
This tutorial is going to show you how to set up your own

WireGuard VPN server on Debian. WireGuard is made specifically

for the Linux kernel. It runs inside the Linux kernel and allows you

to create fast, modern, and secure VPN tunnel.

Features of WireGuard VPN

Lightweight and super fast speed, blowing OpenVPN out of

the water.

Cross-pla�orm. WireGuard can run on Linux, BSD, macOS,

Windows, Android, iOS, and OpenWRT.

User authen�ca�on is done by exchanging public keys,

similar to SSH keys.

It assigns sta�c tunnel IP addresses to VPN clients. Some

folks may not like it, but it can be useful in some cases.

Mobile devices can switch between Wi-Fi and mobile

network seamlessly without dropping any connec�vity.

It aims to replace OpenVPN and IPSec in most use cases.

Prerequisites

This tutorial assumes that the VPN server and VPN client are both

running Debian opera�ng system.

Step 1: Install WireGuard on Debian Server

and Desktop

Log into your Debian server. WireGuard is included in the Debian

11 (Bullseye) repository, so you can run the following commands

to install it.

Set Up Your Own WireGuard

VPN Server on Debian

Last Updated: January 11th, 2021 Xiao Guoan (Admin) 10 Comments

Debian

  


sudo apt update

sudo apt install wireguard wireguard-tools

linux-headers-$(uname -r)

Debian 10 users need to add the backport repository with the

following command.

echo "deb http:∕∕deb.debian.org∕debian bust

er-backports main" | sudo tee ∕etc∕apt∕sour

ces.list.d∕buster-backports.list

Then install WireGuard.

sudo apt update

sudo apt -t buster-backports install wiregu

ard wireguard-tools wireguard-dkms linux-he

aders-$(uname -r)

Use the same commands to install WireGuard on your local

Debian computer (the VPN client). Note that you also need to

install the openresolv package on the client to configure DNS

server.

sudo apt install openresolv

Step 2: Generate Public/Private Keypair

Server

Run the following command on the Debian server to create a

public/private key pair, which will be saved under

∕etc∕wireguard∕ directory.

wg genkey | sudo tee ∕etc∕wireguard∕server_

private.key | wg pubkey | sudo tee ∕etc∕wir

eguard∕server_public.key

Client

Run the following command to create a public/private key pair on

the local Debian computer (the VPN client).

wg genkey | sudo tee ∕etc∕wireguard∕client_

private.key | wg pubkey | sudo tee ∕etc∕wir

eguard∕client_public.key

Step 3: Create WireGuard Configura�on File

Server

Use a command-line text editor like Nano to create a WireGuard

configura�on file on the Debian server. wg0 will be the network

interface name.

sudo nano ∕etc∕wireguard∕wg0.conf

Copy the following text and paste it to your configura�on file. You

need to use your own server private key and client public key.

[Interface]

Address = 10.10.10.1∕24

ListenPort = 51820

PrivateKey = cD+ZjXiVIX+0iSX1PNijl4a+88lCbD

gw7kO78oXXLEc=

[Peer]

PublicKey = AYQJf6HbkQ0X0Xyt+cTMTuJe3RFwbuC

MF46LKgTwzz4=

AllowedIPs = 10.10.10.2∕32

Where:

Address: Specify the private IP address of the VPN server.

Here I’m using the 10.10.10.0/24 network range, so it won’t

conflict with your home network range. (Most home routers

use 192.168.0.0/24 or 192.168.1.0/24). 10.10.10.1 is the

private IP address for the VPN server.

PrivateKey: The private key of VPN server, which can be

found in the ∕etc∕wireguard∕server_private.key

file on the server.

ListenPort: WireGuard VPN server will be listening on UDP

port 51820, which is the default.

PublicKey: The public key of VPN client, which can be found

in the ∕etc∕wireguard∕client_public.key file on

the client computer.

AllowedIPs: IP addresses the VPN client is allowed to use. In

this example, the client can only use the 10.10.10.2 IP

address inside the VPN tunnel.

Save and close the file. (To save a file in Nano text editor, press

Ctrl+O , then press Enter to confirm. Press Ctrl+X to exit.)

Change the file permission mode so that only root user can read

the files.

sudo chmod 600 ∕etc∕wireguard∕ -R

Client

Use a command-line text editor like Nano to create a WireGuard

configura�on file on your local Debian computer. wg-client0

will be the network interface name.

sudo nano ∕etc∕wireguard∕wg-client0.conf

Copy the following text and paste it to your configura�on file. You

need to use your own client private key and server public key.

[Interface]

Address = 10.10.10.2∕24

DNS = 10.10.10.1

PrivateKey = cOFA+x5UvHF+a3xJ6enLatG+DoE3I5

PhMgKrMKkUyXI=

[Peer]

PublicKey = kQvxOJI5Km4S1c7WXu2UZFpB8mHGuf3

Gz8mmgTIF2U0=

AllowedIPs = 0.0.0.0∕0

Endpoint = 12.34.56.78:51820

PersistentKeepalive = 25

Where:

Address: Specify the private IP address of the VPN client.

DNS: specify 10.10.10.1 (the VPN server) as the DNS server. It

will be configured via the resolvconf command. You can

also specify mul�ple DNS servers for redundancy like this:

DNS = 10.10.10.1 8.8.8.8

PrivateKey: The client’s private key, which can be found in

the ∕etc∕wireguard∕client_private.key file on

the client computer.

PublicKey: The server’s public key, which can be found in the

∕etc∕wireguard∕server_public.key file on the

server.

AllowedIPs: 0.0.0.0/0 represents the whole Internet, which

means all traffic to the Internet should be routed via the

VPN.

Endpoint: The public IP address and port number of VPN

server. Replace 12.34.56.78 with your server’s real public IP

address.

PersistentKeepalive: Send an authen�cated empty packet to

the peer every 25 seconds to keep the connec�on alive. If

PersistentKeepalive isn’t enabled, the VPN server might not

be able to ping the VPN client.

Save and close the file.

Change the file mode so that only root user can read the files.

sudo chmod 600 ∕etc∕wireguard∕ -R

Step 4: Enable IP Forwarding on the Server

In order for the VPN server to route packets between VPN clients

and the Internet, we need to enable IP forwarding. Edit

sysctl.conf file.

sudo nano ∕etc∕sysctl.conf

Add the following line at the end of this file.

net.ipv4.ip_forward = 1

Save and close the file. Then apply the changes with the below

command. The -p op�on will load sysctl se�ngs from

/etc/sysctl.conf file. This command will preserve our changes

across system reboots.

sudo sysctl -p

Step 5: Configure IP Masquerading on the

Server

We need to set up IP masquerading in the server firewall, so that

the server becomes a virtual router for VPN clients. I will use UFW,

which is a front end to the iptables firewall. Install UFW on Debian

with:

sudo apt install ufw

First, you need to allow SSH traffic.

sudo ufw allow 22∕tcp

Next, find the name of your server’s main network interface.

ip addr

As you can see, it’s named ens3 on my Debian server.

To configure IP masquerading, we have to add iptables command

in a UFW configura�on file.

sudo nano ∕etc∕ufw∕before.rules

By default, there are some rules for the filter table. Add the

following lines at the end of this file. Replace ens3 with your own

network interface name.

NAT table rules

*nat

:POSTROUTING ACCEPT [0:0]

-A POSTROUTING -o ens3 -j MASQUERADE

End each table with the 'COMMIT' line or

these rules won't be processed

COMMIT

In Nano text editor, you can go to the end of the file by pressing

Ctrl+W , then pressing Ctrl+V .

The above lines will append (-A) a rule to the end of of

POSTROUTING chain of nat table. It will link your virtual private

network with the Internet. And also hide your network from the

outside world. So the Internet can only see your VPN server’s IP,

but can’t see your VPN client’s IP, just like your home router hides

your private home network.

By default, UFW forbids packet forwarding. We can allow

forwarding for our private network. Find the ufw-before-

forward chain in this file and add the following 3 lines, which

will accept packet forwarding if the source IP or des�na�on IP is in

the 10.10.10.0∕24 range.

allow forwarding for trusted network

-A ufw-before-forward -s 10.10.10.0∕24 -j A

CCEPT

-A ufw-before-forward -d 10.10.10.0∕24 -j A

CCEPT

Save and close the file. Then enable UFW.

sudo ufw enable

If you have enabled UFW before, then you can use systemctl to

restart UFW.

sudo systemctl restart ufw

Now if you list the rules in the POSTROUTING chain of the NAT

table by using the following command:

sudo iptables -t nat -L POSTROUTING

You can see the Masquerade rule.

Step 6: Install a DNS Resolver on the Server

Since we specified the VPN server as the DNS server for client, we

need to run a DNS resolver on the VPN server. We can install the

bind9 DNS server.

sudo apt install bind9

Once it’s installed, BIND will automa�cally start. You can check its

status with:

systemctl status bind9

Sample output:

● named.service - BIND Domain Name Server

 Loaded: loaded (∕lib∕systemd∕system∕na

med.service; enabled; vendor preset: enable

d)

 Active: active (running) since Sun 202

0-05-17 08:11:26 UTC; 37s ago

 Docs: man:named(8)

 Main PID: 13820 (named)

 Tasks: 5 (limit: 1074)

 Memory: 14.3M

 CGroup: ∕system.slice∕named.service

 └─13820 ∕usr∕sbin∕named -f -u

bind

If it’s not running, start it with:

sudo systemctl start bind9

Edit the BIND DNS server’s configura�on file.

sudo nano ∕etc∕bind∕named.conf.options

Add the following line to allow VPN clients to send recursive DNS

queries.

allow-recursion { 127.0.0.1; 10.10.10.0∕24;

};

Save and close the file. Restart BIND9 for the changes to take

effect.

sudo systemctl restart bind9

Then you need to run the following command to allow VPN clients

to connect to port 53.

sudo ufw insert 1 allow in from 10.10.10.0∕

24

Step 7: Open WireGuard Port in Firewall

Run the following command to open UDP port 51820 on the

server.

sudo ufw allow 51820∕udp

Step 8: Start WireGuard

server

Run the following command on the server to start WireGuard.

sudo wg-quick up ∕etc∕wireguard∕wg0.conf

To stop it, run

sudo wg-quick down ∕etc∕wireguard∕wg0.conf

You can also use systemd service to start WireGuard.

sudo systemctl start wg-quick@wg0.service

Enable auto-start at system boot �me.

sudo systemctl enable wg-quick@wg0.service

Check its status with the following command. Its status should be

active (exited) .

systemctl status wg-quick@wg0.service

Now WireGuard server is ready to accept client connec�ons.

Client

Start WireGuard.

sudo systemctl start wg-quick@wg-client0.se

rvice

Enable auto-start at system boot �me.

sudo systemctl enable wg-quick@wg-client0.s

ervice

Check its status:

systemctl status wg-quick@wg-client0.servic

e

Now go to this website: http:∕∕icanhazip.com∕ to check

your public IP address. If everything went well, it should display

your VPN server’s public IP address instead of your client

computer’s public IP address.

You can also run the following command to get the current public

IP address.

curl https:∕∕icanhazip.com

Troubleshoo�ng Tips

You can ping from the VPN server to VPN client (ping

10.10.10.2) to see if the tunnel works. If you see the following

error message in the ping,

ping: sendmsg: Required key not available

it might be that the AllowedIPs parameter is wrong, like a

typo.

If the VPN tunnel is successfully established, but the client public

IP address doesn’t change, that’s because the masquerading or

forwarding rule in your UFW config file is not working. I once had a

typo in the ∕etc∕ufw∕before.rules file, which caused my

computer not being able to browse the Internet.

Note that I don’t recommend using SaveConfig=true in the

[Interface] sec�on of the WireGuard configura�on file.

SaveConfig tells WireGuard to save the run�me configura�on

on shutdown. So if you add addi�onal [Peer] in the

configura�on file and then restart WireGuard, your newly-added

configs will be overwri�en.

If your VPN s�ll doesn’t work, try restar�ng the VPN server.

sudo systemctl restart wg-quick@wg0.service

Then stop the VPN client.

sudo systemctl stop wg-quick@wg-client0.ser

vice

And upgrade so�ware packages on the VPN client.

sudo apt update; sudo apt upgrade

Next, reboot the VPN client.

sudo shutdown -r now

sudo systemctl start wg-quick@wg-client0.se

rvice

Adding Addi�onal VPN Clients

WireGuard is designed to associate one IP address with one VPN

client. To add more VPN clients, you need to create a unique

private/public key pair for each client, then add each VPN client’s

public key in the server’s config file (∕etc∕wireguard

∕wg0.conf) like this:

[Interface]

Address = 10.10.10.1∕24

PrivateKey = UIFH+XXjJ0g0uAZJ6vPqsbb∕o68SYV

QdmYJpy∕FlGFA=

ListenPort = 51820

[Peer]

PublicKey = 75VNV7HqFh+3QIT5OHZkcjWfbjx8tc6

Ck62gZJT∕KRA=

AllowedIPs = 10.10.10.2∕32

[Peer]

PublicKey = YYh4∕1Z∕3rtl0i7cJorcinB7T4UOIzS

cifPNEIESFD8=

AllowedIPs = 10.10.10.3∕32

[Peer]

PublicKey = EVstHZc6QamzPgefDGPLFEjGyedJk6S

ZbCJttpzcvC8=

AllowedIPs = 10.10.10.4∕32

Each VPN client will have a sta�c private IP address (10.10.10.2,

10.10.10.3, 10.10.10.4, etc). Restart the WireGuard server for the

changes to take effect.

sudo systemctl restart wg-quick@wg0.service

Then add WireGuard configura�on on each VPN client as usual.

Policy Rou�ng, Split Tunneling & VPN Kill

Switch

Now I will show you how to use policy rou�ng, split tunneling, and

VPN kill switch with WireGuard VPN. Note that it’s not

recommended to use them in conjunc�on with each other. If you

use policy rou�ng, then you should not enable split tunneling or

VPN kill switch, and vice versa.

Policy Rou�ng

By default, all traffic on the VPN client will be routed through the

VPN server. Some�mes you may want to route only a specific type

of traffic, based on the transport layer protocol and the

des�na�on port. This is known as policy rou�ng.

Policy rou�ng is configured on the client computer, and we need to

stop the WireGuard client process.

sudo systemctl stop wg-quick@wg-client0.ser

vice

Then edit the client configura�on file.

sudo nano ∕etc∕wireguard∕wg-client0.conf

For example, if you add the following 3 lines in the

[interface] sec�on, then WireGuard will create a rou�ng

table named “1234” and add the ip rule into the rou�ng table. In

this example, traffic will be routed through VPN server only when

TCP is used as the transport layer protocol and the des�na�on port

is 25, i.e, when the client computer sends emails.

Table = 1234

PostUp = ip rule add ipproto tcp dport 25 t

able 1234

PreDown = ip rule delete ipproto tcp dport

25 table 1234

Save and close the file. Then start WireGuard client again.

sudo systemctl start wg-quick@wg-client0.se

rvice

Split Tunneling

By default, all traffic on the VPN client will be routed through the

VPN server. Here’s how to enable split tunneling, so only traffic to

the 10.10.10.0∕24 IP range will be tunneled through

WireGuard VPN. This is useful when you want to build a private

network for several cloud servers, because VPN clients will run on

cloud servers and if you use a full VPN tunnel, then you will

probably lose connec�on to the cloud servers.

Edit the client configura�on file.

sudo nano ∕etc∕wireguard∕wg-client0.conf

Change

AllowedIPs = 0.0.0.0∕0

To

AllowedIPs = 10.10.10.0∕24

So traffic will be routed through VPN only when the des�na�on

address is in the 10.10.10.0/24 IP range. Save and close the file.

Then restart WireGuard client.

sudo systemctl restart wg-quick@wg-client0.

service

VPN Kill Switch

By default, your computer can access the Internet via the normal

gateway when the VPN connec�on is disrupted. You may want to

enable the kill switch feature, which prevents the flow of

unencrypted packets through non-WireGuard interfaces.

Stop the WireGuard client process.

sudo systemctl stop wg-quick@wg-client0.ser

vice

Edit the client configura�on file.

sudo nano ∕etc∕wireguard∕wg-client0.conf

Add the following two lines in the [interface] sec�on.

PostUp = iptables -I OUTPUT ! -o %i -m mark

! --mark $(wg show %i fwmark) -m addrtype !

--dst-type LOCAL -j REJECT

PreDown = iptables -D OUTPUT ! -o %i -m mar

k ! --mark $(wg show %i fwmark) -m addrtype

! --dst-type LOCAL -j REJECT

Like this:

[Interface]

Address = 10.10.10.2∕24

DNS = 10.10.10.1

PrivateKey = cOFA+x5UvHF+a3xJ6enLatG+DoE3I5

PhMgKrMKkUyXI=

PostUp = iptables -I OUTPUT ! -o %i -m ma

rk ! --mark $(wg show %i fwmark) -m addrt

ype ! --dst-type LOCAL -j REJECT

PreDown = iptables -D OUTPUT ! -o %i -m m

ark ! --mark $(wg show %i fwmark) -m addr

type ! --dst-type LOCAL -j REJECT

[Peer]

PublicKey = kQvxOJI5Km4S1c7WXu2UZFpB8mHGuf3

Gz8mmgTIF2U0=

AllowedIPs = 0.0.0.0∕0

Endpoint = 12.34.56.78:51820

PersistentKeepalive = 25

Save and close the file. Then start the WireGuard client.

sudo systemctl start wg-quick@wg-client0.se

rvice

Installing Linux Kernel 5.x on Debian 10

The current Linux kernel version on Debian 10 is 4.19. In step 1, we

added the backport repository on Debian 10. The backport

repository includes Linux kernel 5.8, at the �me of this wri�ng.

You may probably know that the wireguard module is included in

the Linux kernel star�ng from version 5.4. If we install Linux kernel

5.8 on Debian 10, we don’t need to build the wireguard module

when the system is upgrading the Linux kernel. As a ma�er of fact,

my Debian 10 server once had a problem in building the wireguard

module with wireguard-dkms.

Note that by the �me you read this ar�cle, the Debian 10

backport repository might have removed kernel 5.8 and

included kernel 5.9. Simply repalce 5.8 with 5.9 in the

following commands.

To install Linux kernel 5.8 on Debian 10 cloud servers, run the

following command.

sudo apt install linux-image-5.8.0-0.bpo.2-

cloud-amd64 linux-headers-5.8.0-0.bpo.2-clo

ud-amd64

To install Linux kernel 5.8 on a Debian 10 PC, run the following

command.

sudo apt install linux-image-5.8.0-0.bpo.2-

amd64 linux-headers-5.8.0-0.bpo.2-amd64

Then restart your Debian 10 box.

sudo shutdown -r now

Check your Linux kernel version.

uname -r

Sample output

5.8.0-0.bpo.2-cloud-amd64

Although we no longer need the wireguard-dkms package, it’s

a dependency for the wireguard package, so we can’t remove it

from the system. You will probabaly see the following error when

upgrading the wireguard package.

Error! The dkms.conf for this module includ

es a BUILD_EXCLUSIVE directive which

does not match this kernel∕arch. This indic

ates that it should not be built

This indicates wireguard-dkms is trying to build the

wireguard module into the Linux kernel, but Linux 5.8 includes

a na�ve wireguard module, so the build opera�on is prevented

and you can ignore this error.

Wrapping Up

That’s it! I hope this tutorial helped you install and configure

WireGuard on Debian. As always, if you found this post useful,

then subscribe to our free newsle�er to get more �ps and tricks ��

Rate this tutorial

[Total: 3 Average: 4.3]

Debian Debian Server Linux Self Hosted VPN

WireGuard

    



