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CHAPTER 1

Why Rust?

Systems programming languages have come a long way in the 50 years since we
started using high-level languages to write operating systems, but two thorny prob‐
lems in particular have proven difficult to crack:

• It’s difficult to write secure code. It’s common for security exploits to leverage
bugs in the way C and C++ programs handle memory, and it has been so at least
since the Morris virus, the first Internet virus to be carefully analyzed, took
advantage of a buffer overflow bug to propagate itself from one machine to the
next in 1988.

• It’s very difficult to write multithreaded code, which is the only way to exploit the
abilities of modern machines. Each new generation of hardware brings us,
instead of faster processors, more of them; now even midrange mobile devices
have multiple cores. Taking advantage of this entails writing multithreaded code,
but even experienced programmers approach that task with caution: concurrency
introduces broad new classes of bugs, and can make ordinary bugs much harder
to reproduce.

These are the problems Rust was made to address.

Rust is a new systems programming language designed by Mozilla. Like C and C++,
Rust gives the developer fine control over the use of memory, and maintains a close
relationship between the primitive operations of the language and those of the
machines it runs on, helping developers anticipate their code’s costs. Rust shares the
ambitions Bjarne Stroustrup articulates for C++ in his paper “Abstraction and the C+
+ machine model”:

In general, C++ implementations obey the zero-overhead principle: What you don’t
use, you don’t pay for. And further: What you do use, you couldn’t hand code any bet‐
ter.
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To these Rust adds its own goals of memory safety and data-race-free concurrency.

The key to meeting all these promises is Rust’s novel system of ownership, moves, and
borrows, checked at compile time and carefully designed to complement Rust’s flexi‐
ble static type system. The ownership system establishes a clear lifetime for each
value, making garbage collection unnecessary in the core language, and enabling
sound but flexible interfaces for managing other sorts of resources like sockets and
file handles.

These same ownership rules also form the foundation of Rust’s trustworthy concur‐
rency model. Most languages leave the relationship between a mutex and the data it’s
meant to protect to the comments; Rust can actually check at compile time that your
code locks the mutex while it accesses the data. Most languages admonish you to be
sure not to use a data structure yourself after you’ve sent it via a channel to another
thread; Rust checks that you don’t. Rust is able to prevent data races at compile time.

Mozilla and Samsung have been collaborating on an experimental new web browser
engine named Servo, written in Rust. Servo’s needs and Rust’s goals are well matched:
as programs whose primary use is handling untrusted data, browsers must be secure;
and as the Web is the primary interactive medium of the modern Net, browsers must
perform well. Servo takes advantage of Rust’s sound concurrency support to exploit
as much parallelism as its developers can find, without compromising its stability. As
of this writing, Servo is roughly 100,000 lines of code, and Rust has adapted over time
to meet the demands of development at this scale.

Type Safety

But what do we mean by “type safety”? Safety sounds good, but what exactly are we
being kept safe from?

Here’s the definition of “undefined behavior” from the 1999 standard for the C pro‐
gramming language, known as “C99”:

3.4.3
undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of erroneous
data, for which this International Standard imposes no requirements

Consider the following C program:

int main(int argc, char **argv) {
  unsigned long a[1];
  a[3] = 0x7ffff7b36cebUL;
  return 0;
}
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According to C99, because this program accesses an element off the end of the array
a, its behavior is undefined, meaning that it can do anything whatsoever. This morn‐
ing, running the program on Jim’s laptop produces the output:

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.

Then it crashes. This computer don’t even have a .netrc file.

The machine code the C compiler generated for this main function happens to place
the array a on the stack three words before the return address, so storing
0x7ffff7b36cebUL in a[3] changes poor main’s return address to point into the midst
of code in the C standard library that consults one’s .netrc file for a password. When
main returns, execution resumes not in main’s caller, but at the machine code for these
lines from the library:

warnx(_("Error: .netrc file is readable by others."));
warnx(_("Remove password or make file unreadable by others."));
            goto bad;

In allowing an array reference to affect the behavior of a subsequent return state‐
ment, the C compiler is fully standards-compliant. An “undefined” operation doesn’t
just produce an unspecified result: it is allowed to cause the program to do anything
at all.

The C99 standard grants the compiler this carte blanche to allow it to generate faster
code. Rather than making the compiler responsible for detecting and handling odd
behavior like running off the end of an array, the standard makes the C programmer
responsible for ensuring those conditions never arise in the first place.

Empirically speaking, we’re not very good at that. The 1988 Morris virus had various
ways to break into new machines, one of which entailed tricking a server into execut‐
ing an elaboration on the technique shown above; the “undefined behavior” pro‐
duced in that case was to download and run a copy of the virus. (Undefined behavior
is often sufficiently predictable in practice to build effective security exploits from.)
The same class of exploit remains in widespread use today. While a student at the
University of Utah, researcher Peng Li modified C and C++ compilers to make the
programs they translated report when they executed certain forms of undefined
behavior. He found that nearly all programs do, including those from well-respected
projects that hold their code to high standards.

In light of that example, let’s define some terms. If a program has been written so that
no possible execution can exhibit undefined behavior, we say that program is well
defined. If a language’s type system ensures that every program is well defined, we say
that language is type safe.

C and C++ are not type safe: the program shown above has no type errors, yet exhib‐
its undefined behavior. By contrast, Python is type safe. Python is willing to spend
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processor time to detect and handle out-of-range array indices in a friendlier fashion
than C:

>>> a = [0]
>>> a[3] = 0x7ffff7b36ceb
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range
>>>

Python raised an exception, which is not undefined behavior: the Python documenta‐
tion specifies that the assignment to a[3] should raise an IndexError exception, as
we saw. As a type-safe language, Python assigns a meaning to every operation, even if
that meaning is just to raise an exception. Java, JavaScript, Ruby, and Haskell are also
type safe: every program those languages will accept at all is well defined.

Note that being type safe is mostly independent of whether a lan‐
guage checks types at compile time or at run time: C checks at
compile time, and is not type safe; Python checks at runtime, and is
type safe. Any practical type-safe language must do at least some
checks (array bounds checks, for example) at runtime.

It is ironic that the dominant systems programming languages, C and C++, are not
type safe, while most other popular languages are. Given that C and C++ are meant
to be used to implement the foundations of a system, entrusted with implementing
security boundaries and placed in contact with untrusted data, type safety would
seem like an especially valuable quality for them to have.

This is the decades-old tension Rust aims to resolve: it is both type safe and a systems
programming language. Rust is designed for implementing those fundamental system
layers that require performance and fine-grained control over resources, yet still
guarantees the basic level of predictability that type safety provides. We’ll look at how
Rust manages this unification in more detail in later parts of this book.

Type safety might seem like a modest promise, but it starts to look like a surprisingly
good deal when we consider its consequences for multithreaded programming. Con‐
currency is notoriously difficult to use correctly in C and C++; developers usually
turn to concurrency only when single-threaded code has proven unable to achieve
the performance they need. But Rust’s particular form of type safety guarantees that
concurrent code is free of data races, catching any misuse of mutexes or other syn‐
chronization primitives at compile time, and permitting a much less adversarial
stance towards exploiting parallelism.
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Rust does provide for unsafe code, functions or lexical blocks that
the programmer has marked with the unsafe keyword, within
which some of Rust’s type rules are relaxed. In an unsafe block, you
can use unrestricted pointers, treat blocks of raw memory as if they
contained any type you like, call any C function you want, use
inline assembly language, and so on.
Whereas in ordinary Rust code the compiler guarantees your pro‐
gram is well defined, in unsafe blocks it becomes the programmer’s
responsibility to avoid undefined behavior, as in C and C++. As
long as the programmer succeeds at this, unsafe blocks don’t affect
the safety of the rest of the program. Rust’s standard library uses
unsafe blocks to implement features that are themselves safe to use,
but which the compiler isn’t able to recognize as such on its own.
The great majority of programs do not require unsafe code, and
Rust programmers generally avoid it, since it must be reviewed
with special care. Except where explicitly noted otherwise, you may
assume that this book is discussing the safe portion of the language.

Why Rust? | 11





CHAPTER 2

A Tour of Rust

In this chapter we’ll look at several short programs to see how Rust’s syntax, types,
and semantics fit together to support safe, concurrent, and efficient code. We’ll walk
through the process of downloading and installing Rust; show some simple mathe‐
matical code; try out a web server based on a third-party library; and use multiple
threads to speed up the process of traversing a directory tree.

Downloading and installing Rust

The best way to install Rust, as of this writing, is to visit the language’s web site,
https://www.rust-lang.org, and follow the instructions for downloading and
installing the language. The site provides pre-built packages for Linux, Macintosh
OSX, and Windows. Install the package in the usual way for your system; on Linux,
you may need to unpack a tar file and follow the instructions in the README.md file.

Once you’ve completed the installation, you should have three new commands avail‐
able at your command line:

$ cargo --version
cargo 0.4.0-nightly (553b363 2015-08-03) (built 2015-08-02)
$ rustc --version
rustc 1.3.0 (9a92aaf19 2015-09-15)
$ rustdoc --version
rustdoc 1.3.0 (9a92aaf19 2015-09-15)
$

In the command-line interactions in this book, the $ character at the beginning of a
line is the command prompt; on Windows, the command line would be C:\> or
something similar. The command appears to the right, and the program’s output
appears on the following lines.
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Here we’ve run the three commands we installed, asking each to report which version
it is. Taking each command in turn:

• cargo is Rust’s compilation manager, package manager, and general-purpose tool.
You can use Cargo to start a new project; build and run your program; and man‐
age any external libraries your code depends on.

• rustc is the Rust compiler. Usually we let Cargo invoke the compiler for us, but
sometimes it’s useful to run it directly.

• rustdoc is the Rust documentation tool. If you write documentation in com‐
ments of the appropriate form in your program’s source code, rustdoc can build
nicely formatted HTML from them. Like rustc, we usually let Cargo run rust
doc for us.

As a convenience, Cargo can create a new Rust package for us, with some standard
metadata arranged appropriately:

$ cargo new --bin hello

This command creates a new package directory named hello, and the --bin flag
directs Cargo to prepare this as an executable, not a library. Looking inside the pack‐
age’s top level directory:

$ cd hello
$ ls -la
total 24
drwxrwxr-x.  4 jimb jimb 4096 Sep 22 21:09 .
drwx------. 62 jimb jimb 4096 Sep 22 21:09 ..
-rw-rw-r--.  1 jimb jimb   88 Sep 22 21:09 Cargo.toml
drwxrwxr-x.  6 jimb jimb 4096 Sep 22 21:09 .git
-rw-rw-r--.  1 jimb jimb    7 Sep 22 21:09 .gitignore
drwxrwxr-x.  2 jimb jimb 4096 Sep 22 21:09 src
$

We can see that Cargo has created a file Cargo.toml to hold metadata for the package.
At the moment this file doesn’t contain much:

[package]
name = "hello"
version = "0.1.0"
authors = ["Jim Blandy <jimb@red-bean.com>"]

If our program ever acquires dependencies on other libraries, we can record them in
this file, and Cargo will take care of downloading, building, and updating those libra‐
ries for us. We’ll cover the Cargo.toml file in detail in ???.

Cargo has set up our package for use with the git version control system, creating
a .git metadata subdirectory, and a .gitignore file. Cargo also supports the Mercu‐
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rial version control system (sometimes known as hg). By passing the flag --vcs none
to the cargo command, you can request that no version control be prepared.

The src subdirectory contains the actual Rust code:

$ cd src
$ ls -l
total 4
-rw-rw-r--. 1 jimb jimb 45 Sep 22 21:09 main.rs

It seems that Cargo has started the program on our behalf. The main.rs file contains
the text:

fn main() {
    println!("Hello, world!");
}

In Rust, you don’t even need to write your own “Hello, World!” program. We can
invoke the cargo run command from any directory in the package to build and run
our program:

$ cargo run
   Compiling hello v0.1.0 (file:///home/jimb/rust/hello)
     Running `/home/jimb/rust/hello/target/debug/hello`
Hello, world!
$

Here, Cargo has invoked the Rust compiler, rustc, and then run the executable it
produced. Cargo places the executable in the target subdirectory at the top of the
package:

$ ls -l ../target/debug
total 580
drwxrwxr-x. 2 jimb jimb   4096 Sep 22 21:37 build
drwxrwxr-x. 2 jimb jimb   4096 Sep 22 21:37 deps
drwxrwxr-x. 2 jimb jimb   4096 Sep 22 21:37 examples
-rwxrwxr-x. 1 jimb jimb 576632 Sep 22 21:37 hello
drwxrwxr-x. 2 jimb jimb   4096 Sep 22 21:37 native
$ ../target/debug/hello
Hello, world!
$

When we’re through, Cargo can clean up the generated files for us:

$ cargo clean
$ ../target/debug/hello
bash: ../target/debug/hello: No such file or directory
$
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A simple function

Rust’s syntax is deliberately unoriginal. If you are familiar with C, C++, Java, or Java‐
Script, you can probably find your way through the general structure of a Rust pro‐
gram. Here is a function that computes the greatest common divisor of two integers,
using Euclid’s algorithm:

fn gcd(mut n: u64, mut m: u64) -> u64 {
    assert!(n != 0 && m != 0);
    while m != 0 {
        if m < n {
            let t = m; m = n; n = t;
        }
        m = m % n;
    }
    n
}

The fn keyword introduces a function. Here, we’re defining a function named gcd,
which takes two parameters n and m, each of which is of type u64, a unsigned 64-bit
integer. The function’s return type appears after the ->: our function returns a u64
value. Four-space indentation is standard Rust style.

Rust’s machine integer type names reflect their size and signedness: i32 is a signed
32-bit integer; u8 is an unsigned eight-bit integer (used for ‘byte’ values), and so on.
The isize and usize types hold pointer-sized signed and unsigned integers, 32 bits
long on 32-bit platforms, and 64 bits long on 64-bit platforms. Rust also has two
floating-point types, f32 and f64, which are the IEEE single- and double-precision
floating-point types.

Normally, once a variable’s value has been established, it can’t be changed, but placing
the mut keyword (short for “mutable”) before the parameters n and m allows our func‐
tion body to assign to them. In practice, most variables don’t get assigned to; requir‐
ing the mut keyword on those that do flags them for careful attention from the reader.

The function’s body starts with a call to the assert! macro, verifying that neither
argument is zero. The ! character marks this as a macro invocation, not a function
call. Like the assert macro in C and C++, Rust’s assert! checks that its argument is
true, and if it is not, crashes the program with a helpful message including the source
location of the failing check; this kind of controlled crash is called a “panic”. Unlike C
and C++, in which assertions can be skipped, Rust always checks assertions regard‐
less of how the program was compiled.

The heart of our function is a while loop containing an if statement and an assign‐
ment. Unlike C and C++, Rust does not require parenthesis around the conditional
expressions, but it does require curly braces around the statements they control.
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A let statement declares a local variable, like t in our function. We don’t need to
write out t’s type, as long as Rust can infer it from how the variable is used. In our
function, the only type that works for t is u64, matching m and n. Rust only infers
types within function bodies: you must write out the types of function parameters
and return values, as we’ve done here. If we had wanted to spell out t’s type, we could
have written:

let t: u64 = m; ...

Rust has a return statement, but we didn’t need one to return our value here. In Rust,
a block surrounded by curly braces can be an expression; its value is that of the last
expression it contains. The body of our function is such a block, and its last expres‐
sion is n, so that’s our return value. Likewise, if is an expression whose value is that of
the branch that was taken. Rust has no need for a separate ?: conditional operator as
in C; one just writes the if-else structure right into the expression.

Writing and running unit tests

Rust has simple support for testing built into the language. To test our gcd function,
we can write:

#[test]
fn test_gcd() {
    assert_eq!(gcd(2 * 5 * 11 * 17,
                   3 * 7 * 13 * 19),
               1);

    assert_eq!(gcd(2 * 3 * 5 * 11 * 17,
                   3 * 7 * 11 * 13 * 19),
               3 * 11);
}

Here we define a function named test_gcd which calls gcd and checks that it returns
correct values. The #[test] atop the definition marks test_gcd as a test function, to
be skipped in normal compilations, but included and called automatically if we run
our program with the cargo test command. Let’s assume we’ve edited our gcd and
test_gcd definitions into the hello package we created at the beginning of the chap‐
ter. If our current directory is somewhere within the package’s subtree, we can run the
tests as follows:

$ cargo test
   Compiling hello v0.1.0 (file:///home/jimb/rust/hello)
     Running /home/jimb/rust/hello/target/debug/hello-2375a82d9e9673d7

running 1 test
test test_gcd ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
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$

We can have test functions scattered throughout our source tree, placed next to the
code they exercise, and cargo test will automatically gather them up and run them
all.

The #[test] marker is an example of an attribute. Attributes are an open-ended sys‐
tem for marking functions and other declarations with extra information, somewhat
like attributes in C# or annotations in Java. They’re used to control compiler warn‐
ings and code style checks, include code conditionally (like #if in C and C++), tell
Rust how to interact with code written in other languages, and much else. We’ll see
more examples of attributes as we go.

Handling command-line arguments

If we want our program to take a series of numbers as command-line arguments and
print their greatest common divisor, we can replace the main function with the fol‐
lowing:

use std::io::Write;
use std::str::FromStr;

fn main() {
    let mut numbers = Vec::new();

    for arg in std::env::args().skip(1) {
numbers.push(u64::from_str(&arg)

.expect("error parsing argument"));
    }

    if numbers.len() == 0 {
writeln!(std::io::stderr(), "Usage: gcd NUMBER ...").unwrap();
std::process::exit(1);

    }

    let mut d = numbers[0];
    for m in &numbers[1..] {

d = gcd(d, *m);
    }

    println!("The greatest common divisor of {:?} is {}",
numbers, d);

}

This is a large block of code, so let’s take it piece by piece:

use std::io::Write;
use std::str::FromStr;
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The use declarations bring the two traits Write and FromStr into scope. We’ll cover
traits in detail in ???, but for now, we’ll simply say that a trait is a collection of meth‐
ods a type can implement. Any type that implements the Write has a write_fmt
method, which the writeln! macro uses. A type that implements FromStr has a
from_str associated function; we’ll use this method on u64 to parse our command-
line arguments.

fn main() {

Our main function doesn’t return a value, so we can simply omit the -> and type that
would normally follow the parameter list.

let mut numbers = Vec::new();

We declare a mutable local variable numbers, and initialize it to an empty vector. Vec
is Rust’s growable vector type, analogous to C++’s std::vector. Our variable’s type is
Vec<u64>, but as before, we don’t need to write it out: Rust will infer it for us. Since
we intend to push numbers onto the end of this vector as we parse our command-line
arguments, we use the mut keyword to make the vector mutable.

for arg in std::env::args().skip(1) {

Here we use a for loop to process our command-line arguments, setting the variable
arg to each argument in turn, and evaluating the loop body.

The std::env::args function returns an iterator, a value that produces each argu‐
ment on demand, and indicates when we’re done. Iterators are ubiquitous in Rust; the
standard library includes other iterators that produce the elements of a vector, the
lines of a file, messages received on a communications channel, and almost anything
else that makes sense to loop over.

Beyond their use with for loops, iterators include a broad selection of methods you
can use directly. For example, the first value produced by the iterator returned by
std::env::args is always the name of the program being run. We want to skip that,
so we call the iterator’s skip method to produce a new iterator that omits that first
value.

numbers.push(u64::from_str(&arg)
             .expect("error parsing argument"));

Here we call u64::from_str to attempt to parse our command-line argument arg as
an unsigned 64-bit integer. Rather than a method we’re invoking on some u64 value
we have at hand, u64::from_str is a function associated with the u64 type, akin to a
static method in C++ or Java. The from_str function doesn’t return a u64 directly,
but rather a Result value that indicates whether the parse succeeded or failed. Each
Result is one of two variants:
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• a value written Ok(v), indicating that the parse succeeded and v is the value pro‐
duced, or

• a value written Err(e), indicating that the parse failed and e is an error value
explaining why.

Almost every function in Rust’s standard library that might encounter an error
returns a Result value, carrying values of appropriate types in its Ok and Err variants.
Functions that perform input or output or otherwise interact with the operating sys‐
tem all return Result types whose Ok variants carry successful results—a count of
bytes transferred, a file opened, and so on—and whose Err variants carry an error
code from the system.

We check the success of our parse using Result’s expect method. If the result is some
Err(e), expect prints a message that includes a description of e, and exits the pro‐
gram immediately. However, if the result is Ok(v), expect simply returns v itself,
which we are finally able to push onto the end of our vector of numbers.

if numbers.len() == 0 {
    writeln!(std::io::stderr(), "Usage: gcd NUMBER ...").unwrap();
    std::process::exit(1);
}

There’s no greatest common divisor of an empty set of numbers, so we check that our
vector has at least one element, and exit the program with an error if it doesn’t. We
use the writeln! macro to write our error message to the standard error output
stream, provided by std::io::stderr().

let mut d = numbers[0];
for m in &numbers[1..] {
    d = gcd(d, *m);
}

Taking the first number from the vector as our running value d, we compute the
greatest common divisor of d and each following vector element, taking each result as
the new value of d. As before, we must mark d as mutable, so that we can assign to it
in the loop.

The expression &numbers[1..] is a slice of our vector: a reference to a range of ele‐
ments, starting with the second element and extending to the end of the vector. Iterat‐
ing over the vector directly, with for m in numbers { ... }, would have for loop
take ownership of the vector, consuming it so that we couldn’t use it again later in the
program; but if we iterate over the slice instead, the for loop merely borrows the vec‐
tor’s elements.

The distinction between ownership and borrowing is key to Rust’s memory manage‐
ment and safe concurrency; we’ll discuss it in detail in Chapter 5. For now, however,
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note that since we are iterating over a reference to a range of numbers’s elements, each
iteration sets our loop variable m to a reference to the current element, not the ele‐
ment’s value. The expression *m fetches the number to which m refers, giving us a u64
value we can pass to gcd.

println!("The greatest common divisor of {:?} is {}",
numbers, d);

Finally, we can print our results to our standard output stream. The println! macro
takes a template string, substitutes formatted versions of the remaining arguments for
the {...} forms as they appear in the template string, and writes the result to the
standard output stream. The {:?} form requests that println! show us the “debug‐
ging” form of the corresponding argument. Most types in Rust can be printed this
way; we use it here to print the vector of numbers. The {} form requests the “display”
form of the argument; we use it here to print our final result, d.

Unlike C and C++, which require main to return zero if the program finished success‐
fully, or a non-zero exit status if something went wrong, Rust assumes that if main
returns at all, the program finished successfully. Only by explicitly calling functions
like expect or std::process::exit can we cause the program to terminate with an
error status code.

The cargo run command allows us to pass arguments to our program, so we can try
out our command-line handling:

$ cargo run 42 56
   Compiling hello v0.1.0 (file:///home/jimb/rust/hello)
     Running `/home/jimb/rust/hello/target/debug/hello 42 56`
The greatest common divisor of [42, 56] is 14
$ cargo run 799459 28823 27347
     Running `/home/jimb/rust/hello/target/debug/hello 799459 28823 27347`
The greatest common divisor of [799459, 28823, 27347] is 41
$ cargo run 83
     Running `/home/jimb/rust/hello/target/debug/hello 83`
The greatest common divisor of [83] is 83
$ cargo run
     Running `/home/jimb/rust/hello/target/debug/hello`
Usage: gcd NUMBER ...
Process didn't exit successfully: `/home/jimb/rust/hello/target/debug/hello` (exit code: 1)
$

A simple web server

One of Rust’s strengths is the collection of library packages written by the Rust user
community and freely available for anyone to use, many of which are published on
the web site https://crates.io. The cargo command makes it easy to use a
crates.io package from our own code: it will download the right version of the
package, build it, and update it as requested. A Rust package, whether a library or an
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executable, is called a crate; cargo and crates.io both derive their names from this
term.

To show how this works, we’ll put together a simple web server using the the iron
web framework, the hyper HTTP server, and various other crates on which they
depend. Our web site will prompt the user for two numbers, and compute their great‐
est common divisor:

Web page offering to compute GCD

First, we’ll have cargo create a new package for us, named iron-gcd:

$ cargo new --bin iron-gcd
$ cd iron-gcd
$

Then, we’ll edit our new project’s Cargo.toml file to list the packages we want to use;
its contents should be as follows:

[package]
name = "iron-gcd"
version = "0.1.0"
authors = ["Jim Blandy <jimb@red-bean.com>"]

[dependencies]
iron = "0.2.2"
mime = "0.1.0"
router = "0.0.15"
urlencoded = "0.2.0"

Each line in the [dependencies] section of Cargo.toml gives the name of a crate on
crates.io, and the version of that crate we would like to use. There may well be ver‐
sions of these crates on cargo.io newer than those shown here, but by naming the
specific versions we tested this code against, we can ensure the code will continue to
compile even as new versions of the packages are published. We’ll discuss version
management in more detail in ???.
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Note that we need only name those packages we’ll use directly; cargo takes care of
bringing in whatever other packages those need in turn.

For our first iteration, we’ll keep the web server simple: it will serve only the page that
prompts the user for numbers to compute with. In iron-gcd/src/main.rs, we’ll
place the following text:

extern crate iron;
#[macro_use] extern crate mime;

use iron::prelude::*;
use iron::status;

fn main() {
    println!("Serving on http://localhost:3000...");
    Iron::new(get_form).http("localhost:3000").unwrap();
}

#[allow(unused_variables)]
fn get_form(request: &mut Request) -> IronResult<Response> {
    let mut response = Response::new();

    response.set_mut(status::Ok);
    response.set_mut(mime!(Text/Html; Charset=Utf8));
    response.set_mut(r#"
        <title>GCD Calculator</title>
        <form action="/gcd" method="post">
          <input type="text" name="n"/>
          <input type="text" name="n"/>
          <button type="submit">Compute GCD</button>
        </form>
    "#);

    Ok(response)
}

We start with two extern crate directives, which make the iron and mime crates that
we cited in our Cargo.toml file available to our program. The #[macro_use] attribute
before the extern crate mime item alerts Rust that we plan to use macros exported
by this crate.

Next, we have use declarations to bring in some of those crates’ bindings. The decla‐
ration use iron::prelude::* makes all the public bindings of the iron::prelude
module directly visible in our own code. Generally, one should prefer to spell out the
names one wishes to use, as we did for iron::status; but when a module is named
prelude, that generally means that its exports are intended to provide the sort of gen‐
eral facilities that any user of the crate will probably need; here, a wildcard use direc‐
tive makes a bit more sense.
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Our main function is simple: it prints a message reminding us how to connect to our
server, calls Iron::new to create a server, and then sets it listening on TCP port 3000
on the local machine. We pass the get_form function to Iron::new, indicating that
the server should use that function to handle all requests; we’ll refine this shortly.

The get_form function itself takes a mutable reference, written &mut, to a Request
value representing the HTTP request we’ve been called to handle. While this particu‐
lar handler function never uses its request parameter, we’ll see one later that does.
For the time being, we put the attribute #[allow(unused_variables)] atop the func‐
tion to prevent Rust from printing a warning message about it.

In the body of the function, we build a Response value, set its HTTP status, indicate
the media type of the content returned (using the handy mime! macro), and finally
supply the actual text of the response. Since the response text is several lines long, we
write it using the Rust “raw string” syntax: the letter ‘r', zero or more hash marks (that
is, the '#' character), a double quote, and then the contents of the string, terminated
by another double quote followed by the same number of hash marks. Any character
may occur within a raw string, and no escape sequences are recognized; we can
always ensure the string ends where we want it to by supplying enough hash marks.

Our function’s return type, IronResult<Response>, is another variant of the Result
type we encountered earlier: here it is either Ok(r) for some successful Response
value r, or Err(e) for some error value e. We construct our return value
Ok(response) at the bottom of the function body, using the “last expression” syntax
to implicitly establish the value of the entire body.

Having written main.rs, we can use the cargo run command to do everything
needed to set it running: fetching the needed crates, compiling them, building our
own program, linking everything together and starting it up:

$ cargo run
    Updating registry `https://github.com/rust-lang/crates.io-index`
 Downloading kernel32-sys v0.1.4
 Downloading winapi-build v0.1.1
 Downloading libressl-pnacl-sys v2.1.6
 Downloading mime v0.1.0
 Downloading pnacl-build-helper v1.4.10
 Downloading plugin v0.2.6
....
   Compiling hyper v0.6.14
   Compiling iron v0.2.2
   Compiling router v0.0.15
   Compiling persistent v0.0.7
   Compiling bodyparser v0.0.6
   Compiling urlencoded v0.2.0
   Compiling iron-gcd v0.1.0 (file:///home/jimb/iron-gcd)
     Running `target/debug/iron-gcd`
Serving on http://localhost:3000...
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At this point, we can visit the given URL in our browser and see the page shown ear‐
lier.

Unfortunately, clicking on “Compute GCD” doesn’t do anything, other than navigate
our browser to the URL http://localhost:3000/gcd, which then shows the same
page; every URL on our server does. Let’s fix that next, using the Router type to asso‐
ciate different handlers with different paths.

First, let’s arrange to be able to use Router without qualification, by adding the fol‐
lowing declarations to iron-gcd/src/main.rs:

extern crate router;
use router::Router;

Rust programmers typically gather all their extern crate and use declarations
together towards the top of the file, but this isn’t strictly necessary: Rust allows decla‐
rations to occur in any order, as long as they appear at the appropriate level of nest‐
ing. (Macro definitions and imports are an important exception to this rule; they
must appear before they are are used.)

We can then modify our main function to read as follows:

fn main() {
    let mut router = Router::new();

    router.get("/", get_form);
    router.post("/gcd", post_gcd);

    println!("Serving on http://localhost:3000...");
    Iron::new(router).http("localhost:3000").unwrap();
}

We create a Router, establish handler functions for two specific paths, and then pass
this Router as the request handler to Iron::new, yielding a web server that consults
the URL path to decide which handler function to call.

Now we are ready to write our post_gcd function:

extern crate urlencoded;

use std::str::FromStr;
use urlencoded::UrlEncodedBody;

fn post_gcd(request: &mut Request) -> IronResult<Response> {
    let mut response = Response::new();

    let hashmap;
    match request.get_ref::<UrlEncodedBody>() {
        Err(e) => {
            response.set_mut(status::BadRequest);
            response.set_mut(format!("Error parsing form data: {:?}\n", e));
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            return Ok(response);
        }
        Ok(map) => { hashmap = map; }
    }

    let unparsed_numbers;
    match hashmap.get("n") {
        None => {
            response.set_mut(status::BadRequest);
            response.set_mut(format!("form data has no 'n' parameter\n"));
            return Ok(response);
        }
        Some(nums) => { unparsed_numbers = nums; }
    }

    let mut numbers = Vec::new();
    for unparsed in unparsed_numbers {
        match u64::from_str(&unparsed) {
            Err(_) => {
                response.set_mut(status::BadRequest);
                response.set_mut(format!("Value for 'n' parameter not a number: {:?}\n", unparsed));
                return Ok(response);
            }
            Ok(n) => { numbers.push(n); }
        }
    }

    let mut d = numbers[0];
    for m in &numbers[1..] {
        d = gcd(d, *m);
    }

    response.set_mut(status::Ok);
    response.set_mut(mime!(Text/Html; Charset=Utf8));
    response.set_mut(format!("The greatest common divisor of the numbers {:?} is <b>{}</b>\n",
                             numbers, d));
    Ok(response)
}

The bulk of this function is a series of match statements, which will be unfamiliar to
C, C++, Java, and JavaScript programmers, but a welcome sight to Haskell and
OCaml developers. We’ve mentioned that a Result is either a value Ok(s) for some
success value s, or Err(e) for some error value e. Given some Result res, we can
check which variant it is and access whichever value it holds with a match statement
of the form:

match res {
    Ok(success) => { ... },
    Err(error)  => { ... }
}
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This is a conditional structure, like an if statement or a switch statement: if res is
Ok(v), then we run the first branch, with v assigned to the variable success, which is
local to its branch. Similarly, if res is Err(e), we assign e to error, and run the sec‐
ond branch. The beauty of a match statement is that the programmer can only access
the value of a Result by first checking which variant it is; one can never misinterpret
a failure value as a successful completion.

Rust allows you to define your own types with value-carrying variants, and use match
statements to analyze them: Rust calls such types “enumerations”, but these are gener‐
ally known as “algebraic data types”.

Now that we can read match statements, the structure of post_gcd should be clear:

• We retrieve a table mapping query parameter names to arrays of values, by call‐
ing request.get_ref::<UrlEncodedBody>(), checking for an error and sending
an appropriate response back to the client.

• Within that table, we find the value of the parameter named "n", as is where our
form places the numbers entered into the web page. This value will be not a sin‐
gle string but a vector of strings, as query parameter names can be repeated.

• We walk the vector of strings, parsing each one as an unsigned 64-bit number,
and returning an appropriate failure page if any of the strings fali to parse.

• Finally, we compute the numbers’ greatest common divisor as before, and con‐
struct a response describing our results. The format! macro uses the same kind
of string template as the writeln! and println! macros, but returns a string
value, rather than writing the text to a stream.

The last remaining piece is the gcd function we wrote earlier. With that in place, we
can interrupt any servers we might have left running, and re-build and re-start our
program:

$ cargo run
   Compiling iron-gcd v0.1.0 (file:///home/jimb/iron-gcd)
     Running `target/debug/iron-gcd`
Serving on http://localhost:3000...

This time, by visiting http://localhost:3000, entering some numbers, and clicking
the “Compute GCD” button, we’ll actually see some results:
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Web page showing results of computing GCD

Concurrency

One of Rust’s great strengths is its support for concurrent programming. The same
rules that ensure Rust programs are free of memory errors also ensure threads can
only share memory in ways that avoid data races. For example:

• If you use a mutex to coordinate threads making changes to a shared data struc‐
ture, Rust ensures that you have always locked the mutex before you access the
data. In C and C++, the relationship between a mutex and the data it protects is
left to the comments.

• If you want to share read-only data among several threads, Rust ensures that you
cannot modify the data accidentally. In C and C++, the type system can help with
this, but it’s easy to get it wrong.

• If you transfer ownership of a data structure from one thread to another, Rust
makes sure you have indeed relinquished all access to it. In C and C++, it’s up to
you to check that nothing on the sending thread will ever touch the data again.

In this section we’ll walk you through the process of writing your second multi-
threaded program.

You may not have noticed it, but you’ve already written your first: the Iron web
framework you used to implement the Greatest Common Divisor server uses a pool
of threads to run request handler functions. If the server receives simultaneous
requests, it may run the get_form and post_gcd functions in several threads at once.
Because those particular functions are so simple, this is obviously safe; but no matter
how elaborate the handler functions become, Rust guarantees that any and all data
they share is managed in a thread-safe way. This allows Iron to exploit concurrency
without worrying that naive handler functions may be unprepared for the conse‐
quences: all Rust functions are ready.
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This section’s program plots a section of the Mandelbrot set, a fractal produced by
iterating a simple function on complex numbers. Plotting the Mandelbrot set is often
called an “embarrassingly parallel” algorithm, because the pattern of communication
between the threads is so simple; we’ll cover more complex patterns in “Concur‐
rency” on page 28, but this task demonstrates some of the essentials.

However, before we can talk about the actual concurrency, we need to describe the
supporting code around it.

Parsing pair command-line arguments

This program needs to take several command-line arguments controlling the resolu‐
tion of the bitmap we’ll write, and the portion of the complex plane that bitmap
shows. Since these command-line arguments all follow a common form, here’s a
function to parse them:

use std::str::FromStr;

/// Parse the string `s` as a coordinate pair, like `"400x600"` or `"1.0,0.5"`.
///
/// Specifically, `s` should have the form <left><sep><right>, where <sep> is
/// the character given by the `separator` argument, and <left> and <right> are both
/// strings that can be parsed by `T::from_str`.
///
/// If `s` has the proper form, return `Some<(x, y)>`. If it doesn't parse
/// correctly, return `None`.
fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)> {
    match s.find(separator) {
        None => None,
        Some(index) => {
            match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) {
                (Ok(l), Ok(r)) => Some((l, r)),
                _ => None
            }
        }
    }
}

#[test]
fn test_parse_pair() {
    assert_eq!(parse_pair::<i32>("",        ','), None);
    assert_eq!(parse_pair::<i32>("10,",     ','), None);
    assert_eq!(parse_pair::<i32>(",10",     ','), None);
    assert_eq!(parse_pair::<i32>("10,20",   ','), Some((10, 20)));
    assert_eq!(parse_pair::<i32>("10,20xy", ','), None);
    assert_eq!(parse_pair::<f64>("0.5x",    'x'), None);
    assert_eq!(parse_pair::<f64>("0.5x1.5", 'x'), Some((0.5, 1.5)));
}

Here is the first example we’ve seen of a generic function:
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fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)> {

Immediately following the function’s name, we have the clause <T: FromStr>, which
you can read aloud as, “For any type T that implements the FromStr trait...”. This
effectively lets us define an entire family of functions at once: parse_pair::<u32> is a
function that parses pairs of i32 values; parse_pair::<f64> parses pairs of floating-
point values; and so on. This is very much like a function template in C++. A Rust
programmer would call T a “type parameter” of parse_pair. Often Rust will be able
to infer type parameters for you, and you won’t need to write them out as we’ve done
here.

Our return type is Option<(T, T)>: either None, or a value Some((v1, v2)), where
(v1, v2) is a tuple of two values of type T. The parse_pair function doesn’t use an
explicit return statement, so its return value is the value of the last (and the only)
expression in its body:

match s.find(separator) {
    None => None,
    Some(index) => {
        ...
    }
}

The String type’s find method searches the string for a character matching separa
tor. If find returns None, meaning that the separator character doesn’t occur in the
string, the entire match expression evaluates to None, indicating that the parse failed.
Otherwise, we take index to be the separator’s position in the string.

match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) {
    (Ok(l), Ok(r)) => Some((l, r)),
    _ => None
}

This begins to show off the power of the match expression. The argument to the
match is this tuple expression:

(T::from_str(&s[..index]), T::from_str(&s[index + 1..]))

The expressions &s[..index] and &s[index + 1..] are slices of the string, preced‐
ing and following the separator. The type parameter T’s associated from_str function
takes each of these and tries to parse them as a value of type T, producing a tuple of
results. This is what we match against.

(Ok(l), Ok(r)) => Some((l, r)),

Our pattern here only matches if both elements of the tuple are Ok variants of the
Result type, indicating that both parses succeeded. If so, Some((l, r)) is the value of
the match expression, and hence the return value of the function.

_ => None
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The wildcard pattern _ matches anything, and ignores its value. If we reach this point,
then parse_pair has failed, so we evaluate to None, again providing the return value
of the function.

Mapping from pixels to complex numbers

The program needs to work in two related coordinate spaces: each pixel in the output
bitmap corresponds to a number on the complex plane. The relationship between
these two spaces is determined by command-line arguments. The following function
converts from “bitmap space” to “complex number space”:

/// Return the point on the complex plane corresponding to a given pixel in the
/// bitmap.
///
/// `bounds` is a pair giving the width and height of the bitmap. `pixel` is a
/// pair indicating a particular pixel in that bitmap. The `upper_left` and
/// `lower_right` parameters are points on the complex plane designating the
/// area our bitmap covers.
fn pixel_to_point(bounds: (usize, usize),
                  pixel: (usize, usize),
                  upper_left: (f64, f64),
                  lower_right: (f64, f64))
    -> (f64, f64)
{
    // It might be nicer to find the position of the *middle* of the pixel,
    // instead of its upper left corner, but this is easier to write tests for.
    let (width, height) = (lower_right.0 - upper_left.0,
                           upper_left.1 - lower_right.1);
    (upper_left.0 + pixel.0 as f64 * width  / bounds.0 as f64,
     upper_left.1 - pixel.1 as f64 * height / bounds.1 as f64)
}

#[test]
fn test_pixel_to_point() {
    assert_eq!(pixel_to_point((100, 100), (25, 75),
                              (-1.0, 1.0), (1.0, -1.0)),
               (-0.5, -0.5));
}

This is simply calculation, so we won’t explain it in detail. However, there are a few
things to point out.

lower_right.0

Expressions with this form refer to tuple elements; this refers to the first element of
the tuple lower_right.

pixel.0 as f64

This is Rust’s syntax for a type conversion: this expression converts the first element
of the tuple pixel to an f64 value. Unlike C and C++, Rust generally refuses to con‐
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vert between numeric types implicitly; you must write out the conversions you need.
This can be tedious, but making explicit which conversions occur when is suprisingly
helpful. Implicit integer conversions are a frequent source of security holes in real-
world C and C++ code.

Mandelbrot membership calculation

Here is the heart of the program:

extern crate num;
use num::Complex;

/// Try to determine whether the complex number `c` is in the Mandelbrot set.
///
/// A number `c` is in the set if, starting with zero, repeatedly squaring and
/// adding `c` never causes the number to leave the circle of radius 2 centered
/// on the origin; the number instead orbits near the origin forever. (If the
/// number does leave the circle, it eventually flies away to infinity.)
///
/// If after `limit` iterations our number has still not left the circle, return
/// `None`; this is as close as we come to knowing that `c` is in the set.
///
/// If the number does leave the circle before we give up, return `Some(i)`, where
/// `i` is the number of iterations it took.
fn escapes(c: Complex<f64>, limit: u32) -> Option<u32> {
    let mut z = Complex { re: 0.0, im: 0.0 };
    for i in 0..limit {
        z = z*z + c;
        if z.norm_sqr() > 4.0 {
            return Some(i);
        }
    }

    return None;
}

The num crate holds various handy extensions to Rust’s standard numeric system,
including arbitrary-precision integers, rational numbers, and complex numbers.
However, all this program needs is the Complex type, which the num crate defines as
follows:

struct Complex<T> {
    pub re: T,
    pub im: T
}

In other words, for some component type T, a Complex<T> has two fields of type T,
representing the real and imaginary components of a complex number. These fields
are pub, meaning that code outside the module defining Complex can access them
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directly. Since this code uses Complex<f64>, re and im are 64-bit floating point values
here.

fn escapes(c: Complex<f64>, limit: u32) -> Option<u32> {

This function takes a number c to test for membership, and a limit on how many
times it will iterate before giving up. The return type, Option<u32> is interesting.
Similar to the Result type we discussed earlier, an Option<u32> value takes one of
two forms: Some(v), where v is some value of type u32; or None, which carries no
value. The u32 type is an unsigned 32-bit integer. So this function either returns
Some(i), if the number c is not in the Mandelbrot set, or None if it is.

let mut z = Complex { re: 0.0, im: 0.0 };

The expression Complex { re: 0.0, im: 0.0 } constructs a Complex<f64> value, a
complex zero, by providing a value for each of its fields. This serves as the initial
value for a new local variable z.

for i in 0..limit {

The earlier examples showed for loops iterating over command-line arguments and
vector elements; this for loop simply iterates over the range of integers starting with
0 and up to (but not including) limit.

z = z*z + c;

This expression applies one iteration to our current number. The num crate arranges
to overload Rust’s arithmetic operations, so that you can use them directly on Com
plex values. We’ll explain how you can do this with your own types in ???.

if z.norm_sqr() > 4.0 {
    return Some(i);
}

If the number leaves the circle of radius two centered on the origin, the function
returns the iteration count, wrapped up in Option’s Some variant.

return None;

If we reach this point, the point seems to be orbiting near the origin, so we return
Option’s None variant.

To plot the Mandelbrot set, we simply apply escapes to every point in the bitmap:

/// Render a rectangle of the Mandelbrot set into a buffer of pixels.
///
/// The `bounds` argument gives the width and height of the buffer `pixels`,
/// which holds one grayscale pixel per byte. The `upper_left` and `lower_right`
/// arguments specify points on the complex plane corresponding to the upper
/// left and lower right corners of the pixel buffer.
fn render(pixels: &mut [u8],

bounds: (usize, usize),

A Tour of Rust | 33



          upper_left: (f64, f64),
          lower_right: (f64, f64))
{
    assert!(pixels.len() == bounds.0 * bounds.1);

    for r in 0 .. bounds.1 {
        for c in 0 .. bounds.0 {
            let point = pixel_to_point(bounds, (c, r),
                                       upper_left, lower_right);
            pixels[r * bounds.0 + c] =
                match escapes(Complex { re: point.0, im: point.1 }, 255) {
                    None => 0,
                    Some(count) => 255 - count as u8
                };
        }
    }
}

This should all look pretty familiar at this point.

Complex { re: point.0, im: point.1 }

This is another use of the syntax for constructing a value of type Complex, in this case
producing a complex number from a plain (f64, f64) tuple.

pixels[r * bounds.0 + c] =
    match escapes(Complex { re: point.0, im: point.1 }, 255) {
        None => 0,
        Some(count) => 255 - count as u8
    };

If escapes says that c belongs to the set, render colors the corresponding pixel black
(0). Otherwise, render assigns numbers that took longer to escape the circle darker
colors.

Writing bitmap files

The image crate provides functions for reading and writing a wide variety of image
formats, along with some basic image manipulation functions. In particular, it
includes an encoder for the PNG image file format, which this program uses to save
the final results of the calculation:

extern crate image;

use image::ColorType;
use image::png::PNGEncoder;
use std::fs::File;
use std::io::{Result, Write};

/// Write the buffer `pixels`, whose dimensions are given by `bounds`, to the
/// file named `filename`.
fn write_bitmap(filename: &str, pixels: &[u8], bounds: (usize, usize))
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    -> Result<()>
{
    let output = try!(File::create(filename));

    let encoder = PNGEncoder::new(output);
    try!(encoder.encode(&pixels[..],
                        bounds.0 as u32, bounds.1 as u32,
                        ColorType::Gray(8)));

    Ok(())
}

As is the convention for fallible operations in Rust, this function returns a Result
value. Since we have no interesting value to return on success, the exact return type is
Result<()>, where () is the “unit” type, resembling void in C and C++.

Since the File::create function and PNGEncoder::encoder method also return
Result values, we can use the try! macro to check for errors conveniently. An
expression try!(E) requires E to evaluate to some Result value; if that value is Ok(v),
then the try! expression evaluates to v: the value of try!(E) is the success value of E.
However, if E evaluates to some Err(e), then try! returns Err(e) directly from the
function in which it occurs.

It’s a common beginner’s mistake to attempt to use try! in the main
function. However, since main has no return value, this won’t work;
you should use Result’s expect method instead. The try! macro is
only useful for checking for errors reported by an expression of
type Result, from within functions that themselves return Result.

A concurrent Mandelbrot program

Finally, all the pieces are in place, and we can show you the main function, where we
can put concurrency to work for us. First, a non-concurrent version for simplicity:

use std::io::Write;

fn main() {
    let args: Vec<String> = std::env::args().collect();

    if args.len() != 5 {
        writeln!(std::io::stderr(),
                 "Usage: mandelbrot FILE PIXELS UPPERLEFT LOWERRIGHT")
            .unwrap();
        writeln!(std::io::stderr(),
                 "Example: {} mandel.png 1000x750 -1.20,0.35 -1,0.20",
                 args[0])
            .unwrap();
        std::process::exit(1);
    }
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    let bounds = parse_pair(&args[2], 'x')
        .expect("error parsing image dimensions");
    let upper_left = parse_pair(&args[3], ',')
        .expect("error parsing upper left corner point");
    let lower_right = parse_pair(&args[4], ',')
        .expect("error parsing lower right corner point");

    let mut pixels = vec![0; bounds.0 * bounds.1];

    render(&mut pixels[..], bounds, upper_left, lower_right);

    write_bitmap(&args[1], &pixels[..], bounds)
        .expect("error writing PNG file");
}

After collecting the command-line arguments into a vector of Strings, we parse each
one and then begin calculations.

let mut pixels = vec![0; bounds.0 * bounds.1];

This creates a buffer of one-byte grayscale pixel values, whose size is given by bounds,
parsed from the command line. Rust doesn’t permit programs to ever read uninitial‐
ized values, so this fills the buffer with zeros.

render(&mut pixels[..], bounds, upper_left, lower_right);

Passing the buffer as a mutable slice, we make a single call to the render function,
which computes the appropriate color for each pixel in the buffer, given the buffer’s
bounds, and the rectangle of the complex plane we’ve selected.

write_bitmap(&args[1], &pixels[..], bounds)
    .expect("error writing PNG file");

Finally, we write the pixel buffer out to disk as a PNG file. In this case we pass the
buffer as a shareable (non-mutable) slice, since write_bitmap should have no need to
modify the buffer’s contents.

The natural way to distribute this calculation across multiple processors is to divide
the image up into sections, one per processor, and let each procesor color the pixels
assigned to it. Only when all processors have finished should we write out the pixels
to disk.

The crossbeam crate provides a number of valuable concurrency facilities, including
a scoped thread facility which does exactly what we need here. To use it, we must add
the following line at the top of the file:

extern crate crossbeam;

Then we need to take out the single line calling render, and replace it with the fol‐
lowing:
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let threads = 8;
let band_rows = bounds.1 / threads + 1;

{
    let bands: Vec<_> = pixels.chunks_mut(band_rows * bounds.0).collect();
    crossbeam::scope(|scope| {
        for (i, band) in bands.into_iter().enumerate() {
            let top = band_rows * i;
            let height = band.len() / bounds.0;
            let band_bounds = (bounds.0, height);
            let band_upper_left = pixel_to_point(bounds, (0, top),
                                                 upper_left, lower_right);
            let band_lower_right = pixel_to_point(bounds, (bounds.0, top + height),
                                                  upper_left, lower_right);

            scope.spawn(move || {
                render(band, band_bounds, band_upper_left, band_lower_right);
            });
        }
    });
}

Breaking this down in the usual way:

let threads = 8;
let band_rows = bounds.1 / threads + 1;

Here we decide to use eight threads. Then we compute how many rows of pixels each
band should have. Since the height of a band is band_rows and the overall width of
the image is bounds.0, the area of a band, in pixels, is band_rows * bounds.0. We
round the row count upwards, to make sure the bands cover the entire bitmap even if
the height isn’t a multiple of threads.

let bands: Vec<_> = pixels.chunks_mut(band_rows * bounds.0).collect();

Here we divide the pixel buffer into bands. The buffer’s chunks_mut method returns
an iterator producing mutable, non-overlapping slices of the buffer, each of which
encloses band_rows * bounds.0 pixels—in other words, band_rows complete rows of
pixels. The last slice that chunks_mut produces may be shorter, but since all the other
slices enclosed complete rows from the buffer, the last slice will too. Finally, the itera‐
tor’s collect method builds a vector holding these mutable, non-overlapping slices.

Now we can put the crossbeam library to work:

crossbeam::scope(|scope| { ... });

The expression |scope| { ... } is a Rust closure expression. A closure is a value
that can be called as if it were a function; here, |scope| is the argument list, and
{ ... } is the body of the function. Note that, unlike functions declared with fn, we
don’t need to declare the types of a closure’s arguments; Rust will infer them, along
with its return type.
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In this case, crossbeam::scope takes the closure and applies it to a Scope object, rep‐
resenting the lifetime of the group of threads we’ll create to render our horizontal
bands.

for (i, band) in bands.into_iter().enumerate() {

Here we iterate over the buffer’s bands. By using the into_iter() iterator, we ensure
that each iteration of the loop body takes ownership of its band; and the enumerate
adapter attaches an index i to each value produced.

let top = band_rows * i;
let height = band.len() / bounds.0;
let band_bounds = (bounds.0, height);
let band_upper_left = pixel_to_point(bounds, (0, top),
                                     upper_left, lower_right);
let band_lower_right = pixel_to_point(bounds, (bounds.0, top + height),
                                      upper_left, lower_right);

Given the index and the actual size of the band (recall that the last one might be
shorter than the others), we can produce a bounding box of the sort render requires,
but one that refers only to this band of the buffer, not the entire bitmap. Similarly, we
repurpose the renderer’s pixel_to_point function to find where the band’s upper left
and lower right corners fall on the complex plane.

scope.spawn(move || {
    render(band, band_bounds, band_upper_left, band_lower_right);
});

Finally, we create a thread, running the closure move || { ... }. This syntax is a bit
strange to read: it denotes a closure of no arguments whose body is the { ... } form.
The move keyword at the front indicates that this closure takes ownership of the vari‐
ables it uses; in particular, only the closure may use the mutable slice band.

The crossbeam::scope call ensures that all threads have completed before it returns,
meaning that it is safe to save the bitmap to a file, which is our next action.

Running the Mandelbrot plotter

We’ve used several external crates in this program: num for complex number arith‐
metic; image for writing PNG files; and crossbeam for the scoped thread creation
primitives. Here’s the Cargo.toml file that describes those dependencies:

[package]
name = "mandelbrot"
version = "0.1.0"
authors = ["Jim Blandy <jimb@red-bean.com>"]

[dependencies]
crossbeam = "0.1.5"
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num = "0.1.27"
image = "0.3.14"

With that in place, we can build and run the program:

$ cargo build --release
   Compiling rustc-serialize v0.3.16
   ...
   Compiling png v0.3.1
   Compiling image v0.3.14
   Compiling mandelbrot v0.1.0 (file:///home/jimb/rust/mandelbrot)
$ time target/release/mandelbrot mandel.png 4000x3000 -1.20,0.35 -1,0.20

real    0m2.525s
user    0m6.254s
sys 0m0.013s
$

Here, we’ve used the Unix time program to see how long the program took to run;
note that even though we spent more than six seconds of processor time computing
the image, the elapsed real time was only two and a half seconds. You can verify that a
substantial portion of that real time is spent writing the image file by commenting out
the code that does so; on the laptop where this code was tested, the concurrent ver‐
sion reduces the Mandelbrot calculation time proper by a factor of almost four.

This command should create a file called mandel.png, which you can view with your
system’s image viewing program, or visit in a web browser. If all has gone well, it
should look like this:
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Results from parallel Mandelbrot program

Safety is invisible

In the end, the program we’ve written here is not substantially different from what we
might write in any other language: we apportion pieces of the pixel buffer out
amongst the processors; let each one work on its piece separately; and when they’ve
all finished, present the result. So then, what is so special about Rust’s concurrency
support?

What we haven’t shown here is all the Rust programs we cannot write. The code
above partitions the buffer amongst the threads correctly, but there are many small
variations on that code that do not, and introduce data races; not one of those varia‐
tions will pass the Rust compiler’s static checks. A C or C++ compiler will cheerfully
help you explore the vast space of programs with subtle data races; Rust tells you, up
front, when something could go wrong.

In Chapter 5 and “Concurrency” on page 28, we’ll describe Rust’s rules for memory
safety, and explain how these rules also ensure proper concurrency hygiene.
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CHAPTER 3

Basic types

Rust’s types help the language meet several goals:

• Safety: A program’s types provide enough information about its behavior to allow
the compiler to ensure that the program is well defined.

• Efficiency: The programmer has fine-grained control over how Rust programs
represent values in memory, and can choose types she knows the processor will
handle efficiently. Programs needn’t pay for generality or flexibility they don’t
use.

• Parsimony: Rust manages the above without requiring too much guidance from
the programmer in the form of types written out in the code. Rust programs are
usually less cluttered with types than the analogous C++ program would be.

Rather than using an interpreter or a just-in-time compiler, Rust is designed to use
ahead-of-time compilation: the translation of your entire program to machine code is
completed before it ever begins execution. Rust’s types help an ahead-of-time com‐
piler choose good machine-level representations for the values your program oper‐
ates on: representations whose performance you can predict, and which give you full
access to the machine’s capabilities.

Rust is a statically typed language: without actually running the program, the com‐
piler checks that every possible path of execution will use values only in ways consis‐
tent with their types. This allows Rust to catch many programming mistakes early,
and is crucial to Rust’s safety guarantees.

Compared to a dynamically typed language like JavaScript or Python, Rust requires
more planning from you up front: you must spell out the types of functions’ parame‐
ters and return values, members of struct types, and a few other places. However, two
features of Rust make this less trouble than you might expect:
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• Given the types that you did spell out, Rust will infer most of the rest for you. In
practice, there’s often only one type that will work for a given variable or expres‐
sion; when this is the case, Rust lets you leave out the type. For example, you
could spell out every type in a function, like this:

fn build_vector() -> Vec<i16> {
    let mut v: Vec<i16> = Vec::<i16>::new();
    v.push(10i16);
    v.push(20i16);
    return v;
}

But this is cluttered and repetitive. Given the function’s return type, it’s obvious
that v must be a Vec<i16>, a vector of 16-bit signed integers; no other type would
work. And from that it follows that each element of the vector must be an i16.
This is exactly the sort of reasoning Rust’s type inference applies, allowing you to
instead write:

fn build_vector() -> Vec<i16> {
    let mut v = Vec::new();
    v.push(10);
    v.push(20);
    return v;
}

These two definitions are exactly equivalent; Rust will generate the same machine
code either way. Type inference gives back much of the legibility of dynamically
typed languages, while still catching type errors at compile time.

• Functions can be generic: when a function’s purpose and implementation are gen‐
eral enough, you can define it to work on any set of types that meet the necessary
criteria. A single definition can cover an open-ended set of use cases.
In Python and JavaScript, all functions work this way naturally: a function can
operate on any value that has the properties and methods the function will need.
(This is the characteristic often called “duck typing”: if it quacks like a duck, it’s a
duck.) But it’s exactly this flexibility that makes it so difficult for those languages
to detect type errors early; testing is often the only way to catch such mistakes.
Rust’s generic functions give the language a degree of the same flexibility, while
still catching all type errors at compile time.
Despite their flexibility, generic functions are just as efficient as their non-generic
counterparts. We’ll discuss generic functions in detail in ???.

The rest of this chapter covers Rust’s types from the bottom up, starting with simple
machine types like integers and floating-point values, and then showing how to com‐
pose them into more complex structures. Where appropriate, we’ll describe how Rust
represents values of these types in memory, and their performance characteristics.

Here’s a summary of all Rust’s types, brought together in one place.

42 | Chapter 3: Basic types



Type Description Values

i8, i16, i32, i64 u8, u16, u32, u64 signed and unsigned integers, of given bit
width

-5i8, 0x400u16, 0o100i16,
20_922_789_888_000u64, b'*'
(u8 byte literal), 42 (type is inferred)

isize, usize signed and unsigned integers, size of
address on target machine (32 or 64 bits)

-0b0101_0010isize,
0xffff_fc00usize, 137 (type is
inferred)

f32, f64 IEEE floating-point numbers, single and
double precision

3.14f32, 6.0221e23f64,
1.61803 (float type is inferred)

bool Boolean true, false

(char, u8, i32) tuple: mixed types ('%', 0x7f, -1)

() unit (empty tuple) ()

struct S { x: f32, y: f32 } structure with named fields S { x: 120.0, y: 209.0 }

struct T (i32, char); tuple-like structure T(120, 'X')

struct E; empty structure E

enum Attend { OnTime, 

Late(u32) }

enumeration, algebraic data type Late(5), OnTime

Box<Attend> box: owning pointer that frees referent
when dropped

Box::new(Late(15))

&i32, &mut i32 shared and mutable references: non-
owning pointers that must not outlive
their referent

&s.y, &mut v

char Unicode character, 32 bits wide '*', '\n', '字', '\x7f',
'\u{CA0}'

String UTF-8 string, dynamically sized "字字字字: ramen".to_string()

&str reference to str: non-owning pointer to
UTF-8 text

"字字: soba", &s[0..12]

[f64; 4], [u8; 256] array, fixed length [1.0, 0.0, 0.0, 1.0], [b' 
'; 256]

Vector<f64> vector, varying length vec![0.367, 2.718, 7.389]

&[u8], &mut [u8] reference to slice: reference to a portion of
an array or vector comprising pointer and
length

&v[10..20], &mut a[..]

&Any, &mut Read reference to trait object: comprises pointer
to value and vtable of trait methods

value as &Any, &mut file as 
&mut Read

fn(&str, usize) -> isize pointer to function (not a closure) i32::saturating_add

Most of these types are covered in this chapter, except for the following:

• We give struct types their own chapter, ???.
• We give enumerated types their own chapter, Chapter 7.

Basic types | 43



• We describe trait objects in ???

Machine types

The footing of Rust’s type system is a collection of fixed-width numeric types, chosen
to match the types that almost all modern processors implement directly in hardware,
and the boolean and character types.

The names of Rust’s numeric types follow a regular pattern, spelling out their width
in bits, and the representation they use:

Table 3-1. Rust’s numeric types

size (bits) unsigned integer signed integer floating-point

8 u8 i8

16 u16 i16

32 u32 i32 f32

64 u64 i64 f64

machine word usize isize

Integer types

Rust’s unsigned integer types use their full range to represent positive values and zero:

type range

u8 0 to 28−1 (0 to 255)

u16 0 to 216−1 (0 to 65,535)

u32 0 to 232−1 (0 to 4,294,967,295)

u64 0 to 264−1 (0 to 18,446,744,073,709,551,615, 18 quintillion)

usize 0 to either 232−1 or 264−1

Rust’s signed integer types use the two’s complement representation, using the same
bit patterns as the corresponding unsigned type to cover a range of positive and nega‐
tive values:

type range

i8 −27 to 27−1 (−128 to 127)

i16 −215 to 215−1 (−32,768 to 32,767)

i32 −231 to 231−1 (−2,147,483,648 to 2,147,483,647)

i64 −263 to 263−1 (−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
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type range

isize either −231 to 231−1, or −263 to 263−1

Rust generally uses the u8 type for “byte” values. For example, reading data from a file
or socket yields a stream of u8 values.

Unlike C and C++, Rust treats characters as distinct from the numeric types; a char is
neither a u8 nor an i8. We describe Rust’s char type in its own section below.

The precision of the usize and isize types depends on the size of the address space
on the target machine: they are 32 bits long on 32-bit architectures, and 64 bits long
on 64-bit architectures. The usize type is analogous to the size_t type in C and C+
+. Rust requires array indices to be usize values. Values representing the sizes of
arrays or vectors or counts of the number of elements in some data structure also
generally have the usize type. The isize type is the signed analog of the usize type,
similar to the ssize_t type in C and C++.

In debug builds, Rust checks for integer overflow in arithmetic.

let big_val = std::i32::MAX;
let x = big_val + 1;  // panic: arithmetic operation overflowed

In a release build, this addition would wrap to a negative number (unlike C++, where
signed integer overflow is undefined behavior). But unless you want to give up debug
builds forever, it’s a bad idea to count on it. When you want wrapping arithmetic, use
the methods:

let x = big_val.wrapping_add(1);  // ok

Integer literals in Rust can take a suffix indicating their type: 42u8 is a u8 value, and
1729isize is an isize. You can omit the suffix on an integer literal, in which case
Rust will try to infer a unique type for it from the context. If more than one type is
possible, Rust defaults to i32, if that is among the possibilities. Otherwise, Rust
reports the ambiguity as an error.

The prefixes 0x, 0o, and 0b designate hexadecimal, octal, and binary literals.

To make long numbers more legible, you can insert underscores among the digits.
For example, you can write the largest u32 value as 4_294_967_295. The exact place‐
ment of the underscores is not significant; for example, this permits breaking hexa‐
decimal or binary numbers into groups of four digits, which is often more natural
than groups of three.

Some examples of integer literals:

literal type decimal value

116i8 i8 116
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literal type decimal value

0xcafeu32 u32 51966

0b0010_1010 inferred 42

0o106 inferred 70

Although numeric types and the char type are distinct, Rust does provide “byte liter‐
als”, character-like literals for u8 values: b'X' represents the ASCII code for the char‐
acter X, as a u8 value. For example, since the ASCII code for A is 65, the literals b'A'
and 65u8 are exactly equivalent. Byte literals are limited to ASCII values, from 0
through 127.

There are a few characters that you cannot simply place after the single quote,
because that would be either syntactically ambiguous or hard to read. The following
characters require a backslash placed in front of them:

character byte literal numeric equivalent

single quote, ' b'\'' 39u8

backslash, \ b'\\' 92u8

newline b'\n' 10u8

carriage return b'\r' 13u8

tab b'\t' 9u8

For characters that are hard to write or read, you can write their ASCII code in hexa‐
decimal instead. A byte literal of the form b'\xHH', where HH is a two-digit hexadeci‐
mal number, represents the character whose ASCII code is HH. The number HH must
be between 00 and 7F (127 decimal). For example, the ASCII “escape” control charac‐
ter has a code of 27 decimal, or 1B hexadecimal, so you can write a byte literal for
“escape” as b'\x1b'. But since byte literals are just another notation for u8 values,
b'\x1b' and 0x1b are equivalent (letting Rust infer the type). Since the simple
numeric literal is more legible, it probably only makes sense to use hexadecimal byte
literals when you want to emphasize that the value represents an ASCII code.

Like any other sort of value, integers can have methods. The standard library pro‐
vides some basic operations, which you can look up in the on-line documentation by
searching for std::i32, std::u8, and so on.

assert_eq!(2u16.pow(4), 16);            // exponentiation
assert_eq!((-4i32).abs(), 4);           // absolute value
assert_eq!(0b101101u8.count_ones(), 4); // population count

The type suffixes on the literals are required here: Rust can’t look up a value’s meth‐
ods until it knows its type. In real code, however, there’s usually additional context to
disambiguate the type, so the suffixes aren’t needed.
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Floating-point types

Rust provides IEEE single- and double-precision floating-point types. Following the
IEEE 754-2008 specification, these types include positive and negative infinities, dis‐
tinct positive and negative zero values, and a “not a number” value.

type precision range

f32 IEEE single precision (at least 6 decimal digits) roughly -3.4 × 1038 to +3.4 × 1038

f64 IEEE double precision (at least 15 decimal digits) roughly -1.8 × 10308 to +1.8 × 10308

Floating-point literals have the general form:

integer part

fractional part exponent

31415.926e-4f64

type suffix

a floating-point literal

Every part of a floating-point number after the integer part is optional, but at least
one of the fractional part, exponent, or type suffix must be present, to distinguish it
from an integer literal. The fractional part may consist of a lone decimal point, so 5.
is a valid floating-point constant.

If a floating-point literal lacks a type suffix, Rust will infer whether it is an f32 or f64
from the context, defaulting to the latter if both would be possible. For the purposes
of type inference, Rust treats integer literals and floating-point literals as distinct
classes: it will never infer a floating-point type for an integer literal, or vice versa.

Some examples of floating-point literals:

literal type mathematical value

-1.125 inferred −(1 9/16)

2. inferred 2

0.25 inferred 1/4

125e-3 inferred 1/8

1e4 inferred 1000

40f32 f32 40

271.8281e-2f64 f64 2.718281

The f32 and f64 types provide a full complement of methods for mathematical calcu‐
lations; for example, 2f64.sqrt() is the double-precision square root of two. The
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standard library documentation describes these under the module name “std::f32
(primitive type)” and “std::f64 (primitive type)”.

The standard library’s std::f32 and std::f64 modules define constants for the
IEEE-required special values, as well as the largest and smallest finite values. The
std::f32::consts and std::f64::consts modules provide various commonly used
constants like E, PI, and the square root of two.

Unlike C and C++, Rust performs almost no numeric conversions implicitly. If a
function expects an f64 argument, it’s an error to pass an i32 value as the argument.
In fact, Rust won’t even implicitly convert an i16 value to an i32 value, even though
every i16 value is also an i32 value. But the key word here is “implicitly”: you can
always write out explicit conversions using the as operator: i as f64, or x as i32.
The lack of implicit conversions sometimes makes a Rust expression more verbose
than the analogous C or C++ code would be. However, implicit integer conversions
have a well-established record of causing bugs and security holes; in our experience,
the act of writing out numeric conversions in Rust has alerted us to problems we
would otherwise have missed.

Like any other type, floating-point types can have methods. The standard library pro‐
vides the usual selection of arithmetic operations, transcendental functions, IEEE-
specific manipulations, and general utilities, which you can look up in the on-line
documentation by searching for std::f32 and std::f64. Some examples:

assert_eq!(5f32.sqrt() * 5f32.sqrt(), 5.);
assert_eq!(1f64.asin(), std::f64::consts::PI/2.);
assert!((-1. / std::f32::INFINITY).is_sign_negative());

The type suffixes on the literals are required here: Rust can’t look up a value’s meth‐
ods until it knows its type. In real code, however, there’s usually additional context to
disambiguate the type, so the suffixes aren’t needed.

The bool type

Rust’s boolean type, bool, has the usual two values for such types, true and false.
Comparison operators like == and < produce bool results: the value of 2 < 5 is true.

Many languages are lenient about using values of other types in contexts that require
a boolean value: C and C++ implicitly convert characters, integers, floating-point
numbers, and pointers to boolean values, so they can be used directly as the condition
in an if or while statement. Python permits strings, lists, dictionaries, and even sets
in boolean contexts, treating such values as true if they’re non-empty. Rust, however,
is very strict: control structures like if and while require their conditions to be bool
expressions, as do the short-circuiting logical operators && and ||. You must write if
x != 0 { ... }, not simply if x { ... }.
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Rust’s as operator can convert bool values to integer types:

assert_eq!(false as i32, 0);
assert_eq!(true  as i32, 1);

However, as won’t convert in the other direction, from numeric types to bool.
Instead, you must write out an explicit comparison like x != 0.

Although a bool only needs a single bit to represent it, Rust uses an entire byte for a
bool value in memory, so you can create a pointer to it. But naturally, if the compiler
can prove that a given bool never has its address taken, it can choose whatever repre‐
sentation it likes for it, since the programmer will never know the difference.

Characters

Rust’s character type char represents a single Unicode character, as a 32-bit value.

Rust uses the char type for single characters in isolation, but uses the UTF-8 encod‐
ing for strings and streams of text. So, a String represents its text as a sequence of
UTF-8 bytes; but iterating over a string with a for loop produces char values.

Character literals are characters enclosed in single quotes, like '8' or '!'. You can
use any Unicode character you like: '字' is a char literal representing the Japanese
kanji for “tetsu” (iron).

As with byte literals, backslash escapes are required for a few characters:

character Rust character literal

single quote, ' '\''

backslash, \ '\\'

newline '\n'

carriage return '\r'

tab '\t'

If you prefer, you can write out a character’s Unicode scalar value in hexadecimal:

• If the character’s scalar value is in the range U+0000 to U+007F (that is, if it is
drawn from the ASCII character set), then you can write the character as '\xHH',
where HH is a two-digit hexadecimal number. For example, the character literals
'*' and '\x2A' are equivalent, because the scalar value of the character * is 42, or
2A in hexadecimal.

• You can write any Unicode character as '\u{HHHHHH}', where HHHHHH is a hexa‐
decimal number between one and six digits long. For example, the character lit‐
eral '\u{CA0}' represents the character “ಠ”, a Kannada character used in the
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Unicode Look of Disapproval, “ಠ_ಠ”. The same literal could also be simply written
as '字'.

A char always holds a Unicode scalar value, in the range 0x0000 to 0xD7FF or
0xE000 to 0x10FFFF. A char is never a surrogate pair half (that is, a code point in the
range 0xD800 to 0xDFFF), or a value outside the Unicode code space (that is, greater
than 0x10FFFF). Rust uses the type system and dynamic checks to ensure char values
are always in the permitted range.

Rust never implicitly converts between char and any other type. You can use the as
conversion operator to convert a char to an integer type; for types smaller than 32
bits, the upper bits of the character’s value are truncated:

assert_eq!('*' as i32, 42);
assert_eq!('字' as u16, 0xca0);
assert_eq!('字' as i8, -0x60); // U+0CA0 truncated to eight bits, signed

Going in the other direction, u8 is the only type the as operator will convert to char:
Rust intends the as operator to perform only cheap, infallible conversions, but every
integer type other than u8 includes values that are not permitted Unicode scalar val‐
ues, so those conversions would require run-time checks. Instead, the standard
library function std::char::from_u32 takes any u32 value and returns an
Option<char>: if the u32 is not a permitted Unicode scalar value, then from_u32
returns None; otherwise, it returns Some(c), where c is the char result.

The standard library provides some useful methods on characters, which you can
look up in the on-line documentation by searching for std::char. For example:

assert_eq!('*'.is_alphabetic(), false);
assert_eq!('8'.to_digit(10), Some(8));
assert_eq!('字'.len_utf8(), 3);

Naturally, single characters in isolation are not as interesting as strings and streams of
text. We’ll describe Rust’s standard String type and text handling in general below.

Tuples

A tuple is a pair, or triple, or quadruple, ... of values of assorted types. You can write a
tuple as a sequence of elements, separated by commas and surrounded by parenthe‐
ses. For example, ("Brazil", 1985) is a tuple whose first element is a statically allo‐
cated string, and whose second is an integer; its type is (&str, i32) (or whatever
integer type Rust infers for 1985). Given a tuple value t, you can access its elements as
t.0, t.1, and so on.

Tuples are distinct from arrays: for one thing, each element of a tuple can have a dif‐
ferent type, whereas an array’s elements must be all the same type. Further, tuples
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allow only constants as indices: if t is a tuple, you can’t write t[i] to refer to the i’th
element of a tuple. A tuple element expression always refers to some fixed element,
like t.4.

Rust code often uses tuple types to return multiple values from a function. For exam‐
ple, the split_at method on string slices, which divides a string into two halves and
returns them both, is declared like this:

fn split_at(&self, mid: usize) -> (&str, &str);

The return type (&str, &str) is a tuple of two string slices. You can use pattern
matching syntax to assign each element of the return value to a different variable:

let text = "I see the eigenvalue in thine eye";
let (head, tail) = text.split_at(21);
assert_eq!(head, "I see the eigenvalue ");
assert_eq!(tail, "in thine eye");

This is more legible than the equivalent:

let text = "I see the eigenvalue in thine eye";
let temp = text.split_at(21);
let head = temp.0;
let tail = temp.1;
assert_eq!(head, "I see the eigenvalue ");
assert_eq!(tail, "in thine eye");

You’ll also see tuples used as a sort of minimal-drama struct type. For example, in the
Mandelbrot program in Chapter 2, we need to pass the width and height of the image
to the functions that plot it and write it to disk. We could declare a struct with width
and height members, but that’s pretty heavy notation for something so obvious, so
we just used a tuple:

/// Write the buffer `pixels`, whose dimensions are given by `bounds`, to the
/// file named `filename`.
///
/// `bounds` is a pair giving the width and height of the bitmap. ...
fn write_bitmap(filename: &str, pixels: &[u8], bounds: (usize, usize))
    -> Result<()>
{ ... }

The type of the bounds parameter is (usize, usize), a tuple of two usize values.
Using a tuple lets us manage the width and height as a single parameter, making the
code more legible.

The other commonly used tuple type, perhaps surprisingly, is the zero-tuple (). This
is traditionally called “the unit type” because it has only one value, also written ().
Rust uses the unit type where there’s no meaningful value to carry, but context
requires some sort of type nonetheless.
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For example, a function which returns no value has a return type of (). The standard
library’s reverse method on array slices has no meaningful return value; it reverses
the slice’s elements in place. The declaration for reverse reads:

fn reverse(&mut self);

This simply omits the the function’s return type altogether, which is shorthand for
returning the unit type:

fn reverse(&mut self) -> ();

Similarly, the write_bitmap example we mentioned above has a return type of
std::io::Result<()>, meaning that the function provides a std::io::Error value if
something goes wrong, but returns no value on success.

If you like, you may include a comma after a tuple’s last element: the types (&str,
i32,) and (&str, i32) are equivalent, as are the expressions ("Brazil", 1985,)
and ("Brazil", 1985). Human programmers will probably find trailing commas
distracting, but tolerating them in the language’s syntax can simplify programs that
generate Rust code. Rust consistently permits an extra trailing comma everywhere
commas are used: function arguments, arrays, enum definitions, and so on.

For completeness’ sake, there are even tuples that contain a single value. The literal
("lonely hearts",) is a tuple containing a single string; its type is (&str,). Here,
the comma after the value is necessary to distinguish the singleton tuple from a sim‐
ple parenthetic expression. Like the trailing commas, singleton tuples probably don’t
make much sense in code written by humans, but their admissibility can be useful to
generated code.

Pointer types

Rust has several types that represent memory addresses.

This is a big difference between Rust and most languages with garbage collection. In
Java, if class Tree contains a field Tree left;, then left is a reference to another
separately-created Tree object. Objects never physically contain other objects in Java.

Rust is different. The language is designed to help keep allocations to a minimum.
Values nest by default. The value ((0, 0), (1440, 900)) is stored as four adjacent
integers. If you store it in a local variable, you’ve got a local variable four integers
wide. Nothing is allocated in the heap.

This is great for memory efficiency, but as a consequence, when a Rust program
needs values to point to other values, it must use pointer types explicitly. The good
news is that the pointer types used in safe Rust are constrained to eliminate undefined
behavior, so pointers are much easier to use correctly in Rust than in C++.
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We’ll discuss three pointer types here: references, boxes, and unsafe pointers.

References

A value of type &String is a reference to a String value, an &i32 is a reference to an
i32, and so on.

It’s easiest to get started by thinking of references as Rust’s basic pointer type. A refer‐
ence can point to any value anywhere, stack or heap. The address-of operator, &, and
the deref operator, *, work on references in Rust, just as their counterparts in C work
on pointers. And like a C pointer, a reference does not automatically free any resour‐
ces when it goes out of scope.

One difference is that Rust references are immutable by default:

• &T - immutable reference, like const T* in C
• &mut T - mutable reference, like T* in C

Another major difference is that Rust tracks the ownership and lifetimes of values, so
many common pointer-related mistakes are ruled out at compile time. Chapter 5
explains Rust’s rules for safe reference use.

Boxes

The simplest way to allocate a value in the heap is to use Box::new.

let t = (12, "eggs");
let b = Box::new(t);  // allocate a tuple in the heap

The type of t is (i32, &str), so the type of b is Box<(i32, &str)>. Box::new() allo‐
cates enough memory to contain the tuple on the heap. When b goes out of scope, the
memory is freed immediately, unless b has been moved—by returning it, for example.

Raw pointers

Rust also has the raw pointer types *mut T and *const T. Raw pointers really are just
like pointers in C++. Using a raw pointer is unsafe, because Rust makes no effort to
track what a raw pointer points to. For example, the pointer may be null; it may point
to memory that has been freed or now contains a value of a different type. All the
classic pointer mistakes of C++ are offered for your enjoyment in unsafe Rust. For
details, see ???.

Arrays, Vectors, and Slices

Rust has three types for representing a sequence of values in memory:
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• The type [T; N] represents an array of N values, each of type T. An array’s size is a
constant, and is part of the type; you can’t append new elements, or shrink an
array.

• The type Vec<T>, called a “vector of Ts”, is a dynamically allocated, growable
sequence of values of type T. A vector’s elements live on the heap, so you can
resize vectors at will: push new elements onto them, append other vectors to
them, delete elements, and so on.

• The types &[T] and &mut [T], called a “shared slice of Ts” or “mutable slice of T”,
is a reference to a series of elements that are a part of some other value, like an
array or vector. You can think of a slice as a pointer to its first element, together
with a count of the number of elements you can access starting at that point. A
mutable slice &mut [T] lets you read and modify elements, but can’t be shared; a
shared slice &[T] lets you share access amongst several readers, but doesn’t let
you modify elements.

Given a value v of any of these three types, the expression v.len() gives the number
of elements in v, and v[i] refers to the i’th element of v. The first element is v[0],
and the last element is v[v.len() - 1]. Rust checks that i always falls within this
range; if it doesn’t, the thread panics. Of course, v’s length may be zero, in which case
any attempt to index it will panic. i must be a usize value; you can’t use any other
integer type as an index.

Arrays

There are several ways to write array values. The simplest is to write a series of values
within square brackets:

let lazy_caterer: [u32; 6] = [1, 2, 4, 7, 11, 16];
let taxonomy = ["Animalia", "Arthropoda", "Insecta"];

assert_eq!(lazy_caterer[3], 7);
assert_eq!(taxonomy.len(), 3);

For the common case of a long array filled with some value, you can write [V; N],
where V is the value each element should have, and N is the length. For example,
[true; 100000] is an array of 100000 bool elements, all set to true:

let mut sieve = [true; 100000];
for i in 2..100 {
    if sieve[i] {
        let mut j = i * i;
        while j < 100000 {
            sieve[j] = false;
            j += i;
        }
    }
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}

assert!(sieve[211]);
assert!(!sieve[30031]);

You’ll see this syntax used for fixed-size buffers: [0u8; 1024] can be a one-kilobyte
buffer, filled with zero bytes. Rust has no notation for an uninitialized array. (In gen‐
eral, Rust ensures that code can never access any sort of uninitialized value.)

The useful methods you’d like to see on arrays—iterating over elements, searching,
sorting, filling, filtering, and so on—all appear as methods of slices, not arrays. But
since those methods take their operands by reference, and taking a reference to an
array produces a slice, you can actually call any slice method on an array directly:

let mut chaos = [3, 5, 4, 1, 2];
chaos.sort();
assert_eq!(chaos, [1, 2, 3, 4, 5]);

Here, the sort method is actually defined on slices, but since sort takes its operand
by reference, we can use it directly on chaos: the call implicitly produces a &mut
[i32] slice referring to the entire array. In fact, the len method we mentioned earlier
is a slice method as well.

We cover slices in more detail in section slices below.

Vectors

There are several ways to create vectors. The simplest is probably to use the vec!
macro, which gives us a syntax for vectors that looks very much like an array literal:

let mut v = vec![2, 3, 5, 7];
assert_eq!(v.iter().fold(1, |a, b| a * b), 210);

But of course, this is a vector, not an array, so we can add elements to it dynamically:

v.push(11);
v.push(13);
assert_eq!(v.iter().fold(1, |a, b| a * b), 30030);

The vec! macro is equivalent to calling Vec::new to create a new, empty vector, and
then pushing the elements onto it, which is another idiom:

let mut v = Vec::new();
v.push("step");
v.push("on");
v.push("no");
v.push("pets");
assert_eq!(v, vec!["step", "on", "no", "pets"]);

Another possibility is to build a vector from the values produced by an iterator:

let v: Vec<i32> = (0..5).collect();
assert_eq!(v, [0, 1, 2, 3, 4]);
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You’ll often need to supply the type when using collect, as we’ve done above, as col
lect can build many different sorts of collections, not just vectors. By making the
type for v explicit, we’ve made it unambiguous which sort of collection we want.

Vec is a fairly fundamental type to Rust—it’s used almost anywhere one needs list of
dynamic size—so there are many other methods that construct new vectors or extend
existing ones. To explore other options, consult the online documentation for
std::vec::Vec.

A vector always stores its contents in the dynamically allocated heap. A Vec<T> con‐
sists of three values: a pointer to the block of memory allocated to hold the elements;
the number of elements that block has the capacity to store; and the number it
actually contains now (in other words, its length). When the block has reached its
capacity, adding another element to the vector entails allocating a larger block, copy‐
ing the present contents into it, updating the vector’s pointer and capacity to describe
the new block, and finally freeing the old one.

If you know the number of elements a vector will need in advance, instead of
Vec::new you can call Vec::with_capacity to create a vector with a block of mem‐
ory large enough to hold them all, right from the start; then, you can add the ele‐
ments to the vector one at a time without causing any reallocation. Note that this only
establishes the initial size; if you exceed your estimate, the vector simply enlarges its
storage as usual.

Many library functions look for the opportunity to use Vec::with_capacity instead
of Vec::new. For example, in the collect example above, the iterator 0..5 knows in
advance that it will yield five values, and the collect function takes advantage of this
to pre-allocate the vector it returns with the correct capacity.

Just as a vector’s len method returns the number of elements it contains now, its
capacity method returns the number of elements it could hold without reallocation:

let mut v = Vec::with_capacity(2);
assert_eq!(v.len(), 0);
assert_eq!(v.capacity(), 2);

v.push(1);
v.push(2);
assert_eq!(v.len(), 2);
assert_eq!(v.capacity(), 2);

v.push(3);
assert_eq!(v.len(), 3);
assert_eq!(v.capacity(), 4);

The capacities you’ll see in your code may differ from those shown here, depending
on what sizes Vec and the system’s heap allocator decide would be best.
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You can insert and remove elements wherever you like in a vector, although these
operations copy all the elements after the insertion point:

let mut v = vec![10, 20, 30, 40, 50];

// Make the element at index 3 be 35.
v.insert(3, 35);
assert_eq!(v, [10, 20, 30, 35, 40, 50]);

// Remove the element at index 2.
v.remove(1);
assert_eq!(v, [10, 30, 35, 40, 50]);

You can use the pop method to remove the last element and return it. More precisely,
popping a value from a Vec<T> returns an Option<T>: None if the vector was already
empty, or Some(v) if its last element had been v.

let mut v = vec!["carmen", "miranda"];
assert_eq!(v.pop(), Some("miranda"));
assert_eq!(v.pop(), Some("carmen"));
assert_eq!(v.pop(), None);

You can use a for loop to iterate over a vector:

// Get our command-line arguments as a vector of Strings.
let languages: Vec<String> = std::env::args().skip(1).collect();
for l in languages {
    println!("{}: {}", l,
             if l.len() % 2 == 0 {
                 "functional"
             } else {
                 "imperative"
             });
}

Running this program with a list of programming languages is illuminating:

$ cargo run Lisp Scheme C C++ Fortran
   Compiling fragments v0.1.0 (file:///home/jimb/rust/book/fragments)
     Running `.../target/debug/fragments Lisp Scheme C C++ Fortran`
Lisp: functional
Scheme: functional
C: imperative
C++: imperative
Fortran: imperative
$

Finally, a satisfying definition for the term “functional language”.

As with arrays, many useful methods you’d like to see on vectors, like iterating over
elements, searching, sorting, filling, and filtering, all appear as methods of slices, not
arrays. But since those methods take their operands by reference, and taking a refer‐
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ence to a vector produces a slice, you can actually call any slice method on an vector
directly:

let mut v = vec!["a man", "a plan", "a canal"];
v.reverse();
assert_eq!(v, ["a canal", "a plan", "a man"]); // disappointing

Here, the reverse method is actually defined on slices, but since reverse takes its
operand by reference, we can use it directly on v: the call implicitly produces a &mut
[&str] slice referring to the entire array.

Building vectors element by element
Building a vector one element at a time isn’t as bad as it might sound. Whenever a
vector outgrows its capacity by a single element, it chooses a new block twice as large
as the old one. By the time it has reached its final size of 2n for some n, the total num‐
ber of elements copied in the course of reaching that size is the sum of each of the
powers of two smaller than 2n—that is, the sizes of the blocks we left behind. But if
you think about how powers of two work, that total is simply 2n-1, meaning that the
number of elements copied is always within a factor of two of the final size. Since the
number of copies is linear in the final size, the cost per element is constant—the same
as it would be if you had allocated the vector with the correct size to begin with!

What this means is that using Vec::with_capacity instead of Vec::new is a way to
gain a constant factor improvement in speed, rather than an algorithmic improve‐
ment. For small vectors, avoiding a few calls to the heap allocator can make an
observable difference in performance.

Slices

A slice, written [T] without specifying the length, is a region of an array or vector.
Since a slice can be any length, slices can’t be stored directly in variables or passed as
function arguments. Slices are always passed by reference.

A reference to a slice is a fat pointer: a two-word value comprising a pointer to the
slice’s first element, and the number of elements in the slice.

Suppose you run the following code:

let v: Vec<f64> = vec![0.0,  0.707,  1.0,  0.707];
let a: [f64; 4] =     [0.0, -0.707, -1.0, -0.707];

let sv: &[f64] = &v;
let sa: &[f64] = &a;
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On the last two lines, Rust automatically converts a &Vec<f64> reference and a &[f64;
4] reference to slice references that point directly to the data.

By the end, memory looks like this:

Whereas an ordinary reference is a non-owning pointer to a single value, a reference
to a slice is a non-owning pointer to several values. This makes slice references a good
choice when you want to write a function that operates on any homogeneous data
series, regardless of whether it’s stored in an array or a vector, stack or heap. For
example, here’s a function that prints a slice of numbers, one per line:

fn print(n: &[f64]) {
    for elt in n {
        println!("{}", elt);
    }
}

print(&v);  // works on vectors
print(&a);  // works on arrays

Because this function takes a slice reference as an argument, you can apply it to either
a vector or an array, as shown. In fact, many methods you might think of as belonging
to vectors or arrays are actually methods defined on slices: for example, the sort and
reverse methods, which sort or reverse a sequence of elements in place, are actually
methods on the slice type [T].

You can get a reference to a slice of an array or vector, or a slice of an existing slice, by
indexing it with a range:
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print(&v[0..2]);    // print the first two elements of v
print(&a[2..]);     // print elements of a starting with a[2]
print(&sv[1..3]);   // print v[1] and v[2]

As with ordinary array accesses, Rust checks that the indices are valid. Trying to take
a slice that extends past the end of the data results in a thread panic.

String types

Programmers familiar with C++ will recall that there are two string types in the lan‐
guage. String literals have the pointer type const char *. The standard library also
offers a class, std::string, for dynamically creating strings at run time.

Rust has a similar design. In this section, we’ll show all the ways to write string liter‐
als, then talk about Rust’s two string types and how to use them.

String literals

String literals are enclosed in double quotes. They use the same backslash escape
sequences as char literals.

let speech = "\"Ouch!\" said the well.\n";

A string may span multiple lines:

println!("In the room the women come and go,
    Singing of Mount Abora");

The newline character in that string literal is included in the string, and therefore in
the output. So are the spaces at the beginning of the second line.

If one line of a string ends with a backslash, then the newline character and the lead‐
ing whitespace on the next line are dropped:

println!("It was a bright, cold day in April, and \
    there were four of us—\
    more or less.");

This prints a single line of text. The string contains a single space between “and” and
“there”, because there is a space before the backslash in the program, and no space
after the dash.

In a few cases, the need to double every backslash in a string is a nuisance. (The clas‐
sic examples are regular expressions and Windows filenames.) For these cases, Rust
offers raw strings. A raw string is tagged with the lowercase letter r. All backslashes
and whitespace characters inside a raw string are included verbatim in the string. No
escape sequences are recognized.

let default_win_install_path = r"C:\Program Files\Gorillas";

let pattern = Pcre::compile(r"\d+(\.\d+)*");
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You can’t include a double-quote character in a raw string simply by putting a back‐
slash in front of it—remember, we said no escape sequences are recognized. However,
there is a cure for that too. The start and end of a raw string can be marked with
pound signs:

println!(r###"
    This raw string started with 'r###"'.
    Therefore it does not end until we reach a quote mark ('"')
    followed immediately by three pound signs ('###'):
"###);

You can add as few or as many pound signs as needed to make it clear where the raw
string ends.

Byte strings

A string literal with the b prefix is a byte string. Such a string is a slice of u8 values—
that is, bytes—rather than Unicode text.

let method = b"GET";
assert_eq!(method, &[b'G', b'E', b'T']);

This combines with all the other string syntax we’ve shown above: byte strings can
span multiple lines, use escape sequences, and use backslashes to join lines. Raw byte
strings start with br".

Byte strings can’t contain arbitrary Unicode characters. They must make do with
ASCII and escape sequences that denote values in the range 0-255.

The type of method above is &[u8; 3]: it’s a reference to an array of 3 bytes. It doesn’t
have any of the string methods we’ll discuss in a minute. The most string-like thing
about it is the syntax we used to write it.

Strings in memory

Strings are sequences of Unicode characters, but they are not stored in memory as
arrays of chars. Instead, they are stored using UTF-8, a variable-width encoding.
Each ASCII character in a string is stored in one byte. Other characters take up multi‐
ple bytes.

assert_eq!("字_字".as_bytes(),
           [0xe0, 0xb2, 0xa0, b'_', 0xe0, 0xb2, 0xa0]);

The type of a string literal is &str, meaning it is a reference to a str, a slice of mem‐
ory that’s guaranteed to contain valid UTF-8 data.

Like other slice references, an &str is a fat pointer. It contains both the address of the
actual data and a length field. The .len() method of an &str returns the length. Note
that it’s measured in bytes, not characters:
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assert_eq!("字_字".len(), 7);
assert_eq!("字_字".chars().count(), 3);

A string literal is a reference to an immutable string of text, typically stored in mem‐
ory that is mapped as read-only. It is impossible to modify a str:

let mut s = "hello";
s[0] = 'c';    // error: the type `str` cannot be mutably indexed
s.push('\n');  // error: no method named `push` found for type `&str`

For creating new strings at run time, there is the standard String type.

String

&str is very much like &[T]: a fat pointer to some data. String is analogous to
Vec<T>.

Vec<T> String

automatically frees buffers yes yes

growable yes yes

::new() and ::with_capacity() static methods yes yes

.reserve() and .capacity() methods yes yes

.push() and .pop() methods yes yes

range syntax v[start..stop] yes, returns &[T] yes, returns &str

automatic conversion &Vec<T> to &[T] &String to &str

inherits methods from &[T] from &str

Like a Vec, each String has its own heap-allocated buffer that isn’t shared with any
other String. When a String variable goes out of scope, the buffer is automatically
freed, unless the String was moved.

There are several ways to create Strings.

• The .to_string() method converts an &str to a String. This copies the string.
let error_message = "too many pets".to_string();

• The format!() macro works just like println!(), except that it returns a new
String instead of writing text to stdout, and it doesn’t automatically add a new‐
line at the end.

assert_eq!(format!("{}°{:02}字{:02}字N", 24, 5, 20),
           "24°05字20字N".to_string());

As it happens, this would work fine without the .to_string() call, because the
String can automatically convert to &str.

• Arrays, slices, and vectors of strings have two methods, .concat()

and .join(sep), that form a new String from many strings:
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let bits = vec!["vini", "vidi", "vici"];
assert_eq!(bits.concat(), "vinividivici");
assert_eq!(bits.join(", "), "vini, vidi, vici");

The choice sometimes arises of which type to use: &str or String. Chapter 4
addresses this question in detail. For now it will do to point out that an &str can refer
to any slice of any string, whether it is a string literal (stored in the executable) or a
String (allocated and freed at run time). This means that &str is more appropriate
for function arguments when the caller should be allowed to pass either kind of
string.

Using strings

Strings support the == and != operators. Two strings are equal if they contain the
same characters in the same order (regardless of whether they point to the same loca‐
tion in memory).

assert_eq!("ONE".to_lowercase() == "one", true);

Strings also support the comparison operators <, <=, >, and >=, as well as many useful
methods which you can find in the on-line documentation by searching for str. (Or
just flip to ???.)

assert_eq!("peanut".contains("nut"), true);
assert_eq!("字_字".replace("字", "字"), "字_字");
assert_eq!("    clean\n".trim(), "clean");

for word in "vini, vidi, vici".split(", ") {
    assert!(word.starts_with("vi"));
}

Other string-like types

Rust guarantees that strings are valid UTF-8. Sometimes a program really needs to be
able to deal with strings that are not valid Unicode. This usually happens when a Rust
program has to interoperate with some other system that doesn’t enforce any such
rules. For example, in most operating systems it’s easy to create a file with a filename
that isn’t valid Unicode. What should happen when a Rust program comes across this
sort of filename?

Rust’s solution for these cases is to offer a few string-like types for these particular
situations. Stick to String and &str for Unicode text; but

• when working with filenames, use std::path::PathBuf and &Path instead;
• when working with binary data that isn’t character data at all, use Vec<u8> and
&[u8];
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• when interoperating with C libraries that use null-terminated strings, use
std::ffi::CString and &CStr.

Beyond the basics

Types are a central part of Rust. We’ll continue talking about types and introducing
new ones throughout the book.

In particular, Rust’s user-defined types give the language much of its flavor, because
that’s where methods are defined. There are three kinds of user-defined type, and
we’ll cover them in three successive chapters: structs in ???, enums in Chapter 7, and
traits in ???.

Functions and closures have their own types, covered in ???. And the types that make
up the standard library are covered throughout the book. For example, ??? presents
the standard collection types.

All of that will have to wait, though. Before we move on, it’s time to tackle the con‐
cepts that are at the heart of Rust’s safety rules.
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CHAPTER 4

Ownership and moves

Rust makes the following pair of promises, both essential to a safe systems program‐
ming language:

• You decide the lifetime of each value in your program. Rust frees memory and
other resources belonging to a value promptly, at a point under your control.

• Even so, your program will never use a pointer to an object after it has been
freed. Using a “dangling pointer” is a common mistake in C and C++: if you’re
lucky, your program crashes; if you’re unlucky, your program has a security hole.
Rust catches these mistakes at compile time.

C and C++ keep the first promise: you can call free or delete on any object on the
dynamically-allocated heap you like, whenever you like. But in exchange, the second
promise is set aside: it is entirely your responsibility to ensure that no pointer to the
value you freed is ever used. There’s ample empirical evidence that this is a difficult
responsibility to meet, in the unfortunate form of fifteen years’ worth of crashes and
reported security vulnerabilities caused by pointer misuse.

Plenty of languages fulfill the second promise using garbage collection, automatically
freeing objects only when all reachable pointers to them are gone. But in exchange,
you relinquish control to the collector over exactly when objects get freed. In general,
garbage collectors are surprising beasts; understanding why memory wasn’t freed
when you expected can become a challenge. And if you’re working with objects that
represent files, network connections, or other operating system resources, not being
able to trust that they’ll be freed at the time you intended, and their underlying
resources cleaned up along with them, is a disappointment.

None of these compromises are acceptable for Rust: the programmer should have
control over values’ lifetimes, and the language should be safe. But this is a pretty
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well-explored area of language design; you can’t make major improvements without
some fundamental changes.

Rust breaks the deadlock in a surprising way: by restricting how your programs can
use pointers. Ownership relations must be made explicit in the types; non-owning
pointers must have restricted lifetimes; mutation and sharing must be kept segrega‐
ted; and so on. Some common structures you are accustomed to using may not fit
within the rules, and you’ll need to look for alternatives. But the net effect of these
restrictions is to bring just enough order to the chaos that Rust’s compile-time checks
can promise that your program is free of memory management errors: dangling
pointers, double frees, using uninitialized memory, and so on. At run time, your
pointers are simple addresses in memory, just as they would be in C and C++; the
difference is that your code has been proven to use them safely.

These same rules also form the basis of Rust’s support for safe concurrent program‐
ming. Given a carefully designed set of library routines for starting new threads and
communicating between them, the same checks that ensure your code uses memory
correctly also serve to prove that it is free of data races.

Rust’s radical wager is that, even with these restrictions in place, you’ll find the lan‐
guage more than flexible enough for almost every task, and that the benefits—the
elimination of broad classes of memory management and concurrency bugs—will
justify the adaptations you’ll need to make to your style. The authors of this book are
bullish on Rust exactly because of our extensive experience with C and C++; for us,
Rust’s deal is a no-brainer.

Rust’s rules are probably unlike what you’ve seen in other programming languages;
learning how to work with them and turn them to your advantage is, in our opinion,
the central challenge of learning Rust. In this chapter, we’ll first motivate Rust’s rules
by showing how the same underlying issues play out in other languages. Then, we’ll
explain Rust’s rules in detail. Finally, we’ll talk about some exceptions and almost-
exceptions.

Ownership

If you’ve read much C or C++ code, you’ve probably come across a comment saying
that an instance of some class “owns” some other object that it points to. This gener‐
ally means that the owning object gets to decide when to free the owned object; when
the owner is destroyed, it will probably destroy its possessions along with it.

For example, suppose you write the following C++ code:

std::string s = "frayed knot";

The string s is usually represented in memory like this:
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Here, the actual std::string object itself is always exactly three words long, com‐
prising a pointer to a heap-allocated buffer, the buffer’s overall capacity (that is, how
large the text can grow before the string must allocate a larger buffer to hold it); and
the length of the text it holds now. These are fields private to the std::string class,
not accessible to the string’s users.

A std::string owns its buffer: when the program destroys the string, the string’s
destructor frees the buffer1. In these situations it’s generally understood that, although
it’s fine for other code to create temporary pointers to the owned memory, it is such
code’s own responsibility to make sure its pointers are gone before the owner decides
to destroy the owned object. You can create a pointer to a character living in a
std::string’s buffer, but when the string is destroyed, your pointer becomes invalid,
and it’s up to you to make sure you don’t use it any more. The owner determines the
lifetime of the owned, and everyone else must respect its decisions.

Rust takes this principle out of the comments and makes it explicit in the language. In
Rust, every value has a clear owner; and when we say that one value owns another, we
mean that when the owner is freed—or “dropped”, in Rust terminology—the owned
value gets dropped along with it. These rules are meant to make it easy for you to find
any given value’s lifetime simply by inspecting the code, giving you the control over
its lifetime that a systems language should provide.
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A variable owns its value. When control leaves the block in which the variable is
declared, the variable is dropped, so its value is dropped along with it. For example:

{
    let mut padovan = vec![1,1,1];  // vector allocated here
    for i in 3..10 {
        let next = padovan[i-3] + padovan[i-2];
        padovan.push(next);         // vector grown here, possibly
    }
    println!("P(1..10) = {:?}", padovan);
}                                   // dropped here

The type of padovan is std::vec::Vec<i32>, a vector of 32-bit integers. In memory,
the final value of padovan will look something like this:

This is very similar to the C++ std::string we showed earlier, except that the ele‐
ments in the buffer are 32-bit values, not characters. Note that the words holding
padovan’s pointer, capacity and length live directly in the stack frame of the function
(not shown) that contains this code; only the vector’s buffer is allocated on the heap.

As with the string s earlier, the vector owns the buffer holding its elements. When the
variable padovan goes out of scope at the end of the block, the program drops the vec‐
tor. And since the vector owns its buffer, the buffer goes with it.

As another example of ownership, the pointer type Box simply owns a value stored on
the heap. The Box::new function allocates an appropriately-sized block of heap space,
and stores its argument there. Since a Box owns its referent, when the Box is dropped,
the referent goes with it. So you can allocate a tuple in the heap like so:

{
    let point = Box::new((0.625, 0.5));
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    let label = format!("{:?}", point);
    assert_eq!(label, "(0.625, 0.5)");
}

When the program calls Box::new, it allocates space for a tuple of two f64 values on
the heap, moves its argument (0.625, 0.5) into that space, and returns a pointer to
it. By the time control reaches the call to assert_eq!, the stack frame looks like this:

The stack frame itself holds the variables point and label, each of which refers to a
block of memory on the heap that it owns.

Just as variables own their values, structures and enumerated types own their mem‐
bers, and tuples, arrays and vectors own their elements.

{
    struct Person { name: String, birth: i32 }
    let mut composers = Vec::new();
    composers.push(Person { name: "Palestrina".to_string(),
                            birth: 1525 });
    composers.push(Person { name: "Dowland".to_string(),
                            birth: 1563 });
    composers.push(Person { name: "Lully".to_string(),
                            birth: 1632 });
    for composer in &composers {
        println!("{}, born {}", composer.name, composer.birth);
    }
}

Here, composers is a Vec<Person>, a vector of structures, each of which holds a string
and a number. In memory, the final value of composers looks like this:
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There are many ownership relationships here, but each one is pretty straightforward:
composers owns a vector; the vector owns its elements, each of which is a Person
structure; each structure owns its fields; and the string field owns its text. When con‐
trol leaves the scope in which composers is declared, the program drops its value, and
takes the entire arrangement with it. If there were other sorts of containers in the pic‐
ture—a HashMap, perhaps, or a BTreeSet—the story would be the same.

At this point, take a step back and consider the consequences of the ownership rela‐
tions we’ve presented so far. Every value has a single owner; otherwise, we couldn’t be
sure when to drop it. But a single value may own many other values: for example, the
vector composers owns all of its elements. And those values may own other values in
turn: each element of composers owns a string, which owns its text.

It follows that the owners and their owned values form trees: your owner is your par‐
ent, and the values you own are your children. And at the ultimate root of each tree is
a variable; when that variable goes out of scope, the entire tree goes with it. We can
see such an ownership tree in the diagram for composers: it’s not a “tree” in the sense
of a search tree data structure, or an HTML document made from DOM elements.
Rather, we have a tree built from a mixture of types, with Rust’s single-owner rule for‐
bidding any rejoining of structure that could make the arrangement more complex
than a tree. Every value in a Rust program is a member of some tree, rooted in some
variable.

Rust programs don’t usually explicitly drop values at all, in the way C and C++ pro‐
grams would use free and delete. The way to drop a value in Rust is to remove it
from the ownership tree somehow: by leaving the scope of a variable, or deleting an
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element from a vector, or something of that sort. At that point, Rust ensures the value
is properly dropped, along with everything it owns.

In a certain sense, Rust (or at least, Rust without unsafe blocks) is less powerful than
other languages: every other practical programming language lets you build arbitrary
graphs of objects that point to each other in whatever way you see fit. But it is exactly
because the language is less powerful that the analyses Rust can carry out on your
programs can be more powerful. Rust’s safety guarantees are possible exactly because
the relationships it may encounter in your code are more tractable. This is part of
Rust’s “radical wager” we mentioned earlier: in practice, Rust claims, there is usually
more than enough flexibility in how one goes about solving a problem to ensure that
at least a few perfectly fine solutions fall within the restrictions the language imposes.

That said, the story we’ve told so far is still much too rigid to be usable. Rust extends
this picture in several ways:

• You can move values from one owner to another. This allows you to build, rear‐
range, and tear down the tree.

• You can “borrow a reference” to a value; references are non-owning pointers,
with limited lifetimes.

• The standard library provides the reference-counted pointer types Rc and Arc,
which allow values to have multiple owners, under some restrictions.

Each of these strategies contributes flexibility to the ownership model, while still
upholding Rust’s promises. We’ll explain each one in turn.

Moves

In Rust, for most types, operations like assigning a value to a variable, passing it to a
function, or returning it from a function don’t copy the value: they move it. The
source relinquishes ownership of the value to the destination, and becomes uninitial‐
ized; the destination now controls the value’s lifetime. Rust programs build up and
tear down complex structures one value at a time, one move at a time.

You may be surprised that Rust would change the meaning of such fundamental
operations: surely assignment is something that should be pretty well nailed down at
this point in history. However, if you look closely at how different languages have
chosen to handle assignment, you’ll see that there’s actually significant variation from
one school to another. The comparison also makes the meaning and consequences of
Rust’s choice easier to see.

So, consider the following Python code:
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s = ['udon', 'ramen', 'soba']
t = s
u = s

Each Python object carries a reference count, tracking the number of values that are
currently referring to it. So after the assignment to s, the state of the program looks
like this (with some fields left out):

Since only s is pointing to the list, the list’s reference count is 1; and since the list is
the only object pointing to the strings, each of their reference counts is also 1.

What happens when the program executes the assignments to t and u? Python imple‐
ments assignment simply by making the destination point to the same object as the
source, and incrementing the object’s reference count. So the final state of the pro‐
gram is something like this:
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Python has copied the pointer from s into t and u, and updated the list’s reference
count to 3. Assignment in Python is cheap, but because it creates a new reference to
the object, we must maintain reference counts to know when we can free the value.

Now consider the analogous C++ code:

using namespace std;
vector<string> s = { "udon", "ramen", "soba" };
vector<string> t = s;
vector<string> u = s;

The original value of s looks like this in memory:
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What happens when the program assigns s to t and u? In C++, assigning a std::vec
tor produces a copy of the vector; std::string behaves similarly. So by the time the
program reaches the end of this code, it has actually allocated three vectors and nine
strings:

Depending on the values involved, assignment in C++ can consume unbounded
amounts of memory and processor time. The advantage, however, is that it’s easy for
the program to decide when to free all this memory: when the variables go out of
scope, everything allocated here gets cleaned up automatically.
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In a sense, C++ and Python have chosen opposite tradeoffs: Python makes assign‐
ment cheap, at the expense of requiring reference counting (and in the general case,
garbage collection). C++ keeps the ownership of all the memory clear, at the expense
of making assignment carry out a deep copy of the object. C++ programmers are
often less than enthusiastic about this choice: deep copies can be expensive, and there
are usually more practical alternatives.

So what would the analogous program do in Rust? Here’s the code:

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s;
let u = s;

After carrying out the initialization of s, since Rust and C++ use similar representa‐
tions for vectors and strings, the situation looks just like it did in C++:

But recall that, in Rust, assignments of most types move the value from the source to
the destination, leaving the source uninitialized. So after initializing t, the program’s
memory looks like this:
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What has happened here? The initialization let t = s; moved the vector’s three
header fields from s to t; now t owns the vector. The vector’s elements stayed just
where they were, and nothing happened to the strings either. Every value still has a
single owner, although one has changed hands. There were no reference counts to be
adjusted. And the compiler now considers s uninitialized.

So what happens when we reach the initialization let u = s;? This would assign the
uninitialized value s to u. Rust prudently prohibits using uninitialized values, so the
compiler rejects this code with the following error:

error: use of moved value: `s`
let u = s;
    ^
note: `s` moved here because it has type `Vec<String>`,
which is moved by default
let t = s;
    ^

Consider the consequences of Rust’s use of a move here. Like Python, the assignment
is cheap: the program simply moves the three-word header of the vector from one
spot to another. But like C++, ownership is always clear: the program doesn’t need
reference counting or garbage collection to know when to free the vector elements
and string contents.

The price you pay is that you must explicitly ask for copies when you want them. If
you want to end up in the same state as the C++ program, with each variable holding
an independent copy of the structure, you must call the vector’s clone method, which
performs a deep copy of the vector and its elements:
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let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s.clone();
let u = s.clone();

You could also recreate Python’s behavior using Rust’s reference-counted pointer
types; we’ll discuss those shortly in section reference counting.

More operations that move

In the examples thus far, we’ve shown initializations, providing values for variables as
they come into scope in a let statement. Assigning to a variable is slightly different,
in that if you move a value into a variable that was already initialized, Rust drops the
variable’s prior value. For example:

let mut s = "Govinda".to_string();
s = "Siddhartha".to_string(); // value "Govinda" dropped here

In this code, when the program assigns the string "Siddhartha" to s, its prior value
"Govinda" gets dropped first. But consider the following:

let mut s = "Govinda".to_string();
let t = s;
s = "Siddhartha".to_string(); // nothing is dropped here

This time, t has taken ownership of the original string from s, so that by the time we
assign to s, it is uninitialized. In this scenario, no string is dropped.

We’ve used initializations and assignments in the examples here because they’re sim‐
ple, but Rust applies move semantics to almost any use of a value. Passing arguments
to functions moves ownership to the function; returning a value from a function
moves ownership to the caller. Calling a constructor moves the arguments into the
constructed value. And so on.

You may now have a better insight into what’s really going on in the examples we
offered in the previous section. For example, when we were constructing our vector
of composers, we wrote:

struct Person { name: String, birth: i32 }
let mut composers = Vec::new();
composers.push(Person { name: "Palestrina".to_string(),
                        birth: 1525 });

This code shows several places at which moves occur, beyond initialization and
assignment:

• Returning values from a function. The call Vec::new() constructs a new vector,
and returns it by value: its ownership moves from Vec::new to the variable com
posers. Similarly, the to_string call returns a fresh String instance.
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• Constructing new values. The name field of the new Person structure is initialized
with the return value of to_string. The structure takes ownership of the string.

• Passing values to a function. The entire Person structure is passed by value to the
vector’s push method, which moves it onto the end of the structure. The vector
takes ownership of the Person, and thus becomes the indirect owner of the name
String as well.

Moving values around like this may sound inefficient, but there are two things to
keep in mind. First of all, the moves always apply to the value proper, not the heap
storage they own. For vectors and strings, the “value proper” is the three-word header
alone; the potentially large element arrays and text buffers sit where they are in the
heap. Second, the Rust compiler’s code generation is very good at “seeing through” all
these moves; in practice, the machine code often stores the value directly where it
belongs.

Moves and control flow

The examples above all have very simple control flow; how do moves interact with
more complicated code? The general principle is that, if it’s possible for a variable to
have had its value moved away, and it hasn’t definitely been given a new value since,
it’s considered uninitialized. So, for example, if a variable still has a value after evalu‐
ating an if expression’s condition, then we can use it in both branches:

let x = vec![10, 20, 30];
if c {
    f(x); // ... okay to move from x here
} else {
    g(x); // ... and okay to also move from x here
}
h(x) // bad: x is uninitialized here if either path uses it

For similar reasons, moving from a variable in a loop is forbidden:

let x = vec![10, 20, 30];
while f() {
    g(x); // bad: after first iteration, x is uninitialized
}

That is, unless we’ve definitely given it a new value by the next iteration:

let mut x = vec![10, 20, 30];
while f() {
    g(x);           // move from x
    x = h();        // give x a fresh value
}
e(x);
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We’ve mentioned that a move leaves its source uninitialized, as the destination takes
ownership of the value. But not every kind of value owner is prepared to become
uninitialized. For example, consider the following code:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
for i in 101 .. 105 {
    v.push(i.to_string());
}

// Pull out random elements from the vector.
let third = v[2];
let fifth = v[4];

For this to work, Rust would somehow need to remember that the third and fifth ele‐
ments of the vector have become uninitialized, and track that information until the
vector is dropped. In the most general case, vectors would need to carry around extra
information with them to indicate which elements are live and which have become
uninitialized. That is clearly not the right behavior for a systems programming lan‐
guage; a vector should be nothing but a vector. In fact, Rust rejects the above code
with the error:

error: cannot move out of indexed content
let third = v[2];
            ^~~~
note: attempting to move value to here
let third = v[2];
    ^~~~~

It also makes a similar complaint about the move to fifth. These errors simply mean
that you must find a way to move out the values you need that respects the limitations
of the type. For example, here are three ways to move individual values out of a vec‐
tor:

// Build a vector of the strings "101", "102", ... "105"
let mut v : Vec<String> = (101..106).map(|i| i.to_string()).collect();

// Pop a value off the end of the vector:
let fifth = v.pop().unwrap();
assert_eq!(fifth, "105");

// Move a value out of the middle of the vector, and move the last
// element into its spot:
let third = v.swap_remove(2);
assert_eq!(third, "103");

// Remaining elements in v are now: ["101", "102", "104"]

// Swap in another value for the one we're taking out.
let second = std::mem::replace(&mut v[1], "substitute".to_string());
assert_eq!(second, "102");
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// Let's see what's left of our vector.
assert_eq!(v, vec!["101", "substitute", "104"]);

Each one of these methods moves an element out of the vector, but does so in a way
that leaves the vector in a state that is fully populated, if perhaps smaller.

Collection types like Vec also generally offer methods to consume all their elements
in a loop:

let v = vec!["liberté".to_string(),
             "égalité".to_string(),
             "fraternité".to_string()];

for mut s in v {
    s.push('!');
    println!("{}", s);
}

Since this passes v to the for loop directly, its value is moved, and the for loop takes
ownership of the vector. At each iteration, the loop moves another element to the
variable s. Since s now owns the string, we’re able to modify it in the loop body
before printing it.

If you do find yourself needing to move a value out of an owner that the compiler
can’t track, you might consider changing the owner’s type to something that can
dynamically track whether it has a value or not. For example, here’s a variant on the
earlier example:

struct Person { name: Option<String>, birth: i32 }
let mut composers = Vec::new();
composers.push(Person { name: Some("Palestrina".to_string()),
                        birth: 1525 });

You can’t do this:

let first_name = composers[0].name;

That will just elicit the same “cannot move out of indexed content” error shown ear‐
lier. But because you’ve changed the type of the name field from String to
Option<String>, that means that None is a legitimate value for the field to hold. So,
this works:

let first_name = std::mem::replace(&mut composers[0].name, None);
assert_eq!(first_name, Some("Palestrina".to_string()));
assert_eq!(composers[0].name, None);

In fact, using Option this way is common enough that the type provides a take
method for this very purpose. You could write the manipulation above more legibly
as:

let first_name = composers[0].name.take();
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This has exactly the same effect as the original let.

Copy types: the exception to moves

The examples we’ve shown so far of values being moved involve vectors, strings, and
other types that could potentially use a lot of memory, and be expensive to copy.
Moves keep ownership of such types clear and assignment cheap. But for simpler
types like integers or characters, this sort of circumspection really isn’t necessary.

Compare what happens in memory when we assign a String with what happens
when we assign an i32 value:

let str = "somnambulance".to_string();
let str2 = str;

let num : i32 = 36;
let num2 = num;

After running this code, memory looks like this:

As with the vectors earlier, assignment moves str to str2, so that we don’t end up
with two strings responsible for freeing the same buffer. However, the situation with
num and num2 is different. An i32 is simply a pattern of bits in memory; it doesn’t own
any heap resources, or really depend on anything other than the bytes it comprises.
By the time we’ve moved its bits to num2, we’ve made a completely independent copy
of num.

Moving a value leaves the source of the move uninitialized. But whereas it serves an
essential purpose to treat str as valueless, treating num that way is pointless; no harm
could result from continuing to use it. The advantages of a move don’t apply here,
and it’s inconvenient.

Earlier we were careful to say that most types are moved; now we’ve come to the
exceptions, the types Rust designates as “Copy types”. Assigning a value of a Copy type
copies the value, rather than moving it; the source of the assignment remains initial‐
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ized and usable, with the same value it had before. Passing Copy types to functions
and constructors behaves similarly.

The standard Copy types include all the machine integer and floating-point numeric
types, the char and bool types, and a few others. A tuple or fixed-size array of Copy
types is itself a Copy type.

Only types for which a simple bit-for-bit copy suffices can be Copy. As we’ve
explained above, String is not a Copy type, because it owns a heap-allocated buffer.
For similar reasons, Box<T> is not Copy; it owns its heap-allocated referent. The File
type, representing an operating system file handle, is not Copy; duplicating such a
value would entail asking the operating system for another file handle. Similarly, the
MutexGuard type, representing a locked mutex, isn’t Copy: this type isn’t meaningful to
copy at all, as only one thread may hold a mutex at a time.

What about types you define yourself? By default, struct and enum types are not
Copy:

struct Label { number: u32 }

fn print(l: Label) { println!("STAMP: {}", l.number); }

let l = Label { number: 3 };
print(l);
println!("My label number is: {}", l.number);

This won’t compile; Rust complains:

error: use of moved value: `l.number`
println!("My label number is: {}", l.number);
                                   ^~~~~~~~
note: `l` moved here because it has type `Label`, which is non-copyable
print(l);
      ^

Since Label is not Copy, passing it to print moved ownership of the value to the
print function, which then dropped it before returning. But this is silly; a Label is
nothing but an i32 with pretensions. There’s no reason passing l to print should
move the value.

But types being non-Copy is only the default. If all the fields of a structure or enumer‐
ated type are themselves Copy, then you can make the type itself Copy by placing the
the attribute #[derive(Copy, Clone)] above the definition like so:

#[derive(Copy, Clone)]
struct Label { number: u32 }

With this change, the code above compiles without complaint. However, if we try this
on a type whose fields are not all Copy, it doesn’t work. Compiling the following code:
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#[derive(Copy, Clone)]
struct StringLabel { name: String }

elicits the error:

error: the trait `Copy` may not be implemented for this type; field `name`
does not implement `Copy`
#[derive(Copy, Clone)]
         ^~~~

Why aren’t user-defined types Copy by default, assuming they’re eligible? Whether a
type is Copy or not has a big effect on how code is allowed to use it: Copy types are
more flexible, since assignment and related operations don’t leave the original unini‐
tialized. But for a type’s implementer, the opposite is true: Copy types are very limited
in which types they can contain, whereas non-Copy types can use heap allocation and
own other sorts of resources. So making a type Copy represents a serious commitment
on the part of the implementer: if it’s necessary to change it to non-Copy later, much
of the code that uses it will probably need to be adapted.

While C++ lets you overload assignment operators and define custom copy and
move constructors, Rust doesn’t include any way to provide custom code to make a
type Copy; it’s either a plain byte-for-byte copy, or an explicit call to the clone method
(which you must implement yourself). Rust’s moves can’t be customized either; a
move is always just a byte-for-byte, shallow copy that leaves its source uninitialized.

Rc and Arc: shared ownership

Although most values have unique owners in typical Rust code, in some cases it’s dif‐
ficult to find every value a single owner that has the lifetime you need; you’d like the
value to simply live until everyone’s done using it. For these cases, Rust provides the
reference-counted pointer types, Rc and Arc. As you would expect from Rust, these
are entirely safe to use: you cannot forget to adjust the reference count, or create
other pointers to the referent that Rust doesn’t notice, or stumble over any of the
other sorts of problems that accompany reference-counted pointer types in C++.

The Rc and Arc types are very similar; the only difference between them is that an Arc
is safe to share between threads directly—the name Arc is short for “Atomic Refer‐
ence Count”—whereas a plain Rc uses faster non-thread-safe code to update its refer‐
ence count. If you don’t need to share the pointers between threads, there’s no reason
to pay the performance penalty of an Arc, so you should use Rc; Rust will prevent you
from accidentally passing one across a thread boundary. The two types are otherwise
equivalent, so for the rest of this section, we’ll only talk about Rc.

Earlier in the chapter we showed how Python uses reference counts to manage its val‐
ues’ lifetimes. You can use Rc to get a similar effect in Rust. Consider the following
code:
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use std::rc::Rc;

// Rust can infer all these types; written out for clarity
let s : Rc<String> = Rc::new("shirataki".to_string());
let t : Rc<String> = s.clone();
let u : Rc<String> = s.clone();

For any type T, an Rc<T> value is a pointer to a heap-allocated T that has had a refer‐
ence count affixed to it. Cloning an Rc<T> value does not copy the T; instead, it simply
creates another pointer to it, and increments the reference count. So the above code
produces the following situation in memory:

Each of the three Rc<String> pointers is referring to the same block of memory,
which holds a reference count and space for the String. The usual ownership rules
apply to the Rc pointers themselves, and when the last extant Rc is dropped, Rust
drops the String as well.

Just as with a Box, you can use any of String’s usual methods directly on an Rc<T>:

assert!(s.contains("shira"));
assert_eq!(t.find("taki"), Some(5));
println!("{} are quite chewy, almost bouncy, but lack flavor", u);

A value owned by an Rc pointer is immutable. If you try to add some text to the end
of the string:

s.push_str(" noodles");

Rust will decline:

error: cannot borrow immutable borrowed content as mutable
    s.push_str(" noodles");
    ^~

Rust’s memory and thread safety guarantees depend on ensuring that no value is ever
simultaneously shared and mutable. Rust assumes the referent of an Rc pointer might
in general be shared, so it must not be mutable. We explain why this restriction is
important in Chapter 5.
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One well-known problem with using reference counts to manage memory is that, if
there are ever two reference-counted values that point to each other, each will hold
the other’s reference count above zero, so the values will never be freed:

It is possible to leak values in Rust this way, but such situations are rare. You cannot
create a cycle without, at some point, making an older value point to a newer value.
This obviously requires the older value to be mutable. Since Rc pointers hold their
referents immutable, it’s not normally possible to create a cycle. However, Rust does
provide ways to create mutable portions of otherwise immutable values; if you com‐
bine those techniques with Rc pointers, you can create a cycle and leak memory.
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1. In the past, some C++ libraries shared a single buffer among several std::string
values, using a reference count to decide when the buffer should be freed. Newer
versions of the C++ specification effectively preclude that representation; all
modern C++ libraries use the approach shown here.↩



CHAPTER 5

References and borrowing

All the pointer types we’ve seen so far—the simple Box<T> heap pointer, and the
pointers internal to String and Vec values—are owning pointers: when the owner is
dropped, the referent goes with it. Rust also has non-owning pointer types called ref‐
erences, which have no effect on their referents’ lifetimes.

In fact, it’s rather the opposite: references must never outlive their referents. Rust
requires it to be apparent simply from inspecting the code that no reference will out‐
live the value it points to. To emphasize this, Rust refers to creating a reference to
some value as “borrowing” the value: what you have borrowed, you must eventually
return to its owner.

If you felt a moment of skepticism when reading the “requires it to be apparent”
phrase there, you’re in excellent company. The references themselves are nothing spe‐
cial; under the hood, they’re just pointers. But the rules that keep them safe are novel
to Rust; outside of research languages, you won’t have seen anything like them before.
And although these rules are the part of Rust that requires the most effort to master,
the breadth of classic, absolutely everyday bugs they prevent is surprising, and their
effect on multi-threaded programming is exciting enough to keep you up late think‐
ing about the possibilities. This is Rust’s radical wager, again.

As an example, let’s suppose we’re going to build a table of murderous Renaissance
artists and their most celebrated works. Rust’s standard library includes a hash table
type, so we can define our type like this:

use std::collections::HashMap;

type Table = HashMap<String, Vec<String>>;

In other words, this is a hash table which maps String values to Vec<String> values,
taking the name of an artist to a list of the names of their works. You can iterate over
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the entries of a HashMap with a for loop, so we can write a function to print out a
Table for debugging:

fn show(table: Table) {
    for (artist, works) in table {
        println!("works by {}:", artist);
        for work in works {
            println!("  {}", work);
        }
    }
}

Constructing and printing the table is straightforward:

let mut table = Table::new();
table.insert("Gesualdo".to_string(),
             vec!["many madrigals".to_string(),
                  "Tenebrae Responsoria".to_string()]);
table.insert("Caravaggio".to_string(),
             vec!["The Musicians".to_string(),
                  "The Calling of St. Matthew".to_string()]);
table.insert("Cellini".to_string(),
             vec!["Perseus with the head of Medusa".to_string(),
                  "a salt cellar".to_string()]);

show(table);

And it all works fine:

$ cargo run
     Running `/home/jimb/rust/book/fragments/target/debug/fragments`
works by Gesualdo:
  Tenebrae Responsoria
  many madrigals
works by Cellini:
  Perseus with the head of Medusa
  a salt cellar
works by Caravaggio:
  The Musicians
  The Calling of St. Matthew
$

But if you’ve read the previous chapter’s section on moves, this definition for show
should raise a few questions. In particular, HashMap is not Copy—it can’t be, since it
owns a dynamically allocated table. So when the program calls show(table) above,
the whole structure gets moved to the function, leaving the variable table uninitial‐
ized. If the calling code tries to use table now, it’ll run into trouble:

...
show(table);
assert_eq!(table["Gesualdo"][0], "many madrigals");

Rust complains that table isn’t available any more:
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error: use of moved value: `table`
assert_eq!(table["Gesualdo"][0], "many madrigals");
           ^~~~~
note: `table` moved here because it has type `HashMap<String, Vec<String>>`,
which is non-copyable
show(table);
     ^~~~~

In fact, if we look into the definition of show, the outer for loop takes ownership of
the hash table and consumes it entirely; and the inner for loop does the same to each
of the vectors. (We saw this behavior earlier, in the “Liberté, égalité, fraternité” exam‐
ple.) Because of move semantics, we’ve completely destroyed the entire structure sim‐
ply by trying to print it out. Thanks, Rust!

The right way to handle this is to use references. References come in two kinds:

• A shared reference lets you read but not modify its referent. However, you can
have as many shared references to a particular value at a time as you like. The
expression &e yields a shared reference to e’s value; if e has the type T, then &e has
the type &T. Shared references are Copy.

• A mutable reference lets you both read and modify its referent. However, you may
only have one mutable reference to a particular value active at a time. The
expression &mut e yields a mutable reference to e’s value; you write its type as
&mut T. Mutable references are not Copy.

You can think of the distinction between shared and mutable references as a way to
enforce a “multiple readers or single writer” rule at compile time. This turns out to be
essential to memory safety, for reasons we’ll go into later in the chapter.

The printing function in our example doesn’t need to modify the table, just read its
contents. So the caller should be able to pass it a shared reference to the table, as fol‐
lows:

show(&table);

References are non-owning pointers, so the table variable remains the owner of the
entire structure; show has just borrowed it for a bit. Naturally, we’ll need to adjust the
definition of show to match, but you’ll have to look closely to see the difference:

fn show(table: &Table) {
    for (artist, works) in table {
        println!("works by {}:", artist);
        for work in works {
            println!("  {}", work);
        }
    }
}
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The type of table has changed from Table to &Table: instead of passing the table by
value (and hence moving ownership into the function), we’re now passing a shared
reference. That’s the only textual change. But how does this play out as we work
through the body?

Whereas our original outer for loop took ownership of the HashMap and consumed
it, in our new version it receives a shared reference to the HashMap. Iterating over a
shared reference to a HashMap is defined to produce shared references to each entry’s
key and value: artist has changed from a String to a &String, and works from a
Vec<String> to a &Vec<String>.

The inner loop is changed similarly. Iterating over a shared reference to a vector is
defined to produce shared references to its elements, so work is now a &String. No
ownership changes hands anywhere in this function; it’s just passing around non-
owning references.

Now, if we wanted to write a function to alphabetize the works of each artist, a shared
reference doesn’t suffice, since shared references don’t permit modification. Instead,
the sorting function needs to take a mutable reference to the table:

fn sort_works(table: &mut Table) {
    for (_artist, works) in table {
        works.sort();
    }
}

And we need to pass it one:

sort_works(&mut table);

This mutable borrow grants the sort_works function the ability to read and modify
our structure, as required by the vectors’ sort method.

References as values

The above example shows a pretty typical use for references: allowing functions to
access or manipulate a structure without taking ownership. But references are more
flexible than that, so let’s look at some very constrained examples to get a more
detailed view of what’s going on.

Implicit dereferencing

Superficially, Rust references resemble C++ references: they’re both just pointers
under the hood; and in the examples we showed, there was no need to explicitly
dereference them. However, Rust references are really closer to C or C++ pointers.
You must use the & operator to create references, and in the general case, dereferenc‐
ing does require explicit use of the * operator:
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let x = 10;
let r = &x;
assert!(*r == 10);

let mut y = 32;
let mr = &mut y;
*mr *= 32;
assert!(*mr == 1024);

So why were there no uses of * in the artist-handling code? The . operator automati‐
cally follows references for you, so you can omit the * in many cases:

let point = (1000, 729);
let r = &point;
assert_eq!(r.0, 1000);

In the above, the reference r.0 automatically dereferences r, as if you’d written (*r).
0. This is why Rust has no analog to C and C++’s -> operator: the . operator handles
that case itself. In fact, the . operator will follow as many references as you give it:

struct Point { x: i32, y: i32 }
let point = Point { x: 1000, y: 729 };
let r : &Point = &point;
let rr : &&Point = &r;
let rrr : &&&Point = &rr;
assert_eq!(rrr.y, 729);

(We’ve only written out the types here for clarity’s sake; there’s nothing here Rust
couldn’t infer.) In memory, that code builds a structure like this:

So the expression rrr.y actually traverses three pointers to get to its target, as direc‐
ted by the type of rrr, before fetching its y field.

Method calls automatically follow references as well:

let mut v = vec![1968, 1973];
let mut r : &mut Vec<i32> = &mut v;
let rr : &mut &mut Vec<i32> = &mut r;
rr.sort_by(|a, b| b.cmp(a)); // reverse sort order
assert_eq!(**rr, [1973, 1968]);
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Even though the type of rr is &mut &mut Vec<i32>, we can still invoke methods
available on Vec directly on rr, like sort_by.

Rust’s comparison operators “see through” any number of references as well, as long
as both operands have the same type:

let x = 10;
let y = 10;

let rx = &x;
let ry = &y;

let rrx = &rx;
let rry = &ry;

assert!(rrx <= rry);
assert!(rrx == rry);

The final assertion here succeeds, even though rrx and rry point at different values
(namely, rx and ry), because the == operator follows all the references and performs
the comparison on their final targets, x and y. This is almost always the behavior you
want, especially when writing generic functions. If you actually want to know
whether two references point to the same object, you must cast the references to raw
pointers, which the comparison operators will not automatically dereference:

assert!(rx as *const i32 != ry as *const i32);

Assigning references

Like a C or C++ pointer, and unlike a C++ reference, assigning to a Rust reference
makes it point at a new value:

let x = 10;
let y = 20;
let mut r = &x;

if b { r = &y; }

assert!(*r == 10 || *r == 20);

The reference r initially points to x. But if b is true, the if expression will change r to
point to y instead:
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References to slices and trait objects

The references we’ve shown so far are all simple pointers. However, as explained in
the sections on slices and trait objects in Chapter 3, some references are “fat pointers”:
two-word values that include both a pointer and some additional information about
its referent.

A reference to a slice of an array, vector, or string, written &[T] for some type T, or
&str for a slice of a String, comprises a pointer to the first element included in the
slice, and the length of the slice in elements. A reference to a trait object &Tr, for some
trait Tr, comprises a pointer to a value that implements the trait Tr, and a pointer to
an implementation of Tr’s methods appropriate for the referent’s true type.

Aside from carrying this extra data, slice and trait object references behave just like
the other sorts of references we’ve shown so far in this chapter: they are non-owning
pointers, which are not allowed to outlive their referents; they may be mutable or
shared; and so on.

References are never null

Rust references are never null. There’s no analog to C’s NULL or C++’s nullptr; there
is no default initial value for a reference (you can’t use a variable until it’s been initial‐
ized, regardless of its type); and Rust won’t convert integers to pointers (outside of
unsafe code).

C and C++ code often uses a null pointer to indicate the absence of a value: for exam‐
ple, the malloc function either returns a pointer to a new block of memory, or
nullptr if there isn’t enough memory available to satisfy the request. In Rust, if you
need a value that is either a reference to something or not, use the type Option<&T>.
At the machine level, Rust represents None as a null pointer, and Some(r), where r is
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an &T value, as the non-zero address, so Option<&T> is just as efficient as a nullable
pointer would be in C or C++, even though it’s safer: its type requires you to check
whether it’s None before you can use it.

Borrowing references to arbitrary expressions

Whereas C and C++ only let you apply their & operator to certain kinds of expres‐
sions, Rust lets you borrow a reference to the value of any sort of expression at all:

fn factorial(n: usize) -> usize { (1..n+1).product() }
let r = &factorial(6);
assert_eq!(r + &1009, 1729);

In situations like this, Rust simply creates an anonymous variable to hold the expres‐
sion’s value, and makes the reference point to that. The lifetime of this anonymous
variable depends on what we do with the reference:

• If the reference is being immediately assigned to a variable in a let statement (or
is part of some struct or array that is being immediately assigned), then Rust
makes the anonymous variable live as long as the variable the let initializes. In
our example, Rust would do this for the referent of r.

• Otherwise, the anonymous variable lives to the end of the enclosing statement. In
our example, the anonymous variable created to hold 1009 lasts only to the end
of the assert_eq! statement.

Reference safety

As we’ve presented them so far, references look pretty much like ordinary pointers in
C or C++. But those are unsafe; how does Rust keep its references under control? Per‐
haps the best way to see the rules in action is to try to break them. We’ll start with the
simplest example possible, and then add in interesting complications and explain
how they work out.

Borrowing a local variable

Here’s a pretty obvious case. You can’t borrow a reference to a local and take it out of
the local’s scope:

let r;
{
    let x = 1;
    r = &x;
}
assert_eq!(*r, 1);  // bad: reads memory `x` used to occupy

The Rust compiler rejects this program, with a detailed error message:

94 | Chapter 5: References and borrowing



error: `x` does not live long enough
        r = &x;
             ^~
note: reference must be valid for the block suffix following statement 0 at ...
    let r;
    {
        let x = 1;
        r = &x;
    }
    assert_eq!(*r, 1);  // bad: reads memory `x` used to occupy
...
note: ...but borrowed value is only valid for the block suffix following
statement 0 at ...
        let x = 1;
        r = &x;
    }

The “block suffix following statement 0” phrase isn’t very clear. It generally refers to
the portion of the program that some variable is in scope, from the point of its decla‐
ration to the end of the block that contains it. Here, the error messages talk about the
“block suffixes” of the lifetimes of r and x. The compiler’s complaint is that the refer‐
ence r is still live when its referent x goes out of scope, making it a dangling pointer—
which is verboten.

While it’s obvious to a human reader that this program is broken, it’s worth looking at
how Rust itself reached that conclusion. Even this simple example shows the logical
tools Rust uses to check much more complex code.

Rust tries to assign each reference in your program a lifetime that meets the con‐
straints imposed by how the reference is used. A lifetime is some stretch of your pro‐
gram for which a reference could live: a lexical block, a statement, an expression, the
scope of some variable, or the like.

Here’s one constraint which should seem pretty obvious: If you have a variable x, then
a reference to x must not outlive x itself:
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Beyond the point where x goes out of scope, the reference would be a dangling
pointer. This is true even if x is some larger data structure instead of a simple i32, and
you’ve borrowed a reference to some part of it: x owns the whole structure, so when x
goes, every value it owns goes along with it.

Here’s another constraint: If you store a reference in a variable r, the reference must
be good for the entire lifetime of r:

If the reference can’t live at least as long as r does, then at some point r will be a dan‐
gling pointer. As before, this is true even if r is some larger data structure that con‐
tains the reference; if you build a vector of references, say, all of them must have
lifetimes that enclose the vector’s.

So we’ve got some situations that limit how long a reference’s lifetime can be, and oth‐
ers that limit how short it can be. Rust simply tries to find a lifetime for every refer‐
ence that satisfies these constraints. For example, the following code fragment shows
a lifetime that satisfies the constraints placed on it:
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Since we’ve borrowed a reference to x, the reference’s lifetime must not extend
beyond x’s scope. Since we’ve stored it in r, its lifetime must cover r’s scope. Since the
latter scope lies within the former, Rust can easily find a lifetime that meets the con‐
straints.

But in our original example, the constraints are contradictory:

There is simply no lifetime that is contained by x’s scope, and yet contains r’s scope.
Rust recognizes this, and rejects the program.

This is the process Rust uses for all code. Data structures and function calls introduce
new sorts of constraints, but the principle remains the same: first, understand the
constraints arising from the way the program uses references; then, find lifetimes that
satisfy those constraints. This is not so different from the process C and C++ pro‐
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grammers impose on themselves; the difference is that Rust knows the rules, and
enforces them.

Lifetimes are entirely figments of Rust’s compile-time imagination. At run time, a ref‐
erence is nothing but a pointer; its lifetime has been checked and discarded, and has
no run-time representation.

Receiving references as parameters

When we pass a reference to a function, how does Rust make sure the function uses it
safely? Suppose we have a function f that takes a reference and stores it in a global
variable. We’ll need to make a few revisions to this, but here’s a first cut:

// This code has several problems, and doesn't compile.
static mut STASH: &i32;
fn f(p: &i32) { STASH = p; }

Rust’s equivalent of a global variable is called a static: it’s a value that’s created when
the program starts, and which lasts until it terminates. (Like any other declaration,
Rust’s module system controls where statics are visible, so they’re only “global” in
their lifetime, not their visibility.) We cover statics in ???, but for now we’ll just call
out a few rules that our code above doesn’t follow:

• Every static must be initialized.
• Mutable statics are inherently not thread-safe (after all, any thread can access a

static at any time), and even in single-threaded programs, they can fall prey to
other sorts of reentrancy problems. For these reasons, you may only access a
mutable static within an unsafe block. In this example we’re not concerned with
those particular problems, so we’ll just throw in an unsafe block and move on.

• If you use a reference in a static’s type, you must explicitly write out its lifetime.
Lifetime names in Rust are lower-case identifiers with a ' affixed to the front, like
'a or 'party. Our static STASH is alive for the program’s entire execution; Rust
names this maximal lifetime 'static. In a reference type, the lifetime name goes
between the & and the referent type, so STASH’s type must be &'static i32.

With those revisions made, we now have:

static mut STASH: &'static i32 = &128;
fn f(p: &i32) { // still not good enough
    unsafe {
        STASH = p;
    }
}

We’re almost done. To see the remaining problem, we need to write out a few things
that Rust is helpfully letting us omit. The signature of f as written above is actually
shorthand for the following:
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fn f<'a>(p: &'a i32) { ... }

Here, the lifetime 'a is a “lifetime parameter” of f. When we write fn f<'a>, we’re
defining a function that will work for any given lifetime 'a. So, the signature above
says that f is a function that takes a reference to an i32 with any given lifetime 'a.

Since we must allow 'a to be any lifetime, things had better work out if it’s the small‐
est possible lifetime: one just enclosing the body of f. This assignment then becomes
a point of contention:

STASH = p;

When we assign one reference to another, the source’s lifetime must be at least as long
as the destination’s. But p’s lifetime is clearly not guaranteed to be as long as STASH’s,
which is 'static, so Rust rejects our code:

error: cannot infer an appropriate lifetime for automatic coercion due to
conflicting requirements
        STASH = p;
              ^~

note: first, the lifetime cannot outlive the lifetime 'a as defined on the
block at ...
fn f<'a>(p: &'a i32) {
    unsafe {
        STASH = p;
    }
}
note: ...so that reference does not outlive borrowed content
        STASH = p;
              ^~
note: but, the lifetime must be valid for the static lifetime...
note: ...so that expression is assignable (expected `&'static i32`, found `&i32`)
        STASH = p;
              ^~

At this point it’s clear that our function can’t accept just any reference as an argument.
But it ought to be able to accept a reference that has a 'static lifetime: storing such a
reference in STASH can’t create a dangling pointer. And indeed, the following code
compiles just fine:

static mut STASH: &'static i32 = &10;

fn f(p: &'static i32) {
    unsafe {
        STASH = p;
    }
}
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This time, f’s signature spells out that p must be a reference with lifetime 'static, so
there’s no longer any problem storing that in STASH. We can only apply f to references
to other statics, but that’s the only thing that’s safe to do anyway.

Take a step back, though, and notice what happened to f’s signature as we amended
our way to correctness: the original f(p: &i32) ended up as f(p: &'static i32). In
other words, we were unable to write a function that stashed a reference in a global
variable without reflecting that intention in the function’s signature. In Rust, a func‐
tion’s signature always exposes the body’s behavior.

Conversely, if we do see a function with a signature like g(p: &i32) (or with the life‐
times written out, g<'a>(p: &'a i32)), we can tell that it does not stash its argument
p anywhere that will outlive the call. There’s no need to look into g’s definition; the
signature alone tells us what g can and can’t do with its argument. This fact ends up
being very useful when you’re trying to establish the safety of a call to the function.

Passing references as arguments

Now that we’ve shown how a function’s signature relates to its body, let’s examine how
it relates to the function’s callers. Suppose you have the following code:

// This could be written more briefly: fn g(p: &i32),
// but let's write out the lifetimes for now.
fn g<'a>(p: &'a i32) { ... }

let x = 10;
g(&x);

From g’s signature alone, Rust knows it will not save p anywhere that might outlive
the call: any lifetime that covers the call must work for 'a. So Rust chooses the small‐
est possible lifetime for &x: that of the call to g. This meets all constraints: it doesn’t
outlive x, and covers the entire call to g. So this code passes muster.

Note that although g takes a lifetime parameter 'a, we didn’t need to mention it when
calling g. In general, you only need to worry about lifetime parameters when defining
functions and types; when using them, Rust infers the lifetimes for you.

What if we tried to pass &x to our function f from earlier, that stores its argument in a
static?

fn f(p: &'static i32) { ... }

let x = 10;
f(&x);

This fails to compile: the reference &x must not outlive x, but by passing it to f we
constrain it to live at least as long as 'static. There’s no way to satisfy everyone here,
so Rust rejects the code.
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Returning references

It’s common for a function to take a reference to some data structure, and then return
a reference into some part of that structure. For example, here’s a function that
returns a reference to the smallest element of a slice:

// v should have at least one element.
fn smallest(v: &[i32]) -> &i32 {
    let mut s = &v[0];
    for r in &v[1..] {
        if *r < *s { s = r; }
    }
    s
}

We’ve omitted lifetimes from that function’s signature in the usual way, but writing
them out would give us:

fn smallest<'a>(v: &'a [i32]) -> &'a i32 { ... }

Suppose we call smallest like this:

let s;
{
    let parabola = [9, 4, 1, 0, 1, 4, 9];
    s = smallest(&parabola);
}
assert_eq!(*s, 0); // bad: points to element of dropped array

From smallest’s signature, we can see that its argument and return value must have
the same lifetime, 'a. In our call, the argument &parabola must not outlive parabola
itself; yet smallest’s return value must live at least as long as s. There’s no possible
lifetime 'a that can satisfy both constraints, so Rust rejects the code:

error: `parabola` does not live long enough
        s = smallest(&parabola);
                      ^~~~~~~~
note: reference must be valid for the block suffix following statement 0 at...
    let s;
    {
        let parabola = [9, 4, 1, 0, 1, 4, 9];
        s = smallest(&parabola);
    }
    assert_eq!(*s, 0); // bad: points to element of dropped array
...
note: ...but borrowed value is only valid for the block suffix following
statement 0 at ...
        let parabola = [9, 4, 1, 0, 1, 4, 9];
        s = smallest(&parabola);
    }
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Lifetimes in function signatures let Rust assess the relationships between the refer‐
ences you pass to the function and those the function returns, and ensure they’re
being used safely.

Structures containing references

How does Rust handle references stored in data structures? Here’s the same erroneous
program we looked at earlier, except that we’ve put the reference inside a structure:

// This does not compile.
struct S {
    r: &i32
}

let s;
{
    let x = 10;
    s = S { r: &x };
}
assert_eq!(*s.r, 10); // bad: reads from dropped `x`

Rust is skeptical about our type S:

error: missing lifetime specifier
            r: &i32
               ^~~~

Whenever a reference type appears inside another type’s definition, you must write
out its lifetime, either declaring it 'static, or giving the type a lifetime parameter
and using that. We’ll do the latter:

struct S<'a> {
    r: &'a i32
}

The amended definition reads: “S is a struct that, for any given lifetime 'a, has a field
r holding a reference with lifetime 'a to an i32.”

Each time you create a value of the type S, Rust tries to decide what lifetime would
work for that value’s lifetime parameter 'a. Consider the expression S { r: &x }:
this initializes r with &x, constraining 'a to be no larger than x’s scope.

Recall that assigning a reference to a variable constrains the reference’s lifetime to
cover the variable’s scope. This rule actually applies not just to references, but to any
type that takes a lifetime parameter, like our struct S. So the assignment s = S { r:
&x } constrains the lifetime 'a to be at least as long as that of s.

And now Rust has arrived at the same contradictory constraints as before: 'a must
not outlive x, yet must live at least as long as s. The type’s lifetime parameter relates
the containing value’s lifetime to those of the references it contains. In this case, 'a

102 | Chapter 5: References and borrowing



relates the lifetime of our S value to its r member, allowing Rust to detect the dan‐
gling pointer. Disaster averted!

Note that when a type has lifetime parameters, the lifetimes for each value of that type
are distinct. If we had several values of type S running around in our example, each
one would have its own independent 'a lifetime; the values wouldn’t necessarily con‐
strain each other. (Naturally, if we assigned references back and forth between the val‐
ues, that would introduce constraints following the usual rules.)

How does a type with a lifetime parameter behave when placed inside some other
type?

struct T {
    s: S  // not adequate
}

Rust is skeptical, just as it was when we tried placing a reference in S without specify‐
ing its lifetime:

error: wrong number of lifetime parameters: expected 1, found 0
s: S
   ^~

We can’t leave off S’s lifetime parameter here: Rust needs to know how a T’s lifetime
relates to that of the reference in its S, in order to apply the same checks to T that it
does for S and plain references.

We could give s the 'static lifetime. This works:

struct T {
    s: S<'static>
}

With this definition, the s field may only borrow values that live for the entire execu‐
tion of the program. That’s somewhat restrictive, but it does mean that a T can’t possi‐
bly borrow a local variable; there are no special constraints on a T’s lifetime.

The other approach would be to give T its own lifetime parameter, and pass that to S:

struct T<'a> {
    s: S<'a>
}

By taking a lifetime parameter 'a and using it in s’s type, we’ve allowed Rust to relate
a T value’s lifetime to that of the reference its S holds.

We showed earlier how a function’s signature exposes what it does with the references
we pass it. Now we’ve shown something similar about types: a type’s lifetime parame‐
ters always reveal whether it contains references with interesting (that is,
non-'static) lifetimes, and what those lifetimes can be.
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For example, suppose we have a parsing function that takes a slice of bytes, and
returns a structure holding the results of the parse:

fn parseRecord<'i>(input: &'i [u8]) -> Record<'i> { ... }

Without looking into the definition of the Record type at all, we can tell that, if we
receive a Record from parseRecord, whatever references it contains must point into
the input buffer we passed in, and nowhere else (except perhaps at 'static values).

Distinct lifetime parameters

Suppose you’ve defined a structure containing two references like this:

struct S<'a> {
    x: &'a i32,
    y: &'a i32
}

Both references use the same lifetime 'a. This could be a problem if your code wants
to do something like this:

let x = 10;
let r;
{
    let y = 20;
    {
        let s = S { x: &x, y: &y };
        r = s.x;
    }
}

This code doesn’t create any dangling pointers. The reference to y stays in s, which
goes out of scope before y does. The reference to x ends up in r, which doesn’t outlive
x.

If you try to compile this, however, Rust will complain that y does not live long
enough, even though it clearly does. Why is Rust worried? If you work through the
code carefully, you can follow its reasoning:

• Both members of S are references with the same lifetime 'a, so Rust must find a
single lifetime that works for both s.x and s.y.

• We assign r = s.x, requiring 'a to cover r’s lifetime.
• We initialized s.y with &y, requiring 'a to be no longer than y’s lifetime.

These constraints are impossible to satisfy: no lifetime is shorter than y’s scope, but
longer than r’s. Rust balks.

The problem arises because both references in S have the same lifetime 'a. Changing
the definition of S to let each reference have a distinct lifetime fixes everything:
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struct S<'a, 'b> {
    x: &'a i32,
    y: &'b i32
}

With this definition, s.x and s.y have independent lifetimes. What we do with s.x
has no effect on what we store in s.y, so it’s easy to satisfy the constraints now: 'a can
simply be r’s lifetime, and 'b can be s’s. (y’s lifetime would work too for 'b, but Rust
tries to choose the smallest lifetime that works.) Everything ends up fine.

Newcomers to Rust often encounter difficulties of this sort: they know how to add
lifetime parameters to their structures, and write lifetime names into their reference
types, but don’t recognize when they’ve placed tighter constraints on the references
than they really need. Often the stricter definition works fine in simple situations, but
once they encounter an unlucky arrangement of lifetimes, Rust rejects their correct
program, citing risks the programmer can see will never come to pass. If this happens
to you, check whether your lifetime parameters aren’t entangling things you’d prefer
to let vary independently.

Function signatures can have similar effects. Suppose we have a function like this:

fn f<'a>(r: &'a i32, s: &'a i32) -> &'a i32 { r } // perhaps too tight

Here, both reference parameters use the same lifetime 'a, which can unnecessarily
constrain the caller in the same way we’ve shown above. When possible, let parame‐
ters’ lifetimes vary independently:

fn f<'a, 'b>(r: &'a i32, s: &'b i32) -> &'a i32 { r } // looser

Sharing versus mutation

So far, we’ve discussed how Rust ensures no reference will ever point to a variable that
has gone out of scope. But there are other ways to introduce dangling pointers. Here’s
an easy case:

let v = vec![4, 8, 19, 27, 34, 10];
let r = &v;
let aside = v;  // move vector to aside
r[0];           // bad: uses `v`, which is now uninitialized

The assignment to aside moves the vector, leaving v uninitialized, turning r into a
dangling pointer:
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The problem here is not that v goes out of scope while r still refers to it, but rather
that v’s value gets moved elsewhere, leaving v uninitialized. Naturally, Rust catches
the error:

error: cannot move out of `v` because it is borrowed
let aside = v;
    ^~~~~
note: borrow of `v` occurs here
let r = &v;
         ^~

Throughout its lifetime, a shared reference makes its referent read-only: you may not
assign to the referent or move its value elsewhere. In the code above, r’s lifetime cov‐
ers the attempt to move the vector, so Rust rejects the program. If you change the
program as shown below, there’s no problem:

let v = vec![4, 8, 19, 27, 34, 10];
{
    let r = &v;
    r[0];       // okay: vector is still there
}
let aside = v;

In this version, r goes out of scope earlier, the reference’s lifetime ends before v is
moved aside, and all is well.

Here’s a different way to wreak havoc. Suppose we have a handy function to extend a
vector with the elements of a slice:

fn extend(vec: &mut Vec<f64>, slice: &[f64]) {
    for elt in slice {
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        vec.push(*elt);
    }
}

This is a slightly less flexible (and much less optimized) version of the standard
library’s extend_from_slice method on vectors. We can use it to build up a vector
from slices of other vectors or arrays:

let mut wave = Vec::new();
let head = vec![0.0, 1.0];
let tail = [0.0, -1.0];

extend(&mut wave, &head);   // extend wave with another vector
extend(&mut wave, &tail);   // extend wave with an array

assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0]);

So we’ve built up one period of a sine wave here. If we want to add on another undu‐
lation, can we append the vector to itself?

extend(&mut wave, &wave);
assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0,
                      0.0, 1.0, 0.0, -1.0]);

This may look fine on casual inspection. But remember that, when we add an element
to a vector whose buffer is full, the vector must allocate a new buffer with more space.
Suppose wave starts with space for four elements, and so must allocate a larger buffer
when extend tries to add a fifth. Memory ends up looking like this:
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The extend function’s vec argument borrows wave (owned by the caller) which has
allocated itself a new buffer with space for eight elements. But slice continues to
point to the old four-element buffer, which has been dropped.

This sort of problem isn’t unique to Rust: modifying collections while pointing into
them is delicate territory in many languages. In C++, the specification of std::vec
tor cautions you that “reallocation [of the vector’s buffer] invalidates all the refer‐
ences, pointers, and iterators referring to the elements in the sequence.” Similarly,
Java says, of modifying a java.util.Hashtable object:

[I]f the Hashtable is structurally modified at any time after the iterator is created, in
any way except through the iterator’s own remove method, the iterator will throw a
ConcurrentModificationException.

Rust reports the problem with our call to extend at compile time:

error: cannot borrow `wave` as immutable because it is also borrowed as mutable
    extend(&mut wave, &wave);
                       ^~~~
note: previous borrow of `wave` occurs here; the mutable borrow prevents
subsequent moves, borrows, or modification of `wave` until the borrow ends
    extend(&mut wave, &wave);
                ^~~~
note: previous borrow ends here
    extend(&mut wave, &wave);
                           ^
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In other words, we may borrow a mutable reference to the vector, and we may bor‐
row a shared reference to its elements, but those two references’ lifetimes may not
overlap. In our case, both references’ lifetimes cover the call to extend, so Rust rejects
the code.

The errors above both stem from violations of Rust’s rules for mutation and sharing:

• Shared access is read-only access. Values borrowed by shared references are read-
only. Across the lifetime of a shared reference, neither its referent, nor anything
reachable from that referent, can be changed by anything. There exist no live
mutable references to anything in that structure; its owner is held read-only; and
so on. It’s really frozen.

• Conversely, Mutable access is exclusive access. A value borrowed by a mutable ref‐
erence is reachable exclusively via that reference. Across the lifetime of a mutable
reference, there is no other usable path to its referent, or to any value reachable
from there. The only references whose lifetimes may overlap with a mutable ref‐
erence are those you borrow from the mutable reference itself.

Rust reported the extend example as a violation of the first rule: since we’ve borrowed
a shared reference to wave’s elements, the elements and the Vec itself are all read-only.
You can’t borrow a mutable reference to a read-only value.

But Rust could also have treated our bug as a violation of the second rule: since we’ve
borrowed a mutable reference to wave, that mutable reference must be the only way
to reach the vector or its elements. The shared reference to the slice is itself another
way to reach the elements, violating the second rule.

Each kind of reference affects what we can do with the values along the owning path
to the referent, and the values reachable from the referent:

Note that in both cases, the path of ownership leading to the referent cannot be
changed for the reference’s lifetime. For a shared borrow, the path is read-only; for a
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mutable borrow, it’s completely inaccessible. So there’s no way for the program to do
anything that will invalidate the reference.

Paring these principles down to the simplest possible examples:

let mut x = 10;
let r1 = &x;
let r2 = &x;     // okay: multiple shared borrows permitted
x += 10;         // error: cannot assign to `x` because it is borrowed
let m = &mut x;  // error: cannot borrow `x` as mutable because it is
                 // also borrowed as immutable

let mut y = 20;
let m1 = &mut y;
let m2 = &mut y;  // error: cannot borrow as mutable more than once
let z = y;        // error: cannot use `y` because it was mutably borrowed

It is okay to reborrow a shared reference from a shared reference:

let mut w = (107, 109);
let r = &w;
let r0 = &r.0;         // okay: reborrowing shared as shared
let m1 = &mut r.1;     // error: can't reborrow shared as mutable

Reborrowing from a mutable reference is considered just another way of accessing
the value through that reference, so it is permitted:

let mut v = (136, 139);
let m = &mut v;
let m0 = &mut m.0;      // okay: reborrowing mutable from mutable
*m0 = 137;
let r1 = &mut m.1;      // okay: reborrowing shared from mutable,
                        // and doesn't overlap with m0
v.1;                    // error: access through other paths still forbidden

These restrictions are pretty tight. Turning back to our attempted call extend(&mut
wave, &wave), there’s no quick and easy way to fix up the code to work the way we’d
like. And Rust applies these rules everywhere: if we borrow, say, a shared reference to
a key in a HashMap, we can’t borrow a mutable reference to the HashMap until the
shared reference’s lifetime ends.

But there’s good justification for this: designing containers to support unrestricted,
simultaneous iteration and modification is difficult, and often precludes simpler,
more efficient implementations. Java’s Hashtable and C++’s vector don’t bother, and
neither Python dictionaries nor JavaScript objects define exactly how such access
behaves. Other container types in JavaScript do, but require heavier implementations
as a result. C++’s std::map container promises that inserting new entries doesn’t
invalidate pointers to other entries in the map, but by making that promise, the stan‐
dard precludes more cache-efficient designs like Rust’s BTreeMap, which stores multi‐
ple entries in each node of the tree.
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Here’s another example of the kind of bug these rules catch. Consider the following C
++ code, meant to manage a file descriptor. To keep things simple, we’re only going to
show a constructor and a copying assignment operator, and we’re going to omit error
handling:

struct File {
  int descriptor;

  File(int d) : descriptor(d) { }

  File& operator=(const File &rhs) {
    close(descriptor);
    descriptor = dup(rhs.descriptor);
  }
};

The assignment operator is simple enough, but fails badly in a situation like this:

File f(open("foo.txt", ...));
...
f = f;

If we assign a File to itself, both rhs and *this are the same object, so operator=
closes the very file descriptor it’s about to pass to dup. We destroy the same resource
we were meant to copy.

In Rust, the analogous code would be:

struct File {
    descriptor: i32
}

fn new_file(d: i32) -> File { File { descriptor: d } }

fn clone_from(this: &mut File, rhs: &File) {
    close(this.descriptor);
    this.descriptor = dup(rhs.descriptor);
}

This is not idiomatic Rust. There are excellent ways to give Rust types their own con‐
structor functions and methods, which we describe ???, but the above definitions
work for this example.

If we write the Rust code corresponding to the use of File above, we get:

let mut f = new_file(open("foo.txt", ...));
...
clone_from(&mut f, &f);

Rust, of course, refuses to even compile this code:

error: cannot borrow `f` as immutable because it is also borrowed as mutable
    clone_from(&mut f, &f);
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                        ^~
note: previous borrow of `f` occurs here; the mutable borrow prevents
subsequent moves, borrows, or modification of `f` until the borrow ends
    clone_from(&mut f, &f);
                    ^~
note: previous borrow ends here
    clone_from(&mut f, &f);
                         ^

This should look familiar. It turns out that two classic C++ bugs—failure to cope with
self-assignment, and using invalidated iterators—are actually both the same undery‐
ling kind of bug! In both cases, code assumes it is modifying one value while consult‐
ing another, when in fact they’re both the same value. By requiring mutable access to
be exclusive, Rust has fended off a wide class of everyday mistakes.

The immiscibility of shared and mutable references also really shines when writing
concurrent code. A data race is only possible when some value is both shared shared
between threads and mutable—which is exactly what Rust’s reference rules eliminate.
A concurrent Rust program that avoids unsafe code is free of data races by construc‐
tion. We’ll cover concurrency in detail in “Concurrency” on page 28.

Rust’s shared references versus C’s pointers to const
On first inspection, Rust’s shared references seem to closely resemble C and C++’s
pointers to const values. However, Rust’s rules for shared references are much
stricter. For example, consider the following C code:

int x = 42;             // int variable, not const
const int *p = &x;      // pointer to const int
assert(*p == 42);
x++;                    // change variable directly
assert(*p == 43);       // “constant” referent's value has changed

The fact that p is a const int * means that you can’t modify its referent via p itself:
(*p)++ is forbidden. But you can also get at the referent directly as x, which is not
const, and change its value that way. The C family’s const keyword has its uses, but
constant it is not.

In Rust, a shared reference forbids all modifications to its referent, until its lifetime
ends:

let mut x = 42;         // non-const i32 variable
let p = &x;             // shared reference to i32
assert_eq!(*p, 42);
x += 1;                 // error: cannot assign to x because it is borrowed
assert_eq!(*p, 42);     // if you take out the assignment, this is true

To ensure a value is constant, we need to keep track of all possible paths to that value,
and make sure that they either don’t permit modification, or cannot be used at all. C
and C++ pointers are too unrestricted for the compiler to check this. Rust’s references
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are always tied to a particular lifetime, making it feasible to check them at compile
time.

Reference counting: Rc and Arc

XXX Text below was initially in the exposition of different languages’ assignment
semantics, but it probably belongs more in this section.

If we’d like to recreate the state of the Python program, we need to change the types to
explicitly request reference counting. The following code places a reference count on
the vector (but not the strings):

use std::rc::Rc;
let s = Rc::new(vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()]);
let t = s.clone();
let u = s.clone();

For any type T, the type Rc<T> is a reference to a T with a reference count attached to
the front. So, the program shown above builds a picture like this:

XXX Needed: Reference-counted Rust vector in memory

XXX Lifetime elision
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CHAPTER 6

Expressions

In this chapter, we’ll cover the expressions of Rust, the building blocks that make up
the body of Rust functions. A few concepts, such as closures and iterators, are deep
enough that we will dedicate a whole chapter to them later on. For now, we aim to
cover as much syntax as possible in a few pages.

An expression language

Rust visually resembles the C family of languages, but this is a bit of a ruse. In C,
there is a sharp distinction between expressions, bits of code which look something
like this:

5 * (fahr-32) / 9

and statements, which look more like this:

for (; begin != end; ++begin) {
    if (*begin == target)
        break;
}

Expressions have values. Statements don’t.

Rust is what is called an expression language. This means it follows an older tradition,
dating back to Lisp, where expressions do all the work.

In C, if and switch are statements. They don’t produce a value, and they can’t be
used in the middle of an expression. In Rust, if and match can produce values. We
already saw this in Chapter 2:

pixels[r * bounds.0 + c] =
    match escapes(Complex { re: point.0, im: point.1 }, 255) {
        None => 0,
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        Some(count) => 255 - count as u8
    };

An if expression can be used to initialize a variable:

let status =
    if cpu.temperature <= MAX_TEMP {
        HttpStatus::Ok
    } else {
        HttpStatus::ServerError  // server melted
    };

A match expression can be passed as an argument to a function or macro:

println!("Inside the vat, you see {}.",
    match vat.contents {
        Some(brain) => brain.desc(),
        None => "nothing of interest"
    });

This explains why Rust does not have C’s ternary operator (e1 ? e2 : e3). In C, it is a
handy expression-level analogue to the if statement. It would be redundant in Rust:
the if expression handles both cases.

Most of the control flow tools in C are statements. In Rust, they are all expressions.

Blocks and statements

Blocks, too, are expressions. A block produces a value and can be used anywhere a
value is needed.

let display_name = match post.author() {
    Some(author) => author.name(),
    None => {
        let network_info = try!(post.get_network_metadata());
        let ip = network_info.client_address();
        ip.to_string()
    }
};

The code after Some(author) => is the simple expression author.name(). The code
after None => is a block. It makes no difference to Rust. The value of the block is the
value of its last expression, ip.to_string().

Rust’s rules regarding semicolons cause mild but recurring perplexity in many pro‐
grammers. Sometimes a semicolon is required, sometimes it may be dropped, some‐
times it must be dropped. The rules are intuitive enough that no one ever seems to
struggle with them, but to set your mind at ease, we present the full rules below. The
key is that Rust does have statements after all.

The syntax of a block is:
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{ stmt* expr? }

That is, a block contains zero or more statements, followed by an optional final
expression. This final expression, if present, gives the block its value and type. Note
that there is no semicolon after this expression.

As almost everything is an expression in Rust, there are only a few kinds of state‐
ments:

• empty statements
• declarations
• expression statements

An empty statement consists of a stray semicolon, all by itself. Rust follows the tradi‐
tion of C in allowing this. Empty statements do nothing except convey a slight feeling
of melancholy. We mention them only for completeness.

Declarations are described in a separate section below.

That leaves the expression statement, which is simply an expression followed by a
semicolon. Here are three expression statements:

dandelion_control.release_all_seeds(launch_codes);

stats.launch_count += 1;

status_message =
    if self.stuck_seeds.is_empty() {
        "launch ok!".to_string()
    } else {
        format!("launch error: {} stuck seeds", self.stuck_seeds.len())
    };

The semicolon that marks the end of an expression statement may be omitted if the
expression ends with } and its type is (). (This rule is necessary to permit, for exam‐
ple, an if block followed by another statement, with no semicolon between.)

And that is all: those are Rust’s semicolon rules. The resulting language is both flexi‐
ble and readable. If a block looks like C code, with semicolons in all the familiar
places, then it will run just like a C block, and its value is (). To make a block produce
a value, add an expression at the end without a trailing semicolon.

Declarations

A let declaration is the most common kind of declaration. We have already shown
many of these. They declare local variables.

let binding: type = expr;

The type and initializer are optional. The semicolon is required.
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The scope of a let variable starts immediately after the let declaration and extends
to the end of the block. This matters when you have two different variables with the
same name:

for line in buf_read.lines() {
    let line = try!(line);
    ...
}

Here the loop variable, line, is an io::Result<String>. Inside the loop, try!()
returns early if an IO error occurred. Otherwise, the String is stored in a new vari‐
able, also called line. The new variable shadows the old one. We could have given the
two variables different names, but in this case, using line for both is fine. Taking the
wrapper off of something doesn’t necessarily mean it needs a new name.

A let declaration can declare a variable without initializing it. The variable can then
be initialized with a later assignment. This is occasionally useful, because sometimes a
variable should be initialized from the middle of some sort of control flow construct:

let name;
if self.has_nickname() {
    name = self.nickname();
} else {
    name = generate_unique_name();
    self.register(&name);
}

Here there are two different ways the local variable name might be initialized, but
either way it will be initialized exactly once, so name does not need to be declared mut.

It’s an error to use a variable before it’s initialized. (This is closely related to the error
of using a value after it’s been moved. Rust really wants you to use values only while
they exist!)

A block can also contain item declarations. An item is simply any declaration that
could appear globally in a program or module, such as a fn, struct, or use.

Later chapters will cover items in detail. For now, fn makes a sufficient example. Any
block may contain a fn:

fn show_files() -> Result<()> {
    let mut v = vec![];
    ...

    fn cmp_by_timestamp_then_name(a: &FileInfo, b: &FileInfo) -> Ordering {
        if a.mtime != b.mtime {
            a.mtime.cmp(&b.mtime).reverse()
        } else {
            a.path.cmp(&b.path)
        }
    }
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    v.sort_by(cmp_by_timestamp_then_name);
    ...
}

When a fn is declared inside a block, its scope is the entire block—that is, it can be
used throughout the enclosing block. But a nested fn is not a closure. It cannot access
local variables or arguments that happen to be in scope.

A block can even contain a whole module. This may seem a bit much—do we really
need to be able to nest every piece of the language inside every other piece?—but as
we’ll see, macros have a way of finding a use for every scrap of orthogonality the lan‐
guage provides.

if and match

The form of an if statement is familiar:

if condition1 {

    block1
} else if condition2 {

    block2
} else {
    blockn
}

Each condition must be an expression of type bool; true to form, Rust does not
implicitly convert numbers or pointers to boolean values.

Unlike C, parentheses are not required around conditions. In fact, rustc will emit a
warning if unnecessary parentheses are present. The curly braces, however, are
required.

The else if blocks, as well as the final else, are optional. An if expression with no
else block behaves exactly as though it had an empty else block.

match expressions are analogous to the C switch statement, but more flexible. A sim‐
ple example:

match code {
    0 => println!("OK"),
    1 => println!("Wires Tangled"),
    2 => println!("User Asleep"),
    _ => println!("Unrecognized Error {}", code)
}

This is something a switch statement could do. Exactly one of the four arms of this
match expression will execute, depending on the value of code. The wildcard pattern
_ matches everything, so it serves as the default: case.

Expressions | 119



For this kind of match, the compiler generally uses a jump table, just like a switch
statement. A similar optimization is applied when each arm of a match produces a
constant value. In that case, the compiler builds an array of those values, and the
match is compiled into an array access. Apart from a bounds check, there is no
branching at all in the compiled code.

The versatility of match stems from the variety of supported patterns that can be used
to the left of => in each arm. Above, each pattern is simply a constant integer. We’ve
also shown match expressions that distinguish the two kinds of Option value:

match params.get("name") {
    Some(name) => println!("Hello, {}!", name),
    None => println!("Greetings, stranger.")
}

This is only a hint of what patterns can do. A pattern can match a range of values. In
can unpack tuples. It can match against individual fields of structs. It can chase refer‐
ences, borrow parts of a value, and more. Rust’s patterns are a mini-language of their
own. We’ll dedicate several pages to them in Chapter 7.

The general form of a match expression is:

match value {
    pattern => expr,
    ...
}

The comma after an arm may be dropped if the expr is a block.

Rust checks the given value against each pattern in turn, starting with the first. When
a pattern matches, the corresponding expr is evaluated and the match expression is
complete; no further patterns are checked. At least one of the patterns must match.
Rust prohibits match expressions that do not cover all possible values:

let score = match card.rank {
    Jack => 10,
    Queen => 10,
    Ace => 11
};  // error: non-exhaustive patterns

All blocks of an if expression must produce values of the same type:

let suggested_pet =
    if with_wings { Pet::Buzzard } else { Pet::Hyena };  // ok

let favorite_number =
    if user.is_hobbit() { "eleventy-one" } else { 9 };  // error

Similarly, all arms of a match expression must have the same type:

let suggested_pet =
    match favorites.element {
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        Fire => Pet::RedPanda,
        Air => Pet::Buffalo,
        Water => Pet::Orca,
        _ => None  // error: incompatible types
    };

There is one more if form, the if let expression:

if let pattern = expr {
    block1
} else {
    block2
}

The given expr either matches the pattern, in which case block1 runs, or it doesn’t,
and block2 runs. This is shorthand for a match expression with just one pattern:

match expr {
    pattern => { block1 }

    _ => { block2 }

}

Loops

There are four looping expressions:

while condition {
    block
}

while let pattern = expr {
    block
}

loop {
    block
}

for binding in collection {
    block
}

Loops are expressions in Rust, but they don’t produce useful values. The value of a
loop is ().

A while loop behaves exactly like the C equivalent, except that again, the condition
must be of the exact type bool.

The while let loop is analogous to if let. At the beginning of each loop iteration,
the result of expr either matches the given pattern, in which case the block runs, or
it doesn’t, in which case the loop exits.
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Use loop to write infinite loops. It executes the block repeatedly forever (or until a
break or return is reached, or the thread panics).

A for loop evaluates the collection expression, then evaluates the block once for
each value in the collection. Many collection types are supported. The standard C for
loop:

for (int i = 0; i < 20; i++) {
    printf("%d\n", i);
}

is written like this in Rust:

for i in 0..20 {
    println!("{}", i);
}

As in C, the last number printed is 19.

The .. operator produces a range, a simple struct with two fields: start and end.
0..20 is the same as std::ops::Range { start: 0, end: 20 }. Ranges can be used
with for loops because Range is an iterable type: it implements the
std::iter::IntoIterator trait, which we’ll discuss in ???. The standard collections
are all iterable, as are arrays and slices.

In keeping with Rust’s move semantics, a for loop over a value consumes the value:

let strings: Vec<String> = error_messages();
for s in strings {                  // each String is moved into s here...
    println!("{}", s);
}                                   // ...and dropped here
println!("{} error(s)", strings.len()); // error: use of moved value

This can be inconvenient. The easy remedy is to loop over a reference to the collec‐
tion instead. The loop variable, then, will be a reference to each item in the collection:

for ps in &strings {
    println!("String {:?} is at address {:p}.", *ps, ps);
}

Here the type of &strings is &Vec<String> and the type of ps is &String.

Iterating over a mut reference provides a mut reference to each element:

for p in &mut strings {
    p.push('\n');  // add a newline to each string
}

Chapter iterators covers for loops in greater detail and shows many other ways to
use iterators.
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A break expression exits an enclosing loop. (In Rust, break works only in loops. It is
not necessary in match expressions, which are unlike switch statements in this
regard.)

A continue expression jumps to the next loop iteration.

A loop can be labeled with a lifetime. In the example below, 'search: is a label for the
outer for loop. Thus break 'search exits that loop, not the inner loop.

'search:
for room in apartment {
    for spot in room.hiding_spots() {
        if spot.contains(keys) {
            println!("Your keys are {} in the {}.", spot, room);
            break 'search;
        }
    }
}

Labels can also be used with continue.

return expressions

A return expression exits the current function, returning a value to the caller.

return without a value is shorthand for return ():

fn f() {     // return type omitted: defaults to ()
    return;  // return value omitted: defaults to ()
}

return is familiar enough in statement-oriented code. In expression-oriented code it
can be puzzling at first, so it’s worth spending a moment on an example. Back in
Chapter 2, we used the try!() macro to check for errors after calling a function that
can fail:

let output = try!(File::create(filename));

This is shorthand for the following match expression:

let output = match File::create(filename) {
    Ok(val) => val,
    Err(err) => return Err(err)
};

The match expression first calls File::create(filename). If that returns Ok(val),
then the whole match expression evaluates to val, so val is stored in output and we
continue with the next line of code.

Otherwise, we hit the return expression, and it doesn’t matter that we’re in the mid‐
dle of evaluating a match expression in order to determine the value of the variable
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output. We abandon all of that and exit the enclosing function, returning whatever
error we got from File::create(). This is how try!() magically propagates errors.
There is nothing magic about the control flow; it’s just using standard Rust parts.

Chapter macros explains in detail how try!(File::create(filename)) is expanded
into a match expression.

Why Rust has loop

Several pieces of the Rust compiler analyze the flow of control through your program.

• Rust checks that every path through a function returns a value of the expected
return type. To do this correctly, it needs to know whether or not it’s possible to
reach the end of the function.

• Rust checks that local variables are never used uninitialized. This entails checking
every path through a function to make sure there’s no way to reach a place where
a variable is used without having already passed through code that initializes it.

• Rust warns about unreachable code. Code is unreachable if no path through the
function reaches it.

These are called flow-sensitive analyses. They are nothing new; Java has had a “defi‐
nite assignment” analysis, similar to Rust’s, for years.

When enforcing this sort of rule, a language must strike a balance between simplicity,
which makes it easier for programmers to figure out what the compiler is talking
about sometimes—and cleverness, which can help eliminate false warnings and cases
where the compiler rejects a perfectly safe program. Rust went for simplicity. Its flow-
sensitive analyses do not examine loop conditions at all, instead simply assuming that
any condition in a program can be either true or false.

This causes Rust to reject some safe programs:

fn wait_for_process(process: &mut Process) -> i32 {
    while true {
        if process.wait() {
            return process.exit_code();
        }
    }
}  // error: not all control paths return a value

The error here is bogus. It is not actually possible to reach the end of the function
without returning a value.

The loop expression is offered as a “say-what-you-mean” solution to this problem.

Rust’s type system is affected by control flow, too. Earlier we said that all branches of
an if expression must have the same type. But it would be silly to enforce this rule on
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blocks that end with a break or return expression, an infinite loop, or a call to
panic!() or std::process:exit(). What all those expressions have in common is
that they never finish in the usual way, producing a value. A break or return exits the
current block abruptly; an infinite loop never finishes at all; and so on.

So in Rust, these expressions don’t have a normal type. Expressions that don’t finish
normally are assigned the special type !, and they’re exempt from the rules about
types having to match. You can see ! in the function signature of std::pro
cess::exit():

pub fn exit(code: i32) -> !

The ! means that exit() never returns. It’s a divergent function.

You can write divergent functions of your own using the same syntax, and this is per‐
fectly natural in some cases:

fn serve_forever(socket: ServerSocket, handler: ServerHandler) -> ! {
    socket.listen();
    loop {
        let s = socket.accept();
        handler.handle(s);
    }
}

Of course, Rust then considers it an error if the function can return normally.

Names, paths, and use

We turn now from control flow to the other building blocks of Rust expressions:
names, operators, function calls, and so on.

Since the standard library crate, std, is part of every Rust crate by default, you can
refer to any standard library feature by writing out its full path:

if s1 > s2 {
    ::std::mem::swap(&mut s1, &mut s2);
}

This function name, ::std::mem::swap, is an absolute path, because it starts
with ::. ::std refers to the top-level module of the standard library (regardless of
anything else you might have declared locally with the name std). ::std::mem is a
submodule within the standard library, and ::std::mem::swap is a public function in
that module.

You could write all your code this way, spelling out ::std::f64::consts::PI
and ::std::collections::HashMap::new every time you want a circle or a dictio‐
nary. The alternative is to import features into the modules where they are used.
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use std::mem::swap;

if s1 > s2 {
    swap(&mut s1, &mut s2);
}

The use declaration causes the name swap to be an alias for ::std::mem::swap
throughout the enclosing block or module. Paths in use declarations are automati‐
cally absolute paths, so there is no need for a leading ::.

Several names can be imported at once:

use std::collections::{HashMap, HashSet};

use std::io::prelude::*;  // import all of this module's `pub` items

A few particularly handy names, like Vec and Result, are automatically imported for
you: the standard prelude.

In ???, we will cover crates, modules, and use in more detail.

Closures

Rust has closures, lightweight function-like values. A closure usually consists of an
argument list, given between vertical bars, followed by an expression:

let is_even = |x| x % 2 == 0;

Rust infers the argument types and return type. Alternatively, they can be specified
explicitly, but in that case, the body of the closure must be a block:

let is_even = |x: u64| -> bool { x % 2 == 0 };

Closures can be called using ordinary function-call syntax:

assert_eq!(is_even(14), true);

Closures are one of Rust’s most delightful features, and there is a great deal more to be
said about them. We shall say it in ???.

Function and method calls

Function calls and method calls are much like those in other languages:

let room = player.location();

Rust typically distinguishes between references and the values they refer to, but in
this case, as a convenience, Rust allows either a value or a reference to the left of the
dot.

So, for example, if the type of player is &Creature, then it inherits the methods of the
type Creature. You don’t have to write (*player).location(). (Or player-
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>location(), as you would in C++; there is no such syntax in Rust.) The same is true
for smart pointer types, like Box. If player is a Box<Creature>, you may call Crea
ture methods on it directly.

When calling a method that takes its self parameter by reference, Rust implicitly
borrows the appropriate kind of reference, so you don’t have to write
(&player).location() either.

These conveniences apply only to the self argument. Static method calls have no
self argument, so they do not automatically dereference or borrow their arguments.
They are really just plain function calls:

String::from_utf8(bytes)  // `bytes` must be a Vec<u8>

Occasionally a program needs to refer to a generic method or type in an expression.
The usual syntax for generic types, Vec<T>, doesn’t work there:

return Vec<i32>::with_capacity(1000);  // error: something about chained comparisons

let ramp = (0 .. n).collect<Vec<i32>>();  // same error

The problem is that in expressions, < is the less-than operator. The Rust compiler
helpfully advises writing ::<T> instead of <T> in this case, and that solves the prob‐
lem:

return Vec::<i32>::with_capacity(1000);  // ok, using ::<

let ramp = (0 .. n).collect::<Vec<i32>>();  // ok, using ::<

The symbol ::< is affectionately known in the Rust community as the “Space Invader
smiley”.

Alternatively, it is often possible to drop the type parameters and let Rust infer them.

return Vec::with_capacity(10);  // ok, if the fn return type is Vec<i32>

let ramp: Vec<i32> = (0 .. n).collect();  // ok, variable's type is given

Fields and elements

The fields of a struct are accessed using familiar syntax. Tuples are the same except
that their fields have numbers rather than names.

game.black_pawns   // struct field
coords.1           // tuple field

If the value to the left of the dot is a reference or smart pointer type, it is automati‐
cally dereferenced, just as for method calls.

Square brackets access the elements of an array, a slice, or a vector:

pieces[i]          // array element
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The value to the left of the brackets is automatically dereferenced.

Expressions like the three shown above are called lvalues, because they can appear on
the left side of an assignment:

game.black_pawns = 0x00ff0000_00000000_u64;
coords.1 = 0;
pieces[2] = Some(Piece::new(Black, Knight, coords));

Of course, this is permitted only if game, coords, and pieces are declared as mut
bindings.

Extracting a slice from an array or vector is straightforward:

let second_half = &game_moves[midpoint .. end];

Here game_moves may be either an array, a slice, or a vector; the result, regardless, is a
borrowed slice of length end - midpoint. game_moves is considered borrowed for the
lifetime of second_half.

The .. operator allows either operand to be omitted; it produces up to four different
types of object depending on which operands are present:

..      // RangeFull
a ..    // RangeFrom { start: a }
.. b    // RangeTo { end: b }
a .. b  // Range { start: a, end: b }

Only the last form is useful as an iterator in a for loop, since a loop must have some‐
where to start and we typically also want it, eventually, to end. But in array slicing, the
other forms are useful too. If the start or end of the range is omitted, it defaults to the
start or end of the data being sliced.

So an implementation of quicksort, the classic divide-and-conquer sorting algorithm,
might look, in part, like this:

fn quicksort<T: Ord>(slice: &mut [T]) {
    ...

    // Recursively sort the front half of `slice`.
    quicksort(&mut slice[.. pivot_index]);

    // And the back half.
    quicksort(&mut slice[pivot_index + 1 ..]);
}

Reference operators

The address-of operators, & and &mut, are covered in Chapter 5.
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The unary * operator is used to access the value pointed to by a reference. As we’ve
already pointed out, in many places, Rust automatically follows references, so the *
operator is necessary only when we want to read or write the entire value that the ref‐
erence points to.

For example, sometimes an iterator produces references, but the program needs the
underlying values.

let padovan: Vec<u64> = compute_padovan_sequence(n);
for elem in &padovan {
    draw_triangle(turtle, *elem);
}

In this example, the type of elem is &u64, so *elem is a u64.

Occasionally, a method uses *self = to overwrite all of a value’s fields at once:

impl Chessboard {
    fn restart_game(&mut self) {
        *self = Chessboard::new();
    }
}

Arithmetic, bitwise, comparison, and logical operators

Rust’s binary operators are like those in many other languages. To save time, we
assume familiarity with one of those languages, and focus on the few points where
Rust departs from tradition.

Rust has the usual arithmetic operators, +, -, *, /, and %. As mentioned in Chapter 3,
debug builds check for integer overflow, and it causes a thread panic. The standard
library provides methods like a.wrapping_add(b) for unchecked arithmetic.

Unary - negates a number. It is supported only for signed integers. There is no unary
+.

println!("{}", -100);     // -100
println!("{}", -100u32);  // error: unary negation of unsigned integer
println!("{}", +100);     // error: unexpected `+`

As in C, a % b computes the remainder, or modulus, of division. The result has the
same sign as the left-hand operand. Note that % can be used on floating-point num‐
bers as well as integers:

let x = 1234.567 % 10.0;  // approximately 4.567

Rust also inherits C’s bitwise integer operators, &, |, ^, <<, and >>. However, Rust
uses ! instead of ~ for bitwise NOT:

let hi: u8 = 0xe0;
let lo = !hi;  // 0x1f
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This means that !n can’t be used on an integer n to mean “n is zero”. For that, write n
== 0.

Bit shifting is always sign-extending on signed integer types and zero-extending on
unsigned integer types. Since Rust has both, it does not need the >>> operator from
Java and JavaScript.

Bitwise operations have higher precedence than comparisons, unlike C, so if you
write x & BIT != 0, that means (x & BIT) != 0, as you probably intended. This is
much more useful than C’s interpretation, x & (BIT != 0), which tests the wrong
bit!

Rust’s comparison operators are ==, !=, <, <=, >, and >=. As with all the binary opera‐
tors, the two operands must have the same type.

Rust also has the two short-circuiting logical operators && and ||. Both operands
must have the exact type bool.

Assignment

The = operator can be used to assign to mut variables and their fields or elements. But
assignment is not as common in Rust as in other languages, since variables are
immutable by default.

As described in Chapter 4, assignment moves values of non-copyable types, rather
than implicitly copying them.

Compound assignment is supported:

total += item.price;

The value of any assignment is (), not the value being assigned.

Rust does not have C’s increment and decrement operators ++ and --.

Type casts

Converting a value from one type to another usually requires an explicit cast in Rust.
Casts use the as keyword:

let x = 17;              // x is type i32
let index = x as usize;  // convert to usize

Several kinds of casts are permitted.

• Numbers may be cast from any of the builtin numeric types to any other.
Casting an integer to another integer type is always well-defined. Converting to a
narrower type results in truncation. A signed integer cast to a wider type is sign-
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extended; an unsigned integer is zero-extended; and so on. In short, there are no
surprises.
However, as of this writing, casting a large floating-point value to an integer type
that is too small to represent it can lead to undefined behavior. This can cause
crashes even in safe Rust. It is a bug in the compiler.

• Values of type bool, char, or of a C-like enum type, may be cast to any integer
type.
Casting in the other direction is not allowed, as bool, char, and enum types all
have restrictions on their values that would have to be enforced with run-time
checks. For example, casting a u16 to type char is banned because some u16 val‐
ues, like 0xd800, do not correspond to Unicode code points and therefore would
not make valid char values. There is a standard method,
std::char::from_u32(), which performs the runtime check and returns an
Option<char>; but more to the point, the need for this kind of conversion has
grown rare. We typically convert whole strings or streams at once, and algo‐
rithms on Unicode text are often nontrivial and best left to libraries.
As an exception, a u8 may be cast to type char, since all integers from 0 to 255 are
valid Unicode code points.

• Pointer casts and conversions between pointers and integers are also allowed.
Such casts are of little use in safe code. See ???.

We said that a conversion usually requires a cast. A few conversions involving refer‐
ence types are so straightforward that the language performs them even without a
cast. One trivial example is converting a mut reference to a non-mut reference.

Several more significant automatic conversions can happen, though:

• Values of type &String auto-convert to type &str without a cast.
• Values of type &Vec<i32> auto-convert to &[i32].
• Values of type &Box<Chessboard> auto-convert to &Chessboard.

These are called Deref coercions, because they apply to types that implement the Deref
builtin trait. Rust performs these conversions automatically for values that otherwise
wouldn’t quite be the right type for the function argument they’re being passed to, the
variable they’re being assigned to, and so on. We’ll revisit the Deref trait in ???.

Precedence and associativity

Table 1 gives a summary of Rust expression syntax.
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Table 6-1. Table 1 - Expressions

Expression type Example Related traits

array literal [1, 2, 3]

repeat array literal [0; 50]

tuple (6, "crullers")

grouping (2 + 2)

block { f(); g() }

control flow expressions if ok { f() }

if ok { 1 } else { 0 }

if let Some(x) = f() { x } else { 0 }

match x { None => 0, _ => 1 }

for v in e { f(v); } std::iter::IntoIterator

while ok { ok = f(); }

while let Some(x) = it.next() { f(x); }

loop { next_event(); }

break

continue

return 0

macro invocation println!("ok")

closure |x, y| x + y

path std::f64::consts::PI

struct literal Point {x: 0, y: 0}

tuple field access pair.0 Deref, DerefMut

struct field access point.x Deref, DerefMut

method call point.translate(50, 50) Deref, DerefMut

function call stdin() Fn(Arg0, ...) -> T,
FnMut(Arg0, ...) -> T,
FnOnce(Arg0, ...) -> T

index arr[0] Index, IndexMut
Deref, DerefMut

logical/bitwise NOT !ok Not

negation -num Neg

dereference *ptr Deref, DerefMut

borrow &val

type cast x as u32

multiplication n * 2 Mul

division n / 2 Div
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Expression type Example Related traits

remainder (modulus) n % 2 Rem

addition n + 1 Add

subtraction n - 1 Sub

left shift n << 1 Shl

right shift n >> 1 Shr

bitwise AND n & 1 BitAnd

bitwise exclusive OR n ^ 1 BitXor

bitwise OR n | 1 BitOr

less than n < 1 std::cmp::PartialOrd

less than or equal n <= 1 std::cmp::PartialOrd

greater than n > 1 std::cmp::PartialOrd

greater than or equal n >= 1 std::cmp::PartialOrd

equal n == 1 std::cmp::PartialEq

not equal n != 1 std::cmp::PartialEq

logical AND x.ok && y.ok

logical OR x.ok || backup.ok

range start .. stop

assignment x = val

compound assignment x += 1

All of the operators that can usefully be chained are left-associative. That is, a chain of
operations like a - b - c groups like (a - b) - c, not a - (b - c). The operators
that can be chained in this way are all the ones you might expect:

*   /   %   +   -   <<   >>   &   ^   |   &&   ||

Unlike C, assignment can’t be chained: a = b = 3 does not assign the value 3 to both
a and b. Assignment is rare enough in Rust that you won’t miss this shorthand.

The comparison operators, as, and the range operator .. can’t be chained at all.

Onward

Expressions are what we think of as “running code”. They’re the part of a Rust pro‐
gram that compiles to machine instructions. Yet they are a small fraction of the whole
language.

The same is true in most programming languages. The first job of a program is to
run, but that’s not its only job. Programs have to communicate. They have to be test‐
able. They have to stay organized and flexible, so that they can continue to evolve.
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They have to interoperate with code and services built by other teams. And even just
to run, programs in a statically typed language like Rust need some more tools for
organizing data than just tuples and arrays.

In the next two chapters, we present structs and enums, the user-defined types of
Rust. They’re a vital tool in all of the above aspects of programming.

(A quick note for Early Access readers: As of this writing, the chapter on structs is not
released yet. We’ll get it to you when it’s ready.)
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CHAPTER 7

Enums and patterns

Like the devil, our next topic is potent, as old as the hills, happy to help you get a lot
done in short order (for a price), and known by many names in many cultures.
Unlike the devil, it really is quite safe, and the price it asks is no great privation. It is a
kind of data type, known in other languages as sum types, discriminated unions, or
algebraic data types. In Rust, they are called enumerations, or simply enums.

In the simplest case, Rust enums are like those in C++ or C#. The values of such an
enum are simply constants. But Rust takes enums much further. A Rust enum can
also contain data, even data of varying types, like a C union, but type-safe.

It is in this capacity, as type-safe unions, that enums truly shine. They are just the
right tool for modeling situations where a value might be either one thing or another.
They can be used to build rich tree-like data structures with very little code, com‐
pared to Java or C++. If that’s not enough, they are the perfect complement to Rust’s
fast and expressive pattern-matching, our topic for the second half of this chapter.

Patterns, too, may be familiar if you’ve used unpacking in Python or destructuring in
JavaScript, but Rust takes patterns to extremes of usefulness. Rust patterns are a little
like regular expressions for all your data. They’re used to test whether or not a value
has a particular desired shape. They can extract several fields from a struct or tuple
into local variables all at once. And like regular expressions, they are concise, typically
doing it all in a single line of code.

Enums

Simple, C-style enums are straightforward:

enum Ordering {
    Less,
    Equal,
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    Greater
}

This declares a type Ordering with three possible values, called variants or construc‐
tors: Ordering::Less, Ordering::Equal, and Ordering::Greater. This particular
enum is part of the standard library, so Rust code can import either the type by itself:

use std::cmp::Ordering;
talk(Ordering::Less);
smile(Ordering::Greater);

or all its constructors:

use std::cmp::Ordering::*;    // `*` to import all children
talk(Less);
smile(Greater);

To do the same for an enum declared in the current module, use a self import:

enum Pet {
    Orca,
    Giraffe,
    ...
}

use self::Pet::*;

The constructors of a public enum are automatically public.

In memory, values of C-style enums are stored as integers. Occasionally it’s useful to
tell Rust which integers to use:

enum HttpStatus {
    Ok = 200,
    NotModified = 304,
    NotFound = 404,
    ...
}

Otherwise Rust will assign the numbers for you, starting at 0.

By default, Rust stores C-style enums using the smallest built-in integer type that can
accomodate them. Most fit in a single byte.

use std::mem::size_of;
assert_eq!(size_of::<Ordering>(), 1);
assert_eq!(size_of::<HttpStatus>(), 2);  // 404 doesn't fit in a u8

You can override Rust’s choice of representation by adding a #[repr] attribute to the
enum. For details, see ???.

Casting a C-style enum to an integer is allowed:

assert_eq!(HttpStatus::Ok as i32, 200);
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However, casting in the other direction, from the integer to the enum, is not. Unlike
C and C++, Rust guarantees that an enum value is only ever one of the values spelled
out in the enum declaration. An unchecked cast from an integer type to an enum type
could break this guarantee, so it’s not allowed. Short of unsafe code, the only built-in
way to convert an integer to an enum is to write the desired function yourself:

fn to_http_status(i: u32) -> Option<HttpStatus> {
    match i {
        200 => Some(HttpStatus::Ok),
        304 => Some(HttpStatus::NotModified),
        404 => Some(HttpStatus::NotFound),
        ...
        _ => None
    }
}

As with structs, the compiler will implement features like the == operator for you, but
you have to ask.

#[derive(Copy, Clone, Debug, PartialEq)]
enum TimeUnit {
    Seconds, Minutes, Hours, Days, Months, Years
}

In a similar vein, several crates on crates.io offer macros to autogenerate integer-to-
enum methods like to_http_status for you.

So much for C-style enums. The more interesting sort of enum is the kind that con‐
tains data.

Tuple and struct variants

/// A timestamp that has been deliberately rounded off, so our program
/// says "6 months ago" instead of "February 9, 2016, at 9:49 AM".
#[derive(Copy, Clone, Debug, PartialEq)]
enum RoughTime {
    InThePast(TimeUnit, u32),
    JustNow,
    InTheFuture(TimeUnit, u32)
}

Two of the variants in this enum, RoughTime::InThePast and RoughTime::InTheFu
ture, take arguments. These are called tuple variants. Like tuple structs, these con‐
structors are functions that create new RoughTime values.

let four_score_and_seven_years_ago =
    RoughTime::InThePast(TimeUnit::Years, 4*20 + 7);

let three_hours_from_now =
    RoughTime::InTheFuture(TimeUnit::Hours, 3);
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Enums can also have struct variants, which contain named fields, just like ordinary
structs:

enum Shape {
    Sphere { center: Point3d, radius: f32 },
    Box { point1: Point3d, point2: Point3d }
}

let unit_sphere = Shape::Sphere { center: ORIGIN, radius: 1.0 };

In all, Rust has three kinds of enum variant, echoing the three kinds of struct we
showed in the previous chapter. Variants with no data correspond to unit-like structs.
Tuple variants look and function just like tuple structs. Struct variants have curly
braces and named fields. A single enum can have variants of all three kinds.

enum RelationshipStatus {
    Single,
    InARelationship,
    ItsComplicated(Option<String>),
    ItsExtremelyComplicated {
        car: DifferentialEquation,
        cdr: EarlyModernistPoem
    }
}

Enums in memory

In memory, enums with data are stored as a small integer tag, plus enough memory
to hold all the fields of the largest variant. The tag field is for Rust’s internal use. It
tells which constructor created the value, and therefore which fields it has.

As of Rust 1.8, RoughTime fits in 8 bytes, as shown in Figure 1.

Figure 1 - RoughTime values in memory
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Rust makes no promises about enum layout, however, in order to leave the door open
for future optimizations. In some cases, it would be possible to pack an enum more
efficiently than Figure 1 suggests. We’ll show later in this chapter how Rust can
already optimize away the tag field for some enums.

Rich data structures using enums

Enums are also useful for quickly implementing tree-like data structures. For exam‐
ple, suppose a Rust program needs to work with arbitrary JSON data. In memory, any
JSON document can be represented as a value of this Rust type:

enum Json {
    Null,
    Boolean(bool),
    Number(f64),
    String(String),
    Array(Vec<Json>),
    Object(Box<HashMap<String, Json>>)
}

The explanation of this data structure in English can’t improve much upon the Rust
code. The JSON standard specifies the various data types that can appear in a JSON
document: null, boolean values, numbers, strings, arrays of JSON values, and objects
with string keys and JSON values. The Json enum simply spells out these types.

This is not a hypothetical example. A very similar enum can be found in serde_json, a
serialization library for Rust structs that is one of the most-downloaded crates on
crates.io.

The Box around the HashMap that represents an Object serves only to make all Json
values more compact. In memory, values of type Json take up four machine words.
String and Vec values are three words, and Rust adds a tag byte. Null and Boolean
values don’t have enough data in them to use up all that space, but all Json values
must be the same size. The extra space goes unused. Figure 2 shows some examples of
how Json values actually look in memory.

A HashMap is larger still. If we had to leave room for it in every Json value, they would
be quite large, eight words or so. But a Box<HashMap> is a single word: it’s just a
pointer to heap-allocated data. We could make Json even more compact by boxing
more fields.

Figure 2 - Json values in memory

Enums and patterns | 139



What’s remarkable here is how easy it was to set this up. In C++, one might write a
class for this:

class JSON {
private:
    enum Tag {
        Null, Boolean, Number, String, Array, Object
    };
    union Data {
        bool boolean;
        double number;
        shared_ptr<string> str;
        shared_ptr<vector<JSON>> array;
        shared_ptr<unordered_map<string, JSON>> object;

        Data() {}
        ~Data() {}
        ...
    };

    Tag tag;
    Data data;

public:
    bool is_null() const { return tag == Null; }
    bool is_boolean() const { return tag == Boolean; }
    bool get_boolean() const {
        assert(is_boolean());
        return data.boolean;
    }
    void set_boolean(bool value) {
        this->~JSON();  // clean up string/array/object value
        tag = Boolean;
        data.boolean = value;
    }
    ...
};
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At 30 lines of code, we have barely begun the work. This class will need constructors,
a destructor, and an assignment operator. An alternative would be to create a class
hierarchy with a base class JSON and subclasses JSONBoolean, JSONString, and so on.
Either way, when it’s done, our C++ JSON library will have more than a dozen meth‐
ods. It will take a bit of reading for other programmers to pick it up and use it. The
entire Rust enum is 8 lines of code.

Generic enums

Enums can be generic. Two examples from the standard library are among the most-
used data types in the language:

enum Option<T> {
    None,
    Some(T)
}

enum Result<T, E> {
    Ok(T),
    Err(E)
}

These types are familiar enough by now, and the syntax for generic enums is the same
as for generic structs. One unobvious detail is that Rust can eliminate the tag field of
Option<T> when the type T is a Box or some other smart pointer type. An
Option<Box<i32>> is stored in memory as a single machine word, 0 for None and
nonzero for Some boxed value.

Generic data structures can be built with just a few lines of code:

enum BinaryTree<T> {
    Empty,
    NonEmpty(Box<(T, BinaryTree<T>, BinaryTree<T>)>)
}

These four lines of code define a BinaryTree type that can store any number of values
of type T.

A great deal of information is packed into this definition, so we will take the time to
translate the code word-for-word into English. Each BinaryTree value is either Empty
or NonEmpty. If it’s Empty, then it contains no data at all. If NonEmpty, then it is a Box, a
pointer to heap-allocated data. Since the boxed data contains a value of type T and
two more BinaryTree values, a NonEmpty tree can have any number of descendents.

A sketch of a value of type BinaryTree<&str> is shown in Figure 3. As with
Option<Box<T>>, Rust eliminates the tag field, so a BinaryTree value is just one
machine word.

Figure 3 - A BinaryTree containing six strings
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Building any particular node in this tree is straightforward:

use self::BinaryTree::*;
let jupiter_node = Box::new(("Jupiter", Empty, Empty));

Larger trees can be built from smaller ones:

let mars_node = Box::new(("Mars",
                          NonEmpty(jupiter_node),
                          NonEmpty(mercury_node)));

Naturally, this assignment transfers ownership of jupiter_node and mercury_node to
their new parent node.

The remaining parts of the tree follow the same patterns. The root is a Binary
Tree::NonEmpty value.

let tree = NonEmpty(saturn_node);

Later in this chapter, we will show how to implement an add method on the Binary
Tree type, so that we can instead simply write:

let mut tree = Empty;
for planet in planets {
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    tree.add(planet);
}

Now we come to the diabolical “price” mentioned in the introduction. The tag field of
an enum costs a little memory, up to 8 bytes in the worst case, but that is usually neg‐
ligible. The downside to enums (if it can be called that) is that Rust code cannot
throw caution to the wind and try to access fields regardless of whether they are
actually present in the value.

let r = shape.radius;  // error: no field with that name

The only way to access the data in an enum is the safe way: using patterns.

Patterns

We’ve shown examples of pattern matching throughout the book. Now it’s time to
show in detail how it works.

 1  fn rough_time_to_english(rt: RoughTime) -> String {
 2      match rt {
 3          RoughTime::InThePast(units, count) =>
 4              format!("{} {} ago", count, units.plural()),
 5          RoughTime::JustNow =>
 6              format!("just now"),
 7          RoughTime::InTheFuture(units, count) =>
 8              format!("{} {} from now", count, units.plural())
 9      }
10  }

Lines 3, 5, and 7 consist of a pattern followed by =>. Patterns that match RoughTime
values look just like the expressions used to create RoughTime values. They both look
just like function calls. This is no coincidence. Expressions produce values; patterns
consume values. The two use a lot of the same syntax.

Suppose rt is the value RoughTime::InTheFuture(TimeUnit::Months, 1). Rust first
tries to match this value against the pattern on line 3. It doesn’t match:

Pattern matching on an enum, struct, or tuple works as though Rust is doing a simple
left-to-right scan, checking each component of the pattern to see if the value matches
it. If it doesn’t, Rust moves on to the next pattern.

The patterns on lines 3 and 5 fail to match. But the pattern on line 7 succeeds:
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When a pattern contains simple identifiers like units and count, those become local
variables in the code following the pattern. Whatever is present in the value is copied
or moved into the new variables. Rust stores TimeUnit::Months in units and 1 in
count, runs line 8, and returns the string "1 months from now".

The output has a minor grammatical issue which can be fixed by adding another arm
to the match:

RoughTime::InTheFuture(unit, 1) =>
    format!("a {} from now", unit.singular()),

This arm matches only if the count field is exactly 1. Note that this new code must be
added before line 7. If we add it at the end, Rust will never get to it, because the pat‐
tern on line 7 matches all InTheFuture values. The Rust compiler notices this kind of
bug and flags it as an error.

Unfortunately, even with the new code, there is still a problem with Rough
Time::InTheFuture(TimeUnit::Hours, 1). Such is the English language. (This too
can be fixed by adding another arm to the match. Try it out.)

A common beginner mistake with pattern matching is trying to use an existing vari‐
able in a pattern:

fn print_if_equal(x: i32, y: i32) {
    match x {
        y =>  // trying to match only if x == y
              // (it doesn't work: see explanation below)
            println!("{} == {}", x, y),
        _ =>  // error: unreachable pattern
            println!("not equal")
    }
}

This fails because identifiers introduce new bindings. The pattern y here creates a new
local variable y, shadowing the argument y.

Tuple and struct patterns

Tuple patterns contain a subpattern for each element. A tuple can be used to get mul‐
tiple pieces of data involved in a single match:

fn describe_point(x: i32, y: i32) -> &'static str {
    use std::cmp::Ordering::*;
    match (x.cmp(&0), y.cmp(&0)) {
        (Equal, Equal) => "at the origin",
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        (_, Equal) => "on the x axis",
        (Equal, _) => "on the y axis",
        (Greater, Greater) => "in the first quadrant",
        (Less, Greater) => "in the second quadrant",
        _ => "somewhere else"
    }
}

As the example shows, _ works as a subpattern, and it does exactly the same thing it
does as a pattern: match any value. Because it doesn’t store the value anywhere, it also
provides a hint to other programmers that the program doesn’t care about that value.
_ is called the wildcard pattern, or sometimes the “don’t-care” pattern.

Struct patterns use curly braces, just like struct expressions. They contain a subpat‐
tern for each field:

match balloon.location {
    Point { x: 0.0, y: height } =>
        println!("straight up {} meters", height),
    Point { x: x, y: y } =>
        println!("at ({}m, {}m)", x, y)
}

In this example, if the first arm matches, then balloon.location.y is bound to the
new local variable height.

Suppose balloon.location is Point { x: 3.0, y: 4.0 }. As always, Rust checks
each component of each pattern in turn:

Patterns like Point { x: x, y: y } are common when matching structs, and the
redundant names are visual clutter, so Rust has a shorthand for this: Point {x, y}.
The meaning is the same. This pattern still stores a point’s x field in a new local x and
its y field in a new local y.

Even with the shorthand, it is cumbersome to match a large struct when we only care
about a few fields:

match get_account(id) {
    ...
    Some(Account {
            name, language,  // <--- the 2 things we care about
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            id: _, status: _, address: _, birthday: _, eye_color: _,
            pet: _, security_question: _, hashed_innermost_secret: _,
            is_adamantium_preferred_customer: _ }) =>
        language.show_custom_greeting(name)
}

To avoid this, use .. to tell Rust you don’t care about any of the other fields.

Some(Account { name, language, .. }) =>
    language.show_custom_greeting(name)

Reference patterns

Rust patterns support two features for working with references. ref patterns borrow
parts of a matched value. & patterns match references.

Matching on a non-copyable value moves the value. Continuing with the account
example above, this code would be invalid:

match account {
    Account { name, language, .. } => {
        ui.greet(&name, &language);
        account.show_hats(ui);  // error: use of moved value
    }
}

account cannot be used after pattern matching, because its name and language fields
were moved into local variables, and the rest were dropped. The program needs to
borrow account.name and account.language instead of moving them. The ref key‐
word does just that:

match account {
    Account { ref name, ref language, .. } => {
        ui.greet(name, language);
        account.show_hats(ui);  // ok
    }
}

In this example, the local bindings name and language are references to the corre‐
sponding fields in account. Since account is only being borrowed, not consumed, it’s
OK to continue calling methods on it.

The opposite kind of reference pattern is the & pattern. A pattern starting with &
matches a reference.

match sphere.center() {
    &Point3d { x, y, z } => ...
}

In this example, suppose sphere.center() returns a reference to a private field of
sphere, a common pattern in Rust. The value returned is the address of a Point3d. If
the center is at the origin, we could say:
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assert_eq!(sphere.center(), &Point3d { x: 0.0, y: 0.0, z: 0.0 });

So pattern matching proceeds like this:

This is a bit tricky because Rust is following a pointer here, an action we usually asso‐
ciate with the * operator, not the & operator. The thing to remember is that patterns
and expressions are natural opposites. The expression (x, y) makes two values into
a new tuple, but the pattern (x, y) does the opposite: it matches a tuple and breaks
out the two values. It’s the same with &. In an expression, & produces a reference. In a
pattern, & consumes a reference.

Let’s look at one more example of an & pattern. Suppose we have an iterator chars
over the characters in a string, and it has a method chars.peek() that returns an
Option<&char>: a reference to the next character, if any. (Peekable iterators do in fact
return an Option<&ItemType>, as we’ll see in ???.)

A program can use an & pattern to get the pointed-to character:

match chars.peek() {
    Some(&c) => println!("coming up: {:?}", c),
    None => println!("end of chars")
}

Matching multiple possibilities

The vertical bar, ‘|’, can be used to combine several patterns in a single match arm.

let at_end =
    match chars.peek() {
        Some(&'\r') | Some(&'\n') | None => true,
        _ => false
    };

In an expression, | is the bitwise OR operator, but here it works more like the | sym‐
bol in a regular expression. at_end is set to true if chars.peek() matches any of the
three patterns.

Use ... to match a whole range of values. Range patterns include the begin and end
values, so '0' ... '9' matches all the ASCII digits.

match next_char {
    '0' ... '9' =>
        self.read_number(),
    'a' ... 'z' | 'A' ... 'Z' =>
        self.read_word(),
    ' ' | '\t' | '\n' =>
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        self.skip_whitespace(),
    _ =>
        self.handle_punctuation()
}

Pattern guards

Use the if keyword to add a guard to a match arm. The match succeeds only if the
guard evaluates to true:

match robot.last_known_location() {
    Some(point) if self.distance_to(point) < 10 =>
        short_distance_strategy(point),
    Some(point) =>
        long_distance_strategy(point),
    None =>
        searching_strategy()
}

@ patterns

Lastly, identifier @ pattern creates a new variable, like identifier, but only suc‐
ceeds if the given pattern matches. It’s used to grab a value and simultaneously check
something about its internal structure:

match self.job_status() {
    // bind the result to 'success', but only if it's an Ok result
    success @ Ok(_) => return success,
    Err(err) => report_error(err)
}

It’s also useful with range patterns:

match chars.next() {
    Some(digit @ '0' ... '9') => read_number(digit, chars),
    ...
}

Table 7-1 summarizes Rust’s pattern language.

Table 7-1. Patterns

Pattern type Example Notes

Constant 100

"name"

None

matches an exact value

Range 0 ... 100

'a' ... 'k'

matches any value in range, including the end value

Wildcard _ matches any value and ignores it

148 | Chapter 7: Enums and patterns



Pattern type Example Notes

Binding name

mut count

like _ but moves the value into a new local variable

Binding with
subpattern

val @ 0 ... 99

ref circle @ Shape::Circle 

{ .. }

match the pattern to the right of @, use the variable
name to the left

Borrow ref field match all or part of a value without moving it

Enum pattern Some(value)

None

Pet::Orca

Tuple pattern (key, value)

(r, g, b)

Struct pattern Color(r, g, b)

Point { x, y }

Card { suit: Clubs, rank: n }

Account { id, name, .. }

always matches unless a subpattern fails to match

Dereference &value

&(k, v)

matches only reference values

Multiple patterns 'a' | 'A' in match only (not valid in let, etc.)

Guard expression x if x * x <= r2 in match only (not valid in let, etc.)

Where patterns are allowed

Although patterns are most prominent in match expressions, they are also allowed in
several other places, typically in place of an identifier. The meaning is always the
same: instead of just storing a value in a single variable, Rust uses pattern matching to
take the value apart.

This means patterns can be used to...

// ...unpack a struct into three new local variables
let Point3d { x, y, z } = center;

// ...iterate over keys and values of a HashMap
for (id, document) in &cache_map {
    println!("Document #{}: {}", id, document.title);
}

// ...run some code only if a table lookup succeeds
if let Some(document) = cache_map.get(&id) {
    return send_cached_response(document);
}

// ...manually loop over an iterator
while let Some(_) = lines.peek() {
    read_paragraph(&mut lines);
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}

// ...automatically dereference an argument to a closure
// (handy because sometimes other code passes you a reference
// when you'd rather have a copy)
let sum = numbers.fold(0, |a, &num| a + num);

Each of these saves two or three lines of boilerplate code.

Populating a binary tree

Earlier we promised to show how to implement a method, BinaryTree::add(), that
adds a node to a BinaryTree of this type:

enum BinaryTree<T> {
    Empty,
    NonEmpty(Box<(T, BinaryTree<T>, BinaryTree<T>)>)
}

We now know enough about patterns to write this method. An explanation of binary
search trees is beyond the scope of this book, but for readers already familiar with the
topic, it’s worth seeing how it plays out in Rust.

 1  impl<T: Ord> BinaryTree<T> {
 2      fn add(&mut self, value: T) {
 3          match *self {
 4              Empty =>
 5                  *self = NonEmpty(Box::new((value, Empty, Empty))),
 6              NonEmpty(ref mut node) =>
 7                  if value <= node.0 {
 8                      node.1.add(value);
 9                  } else {
10                      node.2.add(value);
11                  }
12          }
13      }
14  }

Line 1 tells Rust that we’re defining a method on BinaryTrees of ordered types. This
syntax is explained in the next chapter.

The pattern on line 5 is the key:

NonEmpty(ref mut node) =>

This pattern matches if *self is a non-empty tree. A successful match borrows a
mutable reference to the Box, so we can access and modify data inside the box. That
reference is named node, and it’s in scope from line 7 to line 11. The rest is simply a
matter of accessing the three fields of that boxed triple.
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The big picture

Enums and structs are complementary. Structs group together values that are so
closely related that they occur together; enums are just the opposite, grouping values
that are so closely related they don’t occur together.

enum ThatGuyStandingOverThere {
    ClarkKent(Glasses, Notebook, Pencil),
    Superman(SpecialPowers, Cape, Tights)
}

Rust’s enums may be new to systems programming, but they are not a new idea. Trav‐
eling under various academic-sounding names, like “algebraic data types”, they have
been used in functional programming languages for more than forty years. It’s
unclear why so few other languages in the C tradition have ever had them. Perhaps it
is simply that for a programming language designer, combining variants, references,
mutability, and memory safety is extremely challenging. Functional programming
languages dispense with mutability. C unions, by contrast, have variants, pointers,
and mutability—but are so spectacularly unsafe that even in C, they’re a last resort.
Rust’s borrow checker is the magic that makes it possible to combine all four without
compromise.

Programming is data processing. Getting data into the right shape can be the differ‐
ence between a small, fast, elegant program and a slow, gigantic tangle of duct tape
and virtual method calls.

This is the problem space enums address. They are a design tool for getting data into
the right shape. For cases when a value may be one thing, or another thing, or per‐
haps nothing at all, enums are better than class hierarchies on every axis: faster, safer,
less code, easier to document.

The limiting factor is flexibility. End users of an enum can’t extend it to add new var‐
iants. Variants can only be added by changing the enum declaration. And when that
happens, existing code breaks. Every match expression that individually matches each
variant of the enum must be revisited—it needs a new arm to handle the new variant.
In some cases, trading flexibility for simplicity is just good sense. After all, the struc‐
ture of JSON is not expected to change. And in some cases, revisiting all uses of an
enum when it changes is exactly what we want. For example, when an enum is used in
a compiler to represent the various operators of a programming language, adding a
new operator should involve touching all code that handles operators.

But sometimes more flexibility is needed. For those situations, Rust has traits, the
topic of our next chapter.
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