1 "GET /api/cat/-1 HTTP/1.1" 400 33 "-"

 "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36

 (KHTML, like Gecko) Chrome/107.0.0.0

 Safari/537.36" 0.000380

With carefully planned error handling and logging, you should be able to get good

visibility into how your system is behaving in production.

5.13 � Enabling HTTPS
Now our API server is ready to serve the users. But we’ve been testing it with the HTTP

protocol only. To actually serve this API out on the internet, it’s important to use the HTTPS

protocol, which encrypts the communication with TLS (Transport Layer Security).22

The first thing you need for HTTPS is a certificate for your domain name. Usually,

you obtain a certificate from a certificate authority (CA). You can get a free certificate

from Let’s Encrypt,23 a non-profit CA that tries to create a more secure web. But for the

sake of demonstration we are going to create a self-signed certificate; i.e., we act as our

own CA and sign our own certificate.

To generate the certificate (cert.pem) and the private key (key.pem),24 you can run

this commands:

sudo apt install openssl # Only run once

openssl req -x509 -newkey rsa:4096 \

 -keyout key.pem \

 -out cert.pem \

 -days 365 \

 -sha256 \

 -subj "/CN=localhost"

22 Formerly SSL (Secure Sockets Layer).
23 https://letsencrypt.org/
24 How HTTPS works is outside of the scope for this book, but you can find many good
introductions online by searching “How HTTPS works.”

Chapter 5 REST APIs

https://letsencrypt.org/

194

The openssl tool will ask you to set a password for the key.pem file. If you use this

key.pem, then every time you start the Acitx-web server you need to enter the password

again. To remove the password, you can run

openssl rsa -in key.pem -out key-no-password.pem

This will generate a new key file key-no-password.pem. When deploying this file to

the production server, be sure to secure it with file system permissions.

Once we have the certificate and key, there are a few extra steps required for SSL:

•	 Install the required headers: sudo apt install libssl-dev.

•	 Add the openssl crate to the dependencies via cargo add openssl.

•	 Enable the openssl feature on actix-web via cargo add

actix-web --features openssl (Listing 5-32).

Listing 5-32.  Enabling the openssl feature for actix-web in Cargo.toml

[package]

name = "catdex-api"

...

[dependencies]

actix-web = { version = "4.3.1", features = ["openssl"] }

...

openssl = "0.10.49"

Finally, we can change our code so that the App builder uses .bind_openssl()

instead of .bind(), shown in Listing 5-33.

Listing 5-33.  Enabling SSL

// ...

use openssl::ssl::{SslAcceptor, SslFiletype, SslMethod};

// ...

#[actix_web::main]

async fn main() -> std::io::Result<()> {

 env_logger::init();

Chapter 5 REST APIs

195

 //Set up the certificate

 let mut builder =

 SslAcceptor::mozilla_intermediate(SslMethod::tls())

 .unwrap();

 builder

 .set_private_key_file(

 "key-no-password.pem",

 SslFiletype::PEM,

)

 .unwrap();

 builder.set_certificate_chain_file("cert.pem").unwrap();

 let pool = setup_database();

 info!("Listening on port 8080");

 HttpServer::new(move || {

 App::new()

 .wrap(Logger::default())

 .app_data(web::Data::new(pool.clone()))

 .app_data(awmp::PartsConfig::default()

 .with_temp_dir("./tmp")

)

 .configure(api_config) // Used here

 .service(

 Files::new("/static", "static")

 .show_files_listing(),

)

 .service(

 Files::new("/image", "image")

 .show_files_listing(),

)

 .route("/", web::get().to(index))

 })

 .bind_openssl("127.0.0.1:8080", builder)? // Binding

 .run()

 .await

}

Chapter 5 REST APIs

196

Now if you start the server with cargo run, you should be able to connect to the

website with https://localhost:8080 instead of http://localhost:8080. Your

browser should show a warning because it doesn’t trust our self-signed CA, but for this

testing case you can inform it that you understand the risks and proceed.

5.14 � Framework Alternatives
There are many server-side frameworks in Rust to choose from. We’ll suggest some high-

level frameworks that you might find useful. Some people want to use low-level HTTP

libraries like hyper25 to build web servers for better control, but they require a better

understanding of the underlying technology and more code. Just like in many other

areas of programming, it’s usually best to start at a higher level of abstraction and only

dip into a lower level when you know you need the control or performance.

If you need to build dynamic websites or powerful REST APIs, there are many

options besides Actix-web. Rocket26 is probably one of the strongest competitors. It still

hasn’t reached version 1.0, but continuous progress is being made. Warp27 also gets a lot

of attention in the community because of its unique design on composability, but the

documentation and online resources are relatively scarce. There are a few others that are

also relatively stable and easy to use:

•	 gotham28

•	 tower-web29

•	 iron30

•	 nickel31

•	 Tide32

25 https://hyper.rs/
26 https://rocket.rs/
27 https://github.com/seanmonstar/warp
28 https://gotham.rs/
29 https://github.com/carllerche/tower-web
30 http://github.com/iron/iron
31 https://nickel-org.github.io/
32 https://github.com/http-rs/tide

Chapter 5 REST APIs

https://hyper.rs/
https://rocket.rs/
https://github.com/seanmonstar/warp
https://gotham.rs/
https://github.com/carllerche/tower-web
http://github.com/iron/iron
https://nickel-org.github.io/
https://github.com/http-rs/tide

197

•	 rouille33

•	 Thruster34

For database access through ORM, you can also check out Rustorm35 and SeaORM.36

If you don’t like using ORM and would like to work with raw SQL, you can find many

client libraries for popular databases and in-memory caches:

•	 mysql37 (for MySQL)

•	 postgres38 (for PostgreSQL)

•	 mongodb39 (for MongoDB)

•	 redis40 (for Redis)

•	 memcache41 (for Memcached)

If want your server to serve more advanced, full-featured web pages without relying

on a frontend framework, you can rely on both static and dynamic HTML generation

crates. If you are building a static website, you can use a static site generator, like Zola42

or Cobalt.43 You can also dynamically generate HTML on the server using various

33 https://github.com/tomaka/rouille
34 https://github.com/thruster-rs/Thruster
35 https://github.com/ivanceras/rustorm
36 https://www.sea-ql.org/SeaORM/
37 https://github.com/blackbeam/rust-mysql-simple
38 https://github.com/sfackler/rust-postgres
39 https://github.com/mongodb/mongo-rust-driver
40 https://github.com/mitsuhiko/redis-rs
41 https://github.com/aisk/rust-memcache
42 https://www.getzola.org/
43 https://cobalt-org.github.io/

Chapter 5 REST APIs

https://github.com/tomaka/rouille
https://github.com/thruster-rs/Thruster
https://github.com/ivanceras/rustorm
http://www.sea-ql.org/SeaORM/
https://github.com/blackbeam/rust-mysql-simple
https://github.com/sfackler/rust-postgres
https://github.com/mongodb/mongo-rust-driver
https://github.com/mitsuhiko/redis-rs
https://github.com/aisk/rust-memcache
http://www.getzola.org/
https://cobalt-org.github.io/

198

HTML templating engines. Some of web frameworks have their preference for a specific

templating engine, and some keep it open (like Actix-web). There are many templating

engines to choose from if server-side HTML generation is your goal:

•	 handlebars44

•	 tera45 (Jinja2/Django-inspired syntax)

•	 liquid46

•	 askama47

•	 tinytemplate48

•	 maud49

•	 ructe50

Besides REST, there are other protocols you can use to build APIs. For example,

gRPC and GraphQL are some of the popular alternatives. For gRPC, there are crates like

tonic51 and grpc.52 For GraphQL there is juniper.53 Juniper doesn’t come with a web

server, so it needs to be integrated into a web framework like Actix-web.

Although JSON is one of the most popular data representation formats, you can also

use other formats like XML (serde-xml-rs54) or Protobuf (protobuf55, or prost56).

44 https://github.com/sunng87/handlebars-rust
45 https://tera.netlify.app/
46 https://github.com/cobalt-org/liquid-rust
47 https://github.com/djc/askama
48 https://github.com/bheisler/TinyTemplate
49 https://maud.lambda.xyz/
50 https://github.com/kaj/ructe
51 https://github.com/hyperium/tonic
52 https://github.com/stepancheg/grpc-rust
53 https://github.com/graphql-rust/juniper
54 https://github.com/RReverser/serde-xml-rs
55 https://github.com/stepancheg/rust-protobuf/
56 https://github.com/danburkert/prost

Chapter 5 REST APIs

https://github.com/sunng87/handlebars-rust
https://tera.netlify.app/
https://github.com/cobalt-org/liquid-rust
https://github.com/djc/askama
https://github.com/bheisler/TinyTemplate
https://maud.lambda.xyz/
https://github.com/kaj/ructe
https://github.com/hyperium/tonic
https://github.com/stepancheg/grpc-rust
https://github.com/graphql-rust/juniper
https://github.com/RReverser/serde-xml-rs
https://github.com/stepancheg/rust-protobuf/
https://github.com/danburkert/prost

199

Finally, log allows us to log in many formats, but they are still for humans to

consume. If we log in a machine-readable format (e.g., JSON), many existing log analysis

tools can help us index and analyze the log. This is called structured logging. Currently,

you can use the slog57 ecosystem for structured logging. There are also efforts in

introducing structured logging to log.58

You can find a complete list of web-related crates and get an overview of the maturity

of Rust’s web ecosystem at https://www.arewewebyet.org/.

5.15 � Conclusion
In this chapter, you developed a server-side web application that both served static pages

and provides a REST API. You integrated a database into your application to persist

data between visits. You added APIs to list cats, add cats, and get more information

about individual cats in the system. You added testing, input validation, error handling,

logging, and HTTPS. In the next chapter, you’ll remove the need for a specific server

running your app and develop a serverless version in the cloud.

57 https://github.com/slog-rs/slog
58 https://github.com/rust-lang/log/issues/149

Chapter 5 REST APIs

https://www.arewewebyet.org/
https://github.com/slog-rs/slog
https://github.com/rust-lang/log/issues/149

201

CHAPTER 6

Going Serverless with the
Amazon AWS Rust SDK
In the previous chapter, you built a REST API that could serve up a static web page and

interact with a database. This works fine when you deploy on your own machine and only

test with low traffic. But when you need to make your site publicly accessible, managing

the server becomes a headache. Traditionally, you’d have to buy physical servers and run

your applications on them. You’d have to take care of every aspect of IT management,

like keeping the operating system and system libraries up-to-date, making sure failed

hardware was replaced, and keeping the servers powered even when there was a power

outage. Unless you have a big budget and an operations team, this is not a fun job.

If you don’t want to handle these troubles yourself, there are many companies that

let you outsource the work and use their servers. Third-party web hosting and virtual

private server (VPS) services have existed for a long time. Nowadays, you also have

many Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) providers

you can choose from. They manage the servers for you and provide different levels of

abstraction so you can focus on your application. Serverless computing pushes this

idea to the extreme. With serverless computing, you just write the functions that handle

the business logic. The hardware, OS, and the language runtime are all handled by the

service provider. You can also connect them to managed databases, message queues,

and file storage, which are all also fully managed by the service provider. Serverless

computing is great for scaling too, letting users use anywhere from a few megabytes

of memory for a few milliseconds a day to running global-scale web applications with

thousands of operations per second.

In this chapter, you’ll use Amazon Web Service (AWS) premier serverless platform, AWS

Lambda, as the computation service. You’ll also use DynamoDB, a fully managed NoSQL

database from AWS. AWS provides a Rust runtime for AWS Lambda and an AWS Software

Development Kit (SDK) for Rust so that you can control AWS services programmatically.

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_6

https://doi.org/10.1007/978-1-4842-9331-7_6

202

6.1 � What Are You Building?
In this chapter, you are going to rebuild the Catdex REST API in a serverless fashion, and

then actually deploy it on the public internet. You’ll learn to build on AWS by following

these steps:

•	 Run Rust code as an AWS Lambda function using the Rust runtime

for AWS Lambda.

•	 Create a REST API endpoint using the AWS Serverless Application

Model (AWS SAM) and its easy-to-use templates.

•	 Use the lambda_http crate to handle API requests coming from AWS

API Gateway.

•	 Write to DynamoDB to create a new cat using the AWS SDK for Rust.

•	 Read all the cats from DynamoDB.

•	 Upload images directly to S3, an object storage service.

•	 Serve the frontend from S3.

•	 Enable cross-origin resource sharing (CORS) so the frontend can

access the API under a different domain.

6.2 � What Is AWS Lambda?
AWS Lambda is a service that allows you to run code without provisioning a server. AWS

manages the underlying hardware, networking, operating system, and runtime. As a

developer, you only upload a piece of code, and it will run and scale automatically. A

lambda function can be triggered manually (via the web console or the AWS Command

Line Interface (AWS CLI)) or by events generated by other AWS services. For REST

APIs, it’s common to use API Gateway or Application Load Balancer to handle the

request and trigger the lambda. AWS Lambda frees the developers from configuring and

managing the servers, so they focus on the code. You are charged by the compute time

you consume (in 100ms chunks), so if your function is sitting idle, you don’t need to pay

anything. Lambda can also scale automatically. If you use Lambda to power a REST API,

it can automatically spin up more lambda instances when traffic is high.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

203

AWS Lambda provides many language runtimes, like Java, Go, PowerShell, Node.

js, C#, Python, and Ruby. It also provides a Runtime API so you can build your custom

runtime.1 AWS has released an experimental runtime for Rust using this runtime

mechanism, so you can run Rust code on Lambda.

Note T he underlying technology that powers AWS Lambda is Firecracker VM.2
Interestingly, Firecracker VM is written in Rust. So even if you write lambdas in
other languages, your code is still powered by Rust. The project was released as
an open source project by AWS. You can find ways to contribute to it by visiting
its GitHub repository: https://github.com/firecracker-microvm/
firecracker.

6.3 � Registering an AWS Account
Since you are going to run your services on Amazon Web Service (AWS), you need to

register an account. Visit https://aws.amazon.com in your browser and click the "Create

an AWS Account" button. Follow the steps and sign up for an account. You might need to

provide a credit card during the process.

AWS provides one year of free-tier services (usage limitations apply) when you sign

up for the first time. This covers most of the services you are going to use: Lambda,

DynamoDB, and S3. Therefore, you should be able to run most of the examples with

minimal to no cost. But remember to clean up all the resources after you finish testing to

prevent any unexpected bills.

1 See https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
2 https://firecracker-microvm.github.io/

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker
https://aws.amazon.com
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://firecracker-microvm.github.io/

204

6.4 � Hello World in Lambda
The first thing you are going to look at is the Hello World lambda from the AWS official

Lambda Rust Runtime.3 You are going to deploy this lambda and test it through the AWS

management console and AWS CLI. First, you’ll need to install Cargo Lambda,4 which

will help with packaging and testing your Lambdas. If you are on a Debian flavor of Linux

(like Ubuntu) you’ll first need to install Python’s pip package manager using

sudo apt install python3-pip

Then, you can install Cargo Lambda using sudo pip3 install cargo-lambda. For

other platforms, refer to the Cargo Lambda documentation for installation instructions.5

Now you can create a Rust project that builds to a simple Lambda function by running

cargo lambda new serverless-hello-world. When you do, a few questions will be

asked. You should answer no to the first, and simply hit Enter for the second without

making any selection.

$ cargo lambda new serverless-hello-world

> Is this function an HTTP function? No

> AWS Event type that this function receives

Now a project will be generated with a basic src/main.rs. You can replace it with the

basic hello world code found in Listing 6-1.

Listing 6-1.  Hello serverless world

use lambda_runtime::{run, service_fn, Error, LambdaEvent};

use serde::{Deserialize, Serialize};

#[derive(Deserialize)]

struct Request {

 first_name: String,

}

3 https://github.com/awslabs/aws-lambda-rust-runtime/
4 https://www.cargo-lambda.info/
5 https://www.cargo-lambda.info/guide/installation.html

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

https://github.com/awslabs/aws-lambda-rust-runtime/
https://www.cargo-lambda.info/
https://www.cargo-lambda.info/guide/installation.html

205

#[derive(Serialize)]

struct Response {

 message: String,

}

async fn function_handler(

 event: LambdaEvent<Request>

) -> Result<Response, Error> {

 let name = event.payload.first_name;

 let response = Response {

 message: format!(

 "Hello, {}",

 if name == "" {"Serverless World"} else {&name}

),

 };

 Ok(response)

}

#[tokio::main]

async fn main() -> Result<(), Error> {

 tracing_subscriber::fmt()

 .with_max_level(tracing::Level::INFO)

 .with_target(false)

 .without_time()

 .init();

 run(service_fn(function_handler)).await

}

In the main function, you can see you set up a tracing_subscriber for logging. The

log generated by the lambda will be collected in AWS CloudWatch, AWS’s logging and

metrics service. Then, you use the run and service_fn functions to set up your handler,

in this case function_handler. That means when an event triggers the lambda, it will

call the function_handler() function and pass the event.

Handling events and returning responses is the core operation of a Lambda handler

function. A lambda can handle different types of events from different sources, like API

Gateway, SQS, S3, or a DynamoDB stream. Each event has its own structure, so you’ll

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

206

have to write your code accordingly. In this example, you are going to define a simple

event format using struct Request, which contains a single field called first_name.

The struct implements the Deserialize trait from Rust’s serde crate. Similarly, you’ll

define a Response as the lambda’s output format and implement Serialize on it so that

it can be converted to JSON.

Figure 6-1.  Lambda console

The function_handler function is very straightforward; it generates a response

using first_name if it’s not the empty string, or the default “Serverless World” otherwise.

This is used as the text in the response message "Hello, <text>!"

At this point, you are ready to deploy your Lambda function, and there are a few

different options to do so. To do the minimal amount of additional setup on this first

example, we’ll create a zip archive of the lambda function and then upload it directly to

the AWS console. Run the following command to create the archive:

cargo lambda build --release --arm64 --output-format zip

After this finishes, you can find the archive at target/lambda/serverless-hello-

world/bootstrap.zip.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

207

To test the lambda, you need to do the following:

	 1.	 Visit the AWS Management Console https://aws.amazon.com/

console/ from your browser. Log in with your credentials.

	 2.	 In “Find Services,” find “Lambda” and click on the result.

	 3.	 In the Lambda console (Figure 6-1), click “Create function.”

	 4.	 In the function creation page, select “Author from scratch.” Set

the “Function name” as “hello-world.” Select “Custom runtime –

Provide your own bootstrap on Amazon Linux 2” in the “Runtime”

field. You should also select arm64 for the platform. Then click

“Create function.”

	 5.	 Once you are redirected to the hello-world function’s page, scroll

down to the “Function code” section and click “Actions.” From a

dropdown you should be able to select “upload,” which will let

you upload the rust.zip file you created previously.

To test this lambda, you can click on the “Test” button on the lambda page

(Figure 6-2). If it’s the first time you are testing it, AWS console will prompt you to create

a test event (Figure 6-3). You can give it an event name called “test” and add a test event

body like so:

{

 "first_name": "Ferris"

}

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

https://aws.amazon.com/console/
https://aws.amazon.com/console/

208

Figure 6-2.  The Test button

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

209

Figure 6-3.  Creating a test event

Figure 6-4.  Test output

Then click “Save.” Now the dropdown menu will show a test event named “test.” If

you click “Test” again, the test event will be sent to the lambda, and you should see an

output and some logs, as shown in Figure 6-4.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

210

6.5 � The Full Architecture
The lambda in the previous section is a simple example and can’t serve HTTP requests

just yet. To be able to receive HTTP requests, you need to put an API Gateway REST API

in front of it. The complete architecture would look like Figure 6-5.

Figure 6-5.  A simple REST API architecture

The REST APIs are served through API Gateway. API Gateway handles the HTTP

connection and triggers a lambda for each request. If you are serving two APIs (e.g., GET

/cats and POST /cat), you can have one lambda per API. The database you’ll use is AWS

DynamoDB. DynamoDB is a NoSQL database that is performant, and you can directly

access DynamoDB from the lambdas with the AWS SDK for Rust.

You also have a few frontend files: HTML, CSS, and JavaScript. These files can

be served separately from an S3 bucket. An S3 bucket is an object store in which you

can store files, and also has an option to serve your files through HTTP like a static

web server.

The URLs exposed by API Gateway and S3 static file hosting are auto-generated by

AWS, so you can’t really customize them. You can, however, add a CloudFront CDN and

add a custom domain name through Route53, a managed DNS service. This way you

have full control over what domain name the API and static files use. But this is beyond

the scope of this book and not related to Rust, so we’ll skip adding them here. You can

consult the official AWS documentation if you are interested in setting this up. We’ll

focus on setting up the rest of the architecture.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

211

6.6 � Using the AWS Serverless Application
Model (AWS SAM)

Configuring all these resources through the web console is not an easy task. It’s hard to

keep track of what is actually deployed in production. It’s also hard to re-create the whole

stack from scratch if you destroy it by accident. Infrastructure-as-code (abbreviated as

IaC) is a way to solve this problem. You define your infrastructure and the configuration

through code, and the IaC tool of your choice will configure everything according to your

code. If you make any change to the definition, the change can be reflected with a quick

deployment. Thus, you can version control your infrastructure like code, and fixing or

re-creating the whole stack is just a simple deployment away.

In this chapter you are going to use the AWS Serverless Application Model to

define your infrastructure, or AWS SAM for short. AWS SAM not only manages the

infrastructure (using an extension of AWS CloudFormation under the hood), but also

helps you manage the whole lifecycle of the application, from testing and packaging the

lambda code to logging.

You are going to use the template-in template as the basis of the new serverless

catdex. To create a project with an AWS SAM template, you first need to install the

AWS SAM CLI. Follow the instructions on the documentation to install the latest AWS

SAM CLI for your operating system: https://docs.aws.amazon.com/serverless-

application-model/latest/developerguide/serverless-sam-cli-install.html.

For Linux, you need to download the ZIP file for the CLI using the link in the

documentation. Then, unzip the ZIP file and execute the installation script:

$ unzip aws-sam-cli-linux-x86_64.zip -d sam-installation

$ sudo ./sam-installation/install

To verify the installation, run the following:

$ sam --version

SAM CLI, version 1.76.0 # You should see the version number

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

212

6.7 � Setting Up AWS SAM CLI Credentials
The SAM CLI needs you to set AWS credentials so it can manage AWS resources on your

behalf. You can follow the step-by-step instructions to set it up:

https://docs.aws.amazon.com/serverless-application-model/latest/

developerguide/prerequisites.html

In short, you need to do the following:

	 1.	 Create a new IAM user with programmatic access. Attach the

AdministratorAccess policy6 to it.

	 2.	 Copy the newly created user’s access key and secret access key.

	 3.	 Install the AWS CLI V2 (if you haven’t already) to configure

credentials.

	 4.	 Set the access key and secret access key using aws configure.

6.8 � Creating the Catdex Serverless Project
To create a project, you can run the same Cargo Lambda command as before, with a new

project name: catdex-serverless. This time you should answer that you are creating an

HTTP function, and that you’ll be creating an Amazon API Gateway REST API. You can

see the output in Listing 6-2.

Listing 6-2.  cargo lambda output

$ cargo lambda new catdex-serverless

> Is this function an HTTP function? y

> Which service is this function receiving events from? Amazon Api Gateway

REST Api

6 It’s a bad idea to give your IAM user administrator access in production. You should grant
permission based on the principle of least privilege. But for demonstration purpose it’s easier to
give full access.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/prerequisites.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/prerequisites.html

213

You now should have a project with an example HTTP lambda function handler

included. Cargo Lambda is great for setting up the basic project that contains the lambda

function, but it doesn’t directly set up the supporting architecture we just described.

Our first step in setting up our infrastructure is to create a template.yaml file, the AWS

SAM template, which will be where we define all of the various pieces of our serverless

architecture. The AWS SAM template is an extension to CloudFormation, which is an

AWS service that lets you model, provision, and manage AWS and third-party resources

by treating infrastructure as code. The template.yaml file contains infrastructure-as-

code definitions for the services like API Gateway and AWS Lambda, and should be

located in the catdex-serverless project as shown here:

.

+-- template.yaml

+-- Cargo.toml

+-- src

| +-- main.rs

Now you can fill out the template.yaml file with the code from Listing 6-3.7 This AWS

SAM template file defines the infrastructure using the AWS SAM specification.8 The AWS

SAM template is an extension of AWS CloudFormation templates, with some additional

components that provide a higher-level abstraction over lower-level CloudFormation

components.

Listing 6-3.  The template.yaml from the template

template.yaml

AWSTemplateFormatVersion: '2010-09-09'

Transform: AWS::Serverless-2016-10-31

Description: >

 catdex-serverless

 Sample SAM Template for catdex-serverless

7 Some comments are removed to improve the readability.
8 https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/
sam-specification.html

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification.html

214

Globals:

 Function:

 Timeout: 3

Resources:

 CatTable:

 Type: AWS::Serverless::SimpleTable

 Properties:

 PrimaryKey:

 Name: cat

 Type: String

 PostCatFunction:

 Type: AWS::Serverless::Function

 Properties:

 CodeUri: target/lambda/catdex-serverless/

 Handler: bootstrap

 Runtime: provided.al2

 Architectures: ["arm64"]

 Events:

 HelloWorld:

 Type: Api

 Properties:

 Path: /cat

 Method: post

 Environment:

 Variables:

 TABLE_NAME: !Ref CatTable

 Policies:

 - DynamoDBWritePolicy:

 TableName: !Ref CatTable

Outputs:

 PostApi:

 Description: "API Gateway endpoint URL for Prod stage

 for Post function"

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

215

 �Va�lue: !Sub "https://${ServerlessRestApi}.execute-api.

${AWS::Region}.${AWS::URLSuffix}/Prod/"

 PostCatFunction:

 Description: "Post Lambda Function ARN

 Value: !GetAtt PostCatFunction.Arn

 CatTable:

 Description: "DynamoDB table name"

 Value: !GetAtt CatTable.Arn

Note  CloudFormation is an infrastructure-as-code service. It allows you to
declare the AWS resources (i.e., your infrastructure) you need in a JSON or YAML
format template. CloudFormation will create, update, or delete the resources on
your behalf to match the declared template. This allows you to manage complex
infrastructure without the need to click hundreds of buttons on the AWS console.
You can also utilize coding best practices like version control and code review on
your infrastructure configuration.

The template.yaml consists of three sections: Globals, Resources, and Outputs.

The Globals section defines shared configurations that apply to all resources. In this

template, all AWS Lambda functions are configured to have a default timeout of three

seconds. The Resources section defines the AWS services to be created and their

configurations. The Outputs section allows you to print out custom information when

the SAM deployment finishes. This is useful when you want to print out randomly

assigned information like the REST API URL, the resource ID, or Amazon Resource

Names (ARN), so you can find them in the AWS console.

Let’s take a closer look at the resources defined in the Resources section: CatTable

and PostCatFunction. CatTable is an AWS::Serverless::SimpleTable—an Amazon

DynamoDB table. You could use Amazon Relational Database Service (RDS) to run a

PostgreSQL database so you would be able to reuse the same code from the previous

chapter. However, to show how the AWS SDK works, you are going to use DynamoDB,

a NoSQL database provided by AWS. The SimpleTable type is an abstraction over

DynamoDB, provided by SAM, which hides the low-level configuration. It defines a

single primary key called cat for the table. This will be the primary database where

we keep track of which cats have been loaded into the system. In many systems you’d

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

216

usually use a UUID, timestamp, or some other primary key that can ensure uniqueness

in the database. In our case this would be a bit of overengineering and take away from

the basics we want to display, so we just make the key the cat’s name.

The PostCatFunction is a AWS::Serverless::Function, which is also a SAM-

provided abstraction over an AWS Lambda function. It has a CodeUri that points to the

Rust binary output path target/lambda/catdex-serverless, which means it runs the

Rust code provided in the template. The runtime is a custom runtime on Amazon Linux

2 (provided.al2) on arm64 hardware. The Rust runtime is built on the custom runtime

feature of AWS Lambda. You can also see an Events section, which defines the API

endpoint that should trigger this lambda function. SAM creates an implicit Amazon API

Gateway to receive HTTP Post calls and trigger the lambda function.

The Rust code, which will be explained shortly, needs to write to the DynamoDB

table defined earlier. But the table name is generated at runtime and is not known

before you deploy, so to avoid hard-coding the table name, you can pass it to the

lambda function as an environment variable. You can then read the table name from the

environment variable using Rust code.

Access to AWS resources like the DynamoDB table is controlled by AWS Identity and

Access Management (IAM). By default, the lambda function doesn’t have permission to

access the DynamoDB table. To grant it permission to write to the DynamoDB table, you

can attach a DynamoDBWritePolicy to the lambda function. This is a pre-defined policy

with write permission to the DynamoDB table you specify, so you don’t have to write the

low-level IAM policy document yourself.

Once you’ve added the template file to your project, you can use the AWS SAM

CLI to do a guided deploy (after you’ve built the project). Enact the following steps,

noting that you’ll likely want to have your AWS Region set to somewhere close to where

you’re located. You also should hit "Enter" to any prompt that doesn’t have any entries

afterward (all except the request to save arguments to a configuration file) in order to

select the default response (Figure 6-6).

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

217

Figure 6-6.  Guided deployment using the AWS SAM CLI

After finishing these steps you should have a samconfig.toml file created that will

let you rerun deployments without re-answering all of the preceding questions. Your file

should look something like the following. This will allow you to just run sam deploy in

the future without the --guided flag, making deployment updates much easier.

version = 0.1

[default]

[default.deploy]

[default.deploy.parameters]

stack_name = "sam-app"

s3_bucket = "<your auto-generates S3 bucket name>"

s3_prefix = "sam-app"

region = "us-east-2"

capabilities = "CAPABILITY_IAM"

image_repositories = []

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

218

Running the command should also give you the ARN of the Post lambda function

(Figure 6-7).

Figure 6-7.  Output after deploying with the AWS SAM CLI

Before you move on, it’s a good idea to test the deployed lambda function

environment. In the previous section we tested the lambda function using the AWS

Console. Here we’ll show another testing option using the AWS CLI. Note the ARN for

the lambda function is listed in the output of sam deploy, and we can use this to run

a lambda from the CLI like so, using the Value for the name of the preceding lambda

function output:

$ aws lambda invoke \

--cli-binary-format raw-in-base64-out \

--payload '{"httpMethod": "POST"}' \

--function-name arn:aws:lambda:us-east-2:003164948199:function:

 ↪ sam-app-PostCatFunction-SpBjt2nLOlpa \

output.json

{

 "StatusCode": 200,

 "ExecutedVersion": "$LATEST"

}

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

219

The CLI invokes the lambda function with an empty HTTP POST request. Since our

Hello World code isn’t doing anything with the request, this should succeed and return a

response. The response is saved in the output.json file. If everything is set up properly,

you should see a response like the following (though it will be formatted all on one line

with no white space):

{

 "statusCode":200,

 "headers":{

 "content-type":"text/html"

 },

 "multiValueHeaders":{

 "content-type":["text/html"]

 },

 "body":"Hello AWS Lambda HTTP request",

 "isBase64Encoded":false

}

At this point you have your basic infrastructure configuration, along with a test that

deployment works, and you can call your lambda function. Now you can dive into the

specific details of your lambda function.

6.9 � Building the Upload API
You’re now ready to start customizing your lambda function to allow uploading cat

images to DynamoDB. You’ll start by moving the src/mains.rs to src/bin/lambda/

post-cat.rs, in preparation for multiple lambdas. Instead of main.rs you should have

a lib.rs in the src folder. After we update the project structure you will build the

POST /cat API to create a new cat and upload a new image.

After moving files, your project structure should look as follows:

.

+-- template.yaml

+-- Cargo.toml

+-- src

|-- |-- bin

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

220

|-- |-- |-- lambda

|-- |-- |-- + -- post-cat.rs

|-- +-- lib.rs

You’ll also need to update Cargo.toml to add the binary to your project:

[[bin]]

name = "post-cat"

path = "src/bin/lambda/post-cat.rs"

Before we move any further actually changing the code, you’ll need to pull in the

AWS SDK for DynamoDB along with the serde crate. You can run the following:

cargo add aws_sdk_dynamodb serde

Then, ensure that the version being used is 0.24.0. Currently the AWS SDK for Rust

is in developer beta, and could still see major changes before being fully released. For

this reason, you’ll want to be sure you are using the same version as the examples here.

You’ll also want to pull in the aws-config crate using cargo add aws-config, and ensure

you have version 0.54.1 in your Cargo.toml file. You’ll also need to change a single line

in template.yaml, changing the CodeUri of the PostCatFunction from arget/lambda/

catdex-serverless to target/lambda/post-cat. You’ll be able to put additional

lambda functions in the project in the future by following the same structure and

keeping shared code in the src/lib.rs module.

With the new dependencies in place, you can jump into post-cat.rs:

use aws_sdk_dynamodb as dynamodb;

use aws_sdk_dynamodb::model::AttributeValue;

use lambda_http::{http::StatusCode, run, service_fn,

 Body, Error, Request, RequestExt, Response};

use serde::Deserialize;

#[derive(Deserialize)]

struct RequestBody {

 name: String,

}

async fn function_handler(

 request: Request,

 client: &dynamodb::Client,

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

221

 table_name: &str,

) -> Result<Response<Body>, Error> {

 let body: RequestBody = match request.payload() {

 Ok(Some(body)) => body,

 _ => {

 return Ok(Response::builder()

 .status(StatusCode::BAD_REQUEST)

 .body("Invalid payload".into())

 .expect("Failed to render response"))

 }

 };

 let dynamo_request = client

 .put_item()

 .table_name(table_name)

 .item("cat", AttributeValue::S(body.name.clone()));

 dynamo_request.send().await?;

 let resp = Response::builder()

 .status(StatusCode::OK)

 .header("content-type", "text/html")

 .body(format!("Added cat {}", body.name).into())

 .map_err(Box::new)?;

 Ok(resp)

}

#[tokio::main]

async fn main() -> Result<(), Error> {

 tracing_subscriber::fmt()

 .with_max_level(tracing::Level::INFO)

 .with_target(false)

 .without_time()

 .init();

 let config = aws_config::load_from_env().await;

 let client = dynamodb::Client::new(&config);

 let table_name = std::env::var("TABLE_NAME")?.to_string();

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

222

 run(service_fn(|request| {

 function_handler(request, &client, &table_name)

 }))

 .await

}

The new function handler and accompanying main do a few things for now:

	 1.	 Extract the request body (i.e., payload) to get the cat’s name.

	 2.	 Create a PutItemRequest, which will create the new cat in the

database after it's provided the cat's name and send is called on

the request object.

	 3.	 Call client.put_item() to create the DynamoDB item.

In the example in the previous chapter, you uploaded the cat’s image through the

API. However, API Gateway has a payload size limit of 10 MB, so the image needs to be

smaller than that. To overcome that, we’re going to use the S3 pre-signed URL, which

we’ll discuss shortly. For now this example doesn’t contain the file upload part. Notice

that the function_handler() function now takes an event (the first parameter) of the

type Request; this is provided by the lambda_http crate. You can call request.payload()

to get the request body. You expect the body to have the following form:

{

 "name": "Persian"

}

So you define a RequestBody struct, which derives the serde::Deserialize trait, to

tell Rust how to deserialize it. When you call request.payload(), if the return value is a

Some(RequestBody), you can assign it to a variable body.

Next, you use the passed-in DynamoDB client and prepare the PutItemInput. The

PutItemInput expects the table name and a new item as a key-value pair, the key being

a String and the value being an AttributeValue. Therefore, you use the name specified

in body for the new cat’s name. For every place that might fail (e.g., parsing payload,

calling put_item()), you use match to handle the errors and return an appropriate HTTP

response, or simply bubble them up with ? or unwrap.

Note how we’ve also added a few things to the main function. We grab the name of

the DynamoDB table from the TABLE_NAME environment variable. This environment

variable is actually set up in the Lambda execution environment by the AWS SAM

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

223

template. We can specify different environment variables that give each lambda function

in our architecture knowledge about other components without having to hard-code

the names of those components. This is one of the nice benefits that makes lambda

functions really easy to work with; the permissions can easily be kept separate from

the code.

Note also we’ve actually pulled the AWS credentials from the environment also and

created the DynamoDB client outside the handler function. This allows the client to

avoid having to reconnect for every run of the handler function; if the lambda is “warm”

and ran recently, it will still have its code loaded and ready to go for another request.

When lambdas have not run for a while they need to start “cold,” which means retrieving

and loading the initial code. Without going into too many details of about low-level

performance, it can be useful to maintain connections or slow-to-initialize structures

outside of the handler function and pass the function and the parameters in as a closure.

With this code updated, you can build and update the lambda with the following pair

of commands:

$ cargo lambda build --release --arm64

$ sam deploy

At this point, there are two ways you can test your deployed lambda. First, you can

again directly use the AWS CLI to invoke the lambda with a properly formatted payload

(remembering to update the function name to the ARN returned at the end of sam

deploy):

$ aws lambda invoke \

--cli-binary-format raw-in-base64-out \

--payload '{"httpMethod": "POST",

 "body":"{\"name\":\"catsay\"}",

 "headers": {"content-type": "application/json"}}' \

--�function-name arn:aws:lambda:us-east-2:003164948199:function:

sam-app-PostCatFunction-SpBjt2nLOlpa \

output.json

This directly invokes the lambda with an HTTP payload. This isn’t how your users

will be invoking the lambda, however; they will be making POST requests against an

HTTP endpoint on the web. The PostApi CloudFormaton output from sam deploy has a

value that provides an API Gateway endpoint URL that is accessible on the web.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

224

Note how in the template.yaml file you created you specified the path for the POST

function as /cat; this means that your POST API is accessible by adding /cat to the end

of the API Gateway URL. With this information, you can run a curl from the command

line to test your HTTP POST API (remember to use your own URL here):

$ curl \

--header "Content-type: application/json" \

--request POST \

--data '{"name": "meow"}' \

https://3m5ezvf2ui.execute-api.us-east-2.amazonaws.com/Prod/cat

If you set up everything correctly, you should see Added cat meow in your terminal.

6.10 � Building the /cats API
You’ve deployed a simple lambda function behind an API Gateway that receives POST

requests and adds the cat names to a DynamoDB table. While you can add cats to the

database, you can’t read out the current list of cats. This section will walk you through

the GET API that will let you do just that, by adding a second lambda to your project.

First, you’ll need to create a new file at src/bin/lambda/get-cats.rs. This is where

the code for your new lambda will be added. Then, you’ll need to update your Cargo.

toml file to include the new binary:

[[bin]]

name = "get-cats"

path = "src/bin/lambda/get-cats.rs"

Then, you need to update the template.yaml to add the new lambda function into

your architecture (Listing 6-4).

Listing 6-4.  Template updates for get cats API

...

Resources:

 # ...

 GetCatsFunction:

 Type: AWS::Serverless::Function

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

225

 Properties:

 CodeUri: target/lambda/get-cats/

 Handler: bootstrap

 Runtime: provided.al2

 Architectures: ["arm64"]

 Events:

 GetCats:

 Type: Api

 Properties:

 Path: /cats

 Method: get

 Environment:

 Variables:

 TABLE_NAME: !Ref CatTable

 Policies:

 - DynamoDBReadPolicy:

 TableName: !Ref CatTable

Outputs:

 # ...

 GetCatsFunction:

 Description: "Get Cats Lambda Function ARN"

 Value: !GetAtt GetCatsFunction.Arn

 # ...

Compared to the previous lambda function, here we need to add DynamoDB read

permissions. We change the path to /cats and the method to cats, but otherwise this

new lambda function is similar to the previous. Once you’ve made the Cargo.toml and

template.yaml changes, you can finally write the code for src/bin/lambda/

get-cats.rs Listing 6-5. You should run cargo add serde_json to add the newly

required dependency, and when copying the code duplicate the main function and then

only focus on the updated function_handler function.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

226

Listing 6-5.  Get cats Lambda function

use aws_sdk_dynamodb as dynamodb;

use lambda_http::{http::StatusCode, run, service_fn, Body,

 Error, Request, Response};

use serde::Serialize;

#[derive(Serialize)]

struct ResponseBody<'a> {

 cats: Vec<&'a String>,

}

async fn function_handler(

 _request: Request,

 client: &dynamodb::Client,

 table_name: &str,

) -> Result<Response<Body>, Error> {

 let scan_output = client

 .scan()

 .table_name(table_name)

 .send()

 .await;

 let scan_output = scan_output?;

 let response_body = ResponseBody {

 cats: scan_output

 .items()

 .unwrap_or_default()

 .into_iter()

 .map(|val| val.get("cat").unwrap().as_s().unwrap())

 .collect(),

 };

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

227

 let resp = Response::builder()

 .status(StatusCode::OK)

 .header("content-type", "text/html")

 .body(serde_json::to_string(&response_body)

 .unwrap()

 .into()

)

 .map_err(Box::new)?;

 Ok(resp)

}

// .. async fn main ...

The setup of the handler is similar to the POST handler. In this case, a custom

ResponseBody is used to hold the list of cats.9 The request received by the handler is

not actually used, and instead a scan is directly initiated with the DynamoDB client to

retrieve the full list of cats from the table.

Note  DynamoDB supports two major ways for querying data: query and scan.
When you query, you need to specify the partition key so DynamoDB can directly
find the item. Scan, on the other hand, needs to scan through the whole table. You
can specify filtering criteria to further refine the result.

Scan is significantly slower than query, but it’s useful for situations when you don’t
know the partition key in advance. If you already know the partition key you are
trying to find, always use query over scan.

9 We’ve made maybe a slight over-optimization by annotating lifetimes on the ResponseBody.
While this is strictly not necessary and you could write the code with just String and clone, if this
was returning a large list it could have appreciable memory savings, which in turn would directly
translate into cost savings. There’s a balance between performance and usability in code, but
since this book is about learning, we thought it would be good to give you a gentle introduction to
a place you can create more performant code

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

228

After the scan, a transformation on the returned items iterator takes place, which

allows for the construction of a ResponseBody. This response is then returned to the

client that called the lambda. We use unwrap here as we know that cat is the primary key

and will never be empty, but for more general systems you should always be properly

checking and handling any errors. When this is complete we are able to return a simple

list of cats as shown here:

[

 {

 "cats": ["Persian", "Ragdoll]

 }

]

The Serialize method on the ResponseBody struct allows for it to be converted to a

String using serde_json.

To test the new API, you can run the same build and deploy commands as

previously, and then use curl to make the HTTP GET request:

$ cargo lambda build --release --arm64

$ sam deploy

$ curl --header "Content-type: application/json" \

--request GET \

https://3m5ezvf2ui.execute-api.us-east-2.amazonaws.com/Prod/cats

You can now go ahead and use the curl example from the previous section to add

additional cats to the database, which you’ll retrieve with the get-cats response.

6.11 � Uploading the Image Using S3 Pre-signed URL
We’ve so far only added cat names to our database. We could try to directly upload

images also by encoding them into our POST requests, but API Gateway has a 10 MB

request size limit, so you can’t upload image files larger than that. This would work for

many images, but it would be a pain if an image were slightly too large and then rejected.

To overcome this limitation, you can use an S3 pre-signed PUT URL. You can use the

AWS API to upload a file to S3, but since the S3 bucket is private by default, you need

to provide valid credentials so AWS can verify your identity and check if you have the

proper access to the bucket. However, you’ll be adding a nice frontend to the project

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

229

to upload cats, and there is no secure way to store the AWS credentials on the frontend

page. A pre-signed URL solves this problem. A pre-signed URL allows anyone to upload

files to the pre-defined S3 location within a limited time, without the need to provide

AWS credentials. When creating the pre-signed URL, you provide AWS credentials, so the

user of the URL will get the same permissions as the credentials used to sign it. The pre-

signed URL generation takes place in the backend (i.e., in the lambda function), so the

credentials are never exposed to the frontend.

In this use case, you can let the frontend call the POST /cat endpoint to create the

cat in the DynamoDB. Then, the POST /cat API needs to generate a pre-signed URL and

return it to the frontend. The frontend uses this pre-signed URL to upload the cat image

directly to S3. Figure 6-8 shows a sequence diagram for this flow. Since this is a demo,

the image will then be served directly through the S3 built-in server. But in production,

you might want to upload the file to a separate bucket and sanitize the image before

putting it into the bucket that serves the static files. Also, while you’ll get this working

with the frontend by the end of this project, you can test all of this manually (like the

previous sections) by using curl with the returned pre-signed URL. It’s always good to

test components by themselves before connecting them together, and here we’ll test the

S3 functionality before we get it working on the frontend.

Figure 6-8.  Sequence diagram for adding a new cat using the pre-signed URL

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

230

This approach has a few advantages over uploading through API Gateway and

Lambda. First, S3 allows you to upload files up to 5 GB.10 Second, you prevent bandwidth

from going through API Gateway, and you also saved processing time and memory usage

in the lambda, potentially saving some costs (as comparatively speaking direct uploads

to S3 can be very cheap).

To be able to generate a pre-signed URL, you need to first add the bucket to

template.yaml along with permissions to the POST lambda function:

Resources

 CatTable:

 # ...

 ImageBucket:

 Type: AWS::S3::Bucket

 Properties:

 AccessControl: Private

 PostCatFunction:

 Type: AWS::Serverless::Function

 Properties:

 # ...

 Environment:

 Variables:

 TABLE_NAME: !Ref CatTable

 BUCKET_NAME: !Ref ImageBucket

 Policies:

 - DynamoDBWritePolicy:

 TableName: !Ref CatTable

 - S3WritePolicy:

 BucketName: !Ref ImageBucket

Because the pre-signed URL will get the same permission as the AWS role that

creates it (which in turn will be dictated by the available policies of the lambda function

that generates it), you need to add the S3WritePolicy permission to the lambda function

10 If you use the multipart upload the limit can be increased to 5 TB.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

231

policies for the POST Cat function. You also will need to add a bucket to store the images,

and an environment variable to the lambda function to pass in the bucket name. As a

final step before working with the code, you’ll need to add the AWS S3 crate with

cargo add aws_sdk_s3

With these permissions, environment variables, and dependencies added, let’s add

some code to src/bin/lambda/post-cat.rs so you can generate the pre-signed URL

(Listing 6-6).

Listing 6-6.  Presigned URL generation

use aws_sdk_dynamodb as dynamodb;

use aws_sdk_dynamodb::model::AttributeValue;

use aws_sdk_s3 as s3;

use aws_sdk_s3::presigning::config::PresigningConfig;

use lambda_http::{http::StatusCode, run, service_fn, Body, Error

 ↪ ,

 Request, RequestExt, Response};

use serde::{Deserialize, Serialize};

use std::time::Duration;

#[derive(Deserialize)]

struct RequestBody {

 name: String,

}

#[derive(Serialize)]

struct ResponseBody {

 upload_url: String,

}

async fn function_handler(

 request: Request,

 dynamo_client: &dynamodb::Client,

 s3_client: &s3::Client,

 table_name: &str,

 bucket_name: &str,

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

232

) -> Result<Response<Body>, Error> {

 let body: RequestBody = match request.payload() {

 Ok(Some(body)) => body,

 _ => {

 return Ok(Response::builder()

 .status(StatusCode::BAD_REQUEST)

 .body("Invalid payload".into())

 .expect("Failed to render response"))

 }

 };

 let presigned_request = s3_client

 .put_object()

 .bucket(bucket_name)

 .key(&body.name)

 .presigned(

 PresigningConfig::expires_in(Duration::from_secs(60))?

)

 .await?;

 let response_body = ResponseBody {

 upload_url: presigned_request.uri().to_string(),

 };

 let dynamo_request = dynamo_client

 .put_item()

 .table_name(table_name)

 .item("cat", AttributeValue::S(body.name.clone()));

 dynamo_request.send().await?;

 let resp = Response::builder()

 .status(StatusCode::OK)

 .header("content-type", "text/html")

 .body(serde_json::to_string(&response_body)?.into())

 .map_err(Box::new)?;

 Ok(resp)

}

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

233

#[tokio::main]

async fn main() -> Result<(), Error> {

 tracing_subscriber::fmt()

 .with_max_level(tracing::Level::INFO)

 .with_target(false)

 .without_time()

 .init();

 let config = aws_config::load_from_env().await;

 let dynamo_client = dynamodb::Client::new(&config);

 let s3_client = s3::Client::new(&config);

 let table_name = std::env::var("TABLE_NAME")?.to_string();

 let bucket_name = std::env::var("BUCKET_NAME")?.to_string();

 run(service_fn(|request| {

 function_handler(

 request,

 &dynamo_client,

 &s3_client,

 &table_name,

 &bucket_name,

)

 }))

 .await

}

The first thing that needs to be done is to add the S3 clients, similar to how the

Dynamo clients were set up. We rename the previous client variable to dynamo_client

in order to make the code more clear, and then pass both clients into the function

handler closure, along with the DynamoDB table name and S3 bucket name.

The handler function still receives the POST request, but before putting it into the

DynamoDB table, it generates an S3 pre-signed URL request. This URL is valid to upload

a file to a specific bucket and key for 60 seconds from creation, after which it becomes

invalid. The DynamoDB write then is performed, and the upload URL is returned in the

final response.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

234

You can deploy to AWS with the usual combination of commands:

cargo lambda build --release --arm64

sam deploy

If you call the API with curl, you should receive the pre-signed URL in the

response body:

$ curl \

--header "Content-type: application/json" \

--request POST \

--data '{"name": "Persian"}' \

https://3m5ezvf2ui.execute-api.us-east-2.amazonaws.com/Prod/cat

{

 "upload_url":"<Response URL here>"

}

You can use this URL to upload the file like so:

$ curl -X PUT -H "Content-Type: image/jpeg" -T persian.jpg \

 "https://sam-app-imagebucket-4wa7ymmzide3.s3.us-east-2.amazonaws.com/

 Persian?x-id=PutObject&X-Amz-Algorithm=AWS4-HMAC-SHA256&

 X-Amz-credentials=...&X-Amz-Date=20200819T095109Z&X-Amz-Expires=3600&

 X-Amz-Security-Token=...&X-Amz-Signature=...&X-Amz-SignedHeaders=host"

This uploads a file named persian.jpg to the local machine. A few fields like X-Amz-

credentials and X-Amx-Security-Token are omitted because they change every time

you generate a new URL.

Note T here are many different ways to interact with and test AWS services.
We started using the AWS Console, then switched to the AWS CLI, and then
finally have been running tests through public-facing APIs using curl. We’ll
soon see how we can use a frontend to test the code. If you are having trouble
with something, you should remember all of these tools and use them to test

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

235

your systems. AWS has great documentation and strong APIs for both building
and debugging systems in the cloud. We suggest you take some time to explore
these even when you aren’t stuck, as they can prove quite insightful on how to
build web systems at scale.

6.12 � Adding the Frontend
You’ve written a pair of lambda functions, one posting cats, and one for getting the

full list of cats. Now, with the API ready, you can serve HTML, JavaScript, and CSS on

AWS. You can upload the files to an S3 bucket and enable "”static website hosting” on

that S3 bucket. This can be done manually, but that involves using the AWS Console to

change a large set of various settings in sometimes different places. Having a single script

that can set everything makes it easier to iterate, and provides a single record of all setup

changes made for the frontend. To automate this process, you will write a few helper

programs locally that use the AWS SDK for Rust to automatically deploy all the necessary

files to a new bucket.

To start with, you’ll need a place to save the frontend code, so you should create a

folder using the following command executed from the main project directory:

mkdir -p client/dist

This is a relatively common location and format in which to store client code in a

project. Then, create the following files in it:

•	 index.html: the cats overview page (Listing 6-7).

•	 css/index.css: CSS stylesheet for index.html (Listing 6-8).

•	 add.html: the add new cat form (Listing 6-9).

Note that in the added listings (Listing 6-7 and Listing 6-8) you’ll need to update the

URL to point to the correct URL you have for your project.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

236

Listing 6-7.  Index file

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8" />

 <title>Catdex</title>

 <link rel="stylesheet" href="css/index.css" type="text/css">

</head>

<body>

<h1>Catdex</h1>

<p>

 Add a new cat

</p>

<section class="cats" id="cats">

 <p>No cats yet</p>

</section>

<script charset="utf-8">

 document.addEventListener("DOMContentLoaded", () => {

 fetch('<INSERT URL>')

 .then((response) => response.json())

 .then((cats) => {

 document.getElementById("cats").innerText = ""

 for (cat of cats.cats) {

 const catElement = document.createElement("article")

 catElement.classList.add("cat")

 const catTitle = document.createElement("h3")

 const catLink = document.createElement("a")

 catLink.innerText = cat

 const catImage = document.createElement("img")

 catImage.src = ‘images/${cat}‘

 catTitle.appendChild(catLink)

 catElement.appendChild(catTitle)

 catElement.appendChild(catImage)

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

237

 document.getElementById("cats").appendChild(catElement)

 }

 })

 })

</script>

</body>

</html>

Listing 6-8.  CSS file

.cats {

 display: flex;

}

.cat {

 border: 1px solid grey;

 min-width: 200px;

 min-height: 350px;

 margin: 5px;

 padding: 5px;

 text-align: center;

}

.cat > img {

 width: 190px;

}

Listing 6-9.  Add cat HTML page

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8" />

 <title>Catdex</title>

 <link rel="stylesheet" href="css/index.css" type="text/css">

</head>

<body>

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

238

<script>

 async function submitForm(e) {

 e.preventDefault()

 const cat_name = document.getElementById('name').value

 const cat_post_response = await fetch('<INSERT URL>', {

 method: 'POST',

 mode: 'cors',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({ name: cat_name })

 })

 const image_upload_url = (await cat_post_response.json()).upload_url

 const image = document.getElementById("image").files[0]

 const image_upload_response = await fetch(image_upload_url,

 {

 method: 'PUT',

 body: image,

 })

 if (image_upload_response.status === 200) {

 alert("Success")

 } else {

 alert("Failed")

 }

 return false

 }

</script>

<h1>Add a new cat</h1>

<form onsubmit="return submitForm(event)">

 <label for="name">Name:</label>

 <input type="text" name="name" id="name" value="" />

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

239

 <label for="image">Image:</label>

 <input type="file" name="image" id="image" value="" />

 <button type="submit">Submit</button>

</form>

</body>

</html>

The index.html and index.css are similar to the ones in previous chapters.

The add.html has a slightly different logic than before. Instead of just calling the

POST /cat API, you also make a second PUT call to update the image. Be sure you

updated the URL endpoints in both .html files with the appropriate locations based on

the output of running sam deploy.

You have a few options to deploy the website. You can follow the online directions

and manually upload the files and set the permissions via the AWS console,11 but that

can be slow, prone to errors, and frustrating to iterate if you want to perform repeated

operations. You could also use another website deployment manager, but that would be

adding another large dependency for a rather simple task. Instead, you can use the AWS

SDK for Rust to write a small executable that will deploy your website. This is a good

excuse to get more practice with the SDK, and will also let you rapidly iterate and re-

deploy your website if needed.

The first step is to create a simple program that will upload the files and set the

appropriate policies for our S3 bucket. Add the following to your Cargo.toml file:

[[bin]]

name = "create-bucket"

path = "src/bin/create-bucket.rs"

This program will create a new bucket. This bucket should have a unique name,

since it will be publicly accessible on the internet; the file uses “catdex-frontend” but

you can set any name as desired. You should also set the region appropriately for your

location.

11 https://docs.aws.amazon.com/AmazonS3/latest/userguide/
HostingWebsiteOnS3Setup.html

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

https://docs.aws.amazon.com/AmazonS3/latest/userguide/HostingWebsiteOnS3Setup.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/HostingWebsiteOnS3Setup.html

240

After you’ve created the bucket, you’ll need to upload the website files and set proper

permissions. For this we add one more file, which is detailed in Listing 6-10 and can be

placed in bin/put-website.rs.

Listing 6-10.  Frontend setup code

use aws_sdk_s3 as s3;

use aws_sdk_s3::model::{

 IndexDocument, WebsiteConfiguration,

};

use aws_sdk_s3::types::ByteStream;

use std::path::Path;

#[tokio::main]

async fn main() {

 let config = aws_config::load_from_env().await;

 let s3_client = s3::Client::new(&config);

 let body = ByteStream::from_path(

 Path::new("../../client/dist/index.html")

)

 .await

 .unwrap();

 s3_client

 .put_object()

 .body(body)

 .bucket("catdex-frontend")

 .key("index.html")

 .content_type("text/html")

 .send()

 .await

 .unwrap();

 let body = ByteStream::from_path(

 Path::new("../../client/dist/add.html")

)

 .await

 .unwrap();

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

241

 s3_client

 .put_object()

 .body(body)

 .bucket("catdex-frontend")

 .key("add.html")

 .content_type("text/html")

 .send()

 .await

 .unwrap();

 let body = ByteStream::from_path(

 Path::new("../../client/dist/css/index.css")

)

 .await

 .unwrap();

 s3_client

 .put_object()

 .body(body)

 .bucket("catdex-frontend")

 .key("css/index.css")

 .content_type("text/css")

 .send()

 .await

 .unwrap();

 let cfg = WebsiteConfiguration::builder()

 .index_document(

 IndexDocument::builder()

 .suffix("index.html").build()

)

 .build();

 s3_client

 .put_bucket_website()

 .bucket("catdex-frontend")

 .website_configuration(cfg)

 .send()

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

242

 .await

 .unwrap();

 s3_client

 .put_bucket_policy()

 .bucket("catdex-frontend")

 .policy(include_str!("../../bucket_policy.json"))

 .send()

 .await

 .unwrap();

}

This file uses your local AWS credentials (which you set when you ran aws

configure) to perform various operations on the ImageBucket specified in the AWS

SAM CLI template, which is where we will also host our website. It starts with three put

operations, one for each of the three content files for the website.12 After uploading all

of the files, you can set the bucket website configuration and set the policy to make the

bucket publicly accessible. To set this policy, you’ll need to create one more file, bucket_

policy.json, at the root directory of the project.

Listing 6-11.  Bucket policy configuration

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "PublicReadGetObject",

 "Effect": "Allow",

 "Principal": "*",

 "Action": [

 "s3:GetObject"

],

12 Once you added more files you’d probably want to automatically read all the files in the
directory and iterate over them instead of hardcoding them as here, but to keep things simple
we’ll just copy the operation for now.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

243

 "Resource": [

 "arn:aws:s3:::catdex-frontend/*"

]

 }

]

}

However, if you open the website now, you’ll notice that the API calls are failing.

This is because of the same-origin policy. Under that policy, the web page cannot access

APIs under a different origin, which is the combination of URI scheme, hostname, and

port. Because the web page is served under http://catdex-frontend.s3-website.

us-east-2.amazonaws.com/index.html, but the API is under https://abc0123def.

execute-api.eu-central-1.amazonaws.com/, the same-origin policy will block the API

call. The same-origin policy is a security feature that can block many kinds of attacks.

Since you control both the frontend and the backend APIs, you can use cross-

origin resource sharing (CORS) to overcome this restriction. With CORS enabled on the

backend API, it can grant access to the frontend serving from a different origin.

To enable CORS, first you need to update the globals in the template.yaml:

Globals:

 Function:

 Timeout: 3

 Api:

 Cors:

 AllowMethods: "'GET,POST'"

 AllowHeaders: "'content-type'"

 AllowOrigin: "'*'"

Second, both the APIs need to respond with an Access-Control-Allow-Origin

header. This header specifies the origin that is allowed to access it. For simplicity, you

specify Access-Control-Allow-Origin: *, which allows every origin. This is of course

not very secure. If you are running production workloads, always explicitly specify the

exact host.

To add this header to the API, you can tweak the src/bin/lambda/get-cats.rs

and src/bin/lambda/post-cat.rs like in Listing 6-12, to add additional headers in the

response.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

http://catdex-frontend.s3-website.us-east-2.amazonaws.com/index.html
http://catdex-frontend.s3-website.us-east-2.amazonaws.com/index.html
https://abc0123def.execute-api.eu-central-1.amazonaws.com/
https://abc0123def.execute-api.eu-central-1.amazonaws.com/

244

Listing 6-12.  CORS updates to response headers

// ...

let resp = Response::builder()

 .status(StatusCode::OK)

 .header("content-type", "text/html")

 .header("Access-Control-Allow-Origin", "*")

 .header("Access-Control-Allow-Headers", "Content-Type")

 .header("Access-Control-Allow-Methods", "GET")

 .body(serde_json::to_string(&response_body).unwrap()

 .into()

)

 .map_err(Box::new)?;

 Ok(resp)

// ...

Finally, there is a small issue with the default CORS setting set by sam deploy. It

allows PUT requests from https://*.amazonaws.com, but the frontend is served using

HTTP, not HTTPS. Therefore, you need to re-configure the CORS setting using the AWS

SDK. You can add these settings to your put-website.rs (Listing 6-13).

Listing 6-13.  CORS udpates to website upload code

let cors_rule_1 = CorsRule::builder()

 .allowed_headers("*")

 .allowed_methods("PUT")

 .allowed_methods("POST")

 .allowed_origins("http://*.amazonaws.com")

 .max_age_seconds(0)

 .build();

let cors_rule_2 = CorsRule::builder()

 .allowed_headers("*")

 .allowed_methods("GET")

 .allowed_origins("*")

 .build();

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

245

let cfg = CorsConfiguration::builder()

 .cors_rules(cors_rule_1)

 .cors_rules(cors_rule_2)

 .build();

s3_client

 .put_bucket_cors()

 .bucket(BUCKET)

 .cors_configuration(cfg)

 .send()

 .await

 .unwrap();

You can build and re-deploy your full project now:

$ cargo lambda build --release --arm64

$ sam deploy

$ cargo run --bin put-website

Now you should be able to go to the catdex website from any public computer,

display cats, and add additional cats.

6.13 � A Note on Security
Before we close out this section, it’s worth having a quick discussion about best security

practices. Just like when learning most subjects for the first time, we skimmed over

a few points to be able to stay on topic and make progress learning some cool new

technologies. We didn’t want to get bogged down in the details of properly setting up

best security practices in a cloud environment, and a few times we explicitly stated we

were going to ignore best practices to get something working. This is fine for learning,

but if you are going to learn or work in the cloud space, you should be taking security

seriously and spend the time to learn best practices for any infrastructure you are setting

up. There are a huge number of resources available in other books and online. Ignoring

security could result in getting hacked, losing critical data, or ending up with a massive

unexpected bill. We don’t want to scare you away from developing in the cloud, but we

do want to make it clear that you should make all of your security choices consciously

when you work with online systems.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

246

6.14 � Next Steps
With that out of the way, let’s review what we’ve covered and some next steps you can

take on your serverless journey.

In total, we showed how to combine a couple of lambda functions, a DynamoDB

database table, and an S3 bucket to create a fully functioning website served on the

public internet. You could add more features to the frontend, even serving up the

single-page app we saw in Chapter 4. You could add additional lambda functions on the

backend, for example to be able to delete a cat that may have been added by mistake.

You can also spend time on the DevOps side of things, combining the multi-step

deployment processes and scripts we created into a single unified deployment script,

which could then be run in a CI/CD environment. You could even look into a whole

different framework to replace some of the DevOps code you wrote, so you can focus

your time primarily on the features of your web service.

The AWS SDK for Rust is currently in developer preview, which means it may change in

the future. Hopefully you’ve seen it’s power both in Lambda functions and run locally to set

up infrastructure as code. These applications only scratch the surface of the vast coverage of

this SDK, and the over 200 AWS services it supports. You could try extending this service to

use AWS CloudFront like mentioned earlier, or even try creating a more traditional server and

SQL database web model from the previous chapter with EC2 and RDB. There’s a lot of great

material to read out there, and Rust is just starting to break into these spaces, making them

a great combination to learn together. And since many users have seen better performance

and lower costs in the cloud using Rust, its usage is only likely to grow in the future.

6.15 � Conclusion
In this chapter, you created a serverless catdex application. You started with a simple

Hello World lambda that you created, manually uploaded, and ran using cargo lambda

and the AWS console. You then set up the AWS SAM CLI to easily create multiple AWS

services with infrastructure-as-code. You created a simple lambda with the AWS SAM

CLI, then extended your project to multiple lambdas that write to and read from AWS

DynamoDB. You then added an S3 bucket to your project, which you used to generate

pre-signed URLs and store images. As a final step, you created a static web page that

was served from AWS S3 and interacted with DynamoDB using AWS lambdas. Now that

you’ve spent three chapters working with Rust-based web technologies, it’s time for a

change. In the next chapter, you’ll work on creating a simple desktop game in Rust.

Chapter 6 Going Serverless with the Amazon AWS Rust SDK

247

CHAPTER 7

Building a Game
Video games have come a long way from their early implementations. Super Mario Bros.

for NES ran on an 8-bit CPU with a 1.79 MHz clock rate. The game itself is roughly 31

kilobytes. Nowadays, you can easily get a gaming PC with an 8-core central processing

unit (CPU) running at 3–5 GHz, and games that are 50–70 gigabytes. That is thousands

of times more computing power and millions of times more storage space. Games are

growing more and more complex as well, so the life of a game programmer is becoming

tougher than before.

Rust is a great potential candidate for building games. Its low-level memory

safety guarantee and exceptional performance make it ideal for building robust and

performant game engines and games. At the same time, its high-level syntax allows you

to write your game logic in a clean and modular way.

Although the ecosystem is still very young, there are already some beautiful games

built in Rust. There are also a few game engines, which we’ll discuss in the last section.

We’ll be using the Bevy game engine to demonstrate how to build a game in Rust. The

project is still under active deployment, so the code and documentation change rapidly.

We’ll be using the current stable version, 0.9.1.

7.1 � What Are We Building?
Back in the days when flash games were still a thing, there was a very simple but highly

addictive game from Japan called Pikachu Volleyball. The game featured two Pikachus

(a Pokémon character) playing beach volleyball. You could either play against the

computer or compete with others using the same keyboard. We are going for nostalgia

by recreating (a subset of) this game.

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_7

https://doi.org/10.1007/978-1-4842-9331-7_7

248

The game will have the following features:

•	 It will be a 2D game, with one player (a cat) on the left and one player

on the right.

•	 WASD keys control the movement of the left player, and the arrow

keys control the right player

•	 A ball will be fed from the middle, and each player has to bounce the

ball back to their opponent using their head and body.

•	 The ball will bounce and fall under the influence of gravity.

•	 You score when the ball touches the ground on your opponent’s side.

•	 There will be music and sound effects.

7.2 � Bevy and the Entity Component System Pattern
Bevy is a game engine built on the entity component system (ECS) pattern. ECS is

an architectural pattern in game-engine design. The core idea of ECS is to promote

composition over inheritance, while also optimizing the order in which memory is

accessed for performance. To give an example, imagine a role-playing game (RPG). In

the game we have a player, some monsters, and some destructible trees. The player and

monsters can move and attack, and we also need to keep track of their location and

health. When a monster touches the player we need to reduce the health of the player, so

we need to track collisions as well.

First, we have entities. Entities are objects in the game like the player, the monsters,

and the trees. Implementing all the aspects of the entities in one piece of code would

quickly become unmanageable. Instead, we separate each aspect into components, and

we can attach components onto entities, composing the game objects using a collection

of components. For example, we can create the following components:

•	 Attack: attack power and range

•	 Transform: keep track of location, orientation, and scale

•	 Collision: detect collisions

•	 Health: keep track of the health and death

Chapter 7 Building a Game

249

Then our entities can be composed as follows:

•	 Player: Attack + Transform + Collision + Health

•	 Monster: Attack + Transform + Collision + Health

•	 Tree: Transform + Collision1

Finally, to make the game move, we implement systems to update each component.

One system is responsible for one aspect of the game. For example, we can have systems

like the following:

•	 Movement: move the entities and update their transform. For

example, the monsters will move by themselves.

•	 Input: Takes user input and updates the player’s location and

performs attacks.

•	 Collision: Checks for collision and stop the entities from crossing

each other; may also incur damage.

•	 Attack: When an attack happens, reduce the health of the victim

based on the attacker’s attack power. For trees, destroy it when being

attacked.

Systems can be based on single components, or more often will deal with an

interaction between components. For example, the collision system would need to look

at entities’ transform components to determine when components collide, and may also

need access to each entity’s health component to handle any damage from the collision.

Using this architecture, we can make our code cleaner and more structured, helping

us to build very complicated games. Creating a new novel entity often is as simple as

giving it a quick combination of components that already handle the required behavior.

If new behavior is desired, a new component can be created for the entity and then be

reused in the future when other new entities use that same behavior. Just like in any

form of programming, this leads to having to make decisions about how specialized or

generic your components will be. For simple projects, specialized components and some

duplication is OK, but as your project grows it’s easier to use common components and

simply change how they are combined.

1 We could give health to the tree, but to keep it simple we just assume the trees are destroyed with
one blow.

Chapter 7 Building a Game

250

Figure 7-1.  Object oriented–style game design with encapsulation of state

While entity component systems have the benefit of making the composition of

base components very easy, they also can have very large performance benefits. You

could take a composition-oriented approach in Rust without using an entity component

system by creating a new struct for each entity type in the game, and implementing

traits on those structs corresponding to the capabilities of the underlying entities. You

could then store these entities and operate on them. You likely would have to write a

little more boilerplate to wire up each entity type (or use some macros), but you still

could create a simple composition-based system. Each individual entity, however,

like a player or a monster, would likely take up a lot of space in memory because they

would store all information together in a single struct, and look much like encapsulated

objects in an object-oriented paradigm (Figure 7-1). Now, imagine iterating over all of

these objects just to calculate collisions; you’d care about the size and position of each

object, but all the other information, like health, sprite rendering, and so on, would not

be used. Modern processers are very fast at sequentially accessing memory, and the

extra components in any entity just take up space in between the data you care about.

The problem is even worse if your entities contain pointers to other data, like Box or Vec,

since that data is held somewhere else in the heap and will break the sequential access

pattern.

Chapter 7 Building a Game

251

Figure 7-2.  Entity component design with efficient memory access

Many game developers realized over time that when iterating over entities in a game,

they only cared about a small subset of that entity’s components, like the transform and

size, when calculating collisions, and that if they could pack together only the things

that usually were used together, modern processers would have an easier time rapidly

loading all of the data. This is where an entity component system shines. Internally,

most entity component systems have the equivalent of a single Vec for each component

type, so for example a Vec<Transform> or Vec<Collision> (Figure 7-2). Since Vec stores

its elements sequentially in memory, all instances of a specific type of component can

be accessed efficiently without other data getting in the way. Each component has an

id to make clear which entity that component belongs to, but otherwise holds only

the component-relevant information. They tend to be designed to not hold pointers

to other data either, so that all the data for that component is immediately available in

adjacent memory and not somewhere else on the heap. In this example, collisions can

rapidly be calculated by iterating over the Vec<Transform> and Vec<Hitbox> component

lists without having to fetch other memory. Different systems can be created that work

on different subsets of components separately, and the overall result is a program

architecture finely tuned to run extremely fast on modern processor architectures.

Now that you have some basic knowledge of entity component systems, it’s time to

get started writing your game.

Chapter 7 Building a Game

252

7.3 � Creating a Bevy Project
Before we write any Bevy code we have to install a few dependencies. Bevy relies on a

few system libraries for things like sound, font rendering, XML parsing, etc. Therefore,

we need to install these system dependencies first. On ubuntu2 we can run the following

command to install them all:

$ sudo apt install g++ \

 pkg-config \

 libx11-dev \

 libasound2-dev \

 libudev-dev

Then we can create a project and add Bevy:

$ cargo new cat_volleyball

$ cd cat_volleyball

$ cargo add bevy

You Cargo.toml file should look something like Listing 7-1.

Listing 7-1.  Cargo.toml for Bevy project

[package]

name = "cat_volleyball"

...

[dependencies]

bevy = "0.10.1"

Now you can update your main.rs to match Listing 7-2. If you run the project with

cargo run you should see an empty window pop up. This is the standard skeleton for a

Bevy project, and if you run the app you should see a black blank window pop up as in

Figure 7-3.

2 You can find instructions for other platforms here: https://bevyengine.org/learn/book/
getting-started/setup/#install-os-dependencies.

Chapter 7 Building a Game

https://bevyengine.org/learn/book/getting-started/setup/#install-os-dependencies
https://bevyengine.org/learn/book/getting-started/setup/#install-os-dependencies

253

Listing 7-2.  Example of a simple Bevy skeleton project

use bevy::prelude::*;

fn main() {

 App::new()

 .add_plugins(DefaultPlugins)

 .run();

}

Your src/main.rs (Listing 7-2) file might look like it does not contain much (a

blank window is not much to look at), with only the plugin group DefaultPlugins

being added. However, this default group contains many important plugins that are

responsible for creating this window and performing various actions in the main game,

and in many other frameworks getting to this point can take a lot more work. The

components include logging, time tracking, transforms (location, orientation, and scale),

windows, user input, and debugging. You can look at the Bevy source code to see the full

details of the default list of plugins.3

Figure 7-3.  Application with default plugins

We will define our game using a combination of components and systems. Each

component is a struct that can contain some information, while a system is a function

that will be run on some subset of the components. The specific subset that is used for

3 https://docs.rs/bevy/latest/bevy/struct.DefaultPlugins.html

Chapter 7 Building a Game

https://docs.rs/bevy/latest/bevy/struct.DefaultPlugins.html

254

any system is determined by a query/queries that are defined in the arguments to the

system function. These queries pull in only the components needed by this system. We’ll

start adding systems after we make some initial customizations.

7.4 � See the World Through a Camera
Although the game engine will create a virtual world for us, it doesn’t know which part

of the world to display on the screen. Therefore, we need to create a camera that tells the

engine which part of the engine should be displayed and from which angle.

Figure 7-4.  Camera location

Coordinates in our game will be given in pixels, and the play arena will be in the xy

plane, from (0,0) to (200,200).4 Since we are creating a 2D game the default orientation

of the camera is acceptable, we just need to decide where to center it along with the

window size. We set ARENA_WIDTH: f32 = 200.0 and ARENA_HEIGHT: f32 = 200.0.5

4 Feel free to adjust any of the game parameters as you desire; a big part of making a good game is
tweaking the various features to find the perfect combination of fun and difficulty.
5 Notice Bevy (and many other game engines) use single precision floating point numbers, which
are represented by f32 in Rust. Generally games don’t need full double floating point precision,
and the savings in memory can be major, which is why single precision floating point arithmetic
is used.

Chapter 7 Building a Game

255

The camera itself is centered at the middle of the arena at unit height above the canvas,

(ARENA_WIDTH/2.0,ARENA_HEIGHT/2.0, 1.0), with its viewing window sized to fit the

full arena (Figure 7-4). We can put the command to spawn a camera in a setup function

that will hold all the initial setup code for our game.

The setup function will spawn a camera bundle, the first entity we are adding to

our app. Bevy uses bundles as a simple way of creating common entities with all their

appropriate components. You can also directly create entities from a tuple of base

components or mixtures of base components and bundles, which we’ll do in the next

section. To instruct Bevy to call the setup function at loading time, we add it to the app

using the add_startup_system method (Listing 7-3). To confirm that our camera is

working properly, we can change the camera color using the insert_resource method

on our app. In the example code in Listing 7-3 we’ve left the color as black (red, green,

and blue values all at 0.0), but you can change these values and re-run the app to see the

background reflect the new color.

Notice how when spawning the camera we provided the Transform component

explicitly to the Camera2dBundle, while leaving all other components at their defaults.

This is a common pattern in Bevy, and lets us avoid specifying every detail for every

component of an entity, instead only specifying components that differ from some

common default.

Listing 7-3.  Initializing the camera

use bevy::prelude::*;

const ARENA_WIDTH: f32 = 200.0;

const ARENA_HEIGHT: f32 = 200.0;

fn setup(mut commands: Commands,) {

 commands.spawn(Camera2dBundle {

 transform: Transform::from_xyz(

 ARENA_WIDTH/2.0,

 ARENA_HEIGHT/2.0,1.0),

 ..default()

 });

}

Chapter 7 Building a Game

256

fn main() {

 App::new()

 // set the global default

 .add_plugins(DefaultPlugins.set(WindowPlugin {

 primary_window: Some(Window {

 title: "Cat Volleyball".into(),

 resolution: (ARENA_WIDTH, ARENA_HEIGHT).into(),

 ..default()

 }),

 ..default()

 }))

 .insert_resource(ClearColor(Color::rgb(0.0, 0.0, 0.0)))

 .add_startup_system(setup)

 .run();

}

7.5 � Adding the Cats
Next, we are going to add some moving parts to the game, starting with the cats

representing the players. Start off by creating a top-level folder titled assets, which is

the default directory used by Bevy to store game assets like sprites, sounds, textures, and

other game data. Inside this folder you can create another textures folder in which to

save the cat-sprite.png file, which contains our player cat sprite (Figure 7-5).

Figure 7-5.  cat-sprite.png

Chapter 7 Building a Game

257

Listing 7-4.  Initializing the camera

// ...

const PLAYER_HEIGHT: f32 = 32.0;

const PLAYER_WIDTH: f32 = 22.0;

// ...

#[derive(Copy, Clone)]

enum Side {

 Left,

 Right,

}

#[derive(Component)]

struct Player {

 side: Side,

}

fn initialize_player(

 commands: &mut Commands,

 cat_sprite: Handle<Image>,

 side: Side,

 x: f32,

 y: f32,

) {

 commands.spawn((

 Player { side },

 SpriteBundle {

 texture: cat_sprite,

 transform: Transform::from_xyz(x, y, 0.0),

 ..default()

 },

));

}

fn setup(mut commands: Commands,

 asset_server: Res<AssetServer>) {

//...

Chapter 7 Building a Game

258

 let cat_sprite = asset_server.load("textures/cat-sprite.png");

 initialize_player(

 &mut commands,

 cat_sprite.clone(),

 Side::Left,

 PLAYER_WIDTH / 2.0,

 PLAYER_HEIGHT / 2.0,

);

 initialize_player(

 &mut commands,

 cat_sprite.clone(),

 Side::Right,

 ARENA_WIDTH - PLAYER_WIDTH / 2.0,

 PLAYER_HEIGHT / 2.0,

);

}

// ...

You can see the code for initializing the players in Listing 7-4. We’ll start by defining

our own new component, a Player, which will contain a single field Side. This field lets

you differentiate between the two players. We want to initialize one left and one right

player, so we write an initialization function and then call that function in the setup

function we wrote previously. In the initialization function we spawn a player as a

tuple containing a Player component and a SpriteBundle, which just like the previous

camera bundle is actually a set of multiple other components. We can use most of the

default components in the SpriteBundle, but we need to provide the specific player

sprite along with a custom transformation for the player’s starting location.

We need to think a bit about exactly where we should place our new players. We

place the players on each side of the arena, as in Figure 7-6 and Figure 7-7. If we locate

the two players at (0.0, 0.0) and (ARENA_WIDTH, 0.0), you’ll see that they are centered

exactly on the corners of the arena, and only a quarter of each player is visible. We’ll

need to do some math to follow the diagrams and offset the centers of the players so

the full sprites appear in each corner. Shifting by half each player’s width and height

gives us the correct coordinate pair (PLAYER_WIDTH/2.0, PLAYER_HEIGHT/2.0) and

(ARENA_WIDTH - PLAYER_WIDTH/2.0, PLAYER_HEIGHT/2.0) for the left and right players,

respectively.

Chapter 7 Building a Game

259

Figure 7-6.  Left player location

Figure 7-7.  Right player location

Chapter 7 Building a Game

260

To load single sprites we need to get access to the asset server. The asset server is one

of many resources in Bevy. A resource is a global location that provides access to some

information or service for the entire Bevy app, and in addition to using premade Bevy

resources you can create your own. The asset server acts as a single location in which

to store loaded assets like sprites so they can be easily retrieved and used by multiple

components without having to load them into memory multiple times. You can add

the asset server to your setup system function by simply adding a new argument to the

function: asset_server: Res<AssetServer>. Generally, all Bevy system functions work

in this way; various arguments to retrieve resources, entities, components, and other

features can be directly added to the function interface, and Bevy will connect the code

automatically internally. Note that the argument added has a type of Res<AssetServer>.

The Res wrapper acts as a reference to the asset server without passing the entire

resource in; it implements the Deref trait and can be used to call methods on the asset

server. We call the .load() method to load a sprite file and return a Handle<Image>

to the loaded sprite. The Handle also acts as a reference so that it can be easily cloned

without creating a clone of the underlying sprite. These handles can be used to initialize

the SpriteBundle component with the sprites used for each player.

At this point you should be able to run your program and see the cats for each player

in the bottom two corners (Figure 7-8). They won’t do anything yet, and we’ve still got

a ways to go. Before we start adding movement, however, we should spend a little time

making sprite loading and management easier.

7.6 � Loading a Spritesheet
Usually, using an individual image for each thing on the screen is too inefficient for a

game because the image (texture) needs to be loaded into the graphics processing unit

(GPU), which has a high overhead. We usually aggregate all the images (or some of the

related ones) into a big picture called the “spritesheet.” Then we “cut out” a small section

of the big image for each item. This way, we reduce the overall loading time and allow

the GPU to handle the images more efficiently. We’ll collect all the sprites we want to

use in a single spritesheet (Figure 7-9), which includes a mirror cat for the right player

and the ball that we’ll use later. As a bonus, we can add a second cat sprite facing in the

opposite direction, so that each player now has a different avatar (and the volleyball

game actually has the players facing each other).

Chapter 7 Building a Game

261

We need to go back and refactor our player display code to load and handle the

spritesheet; the changes are shown in Listing 7-5.

Figure 7-8.  Player cats in the arena; note that the sizing may be different in your
application, as the window might be larger

Figure 7-9.  Updated spritesheet.png

Listing 7-5.  Code to load a spritesheet

// ...

fn initialize_player(

 commands: &mut Commands,

 atlas: Handle<TextureAtlas>,

 cat_sprite: usize,

 side: Side,

 x: f32,

Chapter 7 Building a Game

262

 y: f32,

) {

 commands.spawn((

 Player { side },

 SpriteSheetBundle {

 sprite: TextureAtlasSprite::new(cat_sprite),

 texture_atlas: atlas,

 transform: Transform::from_xyz(x, y, 0.0),

 ..default()

 },

));

}

fn setup(

 mut commands: Commands,

 asset_server: Res<AssetServer>,

 mut texture_atlases: ResMut<Assets<TextureAtlas>>,

) {

 let spritesheet = asset_server.load(

 "textures/spritesheet.png");

 let mut sprite_atlas = TextureAtlas::new_empty(

 spritesheet,

 Vec2::new(58.0, 34.0));

 let left_cat_corner = Vec2::new(11.0, 1.0);

 let right_cat_corner = Vec2::new(35.0, 1.0);

 let cat_size = Vec2::new(22.0, 32.0);

 let left_cat_index = sprite_atlas.add_texture(

 Rect::from_corners(

 left_cat_corner,

 left_cat_corner + cat_size,

)

);

 let right_cat_index = sprite_atlas.add_texture(

 Rect::from_corners(

 right_cat_corner,

Chapter 7 Building a Game

263

 right_cat_corner + cat_size,

)

);

 let texture_atlas_handle = texture_atlases.add(sprite_atlas);

 commands.spawn(Camera2dBundle {

 transform: Transform::from_xyz(

 ARENA_WIDTH/2.0,

 ARENA_HEIGHT/2.0,1.0),

 ..default()

 });

 initialize_player(

 &mut commands,

 texture_atlas_handle.clone(),

 left_cat_index,

 Side::Left,

 PLAYER_WIDTH / 2.0,

 PLAYER_HEIGHT / 2.0,

);

 initialize_player(

 &mut commands,

 texture_atlas_handle,

 right_cat_index,

 Side::Right,

 ARENA_WIDTH - PLAYER_WIDTH / 2.0,

 PLAYER_HEIGHT / 2.0,

);

}

// ...

We update the code to initialize each player to take a handle to a TextureAtlas

instead of to an Image, and also add an index into that atlas for the desired texture in

the atlas. We replace the SpriteBundle with a SpriteSheetBundle that takes the atlas,

along with a texture atlas sprite from the index. Otherwise the player initialization stays

the same.

Chapter 7 Building a Game

264

In the setup function, we update the arguments to provide a mutable reference to

the TextureAtlas assets. The TextureAtlas is a single location where we can store all

texture atlases in the whole program. We load our spritesheet just like any other image

into the asset server and then create a new texture atlas from this image with its total

size. To get individual sprites from the atlas we generate the coordinates of rectangles

encompassing each sprite (these rectangles are defined by the upper left and lower right

points in pixels on the spritesheet). Note that for images the (0,0) coordinate is in the

top left. After we’ve added the textures and received the indices for these textures in the

atlas, we add the new atlas to our larger atlas collection and are left with a handle to the

asset that can be passed to the player initializers. As a bonus, we now have the cat player

on the right side facing their opponent (Figure 7-10).

Figure 7-10.  Cats with the correct position, from a spritesheet

Note we could have continued using individual images loaded as sprites and it

probably wouldn’t have had a large effect on our game’s performance, but for larger

games a single spritesheet can have huge advantages. This approach also shows how

entity component systems can generally be very flexible; we switched out a few of our

player’s visual components by choosing a different bundle, but otherwise the game

remains the same. Moving forward, we can refer to sprites using a texture atlas combined

with an index into that atlas.

Chapter 7 Building a Game

265

7.7 � Moving the Cats
The cats are now rendered nicely, but they are static. We want to control them with a

keyboard.

The first step is to determine which inputs we want available to each player. We

want the left player to use the A and D keys, while the right player uses the left and

right arrows. We can implement two methods on the Side enum (Listing 7-6) to return

the keys that correspond to left and right movement, based on the current side. Bevy

represents these key presses with a KeyCode enum, and we’ll assign the keys we want for

control. In a larger application we might want to load these from a config file to allow

easy key-binding customization in-game, but for us hardcoding them here is fine.

While we are adding methods to the Side enum we’ll also provide a range method.

Each cat player will be limited to their own side, much like on a real volleyball court.

We’ll code in the permissible range for a player based on their side into this method;

when processing players, we can call range to ensure a player hasn’t strayed out of their

play zone.

Listing 7-6.  Implementing side methods

impl Side {

 // Get keycode for move left

 fn go_left_key(&self) -> KeyCode {

 match self {

 Side::Left => KeyCode::A,

 Side::Right => KeyCode::Left,

 }

 }

 // Get keycode for move right

 fn go_right_key(&self) -> KeyCode {

 match self {

 Side::Left => KeyCode::D,

 Side::Right => KeyCode::Right,

 }

 }

Chapter 7 Building a Game

266

 // Determine the permissible range of the cat

 fn range(&self) -> (f32, f32) {

 match self {

 Side::Left => (

 PLAYER_WIDTH / 2.0,

 ARENA_WIDTH / 2.0 - PLAYER_WIDTH / 2.0

),

 Side::Right => (

 ARENA_WIDTH / 2.0 + PLAYER_WIDTH / 2.0,

 ARENA_WIDTH - PLAYER_WIDTH / 2.0,

),

 }

 }

}

At this point, you’re ready to create your first non-startup system. You can follow

Listing 7-7 to write the player function that will define the player system. First, let’s take

a look at the arguments we’re providing to the function, which again will be auto-filled

by the Bevy framework whenever this function is called:

•	 keyboard_input: Res<Input<Keyboard>>: Provides a reference to

the keyboard input resource. This can be used to determine which

keys are currently pressed.

•	 time: Res<Time>: Provides a reference to the time resource. Since

our player system function can be called with different amounts of

time between steps, we’ll use this resource to determine the time

since last step, which will help us ensure player movement is smooth.

•	 mut query: Query<(&mut Player, &mut Transform)>: A Query

that can be iterated over to provide each entity that contains both a

Player and a Transform, providing mutable references to both.

It’s worth taking a little more time digging into the elegance of the Query type here.

We want to write a system that moves our players; to move a player we need to get some

information from that player (what side it’s on and therefore where it can move and

which inputs it reacts to) and then modify that player’s transform. By putting a shared

reference to Player and a mutable reference to Transform in the query, Bevy will give us

Chapter 7 Building a Game

267

an iterator that iterates over every entity with both of these components. We can ignore

all the other components that a player entity has, just focusing on the transform. This is

extremely composable and extensible; the player system will operate on any entity that

has this pair of components.

Listing 7-7.  The player system

const PLAYER_SPEED: f32 = 60.0;

fn player(

 keyboard_input: Res<Input<KeyCode>>,

 time: Res<Time>,

 mut query: Query<(&Player, &mut Transform)>,

) {

 for (player, mut transform) in query.iter_mut() {

 let left = if keyboard_input.pressed(

 player.side.go_left_key())

 {

 -1.0f32

 } else {

 0.0

 };

 let right = if keyboard_input.pressed(

 player.side.go_right_key())

 {

 1.0f32

 } else {

 0.0

 };

 let direction = left + right;

 let offset = direction * PLAYER_SPEED

 * time.raw_delta_seconds();

 // Apply movement deltas

 transform.translation.x += offset;

 let (left_limit, right_limit) = player.side.range();

 transform.translation.x = transform.translation.x.clamp(

Chapter 7 Building a Game

268

 left_limit, right_limit);

 }

}

// ...

fn main() {

 App::new()

 // ... Other systems and setup

 .add_system(player)

 .run();

}

In the actual player function, the first bit of code determines whether there is a

request for the player to move left or right. You can query the Input resource to see if any

of the pressed buttons match that player’s buttons for moving left or right. We use two

variables, left and right, and set them to -1.0 and 1.0 respectively if the appropriate

button is pressed, or zero if not. This lets us calculate the total direction by simply adding

them, with the final direction variable then being 0.0 if neither or both of the buttons are

pressed.

Next, you’ll need to determine the player’s total movement during this timestep.

To let the players move smoothly, you can set a fixed speed in PLAYER_SPEED. The time

difference between two executions of the system can be read from time.raw_delta_

seconds(). (The raw addition lets us directly get the seconds as an f32 instead of as an

intermediate representation as a Rust Duration type.) The final formula for movement

is then just the distance moved times the direction (which may be 0.0, meaning no move

occurred), giving us the following:

offset = movement direction × player speed × time delta

which corresponds to the following code line:

let offset = direction * PLAYER_SPEED * time.raw_delta_seconds();

Once the movement offset is calculated, we can update the player’s X position:

xafter = xbefore + offset

We can get the current position (xbefore) using transform.translation.x. So, the final

position is simply transform.translation.x + offset.

Chapter 7 Building a Game

269

However, if we don’t restrict the range of transform.translation.x, the players

can move out of the window and into each other’s field. Therefore, we have to limit the

transform.translation.x value to only half of the arena. The left player’s range will be

[0, arena_width / 2], and the right player will be [arena_width / 2, arena_width].

We’ve already coded these limits to be returned as a method from the Side enum,

including handling the adjustments for each player’s width. The simplest way to enforce

this is to retrieve the limits and then feed them into the clamp function. This function

takes a value and, if it’s outside the given minimum and maximum, “clamps” it to be

either the minimum or maximum value. This is a simple way to ensure that each player

cannot move out of their designated area, and can be tested by trying to move the cats

around (Figure 7-11).

Figure 7-11.  Moving the cat players with keyboard

7.8 � Creating the Ball
Since we have the players ready, let’s bring the ball into the game (we won’t add a

net since we’ve already got plenty of other code we still need to write). Adding a Ball

component is as straightforward as adding the Player. We just add the struct, annotate

it with #[derive(Component)], and add velocity and radius fields to the struct (we’ll

be using these later for the ball’s movement). The rest of the code in Listing 7-8 follows

closely what we did for initializing a player. A new initialization function is created that

Chapter 7 Building a Game

270

spawns an entity as a tuple of a Ball and a SpriteSheetBundle, using a passed-in atlas

and index to generate the sprite, and putting the ball at the center of the arena (ARENA/

WIDTH/2.0, ARENA_HEIGHT/2.0). The initialization function is called in the wider

setup function, with the sprite selected from the appropriate location in our loaded

spritesheet. After running this new code we can see the ball in the arena (Figure 7-12).

Listing 7-8.  Create the ball component and initialize it

const BALL_VELOCITY_X: f32 = 30.0;

const BALL_VELOCITY_Y: f32 = 0.0;

const BALL_RADIUS: f32 = 4.0;

#[derive(Component)]

pub struct Ball {

 pub velocity: Vec2,

 pub radius: f32,

}

/// Initializes one ball in the middle-ish of the arena.

fn initialize_ball(

 commands: &mut Commands,

 asset_server: &Res<AssetServer>,

 atlas: Handle<TextureAtlas>,

 ball_sprite: usize,

) {

 commands.spawn((

 Ball {

 velocity: Vec2::new(BALL_VELOCITY_X, BALL_VELOCITY_Y),

 radius: BALL_RADIUS,

 },

 SpriteSheetBundle {

 sprite: TextureAtlasSprite::new(ball_sprite),

 texture_atlas: atlas,

 transform: Transform::from_xyz(

 ARENA_WIDTH / 2.0,

Chapter 7 Building a Game

271

 ARENA_HEIGHT / 2.0, 0.0),

 ..default()

 },

));

}

fn setup(

 // ...

) {

 // ... setup cat indicies

 let ball_corner = Vec2::new(1.0, 1.0);

 let ball_size = Vec2::new(8.0, 8.0);

// create texture atlas handle.

 let ball_index =

 sprite_atlas.add_texture(Rect::from_corners(

 ball_corner,

 ball_corner + ball_size

));

 // ... init camera ...

 initialize_ball(

 &mut commands,

 &asset_server,

 texture_atlas_handle.clone(),

 ball_index,

);

 // ... init players ...

}

Chapter 7 Building a Game

272

Figure 7-12.  Ball added to the arena

7.9 � Can’t Defy Gravity
Notice how in the previous section we had the ball with an initial velocity moving to the

right, based on (BALL_VELOCITY_X, BALL_VELOCITY_Y). We now need to implement

a new system that will move the ball. If we were to directly copy our code for player

movement, the ball would just drift to the right until it went off the screen. Instead, we

need to simulate gravity, slowly accelerating the ball downward while simultaneously

maintaining its rightward velocity. The code in Listing 7-9 implements the move_ball

system, which does exactly this.

Listing 7-9.  Ball movement system

pub const GRAVITY_ACCELERATION: f32 = -40.0;

fn move_ball(

 time: Res<Time>,

 mut query: Query<(&mut Ball, &mut Transform)>

) {

 for (mut ball, mut transform) in query.iter_mut() {

 // Apply movement deltas

Chapter 7 Building a Game

273

 transform.translation.x += ball.velocity.x

 * time.raw_delta_seconds();

 transform.translation.y += (ball.velocity.y

 + time.raw_delta_seconds()

 * GRAVITY_ACCELERATION / 2.0)

 * time.raw_delta_seconds();

 ball.velocity.y += time.raw_delta_seconds()

 * GRAVITY_ACCELERATION;

 }

}

// ...

fn main() {

 App::new()

 // ...

 .add_system(move_ball)

 // ...

}

This system takes the resource Res<Time> and a query that returns entities with Ball

and Transform components. Since there is no acceleration in the x direction, we can

directly write the new x position as the old position plus the velocity times the time:

x = x + velocity * time_difference

For the y position, based on the definition of acceleration,

	

x t
x
v t

v t
x
y t

() = ()

() = ()

d
d
d
d 	

it might be tempting to write the following:

velocity = velocity + acceleration * time_difference

y = y + velocity * time_difference

Chapter 7 Building a Game

274

However, this approach (known as Euler integration) introduces some error that is

dependent on the time difference, and it is noticeable when the time difference is not

steady. If the frame rate is different, the trajectory of the ball will also be slightly different.

To fix the issue, we use a different algorithm called velocity Verlet integration:

y = y + (velocity + time_difference * acceleration / 2) * time_difference

velocity = velocity + acceleration * time_difference

After translating this to the code in Listing 7-9, we get a much more accurate

simulation of a falling ball. We just need to add the new move_ball system to our Bevy

app, and the velocity and position will be updated on each frame.

Figure 7-13.  Ball moving due to gravity

Now, if we run cargo run, the ball shoots to the right and falls in a beautiful curve

(Figure 7-13).

7.10 � Making the Ball Bounce
The ball now drops naturally, but it fell through the floor and the cat players. To

make the game playable, we need to implement a bounce system that makes the ball

bounce when it hits the boundary of the window or the player. This is as simple as

adding another system to the game (Listing 7-10), though this system will be the most

complicated one we’ve implemented thus far. Note that the bounce function has a pair of

Chapter 7 Building a Game

275

queries as parameters—one for the ball and one for the players. This lets us query both

components simultaneously, since we’ll need both a ball and a player to determine if

they collide.

Before you can get started with this section, you’ll need to add the rand crate (we’ll

use this crate to add a little bit of randomness to the bounces):

$ cargo add rand

Then, you can add the bounce system skeleton.

Listing 7-10.  Bounce system skeleton

use rand::Rng;

// ... Imports and other systems

fn bounce(

 mut ball_query: Query<(&mut Ball, &Transform)>,

 player_query: Query<(&Player, &Transform)>,

) {

 for (mut ball, ball_transform) in ball_query.iter_mut() {

 let ball_x = ball_transform.translation.x;

 let ball_y = ball_transform.translation.y;

 if ball_y <= ball.radius && ball.velocity.y < 0.0 {

 ball.velocity.y = -ball.velocity.y;

 } else if

 ball_y >= (ARENA_HEIGHT - ball.radius) && ball.velocity.y > 0.0

 {

 ball.velocity.y = -ball.velocity.y;

 } else if ball_x <= ball.radius && ball.velocity.x < 0.0 {

 ball.velocity.x = -ball.velocity.x;

 } else if

 ball_x >= (ARENA_WIDTH - ball.radius) && ball.velocity.x > 0.0

 {

 ball.velocity.x = -ball.velocity.x;

 }

Chapter 7 Building a Game

276

 // ... additional collision detection

 }

}

// ... other systems and setup

fn main() {

 App::new()

 // ...

 .add_system(bounce)

 // ...

}

Figure 7-14.  Bouncing at the edge. You should see the ball falling down and to the
right when your program starts (it’s rather hard to show something moving in a book)

Chapter 7 Building a Game

277

First, let us handle the bouncing around the edge of the window. In each frame, we

track the location of the ball; if the ball has gone outside of any edge, and its velocity is

making the ball going out even further,6 then we’ll invert the velocity on that axis. For

example, if the ball goes outside of the right edge, and its x velocity is +10 pixel/sec (i.e.,

moving toward the right), then it will flip the x velocity to -10 pixel/sec (i.e., moving

toward the left). Generalize this idea to the four edges, and we get Listing 7-11. The four

cases in Listing 7-10 are illustrated in Figure 7-14.

Listing 7-11.  Bouncing the ball at the edge

use rand::Rng;

// ...

fn point_in_rect(

 x: f32, // ball’s x and y location

 y: f32,

 left: f32, // the player box’s boundary

 bottom: f32,

 right: f32,

 top: f32,

) -> bool {

 x >= left && x <= right && y >= bottom && y <= top

}

fn bounce(

 mut ball_query: Query<(&mut Ball, &Transform)>,

 player_query: Query<(&Player, &Transform)>,

) {

 for (mut ball, ball_transform) in ball_query.iter_mut() {

 // ... Previous edge collision code ...

 for (player, player_trans) in player_query.iter() {

 let player_x = player_trans.translation.x;

 let player_y = player_trans.translation.y;

6 This is required because sometimes the ball already bounced, but it’s still outside of the window
in the next frame. In this case, the ball will be trapped at the edge because the velocity keeps
inverting.

Chapter 7 Building a Game

278

 if point_in_rect(

 ball_x,

 ball_y,

 player_x - PLAYER_WIDTH / 2.0 - ball.radius,

 player_y - PLAYER_HEIGHT / 2.0 - ball.radius,

 player_x + PLAYER_WIDTH / 2.0 + ball.radius,

 player_y + PLAYER_HEIGHT / 2.0 + ball.radius,

) {

 if ball.velocity.y < 0.0 {

 // Only bounce when ball is falling

 ball.velocity.y = -ball.velocity.y;

 let mut rng = rand::thread_rng();

 match player.side {

 Side::Left => {

 ball.velocity.x = ball.velocity.x.abs()

 * rng.gen_range(0.6..1.4)

 }

 Side::Right => {

 ball.velocity.x = -ball.velocity.x.abs()

 * rng.gen_range(0.6..1.4)

 }

 }

 }

 }

 }

 }

}

// ...

We also need to make the ball bounce when it hits the players. Otherwise, it passes

through the players as if they are thin air. We don’t need to define the contour of the

player and do a real physical collision simulation. We can simplify this by imagining the

player to be a rectangular box, and if the ball’s location falls within this box, we assume

that the ball collides with the player (Figure 7-15). We can put this collision logic in a

helper function to simplify the main collision code (Listing 7-11).

Chapter 7 Building a Game

279

When the ball collides, we don’t calculate the direction it should bounce back

according to physics. Instead, we invert the y-axis velocity, so the falling ball now

bounces upward. For the x-axis, we force the ball to fly toward the opponent. So for the

left player, the ball will go right when hit, and vice versa. We do this by first taking the

absolute value of the current velocity and then giving it the correct sign. To give the game

some playability, we randomly speed up or slow down the ball in the x-axis on collision,

so the ball’s trajectory is unpredictable, using the rand crate. We use these rules to make

the calculation simple but keep the game interesting.

Figure 7-15.  Collision detection between a player and the ball

Chapter 7 Building a Game

280

7.11 � Keeping Score
The game is now fully playable, but we have to keep score with paper and pen. To

make the game track the score for us, just as you guessed, we will simply spin up

another system.

Our algorithm should look like the following:

	 1.	 If the ball touches the bottom boundary (i.e., the ball’s center is

less then one radius above the ground), it’s a goal.

	 2.	 We check the ball’s x coordinate to see if it’s on the left side or the

right side of the arena. If it’s on the right side, the left player gets a

point, and vice versa (the ball landing on the right side means the

right player failed to return it, so the left player scores).

	 3.	 Reposition the ball to the center of the arena. Reset the ball’s y-

axis velocity to zero. Reverse the ball’s x-axis velocity to make the

ball shoot toward the point-earner’s side; this is for simulating the

change of the right of serve.

This code can be easily implemented as in Listing 7-12.

Listing 7-12.  The score system algorithm

// ... imports and systems ...

fn scoring(

 mut query: Query<(&mut Ball, &mut Transform)>,

) {

 for (mut ball, mut transform) in query.iter_mut() {

 let ball_x = transform.translation.x;

 let ball_y = transform.translation.y;

 if ball_y < ball.radius {

 // touched the ground

 if ball_x <= ARENA_WIDTH / 2.0 {

 println!("Right player scored");

 // Change direction

 ball.velocity.x = ball.velocity.x.abs();

 } else {

Chapter 7 Building a Game

281

 println!("Left player scored");

 // Change direction

 ball.velocity.x = -ball.velocity.x.abs();

 }

 // reset the ball to the middle

 transform.translation.x = ARENA_WIDTH / 2.0;

 transform.translation.y = ARENA_HEIGHT / 2.0;

 ball.velocity.y = 0.0; // reset to free drop

 }

 }

}

// ... setup ...

fn main() {

 App::new()

 // ...

 .add_system(scoring)

 // ...

 .run();

}

In Listing 7-12, we only print who scored, but we can’t expect the gamer to look at

the log file of the game. So, we are going to show the score directly on the screen using a

text resource.

First, we need to create a resource data struct to hold the score, as follows:

#[derive(Resource)]

struct Score {

 left: usize,

 right: usize,

}

Then, in we can store our data in the Score struct instead of printing it to the

log (Listing 7-13). Note we’ve added a ResMut<Score> to the function’s arguments,

which will give us a mutable reference to the single Score resource the Bevy engine

automatically creates. We increment the score by one every time they score and limit the

number to 999, so the text won’t overflow the screen.

Chapter 7 Building a Game

282

Listing 7-13.  Keeping the score in ScoreBoard

fn scoring(

 mut query: Query<(&mut Ball, &mut Transform)>,

 mut score: ResMut<Score>,

) {

 for (mut ball, mut transform) in query.iter_mut() {

 let ball_x = transform.translation.x;

 let ball_y = transform.translation.y;

 if ball_y < ball.radius {

 // touched the ground

 if ball_x <= ARENA_WIDTH / 2.0 {

 score.right += 1;

 // Change direction

 ball.velocity.x = ball.velocity.x.abs();

 } else {

 score.left += 1;

 // Change direction

 ball.velocity.x = -ball.velocity.x.abs();

 }

 // reset the ball to the middle

 transform.translation.x = ARENA_WIDTH / 2.0;

 transform.translation.y = ARENA_HEIGHT / 2.0;

 ball.velocity.y = 0.0; // reset to free drop

 }

 }

}

Now that we have the score ready, we can show it on the screen with two ScoreBoard

entities. We first create a ScoreBoard component struct with a Side field to differentiate

between the two players. Then we add an initialize_scoreboard() function as

in Listing 7-14, similar to how we initialize the balls and players. The initialization

function creates an entity that contains a Scoreboard component along with the set

of components in TextBundle. We can set the font size, color, and the font itself by

setting the text style, and we do so by loading the font file fonts/square.ttf into the

Chapter 7 Building a Game

283

asset server.7 We allow the initialization function to provide the horizontal position,

but fix the vertical position for all scoreboards to be at the same height. Note that for

text elements the position is given in pixels from the top-left pixel on the screen; these

pixels do not correspond to our coordinate system for the ball and the players. With the

initialize function created, we can call it twice to create a separate scoreboard for each

player’s score.

Listing 7-14.  Initializing the UiText entities

// ... other constants ...

pub const SCORE_FONT_SIZE: f32 = 20.0;

#[derive(Component)]

struct ScoreBoard {

 side: Side

}

fn initialize_scoreboard(

 commands: &mut Commands,

 asset_server: &Res<AssetServer>,

 side: Side,

 x: f32,

) {

 commands.spawn((

 ScoreBoard { side },

 TextBundle::from_sections([

 TextSection::from_style(TextStyle {

 font_size: SCORE_FONT_SIZE,

 color: Color::WHITE,

 font: asset_server.load("fonts/square.ttf"),

 })])

 .with_style(Style {

 position_type: PositionType::Absolute,

 position: UiRect {

7 Bevy does not contain any default fonts, so we need to be sure to specify a font here that
we’ve loaded.

Chapter 7 Building a Game

284

 top: Val::Px(25.0),

 left: Val::Px(x),

 ..default()

 },

 ..default()

 })

 .with_text_alignment(match side {

 Side::Left => TextAlignment::Left,

 Side::Right => TextAlignment::Right,

 }),

));

}

// ... other systems ...

fn setup(

 mut commands: Commands,

 asset_server: Res<AssetServer>,

 mut texture_atlases: ResMut<Assets<TextureAtlas>>,

) {

 // ...

 initialize_scoreboard(

 &mut commands,

 &asset_server,

 Side::Left, ARENA_WIDTH / 2.0 - 25.0

);

 initialize_scoreboard(

 &mut commands,

 &asset_server,

 Side::Right,

 ARENA_WIDTH / 2.0 + 25.0

);

}

Chapter 7 Building a Game

285

fn main() {

 App::new()

 // ...

 .insert_resource(Score { left: 0, right: 0 })

 // ...

 .run();

}

You have initialized your scoreboard now, but you also need to handle updating

the scoreboard and calculating the score. This involves creating a new system function

score_display that will update the scoreboard based on each player’s current score

(Listing 7-15).

We first implement the scoring system function by taking in a query on any balls

with transforms, along with a reference to the Score resource. If the ball hits the floor

(equivalent to the ball y position’s being less than the ball’s radius) we determine what

half of the arena the ball is in, and give a point to the player on the other side. We then set

the ball’s x velocity to point toward the player who just won the point, representing the

other player’s getting the right to serve. The ball is then reset to the center of the arena,

and the velocity set to zero.

We add a second system score_display that updates the scoreboard with the

current score. It works by querying over all entities with both text and scoreboards, and

then pulls the correct score to update the text based off the scoreboard’s Side field.

When this is all completed and the two new systems are added and running, the

score-board will look like Figure 7-16.

Chapter 7 Building a Game

286

Figure 7-16.  Showing the score. Note that the score value may not be centered,
especially if your app shows up in a larger window than the play area

Listing 7-15.  Update the score on the UI in the WinnerSystem

// ...

fn scoring(

 mut query: Query<(&mut Ball, &mut Transform)>,

 mut score: ResMut<Score>,

) {

 for (mut ball, mut transform) in query.iter_mut() {

 let ball_x = transform.translation.x;

 let ball_y = transform.translation.y;

 if ball_y < ball.radius {

 // touched the ground

 if ball_x <= ARENA_WIDTH / 2.0 {

 score.right += 1;

 // Change direction

 ball.velocity.x = ball.velocity.x.abs();

 } else {

 score.left += 1;

Chapter 7 Building a Game

287

 // Change direction

 ball.velocity.x = -ball.velocity.x.abs();

 }

 // reset the ball to the middle

 transform.translation.x = ARENA_WIDTH / 2.0;

 transform.translation.y = ARENA_HEIGHT / 2.0;

 ball.velocity.y = 0.0; // reset to free drop

 }

 }

}

fn score_display(

 score: Res<Score>,

 mut query: Query<(&mut Text, &ScoreBoard)>

) {

 for (mut text, scoreboard) in query.iter_mut() {

 text.sections[0].value = match scoreboard.side {

 Side::Left => score.left.to_string(),

 Side::Right => score.right.to_string(),

 };

 }

}

// ...

fn main() {

 App::new()

 // ...

 .add_system(scoring)

 .add_system(score_display)

 .run();

}

Chapter 7 Building a Game

288

7.12 � Let There Be Music
Now we have a complete game, but it doesn’t feel complete without sound effects and

background music. To be able to play music in the game, we need to first add an audio

resource and update a few places in the code to be able to load our desired sound clips

(Listing 7-16). The audio system in Bevy is very simple, but it can do everything we need

for our basic game.

Listing 7-16.  Loading the AudioBundle

#[derive(Component)]

pub struct Ball {

 pub velocity: Vec2,

 pub radius: f32,

 pub bounce: Handle<AudioSource>, // Audio source for bouncing

 pub score: Handle<AudioSource>, // Audio source for scoring

}

// ...

fn initialize_ball(

 // ...

) {

 let bounce_audio = asset_server.load("audio/bounce.ogg");

 let score_audio = asset_server.load("audio/score.ogg");

 commands.spawn((

 Ball {

 velocity: Vec2::new(BALL_VELOCITY_X, BALL_VELOCITY_Y),

 radius: BALL_RADIUS,

 bounce: bounce_audio,

 score: score_audio,

 },

 // ...

));

}

// ...

Chapter 7 Building a Game

289

fn setup(

 mut commands: Commands,

 asset_server: Res<AssetServer>,

 mut texture_atlases: ResMut<Assets<TextureAtlas>>,

 audio: Res<Audio>, // Added audio subsystem

) {

 audio.play_with_settings(

 asset_server.load(

 "audio/Computer_Music_All-Stars_-_Albatross_v2.ogg"

),

 PlaybackSettings::LOOP.with_volume(0.25),

);

 // ...

}

You will add two new fields to the Ball, a bounce and score, which are both handles

to an AudioSource. These are initialized by loading sound files into the asset server and

then passing the handles, and will be used for ball sound effects. We can also load the

background music file in the main setup function, and then play it on loop to give our

game some general ambiance.

Listing 7-17.  Audio module for loading the background music

fn bounce(

 mut ball_query: Query<(&mut Ball, &Transform)>,

 player_query: Query<(&Player, &Transform)>,

 audio: Res<Audio>, // Audio resource added

) {

 for (mut ball, ball_trans) in ball_query.iter_mut() {

 let ball_x = ball_trans.translation.x;

 let ball_y = ball_trans.translation.y;

 if ball_y >= (ARENA_HEIGHT - ball.radius)

 && ball.velocity.y > 0.0

 {

 audio.play(ball.bounce.clone()); // bounce sound added

 ball.velocity.y = -ball.velocity.y;

Chapter 7 Building a Game

290

 } else if ball_x <= ball.radius && ball.velocity.x < 0.0 {

 audio.play(ball.bounce.clone()); // bounce sound added

 ball.velocity.x = -ball.velocity.x;

 } else if ball_x >= (ARENA_WIDTH - ball.radius)

 && ball.velocity.x > 0.0

 {

 audio.play(ball.bounce.clone()); // bounce sound added

 ball.velocity.x = -ball.velocity.x;

 }

 for (player, player_trans) in player_query.iter() {

 let player_x = player_trans.translation.x;

 let player_y = player_trans.translation.y;

 if point_in_rect(

 // ...

) {

 if ball.velocity.y < 0.0 {

 audio.play(ball.bounce.clone());

 // ... remaining bouncing on player code ...

 }

 }

 }

 }

}

fn scoring(

 mut query: Query<(&mut Ball, &mut Transform)>,

 mut score: ResMut<Score>,

 audio: Res<Audio>, // Audio resource added

) {

 for (mut ball, mut transform) in query.iter_mut() {

 let ball_x = transform.translation.x;

 let ball_y = transform.translation.y;

Chapter 7 Building a Game

291

 if ball_y < ball.radius {

 audio.play(ball.score.clone()); // play scoring sound

 // ... remaining code for touching the ground ...

 }

 }

}

The final step is to update our bouncing and scoring code to actually play the sounds

we’ve loaded for the ball (Listing 7-17). We need to update both the bounce and scoring

systems. In both of them we add a new Res<Audio> argument to get a reference to the

audio resource. For bounce we need to play the ball’s bounce sound for hitting the sides

and top of the arena (but not the floor, as that will be handled by scoring). While we’re

at it, we should also remove the code that makes the ball bounce on the floor, so that

we can avoid possible data races between the bouncing and the scoring systems. We

also add a bounce sound when the ball hits the player. Finally, in the scoring function,

you also need to add an audio.play whenever a player scores (equivalent to the ball

touching the bottom floor).

Finally, we have a working game! We learned how to render players and the ball on

the screen using the spritesheet. Then we added keyboard control to let us control the

players. We added a few systems to handle simple physics like gravity and bouncing. We

keep the score using the Score resource and display the score using some ScoreBoardss.

Lastly, we add the background music and sound effect to the game to spice it up.

7.13 � Alternatives
In terms of a full-fledged game engine, Bevy has become the clear leader, but there are

many other options out there for Rust-based game development. Other games engines

exist such as Piston and ggez. However, the development of Piston is less active than

Bevy at the moment, and ggez took a different path and focused only on 2D games.

These game engines are still relatively young comparing to commercial ones like Unity

and Unreal engine, and there have been many other relatively popular Rust game

engines that have come and gone (such as Amethyst, whose developers moved to work

on Bevy). These frameworks are also not as mature as commonly used graphics libraries

like SDL2 and OpenGL.

Chapter 7 Building a Game

292

If you want to use a more established engine you can choose to use Rust bindings

for existing libraries. As Michael Fairley, the author of the Rust game “A Snake’s Tale,”

demonstrated in his blog post,8 you can build a game using Rust bindings to libraries like

SDL2 and OpenGL. The Unity and Godot engines both have very good Rust bindings

available (in particular Godot-Rust). You can also choose crates for doing math, image, and

font rendering and combine them with these engine wrappers to make a game. You’ll need

more experience to put these things together, but if you’re an experienced game developer

who is familiar with these libraries in other languages (e.g., C/C++), this might be an easy

way to get up to speed.

Note  You’ll find that the Rust community loves to track the progress of a certain
area using the “Are we X yet” sites. This is a tradition from the Mozilla community,
which many Rustaceans are also involved in. Whenever there is a big project or
a certain goal that people want to track progress, someone will build an “Are we
X yet” site to track it. You can find a list of all the “are we yet” sites at https://
wiki.mozilla.org/Areweyet.

The game ecosystem in Rust is still in its early stages but shows a lot of promise. As in

many other fields of Rust, there is an “Are we game yet” page that tracks the progress of the

game development ecosystem: http://arewegameyet.com/. On this website, you’ll find

many useful crates that can help you fulfill your game development needs. You’ll also find a

list of games built with Rust. If you are unsure about which game engine to choose, maybe

it’s a good idea to look at the existing games and figure out which libraries they used.

7.14 � Conclusion
In this chapter you built a simple game with Rust and Bevy. You learned about the Entity

Component System and how this architecture is used in game development. You created

a simple game by setting up a screen, camera, and characters. You added physics and

collision handling to let the characters and ball move. You then extended the game to

add music and score keeping. In the next chapter, you’ll leave the virtual world and

develop some code that interacts with physical devices.

8 https://michaelfairley.com/blog/i-made-a-game-in-rust/

Chapter 7 Building a Game

https://wiki.mozilla.org/Areweyet
https://wiki.mozilla.org/Areweyet
http://arewegameyet.com/
https://michaelfairley.com/blog/i-made-a-game-in-rust/

293

CHAPTER 8

Physical Computing
in Rust
Up until now, all the programs you have written have only existed in the virtual world.

However, a big part of the physical world we live in is controlled by software. Traffic

lights, self-driving cars, airplanes, and even rockets and satellites are just a few examples.

Much of this software has to be built and executed in a drastically different environment

than the usual desktop environment. It usually has to run on relatively weaker CPUs with

less available memory. It might sometimes need to run without an operating system, or

on specialized embedded operating systems.

Traditionally, these applications are written in C or C++ for maximum performance

and low-level control of memory. Many of the embedded platforms are so limited

that garbage collection is not feasible. But this is where Rust shines. Rust can provide

performance and low-level control like C or C++, but also guarantees a higher level of

safety. A Rust program can be compiled to run on many different central processing

unit (CPU) architectures, like Intel, ARM, RISC-V, and MIPS. It also supports various

mainstream operating systems and can even run without an operating system.

8.1 � What Are You Building?
In this chapter, you’ll be focusing on using Rust on a Raspberry Pi. A Raspberry Pi is

an inexpensive computer with a credit card–size footprint created to make computer

education more accessible. It has a few key important features that help us demonstrate

the points for this chapter:

•	 It has general-purpose input/output (GPIO) pins. You can use it to

interact with physical circuits like LEDs and buttons.

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_8

https://doi.org/10.1007/978-1-4842-9331-7_8

294

•	 It’s powerful enough to run a full Debian-based operating system

(Raspberry Pi OS), so you can learn physical computing and cross-

compilation without going deep into bare-metal programming. But if

you are feeling adventurous, you can try writing your own mini Rust

operating system for it.

•	 It has an ARM CPU. You can demonstrate how to compile and cross-

compile code for an ARM platform.

To begin with, you’ll install a full operating system on the Raspberry Pi. Then you’ll

install the complete Rust toolchain on it. You’ll build two electrical circuits on a bread-

board, one for output and one for input, and use Rust to interact with them as follows:

•	 Output: The first circuit will allow us to generate output to the

physical world with light. You’ll create a simple LED circuit

connected to a GPIO output pin. You can write a Rust program to

turn the LED on and off and blink it at a fixed interval.

•	 Input: You can take input from the physical world as well. You’ll add

a push button to the circuit. The Rust program can detect button

clicks and then toggle the LED on and off.

These two examples will help us gain an understanding of how Rust code interacts

with the physical world. However, you are compiling them on the Raspberry Pi itself. In

many of the embedded applications, the target platform (i.e., the Raspberry Pi or similar

board) is not powerful enough to compile the code. You can instead compile on another,

more powerful computer, but it might have a CPU architecture and OS that is different

from the target platform. This method of compiling is called cross-compilation. You’ll

set up a cross-compilation toolchain and cross-compile the previous example with it.

Finally, to give you a sneak peek into how the GPIO pin works, you’ll use lower-level APIs

to control them. You’ll be able to get a sense of how the high-level GPIO libraries work.

8.2 � Physical Computing on Raspberry Pi
Physical computing can be a big change for those used to web or desktop projects. A lot

more effort is spent on setting up a testing environment and tool chain, and ensuring

that you won’t drive yourself crazy later because you don’t know if it’s your code or the

hardware that’s having a problem. We’ll take some time first setting up the Raspberry Pi 4

Chapter 8 Physical Computing in Rust

295

hardware and OS before we jump in to writing code for it. Taking a little extra effort now

will save a lot of pain down the road.

�Getting to Know Your Raspberry Pi
You’ll be using a Raspberry Pi 4 Model B board for this chapter. But a Raspberry Pi 3

should also work.

A Raspberry Pi board is a miniature computer. It has all the necessary components of

any other computer: CPU, memory, Wi-Fi, Bluetooth, HDMI output, USB, etc.

The Raspberry Pi 4 uses an ARM CPU, while most of the mainstream personal computers

(PCs) use the x86 architecture with CPUs from Intel or AMD.1 ARM CPUs are more common

in mobile, embedded, and Internet of Things (IoT) devices due to their lower power

consumption. Since Rust is a language that compiles to machine code, it is important that

you compile for the correct CPU architecture; otherwise, the binary won’t run.

The Raspberry Pi features many peripherals. It has an SD card reader so you can load

the program and an operating system onto an SD card. It has a USB-C power input so it

can run on a phone charger or even a portable power bank. For video output, you can

use its micro-HDMI output to connect to an HDMI monitor. To control the device, you

can use a USB mouse and keyboard. Finally, you can see two rows of metal pins (on the

top left edge of Figure 8-1). These are GPIO (general-purpose input/output) pins, which

you’ll use to interact with external electrical components like LEDs and push buttons.

Figure 8-1.  A Raspberry Pi 4 Model B

1 Although, Apple’s M1 and M2 chips are ARM-based and are slowly eating away the market share.

Chapter 8 Physical Computing in Rust

296

�Installing Raspberry Pi OS Using Raspberry Pi Imager
In the first example, you are going to learn how to compile and run a Rust program directly

on a Raspberry Pi via an operating system. There are many operating systems available for

the Raspberry Pi. You need to install an operating system image onto the SD card and let

the Raspberry Pi boot from the image. The official Raspberry Pi operating system is called

Raspberry Pi OS. Raspberry Pi OS is a Debian-based operating system that has a friendly

desktop environment and has many useful software packages pre-installed, like the Firefox

browser, text editor, calculator, and also programming environments.

The easiest way to install Raspberry Pi OS is to use an installer called Raspberry Pi

Imager. It provides a step-by-step wizard to guide you through the installation process.

Here are the steps:

•	 Head to the Raspberry Pi Imager download page at https://www.

raspberrypi.com/software/ (Figure 8-2) and follow the installation

instructions. For example, on a Ubuntu x86 PC, run sudo apt

install rpi-imager.

•	 Plug an SD card (at least 8 GB, formatted to the FAT format) into

your PC.

•	 Start the Raspberry Pi Imager with root permission and follow the

instructions on the screen to install Raspberry Pi OS on the SD card

(Figure 8-3).

•	 Plug the SD card into the Raspberry Pi.

Figure 8-2.  The Raspberry Pi OS and Raspberry Pi Imager download page

Chapter 8 Physical Computing in Rust

https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/

297

Figure 8-3.  The Raspberry Pi Imager installation process

•	 Connect your Raspberry Pi to a keyboard, a mouse, and an HDMI

monitor.

•	 Connect your Raspberry Pi to a 5V/3A USB-C power source (usually a

phone charger). This will turn the Raspberry Pi on.

•	 Once the Raspberry Pi has booted, you should see a desktop like

Figure 8-4.

Figure 8-4.  Raspberry Pi OS desktop environment

Chapter 8 Physical Computing in Rust

298

Tip I f you don’t want to install the operating system yourself, you can also buy a
pre-installed SD card from many electronics or educational stores online.

�Installing the Rust Toolchain
As you did for the Linux desktop, you can install the Rust compiler and cargo on the

Raspberry Pi OS with rustup. Open a terminal on your Raspberry Pi OS and run the

following command, copied from the Rust official installation page at https://www.

rust-lang.org/tools/install:

curl https://sh.rustup.rs -sSf | sh

This installs the Rust toolchain2 on the Raspberry Pi. One big difference you might

notice is that rustup detects the ARM CPU and suggests a different target architecture,

armv7-unknown-linux-gnueabihf (Figure 8-5). You want rustc to compile the Rust code

into the ARM assembly so that the binary can run on the Raspberry Pi. Therefore, you’ll

take rustup’s suggestion and install the toolchain for ARM. Once it’s installed, don’t

forget to add the cargo folder to the PATH environment variable so the cargo command

will work.

Figure 8-5.  Rustup suggests installing the ARM target

2 The code in this chapter was tested on Rust 1.63.0.

Chapter 8 Physical Computing in Rust

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install

299

�Understanding the GPIO Pins
Once you have set the stage for the Raspberry Pi, you are going to look at two rows

of metal pins that occupy one side of the circuit board. These pins are called GPIO

(general-purpose input/output) pins. These GPIO pins are used for communicating with

the outside world. When a pin is acting as an output, you can control it with software to

let it output either 3.3 volts (written as “3V3”) or 0 volts. When a pin works as an input, it

can detect whether the pin has a high (3V3) or low (0V) voltage.

Not all pins are used as input/output pins. Some pins have special purposes, like

consistently providing 5V power or working as a ground (constant 0V). Figure 8-6

shows the layout of the pins. You can also find an interactive pin layout at https://

pinout.xyz/.

Figure 8-6.  Raspberry Pi 3 B+ GPIO layout (BCM numbering)

There are a few different kinds of pins:

•	 5V: 5V power supply

•	 3V3: 3.3V power supply

•	 GND: ground

•	 Number: For the GPIO pin, the number is the Broadcom SOC

channel (BCM) number. This is the pin number used to identify the

pin in the example code.3

3 You might find the number confusing because they seem random. BCM is the internal
numbering of pins in the Broadcom-brand CPU used by the Raspberry Pi. Some Raspberry Pi
GPIO libraries also support “board” numbering, which is the sequential left to right, bottom to
top numbering from 1 to 40.

Chapter 8 Physical Computing in Rust

https://pinout.xyz/
https://pinout.xyz/

300

Some of the pins can also be configured to communicate using particular protocols,

like Pulse-Width Modulation (PWM), Serial Peripheral Interface (SPI), Inter-Integrated

Circuit (I2C), or Serial (UART), which are out of scope for this book.

On a very high level, these GPIO pins are controlled by hardware registers. Registers

are components in the chip that act like computer memory. You can read or write bits

to them. To set the mode (input, output, or special protocol) of a pin, you can write a

specific bit pattern to some register. These registers are exposed as memory addresses

(/dev/gpiomem), so you can change their value as if you are writing to a particular

memory location. But direct manipulation of memory is too low-level for most use

cases, so there are a few abstractions on top of it. In Raspberry Pi OS, these registers are

exposed as device files (/sys/class/gpio/*4). You can read from these virtual files to

get the register’s value. If you write to these files like regular files, the register will be set

accordingly.

But manipulating these virtual files is still very tedious. To further hide the

complexity, you can use the rust_gpiozero crate. That crate is inspired by the Python

gpiozero library, which exposes easy-to-use components like LED or Button so you can

control these GPIO-connected hardware components with ease. The rust_gpiozero

crate is built on top of the rppal (Raspberry Pi Peripheral Access Library) crate, which

allows low-level access to various peripherals like the GPIO pins.

�Building an LED Circuit
First, you will use a Raspberry Pi to light up a light-emitting diode (LED) (Figure 8-7). An

LED is a small electronic component that will emit light when electrical current flows

through it. The “D” in LED stands for diode, which means it only allows the electrical

current to flow in one direction. The LED has two metal legs. The positive leg is called the

anode, which is usually the longer leg of the two. The negative leg is called the cathode.

You should provide a high voltage to the anode, say 3.3V, and ground the cathode. This

creates a current flowing from the anode to the cathode so the LED lights up.

Although Raspberry Pi doesn’t provide a very high voltage or current, the current

might still be too high for the LED and might break it. To protect against such a scenario,

you can add a resistor (Figure 8-8) to the circuit. A resistor creates resistance to the

current, effectively limiting the current that goes through the LED.

4 They are provided by Sysfs, a Linux virtual file system.

Chapter 8 Physical Computing in Rust

301

It’s pretty hard to connect free-floating LEDs and resistors without soldering. But

soldered components are hard to break apart and re-arrange. To make it easier to

experiment with circuits, you can use a breadboard (Figure 8-8). A breadboard is a

plastic board with tiny holes that LEDs, wires, and other electronic parts can plug into.

Inside the holes are rows of metal pieces that act as temporary wires. A breadboard is

perfect for prototyping because you can easily plug in electronic parts and form a circuit.

You can unplug them if you make any mistakes. You use jumper wires to connect the

circuits. A jumper wire is a pre-cut wire with a rigid plastic and metal head on each end.

The head makes it easy to plug the wire into the breadboard and makes them more

durable than raw, unprotected wires.

Figure 8-7.  An LED

Let’s connect a circuit according to Figure 8-9. A photo of the circuit is shown in

Figure 8-10. In this circuit, the electric current goes from GPIO pin 2 to the anode leg

of the LED (connected through the breadboard) and comes out of the cathode leg. The

current then goes through the current-limiting resistor to the ground rail (the column on

the breadboard that is marked blue with a “-” logo), and finally goes to the ground GPIO

pin. You can turn the LED on and off by setting GPIO pin 2 to high (3V3) or low (0V)

with Rust.

Chapter 8 Physical Computing in Rust

302

Figure 8-8.  A breadboard and jumper wires

�Controlling the GPIO Output with Rust
To start using rust_gpiozero, simply go to your Raspberry Pi desktop, open the

terminal, and create a new project by running

$ cargo new physical-computing

Then switch to the project directory by typing cd physical-computing and add the

rust_gpiozero crate:

$ cargo add rust_gpiozero

Your Cargo.toml should look like this:

...

[dependencies]

rust_gpiozero= "0.1"

Chapter 8 Physical Computing in Rust

303

Now that you have the project and dependency ready, open src/main.rs and write

the following code:

// src/main.rs

use rust_gpiozero::*;

fn main() {

 let led = LED::new(2);

 led.on();

}

You can compile and run this code on the Raspberry Pi by running cargo run. The

compilation might take longer because the Raspberry Pi ARM CPU might not be as

powerful as the one in your PC. If your circuit is connected correctly, you should see the

LED light up.

Tip I f your LED is not lighting up, don’t panic. Try to swap the direction of the
LED, and it will probably work.

In the preceding code example, you initiate an LED struct with pin number 2. The

pin number indicates pin number 2 in Figure 8-6, to which the LED circuit is connected.

During initiation, rust_gpiozero will set the GPIO pin in output mode automatically.

Then, when you call led.on(), it will set the correct bit in the register and make the

GPIO pin go high (3.3V), which turns the LED on. As you might have guessed, the way

to turn off this LED is as simple as changing the code to led.off() and running cargo

run again.

Chapter 8 Physical Computing in Rust

304

Figure 8-9.  The LED circuit diagram (image created with Fritzing)

Chapter 8 Physical Computing in Rust

305

Figure 8-10.  The LED circuit

If you wish to flash the LED, you can use a loop and add a one-second pause

between led.on() and led.off(). The pause can be easily achieved with the sleep()

function provided by the standard library.

// src/main.rs

use rust_gpiozero::*;

use std::thread::sleep;

use std::time::Duration;

fn main() {

 let led = LED::new(2);

 loop{

 println!("on");

 led.on();

 sleep(Duration::from_secs(1));

Chapter 8 Physical Computing in Rust

306

 println!("off");

 led.off();

 sleep(Duration::from_secs(1));

 }

}

To make things even simpler, rust_gpiozero already implemented flashing. You can

replace the loop with the LED::blink() function:

// src/main.rs

use rust_gpiozero::*;

fn main() {

 let mut led = LED::new(2);

 led.blink(1.0, 1.0);

 led.wait(); // Prevents the program from exiting

}

The LED::blink() function takes two parameters: the on_time and off_time.

The on_time is how many seconds the LED should stay on; the off_time is how many

seconds to pause before the LED turns on again. You also have to call the LED::wait()

function to prevent the program from exiting right after the LED::blink() call.

�Reading Button Clicks
You have learned how to control a light signal output with Rust. Let’s take a look at how

you can accept physical inputs. You can configure the GPIO pin to use the input mode

and receive inputs from a physical button.

When a GPIO input pin is configured to input mode, it triggers the code if the

voltage reaches the desired level. However, the GPIO input pin by itself does not ensure

the voltage stays at either 0V or 3V3. It is in a floating state where its voltage is floating

between 0V and 3V3, which makes it prone to false triggering. To tackle this problem,

the Raspberry Pi has internal resistors that can be configured to keep the GPIO pin at

0V or 3V3. These are the resistors tagged “Pull-down resistor” and “Pull-up resistor”

in Figures 8-11 and 8-12. Note that the actual internal physical layout of the GPIO pin

circuits is more complicated than these figures. Both resistors actually are present for

Chapter 8 Physical Computing in Rust

307

each GPIO pin, and enable (connected) or disabled (disconnected) based on how the

pins are set up in software. The provided diagrams only show the setup of a GPIO pin

with one of these two resistors enabled. When you enable the pull-down resistor, it will

connect the pin to the ground, thus pulling the voltage down to 0V. When you enable

the pull-up resistor, it will connect the pin to an internal 3V3 voltage source and pull the

voltage up to 3V3.

Figure 8-11.  Input pin with an internal pull-down resistor

Figure 8-12.  Input pin with an internal pull-up resistor

Chapter 8 Physical Computing in Rust

308

You can imagine a button as two pieces of metal that stay separate in their natural

state, so no current flows through when the button is not pressed. When you press the

button, the two pieces of metal touch and short-circuit, allowing current to flow through.

Since the GPIO input pin can detect voltage change, you can use the GPIO pins to detect

a button press in two different ways, as follows:

	 1.	 Configure the GPIO pin to use an internal pull-down resistor so

its voltage stays at 0V. Connect one end of the button to the GPIO

input pin and the other end to the 3V3 voltage source. When the

button is pressed, the GPIO pin is short-circuited with the 3V3

source, so its voltage is drawn up to 3V3 (Figure 8-11).

	 2.	 Configure the GPIO pin to use an internal pull-up resistor, so it

stays at 3V3. Connect one end of the button to the GPIO input pin

and the other end to the ground. When the button is pressed, the

GPIO pin is short-circuited with the ground, so its voltage is drawn

down to 0V (Figure 8-12).

In both cases, the GPIO pin detects a voltage change and triggers the code. You’ll

be using the pull-up resistor configuration (option 2) for the next example. You can add

some circuits on top of the LED circuit, as shown in Figure 8-13, and the photo is shown

in Figure 8-14. You attach one end of the button to GPIO pin 4, which is configured to

have a pull-up resistor that keeps it at 3V3. The other end of the button is connected to

the ground through a current-limiting resistor. When the button is pressed, GPIO pin 4 is

short-circuited to the ground and should drop to 0V.

Chapter 8 Physical Computing in Rust

309

Figure 8-13.  The button circuit diagram (image created with Fritzing)

Chapter 8 Physical Computing in Rust

310

Figure 8-14.  The button circuit

Then, you can rewrite src/main.rs to detect the voltage drop and toggle the LED, as

follows:

// src/main.rs

use rust_gpiozero::*;

fn main() {
 let mut led = LED::new(2);
 let mut button = Button::new(4);

 loop{
 println!("wait for button");
 button.wait_for_press(None);
 // Make the led switch on

 println!("button pressed!");
 led.toggle();

 }

}

Chapter 8 Physical Computing in Rust

311

The code initializes an LED struct and a Button struct. The Button::new() function

configures the specified pin to use a pull-up resistor. If you wish to use a pull-down

resistor instead, use Button::new_with_pulldown(). In the loop, button.wait_for_

press() blocks the program indefinitely until the button is pressed. You can optionally

set a timeout by replacing the None parameter with a Some(f32), where the f32 number is

the timeout in seconds. When the button is clicked, the function will return and proceed

to the next line, led.toggle(), which does what its name suggests: toggles the LEDs

on or off.

As mentioned before, there are two pieces of metal in the button. When you press the

button, ideally the two pieces of metal touch each other immediately and stay touching

until you let go. But in reality, the metal pieces might vibrate and bounce off each other

after they make contact for a fraction of a second. So, there might be a very short period

of time when the metal pieces touch and bounce off repeatedly until they finally settle

in the touched position. Since the loop runs very fast, the bounce might trigger the

button.wait_for_press() function multiple times, so the LED will flicker and might

not reach the final state you want it to. To counter this issue, you can debounce the circuit

by ignoring all the subsequent button-press events after the first press event for a short

period of time. This can be implemented like so:

// src/main.rs

use rust_gpiozero::*;

use std::time::{Duration, Instant};

fn main() {

 let mut led = LED::new(2);

 let mut button = Button::new(4);

 let mut last_clicked = Instant::now();

 loop{

 button.wait_for_press(None);

 if last_clicked.elapsed() < Duration::new(1, 0) {

 continue

 }

 led.toggle();

 last_clicked = Instant::now()

 }

}

Chapter 8 Physical Computing in Rust

312

The last_clicked timestamp keeps track of when the button was last clicked. When

the button.wait_for_press() function returns, you first check last_clicked.elapsed(),

which is the time elapsed since the button was last clicked. If the elapsed time is less then

a second (Duration::new(1, 0)5), this press event is considered to be a bounce and is

ignored. If one second already passed, the LED is toggled and the last_clicked timestamp

is updated. With this debounce setup, the LED no longer flickers. If you think one second is

too long, you can reduce the debounce time to make the button more responsive.

8.3 � Cross-Compiling to Raspberry Pi
You might notice that the Rust program compiles relatively slowly on your Raspberry Pi.

This is because the Raspberry Pi CPU is not as powerful as most mainstream desktop

CPUs. But Raspberry Pi’s CPU is already quite powerful in the embedded world, where

many of most commonly used chips can’t even run a full operating system. For some

applications, especially mass-produced products that only to handle a few buttons, a

speaker, or a few numbers on a simple display, you can expect much weaker (but more

energy-efficient) CPUs or even microcontrollers. For example, things like coffee makers,

alarm clocks, or even audio-playing greeting cards do not require much compute, and

can be made a lot cheaper by using far weaker microchips. These devices are designed

to run on very limited hardware resources and may run on batteries, so it’s not possible

to load all the source code onto them and compile them on the device itself. This is

when you need to use cross-compilation. Cross-compilation means you compile the

source code on a different machine (the host) than the one running the application (the

target). For example, you can compile the code on a powerful Intel-x86-based Linux

desktop, and run the binary on the Raspberry Pi target with an ARM CPU. In this case,

the compiler itself is running on an x86 architecture CPU, but it generates machine code

(in binary format) for an ARM architecture CPU.

To set up the cross-compilation environment, you need to move back to the Linux

PC. You need to install the compiler toolchain on the x86 Linux PC for the Raspberry Pi

4 Model B, which itself runs on an ARM Cortex-A72 CPU. You can add a compile target

with rustup:

rustup target add armv7-unknown-linux-gnueabihf

5 Duration::new() takes two arguments: the first is the seconds, and the second is the additional
nanoseconds. Therefore, (1, 0) means 1 second + 0 nanosecond = 1 second.

Chapter 8 Physical Computing in Rust

313

Note Y ou might be wondering why you install the armv7 target while the ARM
Cortex-A72 CPU is advertised as ARMv8 architecture? This is because the ARM
Cortex-A72 CPU supports both 32-bit mode and 64-bit mode. By default, the
Raspberry Pi OS is built on 32-bit Linux. Therefore, the CPU will run in 32-bit mode,
which only supports ARMv7-compatible features. If you run cat /proc/cpuinfo,
it will also report itself as an ARMv7 CPU.

There is a 64-bit version of the Raspberry Pi OS, but we’ll keep using the 32-bit
one for backward compatibility since you may have an older Raspberry Pi model.

You also need a linker. You might not be aware of the linker if you work on an x86-

based Linux system. Most of the time, the linker is already installed when you install

other programs. Usually, the linker comes packaged with a C compiler, so you can easily

install gcc (GNU Compiler Collection) to get the ARM linker, as follows:

$ sudo apt-get install gcc-10-multilib-arm-linux-gnueabihf

Before you compile, you also need to let cargo know where to look for the linker. You

can open the configuration file ∼/.cargo/config (create one if it doesn’t exist yet) and

add the following setting:

~/.cargo/config

[target.armv7-unknown-linux-gnueabihf]

linker = "arm-linux-gnueabihf-gcc-10"

This tells the compiler to use the linker provided by arm-linux-gnueabihf-gcc-10

when compiling for the target armv7-unknown-linux-gnueabihf. Now, let’s create a new

project with cargo new blink-cross-compile. You can open the src/main.rs file and

copy the code for blinking an LED into it. Also don’t forget to add the rust_gpiozero

dependency to the Cargo.toml file.

To compile the Rust project to a specific target, use the --target argument like so:

cargo build --target=armv7-unknown-linux-gnueabihf

Chapter 8 Physical Computing in Rust

314

This will produce a binary in target/armv7-unknown-linux-gnueabihf/debug/

named blink-cross-compile. Notice that the binary is placed in the target/armv7-

unknown-linux-gnueabihf/debug/ folder, not the default target/debug folder. If you try

to execute this binary on the x86 Linux system, you’ll get the following error message:

$./blink-cross-compile

bash: ./blink-cross-compile: cannot execute binary file: Exec format error

This is because this binary is cross-compiled for an ARM CPU. You can verify this by

examining the file with the Unix file command:

$ file ./blink-cross-compile

./blink-cross-compile: ELF 32-bit LSB shared object, ARM, EABI5 version

1 (SYSV),

 dynamically linked, interpreter /lib/ld-, for GNU/Linux 3.2.0,

 BuildID[sha1]=43d4fc4e17539883185e15c3d442986f2fb2f03d, not stripped

Copy this binary onto the Raspberry Pi SD card (for example, in the home directory)

and boot up the Raspberry Pi OS. Once the Raspberry Pi is booted, open a terminal

and cd to the location of the binary and execute it. You should see the LED blinking just

like before.

8.4 � How Does the GPIO Code Work?
The rust_gpiozero crate abstracts away most of the complexity of setting up the GPIO

pins. But you might wonder how it works at a lower level.

As mentioned in Section 8.2, the GPIO registers are exposed by two different

interfaces: /dev/gpiomem and Sysfs. Let’s first take a look at how Sysfs works.

Sysfs exposes the GPIO registers as virtual files. To turn on an LED, you can write a

simple shell script using the Sysfs virtual files:

led-on.sh

echo "2" > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio2/direction

echo "1" > /sys/class/gpio/gpio2/value

Chapter 8 Physical Computing in Rust

315

First, you need to write the pin number to the file /sys/class/gpio/export. This

tells Sysfs that you want to work with the specified pin:

echo "2" > /sys/class/gpio/export

A new file /sys/class/gpio/gpio2 will appear. You can then set the direction of the

pin as either input or output by writing in or out to the file /sys/class/gpio/gpio2/

direction. In the example we set it to output mode:

echo "out" > /sys/class/gpio/gpio2/direction

This effectively sets the registers that control the GPIO 2’s mode. Setting the pin to

high or low is then as simple as writing 1 or 0 to the /sys/class/gpio/gpio2/value file.

These Sysfs files are abstractions around the registers that control the GPIO pins.

But the rust_gpiozero crate uses a more low-level crate, rppal, to interact with GPIO

pins. For performance reasons, the rppal crate does not use the Sysfs interface. Instead,

it works with the /dev/gpiomem directly. The /dev/gpiomem is a virtual device that

represents the memory-mapped GPIO registers. If you call the mmap() system call on

/dev/gpiomem, the GPIO registers will be mapped to the designated virtual memory

addresses. You can then read or write the bits in memory to control the registers directly.

Tip T he /dev/gpiomem virtual device was created to overcome permission
issues. Before /dev/gpiomem was available, you could only access the GPIO-
related memory address with /dev/mem. However, /dev/mem exposes the whole
system memory and requires root permission to access. But since GPIO access
is so common on Raspberry Pi, every program that interacts with GPIO needed
to use root access, which created a security hazard. Therefore, /dev/gpiomem
was created to expose only the GPIO-related part of the memory with no special
permission needed. In rppal source code, you can see it tries /dev/gpiomem
first. If any error occurs, it falls back to /dev/mem but then requires root access.

If you look into rppal’s source code, you can see that it uses an unsafe code block

to mmap() the /dev/gpiomem device. Once it’s mapped into the virtual memory, you can

write bits to set the direction and value of pins with low-level memory manipulation. You

can see the relevant part of the code from rppal’s src/gpio/mem.rs file in Listing 8-1.

Chapter 8 Physical Computing in Rust

316

Listing 8-1.  Rppal’s src/gpio/mem.rs

const PATH_DEV_GPIOMEM: &str = "/dev/gpiomem";

const GPFSEL0: usize = 0x00;

const GPSET0: usize = 0x1c / std::mem::size_of::<u32>();

const GPCLR0: usize = 0x28 / std::mem::size_of::<u32>();

const GPLEV0: usize = 0x34 / std::mem::size_of::<u32>();

pub struct GpioMem {}

impl GpioMem {

 // ...

 fn map_devgpiomem() -> Result<*mut u32> {

 // ...

 // Memory-map /dev/gpiomem at offset 0

 let gpiomem_ptr = unsafe {

 libc::mmap(

 ptr::null_mut(),

 GPIO_MEM_SIZE,

 PROT_READ | PROT_WRITE,

 MAP_SHARED,

 gpiomem_file.as_raw_fd(),

 0,

)

 };

 Ok(gpiomem_ptr as *mut u32)

 }

 #[inline(always)]

 fn write(&self, offset: usize, value: u32) {

 unsafe {

 ptr::write_volatile(

 self.mem_ptr.add(offset),

 value

);

 }

 }

Chapter 8 Physical Computing in Rust

317

 #[inline(always)]

 pub(crate) fn set_high(&self, pin: u8) {

 let offset = GPSET0 + pin as usize / 32;

 let shift = pin % 32;

 self.write(offset, 1 << shift);

 }

 #[inline(always)]

 pub(crate) fn set_low(&self, pin: u8) {

 let offset = GPCLR0 + pin as usize / 32;

 let shift = pin % 32;

 self.write(offset, 1 << shift);

 }

 pub(crate) fn set_mode(&self, pin: u8, mode: Mode) {

 let offset = GPFSEL0 + pin as usize / 10;

 let shift = (pin % 10) * 3;

 // ...

 let reg_value = self.read(offset);

 self.write(

 offset,

 (

 reg_value & !(0b111 << shift)) |

 ((mode as u32) << shift

),

);

 }

}

We won’t go into detail here, but you can see the libc::mmap() call inside the

map_devgpiomem() function. You can also see that all the operations you did have

corresponding functions:

•	 Set direction: set_mode()

•	 Set pin to high: set_high()

•	 Set pin to low: set_low()

Chapter 8 Physical Computing in Rust

318

These functions write directly to memory with std::mem::transmute() inside

unsafe blocks. You might wonder how they know which memory address is for which

functionality. These are all defined in the manual of the Broadcom BCM2711 chip.6

8.5 � Where to Go from Here?
This chapter only scratched the surface of physical computing with Rust. There are many

directions you can explore further.

In Rust’s core team, there are some domain-specific working groups. The embedded

devices working group is responsible for overseeing the Rust embedded ecosystem. They

also maintain a curated list of exciting projects and resources in the Awesome Embedded

Rust repository.7 They are also transparent in disclosing what is not that awesome

yet in the Not Yet Awesome Embedded Rust repository.8 If you wish to follow the latest

developments and the working group’s future direction, you might want to follow the

issues on their coordination repository: rust-embedded/wg.9

The first thing you can try is to build up on top of the Raspberry Pi. You learned how

to control LEDs and buttons, but there are many more kinds of hardware you can play

with, such as the following:

•	 Buzzers

•	 Light sensors

•	 Sound sensors

•	 Orientation sensors

•	 Cameras

•	 Humidity and temperature sensors

•	 Infrared sensors

•	 Ultrasonic sensors

6 https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
7 https://github.com/rust-embedded/awesome-embedded-rust
8 https://github.com/rust-embedded/not-yet-awesome-embedded-rust
9 https://github.com/rust-embedded/wg

Chapter 8 Physical Computing in Rust

https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://github.com/rust-embedded/awesome-embedded-rust
https://github.com/rust-embedded/not-yet-awesome-embedded-rust
https://github.com/rust-embedded/wg

319

•	 Touch screens

•	 Servo motors

There are also add-on boards called “HATs” (Hardware Attached on Top). These are

boards with a lot of the hardware components packed into a small form factor. They are

designed so that they can mount directly on top of the Raspberry Pi board and connect

with its GPIO pins. The board will also communicate with the Raspberry Pi board and

configure the GPIO pins for you. This provides you with an easy way to try out many

different kinds of hardware without worrying about wiring on a breadboard. You can find

crates like sensehat that provide an abstraction layer for a specific HAT called the Sense

HAT. There is also a tutorial accompanying the crate: https://github.com/thejpster/

pi-workshop-rs/.

You can also explore other boards and platforms. Rust supports many different

computer architectures, so there are many boards available. For instance, the Embedded

Working Group published The Embedded Rust Book.10 In the book, they teach you

how to program an STM32F3DISCOVERY board, which runs an STM32F303VCT6

microcontroller. Many of the tutorials use the QEMU emulator, so, you don’t need actual

hardware to get started. You can build your code and run it on a hardware emulator.

You can also go deeper. One thing that we didn’t mention is how to run Rust on a

bare-metal platform. “Bare metal” means the Rust program runs directly on the hardware

without an operating system. In such a case, you can’t use the standard library because

many of the standard library functions depend on the platform. Instead, you need to set the

#![no_std] attribute on the crate to let the Rust compiler know that you can’t use libstd. It

will then use libcore, which is a platform-agnostic subset of libstd. This will also exclude

many features you might not want in an embedded environment, like dynamic memory

allocation and runtime. The Embedded Rust Book will get you started with bare-metal

programming. If you are looking to go deeper, you can read the advanced book The

Embedonomicon.11 You might want to go even further to build your operating system, but

you’ll touch on that topic in Chapter 10. Finally, WebAssembly (WASM) could serve as an

abstraction for the embedded devices. You can run a WASM runtime and develop WASM

code for the embedded hardware. For example, Wasmer12 is a Rust-based WASM runtime

that promises to let you “Run any code on any client,” including embedded devices.

10 https://docs.rust-embedded.org/book/
11 https://docs.rust-embedded.org/embedonomicon/
12 https://wasmer.io/

Chapter 8 Physical Computing in Rust

https://github.com/thejpster/pi-workshop-rs/
https://github.com/thejpster/pi-workshop-rs/
https://docs.rust-embedded.org/book/
https://docs.rust-embedded.org/embedonomicon/
https://wasmer.io/

321

CHAPTER 9

Artificial Intelligence
and Machine Learning
Artificial intelligence and machine learning have always captured the imaginations

of science fiction authors and the media. Begun in the 1950s, the field of artificial

intelligence has been through multiple ups and downs. Recently, it has received more

media attention again because of technology breakthroughs in deep learning and

consumer-facing applications on the market, such as ChatGPT and other advanced

online chatbots.

The terms machine learning (ML) and artificial intelligence (AI) are sometimes

used interchangeably, but there is a subtle difference. Artificial intelligence focuses on

“intelligence.” An AI system tries to behave as if it possesses human intelligence, no

matter what the underlying method or algorithm is. Machine learning, on the other

hand, focuses on “learning,” where the model is trying to learn the pattern in the data

without a human explicitly programming in the knowledge. For example, one of the

early ideas used to build AI is the “expert system” approach. In an expert system, the

knowledge of a particular field is written down as a set of rules and programmed directly

into the code so the system can answer questions or perform tasks as if it’s a domain

expert. This kind of system might appear to have some level of human intelligence, but

it’s not actually “learning” anything from data. So, an expert system can be called an AI

system but not a machine learning system.

Researchers have tried many different strategies to build AI systems that aren’t based

on machine learning. But machine learning became a leading strategy due to a few

technical advancements. First, the computing power of modern central processing units

(CPUs) and graphics processing units (GPUs) has grown exponentially since the 1950s

because of innovations in hardware technology. This means that previously intractable

machine learning models can now be trained in a reasonable amount of time. The rise

of Web 2.0 also means more and more data are collected at very low cost, so companies

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_9

https://doi.org/10.1007/978-1-4842-9331-7_9

322

now have the huge amounts of data required to train machine learning algorithms,

like deep neural networks. All of these factors are contributing to the current boom in

machine learning applications.

9.1 � Types of Machine Learning Models
There are two main branches of machine learning: supervised and unsupervised. In a

supervised learning setting you give the model a fully labeled training dataset where

the labels provide the “correct” answers for each example input. For example, if you are

trying to distinguish cat pictures from dog pictures, you need to prepare a large number

of photos with the label “cat” or “dog.” Because the model can check its prediction

against the label (which is sometimes referred to as “ground-truth”), the algorithm can

learn from its errors and improve its predictions.

But a fully labeled dataset is not always easy to obtain. Unless there is an automated

way of collecting the label with high accuracy, you have to fall back to manually labeling

the dataset. This takes a tremendous amount of time and money. Therefore, when

getting a high-quality, fully labeled dataset is not possible, you can try an unsupervised

learning model to do the job. An unsupervised model takes a training dataset without

labels and tries to learn the intrinsic patterns from the data itself. For example, if you

wish to distinguish between flower species, you can let the model group the flowers by

their color, shape, leaf shape, etc. But without ground-truth labels to check against, one

model might cluster all the flowers of the same color in one category, and it wouldn’t tell

you exactly what type of flower it is. So for certain use cases, supervised learning is more

suitable than unsupervised learning.

There are other categories of machine learning, like semi-supervised learning, which

uses a partially labeled dataset to get high accuracy and has a low dataset-preparation

cost. There is also reinforced learning, which takes feedback from the environment to

correct future behavior. For example, a maze-navigating robot can get a reward every

time it successfully reaches the end of a maze. It can learn the way to navigate a maze

by seeking maximum reward and avoiding potential penalties. There is also transfer

learning, which allows you to carry over the learnings from one model to another

problem. For example, if you wish to build a model to identify certain kinds of cats from

photos, it might be helpful to use an existing model trained on a dataset of common

household pets, including cats, dogs, rabbits, etc. Then you further refine it on the cat

Chapter 9 Artificial Intelligence and Machine Learning

323

photos you aim to identify. This not only reduces the time it takes to train the model,

but also can achieve better accuracy with less training data. In this chapter, you’ll be

focusing on supervised learning and unsupervised learning.

9.2 � What Are You Building?
You’ll build one supervised learning model and one unsupervised learning model.

First, you’ll start with an unsupervised learning model that can identify different cat

breeds. You’ll generate fake body size measurements from three cat breeds: Persian,

British shorthair, and ragdoll (Figures 9-1 to 9-3). Since these three breeds have a

slightly different average body height and length, you’ll run a K-means clustering model

(explained in Section 9.3) on these two features. The trained model can cluster cat body

measurements into different groups automatically. Because K-means can only see the

similarity between the data points, it can group the cats into groups but cannot tell you

exactly which group maps to which cat breed.

Figure 9-1.  Persian cat

Chapter 9 Artificial Intelligence and Machine Learning

324

Figure 9-2.  British shorthair cat

Figure 9-3.  Ragdoll cat

Chapter 9 Artificial Intelligence and Machine Learning

325

The second example is for supervised learning. Similar to the previous model, you

have a handful of body measurements, but this time from both cats and dogs. You have a

label for each point that indicates if each body measurement is taken from a cat or a dog.

Using this dataset, you’ll construct a neural network model to learn how to tell a cat from

a dog. In machine learning, this kind of job is called a classification problem. When the

model is trained it can predict if a given body measurement is most likely from a cat or

a dog, even if the data is not part of the training set. For simplicity’s sake, you’ll use only

the height and body length as the inputs.

Model training and inference is just a small part of machine learning. There are

many other tasks involved in the machine learning process, like data preparation,

cleaning, and visualization. You’ll also learn how to use Rust to generate artificial

training data, write and read the data as CSV (comma-separated value) files, and

visualize the data. The demo programs will consist of a few loosely related binary

executables. They will not communicate directly but rather by passing CSV files. This

way you can minimize the dependency between the different steps.

9.3 � Introducing linfa and rusty-machine
The machine learning ecosystem in any programming language relies on a strong

foundation. Building machine learning libraries involves not only the machine learning

algorithm itself, but also many fundamental operations, like numerical computing,

linear algebra, statistics, and data manipulation.

In this chapter, you are going to use the linfa and rusty-machine crates. The linfa

crate contains many traditional machine learning algorithms implemented in Rust.

Although deep learning is the hottest topic in machine learning now, there are no mature,

purely Rust-based libraries yet. Most of the deep learning libraries in Rust now are bindings

to libraries in other languages, so the API design is not very Rusty. While linfa has a lot of

production-quality ML algorithms, it does not contain anything related to neural networks,

and there are no major neural network libraries written in pure Rust that have widespread

acceptance. We want to focus on building things in Rust and not the low-level details of

writing Rust bindings to neural-network libraries. Deep learning models are also harder to

understand intuitively because they involve more advanced mathematical theories, which

might distract us from the code architecture and Rust API. Because of this, we’ll use the

well-accepted linfa crate for the first portion of this chapter, and then switch over to the

older and currently deprecated rust-machine crate as a learning tool for neural networks.

Chapter 9 Artificial Intelligence and Machine Learning

326

Some of the machine learning algorithms linfa contains are as follows:

•	 Linear regression

•	 Logistic regression

•	 Generalized linear models

•	 K-means clustering*

•	 Gaussian process regression

•	 Support vector machines

•	 Gaussian mixture models

•	 Naive Bayes classifiers

•	 DBSCAN

•	 K-nearest neighbor classifiers

•	 Principal component analysis

The linfa crate uses the ndarray crate for linear algebra, which has come to be seen

as the flagship linear algebra crate in Rust. It also contains useful data transformation

tools for data pre-processing, and other utility functions.

9.4 � Clustering Cat Breeds with K-means
Our first project will determining Cat Breeds with K-means clustering. This algorithm is

relatively simply to reason about and easy to intuitively understand, so it lets us focus on

the Rust aspects. In later sections we’ll look at more powerful but complicated learning

algorithms.

�Introduction to the K-means Algorithm
You don’t need to be a cat expert to identify different cat breeds. A Persian cat looks different

from a British shorthair in many aspects: their coats are of different lengths, their faces look

different, and their average sizes are also different. Categorizing things is a natural human

activity that helps us make sense of this world. But machines don’t have such instincts, so

instead they must rely on mathematical methods of categorization provided to them. This

kind of problem is called a clustering problem, and a popular algorithm to solve it is K-means.

Chapter 9 Artificial Intelligence and Machine Learning

327

Since this is a book for general Rust enthusiasts, not mathematicians, we are going

to explain the concept in simple terms. You can easily find the formal mathematical

definitions by searching for “K-means” online.

The goal of K-means is simple: in order to cluster a set of data points into k groups

you need to split them such that the points in each group are close to each other, but far

from points in other groups. The exact steps to achieve this are as follows:

	 1.	 Random initialization: Randomly assigns k points as the

“centroids.” A centroid is the center point of a cluster.

	 2.	 Assignment: For all the other points, assign them to the group of

the nearest centroid.

	 3.	 Updating the centroids: For each group, find the center point (i.e.,

the mean) of all the points in the group and use this center point

as the new centroid.

	 4.	 Repeat steps 2 to 3 until the centroids no longer move

significantly.

As you can imagine, during each update the centroids will move toward the center of

the points “cloud,” and during the next assignment some points might be assigned to a

new centroid because the centroid position has changed. You continue this process until

the centroids no longer move significantly; this is when you say the model converges.

You can see a graphical example in Figure 9-4.

Chapter 9 Artificial Intelligence and Machine Learning

328

Figure 9-4.  An example of the K-means algorithm

In practice, the initial location of the centroids matters a lot to the final result. If you

assign the initial centroids suboptimally, the algorithm might converge to a result that is

not ideal.1 It might also take longer for the model to converge. You can use an algorithm

called K-means++ to initialize the initial centroids better than random assignment. The

intuition behind it is that you want to spread out the initial centroids as far as possible.

The exact steps to do this are as follows:

	 1.	 Choose the first centroid randomly from all the points.

	 2.	 For each point x, calculate the distance to its nearest existing

centroid as D(x).

	 3.	 To find the next centroid, pick a point with a probability

proportional to D(x)2. What this means is that if a point x is farther

away from any existing centroids, its D(x) is larger, and it has a

higher probability to be chosen as a new centroid.

	 4.	 Repeat steps 2 to 3 until all the centroids are picked.

1 In mathematics, you say it converges to a local optimum, rather than the global optimum.

Chapter 9 Artificial Intelligence and Machine Learning

329

By using the K-means++ algorithm, the initial centroids are spread out as far away

from each other as possible. This will usually lead to a better result. This is the default

initialization method used by linfa.

�The Training Data
To prepare the training data, you need to collect body measurements from many cats.

Since you might not have access to thousands of cats, we’ll generate some artificial cat

body measurements for demonstration purposes. The body measurements you are

going to generate are as follows:

•	 height: the height from the ground to a cat’s shoulder

•	 length: the length from a cat’s head to its bottom, excluding the tail.

The average measurements of the three breeds are as follows:

•	 Persian: height 22.5 cm, length 40.5 cm

•	 British shorthair: height 38.0 cm, length 50.0 cm

•	 Ragdoll: height 25.5 cm, length 48.0 cm

To have a fair amount of data points for demonstration, you can generate 2,000

samples per cat breed. These data points are generated using a normal distribution

around the average with an arbitrarily chosen standard deviation of 1.8 cm. This

standard deviation creates a nice cloud of data points with a little overlap, which will

help us illustrate how K-means works.

To generate this training data, you are going to set up ndarray so that you can use

it to easily work with the generated arrays. First, let’s create a Rust project by opening a

terminal and running the following command:

$ cargo new cat-breeds-k-means

$ cd cat-breeds-k-means

Add the following crates to the project:

$ cargo add linfa rand rand_distr ndarray

•	 linfa: the machine learning framework

•	 rand: for random number generation

Chapter 9 Artificial Intelligence and Machine Learning

330

•	 rand_distr: for common probability distributions like the normal

distribution

•	 ndarray: for working with arrays and matrices

Because you are going to have multiple binaries in this project, you can’t simply have

an src/main.rs and run it with cargo run. Cargo has support for multiple binaries in a

project. Simply add the files to src/bin/; for example, src/bin/generate.rs. Then you

can run it with cargo run --bin generate.

In the src/bin/generate.rs file, copy and paste Listing 9-1.

Listing 9-1.  Script for generating fake test dataset

// src/bin/generate.rs

use rand::thread_rng;

use rand::distributions::Distribution; // for using .sample()

use rand_distr::Normal; // split from rand since 0.7

use ndarray::Array2;

use std::error::Error;

fn generate_data(centroids: &Array2<f64>,

 points_per_centroid: usize,

 noise: f64)

 -> Result<Array2<f64>, Box<dyn Error>> {

 assert!(!centroids.is_empty() , "centroids cannot be empty.");

 assert!(noise >= 0f64, "noise must be non-negative.");

 let rows = centroids.shape()[0];

 let cols = centroids.shape()[1];

 let mut rng = thread_rng();

 let normal_rv = Normal::new(0f64, noise)?; [2]

 let mut raw_cluster_data = Vec::with_capacity(

 rows * points_per_centroid * cols);

 for _ in 0..points_per_centroid { //[3]

 // generate points from each centroid

 for centroid in centroids.rows() {

 // generate a point randomly around the centroid

Chapter 9 Artificial Intelligence and Machine Learning

331

 let mut point = Vec::with_capacity(

 centroids.shape()[1]

);

 for feature in centroid.into_iter() {

 point.push(feature + normal_rv.sample(&mut rng));

 }

 // push point to raw_cluster_data

 raw_cluster_data.extend(point);

 }

 }

 Ok(Array2::from_shape_vec((rows * points_per_centroid, cols),

 raw_cluster_data)?)

}

The core of this script is the function that generates training data around the given

average with the normal distribution. It has the following signature (Listing 9-2):

Listing 9-2.  Interface for data generation

fn generate_data(centroids: &Array2<f64>,

 points_per_centroid: usize,

 noise: f64)

 -> Array2<f64> { ... }

As you can see, it takes three parameters:

•	 An Array2 of f64 values. Each row is the average height and length

of a cat breed. It should have a shape of (3 × 2) (3 cat breeds × 2

dimensions [height and length] per breed)

•	 The number of data points you want to generate for each cat breed.

•	 The standard deviation used for the normal distribution, a.k.a.

the noise.

The return value will be an Array2 containing all the generated data points. It should

have the shape (total number of samples × 2).

Chapter 9 Artificial Intelligence and Machine Learning

332

The logic is pretty simple; you have nested for loops that iterate through the three

centroids and generate the required number of samples for each centroid. This is shown

in Listing 9-1.

The first thing the function does is to validate that the centroids matrix is not empty

and that the standard deviation is non-negative (Listing 9-3).

Listing 9-3.  Validation for data generation

assert!(!centroids.is_empty() , "centroids cannot be empty.");

assert!(noise >= 0f64, "noise must be non-negative.");

Then, you initialize a raw_cluster_data vector with the expected capacity. You

allocate the memory for the raw_cluster_data in advance so the vector does not need

to resize when it grows (Listing 9-4).

Listing 9-4.  Generating a Vector

let mut raw_cluster_data =

 Vec::with_capacity(rows * points_per_centroid * cols);

You then create the random number generator from the rand crate, and a normal

distribution using rand_distr::Normal. This normal distribution has a mean (average)

of 0 and standard deviation of noise.

let mut rng = thread_rng();

let normal_rv = Normal::new(0f64, noise).unwrap();

These two are later used together to draw random samples from the normal

distribution like so:

normal_rv.sample(&mut rng)

Then comes the actual generation of samples. The outer for loop makes sure

you repeat the generation n times, where n is the number of desired samples per

centroid. In the inner loop, you iterate through the centroids, so you generate a

sample for each. This ensures that you generate a total number of (number of

Chapter 9 Artificial Intelligence and Machine Learning

333

centroids × number of sample per centroid) samples. In this case, you have 3 ×

2000 = 6000 samples.

for _ in 0..points_per_centroid {

 // generate points from each centroid

 for centroid in centroids.rows() {

 // ...

 }

}

In the body of the loop, you create a temporary vector of size two to hold the height

and length. For each dimension, you get a random number from the normal distribution

you just initialized. This random number is generated around 0. Then, you add the

random number to the average height or length, so you’ll have samples that follow a

normal distribution around the average height or length of the cat breed. Finally, this

point is added to the raw_cluster_data vector as follows:

for _ in 0..points_per_centroid {

 for centroid in centroids.rows() {

 let mut point = Vec::with_capacity(cols);

 for feature in centroid.into_iter() {

 point.push(

 feature + normal_rv.sample(&mut rng)

);

 }

 raw_cluster_data.extend(point);

 }

}

The vector will then become a large 1D array. If you use the symbol Ah to denote the

height of cat A, and Al for the its length, the raw_cluster_data vector for cats A, B, and C

will look like the following:

	 A A B B C Ch l h l h l, , , , ,[]	

But what you actually want is a matrix of samples, with one sample per row, like so:

Chapter 9 Artificial Intelligence and Machine Learning

334

	

A A
B B
C C

h l

h l

h l















 	

To convert this, you pass the 1D array to the Array2::from_shape_vec function.

You can provide the desired shape (number of rows and columns), and Array2::from_

shape_vec will reshape the 1D array into the matrix you want. Finally, you return this

matrix as the training data as follows:

Array2::from_shape_vec(

 (rows * points_per_centroid, cols), raw_cluster_data

)?

�Exporting as a CSV
In the main() function of the src/bin/generate.rs, we want to call the generate_

data() function and output the data to STDOUT in the CSV format. CSV (comma-

separated value) is a simple format for tabular data: rows are separated into lines, and

columns are separated by commas. This format is supported in most programming

languages and spreadsheet software (e.g., LibreOffice Calc or Microsoft Excel).

Although the CSV format is quite simple, it’s still too error-prone to format it without

the help of a library. Therefore, we are going to use the csv crate. Run the following

command in your terminal:

$ cargo add csv

This should add the csv crate to the dependencies section of your Cargo.toml. Then

in the main() function of src/bin/generate.rs, add the code to call generate_data()

and write the output to a CSV file, as shown in Listing 9-5.

Listing 9-5.  Writing a CSV

// src/bin/generate.rs

use std::io;

//..

// settings

const CENTROIDS:[f64;6] = [

Chapter 9 Artificial Intelligence and Machine Learning

335

 //Height, length

 22.5, 40.5, // persian

 38.0, 50.0, // British shorthair

 25.5, 48.0, // Ragdoll

];

const NOISE:f64 = 1.8;

const SAMPLES_PER_CENTROID: usize = 2000;

fn generate_data(...) // ... previous function

fn main() -> Result<(), Box<dyn Error>> {

 let centroids = Array2::from_shape_vec(

 (3, 2), CENTROIDS.to_vec()

)?;

 let samples = generate_data(

 ¢roids,

 SAMPLES_PER_CENTROID,

 NOISE

)?;

 let mut writer = csv::Writer::from_writer(io::stdout());

 writer.write_record(&["height", "length"])?;

 for sample in samples.rows() {

 let mut sample_iter = sample.into_iter();

 writer.serialize((

 sample_iter.next().unwrap(),

 sample_iter.next().unwrap()

))?;

 }

 Ok(())

}

First, you convert the centroids from the const CENTROIDS vector into an array.

Ideally, all these parameters should be configurable from command-line arguments, but

we’ll leave that for the next section. For now, you’ll just hard-code the configurations as

consts at the beginning of the file.

Chapter 9 Artificial Intelligence and Machine Learning

336

Then, you call the generate_data() function and assign the generated training data

to the variable samples as follows:

let samples = generate_data(

 ¢roids,

 SAMPLES_PER_CENTROID,

 NOISE

)?;

For simplicity, you are going to write the CSV directly to STDOUT. You’ll see more

advanced usage of writing directly to files in Section 9.4. To write these samples into CSV

format, you need to initialize a csv::Writer:

let mut writer = csv::Writer::from_writer(io::stdout());

To write a simple plain-text line to the CSV output, you can use the writer.

write_record(). It takes a reference to an array of strings. So, you write the headers

“height” and “length” to it. You can also provide a serializable (i.e., implements

serde::Serialize) struct and let it be automatically converted to a valid CSV line. This

can be done by writer.serialize(). So, you iterate through the rows of the sample

array and write each line to a CSV as follows:

for sample in samples.rows() {

 let mut sample_iter = sample.into_iter();

 writer.serialize((

 sample_iter.next().unwrap(),

 sample_iter.next().unwrap()

))?;

}

Now, if you run cargo run --bin generate in a terminal, you’ll see 6,001 lines

(including a heading line) being printed to the screen. You can easily pipe it to a file by

running the following:

$ cargo run --bin generate > training_data.csv

Chapter 9 Artificial Intelligence and Machine Learning

337

�Moving the Configuration into a File
In the previous section, you hard-coded all the configurations as consts in the

source code. This becomes an impedance when you want to experiment with many

different configurations. Building a machine learning application involves a lot of

experimentation. You usually need to try many different parameters and settings to

get the best result. If you hard-code the parameters in the code, you’ll need to change

them and recompile the program every time. It’s easier to put those configurations in a

configuration file, then specify the configuration file using command-line arguments.

This way, you can easily choose a configuration at runtime. Another benefit is that

you can keep all the configuration files in the source code repository so that you can

reproduce a specific experiment quickly.

There are many machine-readable configuration file formats to choose from;

for example, TOML, JSON, YAML, and XML. We chose TOML because Cargo uses

it, so it’s widely accepted by the Rust community. Also, it has excellent parsing and

deserialization support in Rust.

You can move the consts into a file named config/generate.toml (Listing 9-6).

You’ll notice that the syntax is slightly different from Rust, but it’s still straightforward.

Listing 9-6.  TOML configuration for centroids

config/generate.toml

centroids = [# Height, length

 22.5, 40.5, # persian

 38.0, 50.0, # British short hair

 25.5, 48.0, # Ragdoll

]

noise = 1.8

samples_per_centroid = 2000

But the value types in TOML do not map one-to-one to Rust types. How do you make

sure the values are parsed into Rust as a [f64;6], f64, and usize? For that you can use

the toml crate, which is a TOML parser that uses serde to deserialize a TOML file into a

pre-defined Rust struct. You need to add the toml and serde crates to the project with

the following commands:

Chapter 9 Artificial Intelligence and Machine Learning

338

$ cargo add toml

$ cargo add serde --features derive

Ensure the Cargo.toml file has the versions and features listed below:

Cargo.toml

[dependencies]

...

toml = "0.7.3"

serde = { version = "1.0.159", features = ["derive"] }

Then, you can define the struct format for the TOML file at the beginning of the src/

bin/generate.rs file, as in Listing 9-7.

Listing 9-7.  Struct for centroid deserialization

// src/bin/generate.rs

use serde::Deserialize;

// ...

#[derive(Deserialize)]

struct Config {

 centroids: [f64;6],

 noise: f64,

 samples_per_centroid: usize,

}

// ...

You derived the serde::Deserialize trait on the Config struct, which gives the toml

parser a hint on how to parse the TOML file into the Config struct. Then you can read the

config/generate.toml file into a String and pass its reference to toml::from_str(), as

in Listing 9-8.

Listing 9-8.  Loading the config from disk

// src/bin/generate.rs

use std::fs::read_to_string;

// ...

Chapter 9 Artificial Intelligence and Machine Learning

339

#[derive(Deserialize)]

struct Config {

 //...

}

fn main() -> Result<(), Box<dyn Error> {

 let toml_config_str = read_to_string(

 "config/generate.toml"

)?;

 let config: Config = toml::from_str(&toml_config_str)?;

 // ...

}

Because the variable config has the type Config, toml parses the string into a Config

struct using the derived Deserialize implementation. Once it’s parsed, you can access

the individual fields using dot notation; for example, config.centroids, config.noise.

You can then remove all the consts and use the config instead. For example,

let centroids = Array2::from_shape_vec(

 (3, 2), config.centroids.to_vec()

)?;

let samples = generate_data(

 ¢roids,

 SAMPLES_PER_CENTROID,

 NOISE

)?;

becomes

let centroids = Array2::from_shape_vec(

 (3, 2), config.centroids.to_vec()

)?;

let samples = generate_data(

 ¢roids,

 config.samples_per_centroid,

 config.noise

)?;

Chapter 9 Artificial Intelligence and Machine Learning

340

Now you can run

$ cargo run --bin generate

and you should see the data being generated in the terminal.

�Setting the Configuration File at Runtime
In the previous example, the path to the TOML file is hard-coded in the main()

function. You can use Clap, which you learned in Chapter 2, to make it a command-line

parameter. You need to add the clap dependency in Cargo.toml with the derive feature

by running the following command in the terminal:

$ cargo add clap --features derive

Then, in src/bin/generate.rs, add an parameter called --config-file as in

Listing 9-9.

Listing 9-9.  Using clap to parse command-line arguments

// src/bin/generate.rs

// ...

use clap::Parser;

// ...

#[derive(Parser)]

struct Args {

 #[arg(

 short = 'c',

 long = "config-file"

)]

 /// Configuration file TOML

 config_file_path: std::path::PathBuf,

}

fn main() -> Result<(), Box<dyn Error>> {

 let args = Args::parse();

 let toml_config_str = read_to_string(

Chapter 9 Artificial Intelligence and Machine Learning

341

 args.config_file_path

)?;

 // ...

}

In the main() function, you can read the configuration file path dynamically from

Args::parse() and pass it to read_to_string(). Then, to run the generate script, you

can use the following command in the shell:

$ cargo run --bin generate -- --config-file config/generate.toml

If you want to try different configurations, simply copy-paste the config/generate.

toml, change some parameters in it, and specify the new file name in the –config-file

argument. You no longer need to recompile the src/bin/generate.rs script every time

you change the configuration. This pattern is also beneficial when you do model training

in the following section. One of the key processes in machine learning is hyperparameter

tuning. This involves testing various hyperparameters for the machine learning model

to find the best-performing combination. You can test with many different configuration

files using this pattern. You can also easily recreate the model with the executable binary,

configuration file, and training data.

�Visualizing the Data
Before jumping into training a model, it’s crucial to explore how the data looks. You can

use a plotting library to visualize data and get some basic intuition for the results that

come later. Rust didn’t initially have any mature plotting libraries of its own and had

to rely on bindings to other popular visualization tools, like gnuplot. This has changed

recently, however, and a clear leader in the pure-Rust visualization space has arisen with

the plotters crate.

You need to first install the plotters dependencies by running the following

commands in the terminal:

$ sudo apt install pkg-config libfreetype6-dev

$ sudo apt install libfontconfig1-dev

Then, as usual, you’ll need to add the plotters crate to Cargo.toml by running the

following:

$ cargo add plotters

Chapter 9 Artificial Intelligence and Machine Learning

342

We’ll use version 0.3.4. Let’s create a new file in src/bin named plot.rs. Copy-

paste the following code into the file to draw something on the screen (Listing 9-10).

Listing 9-10.  Minimal plotters plot

use plotters::prelude::*;

use std::error::Error;

fn main() -> Result<(), Box<dyn Error>> {

 let mut x: Vec<f64> = Vec::new();

 let mut y: Vec<f64> = Vec::new();

 //TODO: read the CSV data into x and y

 let root_drawing_area = BitMapBackend::new(

 "plot.png", (900, 600)

).into_drawing_area();

 root_drawing_area.fill(&WHITE)?;

 let mut chart = ChartBuilder::on(&root_drawing_area)

 .build_cartesian_2d(15.0..45.0, 30.0..55.0)?;

 chart.configure_mesh().disable_mesh().draw()?;

 chart.draw_series(

 x.into_iter()

 .zip(y)

 .map(|point| Cross::new(

 point,

 3,

 Into::<ShapeStyle>::into(&BLUE).stroke_width(2)

)),

)?;

 Ok(())

}

Chapter 9 Artificial Intelligence and Machine Learning

343

In the main() function, you first create a drawing area that your plot will use. In

this case a BitMapBackend is used, which will save the plot as a file. This is the simplest

way to create a plot, but there are other backends available.2 Next, create a plotters

ChartBuilder struct and set various parameters about the chart. The cartesian 2D

plotting area needs to be specified based on the region where you expect the data to

be present. A mesh is configurd as disabled, which lets us just display the data without

any axes for now. Finally, the draw_series method is used to draw the data. The x and y

parameters are vectors holding the x-axis and y-axis coordinates of all the points. Once

the figure is configured and the program exists, the chart will save the image file created

when the ChartContext variable goes out of scope and it’s destructor is called. Since

both x and y are still empty vectors, you can only see a blank image.

One thing you missed in the previous example is how to get the x and y. Since you

piped the generated CSV to STDOUT, you can read the data using STDIN. This way, you

can easily pipe the CSV generated from the previous section into this plot.rs script:

cat training_data.csv | cargo run --bin plot

The CSV reading code is very similar to the writing case, just reversing the write with

reading (Listing 9-11).

Listing 9-11.  Reading in CSV data

// use ...

use std::io;

fn main() -> Result<(), Box<dyn Error>>{

 let mut x: Vec<f64> = Vec::new();

 let mut y: Vec<f64> = Vec::new();

 let mut reader = csv::Reader::from_reader(io::stdin());

 for result in reader.records() {

 let record = result?;

 x.push(record[0].parse()?);

 y.push(record[1].parse()?);

 }

2 One of the major benefits of the plotters crate is that it can use various backends, and thus be
used in web and other application contexts

Chapter 9 Artificial Intelligence and Machine Learning

344

 // ... Drawing the figure

 Ok(())

}

First, you create a Reader that reads from io::stdin(). Then, you can easily iterate

through the rows of the file by for result in reader.records(). However, the items

yielded by the iterator (i.e., the result) have the type of Result<StringRecord, Error>,

so you need to get the StringRecord out of the Result with the ? operator:

let record = result?;

You can access an individual column in a StringRecord using an index like

record[0], which yields a str. Because the x and y require the type Vec<f64>, you can

convert the str to f64 by calling .parse().unwrap(). You then can push the parsed x

and y coordinate values into the x and y vector. The graph now looks like Figure 9-5.

Figure 9-5.  A minimal plotters plot

�Details on Adding More Entries
To make the figure easier to understand, you can add titles, legend, and axes labels to the

graph, as in Listing 9-12.

Listing 9-12.  Adding axes, labels, and a legend

fn main() -> Result<(), Box<dyn Error>> {

 // ...

 let mut chart = ChartBuilder::on(&root_drawing_area)

 .caption("Cat body measurements", ("sans-serif", 30))

Chapter 9 Artificial Intelligence and Machine Learning

345

 .x_label_area_size(30)

 .y_label_area_size(40)

 .build_cartesian_2d(15.0..45.0, 30.0..55.0)?;

 chart

 .configure_mesh()

 .x_desc("height (cm)")

 .y_desc("width (cm)")

 .disable_mesh()

 .draw()?;

 chart

 .draw_series(

 x.into_iter()

 .zip(y)

 .map(|point| Cross::new(

 point,

 3,

 Into::<ShapeStyle>::into(&BLUE).stroke_width(2)

)),

)?

 .label("Cat")

 .legend(|(x, y)| Cross::new(

 (x, y),

 3,

 Into::<ShapeStyle>::into(&BLUE).stroke_width(2)

));

 chart

 .configure_series_labels()

 .position(SeriesLabelPosition::LowerRight)

 .background_style(&WHITE.mix(0.8))

 .border_style(&BLACK)

 .draw()?;

 Ok(())

}

Chapter 9 Artificial Intelligence and Machine Learning

346

Most of the function names are self-explanatory. Label areas are provided for the

x-and y-axes. A caption is placed on the graph, and then axis labels are provided for the

x- and y-axes. Finally, after creating the draw series and label, a legend with a label is

created. You need to provide the symbol to draw for the legend as you would actually

draw it. If you rerun the script, the generated figure will look like Figure 9-6.

Figure 9-6.  The plot with title, legend, and axes labels

�Setting Up K-means
As you can see from Figure 9-6, the cat body measurements form three clusters.

We’d expect the K-means algorithm to cluster them into three groups. The K-means

model is located in the linfa_clustering crate and is called KMeans. All of the

unsupervised models, including K-means, implement the linfa::traits::Fit and

linfa::traits::Predict traits. These traits have a very simple interface, as shown in

Listing 9-13.

Listing 9-13.  Traits used for models in the linfa crate

pub trait Fit<

 R: Records,

 T,

Chapter 9 Artificial Intelligence and Machine Learning

347

 E: std::error::Error + From<crate::error::Error>>

{

 type Object;

 fn fit(&self, dataset: &DatasetBase<R, T>)

 -> Result<Self::Object, E>;

}

pub trait Predict<R: Records, T> {

 fn predict(&self, x: R) -> T;

}

The fit() function will take the training data dataset and learn from it. The

“knowledge” is stored in the model itself. After the model is trained, you can use the

predict() function to predict (in this case, cluster) new data based on the knowledge

learned from the training data.

You’ll need to add a few more linfa-related crates, as follows, before you can start

writing the K-means code, along with ndarray for basic array structs:

$ cargo add linfa-nn linfa-clustering

The linfa-clustering crate includes the various models for clustering operations,

while the linfa-nn crate contains definitions for how the distance from the centroid to

each point should be calculated.

Before you can call fit(), you need to configure the K in the name K-means, along

with some other secondary parameters. K is the number of clusters you expect it to

cluster into. From Figure 9-6, you can clearly see there are three clusters. Therefore, you

are going to set k = 3. As you mentioned in Section 9.1, you create a separate binary for

the K-means training and clustering: src/bin/cluster.rs. You can start by writing a

simple main() function, as in Listing 9-14.

Listing 9-14.  Initial K-means setup

use std::error::Error;

use linfa::DatasetBase;

use linfa::traits::Fit;

use linfa::traits::Predict;

use linfa_clustering::KMeans;

Chapter 9 Artificial Intelligence and Machine Learning

348

use linfa_nn::distance::L2Dist;

use rand::thread_rng;

const CLUSTER_COUNT: usize = 3;

fn main() -> Result<(), Box<dyn Error>> {

 let samples = read_data_from_stdin()?; //To be added

 let training_data = DatasetBase::from(samples);

 let rng = thread_rng();

 let model = KMeans::params_with(CLUSTER_COUNT, rng, L2Dist)

 .max_n_iterations(200)

 .tolerance(1e-5)

 .fit(&training_data)?;

 // Assign each point to a cluster using the set of

 // centroids found using `fit`

 let dataset = model.predict(training_data);

 let DatasetBase {

 records, targets, ..

 } = dataset;

 export_result_to_stdout(records, targets)?; // To be added

 Ok(())

}

The steps in the main() function are pretty straightforward. You load the CSV data

from STDIN using the helper function read_data_from_stdin(), which we’ll discuss

later. After converting the loaded Array2 to a DatasetBase and initializing a random

number generator, you initialize a KMeans struct with the configuration K = CLUSTER_

COUNT. You also set the max number of iterations and the tolerance before passing in

the training data to generate a fit. Now the same training data can be passed to the

trained model by using the predict function to classify each point. This generates a new

DatasetBase containing the cluster ID label (i.e., the cat breed) for each data point. You

then write the result to STDOUT using another helper function, export_result_to_

stdout(). That’s all you need for training a complicated mathematical model in Rust!

The helper functions for reading and outputting data are similar to the ones you

saw in the generation and visualization scripts. The read_data_from_stdin() function

Chapter 9 Artificial Intelligence and Machine Learning

349

(Listing 9-15) is almost the same as the plot.rs function (Listing 9-11), except that you

convert the output to an Array2. This is because KMeans expects a DatasetBase that can

be easily generated from an Array2, while plotters expects iterators.

Listing 9-15.  Reading in data for clustering

use std::io;

use ndarray::Array2;

// ...

fn read_data_from_stdin() ->

 Result<Array2<f64>, Box<dyn Error>>

{

 let mut points: Vec<f64> = Vec::new();

 let mut reader = csv::Reader::from_reader(io::stdin());

 for result in reader.records() {

 let record = result?;

 points.push(record[0].parse()?);

 points.push(record[1].parse()?);

 }

 let rows = points.len() / 2;

 let cols = 2;

 Ok(Array2::from_shape_vec((rows, cols), points)?)

}

// ...

The output function export_results_to_stdout() is also a simple call to a

csv::Writer (Listing 9-16). The key in this function is that you want to output the

original 2D body measurement data along with the classification data from the clustering

result. Imagine you have three cats as follows:

	

22 5 40 5

38 0 50 0

25 5 48 0

. .

. .

. .















	

Chapter 9 Artificial Intelligence and Machine Learning

350

They are clustered into class 0, 1, and 2, respectively: 3

	

0

1

2















	

You want the output CSV to be the two matrixes “stitched” together:

	

22 5 40 5 0

38 0 50 0 1

25 5 48 0 2

. .

. .

. .















	

This is achieved by the line points.iter_rows().zip(classes). The .zip()

function does exactly the stitching you want. All you then need to do is arrange the data

in tuples to be passed to the CSV writer.

Listing 9-16.  Writing clustering results to stdout

use ndarray::Array1;

// ...

fn export_result_to_stdout(

 points: Array2<f64>,

 classes: Array1<usize>,

) -> Result<(), Box<dyn Error>> {

 let mut writer = csv::Writer::from_writer(io::stdout());

 writer.write_record(&["height", "length", "class"])?;

 for (point, class) in points

 .rows()

 .into_iter()

 .zip(classes.into_iter()) {

 let mut row_iter = point.into_iter();

 writer.serialize((

3 The class IDs are arbitrary integers; they are categorical, so the number doesn’t convey any
mathematical meaning.

Chapter 9 Artificial Intelligence and Machine Learning

351

 row_iter

 .next()

 .unwrap(),

 row_iter

 .next()

 .unwrap(),

 class

))?;

 }

 Ok(())

}

// ...

You can export the result to a CSV file for visualization:

$ cat training_data.csv | cargo run --bin cluster > results.csv

To make it clear which point belongs to which class, you can use different point

symbols and colors for different classes. You can tweak the original visualization script

into Listing 9-17.

Listing 9-17.  Plotting the clusters

use plotters::prelude::*;

use std::error::Error;

use std::io;

fn main() -> Result<(), Box<dyn Error>> {

 let mut x: [Vec<f64>; 3] = [

 Vec::new(), Vec::new(), Vec::new()

];

 let mut y: [Vec<f64>; 3] = [

 Vec::new(), Vec::new(), Vec::new()

];

 let mut reader = csv::Reader::from_reader(io::stdin());

 for result in reader.records() {

 let record = result?;

Chapter 9 Artificial Intelligence and Machine Learning

352

 let class: usize = record[2].parse()?;

 x[class].push(record[0].parse()?);

 y[class].push(record[1].parse()?);

 }

 let root_drawing_area =

 BitMapBackend::new("k-means-result-plot.png", (900, 600))

 .into_drawing_area();

 root_drawing_area.fill(&WHITE)?;

 let mut chart = ChartBuilder::on(&root_drawing_area)

 .caption("Cat body measurements", ("sans-serif", 30))

 .x_label_area_size(30)

 .y_label_area_size(40)

 .build_cartesian_2d(15.0..45.0, 30.0..55.0)?;

 chart

 .configure_mesh()

 .x_desc("height (cm)")

 .y_desc("width (cm)")

 .disable_mesh()

 .draw()?;

 chart

 .draw_series(x[0].iter().zip(y[0].iter()).map(|point| {

 Cross::new(

 (*point.0, *point.1),

 3,

 Into::<ShapeStyle>::into(&BLUE).stroke_width(2),

)

 }))?

 .label("Cat breed 1")

 .legend(|(x, y)| Cross::new(

 (x, y),

 3,

 Into::<ShapeStyle>::into(&BLUE).stroke_width(2)

));

Chapter 9 Artificial Intelligence and Machine Learning

353

 chart

 .draw_series(x[1].iter().zip(y[1].iter()).map(|point| {

 TriangleMarker::new(

 (*point.0, *point.1),

 5,

 Into::<ShapeStyle>::into(&GREEN).stroke_width(2),

)

 }))?

 .label("Cat breed 2")

 .legend(|(x, y)| { TriangleMarker::new(

 (x, y),

 5,

 Into::<ShapeStyle>::into(&GREEN).stroke_width(2)

)});

 chart

 .draw_series(x[2].iter().zip(y[2].iter()).map(|point| {

 Circle::new(

 (*point.0, *point.1),

 3,

 Into::<ShapeStyle>::into(&RED).stroke_width(2),

)

 }))?

 .label("Cat breed 3")

 .legend(|(x, y)| Circle::new(

 (x, y),

 3,

 Into::<ShapeStyle>::into(&RED).stroke_width(2)));

 chart

 .configure_series_labels()

 .position(SeriesLabelPosition::LowerRight)

 .background_style(&WHITE.mix(0.8))

 .border_style(&BLACK)

 .draw()?;

 Ok(())

}

Chapter 9 Artificial Intelligence and Machine Learning

354

Most of the code is the same as in Listing 9-10, with some duplication for additional

plotting. In this version, the x and the y are a nested array of three individual arrays. Each

sub-array contains the x (or y) coordinates for a specific cluster. For example, x[0] contains

the x coordinates of the cat cluster 0, and x[1] is for cluster 1 and x[2] for cluster 2.

To plot the points using a different symbol and color, you can use some optional

parameters, as follows:

•	 label("Cat breed 1") sets the caption for that cluster of points.

•	 ElementType like Cross, Circle, and TriangleMarker sets the shape

of the datapoint; it's critical to not rely on color for differentiation.

•	 ShapeStyle is used to define the size and color of the shape, which

are of secondary importance but are useful when color is available.

You can then pipe the data into the new plot command using

$ cat results.csv | cargo run --bin cluster > results.csv

This gives us Figure 9-7.

Figure 9-7.  Clustering result for the K-means algorithm

If you zoom into the border between the breed 1 (x) and breed 3 (o), you can see the

points are almost split by a straight line (Figure 9-8). A normal distribution will probably

not look like this; some of the breed 2 points might fall in the breed 3 “cloud” and vice

Chapter 9 Artificial Intelligence and Machine Learning

355

versa. But this is an inherent limitation of K-means. Given only the height and length,

without a proper ground-truth tagging, the algorithm can only predict breeds based on the

nearest mean (i.e., centroid), resulting in a seemingly clear-cut line between the clusters.

Figure 9-8.  Clear-cut between breeds 1 and 3

9.5 � Detecting Cats Versus Dogs
with a Neural Network

Now that we’ve written a simple K-means clustering as an unsupervised model, it’s time

to move on to a more complicated neural network as our supervised model. Neural

networks are a lot more complicated that K-means clustering, but thanks to useful Rust

libraries we can skip over the details here and focus on just using the code on our data.

After a brief intro we’ll write new code to generate training and tests datasets and use

these for our new supervised model.

�Introduction to Neural Networks
We’ve seen how unsupervised models work, so now we can shift our attention to a

supervised model. The supervised model we are going to introduce is the artificial

neural network (ANN) model, or neural network for short. Neural networks draw their

inspiration from how a human brain works. The human brain consists of neurons,

with each neuron taking stimuli and deciding if it should be “activated” or not. An

activated neuron will send an electrical signal to other connected neurons. If you have

a big network of interconnected neurons, they can learn to react to different inputs by

adjusting the way they connect and how sensitive they are to the stimuli.

Modern neural network models use the same guiding principle but focus more

on solving empirical questions using data rather than trying to model a human brain

Chapter 9 Artificial Intelligence and Machine Learning

356

accurately. One of the key components of a neural network model is the neuron (sometimes

called a node; shown in Figure 9-9). A node consists of one or more inputs (xi), their weights

(wi), an input function, and an activation function.4 The input function takes the weighted

sum of all the inputs and passes it to the activation function. The weights are adjusted

during the learning process to amplify or dampen signals according to the significance of

the input signal to the things you want to learn. The result of the input function will pass to

the activation function to determine if the node should be activated or not.

Figure 9-9.  Structure of a neuron/node

The nodes need to be combined into a network. A simple example is Figure 9-10,

which contains two input nodes, two nodes in the middle layer, and one output node.

For the dog-or-cat example, you can send the height and length values to the two input

nodes, and the output node should give you a signal to indicate if the input data belongs

to a dog or cat. Each node will determine if it should be activated based on the input it

got from the previous stage, combined with the weights.

Figure 9-10.  A simple neural network

4 The rusty machine uses the Sigmoid function by default.

Chapter 9 Artificial Intelligence and Machine Learning

357

In the beginning, you can randomly set the weights, but this won’t give any better

results than merely guessing. You need to adjust the weights in the nodes according to

the training data. You can compare the output of the neural network with the ground-

truth answer you hold; if the output is far off, that means you need to adjust the weights

to make a better prediction next time. You evaluate how good (or bad) the model is

currently performing through a loss function. The rusty-machine default is the binary

cross-entropy loss function, which will give a higher value if the output (cat or dog)

does not match the ground-truth and a lower value vice versa. The goal is to adjust

the weights to minimize the loss (i.e., make the loss function return the smallest value

possible). To achieve this, you use an algorithm called gradient descent. Gradient descent

will adjust the weight in a direction that will cause the loss to decrease.

After you provide a lot of initial data to the neural network, you can feed a small

batch of test data in and check the network’s output against the ground-truth answer.

Then, gradient descent is used to adjust the weights to make the loss go down. This

process of feeding in data and adjusting weights is repeated multiple times to better tune

the network. Once all the data are fed in, the neural network should have nodes with

weights that best capture the characteristics of the training data. When you get a new

body measurement, you can feed it to the network, and the output should then tell you if

the body measurement belongs to a dog or cat.

�Preparing the Training Data and Testing Data
To get started on this next example, create a new project, change to the directory, and

add the necessary crates, as follows:

$ cargo new cat-neural-net

$ cd cat-neural-net

$ cargo add serde --features derive

$ cargo add rand rand_distr ndarray csv toml

$ cargo add clap --features derive

To keep the example simple, you are going to use the same kind of input as the

K-means example: height and length. You’ll create 2,000 samples for cats and 2,000 for

dogs. But there are some differences between this data and the K-means data:

•	 You’ll need to provide the “answer,” or the ground-truth labels, for

each sample.

Chapter 9 Artificial Intelligence and Machine Learning

358

•	 You need to generate two sets of data: the training data and the

testing data.

You need the ground-truth labels because a neural network is a supervised model,

which means that it needs to learn by comparing its prediction with the ground-truth

and try to improve its accuracy.

You also need to split the data into a training set and a testing set. The training set is

used to train the model. The testing set is used to verify how accurate the trained model

actually is. One key point is that the model should never see the data in the testing set

during the training phase. Otherwise, it will already know the answer and can quickly

achieve 100% accuracy by memorizing the testing data. Even if the algorithm doesn’t

intentionally memorize the answer, using the testing data in training will usually lead to

overfitting. Overfitting is when the model tries to accommodate the particular training

data set too much and fails to generate a model that is general enough to handle new

but not identical data. That means the model will work very well on the same set of

training data but fail miserably for any data that it hasn’t seen before, even if it’s only

slightly off. You keep yourself honest by splitting off a testing set to confirm the training

of your model.

The overall code structure to generate the training data looks similar to Listing 9-5.

The only difference is in the generate_data() function, presented in Listing 9-18. You

should copy this code into src/bin/generate.rs just as in the previous project.

Listing 9-18.  Generating training and test data for the neural network

use clap::Parser;

use ndarray::Array2;

use rand::distributions::Distribution; // for using .sample()

use rand::thread_rng;

use rand_distr::Normal; // split from rand since 0.7

use serde::Deserialize;

use serde::Serialize;

use std::fs::read_to_string;

use std::io;

use std::error::Error;

#[derive(Deserialize)]

struct Config {

Chapter 9 Artificial Intelligence and Machine Learning

359

 centroids: [f64; 4],

 noise: f64,

 samples_per_centroid: usize,

}

#[derive(Debug, Serialize)]

struct Sample {

 // [1]

 height: f64,

 length: f64,

 category_id: usize,

}

fn generate_data(

 centroids: &Array2<f64>,

 points_per_centroid: usize,

 noise: f64

) -> Vec<Sample> {

 assert!(

 !centroids.is_empty(),

 "centroids cannot be empty."

);

 assert!(noise >= 0f64, "noise must be non-negative.");

 let cols = centroids.shape()[1];

 let mut rng = thread_rng();

 let normal_rv = Normal::new(0f64, noise).unwrap();

 let mut samples = Vec::with_capacity(points_per_centroid);

 for _ in 0..points_per_centroid {

 // generate points from each centroid

 for (centroid_id, centroid) in centroids

 .rows()

 .into_iter()

 .enumerate() {

Chapter 9 Artificial Intelligence and Machine Learning

360

 // generate a point randomly around the centroid

 let mut point = Vec::with_capacity(cols);

 for feature in centroid.into_iter() {

 point.push(feature + normal_rv.sample(&mut rng));

 }

 samples.push(Sample {

 height: point[0],

 length: point[1],

 category_id: centroid_id,

 });

 }

 }

 samples

}

#[derive(Parser)]

struct Args {

 #[arg(short = 'c', long = "config-file")]

 /// Configuration file TOML

 config_file_path: std::path::PathBuf,

}

fn main() -> Result<(), Box<dyn Error>> {

 let args = Args::parse();

 let toml_config_str = read_to_string(args.config_file_path)?;

 let config: Config = toml::from_str(

 &toml_config_str

).unwrap();

 let centroids = Array2::from_shape_vec(

 (2, 2),

 config.centroids.to_vec()

)?;

 let samples = generate_data(

 ¢roids,

 config.samples_per_centroid,

Chapter 9 Artificial Intelligence and Machine Learning

361

 config.noise

);

 let mut writer = csv::Writer::from_writer(io::stdout());

 for sample in samples {

 writer.serialize(sample)?;

 }

 Ok(())

}

Each row in the new data now has three columns: length, height, and the cat-or-dog

label. The cat-or-dog label will be an integer; 0 represents dog, and 1 represents cat.5

You can serialize all the fields into f64s, but the integer label will become 0.0 or 1.0 in

the CSV file. To force it to serialize to a nice-looking 0 or 1, you need to define that desire

in the schema. The schema is simply a struct that implements the serde::Serialize

trait. You define this in the struct Sample. The generate_data() function will return a

Vec<Sample> instead of a Matrix<f64>. When you call csv::Writer.serialize() with a

Sample, it will use serde to serialize it to something like 25.24, 60.03, 1.

Listing 9-19.  Configuration data for generating the initial cat and dog

populations

config/generate_cats_and_dogs.toml

centroids = [# Height, length

 22.5, 40.5, # cat

 38.0, 50.0, # dog

]

noise = 1.8

samples_per_centroid = 2000

The code you wrote in src/bin/generate.rs will be used to generate the training

and testing data by running it twice. You should generate a total of 4,000 training

samples and 4,000 testing samples. You can go ahead and create a new file, config/

generate_cats_and_dogs.toml, with two different centroids, as in Listing 9-19—one for

cats and one for dogs.

5 This number is assigned arbitrarily. There is no special meaning behind the numbers.

Chapter 9 Artificial Intelligence and Machine Learning

362

Go ahead and generate the training and testing data by running the following:

$ cargo run --bin generate -- \

--config-file config/generate_cats_and_dogs.toml \

 > training_nn.csv

$ cargo run --bin generate -- \

--config-file config/generate_cats_and_dogs.toml \

 > testing_nn.csv

�Setting Up the Neural Network Model
After the training and testing data are generated, you need to build the model training

and predicting code. You are going to put them in a new binary, src/bin/train_and_

predict.rs. This binary has to do the following:

•	 Read and parse the training data into a Vec, and shape it into

an Array.

•	 Normalize the training data.

•	 Initialize the neural network model.

•	 Feed the normalized training data into the model for training.

•	 Read and parse the testing data into a Vec, and shape it into an Array.

•	 Normalize the testing data using the same parameter for normalizing

the training data.

•	 Use the trained model to make predictions on the testing data.

Since Rust doesn’t have any major crates written in pure Rust that provide an

implementation of a neural network, we are going to use the now pretty old rusty-

machine crate for this example. This crate and its accompanying linear algebra crate

rulinalg are fairly old and currently are not actively updated. However, their interface

is the simplest for learning neural networks in Rust. Once you understand the basics of

neural network models you can go ahead and use Rust bindings to pytorch or tensorflow,

which are two popular deep learning frameworks written in C++. These frameworks are

pretty advanced, so we chose not to start with them here.

To get the necessary crates, run the following on the command line:

$ cargo add rusty-machine

Chapter 9 Artificial Intelligence and Machine Learning

363

You’ll discuss each neural network subtask in the following sections.

�Reading the Training and Testing Data
In the K-means example (Listing 9-15), you read the CSV input from STDIN. However,

in a supervised model, you need two input files: the training data and the testing data.

So this time you are going to give the CSV files’ paths as CLI arguments and read them

directly from the file. Using the clap crate and code you introduced in Chapter 2, you can

create two arguments: training_data_csv and testing_data_csv (Listing 9-20).

Listing 9-20.  Neural network CLI argument parsing

use clap::Parser;

use std::error::Error;

#[derive(Parser)]

struct Args {

 #[arg(short = 'r', long = "train")]

 /// Training data CSV file

 training_data_csv: std::path::PathBuf,

 #[arg(short = 't', long = "test")]

 /// Testing data CSV file

 testing_data_csv: std::path::PathBuf,

}

fn main() -> Result<(), Box<dyn Error>>{

 let args = Args::parse();

 // ...

 Ok(())

}

You might recall how to serialize the data from a Rust struct into a CSV from Section

9.4 when working with K-means. Now you need to do the opposite: deserialize the CSV

data back to Rust structs. For this, you need to define the same data schema in a Rust

struct and provide it to csv::Reader (Listing 9-21).

Chapter 9 Artificial Intelligence and Machine Learning

364

Listing 9-21.  Reading training data from CSV

use serde::Deserialize;

use rusty_machine::linalg::Matrix;

// ...

#[derive(Debug, Deserialize)]

struct SampleRow { // [1]

 height: f64,

 length: f64,

 category_id: usize,

}

fn read_data_from_csv(

 file_path: std::path::PathBuf,

) -> Result<(Matrix<f64>, Matrix<f64>), Box<dyn Error>> {

 let mut input_data = vec![];

 let mut label_data = vec![];

 let mut sample_count = 0;

 let mut reader = csv::Reader::from_path(file_path)?; // [2]

 for raw_row in reader.deserialize() { // [3]

 let row: SampleRow = raw_row?;

 input_data.push(row.height);

 input_data.push(row.length);

 label_data.push(row.category_id as f64);

 sample_count += 1

 }

 let inputs = Matrix::new(sample_count, 2, input_data);

 let targets = Matrix::new(sample_count, 1, label_data);

 return Ok((inputs, targets));

}

fn main() -> Result<(), Box<dyn Error>>{

 let options = Args::parse();

Chapter 9 Artificial Intelligence and Machine Learning

365

 let (training_inputs, training_label_data) =

 read_data_from_csv(options.training_data_csv)?;

 // ...

 Ok(())

}

The schema you define is the struct SampleRow ([1]) is exactly the same as in

generate_data.rs. But this time, you derive the Deserialize trait from it. You created

the utility function read_data_from_csv() to read the data from the CSV file path. The

line that actually reads the CSV file is on [2], where you use csv::Reader::from_path().

The path parameter is the PathBuf you get from the CLI options. Once the file is loaded

into memory, you loop through the rows obtained by calling reader.deserialize()

([3]). This will deserialize the CSV line into Result<SampleRow, Error>.

In the loop, you put the rows into two vectors, input_data and label_data. You put

the height and length into input_data; and you put the category_id into label_data.6

These two vectors are then converted to the Matrix types that the rusty-machine model

accepts.7

�Normalizing the Training Data
Before you feed the data into the neural network model, there is a less obvious step you

have to take that will significantly speed up the training and accuracy of the model. This

step is called normalization. The goal of the normalization is to shift and scale the input

data so it has a mean of 0 and a standard deviation of 1. This is very helpful for models

like a neural network because when you do gradient descent, a normalized dataset

means the optimization process will not be dominated by one single dimension that

has a much larger scale than the others. It also means that the cost function will have a

smoother shape, which means the gradient descent process will be faster and smoother.

The normalization process involves the following steps:

6 You might notice that you convert the category_id from usize to f64. You might wonder why
you don’t just use f64 in the CSV format. That’s because this is a categorical integer. If you use
f64 in CSV, they’ll become 0.0, 1.0, and so on, which doesn’t look nice if you want to check the
training/testing data with spreadsheet software.
7 rust-machine was created before ndarray became the de facto standard matrix library in Rust,
and has its own linear algebra library rulinalg and its own array type Matrix.

Chapter 9 Artificial Intelligence and Machine Learning

366

•	 Calculate the mean of the dataset and subtract it from all data points.

This shifts the mean of the dataset to 0.

•	 Calculate the standard deviation of the dataset and divide each data

point’s coordinates by the standard deviation. This scales the dataset

to a standard deviation of 1.

You must keep the mean and standard deviation of the training data at hand. When

you normalize the testing data you’ll use the mean and standard deviation from the

training data. This is because all the parameters in the neural network model will be

trained for the normalized training data. If the testing data has a different mean and

standard deviation, the model’s prediction might be off.

You don’t need to write this part of the code by yourself. The rusty-machine contains

a handy rusty_machine::data::transforms::Standardizer struct. The Standardizer

implements the Transformer trait, which defines a shared interface for commonly used

data pre-processing transformations.

The Standardizer can be initialized with the new() function with two options: the

desired mean and the standard deviation. The normalization process we described

requires a mean of 0 and a standard deviation of 1, but the Standardizer can scale

the data to any other mean and standard deviation. The Standardizer instance has

the following functions defined by the Transformer trait:

•	 fit(): Calculates the mean and standard deviation from the input

data and stores it inside the Standardizer instance.

•	 transform(): Performs the transformation on the provided data

using the mean and standard deviation learned in the fit() step.

You can see the Standardizer in action in Listing 9-22.

Listing 9-22.  Normalizing input data

use rusty_machine::data::transforms::Transformer;

use rusty_machine::data::transforms::Standardizer;

// ...

fn main() -> Result<(), Box<dyn Error>>{

 let options = Args::parse();

Chapter 9 Artificial Intelligence and Machine Learning

367

 let (training_inputs, training_label_data) =

 read_data_from_csv(options.training_data_csv)?;

 let mut standardizer = Standardizer::new(0.0, 1.0);

 standardizer.fit(&training_inputs).unwrap();

 let normalized_training_inputs =

 standardizer.transform(training_inputs).unwrap();

 // ... Train the model with normalzied_training_inputs ...

 // Read the testing_inputs

 let (testing_inputs, expected) =

 read_data_from_csv(options.testing_data_csv)?;

 // Normalize the testing data with training data

 let normalized_test_cases =

 standardizer.transform(testing_inputs.clone())?;

 // ... Run the prediction with normalized_test_cases ...

 Ok(())

}

You first run Standardizer.fit() with the training data to learn its mean and

standard deviation. Then you use this configuration to run Standardizer.transform()

on both the training data and the testing data. You then feed the model with the

normalized data instead of raw data directly read from the CSV files.

�Training and Predicting
Finally, after all these efforts for reading, parsing, and normalizing data, you are ready

to build the neural network model. The neural network model takes a little more

configuration than the K-means, which only has one configuration parameter: the k. For

the neural network model, you have the option to set the following:

•	 The number of layers and the number of nodes per layer

•	 The criterion, including an activation function and a loss function

•	 The optimization algorithm

Chapter 9 Artificial Intelligence and Machine Learning

368

The rusty_machine::learning::nnet::NeuralNet struct has a ::default()

function. If you look under the hood, it chooses configurations like in Listing 9-23.

Listing 9-23.  Training the neural network

use rusty_machine::learning::nnet::{NeuralNet, BCECriterion};

use rusty_machine::learning::optim::grad_desc::StochasticGD;

use rusty_machine::learning::SupModel;

fn main() -> Result<(), Box<dyn Error>>{

 // ... Loading training data and pre-processing ...

 let layers = &[2, 2, 1]; // [1]

 let criterion = BCECriterion::default(); // [2]

 let gradient_descent = StochasticGD::new(0.1, 0.1, 20); // [3]

 let mut model = NeuralNet::new(

 layers,

 criterion,

 gradient_descent

);

 model.train(

 &normalized_training_inputs,

 &training_label_data

)?;

 // ... Testing

 Ok(())

}

Let’s break this down line-by-line. In [1], you define the layers as [2, 2, 1], which

means a three-layer architecture. The first layer has two input neurons, the middle

layer has two neurons, and the output layer has one neuron. By default, the NeuralNet

chooses the binary cross-entropy criterion (BCECriterion)([2]), which uses the Sigmoid

activation function and the cross-entropy error as the loss function. Finally, stochastic

Chapter 9 Artificial Intelligence and Machine Learning

369

gradient descent (StochasticGD) is chosen as the optimization algorithm in [3]. The

stochastic gradient descent has three parameters:

•	 Momentum (default: 0.1)

•	 Learning rate8 (default: 0.1)

•	 Number of iterations (default: 20)

All these parameters have some impact on how the neural network model performs.

Since this is not a book on machine learning we are not going to discuss how to tune

them in detail, and you will stick to the defaults. A vital skill for a machine learning

expert is to understand the mathematical meaning of these parameters and how to tune

them to make the model accurate and robust.

You can collect all of these configurations (layers, criterion, and gradient descent

algorithm) and pass them to NeuralNet::new() to create the model. The NeuralNet model

implements the SupModel trait. SupModel also implements .train() and .predict()

functions. The only difference between SupModel and UnSupModel is that the former’s .train()

function takes an extra target parameter, which contains the ground-truth labels, as follows:

pub trait SupModel<T, U> {

 fn train(&mut self, inputs: &T, targets: &U) -> // ...

 // ^---------- extra parameter

 // ...

}

pub trait UnSupModel<T, U> {

 fn train(&mut self, inputs: &T) -> LearningResult<()>;

 // ...

}

Therefore, you can train the model by calling the following:

model.train(&normalized_training_inputs, &training_label_data)?;

This step will usually take some time to run because the neural network is doing all

the complicated mathematical computations and training the model. Once trained, it

will store all the learned weights and other parameters inside itself, and you are ready to

use it to make predictions.

8 Actually, the second argument is the square root of the raw learning rate.

Chapter 9 Artificial Intelligence and Machine Learning

370

�Making the Prediction
To check if the model is trained properly, you prepared 4,000 new data points using the

generate_data.rs script. This time you are only going to pass the height and length to

the trained neural network model. The neural network model will pass these inputs into

the network and calculate all the signals all the way to the output node. Then, the output

node will give us a signal between 0 and 1. A 0 means the model believes that the input

is most likely a dog, and a 1 means it’s a cat. You can compare this prediction with the

provided answer and see if the model is correct.

You load the testing data from CSV and normalize it using the Standardizer you

created during training. Then you can use model.predict() on it to get a list of predicted

labels (Listing 9-24).

Listing 9-24.  Using the neural network to make predictions

use rusty_machine::linalg::BaseMatrix;

use std::io;

// ...

fn main() -> Result<(), Box<dyn Error>>{

 // Training the model

 // Testing ====================

 let (testing_inputs, expected) = read_data_from_csv(

 options.testing_data_csv

)?;

 // Normalize the testing data using the mean and

 // variance of the training data

 let normalized_test_cases = standardizer.transform(

 testing_inputs.clone()

)?;

 let res = model.predict(&normalized_test_cases)?;

 let mut writer = csv::Writer::from_writer(io::stdout());

 writer.write_record(&[

Chapter 9 Artificial Intelligence and Machine Learning

371

 "height",

 "length",

 "estimated_category_id",

 "true_category_id",

])?;

 for row in testing_inputs

 .iter_rows()

 .zip(res.into_vec().into_iter())

 .zip(expected.into_vec().into_iter())

 {

 writer.serialize((

 row.0 .0[0], row.0 .0[1], row.0 .1, row.1

))?;

 }

 Ok(())

}

With the code written you can then run the following command to train and then test

your predictions:

$ cargo run --bin train_and_predict -- \

 --train training_nn.csv \

 --test testing_nn.csv > results.csv

The res generated by model.predict() will be a list of labels 0 or 1, which is the

result you are looking for. You then can print this data back out to a CSV as we did

before, now including both the estimated and expected category IDs as additional

columns. Notice that you only use the height and length parts of the testing data (i.e.,

testing_inputs) in the estimation. The actual label expected is not given to the neural

network. Otherwise, it’ll know the answer. If you compare res with expected by looking

at the third and fourth columns you’ll see that almost all predictions are correct. This

is not usually the case in real-life applications. The reason that you can achieve a 100%

accuracy is that the training and testing data are artificially generated to be easy for a

neural network model, and it’s free of noise. Still, this example shows us the core steps in

training a supervised neural network model using rusty-machine.

Chapter 9 Artificial Intelligence and Machine Learning

372

9.6 � Alternatives
As you can see from the examples in this chapter, machine learning is not just about

training the model. There are many data-related operations before and after you train

the model. These kinds of operations include the following:

•	 Reading and writing CSV or other structural data formats

•	 Pre-processing the data (e.g., normalization)

•	 Setting and loading model configurations and parameters

•	 Visualizing the data

It’s not really practical to write all this code from scratch for every machine learning

application. You need a strong ecosystem with many pre-built crates to help quickly

and efficiently implement the learning part without worrying about fundamental tasks

like linear algebra and data manipulation. Similar to other fields in Rust, there’s an “Are

you learning yet?” page9 tracking how the ecosystem is doing. As stated on the page, the

machine learning landscape in Rust is “ripe for experimentation, but the ecosystem isn’t

very complete yet.” There’s also the Awesome-Rust-MachineLearning Github repo,10

which is a condensed and updated list of crates that are currently usable in Rust for

various machine learning purposes.

For the foundational mathematical crates, nalgebra and ndarray have come to be

seen as the de-facto standard. They provide linear algebra and array/matrix operation,

similar to the numpy in Python. Many machine learning algorithms also rely on code

from high-performance computing (HPC), which harnesses more of the hardware (CPU,

GPU, etc.) and parallelism. There is much experimentation in this field, like std::simd,

RustCUDA, and rayon, just to name a few.

If you consider traditional machine learning (“traditional” in the sense that it’s

not deep learning), the smartcore and linfa crates are both leading and relatively

comprehensive. They both have implemented several commonly used traditional

machine learning models and continue to do so, also putting a large emphasis on

interoperability with crates like ndarray.

9 https://www.arewelearningyet.com/
10 https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning

Chapter 9 Artificial Intelligence and Machine Learning

https://www.arewelearningyet.com/
https://github.com/vaaaaanquish/Awesome-Rust-MachineLearning

373

As for deep learning, there is no mature library built from scratch using Rust. We

used rusty-machine here since it was easy to set up and use for learning purposes, but

the library is no longer actively maintained. So to tap into the field of deep learning, the

best bet now is to use Rust bindings to mature libraries written in other languages. There

are Rust bindings to the TVM project, which is an open-source deep learning compiler

stack. There is also tensorflow/rust for TensorFlow and tch-rs for PyTorch, which

are two mainstream deep learning frameworks and probably the most popular tools for

deep learning with Rust at this time.

Rust has excellent potential to enable high performance and safe machine learning

applications, but there is still much more work to get the ecosystem ready for production

use. If you are interested, we encourage you to reach out to an open source project and

start working on it; often the best way to deeply understand something is to implement

some of it yourself.

9.7 � Conclusion
In this chapter, you learned about how Rust can be used in machine learning and

artificial intelligence. You first created a supervised model using K-means clustering,

where you classified cats into breeds based on measurement data. Then you shifted

to an unsupervised model, where you used a neural network to analyze cat and dog

measurement data and determine the species of new unknown data points. We also

shared a few other libraries for the still young AI/ML ecosystem in Rust.

Chapter 9 Artificial Intelligence and Machine Learning

375

CHAPTER 10

What Else Can You Do
with Rust?

10.1 � The End Is Just the Beginning
We’ve taken an exciting journey through the world of Rust together. We’ve learned how

to build a CLI, a GUI, a web application frontend, a REST API, a serverless website using

AWS, a game, a program to control hardware, and machine learning models. What next

steps can you take? What other exciting applications can you build with Rust? We’ll

briefly walk you through some other areas that weren’t covered in this book.

10.2 � Server-side Rendered Website
In the previous chapters you learned how to build a single-page application (SPA)

frontend and a REST API in Rust. This combination, sometimes called client-side

rendering, is currently the most popular architecture in modern web development.

However, there is an older architecture for building dynamic websites called server-side

rendering, which is still viable and in some places coming back into favor. In a server-side

rendered website, the backend is responsible for constructing the HTML and sending it

back to the frontend. There are several reasons that server-side rendering is still relevant:

•	 Simplicity: For simple websites, the user interface (HTML and CSS)

is written in the same place as the business logic. The frontend

also does not need to make complex API calls to the backend to

receive data.

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7_10

https://doi.org/10.1007/978-1-4842-9331-7_10

376

•	 Performance: Because the browser receives HTML from the backend

directly, it doesn’t need to wait until the JavaScript is loaded and

wait for the JavaScript to render the screen. There is potentially a

performance gain. Although some frameworks that use isomorphic

rendering can also accelerate the performance in client-side

rendered pages,1 this adds more complications that can be done

without to keep the codebase simpler (and generally there aren’t

production-ready Rust libraries currently available).

•	 Search engine optimization (SEO): Search engines use programs

called crawlers to scan through web pages and build up their search

index. Some crawlers might not have the capability to run JavaScript,

so a server-side rendered website is more friendly to the browser

engine crawlers. Nowadays, major search engines all have some

capability of handling client-side rendered websites, but it can still be

useful to consider SEO when designing a new site.

The actix-web framework you used in Chapter 5 can be used for server-side

rendering. Other current frameworks that support server-side rendering include Axum

(https://github.com/tokio-rs/axum) and Rocket.2

10.3 � Web Browser and Crawler
When people discuss the web in terms of frontend and backend, they often omit what

sits in between: the web browser. The reason people often omit it is because there are

only a handful of browsers available on the market, so they are considered something

set in stone. You might protest that there are hundreds of browsers you can find on

Wikipedia,3 but in fact most modern browsers are powered by three browser engines:

•	 Blink: powers Chromium, Google Chrome, Microsoft Edge, Opera

•	 Gecko: powers Firefox

•	 WebKit: powers Safari

1 https://en.wikipedia.org/wiki/Isomorphic_JavaScript
2 https://rocket.rs/
3 Wikipedia, “List of web browsers,” https://en.wikipedia.org/wiki/List_of_web_browsers

Chapter 10 What Else Can You Do with Rust?

https://github.com/tokio-rs/axum
https://en.wikipedia.org/wiki/Isomorphic_JavaScript
https://rocket.rs/
https://en.wikipedia.org/wiki/List_of_web_browsers

377

The history of Rust is tied deeply to browser engines. There is also a browser engine

prototype written in Rust from the ground up, called Servo.4 Servo is historically one of

the most significant projects written in Rust. The Servo project started in 2012, and now

has roughly 2.6 million lines of code (not all in Rust, but still impressive). Servo started

as a research project at Mozilla. In 2017, Servo’s CSS engine matured and was merged

into Gecko, the browser engine that powers Mozilla’s Firefox. The rendering component

of Servo, called WebRender, was integrated into Firefox later as well. So, if you are using

Firefox right now, you are also executing a big chunk of Rust code.

Servo has had a significant impact on Rust itself. The two projects shared some core

developers, and the core contributors worked closely with each other because they

both started as research projects under Mozilla Research. Many of Servo’s needs drove

the development of new features in Rust, and Rust’s design also heavily influenced how

Servo was architected. If you are interested in seeing Rust in large-scale projects, Servo

is definitely a fun piece of work to dive into. In 2020, the Servo project was moved from

Mozilla to Linux Foundation.5 As vindication of the success of Rust in web browsers, the

Chromium project has decided to formally support calling Rust code from their C++

libraries.6

Browsers are for human beings. However, many other programs also consume web

pages. These programs are usually referred to as web crawlers, scrapers, or spiders. They

“crawl” through web pages and extract information from them. A use case might be

when you want to compare prices listed on different e-commerce websites, but these

websites don’t provide APIs. We can utilize a crawler to crawl through their web pages

and extract the price information from the HTML. There are a few frameworks for

building web crawlers, for example spider7 and website-crawler.8 If you want more

fine-grained control over the crawling and parsing process, you can use the reqwest9

4 https://github.com/servo/servo
5 https://www.linuxfoundation.org/press-release/open-source-web-engine-servo-to-be-
hosted-at-linux-foundation/
6 https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
7 https://crates.io/crates/spider
8 https://github.com/a11ywatch/crawler
9 https://crates.io/crates/reqwest

Chapter 10 What Else Can You Do with Rust?

https://github.com/servo/servo
https://www.linuxfoundation.org/press-release/open-source-web-engine-servo-to-be-hosted-at-linux-foundation/
https://www.linuxfoundation.org/press-release/open-source-web-engine-servo-to-be-hosted-at-linux-foundation/
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://crates.io/crates/spider
https://github.com/a11ywatch/crawler
https://crates.io/crates/reqwest

378

HTTP client library to download the HTML page, and use an HTML parsing/querying

library to parse the page and extract data. Some popular HTML parsing/querying

libraries include html5ever,10 scraper,11 and select.12

10.4 � Mobile
In Chapter 3, we talked about how to build a GUI for desktop. But we didn’t talk about

how to build GUIs for mobile devices (i.e., apps). The dominant mobile platforms are

Google’s Android and Apple’s iOS. Android apps are written with Java or Kotlin, while

iOS apps are written in Objective-C or Swift. On Android, Rust is officially supported

as a platform language for working directly on the Android OS.13 Sadly, however, Rust

can’t be a drop-in replacement for these natively supported languages when it comes to

developing a user-facing application. But both Android and iOS have some mechanism

for invoking (and being invoked by) C or C++ libraries. These mechanisms are crucial

for performance-critical applications that build the user interface in Java/Kotlin/

Objective-C/Swift and offload the computation-intensive part to C/C++ libraries. Since

we can compile Rust to a library that looks and feels like a C library, we can also use this

mechanism to build an app that has business logic written in Rust.

For Android, the process will be as follows:14

•	 Install Android Studio (containing the Android SDK). This is the

official development environment for Android apps.

•	 Install the Android NDK (Native Development Kit). This toolkit

allows us to compile Rust into a library that can work on Android and

interact with Java/Kotlin.

10 https://github.com/servo/html5ever
11 https://crates.io/crates/scraper
12 https://crates.io/crates/select
13 https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
14 Mozilla published a post that guides you through the process step by step: https://mozilla.
github.io/firefox-browser-architecture/experiments/2017-09-21-rust-on-android.html

Chapter 10 What Else Can You Do with Rust?

https://github.com/servo/html5ever
https://crates.io/crates/scraper
https://crates.io/crates/select
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://mozilla.github.io/firefox-browser-architecture/experiments/2017-09-21-rust-on-android.html
https://mozilla.github.io/firefox-browser-architecture/experiments/2017-09-21-rust-on-android.html

379

There is a cargo ndk15 command you can install to simplify the compilation process.

•	 Use rustup to install the Android targets; for example armv7-linux-

androideabi.

•	 Build your Rust library project and compile it to a library file. You

need to expose your Rust code to Java through JNI (Java Native

Interface); there is a jni16 crate that helps you with that.

•	 Import the Rust library into your Java/Kotlin Android app project and

call the library inside your Java/Kotlin code.

The steps for iOS17 are very similar, as follows:

•	 Install Xcode, which is the official development environment for

iOS apps.

•	 Use rustup to install the iOS targets; for example armv7-apple-ios.

•	 Build your Rust library project and compile it to a library file. You

also need to expose a C-style header file so iOS can consume the Rust

library as if it’s a C library.

•	 Import the Rust library into your XCode and call the library inside

your Objective-C/Swift code.

If you are looking for purely Rust mobile applications, you can try using Tauri. Tauri

provides an engine for running JavaScript and WASM-based UI’s in the desktop and

as of recently, also on mobile.18 We saw in Chapter 4 how you can make a single-page

web application purely in Rust using WebAssembly. This same code can be run, with

minimal modifications, using Tauri, thus turning it into a desktop or mobile app. Besides

using Tauri or another JavaScript/WASM-based runtime, you can write a simple Java

application that starts an OpenGL or Vulkan window, and write Rust code that directly

15 https://github.com/bbqsrc/cargo-ndk
16 https://crates.io/crates/jni
17 Here is the Mozilla post on running Rust on iOS: https://mozilla.github.io/firefox-
browser-architecture/experiments/2017-09-06-rust-on-ios.html.
18 https://github.com/tauri-apps/tauri-mobile

Chapter 10 What Else Can You Do with Rust?

https://github.com/bbqsrc/cargo-ndk
https://crates.io/crates/jni
https://mozilla.github.io/firefox-browser-architecture/experiments/2017-09-06-rust-on-ios.html
https://mozilla.github.io/firefox-browser-architecture/experiments/2017-09-06-rust-on-ios.html
https://github.com/tauri-apps/tauri-mobile

380

renders the UI, but this will require writing a lot of this rendering code from scratch.

Previously, crates have existed for doing this kind of low-level rendering on Android,

like android-rs-glue,19 but these have largely been abandoned as the community has

shifted its focus to WebAssembly.

Another alternative is to use a game engine that handles the rendering by itself. For

example, the macroquad20 game engine allows you to write applications in Rust and

build them for Android and iOS. The downside of this route is that you don’t have access

to platform-native UIs and you have to render the UI by yourself.

Note T he idea of compiling Rust into a shared library and using it inside other
programming languages using their FFI (foreign function interface) mechanism can
be applied not only in the mobile realm. The Rust FFI Omnibus website21 collects
such examples for various programming languages:

•	 C

•	 Ruby

•	 Python

•	 Haskell

•	 Node.js

•	 C#

•	 Julia

It can also work the other way around. Rust can call libraries written in other
languages supporting the C language ABI, such as C and C++. You can reference
the section “Using extern Functions to Call External Code”22 from “The Rust
Programming Language” by Steve Klabnik and Carol Nichols to learn more.

19 https://github.com/rust-windowing/android-rs-glue
20 https://github.com/not-fl3/macroquad
21 http://jakegoulding.com/rust-ffi-omnibus/basics/
22 https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-
functions-to-call-external-code

Chapter 10 What Else Can You Do with Rust?

https://github.com/rust-windowing/android-rs-glue
https://github.com/not-fl3/macroquad
http://jakegoulding.com/rust-ffi-omnibus/basics/
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code

381

10.5 � Operating Systems and Embedded Devices
As we mentioned at the end of Chapter 8, there are many more things you can do on

the hardware level than just blinking an LED. There are simply too many hardware

platforms and peripherals out there, and writing bare-metal Rust programs for each

and every one of them from scratch is virtually impossible. Thankfully, there are some

software abstractions already defined at various layers. At the bottom layer, there are

peripheral-access crates that contain register definitions and low-level details of the

micro-controllers. On top of that, there is the embedded-hal layer. The -hal suffix stands

for Hardware Abstraction Layer. The embedded-hal is a few traits that define a hardware-

agnostic interface between a specific HAL implementation and drivers. Drivers can

be written against the embedded-hal traits without worrying about hardware-specific

details. This enables developers to build portable drivers, firmware, and applications

on top of this abstraction layer. You can find many embedded-hal crates and their

implementations by searching the keyword “embedded-hal” or “embedded-hal-impl”

on crates.io.

Building on top of embedded-hal there are driver crates and board-support crates.

Drivers give you platform-agnostic support for a specific class of device, like sensors,

modems, LCD controllers, etc. Board-support crates give you support for a specific

development board.

Many Rust developers also take on the challenge of building or extending operating

systems in Rust. A relatively mature one is Redox OS23 (Figure 10-1), which is designed

with a micro-kernel architecture. It already has a GUI and some useful applications

running on it. There is also Tock,24 which is targeting IoT (Internet of Things) devices

with low-memory and low-power constraints. Another recent low-level open-source

Rust-based OS is Hubris25 by Oxide Computer Company. And finally (and probably most

important), Rust has become the first language after C to be added to the Linux kernel,

starting with the ability to write drivers.26

23 https://www.redox-os.org/
24 https://www.tockos.org
25 https://github.com/oxidecomputer/hubris
26 https://rust-for-linux.com/

Chapter 10 What Else Can You Do with Rust?

https://www.redox-os.org/
https://www.tockos.org
https://github.com/oxidecomputer/hubris
https://rust-for-linux.com/

382

27 https://os.phil-opp.com/. It’s named Blog OS because it was a series of blog articles by Philip
Opperman on how to build an OS in Rust.
28 https://firecracker-microvm.github.io/

Figure 10-1.  Redox OS. Image retrieved from the Redox OS GitLab repository.
MIT License

There are OSes for teaching purposes, like Blog OS.27 There are also a few less-active

ones that take a language-based approach, which means their focus is to build a minimal

OS that can run a Rust program.

10.6 � The Cloud
In Chapter 6, you built an application on the AWS cloud using Rust. But do you know

that part of the services that make up the AWS cloud are also built in Rust? For example,

the Firecracker VM,28 the lightweight virtualization technology that powers AWS Lambda

and AWS Fargate, is written in Rust. The micro-virtual machines (microVMs) launched

in Firecracker have a fast startup time and low memory overhead, without trade-offs in

security or efficiency.

Chapter 10 What Else Can You Do with Rust?

https://os.phil-opp.com/
https://firecracker-microvm.github.io/

383

AWS also developed Bottlerocket,29 a Linux-based operating system that is purpose-

built to run containers. You can use it on the host machine that runs containers. It

contains only the essential software to run containers, so it reduces the attack surface

and improves security. It’s also written in Rust.

AWS Nitro Enclaves is another service that uses Rust. AWS Nitro Enclaves allows

you to create isolated compute environments in your Amazon Elastic Compute Cloud

(Amazon EC2) instances. By running the most sensitive data processing applications,

such as those involving personally identifiable information (PII), financial, and health

care details in a Nitro Enclave, you can improve the security of your application.

As you can see, Rust plays a big part in building secure applications for cloud

computing. Other services like Amazon Simple Storage Service (Amazon S3), Amazon

Elastic Compute Cloud (Amazon EC2), and Amazon CloudFront also use Rust internally.30

10.7 � Blockchains and Cryptocurrencies
Rust has caught a lot of attention in the world of blockchain and cryptocurrency because

of its safety and performance. There are two levels of usage for Rust in blockchains: using

Rust to build the blockchain itself, or using Rust to write smart contracts on a blockchain.

There are several high-profile blockchains that are built with Rust: Solana,31

Polkadot,32 and Hyperledger Sawtooth.33 The failed cryptocurrency Diem34 (formerly

Libra, created by Meta) was also built with Rust.

These blockchains also allow you to write smart contracts in Rust. These smart

contracts run inside the blockchain’s virtual machine, and most of the time they require

some kind of cross-compilation into WebAssembly or custom bytecode format. For

example, the NEAR Protocol allows you to use ink!, an embedded domain-specific

language (DSL) that allows you to write smart contracts in Rust. Solana also allows you to

write its smart contracts (called Programs) in Rust.

29 https://aws.amazon.com/bottlerocket/
30 https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
31 https://solana.com/
32 https://polkadot.network/
33 https://www.hyperledger.org/blog/2019/01/18/safety-performance-and-
innovation-rust-in-hyperledger-sawtooth
34 https://www.diem.com/

Chapter 10 What Else Can You Do with Rust?

https://aws.amazon.com/bottlerocket/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://solana.com/
https://polkadot.network/
https://www.hyperledger.org/blog/2019/01/18/safety-performance-and-innovation-rust-in-hyperledger-sawtooth
https://www.hyperledger.org/blog/2019/01/18/safety-performance-and-innovation-rust-in-hyperledger-sawtooth
http://www.diem.com/

384

Blockchain is a fast-evolving domain. You can follow the latest developments from

the curated list of Rust blockchain projects, Awesome Blockchain Rust,35 and newsletters,

like Rust in Blockchain.36

10.8 � Unlimited Possibilities of Rust
Besides the topics we discussed in previous chapters and sections, there are many more

applications of Rust. Here is a non-exhaustive list:37

•	 Compression

•	 Cryptography and Security: ring,38 openssl,39 sodiumoxide40

•	 Database implementations41

•	 Emulators: game consoles and other hardware

•	 Multimedia: images, audio, and video manipulation; rendering

2D/3D content

•	 Language parsers

•	 Scientific applications: mathematics, bio-informatics (e.g., Rust-

Bio42), geo-information, physics, and chemistry simulation

Rust is a wonderful tool for building almost any kind of application. Although at this

moment, some fields might not have mature, production-ready Rust libraries or user

bases, with support from the passionate and friendly community, we can expect to see

many more applications of Rust. From mini IoT sensors running on low-power micro-

controllers, to cutting-edge AI running on massive supercomputers, the future of Rust is

wide open and looks bright. Have you found anything you would like to build with Rust?

Let’s all work together to grow Rust and unleash its full potential!

35 https://github.com/rust-in-blockchain/awesome-blockchain-rust
36 https://rustinblockchain.org/
37 This list in alphabetical order. The order does not indicate popularity or maturity.
38 https://crates.io/crates/ring
39 https://crates.io/crates/openssl
40 https://crates.io/crates/sodiumoxide
41 https://crates.io/categories/database-implementations
42 https://rust-bio.github.io/

Chapter 10 What Else Can You Do with Rust?

https://github.com/rust-in-blockchain/awesome-blockchain-rust
https://rustinblockchain.org/
https://crates.io/crates/ring
https://crates.io/crates/openssl
https://crates.io/crates/sodiumoxide
https://crates.io/categories/database-implementations
https://rust-bio.github.io/

385

Index

A
actix-file::Files service, 139
Actix-web, 134, 167, 179, 186
actix_web::error module, 176, 177, 179, 180
Actix-web framework (version 4), 6,

130, 376
alert() function, 81, 85
Amazon CloudFront, 383
Amazon Elastic Compute Cloud (Amazon

EC2), 383
Amazon Resource Names (ARN), 215,

218, 223
Amazon Simple Storage Service (Amazon

S3), 383
Amazon Web Service (AWS), 201

account registration, 203
cloud, 382
CloudFormation, 213, 215
CloudFront, 246
Hello World lambda, 246

Cargo Lambda, 204
function_handler() function, 205, 206
lambda console, 206
lambda function, 206
Lambda handler function, 205
main function, 205
project creation, 204, 205
Python’s pip package manager, 204
Rust project, 204
test buton, 207, 208
test event, 209
testing, 207

test output, 209
lambda, 202, 203
Nitro Enclaves, 383
resources, 216
SAM, 211

CLI, 212, 246
SDK, 246
services, 246
testing, 234

api_config() function, 167, 184
API testing

Actix-web, 165, 167
the /api/cats API, 165
App::configure(), 167
integration test, 166

app() function, 110
App component, 114, 118, 120
Artificial intelligence (AI), 7, 321, 373
Artificial neural network (ANN)

model, 355
Automated test, 30

B
Binary cross-entropy criterion

(BCECriterion), 368
Bevy, 248

application, default plugins, 252, 253
asset server, 260
audio system, 288
Cargo.toml file, 252
components, 253
create project, 252

© Shing Lyu and Andrew Rzeznik 2023
S. Lyu and A. Rzeznik, Practical Rust Projects, https://doi.org/10.1007/978-1-4842-9331-7

https://doi.org/10.1007/978-1-4842-9331-7

386

ECS, 248
main.rs, 252, 253
resources, 260
subset, 253
system functions, 260
ubuntu, 252

Binary, 11, 13
Binary flags, 17, 18, 38
Blockchains, 383, 384
Bottlerocket, 383
Browser engines, 2, 39, 77, 376, 377
Browsers, 6, 39, 79, 85, 110,

115, 126, 377
builder.object() function, 69
build_ui() function, 67, 68, 71
Button component, 110, 122
ButtonProp struct, 110
Bytecode Alliance, 125

C
Callback function, 45, 49, 69–71
Callbacks, 113, 121
Camera

Bevy, 255
initialization, 255, 256
insert_resource method, 255
location, 254
pixels, 254
setup function, 255
spawning, 255

canvas. getContext(’2d’), 99
Cargo, 11
Cargo generate, 83, 89
Cargo.toml file, 14, 20, 26, 33, 35, 42, 83,

84, 107, 153
Cat detail API, 169–173

Catdex, 81, 112, 118, 119, 123, 141
Catdex REST API

architecture, 210
AWS credentials, 223
AWS SDK, 220
building steps, 202
Cargo.toml, 220
/cats API

handler setup, 227
list of cats, 228
ResponseBody, 227
Serialize method, 228
src/bin/lambda/get-cats.

rs, 224–226
template.yaml, 224, 225
testing, 228
unwrap, 228

dependencies, 220–222
DynamoDB, 227
frontend

API calls, 243
AWS credentials, 242
bucket policy configuration,

242, 243
cat html page, 235, 237–239
create bucket, 239
CSS file, 235, 237
folder creation, 235
index file, 235–237
program creation, 239
project, build/re-deploy, 245
setup code, 240, 241
website deployment, 239

function_handler() function, 222
function handler, 222
HTTP POST API, 224
lambda, 223
lambda function, 219

Bevy (cont.)

INDEX

387

main function, 222
project structure, 219
PutItemInput, 222
RequestBody struct, 222
request.payload(), 222
security, 245
template.yaml file, 224
upload images, S3 pre-signed URL

adding bucket, 230
advantages, 230
AWS credentials, 229
creation, 231, 232
curl, 234
deployment, 234
Dynamo clients, 233
handler function, 233
permissions, 230
persian.jpg, 234
POST /cat, 229
sequence diagram,

adding cats, 229
size, 228
static website hosting, 235

version, 220
Catdex serverless project

API Gateway/AWS Lambda, 213
AWS SAM template, 213
cargo lamda output, 212
CatTable, 215
CLI, 219
guided deployment, 216, 217
lambda function, 218
output, 218
PostCatFunction, 216
response, 219
Rust code, 216
samconfig.toml file, 217
template.yaml file, 213–215

cat_endpoint handler, 174–176
CatEndpointPath, 174
CatEndpointPath.validate(), 174
catfile, 21–24
Cat Management Application

base64 crate, 115
callbacks, 113
Cargo, 115
CatDetails, 114
Catdex, 112
CSS styling, 118–120
deleting files, 120–123
gloo_file crate, 115
index.html file, 113
on_change callback, 118
operations, 113
read_as_bytes function, 115
skeleton Yew component, 113
upload_file helper function, 118

C-based GTK library, 53
Certificate authority (CA), 193
Classification problem, 325
Client-side rendering, 375
CLI tool, 2
Clustering problem, 326
Colorize trait, 20
Command Line Argument Parser

(Clap), 13–17
Command-line interfaces

(CLIs), 1, 5
advantages, Rust, 9
binaries, distribution, 36, 37
binary flags, 17, 18
Clap, 13–16
command-line arguments,

std::env::args, 12, 13
cowsay, 10, 11
create binary project, 11, 12

INDEX

388

error, 24, 26, 27
install, source, 34, 35
integration test, 30–32, 34
line-oriented search tool, 9
piping

STDIN, 29, 30
to STDOUT without color, 28

print, color, 19, 21
print to STDERR, 18, 19
publish to crates.io, 35, 36
read cat picture, file, 21–24
read file, 22
Rust, 9

Command-line programs, 9
See also Command-line

interfaces (CLIs)
Comma-separated values (CSV), 325,

334–336, 343, 350
Content delivery network (CDN), 128,

136, 210
Continuous integration (CI) service, 37
Cowsay, 10, 17, 21
CPU-intensive job, 81
crates.io, 1, 5, 9, 35–36
crate-type is cdylib (C Dynamic

Library), 84
create-wasm-app, 89
Cross-compilation, 37, 294, 312, 383
Cross-origin resource sharing

(CORS), 243
frontend/backend APIs, 243
globals, 243
headers, 243
issue, 244
website upload code, 244, 245

crossterm, 42, 75
Cryptocurrencies, 383

D
Database administrators (DBAs), 150
Database, REST API

add diesel, 153
add r2d2, 153
add serde_json to _Cargo.toml, 153
cats_endpoint() handler, 152
connection pool, cats endpoint

handler, 156
ConnectionManager, 155
Diesel, 147, 149
diesel command-line tool, 149
Docker, 147, 148
down.sql, 150
IndexTemplateData, 152
ORM model, 146, 151
PostgreSQL, 146
schema migration, 150
set up r2d2 thread pool, 153
src/main.rs file, 152
up.sql, 150

Declarative approach, 106
Deep learning, 321, 325, 362, 373
Delete buttons, 123
devDependencies, 91
Development server, 91, 92
Diesel, 149
Docker, 147, 148
Domain-specific language (DSL), 383
DOMContentLoaded event fires, 98
drawImage() function, 99

E
Ecosystem, 118, 128, 199, 247, 292
Elm, 76, 80, 124
Embedded devices, 318, 319, 381, 382
Entity-component system (ECS), 6

Command-line interfaces (CLIs) (cont.)

INDEX

389

benefit, 250
Bevy, 248
collisions, 251
components, 248
composition-based system, 250
create entity, 249
entities, 248, 249
memory access, 250, 251
object-oriented paradigm, 250
processers, 250
RPG, 248
simple projects, 249
subset, 251
systems, 249
Vec, 251

Euler integration, 274
event.target object, 98
eXtensible Markup Language

(XML), 58, 59
Extractors, 157, 158, 174

F
fetch() API, 145
Files service, 139, 140
fit() function, 347
Flash games, 247
Foreign function interface (FFI), 4, 86, 380
Frontend frameworks, 80, 124, 144, 197
Functional component, 110, 122
function_component, 120
#[function_component(Name)]

attribute, 110

G
Game developers, 251, 292
Game development ecosystem, 292

Game engines, 6, 247, 248, 291, 380
Garbage collector (GC), 79
General-purpose input/output (GPIO),

299, 300
generate_data() function, 336, 358
GenericImageView trait, 95, 101
getImageData function, 102
ggez, 291
GIMP Toolkit, 52
Glade-based design, 72
Glade-based GUI, 66
Glade UI design tool, 60
gloo, 124
Godot, 292
Gradient descent, 357, 365, 369
Graphical user interfaces (GUIs)

catsay program, 40
gtk3-rs, 41
gtk-rs, 53
Rust, 53

GraphQL, 128, 198
greet() Wasm function, 85
gRPC, 128, 198
GTK framework, 52

create window, 53, 55
display text and image, window, 55–57
Glade, 67
glade layout XML, 61
GtkBox, 57
GtkLabel, 58
gtk::Switch, 72, 73
inputs and button clicks, 68, 69, 71
XML, 58, 59

GTK+, 52
GTK3, 52, 57
Gtk3-rs, 53
GTK4, 52
GTK-based GUI library, 75

INDEX

390

H
Hardware Attached on Top (HATs), 319
hello() handler, 132
hello_wasm_bg.d.ts, 87
hello_wasm_bg.js, 87
hello_wasm_bg.wasm, 87
hello_wasm.d.ts, 87
hello-wasm folder, 83, 89
hello_wasm.js, 87
hello-wasm-pack, 90
hello-wasm package, 91
hello-wasm-pack demo package, 91
hello-wasm-pack dev dependency, 103
Hello WebAssembly

development environment, 82, 83
frontend creation, 88–92
project creation, 83–87
Rust code, 81

Hello World Actix application, 131
Cargo.toml, 130, 131

Hello World program, 9, 11, 81, 132
Hello World project, 93, 107, 126
hello-yew-world directory, 107, 108
High-performance computing (HPC), 372
HTMLImageElement, 98, 99
HtmlInputElement, 118
HTTP client library, 378
HttpServer, 132

I
Identity and Access Management (IAM), 216
ImageData, 102
image::ImageBuffer::from_vec()

function, 101
Image-processing algorithms, 93, 94
Image-processing function, 106
Image resizing, WebAssembly

<canvas>, 96
Cargo.toml file, 94
CLI and GUI programs, 93
enum FilterType, 95
GenericImageView trait, 95
HTML code, 95
HTMLImageElement, 98
image::imageops, 95
loading file into <canvas>, 97–99
naive format, 93
passing image to Wasm, 100–104
performance-critical job, 93
Rust crate, 94
Rust ecosystem, 93

Immediate-mode GUI, 76
Immediate-mode Rust GUI libraries, 76
increment_button function, 111
index.html file, 89, 90, 108, 113, 134, 136,

137, 146, 179, 235, 239
Infrastructure-as-a-Service (IaaS), 201
Input validation, 129, 169, 173–175
Inter-Integrated Circuit (I2C), 300
Internet of Things (IoT), 80, 381

J
JavaScript development, 83
JavaScript image-resizing frontend, 126
JavaScript Object Notation (JSON), 141,

143, 144, 198
JavaScript string, 86
JSON API, 142

K
K-means, 7, 323, 326–373
K-means algorithm

add entries, 344, 346
clustering problem, 326

INDEX

391

clustering result, 354
configuration file, 337–340
CSV, 334–336
example, 328
goal, 327
minimal plotters plot, 344
setting configuration file at

runtime, 340–341
setup, 346–355
steps, 328
training data, 329–334
visualize data, 341–344

K-means++ algorithm, 329

L
Lambda functions, 235, 246
lib.rs file, 100
Light-emitting diode (LED), 300
linfa, 7, 325, 326, 329, 372
linfa-clustering, 346, 347
Logging facade, 185, 186
 element, 98

M
Machine learning (ML)

classification problem, 325
fully labeled dataset, 322
fundamental operations, 325
linfa, 325, 326, 372
model training and

inference, 325
reinforced learning, 322
Rust, 372, 373
rusty-machine, 373
semi-supervised learning, 322
smartcore, 372

supervised, 322
transfer learning, 322
unsupervised, 322

Micro-virtual machines
(microVMs), 382

Mobile
Android, 378
cargo ndk command, 379
iOS, 378, 379
macroquad, 380
mechanisms, 378
Tauri, 379

model.predict(), 370, 371

N
NamedFile::open() function, 137
Native Development Kit (NDK), 378
ncurses-based TUI library, 75
NeuralNet model, 368
Neural network, 356

CLI argument parsing, 363
gradient descent, 357
neuron, 355
neuron/node structure, 356
nodes, 355–357
normalize input data, 366
normalize training data, 365–367
predictions, 369–371
read training data, CSV, 364
rusty-machine, 357
setup, 362
testing data, 357–363, 365
training, 367–369
training data, 357–363, 365

Node Package Manager (npm), 83
Normalization, 365
npm audit command, 92

INDEX

392

npm audit fix command, 92
npm init wasm-app client, 89
.nth() function, 13

O
Object-relational mapping (ORM), 130,

146, 151, 160, 197
Operating system (OS), 132, 381, 382
opt-level options, 85
original_image parameter, 94, 101

P, Q
package.json file, 87, 90, 91, 103
Personally identifiable information

(PII), 383
Pikachu Volleyball game

Ball component, 269, 272
ball bounce

bounce function, 274
bounce system skeleton, 275, 276
collision, 279
edge of the window, 276–278
players, 278
rand, 275

Ball component, 271
cats

arguments, 266
asset server, 260
Bevy, 265
camera, 257, 258
cat-sprite.png file, 256
clamp function, 269
inputs, 265
left player location, 258, 259
.load() method, 260
movement, 268

non-startup system, 266
player function, 268
player system, 267, 268
players, 258, 269
position, 268
Query type, 266
Res wrapper, 260
right player location, 258, 259
Side methods, 265, 266
SpriteBundle, 258
transform.translation.x, 268, 269

features, 248
gravity

move_ball system, 272–274
Res <Time>, 273
velocity Verlet integration, 274
x position, 273
y position, 273

music
AudioBundle, 288, 289
Audio module, 289–291
AudioSource, 289
bounce sound, 291
udpation, 291

score
algorithm, 280, 281
initialize_scoreboard()

function, 282
ResMut <Score>, 281
resource data struct, 281
ScoreBoard, 281, 282, 285, 286
score_display, 285
scoring system function, 285
UiText entities, 282–285
updation, 285–287

spritesheet, 260
cat position, 264
code, 261–263

INDEX

393

ECS, 264
players, 260, 261
SpriteSheetBundle, 263
TextureAtlas, 263, 264

Piping, 5, 27, 30
Piston, 291
pkg folder, 87, 91, 104
Platform-as-a-Service (PaaS), 201
PostgreSQL database, 130, 147, 148, 167,

172, 215
Programming languages, 1, 37, 76, 127,

325, 380
pub fn greet(), 86
Pulse-Width Modulation (PWM), 300

R
Raspberry Pi, 2, 293

ARM CPU, 295
boards, 294, 295, 319
button clicks

Button, 311
button circuit diagram, 308–310
button-press events, 311
button.wait_for_press() function,

311, 312
GPIO pins, 306, 308
last_clicked timestamp, 312
pieces of metal, 308, 311
resistors, 306, 307
src/main.rs, 310

cross-compilation, 312–314
electrical circuits, 294
features, 293–295
GPIO code

/dev/gpiomem, 315
functions, 317
interfaces, 314

pin number, 315
registers, 315
rppal’s source code, 315–317
shell script, 314
/sys/class/gpio/gpio2 file, 315
Sysfs files, 315

GPIO output, Rust
breadboard and jumper wires, 302
cargo run, 303
Cargo.toml, 302
LED, 306
LED circuit, 303–305
LED flash, 305, 306
project directory, 302
rust_gpiozero, 302
src/main.rs, 303

GPIO pins, 299, 300
hardwares, 318
LED circuit, 300, 301
OS, 294, 296, 297
Raspberry Pi Imager, 296, 297
Rust toolchain, 298
Sense HAT, 319
software packages, 296

r2d2, 152, 153, 155, 176
Reactive programming paradigm, 111
README.md, 87
Reinforced learning, 322
Relational Database Service (RDS), 215
REST API, 6

Actix-web framework (version 4), 130
add cats, POST command

awmp::Parts extractor, 158
Cat struct, 160
complete add_cat_endpoint()

handler, 162
extractors, 157
image, 164

INDEX

394

insert new cat into database, 161
multipart payload extractor, 158
texts field, 160

API testing, 165–169
cat detail API, 169–173
client-rendered index.html, 146
convert cats list, 141–146
customize web::Path extractor error,

184, 185
custom logging, 188
database (see Database, REST API)
error handling

Actix-web, 176
categories, 176
custom-built error type, 179–181,

183, 184
error-handling flow, 178
generic error, 179

GraphQL, 198
gRPC, 198
Hello Backend World!, 130–134
HTML, 197
HTTPS, 193–196
hyper, 196
index.css, 135
index.html, external image and

CSS, 137
index.html file, 135, 136
input validation, 173–175
logging, 185–193
PostgreSQL database, 130
production-grade application, 129
Rocket, 196
server-side rendering, 129
static files, 134–140
web server, 128
Warp, 196

Retained-mode GUI, 76
RgbaImage to imageops::resize, 101
rlib (Rust Library), 84
Rocket, 196
Role-playing game (RPG), 248
Rust, 1, 80, 109, 127, 247, 250, 291, 292

Android platform, 1
applications, 384
bare-metal platform, 319
boards, 319
CLI, 5
CLI tool, 2
CPU architectures, 293
criteria, select libraries

de-facto standard, 4
innovation and

experimentation, 4
languages, 3
maturity, 4
popularity, 5
pure Rust, 4

developers, 381
domain, 2
domain-specific working

groups, 318
embedded environment, 319
“fearless concurrency”, 127
repositories, 318
StackOverflow survey, 1
vibrant ecosystem, 128
Wasmer, 319
WebAssembly, 6

Rust and WebAssembly Working
Group, 124

Rust bindings, 75
Rust-native GUI libraries, 76
Rustorm, 197
Rust’s FFI, 4

REST API (cont.)

INDEX

395

Rust’s standard library, 112
Rusty-machine, 7, 325, 357, 362, 365, 366,

371, 373

S
S3, 6, 128, 210, 229, 233, 235, 239, 246
Schema migration, 150
SeaORM, 197
Search engine optimization (SEO), 376
Security, 92, 127, 245
Semi-supervised learning, 322
Serial Peripheral Interface (SPI), 300
Serverless Application Model (SAM), 211
Serverless computing, 201
Server-side rendering, 129, 375, 376
Servo, 377
setup() function, 98
shrink_by_half() Wasm function, 101
Single-page application

(SPA), 6, 81, 375
siv.add_global_callback() function, 45
A Snake’s Tale game, 292
src attribute, 98
Standard error (STDERR), 18, 19
Standardizer, 366, 367
Standard output (STDOUT), 18, 19, 28, 32,

33, 234, 343, 348
Standard Rust program, 109
Static files, 134–140
Static web page, 246
std::env::args() function, 13
STDIN, 29, 30, 348
std::process::Command, 31, 32
Stdweb, 124
Stochastic gradient descent

(StochasticGD), 369
struct, 110

Structured logging, 199
Supervised learning, 322, 323, 325

T
Tauri, 77, 379
termion, 75
Testing data, 357–362
Text-based 2D interface, 6
Text-based user interface (TUI)

add dialog, 46, 47
catsay program, 40
cursive crate, 42
dialog box, 40, 43, 44
event-driven architecture, 39
input form, 40
keyboard inputs box, 45
libraries, 41
multi-step dialogs, 47, 49
ncurses library, 42
tui-rs, 75
user’s input, 50, 52

The International Cat Association
(TICA), 173

Toggles/switches, 17
Training data, 322, 323, 329–334,

357–362, 366
Transfer learning, 322
trunk package, 109
trunk serve--open, 112, 120
TypeScript, 87, 88

U
Uint8ClampedArray, 100, 103
Unity, 291, 292
Unreal engine, 291
Unsupervised learning, 322, 323, 346

INDEX

396

User interface (UI), 5, 6, 41, 43, 45, 80
use_state function, 111, 114

V
Velocity Verlet integration, 274
Video games, 247
Virtual DOM, 80, 106, 112
Virtual private server (VPS), 201

W, X, Y
Warp, 196
wasm_bindgen, 86, 124
wasm-bindgen crate, 85
Wasm code, 100
wasm.greet() line, 97
wasm-image-processing, 94, 95, 99, 102, 104
wasmImage.shrink_by_half() Wasm

function, 103
wasm-pack, 82, 83, 88
Wasm package, 88, 90
wasm-pack build, 87
wasm-pack-template, 83
Wasm runtime, 125
Wasm’s specification, 86
Web 2.0, 321
WebAssembly, 2, 6

definition, 79
Hello World program (see Hello

WebAssembly)
image resizing (see Image resizing,

WebAssembly)

JavaScript-based web
applications, 80

misconceptions, 80
near-native speed, 79
program building, 81
Rust, 80
W3C, 79

WebAssembly foundation, 125
WebAssembly. instantiateStreaming()

web API, 88
web::block() function, 152, 153
Web crawlers, 377
The web::Data parameter, 157
Webpack, 88, 89, 91
webpack.config.js, 91
webpack-dev-server, 92
Webpack v4, 90
web::Path extractor error, 185
WebRender, 377
Web scrapers, 377
Web security, 127
Web server, 109, 127, 128, 132, 134
Web spiders, 377
wee_alloc allocator, 85
window.alert() function, 86
window.URL.createObjectURL()

method, 98
World Wide Web Consortium

(W3C), 79

Z
.zip() function, 350

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Welcome to the World of Rust
	1.1 Who Is This Book For?
	1.2 Who Is This Book Not For?
	1.3 Criteria for Selecting Libraries
	Pure Rust
	Maturity
	Popularity

	1.4 How to Use This Book
	Chapters Overview

	1.5 Source Code
	1.6 Topics Not Covered

	Chapter 2: Building a Command-line Program
	2.1 What Are You Building?
	2.2 Creating a Binary Project
	2.3 Reading Command-line Arguments with std::env::args
	2.4 Handling Complex Arguments with Clap
	2.5 Adding Binary Flags
	2.6 Printing to STDERR
	2.7 Printing with Color
	2.8 Reading the Cat Picture from a File
	2.9 Handling Errors
	2.10 Piping to Other Commands
	Piping to STDOUT Without Color
	Accepting STDIN

	2.11 Integration Testing
	2.12 Publishing and Distributing the Program
	Install from Source
	Publish to crates.io
	Building Binaries for Distribution

	2.13 Conclusion

	Chapter 3: Creating Graphical User Interfaces (GUIs)
	3.1 What Are You Building?
	3.2 Building a Text-based User Interface
	3.3 Showing a Dialog Box
	3.4 Handling Simple Keyboard Inputs
	3.5 Adding a Dialog
	3.6 Multi-step Dialogs
	3.7 Reading User Input
	3.8 Moving to Graphical User Interfaces (GUIs)
	3.9 Creating a Window
	3.10 Displaying an Image
	3.11 Using Glade to Design the UI
	3.12 Accepting Inputs and Button Clicks
	3.13 Reading a gtk::Switch
	3.14 Alternatives
	3.15 Conclusion

	Chapter 4: High-Performance Web Frontend Using WebAssembly
	4.1 What Is WebAssembly?
	4.2 What Are You Building?
	4.3 Hello WebAssembly!
	Setting Up the Development Environment
	Creating the Project
	Creating the Frontend

	4.4 Resizing an Image with WebAssembly
	Loading an Image File onto the <canvas>
	Passing the Image to Wasm

	4.5 Writing the Whole Frontend in Rust
	4.6 A Hello World Example
	4.7 A Cat Management Application
	CSS Styling
	Deleting Files

	4.8 Wasm Alternatives
	4.9 Conclusion

	Chapter 5: REST APIs
	5.1 What Are You Building?
	5.2 Hello Backend World!
	5.3 Serving Static Files
	5.4 Converting the Cats List to a REST API
	5.5 Using a Database
	5.6 Adding Cats with a POST Command
	5.7 API Testing
	5.8 Building the Cat Detail API
	5.9 Input Validation
	5.10 Error Handling
	Using the actix_web::error Helpers
	Using a Generic Error That Has Implemented the ResponseError Trait
	Using a Custom-Built Error Type

	5.11 Customizing the web::Path Extractor Error
	5.12 Logging
	5.13 Enabling HTTPS
	5.14 Framework Alternatives
	5.15 Conclusion

	Chapter 6: Going Serverless with the Amazon AWS Rust SDK
	6.1 What Are You Building?
	6.2 What Is AWS Lambda?
	6.3 Registering an AWS Account
	6.4 Hello World in Lambda
	6.5 The Full Architecture
	6.6 Using the AWS Serverless Application Model (AWS SAM)
	6.7 Setting Up AWS SAM CLI Credentials
	6.8 Creating the Catdex Serverless Project
	6.9 Building the Upload API
	6.10 Building the /cats API
	6.11 Uploading the Image Using S3 Pre-signed URL
	6.12 Adding the Frontend
	6.13 A Note on Security
	6.14 Next Steps
	6.15 Conclusion

	Chapter 7: Building a Game
	7.1 What Are We Building?
	7.2 Bevy and the Entity Component System Pattern
	7.3 Creating a Bevy Project
	7.4 See the World Through a Camera
	7.5 Adding the Cats
	7.6 Loading a Spritesheet
	7.7 Moving the Cats
	7.8 Creating the Ball
	7.9 Can’t Defy Gravity
	7.10 Making the Ball Bounce
	7.11 Keeping Score
	7.12 Let There Be Music
	7.13 Alternatives
	7.14 Conclusion

	Chapter 8: Physical Computing in Rust
	8.1 What Are You Building?
	8.2 Physical Computing on Raspberry Pi
	Getting to Know Your Raspberry Pi
	Installing Raspberry Pi OS Using Raspberry Pi Imager
	Installing the Rust Toolchain
	Understanding the GPIO Pins
	Building an LED Circuit
	Controlling the GPIO Output with Rust
	Reading Button Clicks

	8.3 Cross-Compiling to Raspberry Pi
	8.4 How Does the GPIO Code Work?
	8.5 Where to Go from Here?

	Chapter 9: Artificial Intelligence and Machine Learning
	9.1 Types of Machine Learning Models
	9.2 What Are You Building?
	9.3 Introducing linfa and rusty-machine
	9.4 Clustering Cat Breeds with K-means
	Introduction to the K-means Algorithm
	The Training Data
	Exporting as a CSV
	Moving the Configuration into a File
	Setting the Configuration File at Runtime
	Visualizing the Data
	Details on Adding More Entries
	Setting Up K-means

	9.5 Detecting Cats Versus Dogs with a Neural Network
	Introduction to Neural Networks
	Preparing the Training Data and Testing Data
	Setting Up the Neural Network Model
	Reading the Training and Testing Data
	Normalizing the Training Data
	Training and Predicting
	Making the Prediction

	9.6 Alternatives
	9.7 Conclusion

	Chapter 10: What Else Can You Do with Rust?
	10.1 The End Is Just the Beginning
	10.2 Server-side Rendered Website
	10.3 Web Browser and Crawler
	10.4 Mobile
	10.5 Operating Systems and Embedded Devices
	10.6 The Cloud
	10.7 Blockchains and Cryptocurrencies
	10.8 Unlimited Possibilities of Rust

	Index

