
Some Unofficial WireGuard Documentation
API reference guide for WireGuard including Setup, Configuration, and Usage, with examples.

All credit goes to the WireGuard project, zx2c4 (https://www.zx2c4.com/) and the open source
contributors (https://github.com/WireGuard/WireGuard/graphs/contributors) for the original software,

this is my solo unofficial attempt at providing more comprehensive documentation, API references,
and examples.

Source for these docs, example code, and issue tracker: https://github.com/pirate/wireguard-docs
(https://github.com/pirate/wireguard-docs)

Nicer HTML page version: https://docs.sweeting.me/s/wireguard (https://docs.sweeting.me/s/wireguard)

WireGuard (https://www.wireguard.com/) is an open-source VPN solution written in C by Jason
Donenfeld (https://www.jasondonenfeld.com) and others (https://github.com/WireGuard/WireGuard/graphs

/contributors), aiming to fix many of the problems that have plagued other modern server-to-server
VPN offerings like IPSec/IKEv2, OpenVPN, or L2TP. It shares some similarities with other modern
VPN offerings like Tinc (https://www.tinc-vpn.org/) and MeshBird (https://github.com/meshbird/meshbird),
namely good cipher suites and minimal config. As of 2020-01 it’s been merged into the 5.6
version of the Linux kernel (https://arstechnica.com/gadgets/2020/01/linus-torvalds-pulled-wireguard-vpn-into-the-5-6-

kernel-source-tree/), meaning it will ship with most Linux systems out-of-the-box.

Official Links

Homepage: https://www.wireguard.com (https://www.wireguard.com)

Install: https://www.wireguard.com/install/ (https://www.wireguard.com/install/)

QuickStart: https://www.wireguard.com/quickstart/ (https://www.wireguard.com/quickstart/)

Manpages: wg (https://manpages.debian.org/testing/wireguard-tools/wg.8.en.html), wg-quick
(https://manpages.debian.org/unstable/wireguard-tools/wg-quick.8.en.html)

Main Git repo: https://git.zx2c4.com/WireGuard/ (https://git.zx2c4.com/WireGuard/)

GitHub Mirror: https://github.com/WireGuard/WireGuard (https://github.com/WireGuard/WireGuard)

Mailing List: https://lists.zx2c4.com/mailman/listinfo/wireguard (https://lists.zx2c4.com/mailman

/listinfo/wireguard)

WireGuard Goals

strong, modern security by default

minimal config and key management

fast, both low-latency and high-bandwidth

simple internals and small protocol surface area

simple CLI and seamless integration with system networking

 (https://www.ckn.io

/blog/2017/11/14/wireguard-vpn-typical-setup/)

It's also fast as hell. I routinely get sub 0.5ms pings and 900mbps+ on good connections.

(See https://www.ckn.io/blog/2017/11/14/wireguard-vpn-typical-setup/)

Table of Contents
See https://github.com/pirate/wireguard-docs (https://github.com/pirate/wireguard-docs) for example
code and documentation source.

Table of Contents

Intro
WireGuard Overview

List of Other VPN Solutions
Mesh VPN Solutions

VPN Setup Tools

WireGuard Documentation
Glossary

Example Strings

Peer/Node/Device

Bounce Server

Subnet

CIDR Notation

NAT

Public Endpoint

Private key

Public key

DNS

How WireGuard Works
How Public Relay Servers Work

How WireGuard Routes Packets

What WireGuard Traffic Looks Like

WireGuard Performance

WireGuard Security Model

How WireGuard Manages Keys

Usage
QuickStart

Setup

Config Creation

Key Generation

Start / Stop

Inspect

Testing

Config Reference
Overview

[Interface]

[Peer]

Advanced Topics
IPv6

Forwarding All Traffic

NAT To NAT Connections

Dynamic IP Allocation

Other WireGuard Implementations

WireGuard Setup Tools

Config Shortcuts

Containerization

Further Reading
Reference Docs

Tutorials

Papers, Articles, and Talks

Related Projects

Docker

Other

Discussions

Intro
Whether living behind the Great Wall of China or just trying to form a network between your
servers, WireGuard is a great option and serves as a “lego block” for building networks (much in
the same way that ZFS is a lego block for building filesystems).

WireGuard Overview

minimal config, low tunable surface area and sane defaults

minimal key management work needed, just 1 public & 1 private key per host

behaves like a normal ethernet interface, behaves well with standard kernel packet routing
rules

ability to easily create a LAN like 192.0.2.0/24 between all servers, or more complex
networks using custom routes

ability to some traffic or all traffic to/through arbitrary hosts on the VPN LAN

robust automatic reconnects after reboots / network downtime / NAT connection table
drops

fast (low latency and line-rate bandwidth)

modern encryption, secure by default with forward secrecy & resilience to downgrade
attacks

ideally support for any type of Level 2 and control traffic, e.g. ARP/DHCP/ICMP (or ideally
raw ethernet frames), not just TCP/HTTP

ability to join the VPN from Ubuntu, FreeBSD, iOS, MacOS, Windows, Android (via open-
source apps or natively)

supports both running on the host routing traffic for docker or running in a docker container
routing for the host

Things WireGuard does not do:

form a self-healing mesh network where nodes automatically gossip with neighbors

break through double NATs with a signalling server (WebRTC-style)

handle automatically distributing & revoking keys through a central authority

allow sending raw layer-2 ethernet frames (it’s at the IP layer)

But you can write your own solutions for these problems using WireGuard under the hood (like
Tailscale (https://github.com/tailscale/tailscale) or AltheaNet (https://althea.net/)).

List of Other VPN Solutions

WireGuard (https://www.wireguard.com/)

IPSec (IKEv2) (https://github.com/jawj/IKEv2-setup)/strongSwan: in my experience, there was lots of
brittle config that was different for each OS, the NAT busting setup is very manual and
involves updating the central server and starting all the others in the correct order, it wasn’t
great at becoming stable again after network downtime, had to be manually restarted often.
your mileage may vary.

OpenVPN (https://openvpn.net/vpn-server-resources/site-to-site-routing-explained-in-detail/): can work over
UDP or be disguised as HTTPS traffic over TCP

StealthVPN: haven’t tried it, should I?

DsVPN (https://github.com/jedisct1/dsvpn): I think it does TCP-over-TCP which usually doesn’t end
well…

SoftEther (https://www.softether.org/) (SSTP (https://en.wikipedia.org/wiki/Secure_Socket_Tunneling_Protocol)):
haven’t tried it yet, should I? (also does TCP-over-TCP?)

L2TP: somewhat outdated

PPTP: ancient, inflexible, insecure, doesn’t solve all the requirements

SOCKS/SSH: good for proxying single-port traffic, not a full networking tunnel or VPN

Mesh VPN Solutions

TINC (https://www.tinc-vpn.org/): haven’t tried it yet, but it doesn’t work on iOS, worst case
scenario I could live

VPNCloud (https://github.com/dswd/vpncloud): similar properties to WireGuard, with more auto-
mesh features

cjdns (https://github.com/cjdelisle/cjdns): haven’t tried it yet, should I?

ZeroTier (https://www.zerotier.com): haven’t tried it yet, should I

MeshBird (https://github.com/meshbird/meshbird): “Cloud native” VPN/networking layer

Yggdrasil Network (https://yggdrasil-network.github.io/): Yggdrasil is a self-arranging IPv4/IPv6 mesh
VPN (haven’t tried it yet)

VPN Setup Tools

Algo (https://github.com/trailofbits/algo) WireGuard setup tool

Striesand (https://github.com/StreisandEffect/streisand) Multi-protocol setup tool

IKEv2-setup (https://github.com/jawj/IKEv2-setup) IKEv2 server setup script

WireGuard-Manager (https://github.com/complexorganizations/wireguard-manager) WireGuard setup tool,
all in one

WireGuard Documentation

Glossary

Example Strings

These are demo hostnames, domain names, IP addresses, and ranges used in the
documentation and example configs.
Replace them with your preferred values when doing your own setup.

Example domain: example-vpn.dev can be replaced with any publicly accessible domain
you control

Example hostnames: public-server1 , public-server2 , home-server , laptop , phone
can be changed to your device hostnames

IP addresses & ranges: 192.0.2.1/24 , 192.0.2.3 , 192.0.2.3/32 , 2001:DB8::/64 can be
replaced with your preferred subnets and addresses (e.g. 192.168.5.1/24)

Wherever you see these strings below, they’re just being used as placeholder values to illustrate
an example and have no special meaning.

Make sure to change the IP addresses in your configs! The blocks used in these docs
are reserved for example purposes by the IETF and should never be used in real network setups.

192.0.2.0/24 (TEST-NET-1) IPv4 example range RFC5737 (https://tools.ietf.org/html/rfc5737)

2001:DB8::/32 IPv6 example range RFC3849 (https://tools.ietf.org/html/rfc3849)

You can use any private range you want for your own setups, e.g. 10.0.44.0/24 , just make sure
they don’t conflict with any of the LAN subnet ranges your peers are on.

Peer/Node/Device

A host that connects to the VPN and registers a VPN subnet address such as 192.0.2.3 for
itself. It can also optionally route traffic for more than its own address(es) by specifying subnet
ranges in comma-separated CIDR notation.

Bounce Server

A publicly reachable peer/node that serves as a fallback to relay traffic for other VPN peers
behind NATs. A bounce server is not a special type of server, it’s a normal peer just like all the
others, the only difference is that it has a public IP and has kernel-level IP forwarding turned on
which allows it to bounce traffic back down the VPN to other clients.

See more: https://tailscale.com/blog/how-nat-traversal-works/ (https://tailscale.com/blog/how-nat-

traversal-works/) (Tailscale uses Wireguard under the hood)

Subnet

A group of IPs separate from the public internet, e.g. 192.0.2.1-255 or 192.168.1.1/24. Generally
behind a NAT provided by a router, e.g. in office internet LAN or a home Wi-Fi network.

CIDR Notation

A way of defining a subnet and its size with a “mask”, a smaller mask = more address bits usable
by the subnet & more IPs in the range. Most common ones:

192.0.2.1/32 (a single IP address, 192.0.2.1) netmask = 255.255.255.255

192.0.2.1/24 (255 IPs from 192.0.2.0 - 192.0.2.255) netmask = 255.255.255.0

192.0.2.1/16 (65,536 IPs from 192.0.0.0 - 192.0.255.255) netmask = 255.255.0.0

192.0.2.1/8 (16,777,216 IPs from 192.0.0.0 - 192.255.255.255) netmask = 255.0.0.0

0.0.0.1/0 (4,294,967,296 IPs from 0.0.0.0 - 255.255.255.255) netmask = 0.0.0.0

IPv6 CIDR notation is also supported e.g. 2001:DB8::/64

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing (https://en.wikipedia.org

/wiki/Classless_Inter-Domain_Routing)

To people just getting started 192.0.2.1/32 may seem like a weird and confusing way to refer
to a single IP. This design is nice though because it allows peers to expose multiple IPs if needed
without needing multiple notations. Just know that anywhere you see something like
192.0.2.3/32 , it really just means 192.0.2.3 .

NAT

A subnet with private IPs provided by a router standing in front of them doing Network Address
Translation, individual nodes are not publicly accessible from the internet, instead the router
keeps track of outgoing connections and forwards responses to the correct internal IP (e.g.
standard office networks, home Wi-Fi networks, free public Wi-Fi networks, etc)

Public Endpoint

The publicly accessible address:port for a node, e.g. 123.124.125.126:1234 or
some.domain.tld:1234 (must be accessible via the public internet, generally can’t be a private

IP like 192.0.2.1 or 192.168.1.1 unless it’s directly accessible using that address by other
peers on the same subnet).

Private key

A WireGuard private key for a single node, generated with:
wg genkey > example.key

(never leaves the node it’s generated on)

Public key

A WireGuard public key for a single node, generated with:
wg pubkey < example.key > example.key.pub

(shared with other peers)

DNS

Domain Name Server, used to resolve hostnames to IPs for VPN clients, instead of allowing DNS
requests to leak outside the VPN and reveal traffic. Leaks are testable with http://dnsleak.com
(http://dnsleak.com).

How WireGuard Works

How Public Relay Servers Work

Public relays are just normal VPN peers that are able to act as an intermediate relay server
between any VPN clients behind NATs, they can forward any VPN subnet traffic they receive to
the correct peer at the system level (WireGuard doesn’t care how this happens, it’s handled by
the kernel net.ipv4.ip_forward = 1 and the iptables routing rules).

If all peers are publicly accessible, you don’t have to worry about special treatment to make one
of them a relay server, it’s only needed if you have any peers connecting from behind a NAT.

Each client only needs to define the publicly accessible servers/peers in its config, any traffic
bound to other peers behind NATs will go to the catchall VPN subnet (e.g. 192.0.2.1/24) in the
public relays AllowedIPs route and will be forwarded accordingly once it hits the relay server.

In summary: only direct connections between clients should be configured, any connections that
need to be bounced should not be defined as peers, as they should head to the bounce server
first and be routed from there back down the vpn to the correct client.

How WireGuard Routes Packets

More complex topologies are definitely achievable, but these are the basic routing methods
used in typical WireGuard setups:

Direct node-to-node
In the simplest case, the nodes will either be on the same LAN or both be publicly
accessible. Define directly accessible nodes with hardcoded Endpoint addresses and
ports so that WireGuard can connect straight to the open port and route UDP packets
without intermediate hops.

Node behind local NAT to public node
When 1 of the 2 parties is behind remote NAT (e.g. when a laptop behind NAT connects to
public-server2), define the publicly accessible node with a hardcoded Endpoint and the

NAT-ed node without. The connection will be opened from NAT client -> public client, then

traffic will route directly between them in both directions as long as the connection is kept
alive by outgoing PersistentKeepalive pings from the NAT-ed client.

Node behind local NAT to node behind remote NAT (via relay)
Most of the time when both parties are behind NATs, the NATs do source port randomization
making direct connections infeasible, so they will both have to open a connection to
public-server1 , and traffic will forward through the intermediary bounce server as long as

the connections are kept alive.

Node behind local NAT to node behind remote NAT (via UDP NAT hole-punching)
While sometimes possible, it’s generally infeasible to do direct NAT-to-NAT connections on
modern networks, because most NAT routers are quite strict about randomizing the source
port, making it impossible to coordinate an open port for both sides ahead of time. Instead,
a signaling server (STUN) must be used that stands in the middle and communicates which
random source ports are assigned to the other side. Both clients make an initial connection
to the public signaling server, then it records the random source ports and sends them back
to the clients. This is how WebRTC works in modern P2P web apps. Even with a signalling
server and known source ports for both ends, sometimes direct connections are not
possible because the NAT routers are strict about only accepting traffic from the original
destination address (the signalling server), and will require a new random source port to be
opened to accept traffic from other IPs (e.g. the other client attempting to use the originally
communicated source port). This is especially true for “carrier-grade NATs” like cellular
networks and some enterprise networks, which are designed specifically to prevent this sort
of hole-punching connection. See the full section below on NAT to NAT Connections for
more information.

More specific (also usually more direct) routes provided by other peers will take precedence
when available, otherwise traffic will fall back to the least specific route and use the
192.0.2.1/24 catchall to forward traffic to the bounce server, where it will in turn be routed by

the relay server’s system routing table (net.ipv4.ip_forward = 1) back down the VPN to the
specific peer that’s accepting routes for that traffic. WireGuard does not automatically find the
fastest route or attempt to form direct connections between peers if not already defined, it just
goes from the most specific route in [Peers] to least specific.

You can figure out which routing method WireGuard is using for a given address by measuring
the ping times to figure out the unique length of each hop, and by inspecting the output of:

wg show wg0

What WireGuard Traffic Looks Like

WireGuard uses encrypted UDP packets for all traffic, it does not provide guarantees around
packet delivery or ordering, as that is handled by TCP connections within the encrypted tunnel.

Further reading:

https://www.wireshark.org/docs/dfref/w/wg.html (https://www.wireshark.org/docs/dfref/w/wg.html)

https://github.com/Lekensteyn/wireguard-dissector (https://github.com/Lekensteyn/wireguard-

dissector)

https://nbsoftsolutions.com/blog/viewing-wireguard-traffic-with-tcpdump
(https://nbsoftsolutions.com/blog/viewing-wireguard-traffic-with-tcpdump)

WireGuard Performance

WireGuard claims faster performance than most other competing VPN solutions, though the
exact numbers are sometimes debated and may depend on whether hardware-level acceleration
is available for certain cryptographic ciphers.

WireGuard’s performance gains are achieved by handling routing at the kernel level, and by using
modern cipher suites running on all cores to encrypt traffic. WireGuard also gains a significant
advantage by using UDP with no delivery/ordering guarantees (compared to VPNs that run over
TCP or implement their own guaranteed delivery mechanisms).

Further reading:

https://www.wireguard.com/performance/ (https://www.wireguard.com/performance/)

https://www.reddit.com/r/linux/comments/9bnowo
/wireguard_benchmark_between_two_servers_with_10/ (https://www.reddit.com/r/linux/comments

/9bnowo/wireguard_benchmark_between_two_servers_with_10/)

https://restoreprivacy.com/openvpn-ipsec-wireguard-l2tp-ikev2-protocols/
(https://restoreprivacy.com/openvpn-ipsec-wireguard-l2tp-ikev2-protocols/)

WireGuard Security Model

WireGuard uses the following protocols and primitives to secure traffic:

ChaCha20 for symmetric encryption, authenticated with Poly1305, using RFC7539’s AEAD
construction

Curve25519 for ECDH

BLAKE2s for hashing and keyed hashing, described in RFC7693

SipHash24 for hashtable keys

HKDF for key derivation, as described in RFC5869

WireGuard’s cryptography is essentially an instantiation of Trevor Perrin’s Noise
framework. It’s modern and, again, simple. Every other VPN option is a mess of
negotiation and handshaking and complicated state machines. WireGuard is like the
Signal/Axolotl of VPNs, except it’s much simpler and easier to reason about
(cryptographically, in this case) than double ratchet messaging protocols.
It is basically the qmail of VPN software.
And it’s ~4000 lines of code. It is plural orders of magnitude smaller than its
competitors.

https://news.ycombinator.com/item?id=14599834 (https://news.ycombinator.com/item?id=14599834)

Further reading:

https://www.wireguard.com/papers/wireguard.pdf (https://www.wireguard.com/papers/wireguard.pdf)

https://eprint.iacr.org/2018/080.pdf (https://eprint.iacr.org/2018/080.pdf)

https://courses.csail.mit.edu/6.857/2018/project/He-Xu-Xu-WireGuard.pdf
(https://courses.csail.mit.edu/6.857/2018/project/He-Xu-Xu-WireGuard.pdf)

https://www.wireguard.com/talks/blackhat2018-slides.pdf (https://www.wireguard.com/talks

/blackhat2018-slides.pdf)

https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-
but-windows-support-needs-to-happen/ (https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-

fast-connections-amaze-but-windows-support-needs-to-happen/)

How WireGuard Manages Keys

Authentication in both directions is achieved with a simple public/private key pair for each peer.

Each peer generates these keys during the setup phase, and shares only the public key with other
peers.

No other certificates or pre-shared keys are needed beyond the public/private keys for each
node.

Key generation, distribution, and revocation can be handled in larger deployments using a
separate service like Ansible or Kubernetes Secrets.

Some services that help with key distribution and deployment:

https://pypi.org/project/wireguard-p2p/ (https://pypi.org/project/wireguard-p2p/)

https://github.com/trailofbits/algo (https://github.com/trailofbits/algo)

https://github.com/StreisandEffect/streisand (https://github.com/StreisandEffect/streisand)

https://github.com/its0x08/wg-install (https://github.com/its0x08/wg-install)

https://github.com/brittson/wireguard_config_maker (https://github.com/brittson

/wireguard_config_maker)

https://www.wireguardconfig.com (https://www.wireguardconfig.com)

https://wirt.network (https://wirt.network)

You can also read in keys from a file or via command if you don’t want to hardcode them in
wg0.conf , this makes managing keys via 3rd party service much easier:

[Interface]

...

PostUp = wg set %i private-key /etc/wireguard/wg0.key <(cat /some/path/%i/privkey)

Technically, multiple servers can share the same private key as long as clients arent connected
to two servers with the same key simulatenously.
An example of a scenario where this is a reasonable setup is if you’re using round-robin DNS to
load-balance connections between two servers that are pretending to be a single server.
Most of the time however, every peer should have its own pubic/private keypair so that peers
can’t read eachothers traffic and can be individually revoked.

Usage

QuickStart

Overview of the general process:

1. Install apt install wireguard or pkg/brew install wireguard-tools on each node

2. Generate public and private keys locally on each node wg genkey + wg pubkey

3. Create a wg0.conf WireGuard config file on the main relay server
[Interface] Make sure to specify a CIDR range for the entire VPN subnet when

defining the address the server accepts routes for Address = 192.0.2.1/24

[Peer] Create a peer section for every client joining the VPN, using their corresponding
remote public keys

4. Create a wg0.conf on each client node
[Interface] Make sure to specify only a single IP for client peers that don’t relay

traffic Address = 192.0.2.3/32 .

[Peer] Create a peer section for each public peer not behind a NAT, make sure to
specify a CIDR range for the entire VPN subnet when defining the remote peer acting as
the bounce server AllowedIPs = 192.0.2.1/24 . Make sure to specify individual IPs for
remote peers that don’t relay traffic and only act as simple clients AllowedIPs =
192.0.2.3/32 .

5. Start WireGuard on the main relay server with wg-quick up /full/path/to/wg0.conf

6. Start WireGuard on all the client peers with wg-quick up /full/path/to/wg0.conf

7. Traffic is routed from peer to peer using most specific route first over the WireGuard
interface, e.g. ping 192.0.2.3 checks for a direct route to a peer with AllowedIPs =
192.0.2.3/32 first, then falls back to a relay server that’s accepting IPs in the whole subnet

Setup

install on Ubuntu

sudo add-apt-repository ppa:wireguard/wireguard

apt install wireguard

install on macOS

brew install wireguard-tools

install on FreeBSD

pkg install wireguard

install on iOS/Android using Apple App Store/Google Play Store

install on other systems using https://www.wireguard.com/install/#installation

to enable kernel relaying/forwarding ability on bounce servers

echo "net.ipv4.ip_forward = 1" >> /etc/sysctl.conf

echo "net.ipv4.conf.all.proxy_arp = 1" >> /etc/sysctl.conf

sudo sysctl -p /etc/sysctl.conf

to add iptables forwarding rules on bounce servers

iptables -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

iptables -A FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

iptables -A FORWARD -i wg0 -o wg0 -m conntrack --ctstate NEW -j ACCEPT

iptables -t nat -A POSTROUTING -s 192.0.2.0/24 -o eth0 -j MASQUERADE

Config Creation

nano wg0.conf # can be placed anywhere, must be referred to using absolute path (usually placed in /

Key Generation

generate private key

wg genkey > example.key

generate public key

wg pubkey < example.key > example.key.pub

Start / Stop

wg-quick up /full/path/to/wg0.conf

wg-quick down /full/path/to/wg0.conf

Note: you must specify the absolute path to wg0.conf, relative paths won't work

start/stop VPN network interface

ip link set wg0 up

ip link set wg0 down

register/unregister VPN network interface

ip link add dev wg0 type wireguard

ip link delete dev wg0

register/unregister local VPN address

ip address add dev wg0 192.0.2.3/32

ip address delete dev wg0 192.0.2.3/32

register/unregister VPN route

ip route add 192.0.2.3/32 dev wg0

ip route delete 192.0.2.3/32 dev wg0

Inspect

Interfaces

show system LAN and WAN network interfaces

ifconfig

ip address show

show system VPN network interfaces

ifconfig wg0

ip link show wg0

show WireGuard VPN interfaces

wg show all

wg show wg0

Addresses

show public IP address

ifconfig eth0

ip address show eth0

dig -4 +short myip.opendns.com @resolver1.opendns.com

show VPN IP address

ip address show wg0

Routes

show WireGuard routing table and peer connections

wg show

wg show wg0 allowed-ips

show system routing table

ip route show table main

ip route show table local

show system route to specific address

ip route get 192.0.2.3

Logs

To enable additional logging run:

modprobe wireguard

echo module wireguard +p > /sys/kernel/debug/dynamic_debug/control

To follow logs:

dmesg -wH

Systems with modern kernel and Safe Boot might require disabling Secure Boot DKMS Signature
Verification to allow access to kernel logs.

mokutil --disable-verification

reboot

Testing

Ping Speed

check that main relay server is accessible directly via public internet

ping public-server1.example-vpn.dev

check that the main relay server is available via VPN

ping 192.0.2.1

check that public peers are available via VPN

ping 192.0.2.2

check that remote NAT-ed peers are available via VPN

ping 192.0.2.3

check that NAT-ed peers in your local LAN are available via VPN

ping 192.0.2.4

Bandwidth

install iperf using your preferred package manager

apt/brew/pkg install iperf

check bandwidth over public internet to relay server

iperf -s # on public relay server

iperf -c public-server1.example-vpn.dev # on local client

check bandwidth over VPN to relay server

iperf -s # on public relay server

iperf -c 192.0.2.1 # on local client

check bandwidth over VPN to remote public peer

iperf -s # on remote public peer

iperf -c 192.0.2.2 # on local client

check bandwidth over VPN to remote NAT-ed peer

iperf -s # on remote NAT-ed peer

iperf -c 192.0.2.3 # on local client

check bandwidth over VPN to local NAT-ed peer (on same LAN)

iperf -s # on local NAT-ed peer

iperf -c 192.0.2.4 # on local client

DNS

Check for DNS leaks using http://dnsleak.com (http://dnsleak.com), or by checking the resolver on a
lookup:

dig example.com A

Config Reference

Overview

WireGuard config is in INI syntax (https://en.wikipedia.org/wiki/INI_file), defined in a file usually called
wg0.conf . It can be placed anywhere on the system, but is often placed in /etc/wireguard
/wg0.conf .

The config path is specified as an argument when running any wg-quick command, e.g:
wg-quick up /etc/wireguard/wg0.conf (always specify the full, absolute path)

The config file name must be in the format ${name of the new WireGuard interface}.conf .
WireGuard interface names are typically prefixed with wg and numbered starting at 0 , but you
can use any name that matches the regex ^[a-zA-Z0-9_=+.-]{1,15}$.

Config files can opt to use the limited set of wg config options, or the more extended wg-quick
options, depending on what command is preferred to start WireGuard. These docs recommend
sticking to wg-quick as it provides a more powerful and user-friendly config experience.

Jump to definition:

¶ [Interface]
¶ # Name = node1.example.tld
¶ Address = 192.0.2.3/32
¶ ListenPort = 51820
¶ PrivateKey = localPrivateKeyAbcAbcAbc=
¶ DNS = 1.1.1.1,8.8.8.8
¶ Table = 12345
¶ MTU = 1500
¶ PreUp = /bin/example arg1 arg2 %i
¶ PostUp = /bin/example arg1 arg2 %i
¶ PreDown = /bin/example arg1 arg2 %i
¶ PostDown = /bin/example arg1 arg2 %i

¶ [Peer]
¶ # Name = node2-node.example.tld
¶ AllowedIPs = 192.0.2.1/24
¶ Endpoint = node1.example.tld:51820
¶ PublicKey = remotePublicKeyAbcAbcAbc=
¶ PersistentKeepalive = 25

[Interface]

Defines the VPN settings for the local node.

Examples

Node is a client that only routes traffic for itself and only exposes one IP

[Interface]

Name = phone.example-vpn.dev

Address = 192.0.2.5/32

PrivateKey = <private key for phone.example-vpn.dev>

Node is a public bounce server that can relay traffic to other peers and exposes route for
entire VPN subnet

[Interface]

Name = public-server1.example-vpn.tld

Address = 192.0.2.1/24

ListenPort = 51820

PrivateKey = <private key for public-server1.example-vpn.tld>

DNS = 1.1.1.1

Name

This is just a standard comment in INI syntax used to help keep track of which config section
belongs to which node, it’s completely ignored by WireGuard and has no effect on VPN behavior.

Address

Defines what address range the local node should route traffic for. Depending on whether the
node is a simple client joining the VPN subnet, or a bounce server that’s relaying traffic between
multiple clients, this can be set to a single IP of the node itself (specified with CIDR notation),
e.g. 192.0.2.3/32), or a range of IPv4/IPv6 subnets that the node can route traffic for.

Examples

Node is a client that only routes traffic for itself
Address = 192.0.2.3/32

Node is a public bounce server that can relay traffic to other peers
When the node is acting as the public bounce server, it should set this to be the entire
subnet that it can route traffic, not just a single IP for itself.

Address = 192.0.2.1/24

You can also specify multiple subnets or IPv6 subnets like so:
Address = 192.0.2.1/24,2001:DB8::/64

ListenPort

When the node is acting as a public bounce server, it should hardcode a port to listen for
incoming VPN connections from the public internet. Clients not acting as relays should not set
this value.

Examples

Using default WireGuard port
ListenPort = 51820

Using custom WireGuard port
ListenPort = 7000

PrivateKey

This is the private key for the local node, never shared with other servers.
All nodes must have a private key set, regardless of whether they are public bounce servers
relaying traffic, or simple clients joining the VPN.

This key can be generated with wg genkey > example.key

Examples

PrivateKey = somePrivateKeyAbcdAbcdAbcdAbcd=

DNS

The DNS server(s) to announce to VPN clients via DHCP, most clients will use this server for DNS
requests over the VPN, but clients can also override this value locally on their nodes

Examples

The value can be left unconfigured to use system default DNS servers

A single DNS server can be provided
DNS = 1.1.1.1

or multiple DNS servers can be provided
DNS = 1.1.1.1,8.8.8.8

Table

Optionally defines which routing table to use for the WireGuard routes, not necessary to
configure for most setups.

There are two special values: ‘off’ disables the creation of routes altogether, and ‘auto’ (the
default) adds routes to the default table and enables special handling of default routes.

https://git.zx2c4.com/WireGuard/about/src/tools/man/wg-quick.8 (https://git.zx2c4.com/WireGuard

/about/src/tools/man/wg-quick.8)

Examples

Table = 1234

MTU

Optionally defines the maximum transmission unit (MTU, aka packet/frame size) to use when
connecting to the peer, not necessary to configure for most setups.

The MTU is automatically determined from the endpoint addresses or the system default route,
which is usually a sane choice.

https://git.zx2c4.com/WireGuard/about/src/tools/man/wg-quick.8 (https://git.zx2c4.com/WireGuard

/about/src/tools/man/wg-quick.8)

Examples

MTU = 1500

PreUp

Optionally run a command before the interface is brought up.
This option can be specified multiple times, with commands executed in the order they appear in
the file.

Examples

Add an IP route
PreUp = ip rule add ipproto tcp dport 22 table 1234

PostUp

Optionally run a command after the interface is brought up.
This option can appear multiple times, as with PreUp

Examples

Read in a config value from a file or some command’s output
PostUp = wg set %i private-key /etc/wireguard/wg0.key <(some command here)

Log a line to a file
PostUp = echo "$(date +%s) WireGuard Started" >> /var/log/wireguard.log

Hit a webhook on another server
PostUp = curl https://events.example.dev/wireguard/started/?key=abcdefg

Add a route to the system routing table
PostUp = ip rule add ipproto tcp dport 22 table 1234

Add an iptables rule to enable packet forwarding on the WireGuard interface
PostUp = iptables -A FORWARD -i %i -j ACCEPT; iptables -A FORWARD -o %i -j

ACCEPT; iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Force WireGuard to re-resolve IP address for peer domain
PostUp = resolvectl domain %i "~."; resolvectl dns %i 192.0.2.1; resolvectl

dnssec %i yes

PreDown

Optionally run a command before the interface is brought down.
This option can appear multiple times, as with PreUp

Examples

Log a line to a file
PostDown = echo "$(date +%s) WireGuard Going Down" >> /var/log/wireguard.log

Hit a webhook on another server
PostDown = curl https://events.example.dev/wireguard/stopping/?key=abcdefg

PostDown

Optionally run a command after the interface is brought down.
This option can appear multiple times, as with PreUp

Examples

Log a line to a file
PostDown = echo "$(date +%s) WireGuard Stopped" >> /var/log/wireguard.log

Hit a webhook on another server
PostDown = curl https://events.example.dev/wireguard/stopped/?key=abcdefg

Remove the iptables rule that forwards packets on the WireGuard interface
PostDown = iptables -D FORWARD -i %i -j ACCEPT; iptables -D FORWARD -o %i -j

ACCEPT; iptables -t nat -D POSTROUTING -o eth0 -j MASQUERADE

[Peer]

Defines the VPN settings for a remote peer capable of routing traffic for one or more addresses
(itself and/or other peers). Peers can be either a public bounce server that relays traffic to other
peers, or a directly accessible client via LAN/internet that is not behind a NAT and only routes
traffic for itself.

All clients must be defined as peers on the public bounce server. Simple clients that only route
traffic for themselves, only need to define peers for the public relay, and any other nodes directly
accessible. Nodes that are behind separate NATs should not be defined as peers outside of the
public server config, as no direct route is available between separate NATs. Instead, nodes
behind NATs should only define the public relay servers and other public clients as their peers,
and should specify AllowedIPs = 192.0.2.1/24 on the public server that accept routes and
bounce traffic for the VPN subnet to the remote NAT-ed peers.

In summary, all nodes must be defined on the main bounce server. On client servers, only peers
that are directly accessible from a node should be defined as peers of that node, any peers that
must be relayed by a bounce server should be left out and will be handled by the relay server’s
catchall route.

In the configuration outlined in the docs below, a single server public-server1 acts as the relay
bounce server for a mix of publicly accessible and NAT-ed clients, and peers are configured on

each node accordingly:

in public-server1 wg0.conf (bounce server)
[peer] list: public-server2 , home-server , laptop , phone

in public-server2 wg0.conf (simple public client)
[peer] list: public-server1

in home-server wg0.conf (simple client behind NAT)
[peer] list: public-server1 , public-server2

in laptop wg0.conf (simple client behind NAT)
[peer] list: public-server1 , public-server2

in phone wg0.conf (simple client behind NAT)
[peer] list: public-server1 , public-server2

Examples

Peer is a simple public client that only routes traffic for itself

[Peer]

Name = public-server2.example-vpn.dev

Endpoint = public-server2.example-vpn.dev:51820

PublicKey = <public key for public-server2.example-vpn.dev>

AllowedIPs = 192.0.2.2/32

Peer is a simple client behind a NAT that only routes traffic for itself

[Peer]

Name = home-server.example-vpn.dev

Endpoint = home-server.example-vpn.dev:51820

PublicKey = <public key for home-server.example-vpn.dev>

AllowedIPs = 192.0.2.3/32

Peer is a public bounce server that can relay traffic to other peers

[Peer]

Name = public-server1.example-vpn.tld

Endpoint = public-server1.example-vpn.tld:51820

PublicKey = <public key for public-server1.example-vpn.tld>

routes traffic to itself and entire subnet of peers as bounce server

AllowedIPs = 192.0.2.1/24

PersistentKeepalive = 25

Name

This is just a standard comment in INI syntax used to help keep track of which config section
belongs to which node, it’s completely ignored by WireGuard and has no effect on VPN behavior.

Endpoint

Defines the publicly accessible address for a remote peer. This should be left out for peers
behind a NAT or peers that don’t have a stable publicly accessible IP:PORT pair. Typically, this
only needs to be defined on the main bounce server, but it can also be defined on other public
nodes with stable IPs like public-server2 in the example config below.

Examples

Endpoint is an IP address
Endpoint = 123.124.125.126:51820 (IPv6 is also supported)

Endpoint is a hostname/FQDN
Endpoint = public-server1.example-vpn.tld:51820

AllowedIPs

This defines the IP ranges for which a peer will route traffic. On simple clients, this is usually a
single address (the VPN address of the simple client itself). For bounce servers this will be a
range of the IPs or subnets that the relay server is capable of routing traffic for. Multiple IPs and
subnets may be specified using comma-separated IPv4 or IPv6 CIDR notation (from a single /32
or /128 address, all the way up to 0.0.0.0/0 and ::/0 to indicate a default route to send all
internet and VPN traffic through that peer). This option may be specified multiple times.

When deciding how to route a packet, the system chooses the most specific route first, and falls
back to broader routes. So for a packet destined to 192.0.2.3 , the system would first look for a
peer advertising 192.0.2.3/32 specifically, and would fall back to a peer advertising
192.0.2.1/24 or a larger range like 0.0.0.0/0 as a last resort.

Examples

peer is a simple client that only accepts traffic to/from itself
AllowedIPs = 192.0.2.3/32

peer is a relay server that can bounce VPN traffic to all other peers
AllowedIPs = 192.0.2.1/24

peer is a relay server that bounces all internet & VPN traffic (like a proxy), including IPv6
AllowedIPs = 0.0.0.0/0,::/0

peer is a relay server that routes to itself and only one other peer
AllowedIPs = 192.0.2.3/32,192.0.2.4/32

peer is a relay server that routes to itself and all nodes on its local LAN
AllowedIPs = 192.0.2.3/32,192.168.1.1/24

PublicKey

This is the public key for the remote node, shareable with all peers.
All nodes must have a public key set, regardless of whether they are public bounce servers

relaying traffic, or simple clients joining the VPN.

This key can be generated with wg pubkey < example.key > example.key.pub .
(see above for how to generate the private key example.key)

Examples

PublicKey = somePublicKeyAbcdAbcdAbcdAbcd=

PersistentKeepalive

If the connection is going from a NAT-ed peer to a public peer, the node behind the NAT must
regularly send an outgoing ping in order to keep the bidirectional connection alive in the NAT
router’s connection table.

Examples

local public node to remote public node
This value should be left undefined as persistent pings are not needed.

local public node to remote NAT-ed node
This value should be left undefined as it’s the client’s responsibility to keep the connection
alive because the server cannot reopen a dead connection to the client if it times out.

local NAT-ed node to remote public node
PersistentKeepalive = 25 this will send a ping to every 25 seconds keeping the

connection open in the local NAT router’s connection table.

Advanced Topics

IPv6

The examples in these docs primarily use IPv4, but WireGuard natively supports IPv6 CIDR
notation and addresses everywhere that it supports IPv4, simply add them as you would any
other subnet range or address.

Example

[Interface]

AllowedIps = 192.0.2.3/24, 2001:DB8::/64

[Peer]

...

AllowedIPs = 0.0.0.0/0, ::/0

Forwarding All Traffic

If you want to forward all internet traffic through the VPN, and not just use it as a server-to-

server subnet, you can add 0.0.0.0/0, ::/0 to the AllowedIPs definition of the peer you want
to pipe your traffic through.

Make sure to also specify an IPv6 catchall even when only forwarding IPv4 traffic in order to
avoid leaking IPv6 packets outside the VPN, see:
https://www.reddit.com/r/WireGuard/comments/b0m5g2
/ipv6_leaks_psa_for_anyone_here_using_wireguard_to/ (https://www.reddit.com/r/WireGuard/comments

/b0m5g2/ipv6_leaks_psa_for_anyone_here_using_wireguard_to/)

Example

[Interface]

Name = phone.example-vpn.dev

Address = 192.0.2.3/32

PrivateKey = <private key for phone.example-vpn.dev>

[Peer]

Name = public-server1.example-vpn.dev

PublicKey = <public key for public-server1.example-vpn.dev>

Endpoint = public-server1.example-vpn.dev:51820

AllowedIPs = 0.0.0.0/0, ::/0

NAT To NAT Connections

WireGuard can sometimes natively make connections between two clients behind NATs without
the need for a public relay server, but in most cases this is not possible. NAT-to-NAT connections
are only possible if at least one host has a stable, publicly-accessible IP address:port pair that
can be hardcoded ahead of time, whether that’s using a FQDN updated with Dynamic DNS, or a
static public IP with a non-randomized NAT port opened by outgoing packets, anything works as
long as all peers can communicate it beforehand and it doesn’t change once the connection is
initiated.

A known port and address need to be configured ahead of time because WireGuard doesn’t have
a signalling layer or public STUN servers that can be used to search for other hosts dynamically.
WebRTC is an example of a protocol that can dynamically configure a connection between two
NATs, but it does this by using an out-of-band signaling server to detect the IP:port combo of
each host. WireGuard doesn’t have this, so it only works with a hardcoded Endpoint +
ListenPort (and PersistentKeepalive so it doesn’t drop after inactivity).

Learn more from Tailscale’s bible of NAT traversal: https://tailscale.com/blog/how-nat-traversal-
works/ (https://tailscale.com/blog/how-nat-traversal-works/)

Requirements for NAT-to-NAT setups

At least one peer has to have to have a hardcoded, directly-accessible Endpoint defined. If
they’re both behind NATs without stable IP addresses, then you’ll need to use Dynamic DNS
or another solution to have a stable, publicly accessibly domain/IP for at least one peer

At least one peer has to have a hardcoded UDP ListenPort defined, and it’s NAT router
must not do UDP source port randomization, otherwise return packets will be sent to the

hardcoded ListenPort and dropped by the router, instead of using the random port
assigned by the NAT on the outgoing packet

All NAT’ed peers must have PersistentKeepalive enabled on all other peers, so that they
continually send outgoing pings to keep connections persisted in their NAT’s routing table

The hole-punching connection process

1. Peer1 sends a UDP packet to Peer2, it’s rejected Peer2’s NAT router immediately, but that’s
ok, the only purpose was to get Peer1’s NAT to start forwarding any expected UDP
responses back to Peer1 behind its NAT

2. Peer2 sends a UDP packet to Peer1, it’s accepted and forwarded to Peer1 as Peer1’s NAT
server is already expecting responses from Peer2 because of the initial outgoing packet

3. Peer1 sends a UDP response to Peer2’s packet, it’s accepted and forwarded by Peer2’s NAT
server as it’s also expecting responses because of the initial outgoing packet

This process of sending an initial packet that gets rejected, then using the fact that the router
has now created a forwarding rule to accept responses is called “UDP hole-punching”.

When you send a UDP packet out, the router (usually) creates a temporary rule mapping your
source address and port to the destination address and port, and vice versa. UDP packets
returning from the destination address and port (and no other) are passed through to the original
source address and port (and no other). This is how most UDP applications function behind
NATs (e.g. BitTorrent, Skype, etc). This rule will timeout after some minutes of inactivity, so the
client behind the NAT must send regular outgoing packets to keep it open (see
PersistentKeepalive).

Getting this to work when both end-points are behind NATs or firewalls requires that both end-
points send packets to each-other at about the same time. This means that both sides need to
know each-other’s public IP addresses and port numbers ahead of time, in WireGuard’s case this
is achieved by hard-coding pre-defined ports for both sides in wg0.conf .

Drawbacks and limitations

As of 2019, many of the old hole-punching methods used that used to work are no longer
effective. One example was a novel method pioneered by pwnat (https://github.com/samyk/pwnat) that
faked an ICMP Time Exceeded response from outside the NAT to get a packet back through to a
NAT’ed peer, thereby leaking its own source port. Hardcoding UDP ports and public IPs for both
sides of a NAT-to-NAT connection (as described above) still works on a small percentage of
networks. Generally the more “enterprisey” a network is, the less likely you’ll be able to hole
punch public UDP ports (commercial public Wi-Fi and cell data NATs often don’t work for
example).

Source port randomization

NAT-to-NAT connections are not possible if all endpoints are behind NAT’s with strict UDP
source port randomization (e.g. most cellular data networks). Since neither side is able to
hardcode a ListenPort and guarantee that their NAT will accept traffic on that port after the
outgoing ping, you cannot coordinate a port for the initial hole-punch between peers and

connections will fail. For this reason, you generally cannot do phone-to-phone connections on
LTE/3g networks, but you might be able to do phone-to-office or phone-to-home where the office
or home has a stable public IP and doesn’t do source port randomization.

Using a signaling server

NAT-to-NAT connections from behind NATs with strict source-port randomization is possible, you
just need a signaling server to tell each side the other’s IP:port tuple. Here are a few
implementations that achieve this with WireGuard:

https://github.com/takutakahashi/wg-connect (https://github.com/takutakahashi/wg-connect)

https://git.zx2c4.com/wireguard-tools/tree/contrib/nat-hole-punching/ (https://git.zx2c4.com

/wireguard-tools/tree/contrib/nat-hole-punching/)

https://github.com/jwhited/wgsd (https://github.com/jwhited/wgsd)

Dynamic IP addresses

Many users report having to restart WireGuard whenever a dynamic IP changes, as it only
resolves hostnames on startup. To force WireGuard to re-resolve dynamic DNS Endpoint
hostnames more often, you may want to use a PostUp hook to restart WireGuard every few
minutes or hours.

Testing it out

You can see if a hole-punching setup is feasible by using netcat on the client and server to see
what ports and connection order work to get a bidirectional connection open: run nc -v -u -p
51820 <address of peer2> 51820 (on peer1) and nc -v -u -l 0.0.0.0 51820 (on peer2), then
type in both windows to see if you can get bidirectional traffic going. If it doesn’t work regardless
of which peer sends the initial packet, then WireGuard won’t be unable to work between the
peers without a public relay server.

NAT-to-NAT connections are often more unstable and have other limitations, which is why having
a fallback public relay server is still advised.

Further reading

https://github.com/samyk/pwnat (https://github.com/samyk/pwnat)

https://en.wikipedia.org/wiki/UDP_hole_punching (https://en.wikipedia.org/wiki/UDP_hole_punching)

https://stackoverflow.com/questions/8892142/udp-hole-punching-algorithm
(https://stackoverflow.com/questions/8892142/udp-hole-punching-algorithm)

https://stackoverflow.com/questions/12359502/udp-hole-punching-not-going-through-on-3g
(https://stackoverflow.com/questions/12359502/udp-hole-punching-not-going-through-on-3g)

https://stackoverflow.com/questions/11819349/udp-hole-punching-not-possible-with-
mobile-provider (https://stackoverflow.com/questions/11819349/udp-hole-punching-not-possible-with-mobile-

provider)

https://github.com/WireGuard/WireGuard/tree/master/contrib/examples/nat-hole-punching
(https://github.com/WireGuard/WireGuard/tree/master/contrib/examples/nat-hole-punching)

https://staaldraad.github.io/2017/04/17/nat-to-nat-with-wireguard/ (https://staaldraad.github.io

/2017/04/17/nat-to-nat-with-wireguard/)

https://golb.hplar.ch/2019/01/expose-server-vpn.html (https://golb.hplar.ch/2019/01/expose-server-

vpn.html)

https://www.jordanwhited.com/posts/wireguard-endpoint-discovery-nat-traversal/
(https://www.jordanwhited.com/posts/wireguard-endpoint-discovery-nat-traversal/)

Example

Peer1:

[Interface]

...

ListenPort 12000

[Peer]

...

Endpoint = peer2.example-vpn.dev:12000

PersistentKeepalive = 25

Peer2:

[Interface]

...

ListenPort 12000

[Peer]

...

Endpoint = peer1.example-vpn.dev:12000

PersistentKeepalive = 25

Dynamic IP Allocation

Note: this section is about dynamic peer IPs within the VPN subnet, not dynamic public Endpoint
addresses.

Dynamic allocation of peer IPs (instead of only having fixed peers) is being developed, the WIP
implementation is available here:
https://github.com/WireGuard/wg-dynamic (https://github.com/WireGuard/wg-dynamic)

You can also build a dynamic allocation system yourself by reading in IP values from files at
runtime by using PostUp (see below).

Example

[Interface]

...

PostUp = wg set %i allowed-ips /etc/wireguard/wg0.key <(some command)

Other WireGuard Implementations

https://git.zx2c4.com/wireguard-go/about/ (https://git.zx2c4.com/wireguard-go/about/)

A compliant userland WireGuard implementation written in Go.

https://git.zx2c4.com/wireguard-rs/about/ (https://git.zx2c4.com/wireguard-rs/about/)

An incomplete, insecure userspace implementation of WireGuard written in Rust (not ready
for the public).

https://git.zx2c4.com/wireguard-hs/about/ (https://git.zx2c4.com/wireguard-hs/about/)

An incomplete, insecure userspace implementation of WireGuard written in Haskell (not
ready for the public).

https://github.com/cloudflare/boringtun (https://github.com/cloudflare/boringtun)

A non-compliant, independent WireGuard implementation written in Rust (a separate fork
written by CloudFlare).
See https://blog.cloudflare.com/boringtun-userspace-wireguard-rust/ (https://blog.cloudflare.com

/boringtun-userspace-wireguard-rust/)

Platform-specific WireGuard apps
https://git.zx2c4.com/wireguard-ios/about/ (https://git.zx2c4.com/wireguard-ios/about/)

https://git.zx2c4.com/wireguard-android/about/ (https://git.zx2c4.com/wireguard-android/about/)

https://git.zx2c4.com/wireguard-windows/about/ (https://git.zx2c4.com/wireguard-windows/about/)

All of the userspace implementations are slower than the native C version that runs in kernel-
land, but provide other benefits by running in userland (e.g. easier containerization, compatibility,
etc.).

WireGuard Setup Tools

These are some GUI and CLI tools that wrap WireGuard to assist with config, deployment, key
management, and connection.

https://github.com/seashell/drago (https://github.com/seashell/drago)

https://github.com/vx3r/wg-gen-web (https://github.com/vx3r/wg-gen-web)

https://github.com/subspacecloud/subspace (https://github.com/subspacecloud/subspace)

https://github.com/corrad1nho/qomui (https://github.com/corrad1nho/qomui)

https://github.com/max-moser/network-manager-wireguard (https://github.com/max-moser/network-

manager-wireguard)

https://github.com/psyhomb/wireguard-tools (https://github.com/psyhomb/wireguard-tools)

https://github.com/its0x08/wg-install (https://github.com/its0x08/wg-install)

https://github.com/sowbug/mkwgconf (https://github.com/sowbug/mkwgconf)

https://github.com/brittson/wireguard_config_maker (https://github.com/brittson

/wireguard_config_maker)

https://github.com/SirToffski/WireGuard-Ligase/ (https://github.com/SirToffski/WireGuard-Ligase/)

https://pypi.org/project/wireguard-p2p/ (https://pypi.org/project/wireguard-p2p/)

https://github.com/trailofbits/algo (https://github.com/trailofbits/algo)

https://github.com/StreisandEffect/streisand (https://github.com/StreisandEffect/streisand)

https://www.veeam.com/blog/veeam-pn-v2-wireguard.html (https://www.veeam.com/blog/veeam-pn-

v2-wireguard.html)

https://github.com/wg-dashboard/wg-dashboard (https://github.com/wg-dashboard/wg-dashboard)

https://www.wireguardconfig.com (https://www.wireguardconfig.com)

https://github.com/complexorganizations/wireguard-manager (https://github.com

/complexorganizations/wireguard-manager)

https://github.com/influxdata/wirey (https://github.com/influxdata/wirey)

https://github.com/apognu/wgctl (https://github.com/apognu/wgctl)

https://github.com/naggie/dsnet (https://github.com/naggie/dsnet)

https://github.com/perara/wg-manager (https://github.com/perara/wg-manager)

https://github.com/pivpn/pivpn (https://github.com/pivpn/pivpn)

https://github.com/BrunIF/wg-ccg (https://github.com/BrunIF/wg-ccg)

Config Shortcuts

Credit for these shortcuts goes to:
https://www.ericlight.com/new-things-i-didnt-know-about-wireguard.html (https://www.ericlight.com

/new-things-i-didnt-know-about-wireguard.html)

Sharing a single peers.conf file

WireGuard will ignore a peer whose public key matches the interface’s private key. So you can
distribute a single list of peers everywhere, and only define the [Interface] separately on each
server.

See: https://lists.zx2c4.com/pipermail/wireguard/2018-December/003703.html
(https://lists.zx2c4.com/pipermail/wireguard/2018-December/003703.html)

You can combine this with wg addconf like this:

Each peer has its own /etc/wireguard/wg0.conf file, which only contains its [Interface]
section.

Each peer also has a shared /etc/wireguard/peers.conf file, which contains all the peers.

The wg0.conf file also has a PostUp hook: PostUp = wg addconf /etc/wireguard
/peers.conf .

It’s up to you to decide how you want to share the peers.conf , be it via a proper orchestration
platform, something much more pedestrian like Dropbox, or something kinda wild like Ceph. I
dunno, but it’s pretty great that you can just wildly fling a peer section around, without worrying
whether it’s the same as the interface.

Setting config values from files or command outputs

You can set config values from arbitrary commands or by reading in values from files, this makes
key management and deployment much easier as you can read in keys at runtime from a 3rd

party service like Kubernetes Secrets or AWS KMS.

See: https://lists.zx2c4.com/pipermail/wireguard/2018-December/003702.html
(https://lists.zx2c4.com/pipermail/wireguard/2018-December/003702.html)

Example

You can read in a file as the PrivateKey by doing something like:

PostUp = wg set %i private-key /etc/wireguard/wg0.key <(some command)

Containerization

WireGuard can be run in Docker with varying degrees of ease. In the simplest case,
--privileged and --cap-add=all arguments can be added to the docker commands to enable

the loading of the kernel module.

Setups can get somewhat complex and are highly dependent on what you’re trying to achieve.
You can have WireGuard itself run in a container and expose a network interface to the host, or
you can have WireGuard running on the host exposing an interface to specific containers.

See below for an example of a Docker container vpn_test routing all its traffic through a
WireGuard relay server.

Example Relay Server Setup

version: '3'

services:

wireguard:

image: linuxserver/wireguard

ports:

- 51820:51820/udp

cap_add:

- NET_ADMIN

- SYS_MODULE

volumes:

- /lib/modules:/lib/modules

- ./wg0.conf:/config/wg0.conf:ro

wg0.conf :

[Interface]

Name = relay1.wg.example.com

Address = 192.0.2.1/24

ListenPort = 51820

PrivateKey = oJpRt2Oq27vIB5/UVb7BRqCwad2YMReQgH5tlxz8YmI=

DNS = 1.1.1.1,8.8.8.8

PostUp = iptables -A FORWARD -i wg0 -j ACCEPT; iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE;

PostDown = iptables -D FORWARD -i wg0 -j ACCEPT; iptables -t nat -D POSTROUTING -o eth0 -j MASQUERADE

[Peer]

Name = peer1.wg.example.com

PublicKey = I+hXRAJOG/UE2IQvIHsou2zTgkUyPve2pzvHTnd/2Gg=

AllowedIPs = 192.0.2.2/32

Example Client Container Setup

In this example all the traffic from inside the speedtest container will go through the wireguard
VPN.
To only route some traffic, replace 0.0.0.0/0 in wg0.conf below with the subnet ranges you
want to route via the VPN.

docker-compose.yml :

version: '3'

services:

wireguard:

image: linuxserver/wireguard

cap_add:

- NET_ADMIN

- SYS_MODULE

volumes:

- /lib/modules:/lib/modules

- ./wg0.conf:/config/wg0.conf:ro

vpn_test:

image: curlimages/curl

entrypoint: curl -s http://whatismyip.akamai.com/

network_mode: 'service:wireguard'

wg0.conf :

[Interface]

Name = peer1.wg.example.com

Address = 192.0.2.2/32

PrivateKey = YCW76edD4W7nZrPbWZxPZhcs32CsBLIi1sEhsV/sgk8=

DNS = 1.1.1.1,8.8.8.8

[Peer]

Name = relay1.wg.example.com

Endpoint = relay1.wg.example.com:51820

PublicKey = zJNKewtL3gcHdG62V3GaBkErFtapJWsAx+2um0c0B1s=

AllowedIPs = 192.0.2.1/24,0.0.0.0/0

PersistentKeepalive = 21

For more details see the Further Reading: Docker section below.

Further Reading

Reference Docs

https://www.wireguard.com/install/#installation (https://www.wireguard.com/install/#installation)

https://git.zx2c4.com/WireGuard/about/src/tools/man/wg.8 (https://git.zx2c4.com/WireGuard/about

/src/tools/man/wg.8)

https://git.zx2c4.com/WireGuard/about/src/tools/man/wg-quick.8 (https://git.zx2c4.com/WireGuard

/about/src/tools/man/wg-quick.8)

https://wiki.archlinux.org/index.php/WireGuard (https://wiki.archlinux.org/index.php/WireGuard)

https://wiki.debian.org/Wireguard#Configuration (https://wiki.debian.org/Wireguard#Configuration)

Tutorials

https://www.wireguard.com/quickstart/ (https://www.wireguard.com/quickstart/)

https://www.stavros.io/posts/how-to-configure-wireguard/ (https://www.stavros.io/posts/how-to-

configure-wireguard/)

https://nbsoftsolutions.com/blog/wireguard-vpn-walkthrough (https://nbsoftsolutions.com

/blog/wireguard-vpn-walkthrough)

https://networkhobo.com/building-a-wireguard-router/ (https://networkhobo.com/building-a-wireguard-

router/)

https://proprivacy.com/guides/wireguard-hands-on-guide (https://proprivacy.com/guides/wireguard-

hands-on-guide)

https://angristan.xyz/how-to-setup-vpn-server-wireguard-nat-ipv6/ (https://angristan.xyz/how-to-

setup-vpn-server-wireguard-nat-ipv6/)

https://medium.com/@headquartershq/setting-up-wireguard-on-a-mac-8a121bfe9d86
(https://medium.com/@headquartershq/setting-up-wireguard-on-a-mac-8a121bfe9d86)

https://grh.am/2018/wireguard-setup-guide-for-ios/ (https://grh.am/2018/wireguard-setup-guide-for-ios/)

https://techcrunch.com/2018/07/28/how-i-made-my-own-wireguard-vpn-server/

(https://techcrunch.com/2018/07/28/how-i-made-my-own-wireguard-vpn-server/)

https://www.ckn.io/blog/2017/11/14/wireguard-vpn-typical-setup/ (https://www.ckn.io/blog/2017

/11/14/wireguard-vpn-typical-setup/)

https://jrs-s.net/2018/08/05/routing-between-wg-interfaces-with-wireguard/ (https://jrs-

s.net/2018/08/05/routing-between-wg-interfaces-with-wireguard/)

https://www.stavros.io/posts/how-to-configure-wireguard/ (https://www.stavros.io/posts/how-to-

configure-wireguard/)

https://vincent.bernat.ch/en/blog/2018-route-based-vpn-wireguard (https://vincent.bernat.ch

/en/blog/2018-route-based-vpn-wireguard)

https://staaldraad.github.io/2017/04/17/nat-to-nat-with-wireguard (https://staaldraad.github.io

/2017/04/17/nat-to-nat-with-wireguard)

https://try.popho.be/wg.html (https://try.popho.be/wg.html)

https://docs.artemix.org/sysadmin/wireguard-management/ (https://docs.artemix.org/sysadmin

/wireguard-management/)

https://github.com/adrianmihalko/raspberrypiwireguard (https://github.com/adrianmihalko

/raspberrypiwireguard)

https://www.ericlight.com/wireguard-part-one-installation.html (https://www.ericlight.com/wireguard-

part-one-installation.html)

https://www.ericlight.com/wireguard-part-two-vpn-routing.html (https://www.ericlight.com/wireguard-

part-two-vpn-routing.html)

https://www.ericlight.com/wireguard-part-three-troubleshooting.html (https://www.ericlight.com

/wireguard-part-three-troubleshooting.html)

https://wiki.dd-wrt.com/wiki/index.php/The_Easiest_Tunnel_Ever (https://wiki.dd-wrt.com

/wiki/index.php/The_Easiest_Tunnel_Ever)

https://www.reddit.com/r/pihole/comments/bnihyz
/guide_how_to_install_wireguard_on_a_raspberry_pi/ (https://www.reddit.com/r/pihole/comments

/bnihyz/guide_how_to_install_wireguard_on_a_raspberry_pi/)

https://jwillmer.de/blog/tutorial/wireguard-proxy-configuration (https://jwillmer.de/blog/tutorial

/wireguard-proxy-configuration)

https://www.maths.tcd.ie/~fionn/misc/wireguard.php (https://www.maths.tcd.ie/~fionn

/misc/wireguard.php)

https://www.linode.com/docs/networking/vpn/set-up-wireguard-vpn-on-debian/
(https://www.linode.com/docs/networking/vpn/set-up-wireguard-vpn-on-debian/)

https://golb.hplar.ch/2019/01/expose-server-vpn.html (https://golb.hplar.ch/2019/01/expose-server-

vpn.html)

https://medium.com/@jmarhee/configuring-and-managing-routes-between-multiple-
networks-with-wireguard-61ad995c887c (https://medium.com/@jmarhee/configuring-and-managing-routes-

between-multiple-networks-with-wireguard-61ad995c887c)

https://stanislas.blog/2019/01/how-to-setup-vpn-server-wireguard-nat-ipv6/
(https://stanislas.blog/2019/01/how-to-setup-vpn-server-wireguard-nat-ipv6/)

Papers, Articles, and Talks

https://www.wireguard.com/papers/wireguard.pdf (https://www.wireguard.com/papers/wireguard.pdf)

https://www.wireguard.com/presentations/ (https://www.wireguard.com/presentations/)

https://eprint.iacr.org/2018/080.pdf (https://eprint.iacr.org/2018/080.pdf)

https://courses.csail.mit.edu/6.857/2018/project/He-Xu-Xu-WireGuard.pdf
(https://courses.csail.mit.edu/6.857/2018/project/He-Xu-Xu-WireGuard.pdf)

https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-fast-connections-amaze-
but-windows-support-needs-to-happen/ (https://arstechnica.com/gadgets/2018/08/wireguard-vpn-review-

fast-connections-amaze-but-windows-support-needs-to-happen/)

https://www.wireguard.com/talks/blackhat2018-slides.pdf (https://www.wireguard.com/talks

/blackhat2018-slides.pdf)

Related Projects

https://github.com/complexorganizations/wireguard-manager (https://github.com

/complexorganizations/wireguard-manager)

https://github.com/subspacecloud/subspace (https://github.com/subspacecloud/subspace)

https://github.com/trailofbits/algo (https://github.com/trailofbits/algo)

https://github.com/StreisandEffect/streisand (https://github.com/StreisandEffect/streisand)

https://github.com/its0x08/wg-install (https://github.com/its0x08/wg-install)

https://github.com/sowbug/mkwgconf (https://github.com/sowbug/mkwgconf)

https://github.com/brittson/wireguard_config_maker (https://github.com/brittson

/wireguard_config_maker)

https://github.com/SirToffski/WireGuard-Ligase/ (https://github.com/SirToffski/WireGuard-Ligase/)

https://pypi.org/project/wireguard-p2p/ (https://pypi.org/project/wireguard-p2p/)

https://github.com/cloudflare/boringtun (https://github.com/cloudflare/boringtun)

https://git.zx2c4.com/wireguard-go/about/ (https://git.zx2c4.com/wireguard-go/about/)

https://github.com/WireGuard/wg-dynamic (https://github.com/WireGuard/wg-dynamic)

https://github.com/WireGuard/wireguard-ios (https://github.com/WireGuard/wireguard-ios)

https://github.com/WireGuard/wireguard-windows (https://github.com/WireGuard/wireguard-windows)

https://github.com/WireGuard/wireguard-rs (https://github.com/WireGuard/wireguard-rs)

https://github.com/WireGuard/wireguard-go (https://github.com/WireGuard/wireguard-go)

https://www.veeam.com/blog/veeam-pn-v2-wireguard.html (https://www.veeam.com/blog/veeam-pn-

v2-wireguard.html)

https://github.com/wg-dashboard/wg-dashboard (https://github.com/wg-dashboard/wg-dashboard)

https://wirtbot.com (https://wirtbot.com)

https://github.com/seashell/drago (https://github.com/seashell/drago)

https://www.wireguardconfig.com (https://www.wireguardconfig.com)

https://github.com/angristan/wireguard-install (https://github.com/angristan/wireguard-install)

https://github.com/complexorganizations/wireguard-manager (https://github.com

/complexorganizations/wireguard-manager)

https://github.com/influxdata/wirey (https://github.com/influxdata/wirey)

https://github.com/apognu/wgctl (https://github.com/apognu/wgctl)

https://github.com/tailscale/tailscale (https://github.com/tailscale/tailscale)

https://github.com/pivpn/pivpn (https://github.com/pivpn/pivpn)

https://github.com/jwhited/wgsd (https://github.com/jwhited/wgsd)

Docker

https://blog.jessfraz.com/post/installing-and-using-wireguard/ (https://blog.jessfraz.com

/post/installing-and-using-wireguard/)

https://codeopolis.com/posts/installing-wireguard-in-docker/ (https://codeopolis.com/posts

/installing-wireguard-in-docker/)

http://tiven.wang/articles/wireguard-setup-server-in-docker/ (http://tiven.wang/articles/wireguard-

setup-server-in-docker/)

https://github.com/activeeos/wireguard-docker (https://github.com/activeeos/wireguard-docker)

https://github.com/cmulk/wireguard-docker (https://github.com/cmulk/wireguard-docker)

https://github.com/ironhalik/docker-wireguard (https://github.com/ironhalik/docker-wireguard)

https://github.com/linuxserver/docker-wireguard (https://github.com/linuxserver/docker-wireguard)

https://github.com/squat/kilo (https://github.com/squat/kilo)

https://github.com/gravitational/wormhole (https://github.com/gravitational/wormhole)

https://medium.com/@mdp/securing-docker-with-wireguard-82ad45004f4d (https://medium.com

/@mdp/securing-docker-with-wireguard-82ad45004f4d)

https://nbsoftsolutions.com/blog/leaning-on-algo-to-route-docker-traffic-through-wireguard
(https://nbsoftsolutions.com/blog/leaning-on-algo-to-route-docker-traffic-through-wireguard)

https://nbsoftsolutions.com/blog/routing-select-docker-containers-through-wireguard-vpn
(https://nbsoftsolutions.com/blog/routing-select-docker-containers-through-wireguard-vpn)

https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2018-pudelko-vpn-
performance.pdf (https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2018-pudelko-vpn-

performance.pdf)

https://www.wireguard.com/#ready-for-containers (https://www.wireguard.com/#ready-for-containers)

https://discuss.linuxcontainers.org/t/solved-wireguard-in-macvlan-container-on-ubuntu-
18-04/4445 (https://discuss.linuxcontainers.org/t/solved-wireguard-in-macvlan-container-on-ubuntu-18-04/4445)

https://www.reddit.com/r/WireGuard/comments/gdhcej
/trouble_tunneling_docker_containers_through_a/ (https://www.reddit.com/r/WireGuard/comments

/gdhcej/trouble_tunneling_docker_containers_through_a/)

https://forums.unraid.net/topic/91367-partially-working-wireguard-docker/
(https://forums.unraid.net/topic/91367-partially-working-wireguard-docker/)

https://saasbootstrap.com/how-to-setup-a-vpn-with-wireguard-that-only-routes-traffic-from-
a-specific-docker-container-or-specific-ip/ (https://saasbootstrap.com/how-to-setup-a-vpn-with-wireguard-

that-only-routes-traffic-from-a-specific-docker-container-or-specific-ip/)

Other

https://blog.cloudflare.com/boringtun-userspace-wireguard-rust/ (https://blog.cloudflare.com

/boringtun-userspace-wireguard-rust/)

https://jrs-s.net/category/open-source/wireguard/ (https://jrs-s.net/category/open-source/wireguard/)

https://restoreprivacy.com/openvpn-ipsec-wireguard-l2tp-ikev2-protocols/
(https://restoreprivacy.com/openvpn-ipsec-wireguard-l2tp-ikev2-protocols/)

https://restoreprivacy.com/wireguard/ (https://restoreprivacy.com/wireguard/)

https://www.ericlight.com/new-things-i-didnt-know-about-wireguard.html
(https://www.ericlight.com/new-things-i-didnt-know-about-wireguard.html)

https://www.ericlight.com/tag/wireguard.html (https://www.ericlight.com/tag/wireguard.html)

https://www.linode.com/docs/networking/vpn/set-up-wireguard-vpn-on-ubuntu/
(https://www.linode.com/docs/networking/vpn/set-up-wireguard-vpn-on-ubuntu/)

https://www.reddit.com/r/linux/comments/9bnowo
/wireguard_benchmark_between_two_servers_with_10/ (https://www.reddit.com/r/linux/comments

/9bnowo/wireguard_benchmark_between_two_servers_with_10/)

https://www.wireguard.com/netns/ (https://www.wireguard.com/netns/)

https://www.wireguard.com/performance/ (https://www.wireguard.com/performance/)

https://blogs.gnome.org/thaller/2019/03/15/wireguard-in-networkmanager/
(https://blogs.gnome.org/thaller/2019/03/15/wireguard-in-networkmanager/)

https://github.com/max-moser/network-manager-wireguard (https://github.com/max-moser/network-

manager-wireguard)

https://blog.linuxserver.io/2019/11/24/connect-an-ubuntu-client-to-opnsense-wireguard-
tunnel-with-a-gui-toggle-in-gnome/ (https://blog.linuxserver.io/2019/11/24/connect-an-ubuntu-client-to-

opnsense-wireguard-tunnel-with-a-gui-toggle-in-gnome/)

Discussions

https://www.reddit.com/r/WireGuard (https://www.reddit.com/r/WireGuard)

https://lists.zx2c4.com/mailman/listinfo/wireguard (https://lists.zx2c4.com/mailman/listinfo/wireguard)

https://www.reddit.com/r/VPN/comments/a914mr
/can_you_explain_the_difference_between_openvpn/ (https://www.reddit.com/r/VPN/comments/a914mr

/can_you_explain_the_difference_between_openvpn/)

https://www.reddit.com/r/WireGuard/comments/b0m5g2
/ipv6_leaks_psa_for_anyone_here_using_wireguard_to/?utm_source=reddit&
utm_medium=usertext&utm_name=WireGuard&utm_content=t1_ep8tv0o (https://www.reddit.com

/r/WireGuard/comments/b0m5g2/ipv6_leaks_psa_for_anyone_here_using_wireguard_to/?utm_source=reddit&

utm_medium=usertext&utm_name=WireGuard&utm_content=t1_ep8tv0o)

https://www.reddit.com/r/VPN/comments/au4owb
/how_secure_is_wireguard_vpn_protocol/ (https://www.reddit.com/r/VPN/comments/au4owb

/how_secure_is_wireguard_vpn_protocol/)

https://www.reddit.com/r/WireGuard/comments/ap33df
/wireguard_what_is_so_special_about_it_and_why/ (https://www.reddit.com/r/WireGuard/comments

/ap33df/wireguard_what_is_so_special_about_it_and_why/)

https://www.reddit.com/r/VPN/comments/9hgs2x
/what_is_the_difference_between_wireguard_openvpn/ (https://www.reddit.com/r/VPN/comments

/9hgs2x/what_is_the_difference_between_wireguard_openvpn/)

https://www.reddit.com/r/WireGuard/comments/d3thxp
/port_forwarding_on_the_router_with_wireguard_is/ (https://www.reddit.com/r/WireGuard/comments

/d3thxp/port_forwarding_on_the_router_with_wireguard_is/)

https://www.reddit.com/r/privacytoolsIO/comments/8l0vxt
/what_do_you_think_guys_of_wireguard/ (https://www.reddit.com/r/privacytoolsIO/comments/8l0vxt

/what_do_you_think_guys_of_wireguard/)

https://community.ui.com/questions/Edgerouter-with-remote-Wireguard-access-
issue/03e4f2e2-3871-437f-8632-3c5c7fb1c7a4 (https://community.ui.com/questions/Edgerouter-with-

remote-Wireguard-access-issue/03e4f2e2-3871-437f-8632-3c5c7fb1c7a4)

https://discuss.linuxcontainers.org/t/solved-wireguard-in-macvlan-container-on-ubuntu-
18-04/4445 (https://discuss.linuxcontainers.org/t/solved-wireguard-in-macvlan-container-on-ubuntu-18-04/4445)

https://news.ycombinator.com/item?id=20036194 (https://news.ycombinator.com/item?id=20036194)

https://news.ycombinator.com/item?id=17659983 (https://news.ycombinator.com/item?id=17659983)

https://news.ycombinator.com/item?id=17846387 (https://news.ycombinator.com/item?id=17846387)

For more detailed instructions, see the QuickStart guide and API reference above. You can also
download the complete example setup here: https://github.com/pirate/wireguard-example
(https://github.com/pirate/wireguard-example).

Suggest changes: https://github.com/pirate/wireguard-docs/issues (https://github.com/pirate/wireguard-

docs/issues)

