
1. Jb0103 Preface to Programming Fundamentals with Java
2. Jb0105: Java OOP: Similarities and Differences between Java

and C++
3. Jb0110: Java OOP: Programming Fundamentals, Getting

Started
4. Jb0110r Review
5. Jb0115: Java OOP: First Program
6. Jb0120: Java OOP: A Gentle Introduction to Java

Programming
7. Jb0120r Review
8. Jb0130: Java OOP: A Gentle Introduction to Methods in Java
9. Jb0130r Review

10. Jb0140: Java OOP: Java comments
11. Jb0140r Review
12. Jb0150: Java OOP: A Gentle Introduction to Java Data Types
13. Jb0150r Review
14. Jb0160: Java OOP: Hello World
15. Jb0160r Review
16. Jb0170: Java OOP: A little more information about classes.
17. Jb0170r: Review
18. Jb0180: Java OOP: The main method.
19. Jb0180r Review
20. Jb0190: Java OOP: Using the System and PrintStream Classes
21. Jb0190r: Review
22. Jb0200: Java OOP: Variables
23. Jb0200r: Review
24. Jb0210: Java OOP: Operators
25. Jb0210r Review
26. Jb0220: Java OOP: Statements and Expressions
27. Jb0220r Review
28. Jb0230: Java OOP: Flow of Control

29. Jb0230r Review
30. Jb0240: Java OOP: Arrays and Strings
31. Jb0240r Review
32. Jb0250: Java OOP: Brief Introduction to Exceptions
33. Jb0260: Java OOP: Command-Line Arguments
34. Jb0260r Review
35. Jb0270: Java OOP: Packages
36. Jb0280: Java OOP: String and StringBuffer
37. Jb0280r Review
38. Jb0290: The end of Programming Fundamentals

Jb0103 Preface to Programming Fundamentals with Java
This Page is a preface to the book titled Programming Fundamentals with
Java.

Revised: Sun Mar 27 10:29:44 CDT 2016

Note:
This Page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Welcome
The DrJava IDE and the Java Development Kit
Miscellaneous

Welcome

Welcome to Programming Fundamentals with Java.

This book is a compilation of material that I have published over the years
for the benefit of those students who desire to enroll in my beginning OOP
course but who don't have the required prerequisite knowledge for that
course. If you fall in that category, or if you just want to get a good
introduction to computer programming, you may find this material useful.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Even if you have completed a programming fundamentals course in another
language, or you have considerable programming experience in another
language, you may still find this material useful as an introduction to the
Java programming language and its syntax.

In case you decide that you don't need to study the material in this group of
modules, you may still find it useful to take a look at the following three
modules. These three modules will show you how to configure your
computer and get started programming in Java.

Jb0110: Java OOP: Programming Fundamentals, Getting Started
Jb0110r Review
Jb0115: Java OOP: First Program

You may also find it useful to search the web for and study a few tutorials
on the Windows "command prompt" as well as a few tutorials on Windows
batch files. Here are a couple of possibilities that I found with a
rudimentary search:

Windows Command Prompt in 15 Minutes
Windows Batch Scripting: Getting Started

If you are using a different operating system, you may need to find similar
tutorials that match up with the operating system that you are using.

Most of the topics in this Book are divided into two modules -- a primary
module and a review module. The review modules contain review questions
and answers keyed to the material in the primary modules.

In addition to the modules contained in this group, you will find several of
my other tutorials on programming fundamentals at
Obg0510:
Programming Fundamentals
. Those tutorials are still in their original html
format and you may need to go to the Legacy Site
to access them fully.
They are awaiting conversion to cnxml, which is a requirement for
publishing them as modules on cnx.org.

As you work your way through the modules in this group, you should
prepare yourself for the more challenging ITSE 2321 OOP tracks identified

http://cnx.org/contents/-2RmHFs_:kg0JHepy
http://cnx.org/contents/-2RmHFs_:bYbw870e
http://cnx.org/contents/-2RmHFs_:snYAmEHy
http://www.cs.princeton.edu/courses/archive/spr05/cos126/cmd-prompt.html
http://steve-jansen.github.io/guides/windows-batch-scripting/part-1-getting-started.html
http://cnx.org/contents/1J-75Flv:lOzgIE83
https://legacy.cnx.org/content/m48033/1.1/#Tutorial_Links

below:

Java 1600: Objects and Encapsulation
Java 3000: The Guzdial-Ericson Multimedia Class Library
Java 4010: Getting Started with Java Collections

The DrJava IDE and the Java Development K
it

In order to work with the material in this group of Programming
Fundamentals
modules, you will need access to Oracle's Java Development
Kit
(JDK)
. You will also need access to a text editor, preferably one that is
tailored to the creation of Java programs. One such freely available text
editor is named DrJava
.

However, DrJava is more than just a text editor. It is an Integrated
Development Environment ((IDE)
that is designed for use by students
learning how to program in the Java programming language. I recommend
it for use with this group of Programming Fundamentals
modules.

See A Quick Start Guide to DrJava
for instructions on downloading and
installing both the DrJava IDE and Oracle's Java Development Kit (JDK)
.

The Quick Start Guide also provides instructions for using the DrJava IDE.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0103 Preface to Programming Fundamentals with
Java
File: Jb0103.htm
Published: 11/22/12

http://cnx.org/contents/-2RmHFs_:rOlnsVRr
http://cnx.org/contents/-2RmHFs_:0xo_9JXz
http://cnx.org/contents/-2RmHFs_:BaPSYll8
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.drjava.org/
http://www.drjava.org/docs/quickstart/index.html

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to
download a PDF file for this
module at no charge, and also makes it
possible for you to
purchase a pre-printed version of the PDF file, you
should be
aware that some of the HTML elements in this module may not
translate well into
PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0105: Java OOP: Similarities and Differences between Java and C++
This Page compares Java and C++ for the benefit of persons having
familiarity with C++ and making the transition to Java.

Revised: Sun Mar 27 11:30:53 CDT 2016

Note:
This Page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Similarities and differences
Miscellaneous

Preface

This module, which presents some of the similarities and differences
between Java and C++, is provided solely for the benefit of those students
who are already familiar with C++ and are making the transition from C++
into Java.

If you have some familiarity with C++, you may find the material in this
module helpful. If not, simply skip this module and move on to the next
module in the collection.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

In general, students in Prof. Baldwin's Java/OOP courses are not expected
to have any specific knowledge of C++.

This module is intended to be general in nature. Therefore, although a few
update notes were added prior to publication at cnx.org, no significant effort
has been made to keep it up to date relative to any particular version of the
Java JDK or any particular version of C++. Changes have occurred in both
Java and C++ since the first publication of this document in 1997. Those
changes may not be reflected in this module.

Similarities and differences

This list of similarities and differences is based heavily on The Java
Language Environment, A White Paper
by James Gosling and Henry
McGilton and
Thinking in Java
by Bruce Eckel, which was freely available
on the web when this document was first published.

Java does not support typedefs
, defines
, or a preprocessor
. Without a
preprocessor, there are no provisions for including header files.

Since Java does not have a preprocessor there is no concept of #define
macros or manifest constants
. However, the declaration of named constants
is supported in Java through use of the final
keyword.

Java does not support enums
but, as mentioned above, does support named
constants
. (Note: the
enum type
was introduced into Java sometime
between the first publication of this document and Java version 7.)

Java supports classes
, but does not support structures
or unions
.

All stand-alone C++ programs require a function named main
and can have
numerous other functions, including both stand-alone functions and
functions that are members of a class. There are no stand-alone functions in
Java. Instead, there are only functions that are members of a class, usually
called methods. However, a Java application (not a Java applet) does
require a class definition containing a main
method.

http://net.uom.gr/Books/Manuals/langenviron-a4.pdf
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Global functions and global data are not allowed in Java. However,
variables that are declared static
are shared among all objects instantiated
from the class in which the static
variables are declared.
(Generally, static
has a somewhat different meaning in C++ and Java. For example, the
concept of a static local variable does not exist in Java as it does in C++.)

All classes in Java ultimately inherit from the class named Object
. This is
significantly different from C++ where it is possible to create inheritance
trees that are completely unrelated to one another. All Java objects contain
the eleven methods that are inherited from the Object
class.

All function or method definitions in Java are contained within a class
definition. To a C++ programmer, they may look like inline function
definitions, but they aren't. Java doesn't allow the programmer to request
that a function be made inline, at least not directly.

Both C++ and Java support class (static)
methods or functions that can be
called without the requirement to instantiate an object of the class.

The interface
keyword in Java is used to create the equivalence of an
abstract base class containing only method declarations and constants. No
variable data members or method definitions are allowed in a Java interface
definition. (True abstract base classes can also be created in Java.)
The
interface concept is not supported by C++ but can probably be emulated.

Java does not support multiple class inheritance. To some extent, the
interface
feature provides the desirable features of multiple class
inheritance to a Java program without some of the underlying problems.

While Java does not support multiple class inheritance, single inheritance in
Java is similar to C++, but the manner in which you implement inheritance
differs significantly, especially with respect to the use of constructors in the
inheritance chain.

In addition to the access modifiers applied to individual members of a class,
C++ allows you to provide an additional access modifier when inheriting
from a class. This latter concept is not supported by Java.

Java does not support the goto
statement (but goto is a reserved word)
.
However, it does support labeled break
and continue
statements, a feature
not supported by C++. In certain restricted situations, labeled break
and
continue
statements can be used where a goto
statement might otherwise be
used.

Java does not support operator overloading
.

Java does not support automatic type conversions (except where guaranteed
safe)
.

Unlike C++, Java has a String
type, and objects of this type are immutable
(cannot be modified)
. (Note, although I'm not certain, I believe that the
equivalent of a Java String type was introduced into C++ sometime after
the original publication of this document.)

Quoted strings are automatically converted into String
objects in Java. Java
also has a StringBuffer
type. Objects of this type can be modified, and a
variety of string manipulation methods are provided.

Unlike C++, Java provides true arrays as first-class objects. There is a
length member, which tells you how big the array is. An exception is
thrown if you attempt to access an array out of bounds. All arrays are
instantiated in dynamic memory and assignment of one array to another is
allowed. However, when you make such an assignment, you simply have
two references to the same array. Changing the value of an element in the
array using one of the references changes the value insofar as both
references are concerned.

Unlike C++, having two "pointers" or references to the same object in
dynamic memory is not necessarily a problem (but it can result in
somewhat confusing results)
. In Java, dynamic memory is reclaimed
automatically, but is not reclaimed until all references to that memory
become NULL or cease to exist. Therefore, unlike in C++, the allocated
dynamic memory cannot become invalid for as long as it is being
referenced by any reference variable.

Java does not support pointers
(at least it does not allow you to modify the
address contained in a pointer or to perform pointer arithmetic)
. Much of
the need for pointers was eliminated by providing types for arrays and
strings. For example, the oft-used C++ declaration char* ptr
needed to
point to the first character in a C++ null-terminated "string" is not required
in Java, because a string is a true object in Java.

A class definition in Java looks similar to a class definition in C++, but
there is no closing semicolon. Also forward reference declarations
that are
sometimes required in C++ are not required in Java.

The scope resolution operator (::) required in C++ is not used in Java. The
dot is used to construct all fully-qualified references. Also, since there are
no pointers, the pointer operator (->) used in C++ is not required in Java.

In C++, static data members and functions are called using the name of the
class and the name of the static member connected by the scope resolution
operator. In Java, the dot is used for this purpose.

Like C++, Java has primitive types such as int
, float
, etc. Unlike C++, the
size of each primitive type is the same regardless of the platform. There is
no unsigned integer type in Java. Type checking and type requirements are
much tighter in Java than in C++.

Unlike C++, Java provides a true boolean
type. (Note, the C++ equivalent
of the Java boolean type may have been introduced into C++ subsequent to
the original publication of this document.)

Conditional expressions in Java must evaluate to boolean
rather than to
integer, as is the case in C++. Statements such as

if(x+y)...

are not allowed in Java because the conditional expression doesn't evaluate
to a boolean
.

The char
type in C++ is an 8-bit type that maps to the ASCII (or extended
ASCII)
character set. The char
type in Java is a 16-bit type and uses the

Unicode character set (the Unicode values from 0 through 127 match the
ASCII character set)
. For information on the Unicode character set see
http://www.unicode.org/
.

Unlike C++, the >> operator in Java is a "signed" right bit shift, inserting
the sign bit into the vacated bit position. Java adds an operator that inserts
zeros into the vacated bit positions.

C++ allows the instantiation of variables or objects of all types either at
compile time in static memory or at run time using dynamic memory.
However, Java requires all variables of primitive types to be instantiated at
compile time, and requires all objects to be instantiated in dynamic memory
at runtime. Wrapper classes are provided for all primitive types to allow
them to be instantiated as objects in dynamic memory at runtime if needed.

C++ requires that classes and functions be declared before they are used.
This is not necessary in Java.

The "namespace" issues prevalent in C++ are handled in Java by including
everything in a class, and collecting classes into packages.

C++ requires that you re-declare static data members outside the class. This
is not required in Java.

In C++, unless you specifically initialize variables of primitive types, they
will contain garbage. Although local variables of primitive types can be
initialized in the declaration, primitive data members of a class cannot be
initialized in the class definition in C++.

In Java, you can initialize primitive data members in the class definition.
You can also initialize them in the constructor. If you fail to initialize them,
they will be initialized to zero (or equivalent)
automatically.

Like C++, Java supports constructors that may be overloaded. As in C++, if
you fail to provide a constructor, a default constructor will be provided for
you. If you provide a constructor, the default constructor is not provided
automatically.

http://www.unicode.org/

All objects in Java are passed by reference, eliminating the need for the
copy constructor used in C++.

(In reality, all parameters are passed by value in Java. However, passing a
copy of a reference variable makes it possible for code in the receiving
method to access the object referred to by the variable, and possibly to
modify the contents of that object. However, code in the receiving method
cannot cause the original reference variable to refer to a different object.)

There are no destructors in Java. Unused memory is returned to the
operating system by way of a garbage collector
, which runs in a different
thread from the main program. This leads to a whole host of subtle and
extremely important differences between Java and C++.

Like C++, Java allows you to overload functions (methods)
. However,
default arguments are not supported by Java.

Unlike C++, Java does not support templates. Thus, there are no generic
functions or classes.
(Note, generics similar to C++ templates were
introduced into Java in version 5 subsequent to the original publication of
this document.)

Unlike C++, several "data structure" classes are contained in the "standard"
version of Java. (Note, the Standard Template Library was introduced into
the C++ world subsequent to the original publication of this document.)

More specifically, several "data structure" classes are contained in the
standard class library that is distributed with the Java Development Kit
(JDK). For example, the standard version of Java provides the containers
Vector
and Hashtable
that can be used to contain any object through
recognition that any object is an object of type Object
. However, to use
these containers, you must perform the appropriate upcasting and
downcasting, which may lead to efficiency problems.
(Note, the upcasting
and downcasting requirements were eliminated in conjunction with the
introduction of "generics" into Java mentioned earlier.)

Multithreading is a standard feature of the Java language.

Although Java uses the same keywords as C++ for access control: private
,
public
, and protected
, the interpretation of these keywords is significantly
different between Java and C++.

There is no virtual
keyword in Java. All non-static methods use dynamic
binding, so the virtual keyword isn't needed for the same purpose that it is
used in C++.

Java provides the final
keyword that can be used to specify that a method
cannot be overridden and that it can be statically bound. (The compiler may
elect to make it inline in this case.)

The detailed implementation of the exception handling system in Java is
significantly different from that in C++.

Unlike C++, Java does not support operator overloading. However, the (+)
and (+=) operators are automatically overloaded to concatenate strings, and
to convert other types to string in the process.

As in C++, Java applications can call functions written in another language.
This is commonly referred to as native methods
. However, applets cannot
call native methods.

Unlike C++, Java has built-in support for program documentation.
Specially written comments can be automatically stripped out using a
separate program named javadoc
to produce program documentation.

Generally Java is more robust than C++ due to the following:

Object handles (references)
are automatically initialized to null.
Handles are checked before accessing, and exceptions are thrown in
the event of problems.
You cannot access an array out of bounds.
The potential for memory leaks is prevented (or at least greatly
reduced)
by automatic garbage collection.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0105: Java OOP: Similarities and Differences
between Java and C++
File: Jb0105.htm
Originally published: 1997
Published at cnx.org: 11/17/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to
download a PDF file for this
module at no charge, and also makes it
possible for you to
purchase a pre-printed version of the PDF file, you
should be
aware that some of the HTML elements in this module may not
translate well into
PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0110: Java OOP: Programming Fundamentals, Getting Started
This module explains how to get started programming in Java.

Revised: Sun Mar 27 11:59:05 CDT 2016

Note:
This Page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

General
Prerequisites
Viewing tip

Listings

Writing, compiling, and running Java programs

Writing Java code
Preparing to compile and run Java code

Downloading the java development kit (JDK)
Installing the JDK
The JDK documentation

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Compiling and running Java code

Write your Java program
Create a batch file
A test program

Miscellaneous

Preface

General

This module is part of a sub-collection of modules designed to help you
learn to program computers.

This module explains how to get started programming using the Java
programming language.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these
modules:

The Sun/Oracle Java Development Kit (JDK) (See
http://www.oracle.com/technetwork/java/javase/downloads/index.html
)
Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/
or the documentation
for the latest version of the JDK.)
A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules
include:

An understanding of algebra.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://download.oracle.com/javase/7/docs/api/

An understanding of all of the material covered in the earlier modules
in this Book.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the
listings while you are reading about them.

Listings

Listing 1
. Windows batch file.
Listing 2
. A test program.

Writing, compiling, and running Java programs

Writing Java code

Writing Java code is straightforward. You can write Java code using any
plain text editor. You simply need to cause the output file to have an
extension of .java.

There are a number of high-level Integrated Development Environments
(IDEs)
available, such as Eclipse and NetBeans, but they tend to be overkill
for the relatively simple Java programs described in these modules.

There are also some low-level IDEs available, such as JCreator and DrJava,
which are very useful. I normally use a free version of JCreator, mainly
because it contains a color-coded editor.

So, just find an editor that you are happy with and use it to write your Java
code.

Preparing to compile and run Java code

Perhaps the most complicated thing is to get your computer set up for
compiling and running Java code in the first place.

Downloading the java development kit (JDK)

You will need to download and install the free Java JDK from
the
Oracle/Sun website. As of November, 2012, you will find that website at
http://www.oracle.com/technetwork/java/javase/downloads/index.html

There is a 64-bit version of the JDK, which works well on my home
computer and on my office computer. However, some older computers may
not be able to handle the 64-bit version. A 32-bit version is provided to be
used on older computers.

Whether you elect to use the 32-bit or 64-bit version is strictly up to you.
Either of them should do the job very nicely.

Installing the JDK

As of November 2012, you will find installation instructions at
http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-
installation-windows.html
.

I strongly recommend that you read the instructions and pay particular
attention to the information having to do with setting the path
environment
variable.

A word of caution

If you happen to be running Windows Vista or Windows 7, you may need to
use something like the following when updating the PATH Environment
Variable

... ;C:\Program Files (x86)\Java\jdk1.6.0_26\bin

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html

in place of

... ;C:\Program Files\Java\jdk1.7.0\bin

as shown in the installation instructions.

I don't have any experience with any Linux version. Therefore, I don't have
any hints to offer there.

The JDK documentation

It is very difficult to program in Java without access to the documentation
for the JDK.

Several different types of Java documentation are available online at
http://www.oracle.com/technetwork/java/javase/documentation/index.html
.

Specific documentation for classes, methods, etc., is available online at
http://download.oracle.com/javase/7/docs/api/
.

It is also possible to download the documentation and install it locally if
you have room on your disk. The download links for JDK 6 and JDK 7
documentation are also shown on the page at
http://www.oracle.com/technetwork/java/javase/downloads/index.html
.

You may also want to search for and use the documentation for the latest
version of the JDK.

Compiling and running Java code

There are a variety of ways to compile and run Java code. The way that I
will describe here is the most basic and, in my opinion, the most reliable.
These instructions apply to a Windows operating system. If you are using a
different operating system, you will need to translate the instructions to
your operating system.

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://download.oracle.com/javase/7/docs/api/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Write your Java program

Begin by using your text editor to write your Java program into one or more
text files, each with an extension of .java. (Files of this type are often
referred to as source code files.)
Save the source code files in an empty
folder somewhere on your disk. Make sure that the name of the class
containing the main
method (which you will learn about in a future
module)
matches the name of the file in which that class is contained
(except for the extension of .java on the file name, which does not appear in
the class name)
.

Create a batch file

Use your text editor to create a batch file (or whatever the equivalent is for
your operating system)
containing the text shown in Listing 1
(with the
modifications discussed below)
and store it in the same folder as your Java
source code files..

Then execute the batch file, which in turn will execute the program if there
are no compilation errors.

Listing 1
. Windows batch file.

Listing 1
. Windows batch file.

echo off

cls

del *.class

javac -cp .; hello.java

java -cp .; hello

pause

Comments regarding the batch file

The commands in the batch file of Listing 1
will

Open a command-line screen for the folder containing the batch file.
Delete all of the compiled class files from the folder. (If the folder
doesn't contain any class files, this will be indicated on the command-
line screen.)
Attempt to compile the program in the file named hello.java.
Attempt to run the compiled program using a compiled Java file
named
hello.class
.
Pause and wait for you to dismiss the command-line screen by
pressing a key on the keyboard.

If errors occur, they will be reported on the command-line screen and the
program won't be executed.

If your program is named something other than hello
, (which it typically
would be)
substitute the new name for the word hello
where it appears
twice in the batch file.

Don't delete the pause command

The pause
command causes the command-line window to stay on the
screen until you dismiss it by pressing a key on the keyboard. You will need
to examine the contents of the window if there are errors when you attempt
to compile and run your program, so don't delete the pause command.

Translate to other operating systems

The format of the batch file in Listing 1
is a Windows format. If you are
using a different operating system, you will need to translate the
information in Listing 1
into the correct format for your operating system.

A test program

The test program in Listing 2
can be used to confirm that Java is properly
installed on your computer and that you can successfully compile and
execute Java programs.

Listing 2
. A test program.

class hello {

 public static void main(String[] args){

 System.out.println("Hello World");

 }//end main

}//end class

Instructions

Copy the code shown in Listing 2
into a text file named hello.java
and store
in an empty folder somewhere on your disk.

Create a batch file named hello.bat
containing the text shown in Listing 1
and store that file in the same folder as the file named
hello.java
.

Execute the batch file.

If everything is working, a command-line screen should open and display
the following text:

Hello World

Press any key to continue . . .

Congratulations

If that happens, you have just written, compiled and executed your first
Java program.

Oops

If that doesn't happen, you need to go back to the installation instructions
and see if you can determine why the JDK isn't properly installed.

If you get an error message similar to the following, that probably means
that you didn't set the path
environment variable correctly.

'javac' is not recognized as an internal or
external command,

operable program or batch file.

Beyond that, I can't provide much advice in the way of troubleshooting
hints.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0110: Java OOP: Programming Fundamentals,
Getting Started
File: Jb0110.htm
Published: 11/16/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0110r Review
This module contains review questions and answers keyed to the module
titled Jb0110: Java OOP: Programming Fundamentals, Getting Started.

Revised: Sun Mar 27 18:44:45 CDT 2016

Note:
This Page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6

Listings
Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0110: Java OOP: Programming Fundamentals, Getting Started
.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45137

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

True or false? You need a special IDE to write Java code.

Answer 1

Question 2

True or false? All of the software that you need to create, compile, and run
Java programs is free.

Answer 2

Question 3

True or false? Installing the Java JDK can be a little difficult.

Answer 3

Question 4

True or false? Java is so easy that you don't need documentation to program
using Java.

Answer 4

Question 5

True or false? The most fundamental way to compile and run Java
applications is from the command line.

Answer 5

Question 6

Write a simple test program that can be used to confirm that the JDK is
properly installed on your system.

Answer 6

Listings

Listing 1
. A Java test program.

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

Here is another image that was inserted for the same purpose -- to insert
space between the questions and the answers.

Answers

Answer 6

If you can compile and run the program code shown in Listing 1
, the JDK
is probably installed properly on your computer.

Listing 1
. A Java test program.

class hello {

 public static void main(String[] args){

 System.out.println("Hello World");

 }//end main

}//end class

Back to Question 6

Answer 5

True. Although a variety of IDEs are available that can be used to compile
and run Java applications, the most fundamental way is to compile and run
the programs from the command line. A batch file in Windows, or the
equivalent in other operating systems, can be of some help in reducing the
amount of typing required to compile and run a Java application from the
command line.

Back to Question 5

Answer 4

False. Java uses huge class libraries, which few if any of us can memorize.
Therefore, it is very difficult to program in Java without access to the
documentation for the JDK.

As of November 2012, several different types of Java documentation are
available online at
http://www.oracle.com/technetwork/java/javase/documentation/index.html
.

Back to Question 4

http://www.oracle.com/technetwork/java/javase/documentation/index.html

Answer 3

True. Installing the Java JDK can be a little difficult depending on your
experience and knowledge. As of November 2012, you will find installation
instructions at
http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-
installation-windows.html
.

Back to Question 3

Answer 2

True. You will need to download and install the free
Java JDK from the
Oracle/Sun website. As of November, 2012, you will find that website at
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Back to Question 2

Answer 1

False. You can write Java code using any plain text editor. You simply need
to cause the output file to have an extension of .java.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0110r Review for Programming Fundamentals,
Getting Started

http://download.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

File: Jb0110r.htm
Published: 11/20/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0115: Java OOP: First Program
The purpose of this module is to present the first complete Java program of
the collection that previews the most common forms of the three pillars of
procedural programming: sequence, selection, and loop. The program also
previews calling a method, passing a parameter to the method, and
receiving a returned value from the method.

Revised: Sun Mar 27 18:57:37 CDT 2016

Note:
This Page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Figures
Listings

Discussion

Instructions for compiling and running the program
Comments
Program output

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Run the program
Miscellaneous
Complete program listing

Preface

The purpose of this module is to present the first complete Java program of
the collection that previews the most common
forms of the three pillars of
procedural programming:

sequence
selection
loop

The program also illustrates

calling a method,
passing a parameter to the method, and
receiving a returned value from the method.

As mentioned above, this is simply a preview. Detailed discussions of these
topics will be presented in future modules.

Viewing tip

I recommend that you open another copy of this module in a separate
browser window and use the following links to easily find and view the
Figures and Listings while you are reading about them.

Figures

Figure 1
. Program output.

Listings

Listing 1
. Source code for FirstProgram.

Discussion

Instructions for compiling and running the program

Assuming that the Java Development Kit (JDK) is properly
installed on
your computer (see Jb0110: Java OOP: Programming Fundamentals,
Getting Started
),
do the following to compile and run this program.

1. Copy the text from Listing 1
into a text file named FirstProgram.java
and store the file in a folder on your disk.

2. Open a command-line window in the folder containing
the file.

3. Type the following command at the prompt to compile the program:

javac FirstProgram.java

4. Type the following command at the prompt to run the program:

java FirstProgram

Comments

Any text in the program code that begins with // is a comment. The
compiler will ignore everything
from the // to the end of the line.

Comments were inserted into the program code to explain the code.

The compiler also ignores blank lines.

Note that this program was designed to illustrate the
concepts while being
as non-cryptic as possible.

http://cnx.org/content/m45137

Program output

The program should display the text shown in Figure 1
on the
screen except
that the time will be different each time
you run the program.

Figure 1
. Program output.

value in = 5

Odd time = 1353849164875

countA = 0

countA = 1

countA = 2

countB = 0

countB = 1

countB = 2

value out = 10

Run the program

I encourage you to copy the code from Listing 1
. Compile the code and
execute it. Experiment with the code, making changes, and observing the
results of your changes. Make certain that you can explain why your
changes behave as they do.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0115: Java OOP: First Program
File: Jb0115.htm
Published: 11/25/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to
download a PDF file for this
module at no charge, and also makes it
possible for you to
purchase a pre-printed version of the PDF file, you
should be
aware that some of the HTML elements in this module may not
translate well into
PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

Complete program listing

A complete listing of the program follows.

Listing 1
. Source code for FirstProgram.

/* Begin block comment

This is the beginning of a block comment in Java.

Everything in this block comment is for human
consumption

and will be ignored by the Java compiler.

File: FirstProgram.java

Copyright 2012, R.G. Baldwin

This program is designed to illustrate the most
common

forms of the three pillars of procedural
programming in

Java code:

sequence

selection

loop

The program also illustrates calling a method,
passing

a parameter to the method, and receiving a
returned

value from the method.

Assuming that the Java Development Kit (JDK) is
properly

installed on your computer, do the following to
compile

and run this program.

1. Copy this program into a file named
FirstProgram.java

and store the file in a folder on your disk.

2. Open a command-line window in the folder
containing

the file.

3. Type the following command to compile the
program:

javac FirstProgram.java

4.4. Type the following command to run the
program:

java FirstProgram

Any text that begins with // in the following
program

code is a comment. The compiler will ignore
everything

from the // to the end of the line.

The compiler also ignores blank lines.

Note that this program was designed to illustrate
the

concepts while being as non-cryptic as possible.

The program should display the following text on
the

screen except that the time will be different each
time

that you run the program.

value in = 5

Odd time = 1353849164875

countA = 0

countA = 1

countA = 2

countB = 0

countB = 1

countB = 2

value out = 10

End block comment
***************************************/

//The actual program begins with the next line.

import java.util.*;

class FirstProgram{

 //The program consists of a sequence of
statements.

 //The next statement is the beginning of the
main

 // method, which is required in all Java
applications.

 public static void main(String[] args){

 //Program execution begins here.

 //Declare and initialize a variable.

 int var = 5;

 //Statements of the following type display

 // information on the screen

 System.out.println("value in = " + var);

 //Call a method and pass a parameter to the
method.

 //Save the returned value in var, replacing
what

 // was previously stored there.

 //Control is passed to the method named
firstMethod.

 var = firstMethod(var);

 //Control has returned from the method named

 // firstMethod.

 System.out.println("value out = " + var);

 //Program execution ends here

 }//end main method

 /****visual separator

comment**************************/

 public static int firstMethod(int inData){

 //Control is now in this method.

 //Illustrate selection

 //Get the elapsed time in milliseconds since
Jan 1970.

 long time = new Date().getTime();

 //Select even or odd time and display the
results

 if(time % 2 == 0){

 System.out.println("Even time = " + time);

 }else{

 System.out.println("Odd time = " + time);

 }//end if-else selection

 //Illustrate a while loop

 int countA = 0;

 while(countA < 3){

 System.out.println("countA = " + countA);

 //Increment the counter

 countA = countA + 1;

 }//end while loop

 //Illustrate a for loop

 for(int countB = 0; countB < 3; countB =
countB + 1){

 System.out.println("countB = " + countB);

 }//end for loop

 //Illustrate returning a value from a method
and

 // returning control back to the calling
method.

 return 2*inData;

 }//end firstMethod

}//end class FirstProgram

//The program ends with the previous line.

-end-

Jb0120: Java OOP: A Gentle Introduction to Java Programming
This module provides a gentle introduction to Java programming.

Revised: Sun Mar 27 19:13:53 CDT 2016

Note:
This Page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

General
Prerequisites
Viewing tip

Figures
Listings

Discussion and sample code

Introduction
Compartments
Checkout counter example
Sample program

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Run the program
Miscellaneous

Preface

General

This module is part of a collection of modules designed to help you learn to
program computers.

It provides a gentle introduction to Java programming.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these
modules:

The Sun/Oracle Java Development Kit (JDK) (See
http://www.oracle.com/technetwork/java/javase/downloads/index.html
)
Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/
)
A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules
include:

An understanding of algebra.
An understanding of all of the material covered in the earlier modules
in this collection.

Viewing tip

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://download.oracle.com/javase/7/docs/api/

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the
Figures and Listings while you are reading about them.

Figures

Figure 1
. A checkout counter algorithm.

Listings

Listing 1
. Program named Memory01.
Listing 2
. Batch file for Memory01.

Discussion and sample code

Introduction

All data is stored in a computer in numeric form. Computer programs do
what they do by executing a series of calculations on numeric data. It is the
order and the pattern of those calculations that distinguishes one computer
program from another.

Avoiding the detailed work

Fortunately, when we program using a high-level programming language
such as Java, much of the detailed work is done for us behind the scenes.

Musicians or conductors

As programmers, we are more like conductors than musicians. The various
parts of the computer represent the musicians. We tell them what to play,
and when to play it, and if we do our job well, we produce a solution to a
problem.

Compartments

As the computer program performs its calculations in the correct order, it is
often necessary for it to store intermediate results someplace, and then
come back and get them to use them in subsequent calculations later. The
intermediate results are stored in memory, often referred to as RAM or
Random Access Memory
.

A mechanical analogy

We can think of random access memory as being analogous to a metal rack
containing a large number of compartments. The compartments are all the
same size and are arranged in a column.
Each compartment has a numeric
address printed above it. No two compartments have the same numeric
address. Each compartment also has a little slot into which you can insert a
name or a label for the compartment. No two compartments can have the
same name.

Joe, the computer program

Think of yourself as a computer program. You have the ability to write
values on little slips of paper and to put them into the compartments. You
also have the ability to read the values written on the little slips of paper and
to use those values for some purpose. However, there are two rules that you
must observe:

You may not remove a slip of paper from a compartment without
replacing it by another slip of paper on which you have written a
value.
You may not put a slip of paper in a compartment without removing
the one already there.

Checkout counter example

In understanding how you might behave as a human computer program,
consider yourself to have a job working at the checkout counter of a small

grocery store in the 1930s.

You have two tools to work with:

A mechanical adding machine
The rack of compartments described above

Initialization

Each morning, the owner of the grocery store tells you to insert a name in
the slot above each compartment and to place a little slip of paper with a
number written on it inside each compartment. (In programming jargon, we
would refer to this as initialization.)

Each of the names on the compartments represents a type of grocery such as

Beans
Apples
Pears

No two compartments can have the same name.

No compartment is allowed to have more than one slip of paper inside it.

The price of a can of beans

When you place a new slip of paper in a compartment, you must be careful
to remove and destroy the one that was already there.

Each slip of paper that you insert into a compartment contains the price for
the type of grocery identified by the label on the compartment.

For example, the slip of paper in the compartment labeled Beans
may
contain the value 15, meaning that each can of beans costs 15 cents.

The checkout procedure

As each customer comes to your checkout counter during the remainder of
the day, you execute the following procedure:

Examine each grocery item to determine its type.
Read the price stored in the compartment corresponding to that type of
grocery.
Add that price to that customer's bill using your mechanical adding
machine.

In programming jargon, we would say that as you process each grocery
item for the same customer, you are looping
. We would also say that you
are executing a procedure or an algorithm
.

When you have processed all of the grocery items for a particular customer,
you would

Press the TOTAL key on the adding machine,
Turn the crank, and
Present the customer with the bill.

A schematic representation of the procedure

We might represent the procedure in schematic form as shown in Figure 1
.

Figure 1
. A checkout counter algorithm.

Figure 1
. A checkout counter algorithm.

For each customer, do the following:

 For each item, do the following:

 a. Identify the type of grocery item

 b. Get the price from the compartment

 c. Add the price to accumulated total

 End loop on grocery items

 Present customer with a bill

End loop on a specific customer

Common programming activities

This procedure illustrates the three activities commonly believed to be the
fundamental activities of any computer program:

sequence
selection
loop

Sequence

A sequence of operations is illustrated by the three items labeled a, b, and c
in Figure 1
because they are executed in sequential order.

Selection

The process of identifying the type of grocery item is often referred to as
selection
. A selection operation is the process of selecting among two or
more choices.

Loop

The process of repetitively examining each grocery item and processing it is
commonly referred to as a loop
. In the early days of programming, for a
programming language named FORTRAN, this was referred to as a
do loop
.

An algorithm

The entire procedure is often referred to as an algorithm
.

Modifying stored data

Sometimes during the day, the owner of the grocery store may come to you
and say that he is going to increase the price of a can of Beans from 15
cents to 25 cents and asks you to take care of the change in price.

You write 25 on a slip of paper and put it in the compartment labeled Beans,
being careful to remove and destroy the slip of paper that was previously in
that compartment. For the rest of the day, the new price for Beans will be
used in your calculations unless the owner asks you to change it again.

Not a bad analogy

This is a pretty good analogy to how random access memory is actually
used by a computer program.

Names versus addresses

As a programmer using a high-level language such as Java, you usually
don't have to be concerned about the numeric addresses of the
compartments.

You are able to think about them and refer to them in terms of their names.
(Names are easier to remember than numeric addresses).
However, deep
inside the computer, these names are cross-referenced to addresses and at
the lowest level, the program works with memory addresses instead of
names.

Execute an algorithm

A computer program always executes some sort of procedure, which is
often called an algorithm
. The algorithm may be very simple as described
in the checkout counter example described above, or it may be very
complex as would be the case for a spreadsheet program. As the program
executes its algorithm, it uses the random access memory to store and
retrieve the data that is needed to execute the algorithm.

Why is it called RAM?

The reason this kind of memory is called RAM
or random access memory
is
that it can be accessed in any order.

Sequential memory

Some types of memory, such as a magnetic tape, must be accessed in
sequential order. This means that to get a piece of data (the price of beans,
for example)
from deep inside the memory, it is necessary to start at the
beginning and examine every piece of data until the correct one is found.

Combination random/sequential

Other types of memory, such as disks, provide a combination of sequential
and random access. For example, the data on a disk is stored in tracks that
form concentric circles on the disk. The tracks can be accessed in random
order, but the data within a track must be accessed sequentially starting at a
specific point on the track.

Sequential memory isn't very good for use by most computer programs
because access to each particular piece of data is quite slow.

Sample program

Listing 1
shows a sample Java program that illustrates the use of memory
for the storage and retrieval of data.

Listing 1
. Program named Memory01.

//File Memory01.java

class Memory01 {

 public static void main(String[] args){

 int beans;

 beans = 25;

 System.out.println(beans);

 }//end main

}//End Memory01 class

Listing 2
shows a batch file that you can use to compile and run this
program.

Listing 2
. Batch file for Memory01.

echo off

cls

del *.class

javac -cp .; Memory01.java

java -cp .; Memory01

pause

Using the procedure that you learned in the Getting Started
module, you
should be able to compile and execute this program. When you do, the
program should display 25 on your computer screen.

Variables

You will learn in a future lesson that the term variable
is synonymous with
the term compartment
that I have used for illustration purposes in this
lesson.

The important lines of code

The use of memory is illustrated by the three lines of code in Listing 1
that
begin with int
, beans
, and System
. We will ignore the other lines in the
program in this module and learn about them in future modules.

Declaring a variable

A memory compartment (or variable)
is set aside and given the name
beans
by the line that begins with int
in Listing 1
.

In programmer jargon, this is referred to as declaring a variable
. The
process of declaring a variable

causes memory to be set aside to contain a value, and
causes that chunk of memory to be given a name.

That name can be used later to refer to the value stored in that chunk of
memory or variable.

This declaration in Listing 1
specifies that any value stored in the variable
must be of type
int
. Basically, this means that the value must be an integer.
Beyond that, don't worry about what the type
means at this point. I will
explain the concept of type in detail in a future module.

Storing a value in the variable

A value of 25 is stored in the variable named beans
by the line in Listing 1
that begins with the word beans
.

http://cnx.org/content/m45137/latest/

In programmer jargon, this is referred to as assigning a value to a variable
.

From this point forward, when the code in the program refers to this
variable by its name, beans
, the reference to the variable will be interpreted
to mean the value stored there.

Retrieving a value from the variable

The line in Listing 1
that begins with the word System
reads the value
stored in the variable named beans
by referring to the variable by its name.

This line also causes that value to be displayed on your computer screen.
However, at this point, you needn't worry about what causes it to be
displayed. You will learn those details in a future module. Just remember
that the reference to the variable by its name,
beans
, reads the value stored
in the variable.

The remaining details

Don't be concerned at this point about the other details in the program. They
are there to make it possible for you to compile and execute the program.
You will learn about them in future modules.

Run the program

I encourage you to run the program that I presented in this lesson to confirm
that you get the same results. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can
explain why your changes behave as they do.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0120: Java OOP: A Gentle Introduction to Java
Programming
File: Jb0120.htm
Published: 11/16/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0120r Review
This module contains review questions and answers keyed to the module
titled Jb0120: Java OOP: A Gentle Introduction to Java Programming.

Revised: Sun Mar 27 19:22:43 CDT 2016

Note:
This Page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0120: Java OOP: A Gentle Introduction to Java Programming
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45138

Questions

Question 1
.

True or false? All data is stored in a computer in numeric form. Computer
programs do what they do by executing a series of calculations on numeric
data. It is the order and the pattern of those calculations that distinguishes
one computer program from another.

Answer 1

Question 2

True or false? When we program using Java, we must perform most of the
detailed work.

Answer 2

Question 3

True or false? As the computer program performs its calculations in the
correct order, it is often necessary for it to store intermediate results
someplace, and then come back and get them to use them in subsequent
calculations later.

Answer 3

Question 4

True or false? The structured solution to a computer programming problem
is often called an algorithm.

Answer 4

Question 5

Which, if any of the following activities is not commonly believed to be
fundamental activities of any computer program:

A. sequence
B. selection
C. loop

Answer 5

Question 6

True or false? As a programmer using a high-level language such as Java,
you usually don't have to be concerned about the numeric memory
addresses of variables.

Answer 6

Question 7

Why is modern computer memory often referred to as RAM?

Answer 7

Question 8

True or false? The process of declaring a variable

causes memory to be set aside to contain a value, and
causes that chunk of memory to be given an address.

Answer 8

Question 9

True or false? A value of the type int
must be an integer.

Answer 9

Question 10

True or false? In programmer jargon, storing a value in a variable is also
referred to as assigning a value to a variable.

Answer 10

Question 11

True or false? A reference to a variable name in Java code returns the value
stored in the variable.

Answer 11

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 11

True.

Back to Question 11

Answer 10

True.

Back to Question 10

Answer 9

True.

Back to Question 9

Answer 8

False. The process of declaring a variable

causes memory to be set aside to contain a value, and
causes that chunk of memory to be given a name
.

Back to Question 8

Answer 7

Modern computer memory is often called RAM
or random access memory
because it can be accessed in any order.

Back to Question 7

Answer 6

True. You are able to think about variables and refer to them in terms of
their names. (Names are easier to remember than numeric addresses).
However, deep inside the computer, these names are cross-referenced to
addresses and at the lowest level, the program works with memory
addresses instead of names.

Back to Question 6

Answer 5

None. All three are commonly believed to be the fundamental activities of
any computer program.

Back to Question 5

Answer 4

True.

Back to Question 4

Answer 3

True.

Back to Question 3

Answer 2

False. Fortunately, when we program using a high-level programming
language such as Java, much of the detailed work is done for us behind the
scenes.

Back to Question 2

Answer 1

True.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0120r Review for A Gentle Introduction to Java
Programming.
File: Jb0120r.htm
Published: 12/20/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0130: Java OOP: A Gentle Introduction to Methods in Java
This module provides a gentle introduction to Java methods.

Revised: Sun Mar 27 20:13:16 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

General
Prerequisites
Viewing tip

Listings

Discussion and sample code

Introduction
Standard methods
Passing parameters
Returning values
Writing your own methods
Sample program

Interesting code fragments

Run the program
Complete program listings
Miscellaneous

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Preface

General

This module is part of a collection of modules designed to help you learn to
program computers.

It provides a gentle introduction to Java programming methods.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these
modules:

The Sun/Oracle Java Development Kit (JDK) (See
http://www.oracle.com/technetwork/java/javase/downloads/index.html
)
Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/
)
A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules
include:

An understanding of algebra.
An understanding of all of the material covered in the earlier modules
in this collection.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the
listings while you are reading about them.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://download.oracle.com/javase/7/docs/api/

Listings

Listing 1
. The price of beans.
Listing 2
. Compute the square root of the price of beans.
Listing 3
. Display the square root value.
Listing 4
. Calling the same methods again.
Listing 5
. The program named SqRt01.
Listing 6
. A batch file for compiling and running the program named
SqRt01.

Discussion and sample code

Introduction

Methods have been used in computer programming since the early days of
programming. Methods are often called functions, procedures, subroutines,
and various other names.

Calculate the square root

Suppose that your program needs to calculate the square root of a number.
Referring back to your high-school algebra book, you could refresh your
memory on how to calculate a square root. Then you could construct the
algorithm describing that process.

Having the algorithm available, you could write the code to calculate the
square root and insert it into your program code. Then you could compile,
and run your program. If you did it all correctly, your program should
calculate the square root. (For reasons that will become apparent later, I
will refer to the code that you inserted as in-line code.)

Oops, need to do it all over again

Suppose that further on in your program you discover that you need to
calculate the square root of another number. And later, you discover that
you need to calculate the square root of still another number. Obviously,
with a few changes, you could copy your original code and insert it as in-

line code
at each location in your program where you need to calculate the
square root of a number.

Is there a better way?

However, after doing this a few times, you might start asking if there is a
better way. The answer is "yes, there is a better way."

A method provides a better way

The better way is to create a separate program module that has the ability to
calculate the square root and make that module available for use as a helper
to your main program each time your main program needs to calculate a
square root. In Java, this separate program module is called a method
.

Standard methods

The Java programming language contains a large number of methods (in the
class libraries)
that are already available for your use. (Later, I will
illustrate the use of a standard method for calculating the square root of a
number.)

In addition to the standard methods that are already available, if you need a
method to perform some function and there is no standard method already
available to perform that function, you can write your own method.

Passing parameters

Make the method general

Normally, when designing and writing a method such as one that can
calculate the square root of a number, it is desirable to write it in such a way
that it can calculate the square root of any number (as opposed to only one
specific number)
. This is accomplished through the use of something called
parameters
.

The process of causing a method to be executed is commonly referred to as
calling the method
.

Pass me the number please

When your program calls the square-root method, it will need to tell the
method the value for which the square root is needed.

In general, many methods will require that you provide certain kinds of
information when you call
them. The code in the method needs this
information to be able to accomplish its purpose.

Passing parameters

This process of providing information to a method when you call it is
commonly referred to as passing parameters
to the method. For the square-
root method, you need to pass a parameter whose value is the value of the
number for which you need the square root.

Returning values

A method will usually

perform an action
send back an answer. or
some combination of the two

Performing an action

An example of a method that performs an action is the standard method
named println
. We used the println
method in an earlier module to cause
information to be displayed on the computer screen. This method does not
need to send back an answer, because that is not the objective of the
method. The objective is simply to display some information.

Sending back an answer

On the other hand, a method that is designed to calculate the square root of
a number needs to be able to send the square-root value back to the program
that called the method. After all, it wouldn't be very useful if the method
calculated the square root and then kept it a secret. The process of sending
back an answer is commonly referred to as returning a value
.

Returned values can be ignored

Methods can be designed in such a way that they either will or will not
return a value.
When a method does return a value, the program that called
the method can either pay attention to that value and use it for some
purpose, or ignore it entirely.

For example, in some cases where a method performs an action and also
returns a value, the calling program may elect to ignore the returned value.
On the other hand, if the sole purpose of a method is to return a value, it
wouldn't make much sense for a program to call that method and then
ignore the value that is returned (although that would be technically
possible)
.

Writing your own methods

As mentioned earlier, you can write your own methods in Java. I mention
this here so you will know that it is possible. I will have more to say about
writing your own methods in future modules.

Sample program

A complete listing of a sample program named SqRt01.java
is provided in
Listing 5
near the end of the lesson. A batch file that you can use to compile
and run the program is provided in
Listing 6
.

When you compile and run the program, the following output should appear
on your computer screen:

5.049752469181039

6.0

As you will see shortly, these are the square root values respectively for
25.5 and 36.

Interesting code fragments

I will explain portions of this program in fragments. I will explain only
those portions of the program that are germane to this module. Don't worry
about the other details of the program. You will learn about those details in
future modules.

You may find it useful to open this lesson in another browser window so
that you can easily scroll back and forth among the fragments while reading
the discussion.

The first code fragment that I will explain is shown in Listing 1
.

Listing 1
. The price of beans.

 double beans;

 beans = 25.5;

What is the price of beans?

The code fragment shown in Listing 1
declares a variable
named beans
and
assigns a value of 25.5 to the variable. (I briefly discussed the declaration of

variables in a previous module. I will discuss them in more detail in a future
module.)

What is that double thing?

In an earlier module, I declared a variable with a type named int
. At that
time, I explained that only integer values could be stored in that variable.

The variable named beans
in Listing 1
is declared to be of the type double
.
I will explain the concept of data types in detail in a future module. Briefly,
double
means that you can store any numeric value in this variable, with or
without a decimal part. In other words, you can store a value of 3 or a value
of 3.33 in this variable, whereas a variable with a declared type of int
won't
accept a value of 3.33.

Every method has a name

Every method, every variable, and some other things as well have names.
The names in Java are case sensitive
. By case sensitive, I mean that the
method named amethod
is not the same as the method named aMethod
.

A few words about names in Java

There are several rules that define the format of allowable names in Java.
You can dig into this in more detail on the web if you like, but if you follow
these two rules, you will be okay:

Use only letters and numbers in Java names.
Always make the first character a letter.

A standard method named sqrt

Java provides a Math
library that contains many standard methods.
Included in those methods is a method named sqrt
that will calculate and
return the square root of a number that is passed as a parameter when the
method is called.

The sqrt
method is called on the right-hand side of the equal sign (=) in the
code fragment in Listing 2
.

Listing 2
. Compute the square root of the price of beans.

 double sqRtBns = Math.sqrt(beans);

Calling the sqrt method

I'm not sure why you would want to do this, but the code fragment in
Listing 2

calls the sqrt
method and
passes a copy of the value stored in the beans
variable as a parameter.

The sqrt
method calculates and returns the square root of the number that it
receives as its incoming parameter. In this case, it returns the square root of
the price of a can of beans.

A place to save the square root

I needed some place to save the square root value until I could display it on
the computer screen later in the program. I declared another variable named
sqRtBns
in the code fragment in Listing 2
. I also caused the value returned
from the sqrt
method to be stored in, or assigned to, this new variable
named
sqRtBns
.

How should we interpret this code fragment?

You can think of the process implemented by the code fragment in Listing 2
as follows.

First note that there is an equal sign (=) near the center of the line of code.
(Later we will learn that this is called the assignment operator.)

The code on the left-hand side of the assignment operator causes a new
chunk of memory to be set aside and named
sqRtBns
. (We call this chunk
of code a variable.)

The code on the right-hand side of the assignment operator calls the sqrt
method, passing a copy of the value stored in the beans
variable to the
method.

When the sqrt
method returns the value that is the square root of its
incoming parameter, the assignment operator causes that value to be stored
and saved in (assigned to)
the variable named
sqRtBns
.

Now display the square root value

The code in the fragment in Listing 3
causes the value now stored in
sqRtBns
to be displayed on the computer screen.

Listing 3
. Display the square root value.

 System.out.println(sqRtBns);

Another method is called here

The display of the square root value is accomplished by

calling another standard method named println
and
passing a copy of the value stored in sqRtBns
as a parameter to the
method.

The println
method performs an action (displaying something on the
computer screen)
and doesn't return a value.

A method exhibits behavior

We say that a method exhibits behavior. The behavior of the sqrt
method is
to calculate and return the square root of the value passed to it as a
parameter.

The behavior of the println
method is to cause its incoming parameter to be
displayed on the computer screen.

What do we mean by syntax?

Syntax is a word that is often used in computer programming. The
thesaurus in the editor that I am using to type this document says that a
synonym for syntax is grammar.

I also like to think of syntax as meaning something very similar to format.

Syntax for passing parameters

Note the syntax in Listing 2
and
Listing 3
for passing a parameter to the
method. The syntax consists of following the name of the method with a
pair of matching parentheses that contain the parameter. If more than one
parameter is being passed, they are all included within the parentheses and
separated by commas. Usually, the order of the parameters is important if
more than one parameter is being passed.

Reusing the methods

The purpose of the code fragment in Listing 4
is to illustrate the reusable
nature of methods.

Listing 4
. Calling the same methods again.

Listing 4
. Calling the same methods again.

 double peas;

 peas = 36.;

 double sqRtPeas = Math.sqrt(peas);

 System.out.println(sqRtPeas);

The code in this fragment calls the same sqrt
method that was called
before. In this case, the method is called to calculate the square root of the
value stored in the variable named peas instead of the value stored in the
variable named beans
.

This fragment saves the value returned from the sqrt
method in a new
variable named sqRtPeas
. Then the fragment calls the same println
method as before to display the value now stored in the variable named
sqRtPeas
.

Write once and use over and over

Methods make it possible to write some code once and then use that code
many times in the same program. This is the opposite of in-line code
,
which requires you to write essentially the same code multiple times in
order to accomplish the same purpose more than once in a program.

Run the program

I encourage you to run the program that I presented in this lesson to confirm
that you get the same results. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can
explain why your changes behave as they do.

Complete program listings

Listing 5
is a complete listing of the program named SqRt01
.

Listing 5
. The program named SqRt01.

//File SqRt01.java

class SqRt01 {

 public static void main(String[] args){

 double beans;

 beans = 25.5;

 double sqRtBns = Math.sqrt(beans);

 System.out.println(sqRtBns);

 double peas;

 peas = 36.;

 double sqRtPeas = Math.sqrt(peas);

 System.out.println(sqRtPeas);

 }//end main

}//End SqRt01 class

Listing 6
contains the commands for a batch file that can be used to compile
and run the program named SqRt01
.

Listing 6
. A batch file for compiling and running the program
named SqRt01.

Listing 6
. A batch file for compiling and running the program
named SqRt01.

echo off

cls

del *.class

javac -cp .; SqRt01.java

java -cp .; SqRt01

pause

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0130: Java OOP: A Gentle Introduction to Methods
in Java
File: Jb0130.htm
Published: 12/16/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you

should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0130r Review
This module contains review questions and answers keyed to the module
titled Jb0130: Java OOP: A Gentle Introduction to Methods in Java

Revised: Sun Mar 27 20:24:28 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14
, 15

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0130: Java OOP: A Gentle Introduction to Methods in Java
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45139

True or false? Methods are often called functions, procedures, subroutines,
and various other names.

Answer 1

Question 2

True or false? A Java method can be thought of as a separate program
module that has the ability to do something useful. Having written the
method, you can make it available for use as a helper to your main program
each time your main program needs to have that useful thing done.

Answer 2

Question 3

True or false? In Java, you must write all of the methods that you need.

Answer 3

Question 4

True or false? In the following statement, sqRtPeas
is the name of a
method.

System.out.println(sqRtPeas);

Answer 4

Question 5

True or false? Java only allows you to use the pre-written methods in the
class libraries.

Answer 5

Question 6

Normally, when designing and writing a method such as one that can
calculate the square root of a number, it is desirable to write it in such a way
that it can calculate the square root of any number (as opposed to only one
specific number)
. How is that accomplished?

Answer 6

Question 7

True or false? According to common programming jargon, the process of
causing a method to be executed is commonly referred to as setting the
method.

Answer 7

Question 8

True or false? This process of providing information to a method when you
call it is commonly referred to as sending a message
to the method.

Answer 8

Question 9

True or false? When called, a method will usually

perform an action
send back an answer. or
some combination of the two

Answer 9

Question 10

True or false? A value of type double
can be (almost)
any numeric value,
positive or negative, with or without a decimal part.

Answer 10

Question 11

True or false? Java is not a case-sensitive programming language.

Answer 11

Question 12

True or false? The following two rules will generally suffice to keep you
out of trouble when defining variable and method names in Java:

Use only letters and numbers in Java names.
Always make the first character a letter.

Answer 12

Question 13

True or false? In Java, the assignment operator is the % character.

Answer 13

Question 14

True or false? The behavior of the sqrt
method is to calculate and display
the square root of the value passed to it as a parameter.

Answer 14

Question 15

True or false? The syntax for passing parameters to a method consists of
following the name of the method with a pair of matching parentheses that
contain the parameter or parameters. If more than one parameter is being
passed, they are all included within the parentheses and separated by
commas. The order of the parameters is not important.

Answer 15

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 15

False. Normally the order in which parameters are passed to a method is
very important.

Back to Question 15

Answer 14

False. The behavior of the sqrt
method is to calculate and return
the square
root of the value passed to it as a parameter.

Back to Question 14

Answer 13

False. In Java, the assignment operator is the = character.

Back to Question 13

Answer 12

True.

Back to Question 12

Answer 11

False. Just like C, C++, and C#, Java is very much a case-sensitive
programming language.

Back to Question 11

Answer 10

True.

Back to Question 10

Answer 9

True.

Back to Question 9

Answer 8

False. If you continue in this field of study, you will learn that we send
messages to objects by calling methods that belong to the objects. The
process of providing information to a method when you call it is commonly
referred to as passing parameters
to the method.

Back to Question 8

Answer 7

False. The process of causing a method to be executed is commonly
referred to as calling
or possibly
invoking
the method.

Back to Question 7

Answer 6

That is accomplished through the use of something called method
parameters
.

Back to Question 6

Answer 5

False. In addition to the standard methods that are already available, if you
need a method to perform some function and there is no standard method
already available to perform that function, you can write your own method.

Back to Question 5

Answer 4

False. In the following statement, println
is the name of a method.
sqRtPeas
is the name of a variable whose contents are being passed as a
parameter to the println
method.

System.out.println(sqRtPeas);

Back to Question 4

Answer 3

False. The Java programming environment contains a large number of
methods
(in the class libraries)
that are already available for you to use
when you need them.

Back to Question 3

Answer 2

True.

Back to Question 2

Answer 1

True.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0130r Review: A Gentle Introduction to Methods in
Java
File: Jb0130r.htm
Published: 12/20/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.

Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0140: Java OOP: Java comments
This module explains Java comments.

Revised: Sun Mar 27 20:34:41 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

General
Prerequisites
Viewing tip

Figures
Listings

Discussion and sample code

Comments
Sample program

Interesting code fragments

Run the program
Complete program listings
Miscellaneous

Preface

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

General

This module is part of a collection of modules designed to help you learn to
program computers.

It explains Java comments.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these
modules:

The Sun/Oracle Java Development Kit (JDK) (See
http://www.oracle.com/technetwork/java/javase/downloads/index.html
)
Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/
)
A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules
include:

An understanding of algebra.
An understanding of all of the material covered in the earlier modules
in this collection.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the
Figures and Listings while you are reading about them.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://download.oracle.com/javase/7/docs/api/

Figures

Figure 1
. Three styles of comments.

Listings

Listing 1
. A multi-line comment.
Listing 2
. Three single-line comments.
Listing 3
. The program named Comments01.
Listing 4
. Batch file to compile and run the program named
Comments01.

Discussion and sample code

Comments

Producing and using a Java program consists of the following steps:

1. Write the source code.
2. Compile the source code.
3. Execute the program.

The source code consists of a set of instructions that will later be presented
to a special program called a compiler for the purpose of producing a
program that can be executed. In other words, when you write the source
code, you are writing instructions that the compiler will use to produce the
executable program.

Some things should be ignored

Sometimes, when you are writing source code, you would like to include
information that may be useful to you, but should be ignored by the
compiler. Information of that sort is called a comment
.

Three styles of comments

Java supports the three styles of comments shown in Figure 1
.

Figure 1
. Three styles of comments.

/** special documentation comment

used by the javadoc tool */

/* This is a

multi-line comment */

//Single-line comment

program code // Another single-line comment

The javadoc tool

The javadoc tool mentioned in Figure 1
is a special program that is used to
produce documentation for Java programs. Comments of this style begin
with /** and end with */ as shown in Figure 1
.

The compiler ignores everything in the source code that begins and ends
with this pattern of characters.
Documentation produced using the javadoc
program is very useful for on-line or on-screen documentation.

Multi-line comments

Multi-line comments begin with /* and end with */ as shown in Figure 1
.
As you have probably already guessed, the compiler also ignores everything
in the source code that matches this format.
(A javadoc comment is simply a
multi-line comment insofar as the compiler knows. Only the special
program named javadoc.exe cares about javadoc comments.)

The multi-line comment style is particularly useful for creating large blocks
of information that should be ignored by the compiler. This style can be
used to produce a comment consisting of a single line of text as well.
However, the single-line comment style discussed in the next section
requires less typing.

Single-line comments

Single-line comments begin with // and end at the end of the line. The
compiler ignores the // and everything following the slash characters to the
end of the line.

This style is particularly useful for inserting short comments throughout the
source code. In this case, the // can appear at the beginning of the line as
shown in Figure 1
, or can appear anywhere in the line, including at the end
of some valid source code
(also shown in Figure 1
)
.

Sample program

The purpose of the program named Comments01
, which is shown in
Listing 3
near the end of the module, is to illustrate the use of single and
multi-line comments. The program does not contain any javadoc comments.

The commands for a batch file that you can use to compile and run this
program are provided in Listing 4
.

When you compile and run the program, the following text should appear
on your command-line screen:

Hello World

Interesting code fragments

I will explain this program in fragments, and will explain only those
portions of the program that are germane to this module. Don't worry about

the other details of the program at this time. You will learn about those
details in future modules.

A multi-line comment

Listing 1
, shows a multi-line comment, which consists of three lines of
text.

As required, this multi-line comment begins with /* and ends with */. The
extra stars on the third line are simply part of the comment.

You will often see formats similar to this being used to provide a visual
separation between multi-line comments and the other parts of a program.

Listing 1
. A multi-line comment.

/*File Comments01.java

This is a multi-line comment.

***/

Single-line comments

Listing 2
shows three single-line comments. Can you spot them?
Remember, single-line comments begin with //.

Listing 2
. Three single-line comments.Listing 2
. Three single-line comments.

class Comments01 {

 //This is a single-line comment

 public static void main(String[] args){

 System.out.println("Hello World");

 }//end main

}//End class

One of the comments in Listing 2
starts at the beginning of the line. The
other two comments follow some program code.

Run the program

I encourage you to run the program that I presented in this lesson to confirm
that you get the same results. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can
explain why your changes behave as they do.

Complete program listings

Listing 3
contains a complete listing of the program named Comments01
.

Listing 3
. The program named Comments01.

Listing 3
. The program named Comments01.

/*File Comments01.java

This is a multi-line comment.

***/

class Comments01 {

 //This is a single-line comment

 public static void main(String[] args){

 System.out.println("Hello World");

 }//end main

}//End class

Listing 4
contains the commands for a batch file that can be used to compile
and run the program named Comments01
.

Listing 4
. Batch file to compile and run the program named
Comments01.

Listing 4
. Batch file to compile and run the program named
Comments01.

echo off

cls

del *.class

javac -cp .; Comments01.java

java -cp .; Comments01

pause

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: JJb0140: Java OOP: Java comments
File: Jb0140.htm
Published: 11/16/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.

I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0140r Review
This module contains review questions and answers keyed to the module
titled Jb0110: Jb0140: Java OOP: Java comments

Revised: Sun Mar 27 20:40:28 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0140: Java OOP: Java comments
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45140

True or false? Comments in your source code are ignored by the compiler.

Answer 1

Question 2

True or false? Java supports the four styles of comments.

Answer 2

Question 3

True or false? The javadoc
tool is a special program that is used to compile
Java programs.

Answer 3

Question 4

True or false? Comments recognized by the javadoc
tool begin with /**
and end with */

Answer 4

Question 5

True or false? Multi-line comments begin with /# and end with #/

Answer 5

Question 6

True or false? The multi-line comment style is particularly useful for
creating large blocks of information that should be ignored by the compiler.

Answer 6

Question 7

True or false? The multi-line comment style cannot be used to produce a
comment consisting of a single line of text.

Answer 7

Question 8

True or false? Single-line comments begin with // and end at the end of the
line.

Answer 8

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 8

True.

Back to Question 8

Answer 7

False. The multi-line comment style can be used to produce a comment
consisting of none, one, or more lines of text.

Back to Question 7

Answer 6

True.

Back to Question 6

Answer 5

False. Multi-line comments begin with /* and end with */

Back to Question 5

Answer 4

True.

Back to Question 4

Answer 3

False. The javadoc
tool is a special program that is used to produce
documentation for Java program.

Back to Question 3

Answer 2

False. Java supports the three styles of comments.

Back to Question 2

Answer 1

True.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0140r Review: Java comments
File: Jb0140r.htm
Published: 11/21/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it

possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0150: Java OOP: A Gentle Introduction to Java Data Types
This module introduces Java data types.

Revised: Sun Mar 27 21:20:50 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

General
Prerequisites
Viewing tip

Figures

Discussion

Introduction
Primitive types

Whole-number types
Floating-point types
The character type
The boolean type

User-defined or reference types
Sample program

Miscellaneous

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Preface

General

This module is part of a collection of modules designed to help you learn to
program computers.

It introduces Java data types.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these
modules:

The Sun/Oracle Java Development Kit (JDK) (See
http://www.oracle.com/technetwork/java/javase/downloads/index.html
)
Documentation for the Sun/Oracle Java Development Kit (JDK) (See
http://download.oracle.com/javase/7/docs/api/
)
A simple IDE or text editor for use in writing Java code.

The minimum prerequisites for understanding the material in these modules
include:

An understanding of algebra.
An understanding of all of the material covered in the earlier modules
in this collection.

Viewing tip

I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the
Figures while you are reading about them.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://download.oracle.com/javase/7/docs/api/

Figures

Figure 1
. Range of values for whole-number types.
Figure 2
. Definition of floating point.
Figure 3
. Different ways to represent 623.57185.
Figure 4
. Relationships between multiplicative factors and
exponentiation.
Figure 5
. Other ways to represent the same information.
Figure 6
. Still other ways to represent 623.57185.
Figure 7
. Range of values for floating-point types.
Figure 8
. Example of the use of the boolean type.

Discussion

Introduction

Type-sensitive languages

Java and some other modern programming languages make heavy use of a
concept that we refer to as type
, or data type
.

We refer to those languages as type-sensitive languages
.
Not all languages
are type-sensitive languages. In particular, some
languages hide the concept
of type from the programmer and
automatically deal with type issues
behind the scenes.

So, what do we mean by type?

One analogy that comes to my mind is international currency. For
example,
many years ago, I spent a little time in Japan and quite a
long time on an
island named Okinawa (Okinawa is now part of Japan)
.

Types of currency

At that time, as now, the type of currency used in the United States
was the
dollar. The type of currency used in Japan was the yen, and the
type of
currency used on the island of Okinawa was also the yen.
However, even

though two of the currencies had the same name, they
were different types
of currency, as determined by the value
relationships among them.

The exchange rate

As I recall, at that time, the exchange rate between the Japanese
yen and the
U.S. dollar was 360 yen for each dollar. The exchange rate
between the
Okinawan yen and the U.S. dollar was 120 yen for each dollar.
This
suggests that the exchange rate between the Japanese yen and the
Okinawan
yen would have been 3 Japanese yen for each Okinawan yen.

Analogous to different types of data

So, why am I telling you this? I am telling you this to illustrate
the concept
that different types of currency are roughly analogous to
different data types
in programming.

Purchasing transactions were type sensitive

In particular, because there were three different types of currency involved,
the differences in the types had to be taken into account in any
purchasing
transaction to determine the price in that particular
currency. In other words,
the purchasing process was sensitive to the
type of currency being used for
the purchase (type sensitive)
.

Different types of data

Type-sensitive programming languages deal with different types of data.
Some data types such at type int
involve whole numbers only (no fractional
parts are allowed)
.

Other data types such as double
involve numbers with fractional parts.

Some data types conceptually have nothing to do with numeric values, but
deal only with the concept of true or false (
boolean
)
or with the concept of
the letters of the alphabet and the punctuation characters
(
char
)
.

Type specification

For every different type of data used with a particular programming
language, there is a specification somewhere that defines two important
characteristics of the type:

1. What is the set of all possible data values that can be stored in an
instance of the type (we will learn some other names for instance
later)
?

2. Once
you have an instance of the type, what are the operations that
you can
perform on that instance alone, or in combination with other
instances?

What do I mean by an instance of a type?

Think of the type specification as being analogous to the plan or
blueprint
for a model airplane. Assume that you build three model
airplanes from the
same set of plans. You will have created three
instances
of the plans.

We might say that an instance
is the physical manifestation of a plan or a
type.

Using mixed types

Somewhat secondary to the specifications for the different types,
but also
extremely important, is a set of rules that define what
happens when you
perform an operation involving mixed types (such as making a purchase
using some yen currency in combination with some dollar currency)
.

The short data type

For example, in addition to the integer type int
, there is a data type in Java
known as short
. The short
type is also an integer type.

If you have an instance of the short
type, the set
of all possible values that
you can store in that instance is the set
of all the whole numbers ranging
from -32,768 to +32,767.

This constitutes a set of 65,536 different values, including the
value zero.
No other value can be stored in an instance of the type short
. For example,

you cannot store the value 35,000 in an instance of the type short
in Java. If
you need to store that value, you will need to use some type other than
short
.

Kind of like an odometer

This is somewhat analogous to the odometer in your car (the thing that
records how many miles the car has been driven)
.
For example, depending
on the make and model of car, there is a
specified set of values that can
appear in the odometer. The value that
appears in the odometer depends on
how many miles your car has been
driven.

It is fairly common for an odometer to be able to store and to
display the set
of all positive values ranging from zero to 99999. If
your odometer is
designed to store that set of values and if you drive
your car more than
99999 miles, it is likely that the odometer will
roll over and start back at
zero after you pass the 99999-mile mark. In
other words, that particular
odometer does not have the ability to
store a value of 100,000 miles. Once
you pass the 99999-mark, the data
stored in the odometer is corrupt.

Now let's return to the Java type named short

Assume that you have two instances of the type short
in a Java program.
What are the operations that you can perform on those instances? For
example:

You can add them together.
You can subtract one from the other.
You can multiply one by the other.
You can divide one by the other.
You can compare one with the other to determine which is
algebraically larger.

There are some other operations that are allowed as well. In fact,
there is a
well-defined set of operations that you are allowed to
perform on those
instances. That set of operations is defined in the
specification for the type
short
.

What if you want to do something different?

However, if you want to perform an operation that is not allowed by
the
type specification, then you will have to find another way to
accomplish
that purpose.

For example, some programming languages allow you to raise whole-
number types to a power (examples: four squared, six cubed, nine to the
fourth power, etc.)
. However, that operation is not allowed by the Java
specification for the type short
. If you need to do that operation with a data
value of the Java short
type, you must find another way to do it.

Two major categories of type

Java data types can be subdivided into two major categories:

Primitive types
User-defined or reference types

These categories are discussed in more detail in the following sections.

Primitive types

Java is an extensible programming language

What this means is that there is a core component to the language that
is
always available. Beyond this, individual programmers can extend
the
language to provide new capabilities. The primitive types discussed
in this
section are the types that are part of the core language. A later section will
discuss user-defined types that become available when
a programmer
extends the language.

More subdivision

It seems that when teaching programming, I constantly find myself
subdividing
topics into sub-topics. I am going to subdivide the topic of
Primitive
Types into four categories:

Whole-number types
Floating-point types
Character types
Boolean types

Hopefully this categorization will make it possible for me to explain these
types in a way that is easier for you to understand.

Whole-number types

The whole-number types, often called integer
types, are relatively easy to
understand. These are types that can be used to represent
data without
fractional parts.

Applesauce and hamburger

For example, consider purchasing applesauce and hamburger. At
the
grocery store where I shop, I am allowed to purchase cans of applesauce
only in whole-number or integer quantities.

Can purchase integer quantities only

For example, the grocer is happy to sell me one can of applesauce and
is
even happier to sell me 36 cans of applesauce. However, she would
be very
unhappy if I were to open a can of applesauce in the store and
attempt to
purchase 6.3 cans of applesauce.

Counting doesn't require fractional parts

A count of the number of cans of applesauce that I purchase is somewhat
analogous to the concept of whole-number data types in Java. Applesauce
is
not available in fractional parts of cans (at my grocery store)
.

Fractional pounds of hamburger are available

On the other hand, the grocer is perfectly willing to sell me 6.3 pounds
of
hamburger. This is somewhat analogous to floating-point data types
in Java.

Accommodating applesauce and hamburger in a
program

Therefore, if I were writing a program dealing with quantities of applesauce
and hamburger, I might elect to use a whole number type to represent cans
of applesauce and to use a floating-point type to represent pounds of
hamburger.

Different whole-number types

In Java, there are four different whole-number types:

byte
short
int
long

(The char type is also a whole number type, but since it is not intended to be
used for arithmetic, I discuss it later as a character type.)

The four types differ primarily in terms of the range of values that they
can
accommodate and the amount of computer memory required to store
instances
of the types.

Differences in operations?

Although there are some subtle differences among the four whole-number
types in terms of the
operations that you can perform on them, I will defer a
discussion of those
differences until a more advanced module. (For
example some operations require
instances of the byte
and short
types to be
converted to
type
int
before the operation takes place.)

Algebraically signed values

All four of these types can be used to represent algebraically signed
values
ranging from a specific negative value to a specific positive value.

Range of the byte type

For example, the byte
type can be used to represent the set of
whole
numbers ranging from -128 to +127 inclusive. (This
constitutes a set of 256
different values, including the value zero.)

The byte
type cannot be used to
represent any value outside this range. For
example, the byte
type cannot be used to represent either -129 or +128.

No fractional parts allowed by the byte type

Also, the byte
type cannot be used to represent fractional values
within the
allowable range. For example, the byte type cannot
be used to represent the
value of 63.5 or any other value that has a fractional
part.

Like a strange odometer

To form a crude analogy, the byte type is sort of like a strange
odometer in a
new (and unusual)
car that shows a mileage value of -128
when you first
purchase the car. As you drive the car, the negative
values shown on the
odometer increment toward zero and then pass zero. Beyond that point they
increment up toward the value of +127.

Oops, numeric overflow!

When the value passes (or attempts to pass)
+127 miles, something bad
happens. From that point forward, the value shown on the odometer
is not a
reliable indicator of the number of miles that the car has been
driven.

Ranges for each of the whole-number types

Figure 1
shows the range of values that can be accommodated
by each of
the four whole-number types supported by the Java programming
language:

Figure 1
. Range of values for whole-number types.

Figure 1
. Range of values for whole-number types.

byte

-128 to +127

short

-32768 to +32767

int

-2147483648 to +2147483647

long

-9223372036854775808 to +9223372036854775807

Can represent some fairly large values

As you can see, the int
and long
types can represent some fairly large
values. However, if your task involves calculations such as distances in
interstellar space, these ranges probably won't accommodate your needs.
This will lead you to consider using the floating-point
types discussed in the
upcoming sections. I will discuss the operations that can be performed on
whole-number types more fully in future modules.

Floating-point types

Floating-point types are a little more complicated than whole-number types.
I found the definition of floating-point shown in Figure 2
in the Free On-
Line Dictionary of Computing
at this URL
.

http://foldoc.org/floating+point

Figure 2
. Definition of floating point.

A number representation consisting of a mantissa, M, an exponent, E,
and an (assumed) radix (or "base") . The number represented is
M*R^E where R is the radix - usually ten but sometimes 2.

So what does this really mean?

Assuming a base or radix of 10, I will attempt to explain it using an
example.

Consider the following value:

623.57185

I can represent this value in any of the ways shown in Figure 3
(where *
indicates multiplication).

Figure 3
. Different ways to represent 623.57185.

Figure 3
. Different ways to represent 623.57185.

.62357185*1000

6.2357185*100

62.357185*10

623.57185*1

6235.7185*0.1

62357.185*0.01

623571.85*0.001

6235718.5*0.0001

62357185.*0.00001

In other words, I can represent the value as a mantissa (62357185)
multiplied by a factor where the purpose of the factor is to represent a left
or right shift in the position of the decimal point.

Now consider the factor

Each of the factors shown in Figure 3
represents the value of ten raised to
some specific power, such as ten squared, ten cubed, ten raised to the fourth
power, etc.

Exponentiation

If we allow the following symbol (^) to represent exponentiation (raising to
a power)
and allow the following symbol (/) to represent division, then we
can write the values for the above factors in the ways shown in Figure 4
.

Note in particular the characters following the first equal character (=) on
each line, which I will refer to later as the exponents.

Figure 4
. Relationships between multiplicative factors and
exponentiation.

1000 = 10^+3 = 1*10*10*10

100 = 10^+2 = 1*10*10

10 = 10^+1 = 1*10

1 = 10^+0 = 1

0.1 = 10^-1 = 1/10

0.01 = 10^-2 = 1/(10*10)

0.001 = 10^-3 = 1/(10*10*10)

0.0001 = 10^-4 = 1/(10*10*10*10)

0.00001 = 10^-5 = 1/(10*10*10*10*10)

In the above notation, the term 10^+3 means 10 raised to the third power.

The zeroth power

By definition, the value of any value raised to the zeroth power is 1. (Check
this out in your high-school algebra book.)

The exponent and the factor

Hopefully, at this point you will understand the relationship between the
exponent and the factor introduced earlier in Figure 3
.

Different ways to represent the same value

Having reached this point, by using substitution, I can rewrite the original
set of representations
of the value 623.57185 in the ways shown in Figure 5
.

(It is very important to for you to understand that these are simply different
ways to represent the same value.)

Figure 5
. Other ways to represent the same information.

.62357185*10^+3

6.2357185*10^+2

62.357185*10^+1

623.57185*10^+0

6235.7185*10^-1

62357.185*10^-2

623571.85*10^-3

6235718.5*10^-4

62357185.*10^-5

A simple change in notation

Finally, by making a simplifying change in notation where I replace (*10^)
by (E) I can rewrite the different representations of the value of 623.57185
in the ways shown in Figure 6
.

Figure 6
. Still other ways to represent 623.57185.

Figure 6
. Still other ways to represent 623.57185.

.62357185E+3

6.2357185E+2

62.357185E+1

623.57185E+0

6235.7185E-1

62357.185E-2

623571.85E-3

6235718.5E-4

62357185.E-5

Getting the true value

Floating point types represent values as a mantissa containing a decimal
point along with an exponent value which tells how many places to shift the
decimal point to the left or to the right in order to determine the true value.

Positive exponent values mean that the decimal point should be shifted to
the right. Negative exponent values mean that the decimal point should be
shifted to the left.

Maintaining fractional parts

One advantage of floating-point types is that they can be used to maintain
fractional parts in data values, such as 6.3 pounds of hamburger.

Accommodating a very large range of values

Another advantage is that a very large range of values can be represented
using a reasonably small amount of computer memory for storage of the
values.

Another example

For example (assuming that I counted the number of digits correctly)
the
following very large value

62357185000000000000000000000000000000.0

can be represented as

6.2357185E+37

Similarly, again assuming that I counted the digits correctly, the following
very small value

0.0000000000000000000000000000062357185

can be represented as

6.2357185E-30

When would you use floating-point?

If you happen to be working in an area where you

need to keep track of fractional parts (such as the amount of
hamburger in a package)
,
have to work with extremely large numbers (distances between
galaxies)
, or
have to work with extremely small values (the size of atomic particles)
,

then you will need to use the floating-point types.

Don't use floating-point in financial transactions

You probably don't want to use floating-point in financial calculations,
however, because there is a lot of rounding that takes place in floating-point
calculations. In other words, floating point calculations provide answers
that are very close to the truth but the answers are often not exact.

Two floating-point types

Java supports two different floating point types:

float
double

These two types differ primarily in terms of the range of values that they
can support.

Range of values for floating point types

The table in Figure 7
shows the smallest and largest values that can be
accommodated by each of the floating-point types. Values of either type can
be either positive or negative.

Figure 7
. Range of values for floating-point types.

float

1.4E-45 to 3.4028235E38

double

4.9E-324 to 1.7976931348623157E308

I will discuss the operations that can be performed on floating-point types
in a future module.

The character type

Computers deal only in numeric values. They don't know how to deal
directly with the letters of the alphabet and punctuation characters.
This

gives rise to a type named char
.

Purpose of the char type

The purpose of the character type is to make it possible to represent the
letters of the alphabet, the punctuation characters, and the numeric
characters internally in the computer. This is accomplished by assigning a
numeric value to each character, much as you may have done to create
secret codes when you were a child.

A single character type

Java supports a single character type named char
. The char type uses a
standard character representation known as Unicode
to represent up to
65,535 different characters.

Why so many characters?

The reason for the large number of possible characters is to make it possible
to represent the characters making up the alphabets of many different
countries and many different spoken languages.

What are the numeric values representing characters?

As long as the characters that you use in your program appear on your
keyboard, you usually don't have a need to know the numeric value
associated with the different characters.
If you are curious, however, the
upper-case A is represented by the value 65 in the Unicode character set.

Representing a character symbolically

In Java, you usually represent a character in your program by surrounding it
with apostrophes as shown below:

'A'.

The Java programming tools know how to cross reference that specific
character symbol against the Unicode table to obtain the corresponding
numeric value. (A discussion of the use of the char
type to represent

characters that don't appear on your keyboard is beyond the scope of this
module.)

I will discuss the operations that can be performed on the char
type in a
future module.

The boolean type

The boolean type is the simplest type supported by Java. It can have only
two values:

true
false

Generally speaking, about the only operations that can be directly applied to
an instance of the
boolean
type are to change it from true
to false
, and vice
versa. However, the boolean
type can be included in a large number of
somewhat higher-level operations.

The boolean
type is commonly used in some sort of a test to determine
what to do next, such as that shown in Figure 8
.

Figure 8
. Example of the use of the boolean type.

Figure 8
. Example of the use of the boolean type.

Perform a test that returns a value of type
boolean.

if that value is true,

 do one thing

otherwise (meaning that value is false)

 do a different thing

I will discuss the operations that can be performed on the boolean
type in
more detail in a future module.

User-defined or reference types

Extending the language

Java is an extensible
programming language. By this, I mean that there is a
core component to the language that is always available. Beyond the core
component, different programmers can extend the language in different
ways to meet their individual needs.

Creating new types

One of the ways that individual programmers can extend the language is to
create new types. When creating a new type, the programmer must define
the set of values that can be stored in an instance of the type as well as the
operations that can be performed on instances of the type.

No magic involved

While this might initially seem like magic, once you get to the heart of the
matter, it is really pretty straightforward. New types are created by
combining instances of primitive types along with instances of other user-

defined types. In other words, the process begins with the primitive types
explained earlier and builds upward from there.

An example

For example, a String
type, which can be used to represent a person's last
name, is just a grouping of a bunch of instances of the primitive char
or
character type.

A user-defined Person
type, which could be used to represent both a
person's first name and their last name, might simply be a grouping of two
instances of the user-defined String
type. (The String
type is part of the
Java standard library. However, the standard library doesn't have a type
named Person
. If you need that type, you will have to define it yourself.)

Differences

The biggest conceptual difference between the String
type and the
Person
type is that the String
type is contained in the standard Java library while
the Person
type isn't in that library. However, you could put it in a library
of your own design if you choose to do so.

Removing types

You could easily remove the String
type from your copy of the standard
Java library if you choose to do so, although that would probably be a bad
idea. However, you cannot remove the primitive double
type from the core
language without making major modifications to the language.

The company telephone book

A programmer responsible for producing the company telephone book
might create a new type that can be used to store the first and last names
along with the telephone number of an individual. That programmer might
choose to give the new type the name Employee
.

The programmer could create an instance of the Employee
type to represent
each employee in the company, populating each such instance with the

name and telephone number for an individual employee. (At this point, let
me sneak a little jargon in and tell you that we will be referring to such
instances as objects.)

A comparison operation

The programmer might define one of the allowable operations for the new
Employee
type to be a comparison between two objects of the new type to
determine which is greater in an alphabetical sorting sense. This operation
could be used to sort the set of objects representing all of the employees
into alphabetical order. The set of sorted objects could then be used to print
a new telephone book.

A name-change operation

Another allowable operation that the programmer might define would be
the ability to change the name stored in an object representing a particular
employee.
For example when Suzie Smith marries Tom Jones, she might
elect to thereafter be known as

Suzie Smith
Suzie Jones,
Suzie Smith-Jones,
Suzie Jones-Smith, or
something entirely different.

In this case, there would be a need to modify the object that represents
Suzie in order to reflect her newly-elected surname. (Or perhaps Tom Jones
might elect to thereafter be known as Tom Jones-Smith, in which case it
would be necessary to modify the object that represents him.)

An updated telephone book

The person charged with maintaining the database could

use the name-changing operation to modify the object and change the
name,
make use of the sorting operation to re-sort the set of objects, and

print and distribute an updated version of the telephone book.

Many user-defined types already exist

Unlike the primitive types which are predefined in the core language, I am
unable to give you much in the way of specific information about user-
defined types, simply because they don't exist until a user defines them.

I can tell you, however, that when you obtain the Java programming tools
from Sun, you not only receive the core language containing the primitive
types, you also receive a large library containing several thousand user-
defined types that have already been defined. A large documentation
package is available from Sun to help you determine the individual
characteristics of these user-defined types.

The most important thing

At this stage in your development as a Java programmer, the most
important thing for you to know about user-defined types is that they are
possible.

You can define new types. Unlike earlier procedural programming
languages such as C and Pascal, you are no longer forced to adapt your
problem to the available tools. Rather, you now have the opportunity to
extend the tools to make them better suited to solve your problem.

The class definition

The specific mechanism that makes it possible for you to define new types
in Java is a mechanism known as the class definition
.

In Java, whenever you define a new class, you are at the same time defining
a new type. Your new type can be as simple, or as complex and powerful as
you want it to be.

An object (instance)
of your new type can contain a very small amount of
data, or it can contain a very large amount of data.
The operations that you

allow to be performed on an object of your new type can be rudimentary, or
they can be very powerful.

It is all up to you

Whenever you define a new class (type)
you not only have the opportunity
to define the data definition and the operations, you also have a
responsibility to do so.

Much to learn and much to do

But, you still have much to learn and much to do before you will need to
define new types.

There are a lot of fundamental programming concepts that we will need to
cover before we seriously embark on a study involving the definition of
new types.

For the present then, simply remember that such a capability is available,
and if you work to expand your knowledge of Java programming one small
step at a time, when we reach the point of defining new types, you will be
ready and eager to do so.

Sample program

I'm not going to provide a sample program in this module. Instead, I will be
using what you have learned about Java data types in the sample programs
in future modules.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0150: Java OOP: A Gentle Introduction to Java Data
Types
File: Jb0150.htm
Published: 11/17/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0150r Review
This module contains review questions and answers keyed to the module
titled Jb0150: Java OOP: A Gentle Introduction to Java Data Types.

Revised: Sun Mar 27 23:06:45 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14
, 15
,
16
,
17
, 18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0150: Java OOP: A Gentle Introduction to Java Data Types
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45141

Question 1
.

True or false? Java is a type-sensitive language.

Answer 1

Question 2

True or false? Data type double
involves whole numbers only (no
fractional parts are allowed)
.

Answer 2

Question 3

True or false? Type double
involves numbers with fractional parts.

Answer 3

Question 4

True or false? All Java data types conceptually have something to do with
numeric values.

Answer 4

Question 5

True or false? The Java char
type deals conceptually with the letters of the
alphabet, the numeric characters, and the punctuation characters.

Answer 5

Question 6

True or false? For every different type of data used with a particular
programming language, there is a specification somewhere that defines two
important characteristics of the type:

1. What is the set of all possible data values that can be stored in an
instance of the type?

2. Once you have an instance of the type, what are the operations that
you can perform on that instance alone, or in combination with other
instances?

Answer 6

Question 7

True or false? If you have an instance of the byte
type, the set of all
possible values that you can store in that instance is the set of all the whole
numbers ranging from -256 to +255.

Answer 7

Question 8

Name or describe four of the operations that you can perform with data of
type short
.

Answer 8

Question 9

True or false? Java data types can be subdivided into two major categories:

Primitive types
User-defined or reference types

Answer 9

Question 10

True or false? The primitive types are not part of the core language.

Answer 10

Question 11

True or false? For purposes of discussion, primitive types can be subdivided
into four categories:

Whole-number types
Floating-point types
Character types
Boolean types

Answer 11

Question 12

True or false? In Java, there are three different whole-number types:

byte
short
int

Answer 12

Question 13

True or false? The whole-number types differ in terms of the range of
values that they can accommodate and the amount of computer memory
required to store instances of the types.

Answer 13

Question 14

True or false? Java provides an unsigned version of all of the primitive
whole-number types.

Answer 14

Question 15

True or false? Floating point types represent values as a mantissa containing
a decimal point along with an exponent value that tells how many places to
shift the decimal point to the left or to the right in order to determine the
true value.

Answer 15

Question 16

True or false? With a floating point type, positive exponent values mean
that the decimal point should be shifted to the left. Negative exponent
values mean that the decimal point should be shifted to the right.

Answer 16

Question 17

True or false? Java supports two different floating point types:

float
double

Answer 17

Question 18

True or false? The purpose of the char
type is to make it possible to
represent the letters of the alphabet, the punctuation characters, and the
numeric characters internally in the computer. This is accomplished by
assigning a numeric value to each character.

Answer 18

Question 19

True or false? The char
type uses a standard character representation
known as Unicode
to represent up to 65,535 different characters.

Answer 19

Question 20

True or false? In Java, you usually represent a character in your program by
surrounding it with quotation marks as shown below:

"A".

Answer 20

Question 21

True or false? The boolean type can have three values:

true
false
maybe

Answer 21

Question 22

True or false? Java is an extensible
programming language, meaning that
there is a core component to the language that is always available. Beyond
the core component, different programmers can extend the language in
different ways to meet their individual needs.

Answer 22

Question 23

True or false? As is the case in C++, one of the ways that individual
programmers can extend the Java language is to create overloaded operators
for the primitive types.

Answer 23

Question 24

True or false? One of the ways that individual programmers can extend the
Java language is to create new types.

Answer 24

Question 25

True or false? The specific Java mechanism that makes it possible for
programmers to define new types is a mechanism known as the class
definition
.

Answer 25

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 25

True.

Back to Question 25

Answer 24

True.

Back to Question 24

Answer 23

False. Java does not allow programmers to create overloaded operators for
the primitive types.

Back to Question 23

Answer 22

True.

Back to Question 22

Answer 21

False. The boolean type can have only two values:

true
false

Back to Question 21

Answer 20

False. In Java, you usually represent a character in your program by
surrounding it with apostrophes as shown below:

'A'.

Back to Question 20

Answer 19

True.

Back to Question 19

Answer 18

True.

Back to Question 18

Answer 17

True.

Back to Question 17

Answer 16

False. With a floating point type, positive exponent values mean that the
decimal point should be shifted to the right
. Negative exponent values
mean that the decimal point should be shifted to the left
.

Back to Question 16

Answer 15

True.

Back to Question 15

Answer 14

False. Other than type char
, there are no unsigned whole-number primitive
types in Java.

Back to Question 14

Answer 13

True.

Back to Question 13

Answer 12

False. In Java, there are five different whole-number types:

byte
short
int
long
char

Back to Question 12

Answer 11

True.

Back to Question 11

Answer 10

False. The primitive types are part of the core language.

Back to Question 10

Answer 9

True.

Back to Question 9

Answer 8

Four of the possible operations are:

You can add them together.
You can subtract one from the other.
You can multiply one by the other.
You can divide one by the other.

Back to Question 8

Answer 7

False. If you have an instance of the byte
type, the set of all possible values
that you can store in that instance is the set of all the whole numbers
ranging from -128 to +127.

Back to Question 7

Answer 6

True.

Back to Question 6

Answer 5

True.

Back to Question 5

Answer 4

False. In Java, data type boolean
conceptually has nothing to do with
numeric values, but deals only with the concept of true
or false
.

Back to Question 4

Answer 3

True.

Back to Question 3

Answer 2

False. Some data types such at type int
involve whole numbers only (no
fractional parts are allowed)
.

Back to Question 2

Answer 1

True.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0150r Review: A Gentle Introduction to Java Data
Types
File: Jb0150r.htm
Published: 11/21/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0160: Java OOP: Hello World
A traditional Hello World in Java provides interesting insights into the structure of a Java
application.

Revised: Sat Sep 03 18:11:42 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Viewing tip

Figures
Listings

Introduction
The Java version of Hello World
Interesting code fragments
General information
Run the program
Miscellaneous
Complete program listing

Preface

It is traditional in introductory programming courses to write and explain a simple program
that prints the text "Hello World"
on the computer screen.

This module continues that tradition.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are
reading about them.

Figures

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Figure 1
. How to compile and run a Java application.

Listings

Listing 1
. Beginning of the class named hello1.
Listing 2
. Beginning of the main method.
Listing 3
. Display the string Hello World.
Listing 4
. End of the class named hello1.
Listing 5
. Complete program listing.

Introduction

This module introduces you to Java programming by presenting and discussing a traditional
Hello World
program.

Two approaches

Java programs can be written and executed in several different ways, including the
following:

Stand-alone application from the command line.
Applet that runs under control of a Java-capable browser.

It is also possible in many cases to write applets, which can be run in a stand-alone mode
from the command line, or can be run under control of a Java-capable browser. An example
of such an applet will be presented in a future module.

Applets vs. applications

Programming an "application"
in Java is significantly different from programming an
"applet."
Applets are designed to be downloaded and executed on-line under control of a
browser.

Restrictions on applets

Their functionality of an applet is usually restricted in an attempt to prevent downloaded
applets from damaging your computer or your data. No such restrictions apply to the
functionality of a Java application.

Class definitions

All Java programs consist of one or more class
definitions. In this course, I will often refer
to the primary
class definition for a Java application
as the controlling class
.

The main method

A stand-alone Java application requires a method named main
in its controlling class
.

An Applet
does not require a main
method. The reason that a Java Applet
does not require
a main
method will be explained in a future module.

Getting started

Figure 1
shows the steps for compiling and running a Java application.

Figure 1.
How to compile and run a Java application.

Figure 1.
How to compile and run a Java application.

Here are the steps for compiling and running a Java application, based on the
assumption that you are running under Windows. If you are running under some other
operating system, you will need to translate these instructions to that OS.

1. Download and install the JDK from Oracle. Also consider downloading and
installing the documentation, which is a separate download.

2. Using any editor that can produce a plain text file (such as Notepad),
create a
source code file with the extension on the file name being .java This file contains
your actual Java instructions. (You can copy some sample programs from the early
lessons in this collection to get started.)

3. Open a command-line window and change directory to the directory containing the
source file. It doesn't really matter which directory the source file is in, but I normally
put my Java files in a directory all their own.

4. Assume that the name of the file is joe.java
, just to have something definitive to
refer to.

5. To compile the file, enter the following command at the prompt:

javac joe.java

6. Correct any compiler errors that show up. Once you have corrected all compiler
errors, the javac
program will execute and return immediately to the prompt with no
output. At that point, the directory should also contain a file named joe.class
and
possibly some other files with a .class extension as well. These are the compiled Java
files.

7. To run the program, enter the following command:

java joe

8. If your program produces the correct output, congratulations. You have written,
compiled, and executed a Java application. If not, you will need to determine why
not.

The Java version of Hello World

The class file

Compiled Java programs are stored in "bytecode"
form in a file with an extension of .class
where the name of the file is the same as the name of the controlling class
(or other class)
in the program.

The main method is static

The main
method in the controlling class of an application must be static
, which results in
main being a class
method.

Class
methods can be called without a requirement to instantiate an object of the class.

When a Java application is started, the Java Virtual Machine
or JVM (an executable file
named java.exe)
finds and calls the
main
method in the class whose name matches the
name of the class file specified on the command line.

Running an application

For example, to start the JVM and run a Java application named
hello1
, a command such
as the following must be executed at the operating system prompt:

java hello1

This command instructs the operating system to start the
JVM, and then instructs the JVM
to find and execute the java application stored in the file named
hello1.class
. (Note that the
.class extension is not included in the command.)

This sample program is a Java application named hello1.java
.

When compiled, it produces a class file named hello1.class
.

When the program is run, the JVM calls the main
method defined in the
controlling class
.

The main
method is a class
method.

Class
methods can be called without a requirement to instantiate an object of the class.

The program displays the following words on the screen:

Hello World

Interesting code fragments

I will explain this program code in fragments. A complete listing of the program is
provided in Listing 5
.

The code fragment in Listing 1
shows the first line of the class definition for the controlling
class named hello1
. (I will discuss class definitions in detail in a future module.)

Listing 1
. Beginning of the class named hello1.

class hello1 { //define the controlling class

The code fragment in Listing 2
begins the definition of the main
method. I will also discuss
method definitions in detail in a future module.

Listing 2
. Beginning of the main method.

public static void main(String[] args){

The fragment in Listing 3
causes the string
Hello World
to be displayed on the command-
line screen.

The statement in Listing 3
is an extremely powerful statement from an object-oriented
programming viewpoint. When you understand how it works, you will be well on your way
to understanding the Java version of Object-Oriented Programming (OOP).

I will discuss this statement in more detail later in a future module.

Listing 3
. Display the string Hello World.

Listing 3
. Display the string Hello World.

 System.out.println("Hello World");

Listing 4
ends the main
method and also ends the class definition for the class named
hello1
.

Listing 4
. End of the class named hello1.

 }//end main

}//End hello1 class

The complete program listing

As mentioned earlier, a complete listing of the program is provided in Listing 5
near the
end of the module.

General information

This program illustrates several general aspects of Java programming.

Overall skeleton of java program

The overall skeleton of any Java program consists of one or more class definitions.

All methods and variables must be defined inside a class
definition. There can be no
freestanding methods or global variables.

File names and extensions

The name of the controlling class
should be the same as the name of the source file that
contains it.

Files containing source code in Java have an extension of java
.

The main method

The controlling class definition for an application must contain the main
method.

The primary class file

The file produced by compiling the file containing the controlling class has the same name
as the controlling class, and has an extension of class
.

Many class files may be produced

The java compiler produces a separate file for every class
definition contained in an
application or applet, even if two or more class
definitions are contained in the same source
file.

Thus, the compilation of a large application can produce many different class
files.

What are jar files?

A feature known as a jar
file can be used to consolidate those class files into a single file
for more compact storage, distribution, and transmission. Such a file has an extension of
.jar
. (A jar file is similar to a zip file except that it is specialized for use with Java
programs.)

The main method is static

The controlling class for a Java application must contain a static
method named main
.

When you run the application using the JVM, you specify the name of the class file that
you want to run.

The JVM then calls the main
method defined in the
class file having that name. This is
possible because a class method
can be called without a requirement to instantiate an object
of the class.

The main
method defined in that class
definition controls the flow of the program.

Run the program

I encourage you to copy the code from Listing 5
. Compile the code and execute it.
Experiment with the code, making changes, and observing the results of your changes.
Make certain that you can explain why your changes behave as they do.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0160: Java OOP: Hello World
File: Jb0160.htm
Originally published: 1997
Published at cnx.org: 11/17/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

Complete program listing

A complete listing of the program discussed in this module is provided in Listing 5
.

Listing 5
. Complete program listing.

Listing 5
. Complete program listing.

/*File hello1.java Copyright 1997, R.G.Baldwin

This is a Java application program .

When compiled, this program produces the class named:

hello1.class

When the Java interpreter is called upon the application's

controlling class using the following statement at the

command line:

java hello1

the interpreter starts the program by calling the main

method defined in the controlling class. The main method
is

a class method which can be called without the requirement

to instantiate an object of the class.

The program displays the following words on the screen:

Hello World

***/

class hello1 { //define the controlling class

 //define main method

 public static void main(String[] args){

 //display text string

 System.out.println("Hello World");

 }//end main

}//End hello1 class.

-end-

Jb0160r Review
This module contains review questions and answers keyed to the module titled Jb0160: Java
OOP: Hello World.

Revised: Mon Mar 28 00:15:46 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13

Listings
Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module titled Jb0160: Java
OOP: Hello World
.

The questions and the answers are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

Questions

Question 1
.

True or false? Applications are designed to be downloaded and executed on-line under
control of a web browser, while applets are designed to be executed in a stand-alone mode
from the command line.

Answer 1

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45143

Question 2

True or false? All applications and applets written in Java require a main
method.

Answer 2

Question 3

Explain the relationship between the name of the class file for a Java application and the
location of the main
method in the application.

Answer 3

Question 4

Explain how you cause a method to be a class
method in Java.

Answer 4

Question 5

True or false? Class
methods can be called without the requirement to instantiate an object of
the class:

Answer 5

Question 6

Write the source code for a Java application that will display your name and address on the
standard output device. Show the command-line statement that would be required to execute
a compiled version of your application.

Answer 6

Question 7

Show the three styles of comment indicators that are supported by Java.

Answer 7

Question 8

True or false? Java allows free-standing methods outside of a class definition?

Answer 8

Question 9

What is the relationship between the name of the controlling class
in an application and the
names of the files that comprise that application.

Answer 9

Question 10

What is the relationship between the number of classes in an application and the number of
separate files with the class
extension that go to make up that application? How does this
change when all the classes are defined in the same source file?

Answer 10

Question 11

True or false? Class
methods in Java can only be called relative to a specific object.

Answer 11

Question 12

Write the signature line for the main method in a Java application.

Answer 12

Question 13

Write a Java application that will display your name on the screen.

Answer 13

Listings

Listing 1
. Listing for Answer 13.
Listing 2
. Listing for Answer 7.
Listing 3
. Listing for Answer 6.

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the questions and the
answers to keep them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE
2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the
answers.

Answers

Answer 13

Listing 1
. Listing for Answer 13.

/*File SampProg02.java from lesson 10

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write an

application that will display your name on the screen.

**/

class SampProg02 { //define the controlling class

 public static void main(String[] args){ //define main

 System.out.println("Dick Baldwin");

 }//end main

}//End SampProg02 class.

Back to Question 13

Answer 12

Note:

public static void main(String[] args)

Back to Question 12

Answer 11

False. Class
methods can be called by joining the name of the class with the name of the
method using a period.

Back to Question 11

Answer 10

Each class definition results in a separate class
file regardless of whether or not the classes
are defined in separate source files.

Back to Question 10

Answer 9

One of the files must have the same name as the controlling class
with an extension of class
.

Back to Question 9

Answer 8

False.

Back to Question 8

Answer 7

Listing 2.
Listing for Answer 7.

/** special documentation comment used by the JDK javadoc
tool */

/* C/C++ style multi-line comment */

// C/C++// C/C++ style single-line comment

Back to Question 7

Answer 6

Listing 3.
Listing for Answer 6.

/*File Name01.java

This is a Java application that will display a

name on the standard output device.

The command required at the command line to execute this

program is:

java Name01

**/

class Name01 { //define the controlling class

 public static void main(String[] args){ //define main

 System.out.println(

 "Dick Baldwin\nAustin Community College\nAustin, TX");

 }//end main

}//End Name01 class.

Note that the \n
characters in Listing 3
cause the output display to advance to the next line.

Back to Question 6

Answer 5

True.

Back to Question 5

Answer 4

Preface or precede the name of the method with the static
keyword.

Back to Question 4

Answer 3

The name of the class file must be the same as the name of the class that contains the main
method (sometimes called the controlling class)
.

Back to Question 3

Answer 2

False. Applets do not require a main
method while applications do require a main
method.

Back to Question 2

Answer 1

False. Applications are for stand-alone use while applets are for browsers.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0160r Review: Hello World
File: Jb0160r.htm
Published: 11/18/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to download a PDF file
for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF file, you should be aware that some of the HTML elements in this
module may not translate well into PDF.

I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0170: Java OOP: A little more information about classes.
Class definitions form the foundation for Java OOP. They are discussed in
increasing detail in subsequent modules. This module sheds just a little
more light on classes.

Revised: Mon Mar 28 00:23:43 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Listings
Introduction
Defining a class in Java
Miscellaneous

Preface

This module is part of a collection of modules designed to help you learn to
program computers.

This module sheds a little more light on the Java construct called a class
.

Listings

Listing 1
. General syntax for defining a Java class.

Introduction

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

New types

Java makes extensive use of classes. When a class is defined in Java, a new
type
comes into being. The new type definition can then be used to
instantiate (create instances of)
one or more objects of that new type.

A blueprint

The class definition provides a blueprint that describes the data contained
within, and the behavior of objects instantiated according to the new type.

The data

The data is contained in variables defined within the class (often called
member variables,
data members, attributes, fields, properties, etc.
).

The behavior

The behavior is controlled by methods defined within the class.

State and behavior

An object is said to have state
and behavior
. At any instant in time, the
state
of an object is determined by the values stored in its variables
and its
behavior is determined by its methods
.

Class vs. instance

It is possible to define:

instance variables and instance methods
static or class
variables and static or class
methods.

Instance variables and instance methods can only be accessed through an
object instantiated from the class. They belong to the individual objects,
(which is why they are called instance variables and instance methods)
.

Class
variables and class
methods can be accessed without first
instantiating an object. They are shared among all of the objects instantiated

from the class and are even accessible in the total absence of an object of
the class.

The class name alone is sufficient for accessing class
variables and
class
methods by joining the name of the class to the name of the variable or
method using a period.

Defining a class in Java

The general syntax for defining a class in Java is shown in
Listing 1
.

Listing 1
. General syntax for defining a Java class.

class MyClassName{

 . . .

} //End of class definition.

This syntax defines a class and creates a new type named MyClassName
.

The definitions of variables, methods, constructors, and a variety of other
members are inserted between the opening and closing curly brackets.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0170: Java OOP: A little more information about
classes.
File: Jb0170.htm
Originally published: 1997

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to
download a PDF file for this
module at no charge, and also makes it
possible for you to
purchase a pre-printed version of the PDF file, you
should be
aware that some of the HTML elements in this module may not
translate well into
PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0170r: Review
This module contains review questions and answers keyed to the module
titled Jb0170: Java OOP: A little more information about classes.

Revised: Mon Mar 28 10:56:27 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0170: Java OOP: A little more information about classes
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

List two of the many names commonly used for variables defined within a
class in Java.

Answer 1

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45144

Question 2

List two of the many names commonly used for the functions defined
within a class in Java.

Answer 2

Question 3

An object is said to have state
and behavior
. At any instant in time, the
state
of an object is determined by the values stored in its (a)___________
and its behavior is determined by its (b)__________.

Answer 3

Question 4

What keyword is used to cause a variable or method to become a class
variable or class
method in Java?

Answer 4

Question 5

True or false? Instance variables and instance methods can only be
accessed through an object of the class in Java.

Answer 5

Question 6

True or false? In Java, the class name alone is sufficient for accessing class
variables and class
methods by joining the name of the class with the name
of the variable or method using a colon.

Answer 6

Question 7

True or false? Show the general syntax of an empty class definition in Java.

Answer 7

Question 8

True or false? The syntax for a class definition in Java requires a semicolon
following the closing curly bracket.

Answer 8

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 8

False. Java does not require the use of a semicolon following the closing
curly bracket in a class definition.

Back to Question 8

Answer 7

class NameOfClass{}

Back to Question 7

Answer 6

False. A colon is not used in Java. Instead, a period is used in Java.

Back to Question 6

Answer 5

True.

Back to Question 5

Answer 4

static

Back to Question 4

Answer 3

(a) instance variables
(b) methods

Back to Question 3

Answer 2

Member functions and instance methods.

Back to Question 2

Answer 1

Instance variables and attributes.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0170r: Review: A little more information about
classes
File: Jb0170r.htm
Published: 11/21/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you

should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0180: Java OOP: The main method.
Every Java application requires a class containing a method named main.
This module provides information on the main method.

Revised: Mon Mar 28 11:21:22 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Figures

The main method in Java
Miscellaneous

Preface

This module is part of a collection of modules designed to help you learn to
program computers.

Every Java application requires a class containing a method named main
.
This module provides information on the main
method.

Viewing tip

I recommend that you open another copy of this module in a separate
browser window and use the following links to easily find and view the
Figures while you are reading about them.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Figures

Figure 1
. The method signature according to Niemeyer and Peck.
Figure 2
. The method signature according to Oracle.
Figure 3
. Allowable signatures for the main method.

The main method in Java

There must be a main
method in the controlling class in every Java
application.

The method signature

The Java literature frequently refers to the signature of a method, or the
method signature
.

Exploring Java
by Patrick Niemeyer and Joshua Peck (O'Reilly) provides
the definition of a method signature shown in Figure 1
.

Figure 1.
The method signature according to Niemeyer and Peck
.

"A method signature is a collection of information about the method,
as in a C prototype or a forward function declaration in other
languages. It includes the method's name, type, and visibility, as well
as its arguments and return type."

Type

Apparently in this definition, the authors are referring to the type
of the
method as distinguishing between static and non-static. (Other literature
refers to the type of a function or method as being the return type which
according to the above definition is a separate part of the signature.)

Visibility

Apparently also the use of the word visibility in the above definition refers
to the use of public
, private
, etc.

According to Oracle...

Oracle's
Java Tutorials
, on the other hand, describe the method signature as
in Figure 2
.

Figure 2.
The method signature according to Oracle
.

Definition: Two of the components of a method declaration comprise
the method signature -- the method's name and the parameter types.

As you can see, the Oracle definition is more restrictive than the Niemeyer
and Peck definition.

Bottom line on method signature

The method signature can probably be thought of as providing information
about the programming interface to the method. In other words, it provides
the information that you need to be able to call the method in your program
code.

Signature of main method

The controlling class of every Java application must contain a main method
having one of the signatures shown in Figure 3
.

http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

Figure 3
. Allowable signatures for the main method.

public static void main(String[] args)

public static void main(String args[])

(I prefer the first signature in Figure 3
as being the most descriptive of an
array of
String references which is what is passed in as an argument.)

public

The keyword public
indicates that the method can be called by any object.
A future module will discuss the keywords public
,
private
, and protected
in more detail.

static

The keyword static
indicates that the method is a class
method, which can
be called without the requirement to instantiate an object of the class. This
is used by the JVM to launch the program by calling the main
method of
the class identified in the command to start the program.

void

The keyword void
indicates that the method doesn't return any value.

args

The formal parameter args
is a reference to an array object of type String
.
The array elements contain references to
String
objects that encapsulate
String
representations of the arguments, if any, entered at the command
line.

Note that the args
parameter must be specified whether or not the user is
required to enter command-line arguments and whether or not the code in

the program actually makes use of the argument. Also note that the name
can be any legal Java identifier. It doesn't have to be args
. It could be joe or
sue, for example.

The length property

The parameter named args
is a reference to an array object. Java array
objects have a property named length
, which specifies the number of
elements in the array.

The runtime system monitors for the entry of command-line arguments by
the user and constructs the String array containing those arguments.

Processing command-line arguments

The args.length
property can be used by the code in the program to
determine the number of arguments actually entered by the user.

If the length
property is not equal to zero, the first string in the array
corresponds to the first argument entered on the command line.

Command-line arguments along with strings and String
arrays will be
discussed in more detail in a future module.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0180: Java OOP: The main method.
File: Jb0180.htm
Originally published: 1997
Published at cnx.org: 11/17/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to
download a PDF file for this
module at no charge, and also makes it
possible for you to
purchase a pre-printed version of the PDF file, you
should be
aware that some of the HTML elements in this module may not
translate well into
PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0180r Review
This module contains review questions and answers keyed to the module
titled Jb0180: Java OOP: The main method.

Revised: Mon Mar 28 11:31:59 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0180: Java OOP: The main method
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

Write the method signature for the main
method in a Java application.

Answer 1

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45145

Question 2

Briefly explain the reason that the main
method in a Java application is
declared public
.

Answer 2

Question 3

Explain the reason that the main method in a Java application must be
declared static
.

Answer 3

Question 4

Describe the purpose of the keyword void
when used as the return type for
the main
method.

Answer 4

Question 5

True or false? If the Java application is not designed to use command-line
arguments, it is not necessary to include a formal parameter for the main
method.

Answer 5

Question 6

True or false? When using command-line arguments in Java, if the name of
the string array is args
, the args.length
variable can be used by the code in
the program to determine the number of arguments actually entered.

Answer 6

Question 7

True or false? The first string in the array of command-line arguments
contains the name of the Java application

Answer 7

Question 8

The controlling class
of every Java application must contain a main
method. Can other classes in the same application also have a main
method? If not, why not? If so, why might you want to do that?

Answer 8

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 8

Any and all classes in a Java application can have a main
method. Only the
one in the controlling class
for the program being executed is actually

called.

It is often desirable to provide a main
method for a class that will not
ultimately be the controlling class
to allow the class to be tested in a stand-
alone mode, independent of other classes.

Back to Question 8

Answer 7

False. Unlike C++, the first string in the array of command-line arguments
in a Java application does not
contain the name of the application.

Back to Question 7

Answer 6

True.

Back to Question 6

Answer 5

False. The main
method in a Java program must always provide the formal
argument list regardless of whether it is actually used in the program.

Back to Question 5

Answer 4

The void keyword when used as the return type for any Java method
indicates that the method does not return anything.

Back to Question 4

Answer 3

The keyword static
indicates that the method is a class
method which can
be called without the requirement to instantiate an object of the class. This
is used by the Java virtual machine to launch the program by calling the
main
method of the class identified in the command to start the program.

Back to Question 3

Answer 2

The keyword public
indicates that the method can be called by any object.

Back to Question 2

Answer 1

Note:

public static void main(String[] args)

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0180r Review: The main method
File: Jb0180r.htm
Published: 11/21/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0190: Java OOP: Using the System and PrintStream Classes
Take a preliminary look at the complexity of OOP by examining some aspects of the System
and PrintStream classes.

Revised: Mon Mar 28 11:44:44 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Listings

Introduction
Discussion
A word about class variables
Run the program
Miscellaneous

Preface

This module takes a preliminary look at the complexity of OOP by examining some aspects
of the System
and PrintStream
classes.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the listings while you are reading about them.

Listings

Listing 1
. The program named hello1.
Listing 2
. Display the string "Hello World".

Introduction

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

This lesson introduces you to the use of the System and PrintStream
classes in Java. This is
our first introduction to the complexity that can accompany the OOP paradigm. It gets a little
complicated, so you might need to pay special attention to the discussion.

Discussion

What does the main method do?

The main
method in the controlling class of a Java application controls the flow of the
program.

The main
method can also access other classes along with the variables and methods of
those classes and of objects instantiated from those classes.

The hello1 Application

Listing 1
shows a simple Java application named
hello1
.

(By convention, class definitions should begin with an upper-case character. However, the
original version of this module was written and published in 1997, before that convention
was firmly established.)

Listing 1
. The program named hello1.

/*File hello1.java Copyright 1997, R.G.Baldwin

**/

class hello1 { //define the controlling class

 //define main method

 public static void main(String[] args){

 //display text string

 System.out.println("Hello World");

 }//end main

}//End hello1 class. No semicolon at end of Java class.

Does this program Instantiate objects?

This is a simple example that does not instantiate objects of any other class.

Does this program access another class?

However, it does access another class. It accesses the System
class that is provided with the
Java development kit. (The System
class will be discussed in more detail in a future module.)

The variable named out

The variable named out
, referred to in Listing 1
as System.out
, is a class variable
of the
System
class. (A class variable is a variable that is declared to be static.)

Recall that a class variable can be accessed without a requirement to instantiate an object of
the class. As is the case with all variables, the class variable must be of some specific type.

Primitive variables vs. reference variables

A class variable may be a primitive variable
, which contains a primitive value, or it may be
a reference variable
, which contains a reference to an object.

(I'll have more to say about the difference between primitive variables and reference
variables in a future module.)

The variable named out
in this case is a
reference variable
, which refers to an object of
another type.

Accessing class variables

You access class variables or class methods in Java by joining the name of the class to the
name of the variable or method with a period as shown below.

Note:
System.out
accesses the class variable named out
in the Java class named System
.

The PrintStream class

Another class that is provided with the Java development kit is the PrintStream
class. The
PrintStream
class is in a package of classes that are used to provide stream input/output
capability for Java.

What does the out variable refer to?

The out
variable in the System
class refers to (points to)
an instance of the PrintStream
class
(a PrintStream
object),
which is automatically instantiated when the System
class is
loaded into the application.

We will be discussing the PrintStream
class along with a number of other classes in detail in
a future module on input/output streams, so this is not intended to be an exhaustive
discussion.

The println method

The PrintStream
class has an instance method
named println
, which causes its argument to
be displayed on the standard output device when it is called.

(Typically, the standard output device is the command-line window. However, it is possible to
redirect it to some other device.)

Accessing an instance method

The method named println
can be accessed by joining a PrintStream
object's reference to
the name of the method using a period.

Thus, (assuming that the standard output device has not been redirected)
, the statement
shown in Listing 2
causes the string "Hello World" (without the quotation marks)
to be
displayed in the command-line window.

Listing 2
. Display the string "Hello World".

System.out.println("Hello World");

This statement calls the println
method of an object instantiated from the PrintStream
class,
which is referred to (pointed to)
by the variable named out
, which is a class variable
of the
System
class.

Read the previous paragraph very carefully. As I indicated when I started this module, this is
our first introduction to the complexity that can result from use of the OOP paradigm. (It can
get even more complicated.)
If this is not clear to you, go back over it and think about it until
it becomes clear.

A word about class variables

How many instances of a class variable exist?

The runtime system allocates a class variable only once no matter how many instances
(objects)
of the class are instantiated.

All objects of the class share the same physical memory space for the class variable.

If a method in one object changes the value stored in the class variable, it is changed insofar
as all of the objects are concerned. (This is about as close to a global variable as you can get
in Java.)

Accessing a class variable

You can use the name of the class to access class variables by joining the name of the class to
the name of the variable using a period.

You can also access a class variable by joining the name of a reference variable containing an
object's reference to the name of the variable using a period as the joining operator.

Referencing object methods via class variables

Class variables are either primitive variables or reference variables. (Primitive variables
contain primitive values and reference variables contain references to objects.)

A referenced object may provide methods to control the behavior of the object. In Listing 2
,
we accessed the println
method of an object of the PrintStream
class referred to by the
class variable named out
.

Instance variables and methods

As a side note, in addition to class variables, Java provides instance variables
and instance
methods
. Every instance of a class has its own set of instance variables. You can only access
instance variables and instance methods through an object of the class.

Run the program

I encourage you to copy the code from Listing 1
. Compile the code and execute it.
Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0190: Java OOP: Using the System and PrintStream Classes
File: Jb0190.htm
Originally published: 1997
Published at cnx.org: 11/18/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF file
for this
module at no charge, and also makes it possible for you to
purchase a pre-printed
version of the PDF file, you should be
aware that some of the HTML elements in this
module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0190r: Review
This module contains review questions and answers keyed to the module
titled Jb0190: Java OOP: Using the System and PrintStream Classes

Revised: Mon Mar 28 11:58:41 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14
, 15
,
16
,
17
, 18

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0190: Java OOP: Using the System and PrintStream Classes
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

True or false? The main
method in the controlling class of a Java
application controls the flow of the program.

Answer 1

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45148

Question 2

True or false? The main method cannot access the variables and methods of
objects instantiated from other classes.

Answer 2

Question 3

True or false? The main method must instantiate objects of other classes in
order for the program to execute.

Answer 3

Question 4

True or false? In order to be useful, the System
class must be used to
instantiate objects in a Java application.

Answer 4

Question 5

True or false? Class
variables such as the out
variable of the System
class
must be of some specific type.

Answer 5

Question 6

True or false? Class
variables must be of a primitive type such as
int
or
float
.

Answer 6

Question 7

True or false? The out
variable in the System
class is of a primitive type.

Answer 7

Question 8

What does the following code fragment
access?

Note:

System.out

Answer 8

Question 9

True or false? An object of type PrintStream
is automatically instantiated
when the System
class is loaded into an application.

Answer 9

Question 10

True or false? The out
variable in the System class refers to an instance of
what class?

Answer 10

Question 11

True or false? The println
method is an instance method of what class?

Answer 11

Question 12

What is the primary behavior of the println
method?

Answer 12

Question 13

How can the println
method be accessed?

Answer 13

Question 14

Assuming that the standard output device has not been redirected, write a
code fragment that will cause your name to be displayed on the screen.

Answer 14

Question 15

Explain how your code fragment in Answer 14
produces the desired result.

Answer 15

Question 16

If you have a class named MyClass that has a class variable named
myClassVariable that requires four bytes of memory and you instantiate
ten objects of type MyClass
, how much total memory will be allocated to
contain the allocated variables (assume that the class definition contains no
other class, instance, or local variables)
.

Answer 16

Question 17

How many actual instances of the variable named out
are allocated in
memory by the following code fragment?

Note:

System.out.println("Dick Baldwin");

Answer 17

Question 18

If you have a class named MyClass that has an instance variable named
myInstanceVariable that requires four bytes of memory and you
instantiate ten objects of type MyClass
, how much total memory will be
allocated to contain the allocated variables (assume that the class definition
contains no other class, instance, or local variables)
.

Answer 18

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 18

Every instance of a class has its own set of instance variables. You can only
access instance variables
and instance methods
through an object of the
class. In this case, forty bytes of memory would be required to contain the
instance variables of the ten objects.

Back to Question 18

Answer 17

Only one, because out
is a class variable of the System
class.

Back to Question 17

Answer 16

The runtime system allocates a class variable
only once no matter how
many instances of the class are instantiated. Thus, all objects of the class
share the same physical memory space for the class variable, and in this
case, only four bytes of memory will be allocated to contain the allocated
variables.

Back to Question 16

Answer 15

The statement in Answer 14
calls the println
method belonging to an object
of the PrintStream
class, which is referenced (pointed to)
by the out
variable, which is a class
variable of the System
class.

Back to Question 15

Answer 14

Note:

System.out.println("Dick Baldwin");

Back to Question 14

Answer 13

The println
method can be accessed by joining the name of a variable that
references a PrintStream
object to the name of the println
method using a

period.

Back to Question 13

Answer 12

The println
method causes its argument to be displayed on the standard
output device. (The standard output device is the screen by default, but can
be redirected by the user at the operating system level.)

Back to Question 12

Answer 11

The println
method is an instance method of the PrintStream
class.

Back to Question 11

Answer 10

The out
variable in the System class refers to an instance of the
PrintStream
class (a PrintStream
object),
which is automatically
instantiated when the System class is loaded into the application.

Back to Question 10

Answer 9

True.

Back to Question 9

Answer 8

The code fragment accesses the contents of the class variable named out
in
the class named System
.

Back to Question 8

Answer 7

False. the variable named out
defined in the System
class is a reference
variable that points to an object of another type.

Back to Question 7

Answer 6

False. A class
variable can be a primitive type, or it can be a reference
variable that points to another object.

Back to Question 6

Answer 5

True.

Back to Question 5

Answer 4

False. The System
class has several class
variables (including
out
and in
)
that are useful without the requirement to instantiate an object of the
System
class.

Back to Question 4

Answer 3

False. While it is probably true that the main
method must instantiate
objects of other classes in order to accomplish much that is of value, this is
not a requirement. The main
method in the "Hello World"
program of
this
module
does not instantiate objects of any class at all.

Back to Question 3

Answer 2

False. The main method can access the variables and methods of objects
instantiated from other classes. Otherwise, the flow of the program would
be stuck within the main
method itself and wouldn't be very useful.

Back to Question 2

Answer 1

True.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

http://cnx.org/content/m45148/latest/

Module name: Jb0190r: Review: Using the System and PrintStream
Classes
File: Jb0190r.htm
Published: 11/22/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0200: Java OOP: Variables
Earlier modules have touched briefly on the topic of variables. This module discusses Java
variables in depth.

Revised: Mon Mar 28 12:30:19 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Figures
Listings

Introduction
Sample program named simple1

Discussion of the simple1 program

Variables

Primitive types

Object-oriented wrappers for primitive types

Reference types
Variable names

Scope
Initialization of variables
Run the programs
Miscellaneous

Preface

Earlier modules have touched briefly on the topic of variables. This module discusses Java
variables in depth.

Viewing tip

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are reading
about them.

Figures

Figure 1
. Screen output from the program named simple1.
Figure 2
. Information about the primitive types in Java.
Figure 3
. Rules for naming variables.
Figure 4
. Rules for legal identifiers.
Figure 5
. Scope categories.

Listings

Listing 1
. Source code for the program named simple1.
Listing 2
. Declaring and initializing two variables named ch1 and ch2.
Listing 3
. Display the character.
Listing 4
. Beginning of a while loop.
Listing 5
. Beginning of the main method.
Listing 6
. The program named wrapper1.
Listing 7
. Aspects of using a wrapper class.
Listing 8
. The program named member1.
Listing 9
. Initialization of variables.

Introduction

The first step

The first step in learning to use a new programming language is usually to learn the
foundation concepts such as

variables
types
expressions
flow-of-control, etc.

This and several future modules concentrate on that foundation.

A sample program

The module begins with a sample Java program named simple1
. The user is asked to enter
some text and to terminate with the # character.

(This program contains a lot of code that you are not yet prepared to understand. For the
time being, just concentrate on the use of variables in the program. You will learn about the
other aspects of the program in future modules.)

The program loops, saving individual characters until encountering the # character. When it
encounters the # character, it terminates and displays the character entered immediately prior
to the # character.

Sample program named simple1

A complete listing of the program named simple1
is provided in Listing 1
. Discussions of
selected portions of the program are presented later in the module.

Listing 1
. Source code for the program named simple1.

Listing 1
. Source code for the program named simple1.

/*File simple1.java Copyright 1997, R.G.Baldwin

This Java application reads bytes from the keyboard until

encountering the integer representation of '#'. At

the end of each iteration, it saves the byte received and

goes back to get the next byte.

When the '#' is entered, the program terminates input and

displays the character which was entered before the #.

**/

class simple1 { //define the controlling class

 //It is necessary to declare that this method

 // can throw the exception shown below (or catch it).

 public static void main(String[] args) //define main

 throws java.io.IOException {

 //It is necessary to initialize ch2 to avoid a compiler

 // error (possibly uninitialized variable) at the

 // statement which displays ch2.

 int ch1, ch2 = '0';

 System.out.println(

 "Enter some text, terminate with #");

 //Get and save individual bytes

 while((ch1 = System.in.read()) != '#')

 ch2 = ch1;

 //Display the character immediately before the #

 System.out.println(

 "The char before the # was " + (char)ch2);

 }//end main

}//End simple1 class.

Program output

The output produced by compiling and running this program is shown in Figure 1
. The
second line of text in Figure 1
ending with the # character was typed by the user.

Figure 1
. Screen output from the program named simple1.

Enter some text, terminate with #

abcde#

The char before the # was e

Discussion of the simple1 program

Purpose

I will use the program shown in Listing 1
to discuss several important aspects of the structure
of a Java program. I will also provide two additional sample programs that illustrate specific
points not illustrated in the above program later in this module.

Variables

Note:
What is a variable?
Variables are used in a Java program to contain data that changes during the execution of the
program.

Declaring a variable

To use a variable, you must first notify the compiler of the name
and the
type
of the variable.
This is known as declaring a variable
.

The syntax for declaring a variable is to precede the name
of the variable with the name of
the type
of the variable as shown in
Listing 2
. It is also possible (but not always required)
to
initialize a variable in Java when it is declared as shown in
Listing 2
.

Listing 2
. Declaring and initializing two variables named ch1 and ch2.

Listing 2
. Declaring and initializing two variables named ch1 and ch2.

int ch1, ch2 = '0';

The statement in Listing 2
declares two variables of type int
, initializing the second variable
(ch2)
to the value of the zero character (0).
(Note that I didn't say initialized to the value
zero.)

Note:
Difference between zero and '0' - Unicode characters
The value of the zero character is not the same as the numeric value of zero, but hopefully
you already knew that.
As an aside, characters in Java are 16-bit entities called Unicode characters instead of 8-bit
entities as is the case with many programming languages. The purpose is to provide many
more possible characters including characters used in alphabets other than the one used in
the United States.

Initialization of the variable

Initialization of the variable named ch2
in this case was necessary to prevent a compiler
error. Without initialization of this variable, the compiler would recognize and balk at the
possibility that an attempt might be made to execute the statement shown in Listing 3
with a
variable named ch2
that had not been initialized

Listing 3
. Display the character.

System.out.println("The char before the # was "

 + (char)ch2);

Error checking by the compiler

The strong error-checking capability of the Java compiler would refuse to compile this
program until that possibility was eliminated by initializing the variable.

Using the cast operator

You should also note that the contents of the variable ch2
is being cast
as type char
in
Listing 3
.

(A cast is used to change the type of something to a different type.)

Recall that ch2
is a variable of type int
, containing the numeric value that represents a
character.

We want to display the character that the numeric value represents and not the numeric value
itself. Therefore, we must cast it (purposely change its type for the evaluation of the
expression)
. Otherwise, we would not see the character on the screen. Rather, we would see
the numeric value that represents that character.

Note:
Initialization of instance variables and local variables:
As another aside, member variables
in Java are automatically initialized to zero or the
equivalent of zero. However, local variables
, of which ch2 is an example, are not
automatically initialized.

Why declare the variables as type int?

It was necessary to declare these variables as type int
because the statement in Listing 4
(more specifically, the call to the System.in.read method)
returns a value of type int
.

Listing 4
. Beginning of a while loop.

while((ch1 = System.in.read()) != '#') ch2 = ch1;

Java provides very strict type checking and generally refuses to compile statements with type
mismatches.

(There is a lot of complicated code in Listing 4
that I haven't previously explained. I will
explain that code later in this and future modules.)

Another variable declaration

The program in Listing 1
also makes another variable declaration shown by the statement in
Listing 5
.

Listing 5
. Beginning of the main method.

public static void main(String[] args) //define main
method

An array of String references

In Listing 5
, the formal argument list of the
main
method declares an argument named args
(first cousin to a variable)
as a reference to an array object of type String
.

Capturing command-line arguments in Java

As you learned in an earlier module, this is the feature of Java that is used to capture
arguments entered on the command line, and is required whether arguments are entered or
not. In this case, no command-line arguments were entered, and the variable named args
is
simply ignored by the remainder of the program.

The purpose of the type of a variable

Note:
All variables must have a declared type
The type determines the set of values that can be stored in the variable and the operations
that can be performed on the variable.

For example, the int
type can only contain whole numbers
(integers)
. A whole host of
operations are possible with an int
variable including add, subtract, divide, etc.

Signed vs. unsigned variables

Unlike C++, all variables of type int
in Java contain signed values. In fact, with the
exception of type char
, all primitive numeric types in Java contain signed values.

Platform independence

At this point in the history of Java, a variable of a specified type is represented exactly the
same way regardless of the platform on which the application or applet is being executed.

This is one of the features that causes compiled Java programs to be platform-independent.

Primitive types

In Java, there are two major categories of data types:

primitive types
reference (or object)
types.

Primitive variables contain a single value of one of the eight primitive types shown in Listing
2
.

Reference variables contain references to objects (or null, meaning that they don't refer to
anything)
.

The eight primitive types in Java?

The table in Figure 2
lists all of the primitive types in Java along with their size and format,
and a brief description of each.

Figure 2
. Information about the primitive types in Java.

Figure 2
. Information about the primitive types in Java.

The char type

The char
type is a 16-bit Unicode character value that has the possibility of representing
more than 65,000 different characters.

Evaluating a primitive variable

A reference to the name of a primitive variable in program code evaluates to the value stored
in the variable. In other words, when you call out the name of a primitive variable in your
code, what you get back is the value stored in the variable.

Object-oriented wrappers for primitive types

Primitive types are not objects

Primitive data types in Java (int, double, etc.)
are not objects. This has some ramifications as
to how they can be used (passing to methods, returning from methods, etc.)
.

The generic Object type

Later on in this course of study, you will learn that much of the power of Java derives from
the ability to deal with objects of any type as the generic type Object
. For example, several
of the standard classes in the API (such as the powerful Vector
class)
are designed to work
only with objects of type Object
.

(Note that this document was originally published prior to the introduction of generics in
Java. The introduction of generics makes it possible to cause the Vector
class to deal with

Type Size/Format Description

byte 8-bit two's complement Byte-length integer

short 16-bit two's complement Short integer

int 32-bit two's complement Integer
long 64-bit two's complement Long Integer

float 32-bit IEEE 754 format Single-precision

 floating point

double 64-bit IEEE 754 format Double-precision

 floating point

char 16-bit Unicode character Single character

boolean true or false True or False

objects of types other than Object
. However, that doesn't eliminate the need for wrapper
classes.)

Converting primitives to objects

Because it is sometimes necessary to deal with a primitive value as though it were an object,
Java provides wrapper
classes that support object-oriented functionality for Java's primitive
data types.

The Double wrapper class

This is illustrated in the program shown in Listing 6
that deals with a double
type as an
object of the class Double
.

(Remember, Java is a case-sensitive language. Note the difference between the primitive
double
type and the class named Double
.)

Listing 6
. The program named wrapper1.

Listing 6
. The program named wrapper1.

The operation of this program is explained in the comments, and the output from the program
is shown in the comments at the beginning.

/*File wrapper1.java Copyright 1997, R.G.Baldwin

This Java application illustrates the use of wrappers

for the primitive types.

This program produces the following output:

My wrapped double is 5.5

My primitive double is 10.5

**/

class wrapper1 { //define the controlling class

 public static void main(String[] args){//define main

 //The following is the declaration and instantiation of
 // a Double object, or a double value wrapped in an

 // object. Note the use of the upper-case D.

 Double myWrappedData = new Double(5.5);

 //The following is the declaration and initialization

 // of a primitive double variable. Note the use of the

 // lower-case d.

 double myPrimitiveData = 10.5;

 //Note the call to the doubleValue() method to obtain

 // the value of the double wrapped in the Double

 // object.

 System.out.println(

 "My wrapped double is " +
myWrappedData.doubleValue());

 System.out.println(

 "My primitive double is " + myPrimitiveData);

 }//end main

}//End wrapper1 class.

Reference types

Once again, what is a primitive type?

Primitive types are types where the name of the variable evaluates to the value stored in the
variable.

What is a reference type?

Reference types in Java are types where the name of the variable evaluates to the address of
the location in memory where the object referenced by the variable is stored.

Note:
The above statement may not really be true?
However, we can think of it that way. Depending on the particular JVM in use, the reference
variable may refer to a table in memory where the address of the object is stored. In that
case the second level of indirection is handled behind the scenes and we don't have to worry
about it.
Why would a JVM elect to implement another level of indirection? Wouldn't that make
programs run more slowly?
One reason has to do with the need to compact memory when it becomes highly fragmented.
If the reference variables all refer directly to memory locations containing the objects, there
may be many reference variables that refer to the same object. If that object is moved for
compaction purposes, then the values stored in every one of those reference variables would
have to be modified.
However, if those reference variables all refer to a table that has one entry that specifies
where the object is stored, then when the object is moved, only the value of that one entry in
the table must be modified.
Fortunately, that all takes place behind the scenes and we as programmers don't need to
worry about it.

Primitive vs. reference variables

We will discuss this in more detail in a future module. For now, suffice it to say that in Java,
a variable is either a primitive type or a reference type, and cannot be both.

Declaring, instantiating, initializing, and manipulating a reference variable

The fragment of code shown in Listing 7
, (which was taken from the program shown in
Listing 6
that deals with wrappers)
does the following. It

declares,
instantiates,
initializes, and

manipulates a variable of a reference type named myWrappedData
.

In Listing 7
, the variable named myWrappedData
contains a reference to an object of type
Double
.

Listing 7
. Aspects of using a wrapper class.

Double myWrappedData = new Double(5.5);

//Code deleted for brevity

//Note the use of the doubleValue() method to obtain the

// value of the double wrapped in the Double object.

System.out.println

 ("My wrapped double is " + myWrappedData.doubleValue()

);

Variable names

The rules for naming variables are shown in Figure 3
.

Figure 3
. Rules for naming variables.

Figure 3
. Rules for naming variables.

Must be a legal Java identifier (see below) consisting of a series of Unicode
characters. Unicode characters are stored in sixteen bits, allowing for a very large
number of different characters. A subset of the possible character values matches
the 127 possible characters in the ASCII character set, and the extended 8-bit
character set, ISO-Latin-1 (The Java Handbook, page 60, by Patrick Naughton).
Must not be the same as a Java keyword and must not be true or false.
Must not be the same as another variable whose declaration appears in the same
scope.

The rules for legal identifiers are shown in Figure 4
.

Figure 4
. Rules for legal identifiers.

In Java, a legal identifier is a sequence of Unicode letters and digits of unlimited
length.
The first character must be a letter.
All subsequent characters must be letters or numerals from any alphabet that
Unicode supports.
In addition, the underscore character (_) and the dollar sign ($) are considered
letters and may be used as any character including the first one.

Scope

What is the scope of a Java variable?

The scope of a Java variable is defined by the block of code
within which the variable is
accessible.

(Briefly, a block of code consists of none, one, or more statements enclosed by a pair of
matching curly brackets.)

The scope also determines when the variable is created (memory set aside to contain the data
stored in the variable)
and when it possibly becomes a candidate for destruction (memory
returned to the operating system for recycling and re-use)
.

Scope categories

The scope of a variable places it in one of the four categories shown in Figure 5
.

Figure 5
. Scope categories.

member variable
local variable
method parameter
exception handler parameter

Member variable

A member variable is a member of a class (class variable)
or a member of an object
instantiated from that class (instance variable)
. It must be declared within a class, but not
within the body of a method or constructor of the class.

Local variable

A local variable is a variable declared within the body of a method or constructor or within a
block of code contained within the body of a method or constructor.

Method parameters

Method parameters are the formal arguments of a method. Method parameters are used to
pass values into and out of methods. The scope of a method parameter is the entire method
for which it is a parameter.

Exception handler parameters

Exception handler parameters are arguments to exception handlers. Exception handlers will
be discussed in a future module.

Illustrating different types of variables in Java

The Java program shown in Listing 8
illustrates

member variables (class and instance)
,
local variables, and
method parameters.

An illustration of exception handler parameters will be deferred until exception handlers are
discussed in a future module.

Listing 8
. The program named member1.

/*File member1.java Copyright 1997, R.G.Baldwin

Illustrates class variables, instance

variables, local variables, and method parameters.

Output from this program is:

Class variable is 5

Instance variable is 6

Method parameter is 7

Local variable is 8

**/

class member1 { //define the controlling class

 //declare and initialize class variable

 static int classVariable = 5;

 //declare and initialize instance variable

 int instanceVariable = 6;

 public static void main(String[] args){ //main method

 System.out.println("Class variable is "

 + classVariable);

 //Instantiate an object of the class to allow for

 // access to instance variable and method.

 member1 obj = new member1();

 System.out.println("Instance variable is "

 + obj.instanceVariable);

 obj.myMethod(7); //call the method

 //declare and intitialize a local variable

 int localVariable = 8;

 System.out.println("Local variable is "

 + localVariable);

Listing 8
. The program named member1.

 }//end main

 void myMethod(int methodParameter){

 System.out.println("Method parameter is "

 + methodParameter);

 }//end myMethod

}//End member1 class.

Declaration of local variables

In Java, local variables are declared within the body of a method or within a block of code
contained within the body of a method.

Scope of local variables

The scope of a local variable extends from the point at which it is declared to the end of the
block of code in which it is declared.

What is a "block" of code?

A block of code is defined by enclosing it within curly brackets as in { ... }.

Therefore, the scope of a local variable can be the entire method, or can reduced by declaring
it within a block of code within the method.

Note:
Special case, scope within a for loop
Java treats the scope of a variable declared within the initialization clause of a for
statement
to be limited to the total extent of the for
statement.
A future module will explain what is meant by a for
statement or a for
loop.

Initialization of variables

Initializing primitive local variables

Local variables of primitive types can be initialized when they are declared using statements
such the one shown in Listing 9
.

Listing 9
. Initialization of variables.

int MyVar, UrVar = 6, HisVar;

Initializing member variables

Member variables can also be initialized when they are declared.

In both cases, the type of the value used to initialize the variable must match the type of the
variable.

Initializing method parameters and exception handler parameters

Method parameters and exception handler parameters are initialized by the values passed to
the method or exception handler by the calling program.

Run the programs

I encourage you to copy the code from Listing 1
,
Listing 6
, and Listing 8
. Compile the
code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0200: Java OOP: Variables
File: Jb0200.htm
Originally published: 1997
Published at cnx.org: 11/18/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF file
for this
module at no charge, and also makes it possible for you to
purchase a pre-printed

version of the PDF file, you should be
aware that some of the HTML elements in this
module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0200r: Review
This module contains review questions and answers keyed to the module titled Jb0200: Java
OOP: Variables.

Revised: Mon Mar 28 13:31:46 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14
, 15
,
16
,
17
, 18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39

Listings
Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module titled Jb0200: Java
OOP: Variables
.

The questions and the answers are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

Questions

Question 1
.

Write a Java application that reads characters from the keyboard until encountering the #
character. Echo each character to the screen as it is read. Terminate the program when the
user enters the # character.

Answer 1

Question 2

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45150/latest/

What is the common name for the Java program element that is used to contain data that
changes during the execution of the program?

Answer 2

Question 3

What must you do to make a variable available for use in a Java program?

Answer 3

Question 4

True or false? In Java, you are required to initialize the value of all variables when they are
declared.

Answer 4

Question 5

Show the proper syntax for declaring two variables and initializing one of them using a
single Java statement.

Answer 5

Question 6

True or false? The Java compiler will accept statements with type mismatches provided that
a suitable type conversion can be implemented by the compiler at compile time.

Answer 6

Question 7

Show the proper syntax for the declaration of a variable of type String[]
in the argument list
of the main
method of a Java program and explain its purpose.

Answer 7

Question 8

Describe the purpose of the type definition in Java.

Answer 8

Question 9

True or false? Variables of type int
can contain either signed or unsigned values.

Answer 9

Question 10

What is the important characteristic of type definitions in Java that strongly supports the
concept of platform independence
of compiled Java programs?

Answer 10

Question 11

What are the two major categories of types in Java?

Answer 11

Question 12

What is the maximum number of values that can be stored in a variable of a primitive
type in
Java?

Answer 12

Question 13

List the primitive
types in Java.

Answer 13

Question 14

True or false? Java stores variables of type char
according to the 8-bit extended ASCII table.

Answer 14

Question 15

True or false? In Java, the name of a primitive
variable evaluates to the value stored in the
variable.

Answer 15

Question 16

True or false? Variables of primitive
data types in Java are true objects.

Answer 16

Question 17

Why do we care that variables of primitive
types are not true objects?

Answer 17

Question 18

What is the name of the mechanism commonly used to convert variables of primitive
types to
true objects?

Answer 18

Question 19

How can you tell the difference between a primitive
type and a wrapper
for the primitive
type when the two are spelled the same?

Answer 19

Question 20

Show the proper syntax for declaring a variable of type double
and initializing its value to
5.5.

Answer 20

Question 21

Show the proper syntax for declaring a variable of type Double
and initializing its value to
5.5.

Answer 21

Question 22

Show the proper syntax for extracting the value from a variable of type Double
.

Answer 22

Question 23

True or false? In Java, the name of a reference variable evaluates to the address of the
location in memory where the variable is stored.

Answer 23

Question 24

What is a legal identifier
in Java?

Answer 24

Question 25

What are the rules for variable names in Java?

Answer 25

Question 26

What is meant by the scope
of a Java variable?

Answer 26

Question 27

What are the four possible scope categories for a Java variable?

Answer 27

Question 28

What is a member variable?

Answer 28

Question 29

Where are local variables
declared in Java?

Answer 29

Question 30

What is the scope of a local variable in Java?

Answer 30

Question 31

What defines a block
of code in Java?

Answer 31

Question 32

What is the scope of a variable that is declared within a block of code that is defined within a
method and which is a subset of the statements that make up the method?

Answer 32

Question 33

What is the scope of a variable declared within the initialization clause of a for
statement in
Java? Provide an example code fragment.

Answer 33

Question 34

What are method parameters
and what are they used for?

Answer 34

Question 35

What is the scope of a method parameter
?

Answer 35

Question 36

What are exception handler parameters
?

Answer 36

Question 37

Write a Java application that illustrates member variables (class and instance)
, local
variables, and method parameters.

Answer 37

Question 38

True or false? Member variables in a Java class can be initialized when the class is defined.

Answer 38

Question 39

How are method parameters
initialized in Java?

Answer 39

Listings

Listing 1
. Listing for Answer 22.
Listing 2
. Listing for Answer 1.

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the questions and the
answers to keep them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE
2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the
answers.

Answers

Answer 39

Method parameters
are initialized by the values passed to the method.

Back to Question 39

Answer 38

True.

Back to Question 38

Answer 37

See the application named member1
in
this module
for an example of such an application.

Back to Question 37

Answer 36

Exception handler parameters
are arguments to exception handlers, which will be discussed
in a future module.

Back to Question 36

http://cnx.org/content/m45150/latest/#Listing_8

Answer 35

The scope of a method parameter is the entire method for which it is a parameter.

Back to Question 35

Answer 34

Method parameters
are the formal arguments of a method. Method parameters are used to
pass values into and out of methods.

Back to Question 34

Answer 33

Java treats the scope of a variable declared within the initialization clause of a for
statement
to be limited to the total extent of the for
statement. A sample code fragment follows where
cnt
is the variable being discussed:

Note:

for(int cnt = 0; cnt < max; cnt++){

 //do something

}//end of

Back to Question 33

Answer 32

In Java, the scope can be reduced by placing it within a block of code within the method. The
scope
extends from the point at which it is declared to the end of the block of code in which
it is declared.

Back to Question 32

Answer 31

A block of code is defined by enclosing it within curly brackets as shown below

{ ... }
.

Back to Question 31

Answer 30

The scope
of a local variable extends from the point at which it is declared to the end of the
block of code in which it is declared.

Back to Question 30

Answer 29

In Java, local variables
are declared within the body of a method or constructor, or within a
block of code contained within the body of a method or constructor.

Back to Question 29

Answer 28

A member variable
is a member of a class (
class
variable) or a member of an object
instantiated from that class (
instance
variable). It must be declared within a class, but not
within the body of a method or constructor of the class.

Back to Question 28

Answer 27

The scope
of a variable places it in one of the following four categories:

member variable
local variable
method parameter
exception handler parameter

Back to Question 27

Answer 26

The scope
of a Java variable is the block of code within which the variable is accessible.

Back to Question 26

Answer 25

The rules for Java variable names are as follows:

Must be a legal Java identifier consisting of a series of Unicode
characters.
Must not be the same as a Java keyword and must not be true
or false.
Must not be the same as another variable whose declaration appears in the same scope.

Back to Question 25

Answer 24

In Java, a legal identifier is a sequence of Unicode letters and digits of unlimited length. The
first character must be a letter. All subsequent characters must be letters or numerals from
any alphabet that Unicode supports. In addition, the underscore character (
_
) and the dollar
sign (
$
) are considered letters and may be used as any character including the first one.

Back to Question 24

Answer 23

False. The name of a reference variable evaluates to either null, or to information that can be
used to access an object whose reference has been stored in the variable.

Back to Question 23

Answer 22

Later versions of Java support either syntax shown in Listing 1
.

Listing 1
. Listing for Answer 22.Listing 1
. Listing for Answer 22.

class test{

 public static void main(String[] args){

 Double var1 = 5.5;

 double var2 = var1.doubleValue();

 System.out.println(var2);

 double var3 = var1;

 System.out.println(var3);

 }//end main

}//end class test

Back to Question 22

Answer 21

The proper syntax for early versions of Java is shown below. Note the upper-case D
. Also
note the instantiation of a new object of type Double
.

Note:

Double myWrappedData = new Double(5.5);

Later versions of Java support the following syntax with the new object of type Double
being instantiated automatically:

Note:

Double myWrappedData = 5.5;

Back to Question 21

Answer 20

The proper syntax is shown below. Note the lower-case d
.

Note:

double myPrimitiveData = 5.5;

Back to Question 20

Answer 19

The name of the primitive
type begins with a lower-case letter and the name of the wrapper
type begins with an upper-case letter such as double
and Double
. Note that in some cases,
however, that they are not spelled the same. For example, the Integer
class is the wrapper for
type int
.

Back to Question 19

Answer 18

Wrapper classes

Back to Question 18

Answer 17

This has some ramifications as to how variables can be used (passing to methods, returning
from methods, etc.)
. For example, all variables of primitive
types are passed by value to
methods meaning that the code in the method only has access to a copy of the variable and
does not have the ability to modify the variable.

Back to Question 17

Answer 16

False. Primitive data types in Java (int, double, etc.)
are not true objects.

Back to Question 16

Answer 15

True.

Back to Question 15

Answer 14

False. The char
type in Java is a 16-bit Unicode character.

Back to Question 14

Answer 13

byte
short
int
long
float
double
char
boolean

Back to Question 13

Answer 12

Primitive types contain a single value.

Back to Question 12

Answer 11

Java supports both primitive
types and reference
(or object) types.

Back to Question 11

Answer 10

In Java, a variable of a specified type is represented exactly the same way regardless of the
platform on which the application or applet is being executed.

Back to Question 10

Answer 9

False. In Java, all variables of type int
contain signed values.

Back to Question 9

Answer 8

All variables in Java must have a defined type
. The definition of the type
determines the set
of values that can be stored in the variable and the operations that can be performed on the
variable.

Back to Question 8

Answer 7

The syntax is shown in boldface below:

Note:
public static void main(
String[] args
)

In this case, the type of variable declared is an array of type String
named args (type
String[])
. The purpose of the String
array variable in the argument list is to make it possible
to capture arguments entered on the command line.

Back to Question 7

Answer 6

False. Fortunately, Java provides very strict type checking and generally refuses to compile
statements with type mismatches.

Back to Question 6

Answer 5

Note:

int firstVariable, secondVariable = 10;

Back to Question 5

Answer 4

False: In Java, it is possible to initialize the value of a variable when it is declared, but
initialization is not required. (Note however that in some situations, the usage of the variable
may require that it be purposely initialized.)
.

Back to Question 4

Answer 3

To use a variable, you must notify the compiler of the name and the type of the variable
(declare the variable).

Back to Question 3

Answer 2

variable

Back to Question 2

Answer 1

Listing 2
. Listing for Answer 1.

/*File simple4.java

This application reads characters from the keyboard until

encountering the # character and echoes each character to

the screen. The program terminates when the user enters

the # character.

**/

class simple4 { //define the controlling class

 public static void main(String[] args)

 throws java.io.IOException {

 int ch1 = 0;

 System.out.println(

 "Enter some text, terminate with #");

 while((ch1 = System.in.read()) != '#')

 System.out.print((char)ch1);

 System.out.println("Goodbye");

 }//end main

}//End simple4 class.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0200r: Review: Variables
File: Jb0200r.htm
Published: 11/23/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to download a PDF file
for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF file, you should be aware that some of the HTML elements in this
module may not translate well into PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0210: Java OOP: Operators
Earlier modules have touched briefly on the topic of operators. This module discusses Java
operators in depth.

Revised: Mon Mar 28 13:56:51 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Listings

Introduction
Operators

Arithmetic operators
Relational and conditional (logical) operators
Bitwise operators
Assignment operators

Miscellaneous

Preface

Earlier modules have touched briefly on the topic of operators
. This module discusses
Java operators
in depth.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the listings while you are reading about
them.

Listings

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Listing 1
. Illustration of prefix and postfix notation.
Listing 2
. Illustration of relational operators.

Introduction

The first step in learning to use a new programming language is usually to learn the
foundation concepts such as

variables,
operators,
types,
expressions,
flow-of-control, etc.

This module concentrates on the operators
used in Java.

Operators

Unary and binary operators

Java provides a set of operators that can be used to perform an action on one, two, or three
operands. An operator that operates on one operand is called a unary
operator. An operator
that operates on two operands is called a binary
operator. An operator that operates on three
operands is called a ternary
operator.

Some operators can behave either as a unary or as a binary operator. The best known such
operator is probably the minus sign (-)
. As a binary operator, the minus sign causes its right
operand to be subtracted from its left operand. As a unary operator, the minus sign causes
the algebraic sign of the right operand to be changed.

A ternary
operator

Java has only one operator that takes three operands. It is a conditional operator, which I
sometimes refer to as a cheap if
statement.

The first operand is a boolean
expression, which is followed by a question mark character
(?)
. The question mark is followed by a second operand, which is followed by a colon
character (:)
. The colon character is followed by the third operand.

If the boolean
expression evaluates to true, the value of the operand following the ? is
returned. Otherwise, the value of the operand following the : is returned.

An example of the syntax follows:

Note:
Ternary operator syntax
boolean expression ? value1 : value2

Overloaded operators

Unlike C++, Java does not support the creation of overloaded operators in program code.
(If you don't know what this means, don't worry about it.)

Operators from previous programs

The statements in the following note box illustrate the use of the following operators from
Java programs in earlier modules
:

=
!=
+
(char)

Note:
Operators from previous programs

int ch1, ch2 = '0';

while((ch1 = System.in.read()) != '#') ch2 = ch1;

System.out.println("The char before the # was "

 + (char)ch2);

The plus and cast operators

Of particular interest in this list
is the plus sign (+)
and the cast operator (char)
.

In Java, the plus sign can be used to perform arithmetic addition. It can also be used to
concatenate strings. When the plus sign is used in the manner shown above
, the operand on
the right is automatically converted to a character string before being concatenated with the
operand on the left.

The cast operator is used in this case
to purposely convert the integer value contained in the
int
variable ch2
to a character type suitable for concatenating with the string on the left of
the plus sign. Otherwise, Java would attempt to convert and display the value of the int

variable as a series of digits representing the numeric value
of the character because the
character is stored in a variable of type int
.

The increment operator

An extremely important unary
operator is the increment operator identified by two plus
characters with no space between them (++)
.

The increment operator causes the value of its operand to be increased by one.

Note:
The decrement operator
There is also a decrement operator (--)
that causes the value of its operand to be decreased
by one.

The increment and decrement operators are used in both prefix
and postfix
notation.

Prefix and postfix increment and decrement operators

With the prefix version, the operand appears to the right of the operator (++X)
, while with
the postfix
version, the operand appears to the left of the operator (X++)
.

What's the difference in prefix and postfix?

The difference in prefix and postfix has to do with the point in the sequence of operations
that the increment (or decrement)
actually occurs if the operator and its operand appear as
part of a larger overall expression.

(There is effectively no difference if the operator and its operand do not appear as part of a
larger overall expression.)

Prefix behavior

With the prefix
version, the variable is incremented (or decremented)
before it is used to
evaluate the larger overall expression.

Postfix behavior

With the postfix
version, the variable is used to evaluate the larger overall expression before
it is incremented (or decremented)
.

Illustration of prefix and postfix behavior

The use of both the prefix
and postfix
versions of the increment operator is illustrated in the
Java program shown in
Listing 1
. The output produced by the program is show in the
comments at the beginning of the program.

Listing 1
. Illustration of prefix and postfix notation.

Listing 1
. Illustration of prefix and postfix notation.

/*File incr01.java Copyright 1997, n

Illustrates the use of the prefix and the postfix
increment

operator.

The output from the program follows:

a = 5

b = 5

a + b++ = 10

b = 6

c = 5

d = 5

c + ++d = 11

d = 6

***/

class incr01 { //define the controlling class

 public static void main(String[] args){ //main method

 int a = 5, b = 5, c = 5, d = 5;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("a + b++ = " + (a + b++));

 System.out.println("b = " + b);

 System.out.println();

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 System.out.println("c + ++d = " + (c + ++d));

 System.out.println("d = " + d);

 }//end main

}//End incr01 class.

Binary operators and infix notation

Binary operators use infix
notation, which means that the operator appears between its
operands.

General behavior of an operator

As a result of performing the specified action, an operator can be said to return a value (or
evaluate to a value)
of a given type. The type of value returned depends on the operator and
the type of the operands.

Note:
Evaluating to a value
To evaluate to a value means that after the action is performed, the operator and its
operands are effectively replaced in the expression by the value that is returned.

Operator categories

I will divide Java's operators into the following categories for further discussion:

arithmetic operators
relational and conditional (logical)
operators
bitwise operators
assignment operators

Arithmetic operators

Java supports various arithmetic operators on all floating point and integer numbers.

The binary arithmetic operators

The following table lists the binary
arithmetic operators supported by Java.

Note:
The binary arithmetic operators

Operator Description

 + Adds its operands

 - Subtracts the right operand from the left

 operand

 * Multiplies the operands

 / Divides the left operand by the right operand

 % Remainder of dividing the left operand by

 the right operand

String concatenation

As mentioned earlier, the plus operator (+)
is also used to concatenate strings as in the
following code fragment:

Note:
String concatenation

"MyVariable has a value of "

 + MyVariable + " in this program."

Coercion

Note that this operation
also coerces the value of MyVariable
to a string representation for
use in the expression only. However, the value stored in the variable is not modified in any
lasting way.

Unary arithmetic operators

Java supports the following unary
arithmetic operators.

Note:
Unary arithmetic operators

Operator Description

 + Indicates a positive value

 - Negates, or changes algebraic sign

 ++ Adds one to the operand,

 both prefix and postfix

 -- Subtracts one from operand,

 both prefix and postfix

The result of the increment and decrement operators being either prefix
or postfix
was
discussed
earlier
.

Relational and conditional (logical) operators

Binary Relational operators

Java supports the set of binary relational operators shown in the following table. Relational
operators in Java return either true
or false
as a boolean
type.

Note:
Binary Relational operators

Operator Returns true if

 > Left operand is greater than right operand

 >= Left operand is greater than or equal to

 right operand

 < Left operand is less than right operand

 <= Left operand is less than or equal to

 right operand

 == Left operand is equal to right operand

 != Left operand is not equal to right operand

Conditional expressions

Relational operators are frequently used in the conditional expressions of control statement
such as the one in the code fragment shown below.

Note:
Conditional expressions

if(LeftVariable <= RightVariable). . .

Illustration of relational operators

The program shown in Listing 2
illustrates the result of applying relational operators in
Java. The output is shown in the comments at the beginning of the program. Note that the
program automatically displays true
and
false
as a result of applying the relational
operators.

Listing 2
. Illustration of relational operators.

/*File relat01.java Copyright 1997, R.G.Baldwin

Illustrates relational operators.

Output is

The relational 6<5 is false

The relational 6>5 is true

***/

class relat01 { //define the controlling class

 public static void main(String[] args){ //main method

 System.out.println("The relational 6<5 is "

 +(6<5));

 System.out.println("The relational 6>5 is "

 +(6>5));

 }//end main

}//End relat01 class.

Conditional operators

The relational operators are often combined with another set of operators (referred to as
conditional or logical operators)
to construct more complex expressions.

Java supports three such operators as shown in the following table.

Note:
Conditional or logical operators

Operator Typical Use Returns true if

p yp
 && Left && Right Left and Right are both true

 || Left || Right Either Left or Right is true

 ! ! Right Right is false

The operands shown in the table
must be boolean
types, or must have been created by the
evaluation of an expression that returns a boolean
type.

Left to right evaluation

An important characteristic of the behavior of the logical and
and
the logical or
operators is
that the expressions are evaluated from left to right, and the evaluation of the expression is
terminated as soon as the result of evaluating the expression can be determined.

For example, in the following expression, if the variable a
is less than the variable b
, there
is no need to evaluate the right operand of the ||
to determine that the result of evaluating
the entire expression would be true
. Therefore, evaluation will terminate as soon as the
answer can be determined.

Note:
Left to right evaluation

(a < b) || (c < d)

Don't confuse bitwise and with logical and

As discussed in the next section, the symbols shown below are the bitwise and
and the
bitwise or
.

Note:
Bitwise and
and bitwise or

& bitwise and

| bitwise or

One author states that in Java, the bitwise and
operator can be used as a synonym for the
logical and
and the bitwise
or
can be used as a synonym for the logical inclusive or
if both
of the operands are boolean
. (I recommend that you don't do that because it could cause
confusion for someone reading your code.)

Note however that according to a different author, in this case, the evaluation of the
expression is not terminated until all operands have been evaluated, thus eliminating the
possible advantage of the left-to-right evaluation.

Bitwise operators

Java provides a set of operators that perform actions on their operands one bit at a time as
shown in the following table.

Note:
Bitwise operators

Operator Typical Use Operation

>> OpLeft >> Dist Shift bits of OpLeft right

 by Dist bits (signed)

<< OpLeft << Dist Shift bits of OpLeft left

 by Dist bits

>>> OpLeft >>> Dist Shift bits of OpLeft right

 by Dist bits (unsigned)

& OpLeft & OpRight Bitwise and of the

 two operands

| OpLeft | OpRight Bitwise

Populating vacated bits for shift operations

The signed
right shift operation populates the vacated bits with the sign bit, while the left
shift and the unsigned
right shift populate the vacated bits with zeros.

In all cases, bits shifted off the end are lost.

The rule for bitwise and

The bitwise and
operation operates according to the rule that the bitwise and
of two 1 bits
is a 1 bit.

Any other combination results in a 0 bit.

Bitwise inclusive
or

For the inclusive or
, if either bit is a 1, the result is a 1.

Otherwise, the result is a 0.

Bitwise exclusive
or

For the exclusive or
, if either but not both bits is a 1, the result is a 1.

Otherwise, the result is a 0.

Another way to state this is if the bits are different, the result is a 1. If the two bits are the
same, the result is a 0.

The complement operator

Finally, the complement operator changes each 1 to a 0 and changes each 0 to a 1.

Assignment operators

Simple assignment operator

The (=)
is a value assigning binary operator in Java. The value stored in memory and
represented by the right operand is copied into the memory represented by the left operand.

Using the assignment operator with reference variables

You need to be careful and think about what you are doing when you use the assignment
operator with reference variables in Java. If you assign one reference variable to another,
you simply end up with two reference variables that refer to the same object. You do not
end up with two different objects.

(If what you need is another copy of the object, you may be able to use the
clone
method to
accomplish that.)

Shortcut assignment operators

Java supports the following list of shortcut
assignment operators. These operators allow
you to perform an assignment and another operation with a single operator.

Note:
Shortcut assignment operators

+=

-=

*=

/=

%=

&=

|=

^=

<<=

>>=

>>>=

For example, the two statements that follow perform the same operation.

Note:
Illustration of shortcut assignment operation

x += y;

x = x + y;

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0210: Java OOP: Operators
File: Jb0210
Originally published: 1997
Published at cnx.org: 11/23/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0210r Review
This module contains review questions and answers keyed to the module titled Jb0210:
Java OOP: Operators.

Revised: Mon Mar 28 14:04:36 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14
, 15
,
16
,
17
, 18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38

Listings
Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module titled Jb0210:
Java OOP: Operators
.

The questions and the answers are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

Questions

Question 1
.

An operator performs an action on what? Provide the name.

Answer 1

Question 2

What do we call an operator that operates on only one operand?

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45195

Answer 2

Question 3

What do we call an operator that operates on two operands?

Answer 3

Question 4

Is the minus sign a unary
or a binary
operator, or both? Explain your answer.

Answer 4

Question 5

Describe operator overloading.

Answer 5

Question 6

True or false? Java programmers may overload operators.

Answer 6

Question 7

Show the symbols used for the following operators in Java: assignment
,
not equal
,
addition
, cast
.

Answer 7

Question 8

Are any operators automatically overloaded in Java? If so, identify one and describe its
overloaded behavior.

Answer 8

Question 9

What is the purpose of the cast operator?

Answer 9

Question 10

True or false? The increment operator is a binary
operator.

Answer 10

Question 11

Show the symbol for the increment operator.

Answer 11

Question 12

Describe the appearance and the behavior of the increment operator with both
prefix
and
postfix
notation. Show example, possibly incomplete, code fragments illustrating both
notational forms.

Answer 12

Question 13

Show the output that would be produced by the Java application in Listing 1
.

Listing 1
. Listing for Question 13.

class incr01 { //define the controlling class

 public static void main(String[] args){ //define main

 int x = 5, X = 5, y = 5, Y = 5;

 System.out.println("x = " + x);

 System.out.println("X = " + X);

 System.out.println("x + X++ = " + (x + X++));

 System.out.println("X = " + X);

 System.out.println();

 System.out.println("y = " + y);

 System.out.println("Y = " + Y);

 System.out.println("y + ++Y = " + (y + ++Y));

 System.out.println("Y = " + Y);

 }//end main

}//End incr01 class. Note no semicolon required

//End Java application

Answer 13

Question 14

True or false? Binary
operators use outfix
notation. If your answer is False, explain why.

Answer 14

Question 15

In practice, what does it mean to say that an operator that has performed an action returns a
value (or evaluates to a value) of a given type?

Answer 15

Question 16

Show and describe at least five of the binary arithmetic
operators supported by Java
(Clarification: binary
operators does not mean bitwise
operators).

Answer 16

Question 17

In addition to arithmetic addition, what is another use for the plus operator
(+)
? Show an
example code fragment to illustrate your answer. The code fragment need not be a complete
statement.

Answer 17

Question 18

When the plus operator (+)
is used as a concatenation operator, what is the nature of its
behavior if its left operand is of type String
and its right operand is not of type String
? If
the right operand is a variable that is not of type String
, what is the impact of this behavior
on that variable.

Answer 18

Question 19

Show and describe four unary
arithmetic operators supported by Java.

Answer 19

Question 20

What is the type returned by relational
operators in Java?

Answer 20

Question 21

Show and describe six different relational
operators supported by Java.

Answer 21

Question 22

Show the output that would be produced by the Java application shown in Listing 2
.

Listing 2
. Listing for Question 22.

class relat01 { //define the controlling class

 public static void main(String[] args){ //define main

 System.out.println("The relational 6<5 is " + (6<5

));

 System.out.println("The relational 6>5 is " + (6>5

));

 }//end main

}//End relat01 class. Note no semicolon required

//End Java application

Answer 22

Question 23

Show and describe three operators (frequently referred to as conditional or logical
operators) that are often combined with relational operators to construct more complex
expressions (often called conditional expressions)
. Hint: The ||
operator returns true if
either the left operand, the right operand, or both operands are true. What are the other two
and how do they behave?

Answer 23

Question 24

Describe the special behavior of the ||
operator in the following expression for the case
where the value of the variable a
is less than the value of the variable b
.

Note:

(a < b) || (c < d)

Answer 24

Question 25

Show the symbols used for the bitwise and
operator and the bitwise inclusive or
operator.

Answer 25

Question 26

Show and describe seven operators in Java that perform actions on the operands one bit at a
time (bitwise operators)
.

Answer 26

Question 27

True or false? In Java, the signed
right shift operation populates the vacated bits with the
zeros, while the left shift and the unsigned
right shift populate the vacated bits with the sign
bit. If your answer is False, explain why.

Answer 27

Question 28

True or false? In a signed
right-shift operation in Java, the bits shifted off the right end are
lost. If your answer is False, explain why.

Answer 28

Question 29

Using the symbols 1 and 0, construct a truth table showing the four possible combinations
of 1 and 0. Using a 1 or a 0, show the result of the bitwise
and
operation on these four
combinations of 1 and 0.

Answer 29

Question 30

Using the symbols 1 and 0 construct a truth table showing the four possible combinations
of 1 and 0. Using a 1 or a 0, show the result of the bitwise
inclusive or
operation on these
four combinations of 1 and 0.

Answer 30

Question 31

Using the symbols 1 and 0 construct a truth table showing the four possible combinations
of 1 and 0. Using a 1 or a 0, show the result of the bitwise
exclusive or
operation on these
four combinations of 1 and 0.

Answer 31

Question 32

True or false? For the exclusive or
, if the two bits are different, the result is a 1. If the two
bits are the same, the result is a 0. If your answer is False, explain why.

Answer 32

Question 33

Is the assignment operator a unary operator or a binary operator. Select one or the other.

Answer 33

Question 34

True or false? In Java, when using the assignment operator, the value stored in memory and
represented by the right operand is copied into the memory represented by the left operand.
If your answer is False, explain why.

Answer 34

Question 35

Show two of the shortcut
assignment operators and explain how they behave by comparing
them with the regular (non-shortcut)
versions. Hint: the (^=)
operator is a shortcut
assignment operator.

Answer 35

Question 36

Write a Java
application that clearly illustrates the difference between
the prefix and the
postfix versions of the increment operator. Provide a termination message that displays
your name.

Answer 36

Question 37

Write a Java
application that illustrates the use of the following
relational operators:

Note:

<

>

<=

>=

==

!=

Provide appropriate text in the output. Also provide
a termination message with your name.

Answer 37

Question 38

write a Java
application that illustrates the use of the following
logical or conditional
operators:

Note:
Logical or conditional operators

&&

||

!

Provide appropriate text in the output. Also provide
a termination message with your name.

Answer 38

Listings

Listing 1
. Listing for Question 13.
Listing 2
. Listing for Question 22.
Listing 3
. Listing for Answer 38.
Listing 4
. Listing for Answer 37.
Listing 5
. Listing for Answer 36.

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the questions and the
answers to keep them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE
2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and
the answers.

Answers

Answer 38

Listing 3
. Listing for Answer 38.

Listing 3
. Listing for Answer 38.

/*File SampProg09.java from module 22

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that illustrates the use of the following

logical or conditional operators:

&& || !

Provide appropriate text in the output. Also provide

a termination message with your name.

***/

class SampProg09 { //define the controlling class

 public static void main(String[] args){ //define main

 System.out.println("true and true is "

 + (true && true));

 System.out.println("true and false is "

 + (true && false));

 System.out.println("true or true is "

 + (true || true));

 System.out.println("true or false is "

 + (true || false));

 System.out.println("false or false is "

 + (false || false));

 System.out.println("not true is " + (! true));

 System.out.println("not false is " + (! false));

 System.out.println("Terminating, Dick Baldwin");

 }//end main

}//End SampProg09 class. Note no semicolon required

Back to Question 38

Answer 37

Listing 4
. Listing for Answer 37.

/*File SampProg08.java from module 22

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that illustrates the use of the following

relational operators:

< > <= >= == !=

Provide appropriate text in the output. Also provide

a termination message with your name.

***/

class SampProg08 { //define the controlling class

 public static void main(String[] args){ //define main

 System.out.println("The relational 6<5 is "

 + (6<5));

 System.out.println("The relational 6>5 is "

 + (6>5));

 System.out.println("The relational 5>=5 is "

 + (5>=5));

 System.out.println("The relational 5<=5 is "

 + (5<=5));

 System.out.println("The relational 6==5 is "

 + (6==5)

);

 System.out.println("The relational 6!=5 is "

 + (6!=5)

);

 System.out.println("Terminating, Dick Baldwin");

 }//end main

}//End SampProg08 class. Note no semicolon required

Back to Question 37

Answer 36

Listing 5
. Listing for Answer 36.

/*File SampProg07.java from module 22

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that clearly illustrates the difference
between

the prefix and the postfix versions of the increment

operator.

Provide a termination message that displays your name.

***/

class SampProg07{

 static public void main(String[] args){

 int x = 3;

 int y = 3;

 int z = 10;

 System.out.println("Prefix version gives "

 + (z + ++x));

 System.out.println("Postfix version gives "

 + (z + y++));

 System.out.println("Terminating, Dick Baldwin");

 }//end main

}//end class SampProg07

Back to Question 36

Answer 35

Java supports the following list of shortcut
assignment operators. These operators allow
you to perform an assignment and another operation with a single operator.

Note:

+=

-=

*=

/=

%=

&=

|=

^=

<<=

>>=

>>>=

For example, the two statements that follow perform the same operation.

x += y;
x = x + y;

The behavior of each of the shortcut
assignment operators follows this same pattern.

Back to Question 35

Answer 34

True.

Back to Question 34

Answer 33

The assignment operator is a binary operator.

Back to Question 33

Answer 32

True.

Back to Question 32

Answer 31

The answer for the bitwise exclusive or
is:

11 1 xor 1 produces 0
10 1 xor 0 produces 1
01 0 xor 1 produces 1
00 0 xor 0 produces 0

Back to Question 31

Answer 30

The answer for the bitwise inclusive or
is:

11 1 or 1 produces 1
10 1 or 0 produces 1
01 0 or 1 produces 1
00 0 or 0 produces 0

Back to Question 30

Answer 29

The answer for the bitwise and
is:

11 1 and 1 produces 1
10 1 and 0 produces 0
01 0 and 1 produces 0
00 0 and 0 produces 0

Back to Question 29

Answer 28

True: Bits shifted off the right end are lost.

Back to Question 28

Answer 27

False: In Java, the signed
right shift operation populates the vacated bits with the sign bit,
while the left shift and the unsigned
right shift populate the vacated bits with zeros.

Back to Question 27

Answer 26

The following table shows the seven bitwise operators supported by Java.

Note:
Bitwise operators

Operator Typical Use Operation

>> OpLeft >> Dist Shift bits of OpLeft right by

 Dist bits (signed)

<< OpLeft << Dist Shift bits of OpLeft left by

 Dist bits

>>> OpLeft >>> Dist Shift bits of OpLeft right

 by Dist bits (unsigned)

& OpLeft & OpRight Bitwise and of the two

 operands

| OpLeft | OpRight Bitwise

Back to Question 26

Answer 25

The bitwise and
operator and the bitwise inclusive or
operator are shown below.

Note:
Two bitwise operators

& bitwise and

| bitwise inclusive or

Back to Question 25

Answer 24

An important characteristic of the behavior of the logical and
operator and the logical or
operator in Java is that the expressions containing them are evaluated from left to right.
The
evaluation of the expression is. terminated as soon as the result of evaluating the expression
can be determined. For example, in the expression given in
Question 24
, if the variable a
is
less than the variable b
, there is no need to evaluate the right operand of the ||
operator to
determine the value of the entire expression. Therefore, evaluation will terminate as soon as
it is determined that a
is less than b
.

Back to Question 24

Answer 23

The following three logical
or conditional
operators are supported by Java.

Note:
The logical or conditional operators

Operator Typical Use Returns true if

&& Left && Right Left and Right are both true

|| Left || Right Either Left or Right is true

! ! Right Right is false

Back to Question 23

Answer 22

This program produces the following output:

Note:

The relational 6<5 is false

The relational 6>5 is true

Back to Question 22

Answer 21

Java supports the following set of relational operators:

Note:
Relational operators

Operator Returns true if

 > Left operand is greater than right operand

 >= Left operand is greater than or equal

 to right operand

 < Left operand is less than right operand

 <= Left operand is less than or equal

 to right operand

 == Left operand is equal to right operand

 != Left operand is not equal to right operand

Back to Question 21

Answer 20

Relational
operators return the boolean
type in Java.

Back to Question 20

Answer 19

Java supports the following four unary
arithmetic operators.

Note:
Unary arithmetic operators

Operator Description

 + Indicates a positive value

 - Negates, or changes algebraic sign

 ++ Adds one to the operand,

 both prefix and postfix

 -- Subtracts one from operand,

 both prefix and postfix

Back to Question 19

Answer 18

The operator coerces the value of the right operand to a string representation for use in the
expression only. If the right operand is a variable, the value stored in the variable is not
modified in any way.

Back to Question 18

Answer 17

The plus operator (+) is also used to concatenate strings as in the following code fragment:

Note:
String concatenation

"MyVariable has a value of "

 + MyVariable + " in this program."

Back to Question 17

Answer 16

Java support various arithmetic operators on floating point and integer numbers. The
following table lists five of the binary
arithmetic operators supported by Java.

Note:
Binary arithmetic operators

Operator Description

 + Adds its operands

 - Subtracts the right operand from the left

 operand

 * Multiplies the operands

 / Divides the left operand by the right

 operand

 % Remainder of dividing the left operand by

 the right operand

Back to Question 16

Answer 15

As a result of performing the specified action, an operator can be said to return a value (or
evaluate to a value)
of a given type. The type depends on the operator and the type of the
operands. To evaluate to a value
means that after the action is performed, the operator and
its operands are effectively replaced in the expression by the value that is returned.

Back to Question 15

Answer 14

False: Binary
operators use infix
notation, which means that the operator appears between
its operands.

Back to Question 14

Answer 13

The output from this Java application follows:

x = 5
X = 5
x + X++ = 10
X = 6
y = 5
Y = 5
y + ++Y = 11
Y = 6

Back to Question 13

Answer 12

The increment operator may be used with both prefix
and postfix
notation. Basically, the
increment operator causes the value of the variable to which it is applied to be increased by
one.

With prefix notation, the operand appears to the right of the operator
(++X)
, while with
postfix
notation, the operand appears to the left of the operator (X++)
.

The difference in behavior has to do with the point in the sequence of operations that the
increment actually occurs.

With the prefix
version, the variable is incremented before it is used to evaluate the larger
overall expression in which it appears. With the postfix
version, the variable is used to
evaluate the larger overall expression and then the variable is incremented.

Back to Question 12

Answer 11

The symbol for the increment operator is two plus signs with no space between them (++).

Back to Question 11

Answer 10

False: The increment operator is a unary
operator.

Back to Question 10

Answer 9

The cast operator is used to purposely convert from one type to another.

Back to Question 9

Answer 8

The plus sign (+)
is automatically overloaded in Java. The plus sign can be used to perform
arithmetic addition. It can also be used to concatenate strings. However, the plus sign does
more than concatenate strings. It also performs a conversion to String
type. When the plus
sign is used to concatenate strings and one operand is a string, the other operand is
automatically converted to a character string before being concatenated with the existing
string.

Back to Question 8

Answer 7

The operators listed in order are:

=
!=
+
(char)

where the cast operator is being used to cast to the type char
.

Back to Question 7

Answer 6

Java does not support operator overloading by programmers.

Back to Question 6

Answer 5

For those languages that support it (such as C++)
operator overloading means that the
programmer can redefine the behavior of an operator with respect to objects of a new type
defined by that program.

Back to Question 5

Answer 4

Both. As a binary
operator, the minus sign causes its right operand to be subtracted from its
left operand. As a unary
operator, the minus sign causes the algebraic sign of the right
operand to be changed.

Back to Question 4

Answer 3

An operator that operates on two operands is called a binary
operator.

Back to Question 3

Answer 2

An operator that operates on only one operand is called a unary
operator.

Back to Question 2

Answer 1

An operator performs an action on one or two operands.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0210r Review: Operators
File: Jb0210r.htm
Originally published: 1997
Published at cnx.org: 11/23/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to download a PDF
file for this module at no charge, and also makes it possible for you to purchase a pre-
printed version of the PDF file, you should be aware that some of the HTML elements in
this module may not translate well into PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0220: Java OOP: Statements and Expressions
Java programs are composed of statements, and statements are constructed
from expressions. This module takes a very brief look at Java statements
and expressions.

Revised: Mon Mar 28 14:22:16 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Introduction
Expressions
Statements
Further reading
Miscellaneous

Preface

Java programs are composed of statements, and statements are constructed
from expressions. This module takes a very brief look at Java statements
and expressions.

Introduction

The first step

The first step in learning to use a new programming language is usually to
learn the foundation concepts such as variables, types, expressions, flow-of-
control, etc. This module concentrates on expressions and statements.

Expressions

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

The hierarchy

Java programs are composed of statements, and statements are constructed
from expressions.

An expression is a specific combination of operators and operands, that
evaluates to a single value. The operands can be variables, constants, or
method calls.

A method call evaluates to the value returned by the method.

Named constants

Java supports named constants that are implemented through the use of the
final
keyword.

The syntax for creating a named constant in Java is as follows:

Note:
Named constants

final float PI = 3.14159;

While this is not a constant type, it does produce a value that can be
referenced in the program and which cannot be modified.

The final
keyword prevents the value of PI
from being modified in this
case
. You will learn later that there are some other uses for the final
keyword in Java as well.

Operator precedence

The order in which the operations are performed determines the result. You
can control the order of evaluation by the use of matching parentheses.

If you don't provide such parentheses, the order will be determined by the
precedence of the operators (you should find and review a table of Java
operator precedence)
with the operations having higher precedence being
evaluated first.

Statements

According to
The Java Tutorials
, "A statement forms a complete unit of
execution."

A statement is constructed by combining one or more expressions into a
compound expression and terminating that expression with a semicolon.

Further reading

As of November 2012, a good tutorial on this topic is available on the
Oracle website titled
Expressions, Statements, and Blocks
.

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0220: Java OOP: Statements and Expressions
File: Jb0220.htm
Originally published: 1997
Published at cnx.org: 11/24/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to
download a PDF file for this
module at no charge, and also makes it

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

possible for you to
purchase a pre-printed version of the PDF file, you
should be
aware that some of the HTML elements in this module may not
translate well into
PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0220r Review
This module contains review questions and answers keyed to the module
titled Jb0220: Java OOP: Statements and Expressions.

Revised: Mon Mar 28 14:27:27 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0220: Java OOP: Statements and Expressions
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

A Java program is composed of a series of what?

Answer 1

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45192

Question 2

Statements in Java are constructed from what?

Answer 2

Question 3

Describe an expression in Java.

Answer 3

Question 4

What does a method call evaluate to in Java?

Answer 4

Question 5

True or false? Java supports named constants. If false, explain why.

Answer 5

Question 6

Provide a code fragment that illustrates the syntax for creating a named
constant in Java.

Answer 6

Question 7

True or false? Java supports a constant
type. If false, explain why.

Answer 7

Question 8

What is the common method of controlling the order of evaluation of
expressions in Java?

Answer 8

Question 9

If you don't use matching parentheses to control the order of evaluation of
expressions, what is it that controls the order of evaluation?

Answer 9

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 9

If you don't provide matching parentheses to control the order of evaluation,
the order will be determined by the precedence of the operators with the

operations having higher precedence being evaluated first. For example,
multiply and divide have higher precedence than add and subtract.

Back to Question 9

Answer 8

You can control the order of evaluation by the use of matching parentheses.

Back to Question 8

Answer 7

False. Java does not support a constant type. However, in Java, it is possible
to achieve the same result by declaring and initializing a variable and
making it final
.

Back to Question 7

Answer 6

The syntax for creating a named constant in Java is shown below.

Note:
A named constant in Java

final float PI = 3.14159;

Back to Question 6

Answer 5

True. Java supports named constants that are constructed using variable
declarations with the final
keyword.

Back to Question 5

Answer 4

A method call evaluates to the value returned by the method.

Back to Question 4

Answer 3

An expression is a specific combination of operators and operands that
evaluates to a particular value. The operands can be variables, constants, or
method calls.

Back to Question 3

Answer 2

Statements in Java re constructed from expressions.

Back to Question 2

Answer 1

A Java program is composed of a series of statements.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0220r Review: Statements and Expressions
File: Jb0220r.htm
Originally published: 1997
Published at cnx.org: 11/24/12
Revised: 12/04/14

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0230: Java OOP: Flow of Control
Java supports several different statements designed to alter or control the logical flow of the
program. This module explores those statements.

Revised: Mon Mar 28 15:04:52 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Figures
Listings

Introduction

Flow of control
The while statement
The if-else statement
The switch-case statement
The for loop
The for-each loop
The do-while loop
The break and continue statements
Unlabeled break and continue
Labeled break and continue statements

Labeled break statements
Labeled continue statements

The return statement
Exception handling

Looking ahead
Miscellaneous

Preface

Java supports several different statements designed to alter or control the logical flow of the
program. This module explores those statements.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are reading
about them.

Figures

Figure 1
. Statements that support flow of control.
Figure 2
. Syntax of a while statement.
Figure 3
. Syntax of an if-else statement.
Figure 4
. Syntax of a switch-case statement.
Figure 5
. Syntax of a for loop.
Figure 6
. Syntax of a do-while loop.
Figure 7
. Syntax of a labeled statement.
Figure 8
. An empty return statement.
Figure 9
. Returning a value from a method.

Listings

Listing 1
. Sample Java while statement.
Listing 2
. A program that won't compile.
Listing 3
. Another program that won't compile.
Listing 4
. A program that will compile.
Listing 5
. Another program that will compile.
Listing 6
. The program named switch1.java.
Listing 7
. The program named switch2.java.

Introduction

The first step

The first step in learning to use a new programming language is usually to learn the
foundation concepts such as variables, types, expressions, flow-of-control, etc. This module
concentrates on flow-of-control
.

Flow of control

What is flow of control?

Java supports several different kinds of statements designed to alter or control the logical
flow of the program.

The ability to alter the logical flow of the program is often referred to as Flow of Control
.

Statements that support flow of control

Figure 1
lists the statements supported by Java for controlling the logical flow of the
program.

Figure 1
. Statements that support flow of control.

Statement Type

if-else selection

switch-case selection

for loop

for-each loop

while loop

do-while loop

try-catch-finally exception handling

throw exception handling

break miscellaneous

continue miscellaneous

label: miscellaneous

return miscellaneous

goto reserved by Java but not supported

The while statement

We've seen the while
statement in earlier modules. Several of the programs in earlier
modules contained a while
statement designed to control the logical flow of the program.

Syntax of a while statement

The general syntax of a while
statement is shown in Figure 2
.

Figure 2
. Syntax of a while statement.

while (conditional expression)

 statement or compound statement;

Behavior of a while statement

The three pillars
of procedural programming are

sequence
selection
loop

The while
statement is commonly used to create a loop structure, often referred to as a while
loop
.

Once the while
statement is encountered in the sequence of code, the program will continue
to execute the statement or compound statement shown in Figure 2
for as long as the
conditional expression evaluates to true. (Note that a compound statement is created by
enclosing two or more statements inside a pair of matching curly brackets, thus creating a
block of code as the body of the while
statement or loop.)

Sample Java while
statement

The while
statement shown in Listing 1
was extracted from a Java program in an earlier
module.

Listing 1
. Sample Java while statement.

while((ch1 = System.in.read()) != '#')

 ch2 = ch1;

The in
variable of the System
class

The System
class defines a class
variable named in
. Because it is a class
variable, it can be
accessed using the name of the System
class without the requirement to instantiate an object
of the System
class.

What the in
variable contains

The in
variable refers to an instance of a class that provides a read
method that returns a
character from the standard input device (typically the keyboard)
.

Therefore, the expression System.in.read()
in
Listing 1
constitutes a call to the read
method
of the object referred to by the in
variable of the System
class.

A while
loop is an entry condition loop

The while
statement is used to form an entry condition
loop. The significance of an entry
condition loop is that the conditional expression is tested before the statements in the loop
are executed. If it tests false initially, the statements in the loop are never executed.

The while
loop shown in Listing 1
will continue reading characters from the keyboard for as
long as the character entered is not the # character. (Recall the not equal (!=) operator from
an earlier module.)

The if-else statement

The general syntax of an if-else
statement is shown in
Figure 3
.

Figure 3
. Syntax of an if-else statement.

if(conditional expression)

 statement or compound statement;

else //optional

 statement or compound statement; //optional

The if-else
statement is the most basic of the statements used to control the logical flow of a
Java program. It is used to satisfy the selection
pillar mentioned earlier
.

This statement will execute a specified block of code if some particular condition is true, and
optionally, will execute a different block of code if the condition is not true.

The else
clause shown in
Figure 3
is optional. If it is not provided and the condition is not
true, control simply passes to the next statement following the
If
statement with none of the
code in the body of the if
statement being executed. If the condition is true, the code in the
body of the
if
statement is executed.

If the else
clause is provided and the condition is true, the code in the body of the if
clause is
executed and the code in the
body of the
else
clause is ignored.

If the else
clause is provided and the condition is false, the code in the body of the if
clause is
ignored and the code in the
body of the
else
clause is executed.

In all cases, control passes to the next statement following the if-else
statement when the
code in the if-else
statement has finished executing. In other words, this is not a loop
structure.

The switch-case statement

The switch-case
statement is another implementation of the
selection
pillar mentioned
earlier
. The general syntax of a switch-case
statement is shown in Figure 4
.

Figure 4
. Syntax of a switch-case statement.

Figure 4
. Syntax of a switch-case statement.

switch(expression){

 case constant:

 //sequence of optional statements

 break; //optional

 case constant:

 //sequence of optional statements

 break; //optional

.

.

.

 default //optional

 //sequence of optional statements

}

The type of the expression

According to the book, Java Language Reference
, by Mark Grand, the expression shown in
the first line in Figure 4
must be of type byte
, char
, short
, or int
.

The behavior of the switch-case statement

The expression is tested against a series of case
constants of the same type as the expression.
If a match is found, the sequence of optional statements associated with that case
is executed.

Execution of statements continues until the optional break
is encountered. When break
is
encountered, execution of the switch statement is terminated and control passes to the next
statement following the switch statement.

If there is no break
statement, all of the statements following the matching case will be
executed including those in cases further down the page.

The optional default keyword

If no match is found and the optional default keyword along with a sequence of optional
statements has been provided, those statements will be executed.

Labeled break

Java also supports labeled break statements. This capability can be used to cause Java to
exhibit different behavior when switch statements are nested. This will be explained more
fully in a later section on labeled break statements.

The for loop

The for
statement is another implementation of the loop
pillar mentioned earlier
.

Actions of a for loop

The operation of a loop normally involves three actions in addition to executing the code in
the body of the loop:

Initialize a control variable.
Test the control variable in a conditional expression.
Update the control variable.

Grouping the actions

Java provides the for
loop construct that groups these three actions in one place.

The syntax of a for loop

A for
loop consists of three clauses separated by semicolons as shown in Figure 5
.

Figure 5
. Syntax of a for loop.

for (first clause; second clause; third clause)

 single or compound statement

Contents of the clauses

The first and third clauses can contain one or more expressions, separated by the comma
operator
.

The comma operator

The comma operator guarantees that its left operand will be executed before its right
operand.

(While the comma operator has other uses in C++, this is the only use of the comma
operator in Java.)

Behavior and purpose of the first clause

The expressions in the first clause are executed only once, at the beginning of the loop. Any
legal expression(s) may be contained in the first clause, but typically the first clause is used
for initialization.

Declaring and initializing variables in the first clause

Variables can be declared and initialized in the first clause, and this has an interesting
ramification regarding scope that will be discussed later.

Behavior of the second clause

The second clause consists of a single expression that must evaluate to a boolean
type with a
value of true or false. The expression in the second clause must eventually evaluate to false
to cause the loop to terminate.

Typically relational expressions or relational and conditional expressions are used in the
second clause.

When the test is performed

The value of the second clause is tested when the statement first begins execution, and at the
beginning of each iteration thereafter. Therefore, just like the while
loop, the for
loop is an
entry condition loop
.

When the third clause is executed

Although the third clause appears physically at the top of the loop, it isn't executed until the
statements in the body of the loop have completed execution.

This is an important point since this clause is typically used to update the control variable,
and perhaps other variables as well.

What the third clause can contain

Multiple expressions can appear in the third clause, separated by the comma operator. Again,
those expressions will be executed from left to right. If variables are updated in the third
clause and used in the body of the loop, it is important to understand that they do not get
updated until the execution of the body is completed.

Declaring a variable in a for
loop

As mentioned earlier, it is allowable to declare variables in the first clause of a for
loop.

You can declare a variable with a given name outside (prior to)
the for
loop, or you can
declare it inside the for
loop, but not both.

If you declare it outside the for
loop, you can access it either outside or inside the loop.

If you declare it inside the loop, you can access it only inside the loop. In other words, the
scope of variables declared inside a for
loop is limited to the loop.

This is illustrated in following sequence of four simple programs.

This program won't compile

The Java program shown in Listing 2
refuses to compile with a complaint that a variable
named cnt
has already been declared in the method when the attempt is made to declare it in
the for
loop.

Listing 2
. A program that won't compile.

/*File for1.java Copyright 1997, R.G.Baldwin

This program will not compile because the variable

named cnt is declared twice.

**/

class for1 { //define the controlling class

 public static void main(String[] args){ //main method

 int cnt = 5; //declare local method variable

 System.out.println(

 "Value of method var named cnt is " + cnt);

 for(int cnt = 0; cnt < 2; cnt++)

 System.out.println(

 "Value of loop var named cnt is " + cnt);

 System.out.println(

 "Value of method var named cnt is " + cnt);

 }//end main

}//End controlling class. Note no semicolon required

The program shown in Listing 3
also won't compile, but for a different reason.

Listing 3
. Another program that won't compile.

/*File for2.java Copyright 1997, R.G.Baldwin

This program will not compile because the variable

declared inside the for loop is not accessible

outside the loop.

**/

class for2 { //define the controlling class

 public static void main(String[] args){ //main method

 for(int cnt = 0; cnt < 2; cnt++)

 System.out.println(

 "Value of loop var named cnt is " +

cnt);

 System.out.println(

 "Value of method var named cnt is " +

cnt);

 }//end main

}//End controlling class. Note no semicolon required

The declaration of the variable named cnt
, outside the for
loop, was removed from Listing 3
and the declaration inside the loop was allowed to remain. This eliminated the problem of
attempting to declare the variable twice.

However, this program refused to compile because an attempt was made to access the
variable named cnt
outside the for
loop. This was not allowed because the variable was
declared inside the for
loop and the scope of the variable was limited to the loop.

This program will compile

The Java program shown in Listing 4
will compile and run because the variable named cnt
that is declared inside the for
loop is accessed only inside the for
loop. No reference to a
variable with the same name appears outside the loop.

Listing 4
. A program that will compile.

Listing 4
. A program that will compile.

/*File for3.java Copyright 1997, R.G.Baldwin

This program will compile because the variable declared

inside the for loop is accessed only inside the loop.

**/

class for3 { //define the controlling class

 public static void main(String[] args){ //main method

 for(int cnt = 0; cnt < 2; cnt++)

 System.out.println(

 "Value of loop var named cnt is " + cnt);

 }//end main

}//End controlling class.

This program will also compile

Similarly, the program shown in Listing 5
will compile and run because the variable named
cnt
was declared outside the for
loop and was not declared inside the for
loop. This made it
possible to access that variable both inside and outside the loop.

Listing 5
. Another program that will compile.

Listing 5
. Another program that will compile.

/*File for4.java Copyright 1997, R.G.Baldwin

This program will compile and run because the variable

named cnt is declared outside the for loop and is not

declared inside the for loop.

**/

class for4 { //define the controlling class

 public static void main(String[] args){ //main method

 int cnt = 5; //declare local method variable

 System.out.println(

 "Value of method var named cnt is " + cnt);

 for(cnt = 0; cnt < 2; cnt++)

 System.out.println(

 "Value of loop var named cnt is " + cnt);

 System.out.println(

 "Value of method var named cnt is " + cnt);

 }//end main

}//End controlling class. Note no semicolon required

Empty clauses in a for
loop

The first and third clauses in a for
loop can be left empty but the semicolons must be there as
placeholders.

One author suggests that even the middle clause can be empty, but it isn't obvious to this
author how the loop would ever terminate if there is no conditional expression to be
evaluated. Perhaps the loop could be terminated by using a break inside the loop, but in that
case, you might just as well use a while
loop.

The for-each loop

There is another form of loop structure that is often referred to as a
for-each
loop. In order to
appreciate the benefits of this loop structure, you need to be familiar with Java collections
and iterators, both of which are beyond the scope of this module.

As near as I can tell, there is nothing that you can do with the for-each
loop that you cannot
also do with the conventional for
loop described above. Therefore, I rarely use it. You can
find a description of the for-each
loop on this Oracle
website
.

http://docs.oracle.com/javase/1.5.0/docs/guide/language/foreach.html

I don't plan to discuss it further in this module. However, before you go for a job interview,
you should probably do some online research and learn about it because an interviewer could
use a question about the for-each
loop to trip you up in the Q and A portion of the interview.

The do-while loop

The do-while
loop is another implementation of the loop
pillar mentioned earlier
. However,
it differs from the while
loop and the for
loop in one important respect; it is an exit-condition
loop.

An exit-condition loop

Java provides an exit-condition
loop having the syntax shown in Figure 6
.

Figure 6
. Syntax of a do-while loop.

do {

 statements

 } while (conditional expression);

Behavior

The statements in the body of the loop continue to be executed for as long as the conditional
expression evaluates to true. An exit-condition loop guarantees that the body of the loop will
be executed at least one time, even if the conditional expression evaluates to false the first
time it is tested.

The break and continue statements

General behavior

Although some authors suggest that the break
and continue
statements provide an
alternative to the infamous goto
statement of earlier programming languages, it appears that
the behaviors of the labeled break
and labeled continue
statements are much more
restrictive than a general goto
.

Unlabeled break and continue

The break
and continue
statements are supported in both labeled and unlabeled form.

First consider the behavior of break and continue in their unlabeled configuration.

Use of a break
statement

The break
statement can be used in a switch statement or in a loop. When encountered in a
switch statement, break causes control to be passed to the next statement outside the
innermost enclosing switch statement.

When break is encountered in a loop, it causes control to be passed to the next statement
outside the innermost enclosing loop.

As you will see later, labeled break statements can be used to pass control to the next
statement following switch or loop statements beyond the innermost switch or loop statement
when those statements are nested.

Use of a continue statement

The continue statement cannot be used in a switch statement, but can be used inside a loop.

When an unlabeled continue statement is encountered, it causes the current iteration of the
current loop to be terminated and the next iteration to begin.

A labeled continue statement can cause control to be passed to the next iteration of an outer
enclosing loop in a nested loop situation.

An example of the use of an unlabeled switch statement is given in the next section.

Labeled break and continue statements

This section discusses the use of labeled break and continue statements.

Labeled break Statements

One way to describe the behavior of a labeled break in Java is to say: "Break all the way out
of the labeled statement."

Syntax of a labeled statement

To begin with, the syntax of a labeled statement is a label followed by a colon ahead of the
statement as shown in Figure 7
.

Figure 7
. Syntax of a labeled statement.

myLabel: myStatement;

The label can be any legal Java identifier.

Behavior of labeled break

The behavior of a labeled break can best be illustrated using nested switch statements. For a
comparison of labeled and unlabeled switch statements, consider the program shown in
Listing 6
named switch1
, which does not use a labeled break. Even though this program has
a labeled statement, that statement is not referenced by a break
. Therefore, the label is of no
consequence.

Listing 6
. The program named switch1.java.

/*File switch1.java

This is a Java application which serves as a baseline

comparison for switch2.java which uses a labeled break.

Note that the program uses nested switch statements.

The program displays the following output:

Match and break from here

Case 6 in outer switch

Default in outer switch

Beyond switch statements

**/

class switch1 { //define the controlling class

 public static void main(String[] args){ //main method

 //Note that the following labeled switch statement is

 // not referenced by a labeled break in this program.

 // It will be referenced in the next program.

Listing 6
. The program named switch1.java.

 outerSwitch: switch(5){//labeled outer switch statement

 case 5: //execute the following switch statement

 //Note that the code for this case is not followed

 // by break. Therefore, execution will fall through

 // the case 6 and the default.

 switch(1){ //inner switch statement

 case 1: System.out.println(

 "Match and break from here");

 break; //break with no label

 case 2: System.out.println(

 "No match for this constant");

 break;

 }//end inner switch statement

 case 6: System.out.println("Case 6 in outer switch");

 default: System.out.println(

 "Default in outer switch");

 }//end outer switch statement

 System.out.println("Beyond switch statements");

 }//end main

}//End switch1 class.

After reviewing switch1.java
, consider the same program named switch2.java
shown in
Listing 7
, which was modified to use a labeled break.

The outputs from both programs are shown in the comments at the beginning of the program.
By examining the second program, and comparing the output from the second program with
the first program, you should be able to see how the use of the labeled break statement causes
control to break all the way out of the labeled switch statement.

Listing 7
. The program named switch2.java.

/*File switch2.java

This is a Java application which uses a labeled break.

Note that the program uses nested switch statements.

Listing 7
. The program named switch2.java.

See switch1.java for a comparison program which does not

use a labeled break.

The program displays the following output:

Match and break from here

Beyond switch statements

**/

class switch2 { //define the controlling class

 public static void main(String[] args){ //main method

 outerSwitch: switch(5){//labeled outer switch statement

 case 5: //execute the following switch statement

 //Note that the code for this case is not followed by

 // break. Therefore, except for the labeled break at

 // case 1, execution would fall through the case 6 and

 // the default as demonstrated in the program named

 // switch1. However, the use of the labeled break

 // causes control to break all the way out of the

 // labeled switch bypassing case 6 and the default.

 switch(1){ //inner switch statement

 case 1: System.out.println(

 "Match and break from here");

 break outerSwitch; //break with label

 case 2: System.out.println(

 "No match for this constant");

 break;

 }//end inner switch statement

 case 6: System.out.println(

 "Case 6 in outer switch");

 default: System.out.println("Default in outer switch");

 }//end outer switch statement

 System.out.println("Beyond switch statements");

 }//end main

}//End switch1 class.

The modified program in Listing 7
uses a labeled break statement in the code group for case
1
whereas the original program in
Listing 6
has an unlabeled break in that position.

By comparing the output from this program with the output from the previous program, you
can see that execution of the labeled break statement caused control to break all the way out
of the labeled switch statement completely bypassing case 6
and default.

As you can see from examining the output, the labeled break statement causes the program to
break all the way out of the switch statement which bears a matching label.

A similar situation exists when a labeled break is used in nested loops with one of the
enclosing outer loops being labeled. Control will break out of the enclosing loop to which the
labeled break refers. It will be left as an exercise for the student to demonstrate this behavior
to his or her satisfaction.

Labeled continue statements

Now consider use of the labeled continue statement. A continue
statement can only be used
in a loop; it cannot be used in a switch. The behavior of a labeled continue statement can be
described as follows: "Terminate the current iteration and continue with the next iteration of
the loop to which the label refers."

Again, it will be left as an exercise for the student to demonstrate this behavior to his or her
satisfaction.

The return statement

Use of the return statement

Java supports the use of the return
statement to terminate a method and (optionally)
return a
value to the calling method.

The return type

The type of value returned must match the type of the declared return value for the method.

The void return type

If the return value is declared as void
, you can use the syntax shown in Figure 8
to terminate
the method. (You can also simply allow the method to run out of statements to execute.)

Figure 8
. An empty return statement.Figure 8
. An empty return statement.

return;

Returning a value

If the method returns a value, follow the word return with an expression (or constant)
that
evaluates to the value being returned as shown in Figure 9
.

Figure 9
. Returning a value from a method.

return x+y;

Return by value only

You are allowed to return only by value
. In the case of primitive types, this returns a copy of
the returned item. In the case of objects, returning by value returns a copy of the object's
reference.

What you can do with a copy the object's reference

Having a copy of the reference is just as good as having the original reference. A copy of the
reference gives you access to the object.

When Java objects are destroyed

All objects in Java are stored in dynamic memory and that memory is not overwritten until
all references to that memory cease to exist.

Java uses a garbage collector running on a background thread to reclaim memory from
objects that have become eligible for garbage collection
.

An object becomes eligible for garbage collection when there are no longer any variables,
array elements, or similar storage locations containing a reference to the object. In other

words, it becomes eligible when there is no way for the program code to find a reference to
the object.

Exception handling

Exception handling is a process that modifies the flow of control of a program, so it merits
being mentioned in this module. However, it is a fairly complex topic, which will be
discussed in detail in future modules.

Suffice it at this point to say that whenever an exception is detected, control is transferred to
exception handler code if such code has been provided. Otherwise, the program will
terminate. Thus, the exception handling system merits being mentioned in discussions
regarding flow of control.

Looking ahead

As you approach the end of this group of Programming Fundamentals
modules, you should
be preparing yourself for the more challenging ITSE 2321 OOP tracks identified below:

Java OOP: The Guzdial-Ericson Multimedia Class Library
Java OOP: Objects and Encapsulation

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0230: Java OOP: Flow of Control
File: Jb0230.htm
Originally published: 1997
Published at cnx.org: 11/24/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF file
for this
module at no charge, and also makes it possible for you to
purchase a pre-printed
version of the PDF file, you should be
aware that some of the HTML elements in this
module may not translate well into
PDF.

http://cnx.org/content/m44148
http://cnx.org/content/m44153

I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0230r Review
This module contains review questions and answers keyed to the module
titled Jb0230: Java OOP: Flow of Control.

Revised: Mon Mar 28 15:41:09 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14
, 15
,
16
,
17
, 18
,
19
,
20
,
21

Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0230: Java OOP: Flow of Control
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

List and describe eight of the statements used in Java programs to alter or
control the logical flow of the program.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45196

Answer 1

Question 2

Provide pseudo-code that illustrates the general syntax of a while
statement.

Answer 2

Question 3

True or false? During the execution of a while
statement, the program will
continue to execute the statement or compound statement for as long as the
conditional expression evaluates to true, or until a break
, continue
,or
return
statement is encountered. If false, explain why.

Answer 3

Question 4

True or false? A while
loop is an entry condition
loop. If false, explain why.

Answer 4

Question 5

What is the significance of an entry condition
loop?

Answer 5

Question 6

Provide pseudo-code illustrating the general syntax of the if-else
statement.

Answer 6

Question 7

Provide pseudo-code illustrating the general syntax of the switch-case
statement.

Answer 7

Question 8

Describe the behavior of a switch-case
statement. Provide a pseudo-code
fragment that illustrates your description of the behavior. Do not include a
description of labeled break statements.

Answer 8

Question 9

What are the three actions normally involved in the operation of a loop (in
addition to executing the code in the body of the loop)
?

Answer 9

Question 10

True or false? A for
loop header consists of three clauses separated by
colons. If false, explain why.

Answer 10

Question 11

Provide pseudo-code illustrating the general syntax of a for
loop

Answer 11

Question 12

True or false? In a for
loop, the first and third clauses within the
parentheses can contain one or more expressions, separated by the comma
operator. If False, explain why.

Answer 12

Question 13

What is the guarantee made by the comma operator
?

Answer 13

Question 14

True or false? The expressions within the first clause in the parentheses in a
for
loop are executed only once during each iteration of the loop. If false,
explain why.

Answer 14

Question 15

While any legal expression(s) may be contained in the first clause within
the parentheses of a for
loop, the first clause has a specific purpose. What is

that purpose?

Answer 15

Question 16

True or false? Variables can be declared and initialized within the first
clause in the parentheses of a for loop. If false, explain why.

Answer 16

Question 17

True or false? The second clause in the parentheses of a for
loop consists of
a single expression which must eventually evaluate to true to cause the loop
to terminate. If false, explain why.

Answer 17

Question 18

True or false? A for
loop is an exit condition
loop. If false, explain why.

Answer 18

Question 19

True or false? Because a for
loop is an entry condition
loop, the third clause
inside the parentheses is executed at the beginning of each iteration. If false,
explain why.

Answer 19

Question 20

True or false? A return statement is used to terminate a method and
(optionally)
return a value to the calling method. If False, explain why.

Answer 20

Question 21

True or false? Exception handling modifies the flow of control of a Java
program. If false, explain why.

Answer 21

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 21

True.

Back to Question 21

Answer 20

True.

Back to Question 20

Answer 19

False. Although the third clause appears physically at the top of the loop, it
isn't executed until the statements in the body of the loop have completed
execution. This is an important point since this clause is typically used to
update the control variable, and perhaps other variables as well. If variables
are updated in the third clause and used in the body of the loop, it is
important to understand that they do not get updated until the execution of
the body is completed.

Back to Question 19

Answer 18

False. The value of the second clause is tested when the statement first
begins execution, and at the beginning of each iteration thereafter.
Therefore, the for
loop is an entry condition
loop.

Back to Question 18

Answer 17

False. The second clause consists of a single expression which must
eventually evaluate to false (not true)
to cause the loop to terminate.

Back to Question 17

Answer 16

True.

Back to Question 16

Answer 15

Typically the first clause is used for initialization. The intended purpose of
the first clause is initialization.

Back to Question 15

Answer 14

False. The expressions in the first clause are executed only once, at the
beginning of the loop, regardless of the number of iterations.

Back to Question 14

Answer 13

The comma operator
guarantees that its left operand will be executed
before its right operand.

Back to Question 13

Answer 12

True.

Back to Question 12

Answer 11

The general syntax of a for
loop follows:

Note:
Syntax of a for loop

for (first clause; second clause; third clause)

 single or compound statement

Back to Question 11

Answer 10

False: A for
loop header consists of three clauses separated by semicolons,
not colons.

Back to Question 10

Answer 9

The operation of a loop normally involves the following three actions in
addition to executing the code in the body of the loop:

Initialize a control variable.
Test the control variable in a conditional expression.
Update the control variable.

Back to Question 9

Answer 8

The pseudo-code fragment follows:

Note:
Syntax of a switch-case statement

switch(expression){

 case constant:

 sequence of optional statements

 break; //optional

 case constant:

 sequence of optional statements

 break; //optional

.

.

.

 default //optional

 sequence of optional statements

}

An expression is tested against a series of unique integer constants. If a
match is found, the sequence of optional statements associated with the
matching constant is executed. Execution of statements continues until an
optional break
is encountered. When break
is encountered, execution of
the switch
statement is terminated and control is passed to the next
statement following the switch
statement.

If no match is found and the optional default
keyword along with a
sequence of optional statements has been provided, those statements will be
executed.

Back to Question 8

Answer 7

The general syntax of the switch-case
statement follows:

Note:
Syntax of a switch-case statement

switch(expression){

 case constant:

 sequence of optional statements

 break; //optional

 case constant:

 sequence of optional statements

 break; //optional

.

.

.

 default //optional

 sequence of optional statements

}

Back to Question 7

Answer 6

The general syntax of the if-else statement is:

Note:
Syntax of an if-else statement

if(conditional expression)

 statement or compound statement;

else //optional

 statement or compound statement; //optional

Back to Question 6

Answer 5

The significance of an entry condition
loop is that the conditional
expression is tested before the statements in the loop are executed. If it tests
false initially, the statements in the loop will not be executed.

Back to Question 5

Answer 4

True.

Back to Question 4

Answer 3

True. Note however that including a return
statement inside a while
statement is probably considered poor programming practice.

Back to Question 3

Answer 2

The general syntax of a while
statement follows :

Note:
Syntax of a while statement

while (conditional expression)

 statement or compound statement;

Back to Question 2

Answer 1

The following table lists the statements supported by Java for controlling
the logical flow of the program.

Note:
Flow of control statements

Statement Typeif-else
selection

switch-case selection

for loop

for-each loop

while loop

do-while loop

try-catch-finally exception handling

throw exception handling

break miscellaneous

continue miscellaneous

label: miscellaneous

return miscellaneous

goto reserved by Java but not
supported

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0230r Review: Flow of Control
File: Jb0230r.htm
Originally published: 1997
Published at cnx.org: 11/25/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0240: Java OOP: Arrays and Strings
This module takes a preliminary look at arrays and strings. More in-depth discussions will be
provided in future modules.

Revised: Mon Mar 28 16:20:59 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Figures
Listings

Introduction
Arrays
Arrays of Objects
Strings

String Concatenation
Arrays of String References

Run the programs
Looking ahead
Miscellaneous

Preface

This module takes a preliminary look at arrays and strings. More in-depth discussions will be
provided in future modules. For example, you will find a more in-depth discussions of array
objects in the following modules:

Java OOP: Array Objects, Part 1
Java OOP: Array Objects, Part 2
Java OOP: Array Objects, Part 3

Viewing tip

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m44198
http://cnx.org/content/m44199
http://cnx.org/content/m44200

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the Figures and Listings while you are reading
about them.

Figures

Figure 1
. Formats for declaring a reference variable for an array object.
Figure 2
. Allocating memory for the array object.
Figure 3
. Declaration and instantiation can be separated.
Figure 4
. General syntax for combining declaration and instantiation.
Figure 5
. An example of array indexing syntax.
Figure 6
. The use of the length property in the conditional clause of a for loop.
Figure 7
. A string literal.
Figure 8
. String concatenation.
Figure 9
. Declaring and instantiating a String array.
Figure 10
. Allocating memory to contain the String objects.

Listings

Listing 1
. The program named array01.
Listing 2
. The program named array02.
Listing 3
. The program named array03.

Introduction

The first step

The first step in learning to use a new programming language is usually to learn the
foundation concepts such as variables, types, expressions, flow-of-control, arrays, strings,
etc. This module concentrates on arrays and strings.

Array and String types

Java provides a type for both arrays and strings from which objects of the specific type can
be instantiated. Once instantiated, the methods belonging to those types can be called by way
of the object.

Arrays

Arrays and Strings

Java has a true array type and a true String
type with protective features to prevent your
program from writing outside the memory bounds of the array object or the String
object.

Arrays and strings are true objects.

Declaring an array

You must declare an array before you can use it. (More properly, you must declare a
reference variable to hold a reference to the array object.)
In declaring the array, you must
provide two important pieces of information:

the name of a variable to hold a reference to the array object
the type of data to be stored in the elements of the array object

Different declaration formats

A reference variable capable of holding a reference to an array object can be declared using
either format shown in Figure 1
. (I personally prefer the first option because I believe it is
more indicative of the purpose of the declaration. However, both options produce the same
result -- a reference variable capable of storing a reference to an array object.)

Figure 1
. Formats for declaring a reference variable for an array object.

int[] myArray;

int myArray[];

Declaration does not allocate memory

As with other objects, the declaration of the reference variable does not allocate memory to
contain the array data. Rather it simply allocates memory to contain a reference to the array.

Allocating memory for the array object

Memory to contain the array object must be allocated from dynamic memory using
statements such as those shown in Figure 2
.

Figure 2
. Allocating memory for the array object.Figure 2
. Allocating memory for the array object.

int[] myArrayX = new int[15];

int myArrayY[] = new int[25];

int[] myArrayZ = {3,4,5};

The statements in Figure 2
simultaneously declare the reference variable and cause memory
to be allocated to contain the array.

Also note that the last statement in Figure 2
is different from the first two statements. This
syntax not only sets aside the memory for the array object, the elements in the array are
initialized by evaluating the expressions shown in the coma-separated list inside the curly
brackets.

On the other hand, the array elements in the first two statements in Figure 2
are automatically
initialized with the default value for the type.

Declaration and allocation can be separated

It is not necessary to combine these two processes. You can execute one statement to declare
the reference variable and another statement to cause the array object to be instantiated some
time later in the program as shown in Figure 3
.

Figure 3
. Declaration and instantiation can be separated.

int[] myArray;

. . .

myArray = new int[25];

Causing memory to be set aside to contain the array object is commonly referred to as
instantiating the array object (creating an instance of the array object)
.

If you prefer to declare the reference variable and instantiate the array object at different
points in your program, you can use the syntax shown in
Figure 3
. This pattern is very
similar to the declaration and instantiation of all objects.

General syntax for combining declaration and instantiation

The general syntax for declaring and instantiating an array object is shown in Figure 4
.

Figure 4
. General syntax for combining declaration and instantiation.

typeOfElements[] nameOfRefVariable =

 new typeOfElements[sizeOfArray]

Accessing array elements

Having instantiated an array object, you can access the elements of the array using indexing
syntax that is similar to many other programming languages. An example is shown in Figure
5
.

Figure 5
. An example of array indexing syntax.

myArray[5] = 6;

myVar = myArray[5];

The value of the first index

Array indices always begin with 0.

The length property of an array

The code fragment in Figure 6
illustrates another interesting aspect of arrays. (Note the use of
length
in the conditional clause of the for
loop.)

Figure 6
. The use of the length property in the conditional clause of a for loop.

for(int cnt = 0; cnt < myArray.length; cnt++)

 myArray[cnt] = cnt;

All array objects have a length
property that can be accessed to determine the number of
elements in the array. (The number of elements cannot change once the array object is
instantiated.)

Types of data that you can store in an array object

Array elements can contain any Java data type including primitive values and references to
ordinary objects or references to other array objects.

Constructing multi-dimensional arrays

All array objects contains a one-dimensional array structure. You can create multi-
dimensional arrays by causing the elements in one array object to contain references to other
array objects. In effect, you can create a tree structure of array objects that behaves like a
multi-dimensional array.

Odd-shaped multi-dimensional arrays

The program array01
shown in Listing 1
illustrates an interesting aspect of Java arrays. Java
can produce multi-dimensional arrays that can be thought of as an array of arrays. However,
the secondary arrays need not all be of the same size.

In the program shown in Listing 1
, a two-dimensional array of integers is declared and
instantiated with the primary size (size of the first dimension)
being three. The sizes of the
secondary dimensions (sizes of each of the sub-arrays)
is 2, 3, and 4 respectively.

Can declare the size of secondary dimension later

When declaring a "two-dimensional"
array, it is not necessary to declare the size of the
secondary dimension when the primary array is instantiated. Declaration of the size of each
sub-array can be deferred until later as illustrated in this program.

Accessing an array out-of-bounds

This program also illustrates the result of attempting to access an element that is out-of-
bounds. Java protects you from such programming errors.

ArrayIndexOutOfBoundsException

An exception occurs if you attempt to access out-of-bounds, as shown in the program in in
Listing 1
.

In this case, the exception was simply allowed to cause the program to terminate. The
exception could have been caught and processed by an exception handler, a concept that will
be explored in a future module.

The program named array01

The entire program is shown in Listing 1
. The output from the program is shown in the
comments at the top of the listing.

Listing 1
. The program named array01.

/*File array01.java Copyright 1997, R.G.Baldwin

Illustrates creation and manipulation of two-dimensional

array with the sub arrays being of different lengths.

Also illustrates detection of exception when an attempt is

made to store a value out of the array bounds.

This program produces the following output:

00

012

0246

Attempt to access array out of bounds

java.lang.ArrayIndexOutOfBoundsException:

 at array01.main(array01.java: 47)

**/

class array01 { //define the controlling class

 public static void main(String[] args){ //main method

Listing 1
. The program named array01.

 //Declare a two-dimensional array with a size of 3 on

 // the primary dimension but with different sizes on

 // the secondary dimension.

 //Secondary size not specified initially

 int[][] myArray = new int[3][];

 myArray[0] = new int[2];//secondary size is 2

 myArray[1] = new int[3];//secondary size is 3

 myArray[2] = new int[4];//secondary size is 4

 //Fill the array with data

 for(int i = 0; i < 3; i++){

 for(int j = 0; j < myArray[i].length; j++){

 myArray[i][j] = i * j;

 }//end inner loop

 }//end outer loop

 //Display data in the array

 for(int i = 0; i < 3; i++){

 for(int j = 0; j < myArray[i].length; j++){

 System.out.print(myArray[i][j]);

 }//end inner loop

 System.out.println();

 }//end outer loop

 //Attempt to access an out-of-bounds array element

 System.out.println(

 "Attempt to access array out of bounds");

 myArray[4][0] = 7;

 //The above statement produces an ArrayIndexOutOfBounds

 // exception.

 }//end main

}//End array01 class.

Assigning one array to another array -- be careful

Java allows you to assign one array to another. You must be aware, however, that when you
do this, you are simply making another copy of the reference to the same data in memory.

Then you simply have two references to the same data in memory, which is often not a good
idea. This is illustrated in the program named array02
shown in Listing 2
.

Listing 2
. The program named array02
.

/*File array02.java Copyright 1997, R.G.Baldwin

Illustrates that when you assign one array to another

array, you end up with two references to the same array.

The output from running this program is:

firstArray contents

0 1 2

secondArray contents

0 1 2

Change a value in firstArray and display both again

firstArray contents

0 10 2

secondArray contents

0 10 2

**/

class array02 { //define the controlling class

 int[] firstArray;

 int[] secondArray;

 array02() {//constructor

 firstArray = new int[3];

 for(int cnt = 0; cnt < 3; cnt++) firstArray[cnt] = cnt;

 secondArray = new int[3];

 secondArray = firstArray;

 }//end constructor

 public static void main(String[] args){//main method

 array02 obj = new array02();

 System.out.println("firstArray contents");

 for(int cnt = 0; cnt < 3; cnt++)

 System.out.print(obj.firstArray[cnt] + " ");

 System.out.println();

 System.out.println("secondArray contents");

 for(int cnt = 0; cnt < 3; cnt++)

 System.out.print(obj.secondArray[cnt] + " ");

 System.out.println();

 System.out.println(

Listing 2
. The program named array02
.

 "Change value in firstArray and display both again");

 obj.firstArray[1] = 10;

 System.out.println("firstArray contents");

 for(int cnt = 0; cnt < 3; cnt++)

 System.out.print(obj.firstArray[cnt] + " ");

 System.out.println();

 System.out.println("secondArray contents");

 for(int cnt = 0; cnt < 3; cnt++)

 System.out.print(obj.secondArray[cnt] + " ");

 System.out.println();

 }//end main

}//End array02 class.

Arrays of Objects

An array of objects really isn't an array of objects

There is another subtle issue that you need to come to grips with before we leave our
discussion of arrays. In particular, when you create an array of objects, it really isn't an array
of objects.

Rather, it is an array of object references (or null)
. When you assign primitive values to the
elements in an array object, the actual primitive values are stored in the elements of the array.

However, when you assign objects to the elements in an array , the actual objects aren't
actually stored in the array elements. Rather, the objects are stored somewhere else in
memory. The elements in the array contain references to those objects.

All the elements in an array of objects need not be of the same actual type

The fact that the array is simply an array of reference variables has some interesting
ramifications. For example, it isn't necessary that all the elements in the array be of the same
type, provided the reference variables are of a type that will allow them to refer to all the
different types of objects.

For example, if you declare the array to contain references of type Object
, those references
can refer to any type of object (including array objects)
because a reference of type Object
can be used to refer to any object.

You can do similar things using interface
types. I will discuss interface types in a future
module.

Often need to downcast to use an Object reference

If you store all of your references as type Object
, you will often need to downcast the
references to the true type before you can use them to access the instance variables and
instance methods of the objects.

Doing the downcast no great challenge as long as you can decide what type to downcast
them to.

The Vector class

There is a class named Vector
that takes advantage of this capability. An object of type
Vector
is a self-expanding array of reference variables of type Object
. You can use an
object of type Vector
to manage a group of objects of any type, either all of the same type, or
mixed.

(Note that you cannot store primitive values in elements of a non-primitive or reference type.
If you need to do that, you will need to wrap your primitive values in an object of a wrapper
class as discussed in an earlier module.)

A sample program using the Date class

The sample program, named array03
and shown in
Listing 3
isn't quite that complicated.
This program behaves as follows:

Declare a reference variable to an array of type Date
. (The actual type of the variable is
Date[].)
Instantiate a three-element array of reference variables of type Date
.
Display the contents of the array elements and confirm that they are all null as they
should be. (When created using this syntax, new array elements contain the default
value, which is null for reference types.)
Instantiate three objects of type Date
and store the references to those objects in the
three elements of the array.
Access the references from the array and use them to display the contents of the
individual Date
objects.

As you might expect from the name of the class, each object contains information about the
date.

Listing 3
. The program named Array03
.Listing 3
. The program named Array03
.

/*File array03.java Copyright 1997, R.G.Baldwin

Illustrates use of arrays with objects.

Illustrates that "an array of objects" is not really an

array of objects, but rather is an array of references

to objects. The objects are not stored in the array,

but rather are stored somewhere else in memory and the

references in the array elements refer to them.

The output from running this program is:

myArrayOfRefs contains

null

null

null

myArrayOfRefs contains

Sat Dec 20 16:56:34 CST 1997

Sat Dec 20 16:56:34 CST 1997

Sat Dec 20 16:56:34 CST 1997

**/

import java.util.*;

class array03 { //define the controlling class

 Date[] myArrayOfRefs; //Declare reference to the array

 array03() {//constructor

 //Instantiate the array of three reference variables

 // of type Date. They will be initialized to null.

 myArrayOfRefs = new Date[3];

 //Display the contents of the array.

 System.out.println("myArrayOfRefs contains");

 for(int cnt = 0; cnt < 3; cnt++)

 System.out.println(this.myArrayOfRefs[cnt]);

 System.out.println();

 //Instantiate three objects and assign references to

 // those three objects to the three reference

 // variables in the array.

Listing 3
. The program named Array03
.

 for(int cnt = 0; cnt < 3; cnt++)

 myArrayOfRefs[cnt] = new Date();

 }//end constructor

 //---//

 public static void main(String[] args){//main method

 array03 obj = new array03();

 System.out.println("myArrayOfRefs contains");

 for(int cnt = 0; cnt < 3; cnt++)

 System.out.println(obj.myArrayOfRefs[cnt]);

 System.out.println();

 }//end main

}//End array03 class.

Strings

What is a string?

A string is commonly considered to be a sequence of characters stored in memory and
accessible as a unit.

Java implements strings using the String
class and the StringBuffer
class.

What is a string literal?

Java considers a series of characters surrounded by quotation marks as shown in Figure 7
to
be a string literal.

Figure 7
. A string literal.

"This is a string literal in Java."

This is just an introduction to strings

A major section of a future module will be devoted to the topic of strings, so this discussion
will be brief.

String objects cannot be modified

String
objects cannot be changed once they have been created. (They are said to be
immutable.)
If you have that need, use the StringBuffer
class instead.

StringBuffer
objects can be used to create and manipulate character data as the program
executes.

String Concatenation

Java supports string concatenation using the overloaded + operator as shown in Figure 8
.

Figure 8
. String concatenation.

"My variable has a value of " + myVar

 + " at this point in the program."

Coercion of an operand to type String

The overloaded + operator is used to concatenate strings. If either operand is type String
,
the other operand is coerced into type String
and the two strings are concatenated.

Therefore, in addition to concatenating the strings, Java also converts values of other types,
such as myVar
in Figure 8
, to character-string format in the process.

Arrays of String References

Declaring and instantiating a String array

The statement in Figure 9
declares and instantiates an array of references to five String
objects.

Figure 9
. Declaring and instantiating a String array.

String[] myArrayOfStringReferences = new String[5];

No string data at this point

Note however, that this array doesn't contain the actual String
objects. Rather, it simply sets
aside memory for storage of five references of type String
. (The array elements are
automatically initialized to null.)
No memory has been set aside to store the characters that
make up the individual String
objects. You must allocate the memory for the actual String
objects separately using code similar to the code shown in Figure 10
.

Figure 10
. Allocating memory to contain the String objects.

myArrayOfStringReferences[0] = new String(

 "This is the first string.");

myArrayOfStringReferences[1] = new String(

 "This is the second string.");

The new operator is not required for String class

Although it was used in Figure 10
, the new
operator is not required to instantiate an object
of type String
. I will discuss the ability of Java to instantiate objects of type String
without
the requirement to use the new
operator in a future module.

Run the programs

I encourage you to copy the code from Listing 1
,
Listing 2
, and Listing 3
. Compile the
code and execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Looking ahead

As you approach the end of this group of Programming Fundamentals
modules, you should
be preparing yourself for the more challenging ITSE 2321 OOP tracks identified below:

Java OOP: The Guzdial-Ericson Multimedia Class Library
Java OOP: Objects and Encapsulation

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0240: Java OOP: Arrays and Strings
File: Jb0240.htm
Originally published: 1997
Published at cnx.org: 11/25/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF file
for this
module at no charge, and also makes it possible for you to
purchase a pre-printed
version of the PDF file, you should be
aware that some of the HTML elements in this
module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

http://cnx.org/content/m44148
http://cnx.org/content/m44153

Jb0240r Review
This module contains review questions and answers keyed to the module
titled Jb0240: Java OOP: Arrays and Strings.

Revised: Mon Mar 28 16:31:25 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14
, 15
,
16
,
17
, 18

Listings
Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module
titled Jb0240: Java OOP: Arrays and Strings
.

The questions and the answers are connected by hyperlinks to make it easy
for you to navigate from the question to the answer and back again.

Questions

Question 1
.

True or false? Arrays and Strings are true objects. If false, explain why.

Answer 1

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45214

Question 2

True or false? It is easy to write outsides the bounds of a String
or an array.
If false, explain why.

Answer 2

Question 3

You must declare a variable capable of holding a reference to an array
object before you can use it. In declaring the variable, you must provide two
important pieces of information. What are they?

Answer 3

Question 4

Provide code fragments that illustrate the two different syntaxes that can be
used to declare a variable capable of holding a reference to an array object
that will store data of type int.

Answer 4

Question 5

True or false? When you declare a variable capable of holding a reference
to an array object, the memory required to contain the array object is
automatically allocated. If false, explain why and show how memory can be
allocated.

Answer 5

Question 6

True or false? It is required that you simultaneously declare the name of the
variable and cause memory to be allocated to contain the array object in a
single statement. If false, explain why and show code fragments to illustrate
your answer.

Answer 6

Question 7

True or false? Array indices always begin with 1. If false, explain why.

Answer 7

Question 8

What is the name of the property of arrays that can be accessed to
determine the number of elements in the array? Provide a sample code
fragment that illustrates the use of this property.

Answer 8

Question 9

What types of data can be stored in array objects?

Answer 9

Question 10

True or false? Just as in other languages, when you create a multi-
dimensional array, the secondary arrays must all be of the same size. If
false, explain your answer. Then provide a code fragment that illustrates
your answer or refer to a sample program in Jb0240: Java OOP: Arrays and
Strings
that illustrates your answer.

Answer 10

Question 11

True or false? Just as in other languages, when declaring a two-dimensional
array, it is necessary to declare the size of the secondary dimension when
the array is declared. If false, explain your answer. Then provide a code
fragment that illustrates your answer or refer to a sample program in
Jb0240: Java OOP: Arrays and Strings
that illustrates your answer.

Answer 11

Question 12

True or false? Java allows you to assign one array to another. Explain what
happens when you do this. Then provide a code fragment that illustrates
your answer or refer to a sample program in Jb0240: Java OOP: Arrays and
Strings
that illustrates your answer.

Answer 12

Question 13

Give a brief description of the concept of a string and list the names of two
classes used to implement strings?

Answer 13

http://cnx.org/content/m45214
http://cnx.org/content/m45214
http://cnx.org/content/m45214

Question 14

What is the syntax that is used to create a literal string? Provide a code
fragment to illustrate your answer.

Answer 14

Question 15

Explain the difference between objects of types String
and
StringBuffer
.

Answer 15

Question 16

Provide a code fragment that illustrates how to concatenate strings.

Answer 16

Question 17

Provide a code fragment that declares and instantiates an array object
capable of storing references to two String
objects. Explain what happens
when this code fragment is executed. Then show a code fragment that will
allocate memory for the actual String
objects.

Answer 17

Question 18

Write a Java
application that illustrates the creation and manipulation of a
two-dimensional array with the sub arrays being of different lengths.
Also

cause your application to illustrate that an attempt
to access an array
element out of bounds results in an exception being thrown. Catch and
process the exception.
Display a termination message with your name.

Answer 18

Listings

Listing 1
. Listing for Answer 18.

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the
questions and the answers to keep them from being visible on the screen at
the same time.

The image is also an example of the kinds of things that we do in my course
titled ITSE 2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the
questions and the answers.

Answers

Answer 18

Listing 1
. Listing for Answer 18.

class SampProg10 { //define the controlling
class

 public static void main(String[] args){
//define main

 //Declare a two-dimensional array with a
size of 3 on

 // the primary dimension but with
different sizes on

 // the secondary dimension.

Listing 1
. Listing for Answer 18.

 //Secondary size not specified

 int[][] myArray = new int[3][];

 myArray[0] = new int[2];//secondary size
is 2

 myArray[1] = new int[3];//secondary size
is 3

 myArray[2] = new int[4];//secondary size
is 4

 //Fill the array with data

 for(int i = 0; i < 3; i++){

 for(int j = 0; j < myArray[i].length;
j++){

 myArray[i][j] = i * j;

 }//end inner loop

 }//end outer loop

 //Display data in the array

 for(int i = 0; i < 3; i++){

 for(int j = 0; j < myArray[i].length;
j++){

 System.out.print(myArray[i][j]);

 }//end inner loop

 System.out.println();

 }//end outer loop

 //Attempt to access an out-of-bounds array
element

 try{

 System.out.println(

 "Attempt to access array out
of bounds");

 myArray[4][0] = 7;

 }catch(ArrayIndexOutOfBoundsException e){

 System.out.println(e);

Listing 1
. Listing for Answer 18.

 }//end catch

 System.out.println("Terminating, Dick
Baldwin");

 }//end main

}//End SampProg10 class. Note no semicolon
required

Back to Question 18

Answer 17

The following statement declares and instantiates an array object capable of
storing references to two String
objects.

Note:

String[] myArrayOfStringReferences = new
String[2];

Note however, that this array object doesn't contain the actual string data.
Rather, it simply sets aside memory for storage of two references to String
objects. No memory has been set aside to store the characters that make up
the individual strings. You must allocate the memory for the actual String
objects separately using code similar to the following.

Note:

myArrayOfStringReferences[0] = new String(

 "This is the first string.");

myArrayOfStringReferences[1] = new String(

 "This is the second string.");

Back to Question 17

Answer 16

Java supports string concatenation using the overloaded + operator as
shown in the following code fragment:

Note:

"My variable has a value of " + myVar +

" at this point in the program."

Back to Question 16

Answer 15

String
objects cannot be modified once they have been created.
StringBuffer
objects can be modified

Back to Question 15

Answer 14

The Java compiler considers a series of characters surrounded by quotation
marks to be a literal string, as in the following code fragment:

Note:

"This is a literal string in Java."

Back to Question 14

Answer 13

A string is commonly considered to be a sequence of characters stored in
memory and accessible as a unit. Java implements strings using the String
class and the StringBuffer
class.

Back to Question 13

Answer 12

Java allows you to assign one array to another. When you do this, you are
simply making another copy of the reference to the same data in memory.
Then you have two references to the same data in memory. This is
illustrated in the program named array02.java
in
Jb0240: Java OOP:
Arrays and Strings
.

http://cnx.org/content/m45214

Back to Question 12

Answer 11

False. When declaring a two-dimensional array, it is not necessary to
declare the size of the secondary dimension when the array is declared.
Declaration of the size of each sub-array can be deferred until later as
illustrated in the program named array01.java
in
Jb0240: Java OOP:
Arrays and Strings
.

Back to Question 11

Answer 10

False. Java can be used to produce multi-dimensional arrays that can be
viewed as an array of arrays. However, the secondary arrays need not all be
of the same size. See the program named array01.java
in
Jb0240: Java
OOP: Arrays and Strings
.

Back to Question 10

Answer 9

Array objects can contain any Java data type including primitive values,
references to ordinary objects, and references to other array objects.

Back to Question 9

Answer 8

All array objects have a length
property that can be accessed to determine
the number of elements in the array as shown below.

http://cnx.org/content/m45214
http://cnx.org/content/m45214

Note:

for(int cnt = 0; cnt < myArray.length; cnt++)

 myArray[cnt] = cnt;

Back to Question 8

Answer 7

False. Array indices always begin with 0.

Back to Question 7

Answer 6

False. While it is possible to simultaneously declare the name of the
variable and cause memory to be allocated to contain the array object, it is
not necessary to combine these two processes. You can execute one
statement to declare the variable and another statement to cause the memory
for the array object to be allocated as shown below.

Note:

int[] myArray;

.

.

.

myArray = new int[25];

Back to Question 6

Answer 5

False. As with other objects. the declaration of the variable does not
allocate memory to contain the array object. Rather it simply allocates
memory to contain a reference to the array object. Memory to contain the
array object must be allocated from dynamic memory using statements such
as the following.

Note:

int[] myArray = new int[15];

int myArray[] = new int[25];

int[] myArray = {1,2,3,4,5}

Back to Question 5

Answer 4

Note:

int[] myArray;

int myArray[];

Back to Question 4

Answer 3

In declaring the variable, you must provide two important pieces of
information:

the name of the variable
the type of the variable, which indicates the type of data to be stored in
the array

Back to Question 3

Answer 2

False. Java has a true array type and a true String
type with protective
features to prevent your program from writing outside the memory bounds
of the array or the String
.

Back to Question 2

Answer 1

True.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0240r Review: Arrays and Strings
File: Jb0240r.htm
Originally published: 1997
Published at cnx.org: 11/26/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to
download a PDF file for this module at no charge, and also makes it
possible for you to purchase a pre-printed version of the PDF file, you
should be aware that some of the HTML elements in this module may not
translate well into PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

Jb0250: Java OOP: Brief Introduction to Exceptions
This module provides a very brief treatment of exception handling. The topic is discussed in
detail in the module titled Java OOP: Exception Handling by Richard Baldwin

Revised: Tue Mar 29 09:51:41 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Listings

Discussion
Run the program
Looking ahead
Miscellaneous

Preface

This module provides a very brief treatment of exception handling. The topic is discussed in
detail in the module titled
Java OOP: Exception Handling
. The topic is included in this
Programming Fundamentals
section simply to introduce you to the concept.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following link to easily find and view the listing while you are reading about it.

Listings

Listing 1
. The program named simple1.

Discussion

What is an exception?

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m44202

According to
The Java Tutorials
, "An exception is an event that occurs during the execution
of a program that disrupts the normal flow of instructions."

A very common example of an exception given in textbooks is code that attempts to divide
by zero (this is easy to demonstrate)
.

Throwing an exception

Common terminology states that when this happens, the system throws an exception
. If a
thrown exception is not caught
, a runtime error may occur.

Purpose of exception handling

The purpose of exception handling is to make it possible for the program to either attempt to
recover from the problem, or at worst shut down the program in a graceful manner, whenever
an exception occurs.

Java supports exception handling

Java, C++, and some other programming languages support exception handling in similar
ways.

In Java, the exception can be thrown either by the system or by code created by the
programmer. There is a fairly long list of exceptions that will be thrown automatically by the
Java runtime system.

Checked exceptions cannot be ignored

Included in that long list of automatic exceptions is a subset known as "checked" exceptions.
Checked exceptions cannot be ignored by the programmer. A method must either specify
(declare)
or catch all "checked" exceptions that can be thrown in order for the program to
compile.

An example of specifying an exception

I explain the difference between specifying and catching an exception in Java OOP:
Exception Handling
. For now, suffice it to say that the code that begins with the word
"throws" in Listing 1
specifies (declares)
an exception that can be thrown by the code inside
the main
method.

If this specification is not made, the program will not compile.

http://docs.oracle.com/javase/tutorial/essential/exceptions/
http://cnx.org/content/m44202

Listing 1
. The program named simple1.Listing 1
. The program named simple1.

/*File simple1.java Copyright 1997, R.G.Baldwin

**/

class simple1 { //define the controlling class

 public static void main(String[] args)

 throws java.io.IOException {

 int ch1, ch2 = '0';

 System.out.println(

 "Enter some text, terminate with #");

 //Get and save individual bytes

 while((ch1 = System.in.read()) != '#') ch2 = ch1;

 //Display the character immediately before the #

 System.out.println("The char before the # was "

 + (char)ch2);

 }//end main

}//End simple1 class.

The program in Listing 1
does not throw any exceptions directly nor does it attempt to catch
any exceptions. However, it can throw exceptions indirectly through its call to
System.in.read
.

Because IOException
is a checked exception, the main
method must either specify it or
catch it . Otherwise the program won't compile. In this case, the main
method specifies the
exception as opposed to catching it.

Very brief treatment

As mentioned earlier, this is a very brief treatment of a fairly complex topic that is discussed
in much more detail in the module titled
Java OOP: Exception Handling
. The topic was
included at this point simply to introduce you to the concept of exceptions.

Run the program

II encourage you to copy the code from Listing 1
. Compile the code and execute it.
Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

http://cnx.org/content/m44202

Looking ahead

As you approach the end of this group of Programming Fundamentals
modules, you should
be preparing yourself for the more challenging ITSE 2321 OOP tracks identified below:

Java OOP: The Guzdial-Ericson Multimedia Class Library
Java OOP: Objects and Encapsulation

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0250: Java OOP: Brief Introduction to Exceptions
File: Jb0250.htm
Originally published: 1997
Published at cnx.org: 11/26/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF file
for this
module at no charge, and also makes it possible for you to
purchase a pre-printed
version of the PDF file, you should be
aware that some of the HTML elements in this
module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
:: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

http://cnx.org/content/m44148
http://cnx.org/content/m44153

Jb0260: Java OOP: Command-Line Arguments
Although the use of command-line arguments is rare is this time of Graphical User
Interfaces (GUI), they are still useful for testing and debugging code. This module
explains the use of command-line arguments in Java.

Revised: Tue Mar 29 10:02:05 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Listings

Discussion
Run the program
Looking ahead
Miscellaneous

Preface

Although the use of command-line arguments is rare is this time of Graphical User
Interfaces (GUI)
, they are still useful for testing and debugging code. This module
explains the use of command-line arguments in Java.

Viewing tip

I recommend that you open another copy of this module in a separate browser window
and use the following link to easily find and view the listing while you are reading about
it.

Listings

Listing 1
. Illustration of command-line arguments.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Discussion

Familiar example from DOS

Java programs can be written to accept command-line-arguments.

DOS users will be familiar with commands such as the following:

Note:
Familiar DOS command

copy fileA fileB

In this case, copy
is the name of the program to be executed, while fileA
and fileB
are
command-line arguments.

Java syntax for command-line arguments

The Java syntax for supporting command-line arguments is shown below (note the formal
argument list for the main
method)
.

Note:
Java syntax for command-line arguments

public static void main(String[] args){

. . .

}//end main method

In Java, the formal argument list for the main
method must appear in the method
signature whether or not the program is written to support the use of command-line
arguments. If the argument isn't used, it is simply ignored.

Where the arguments are stored

The parameter args
contains a reference to a one-dimensional array object of type String
.

Each of the elements in the array (including the element at index zero)
contains a
reference to an object of type String
. Each object of type String encapsulates one
command-line argument.

The number of arguments entered by the user

Recall from an earlier module on arrays that the number of elements in a Java array can be
obtained from the length
property of the array. Therefore, the number of arguments
entered by the user is equal to the value of the length
property. If the user didn't enter any
arguments, the value will be zero.

Command-line arguments are separated by the space character. If you need to enter an
argument that contains a space, surround the entire argument with quotation mark
characters as in "My command line argument"
.

The first command-line argument is encapsulated in the String
object referred to by the
contents of the array element at index 0, the second argument is referred to by the element
at index 1, etc.

Sample Java program

The sample program in Listing 1
illustrates the use of command-line arguments.

Listing 1
. Illustration of command-line arguments.

Listing 1
. Illustration of command-line arguments.

/*File cmdlin01.java Copyright 1997, R.G.Baldwin

This Java application illustrates the use of Java

command-line arguments.

When this program is run from the command line as
follows:

java cmdlin01 My command line arguments

the program produces the following output:

My

command

line

arguments

**/

class cmdlin01 { //define the controlling class

 public static void main(String[] args){ //main method

 for(int i=0; i < args.length; i++)

 System.out.println(args[i]);

 }//end main

}//End cmdlin01 class.

The output from running this program for a specific input is shown in the comments at the
beginning of the program.

Run the program

I encourage you to copy the code Listing 1
. Compile the code and execute it. Experiment
with the code, making changes, and observing the results of your changes. Make certain
that you can explain why your changes behave as they do.

Looking ahead

As you approach the end of this group of Programming Fundamentals
modules, you
should be preparing yourself for the more challenging ITSE 2321 OOP tracks identified
below:

Java OOP: The Guzdial-Ericson Multimedia Class Library
Java OOP: Objects and Encapsulation

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0260: Java OOP: Command-Line Arguments
File: Jb0260.htm
Originally published: 1997
Published at cnx.org: 11/27/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF
file for this
module at no charge, and also makes it possible for you to
purchase a pre-
printed version of the PDF file, you should be
aware that some of the HTML elements in
this module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them
to Kindle books, and placed them for sale on Amazon.com showing me as the author. I
neither receive compensation for those sales nor do I know who does receive
compensation. If you purchase such a book, please be aware that it is a copy of a module
that is freely available on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

http://cnx.org/content/m44148
http://cnx.org/content/m44153

Jb0260r Review
This module contains review questions and answers keyed to the module titled Jb0260: Java
OOP: Command-Line Arguments.

Revised: Tue Mar 29 10:09:37 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6

Listings
Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module titled Jb0260: Java
OOP: Command-Line Arguments
.

The questions and the answers are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

Questions

Question 1
.

Provide a common example of a command-line statement that illustrates the use of
command-line-arguments.

Answer 1

Question 2

Describe the purpose of command-line-arguments.

Answer 2

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45246

Question 3

True or false? In Java, syntax provisions must be made in the method signature for the main
method to accommodate command-line-arguments even if the remainder of the program is
not designed to make use of them. If False, explain why.

Answer 3

Question 4

Provide the method signature for the main
method in a Java application that is designed to
accommodate the use of command-line-arguments. Identify the part of the method signature
that applies to command-line-arguments and explain how it works.

Answer 4

Question 5

Explain how a Java application can determine the number of command-line-arguments
actually entered by the user.

Answer 5

Question 6

Write a program that illustrates the handling of command-line
arguments in Java.

Answer 6

Listings

Listing 1
. Handling command-line arguments in Java.

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the questions and the
answers to keep them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE
2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the
answers.

Answers

Answer 6

Listing 1
. Handling command-line
arguments in Java.

Listing 1
. Handling command-line
arguments in Java.

/*File SampProg11.java from module 32

Copyright 1997, R.G.Baldwin

Without reviewing the following solution, write a Java

application that illustrates the handling of command-line

arguments in Java.

Provide a termination message that displays your name.

**/

class SampProg11 { //define the controlling class

 public static void main(String[] args){ //define main

 for(int i=0; i < args.length; i++)

 System.out.println(args[i]);

 System.out.println("Terminating, Dick Baldwin");

 }//end main

}//End SampProg11 class.

Back to Question 6

Answer 5

The number of command-line arguments is equal to the number of elements in the array of
references to String
objects referred to by
args
. The number of elements is indicated by the
value of the length
property of the array. If the value is zero, the user didn't enter any
command-line arguments.

Back to Question 5

Answer 4

The Java syntax for command-line arguments is shown below.

Note:
Java syntax for command-line arguments.

public static void main(String[] args){

. . .

}//end main method

Each of the elements in the array object referred to by args
(including the element at position
zero)
contains a reference to a
String
object that encapsulates one of the command-line
arguments.

Back to Question 4

Answer 3

True.

Back to Question 3

Answer 2

Command-line-arguments are used in many programming and computing environments to
provide information to the program at startup that it will need to fulfill its mission during that
particular invocation.

Back to Question 2

Answer 1

DOS users will be familiar with commands such as the following:

Note:
Command-line arguments in DOS

copy fileA fileB

In this case, copy
is the name of the program to be executed, while fileA
and fileB
are
command-line arguments.

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0260r Review: Command-Line Arguments
File: Jb0260r.htm
Originally published: 1997
Published at cnx.org: 11/25/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to download a PDF file
for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF file, you should be aware that some of the HTML elements in this
module may not translate well into PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0270: Java OOP: Packages
This module explains the concept of packages and provides a sample program that illustrates
the concept.

Revised: Tue Mar 29 10:38:11 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Listings

Introduction
Classpath environment variable
Developing your own packages

The package directive
The import directive
Compiling programs with the package directive
Sample program

Run the program
Looking ahead
Miscellaneous

Preface

This module explains the concept of packages and provides a sample program that illustrates
the concept.

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the listings while you are reading about them.

Listings

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Listing 1
. File: Package00.java.
Listing 2
. File Package01.java.
Listing 3
. File Package02.java.
Listing 4
. File: CompileAndRun.bat.

Introduction

Before you can understand much about packages, you will need to understand the classpath
environment variable
, so that is where I will begin the discussion.

After learning about the classpath environment variable, you will learn how to create your
own packages.

Classpath environment variable

The purpose of the classpath environment variable
is to tell the JVM and other Java
applications (such as the javac compiler)
where to find class files and class libraries. This
includes those class files that are part of the JDK and class files that you may create yourself.

I am assuming that you already have some familiarity with the use of environment variables
in your operating system. All of the discussion in this module will be based on the use of a
generic form of Windows.
(By generic, I mean not tied to any particular version of
Windows.)
Hopefully you will be able to translate the information to your operating system if
you are using a different operating system.

Note:
In a nutshell
Environment variables provide information that the operating system uses to do its job.

There are usually a fairly large number of environment variables installed on a machine at
any give time. If you would like to see what kind of environment variables are currently
installed on your machine, bring up a command-line prompt and enter the command set
.
This should cause the names of several environment variables, along with their settings to be
displayed on your screen.

While you are at it, see if any of those items begin with CLASSPATH=
. If so, you already
have a classpath environment variable set on your machine, but it may not contain everything
that you need.

I am currently using a Windows 7 operating system and no classpath environment variable is
set on it. I tend to use the -cp
switch option (see Listing 4
)
in the JDK to set the classpath on
a temporary basis when I need it to be set.

Rather than trying to explain all of the ramifications regarding the classpath, I will simply
refer you to an Oracle document on the topic titled Setting the class path
.

I will also refer you to Java OOP: The Guzdial-Ericson Multimedia Class Library
where I
discuss the use of the classpath environment variable with a Java multimedia class library.

Some rules

There are some rules that you must follow when working with the classpath variable, and if
you fail to do so, things simply won't work.

For example, if your class files are in a jar file, the classpath must end with the name of that
jar file.

On the other hand, if the class files are not in a jar file, the classpath must end with the name
of the folder that contains the class files.

Your classpath must contain a fully-qualified path name for every folder that contains class
files of interest, or for every jar file of interest. The paths should begin with the letter
specifying the drive and end either with the name of the jar file or the name of the folder that
contains the class files. .

If you followed the default JDK installation procedure and are simply compiling and
executing Java programs in the current directory you probably won't need to set the
classpath. By default, the system already knows (or can figure out)
how to allow you to
compile and execute programs in the current directory and how to use the JDK classes that
come as part of the JDK.

However, if you are using class libraries other than the standard Java library, are saving your
class files in one or more different folders, or are ready to start creating your own packages,
you will need to set the classpath so that the system can find the class files in your packages.

Developing your own packages

One of the problems with storing all of your class files in one or two folders is that you will
likely experience name conflicts between class files.

Every Java program can consist of a large number of separate classes. A class file is created
for each class that is defined in your program, even if they are all combined into a single
source file.

It doesn't take very many programs to create a lot of class files, and it isn't long before you
find yourself using the same class names over again. If you do, you will end up overwriting
class files that were previously stored in the folder.

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/classpath.html
http://cnx.org/content/m44148

For me, it only takes two GUI programs to get in trouble because I tend to use the same class
names in every program for certain standard operations such as closing a Frame
or
processing an ActionEvent
. For the case of the ActionEvent
, the body of the class varies
from one application to the next so it doesn't make sense to turn it into a library class.

So we need a better way to organize our class files, and the Java package provides that better
way.

The Java package approach allows us to store our class files in a hierarchy of folders (or a
jar file that represents that hierarchy)
while only requiring that the classpath variable point
to the top of the hierarchy. The remaining hierarchy structure is encoded into our programs
using package directives and import directives.

Now here is a little jewel of information that cost me about seven hours of effort to discover
when I needed it badly.

When I first started developing my own packages, I spent about seven hours trying to
determine why the compiler wouldn't recognize the top-level folder in my hierarchy of
package folders.

I consulted numerous books by respected authors and none of them was any help at all. I
finally found the following statement in the Java documentation (when all else fails, read the
documentation)
. By the way, a good portion of that wasted seven hours was spent trying to
find this information in the documentation which is voluminous.

Note:
The following text was extracted directly from the JDK 1.1 documentation
If you want the CLASSPATH to point to class files that belong to a package, you should
specify a path name that includes the path to the directory one level above the directory
having the name of your package.
For example, suppose you want the Java interpreter to be able to find classes in the package
mypackage. If the path to the mypackage
directory is C:\java\MyClasses\mypackage, you
would set the CLASSPATH variable as follows:
set CLASSPATH=C:\java\MyClasses

If you didn't catch the significance of this, read it again. When you are creating a classpath
variable to point to a folder containing classes, it must point to the folder. However, when
you are creating a classpath variable to point to your package, it must point to the folder that
is one level above the directory that is the top-level folder in your package.

Once I learned that I had to cause the classpath to point to the folder immediately above the
first folder in the hierarchy that I was including in my package directives, everything started
working.

The package directive

So, what is the purpose of a package directive, and what does it look like?

Note:
Purpose of a package directive
The purpose of the package directive is to identify a particular class (or group of classes
contained in a single source file (compilation unit))
as belonging to a specific package.

This is very important information for a variety of reasons, not the least of which is the fact
that the entire access control system is wrapped around the concept of a class belonging to a
specific package. For example, code in one package can only access public classes in a
different package.

Stated in the simplest possible terms, a package is a group of class files contained in a single
folder on your hard drive.

At compile time, a class can be identified as being part of a particular package by providing a
package directive at the beginning of the source code..

A package directive, if it exists, must occur at the beginning of the source code (ignoring
comments and white space)
. No text other than comments and whitespace is allowed ahead
of the package directive.

If your source code file does not contain a package directive, the classes in the source code
file become part of the default package
. With the exception of the default package, all
packages have names, and those names are the same as the names of the folders that contain
the packages. There is a one-to-one correspondence between folder names and package
names. The default package doesn't have a name.

Some examples of package directives that you will see in upcoming sample programs follow:

Note:
Example package directives

package Combined.Java.p1;

package Combined.Java.p2;

Given the following as the classpath on my hypothetical machine,

CLASSPATH=.;c:\Baldwin\JavaProg

these two package directives indicate that the class files being governed by the package
directives are contained in the following folders:

Note:

c:\Baldwin\JavaProg\Combined\Java\p1

c:\Baldwin\JavaProg\Combined\Java\p2

Notice how I concatenated the package directive to the classpath setting and substituted the
backslash character for the period when converting from the package directive to the fully-
qualified path name.

Code in one package can refer to a class in another package (if it is otherwise accessible) by
qualifying the class name with its package name as follows
:

Note:

Combined.Java.p2.Access02 obj02 =

 new Combined.Java.p2.Access02();

Obviously, if we had to do very much of that, it would become very burdensome due to the
large amount of typing required. As you already know, the import directive
is available to
allow us to specify the package containing the class just once at the beginning of the source
file and then refer only to the class name for the remainder of that source file.

The import directive

This discussion will be very brief because you have been using import directives since the
very first module. Therefore, you already know what they look like and how to use them.

If you are interested in the nitty-gritty details (such as what happens when you provide two
import directives that point to two different packages containing the same class file name)
,

you can consult the Java Language Reference by Mark Grand, or you can download the Java
language specification from Oracle's Java website.

The purpose of the import directive is to help us avoid the burdensome typing requirement
described in the previous section when referring to classes in a different package.

An import directive makes the definitions of classes from other packages available on the
basis of their file names alone.

You can have any number of import directives in a source file. However, they must occur
after the package directive (if there is one)
and before any class or interface declarations.

There are essentially two different forms of the import directive, one with and the other
without a wild card character (*)
. These two forms are illustrated in the following box.

Note:
Two forms of import directives

import java.awt.*

import java.awt.event.ActionEvent

The first import directive makes all of the class files in the java.awt
package available for
use in the code in a different package by referring only to their file names.

The second import directive makes only the class file named ActionEvent
in the
java.awt.event
package available by referring only to the file name.

Compiling programs with package directives

So, how do you compile programs containing package directives? There are probably several
ways. I am going to describe one way that I have found to be successful.

First, you must create your folder hierarchy to match the package directive that you intend to
use. Remember to construct this hierarchy downward relative to the folder specified at the
end of your classpath setting. If you have forgotten the critical rule
in this respect, go back
and review it.

Next, place source code files in each of the folders where you intend for the class files
associated with those source code files to reside. (After you have compiled and tested the
program, you can remove the source code files if you wish.)

You can compile the source code files individually if you want to, but that isn't necessary.

One of the source code files will contain the controlling class
. The controlling class is the
class that contains the main
method that will be executed when you run the program from
the command line using the JVM.

Make the directory containing that source code file be the current directory. (If you don't
know what the current directory is, go out and get yourself a DOS For Dummies
book and
read it.)

Each of the source code files must contain a package directive that specifies the package that
will contain the compiled versions of all the class definitions in that source code file. Using
the instructions that I am giving you, that package directive will also describe the folder that
contains the source code file.

Any of the source code files containing code that refers to classes in a different package must
also contain the appropriate import directives, or you must use fully-qualified package names
to refer to those classes.

Then use the javac
program with your favorite options to compile the source code file
containing the controlling class. This will cause all of the other source code files containing
classes that are linked to the code in the controlling class, either directly or indirectly, to be
compiled also. At least an attempt will be made to compile them all. You may experience a
few compiler errors if your first attempt at compilation is anything like mine.

Once you eliminate all of the compiler errors, you can test the application by using the java
program with your favorite options to execute the controlling class.

Once you are satisfied that everything works properly, you can copy the source code files
over to an archive folder and remove them from the package folders if you want to do so.

Finally, you can also convert the entire hierarchy of package folders to a jar file if you want
to, and distribute it to your client. If you don't remember how to install it relative to the
classpath variable, go back and review that part of the module.

Once you have reached this point, how do you execute the program. I will show you how to
execute the program from the command line in the sample program in the next section.
(Actually I will encapsulate command-line commands in a batch file and execute the batch
file. That is a good way to guard against typing errors.)

Sample program

The concept of packages can get very tedious in a hurry. Let's take a look at a sample
program that is designed to pull all of this together.

This application consists of three separate source files located in three different packages.
Together they illustrates the use of package and import directives, along with javac
to build a
standalone Java application consisting of classes in three separate packages.

(If you want to confirm that they are really in different packages, just make one of the classes
referred to by the controlling class non-public and try to compile the program.)

In other words, in this sample program, we create our own package structure and populate it
with a set of cooperating class files.

A folder named jnk
is a child of the root folder on the M-drive.

A folder named SampleCode
is a child of the folder named
jnk
.

A folder named Combined
is a child of the folder named
SampleCode
.

A folder named Java
is a child of the folder named Combined
.

Folders named p1
and p2
are children of the folder named Java
.

The file named Package00.java
, shown in Listing 1
is stored in the folder named Java
.

Listing 1
. File: Package00.java.

Listing 1
. File: Package00.java.

/*File Package00.java Copyright 1997, R.G.Baldwin

Illustrates use of package and import directives to

build an application consisting of classes in three

separate packages.

The output from running the program follows:

Starting Package00

Instantiate obj of public classes in different packages

Constructing Package01 object in folder p1

Constructing Package02 object in folder p2

Back in main of Package00

**/

package Combined.Java; //package directive

//Two import directives

import Combined.Java.p1.Package01;//specific form

import Combined.Java.p2.*; //wildcard form

class Package00{

 public static void main(String[] args){ //main method

 System.out.println("Starting Package00");

 System.out.println("Instantiate obj of public " +

 "classes in different packages");

 new Package01();//Instantiate objects of two classes

 new Package02();// in different packages.

 System.out.println("Back in main of Package00");

 }//end main method

}//End Package00 class definition.

The file named Package01.java
, shown in
Listing 2
is stored in the folder named p1
.

Listing 2
. File Package01.java.Listing 2
. File Package01.java.

/*File Package01.java Copyright 1997, R.G.Baldwin

See discussion in file Package00.java

**/

package Combined.Java.p1;

public class Package01 {

 public Package01(){//constructor

 System.out.println(

 "Constructing Package01 object in folder p1");

 }//end constructor

}//End Package01 class definition.

The file named Package02.java
, shown in
Listing 3
is stored in the folder named p2
.

Listing 3
. File Package02.java.

/*File Package02.java Copyright 1997, R.G.Baldwin

See discussion in file Package00.java

**/

package Combined.Java.p2;

public class Package02 {

 public Package02(){//constructor

 System.out.println(

 "Constructing Package02 object in folder p2");

 }//end constructor

}//End Package02 class definition.

The file named CompileAndRun
.bat, shown in
Listing 4
is stored in the folder named
SampleCode
.

Listing 4
. File: CompileAndRun.bat.

echo off

rem This file is located in folder named M:\SampleCode,

rem which is Parent of folder Combined.

del Combined\Java*.class

del Combined\Java\p1*.class

del Combined\Java\p2*.class

javac -cp M:\jnk\SampleCode Combined\Java\Package00.java

java -cp M:\jnk\SampleCode Combined.Java.Package00

pause

The controlling class named Package00
is stored in the package named Combined.Java
, as
declared in
Listing 1
.

The class named Package01
is stored in the package named Combined.Java.p1
, as
declared in Listing 2
.

The class named Package02
is stored in the package named Combined.Java.p2
, as
declared in Listing 3
.

The controlling class named Package00
imports Combined.Java.p1.Package01
and
Combined.Java.p2.*
, as declared in Listing 1
.

Code in the main
method of the controlling class in
Listing 1
instantiates objects of the other
two classes in different packages. The constructors for those two classes announce that they
are being constructed.

The two classes being instantiated are public
. Otherwise, it would not be possible to
instantiate them from outside their respective packages.

This program was tested using JDK 7 under Windows by executing the batch file named
CompileAndRun.bat
.

The classpath is set to the parent folder of the folder named Combined
(M:\jnk\SampleCode)
by the -cp
switch in the file named CompileAndRun.bat
.

The output from running the program is shown in the comments at the beginning of Listing 1
.

Run the program

I encourage you to copy the code from Listing1
through Listing 4
into a properly constructed
tree of folders. Compile the code and execute it. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can explain why your
changes behave as they do.

Looking ahead

As you approach the end of this group of Programming Fundamentals
modules, you should
be preparing yourself for the more challenging ITSE 2321 OOP tracks identified below:

Java OOP: The Guzdial-Ericson Multimedia Class Library
Java OOP: Objects and Encapsulation

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0270: Java OOP: Packages
File: Jb0270.htm
Originally published: 1997
Published at cnx.org: 11/25/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF file
for this
module at no charge, and also makes it possible for you to
purchase a pre-printed
version of the PDF file, you should be
aware that some of the HTML elements in this
module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

http://cnx.org/content/m44148
http://cnx.org/content/m44153

-end-

Jb0280: Java OOP: String and StringBuffer
This module discusses the String and StringBuffer classes in detail.

Revised: Tue Mar 29 11:14:56 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface

Viewing tip

Listings

Introduction
You can't modify a String object, but you can replace it
Why are there two string classes?
Creating String and StringBuffer objects

The sample program named String02
Alternative String instantiation constructs
Instantiating StringBuffer objects
Declaration, memory allocation, and initialization
Instantiating an empty StringBuffer object

Accessor methods

Constructors and methods of the String class
String objects encapsulate data
Creating String objects without calling the constructor

Memory management by the StringBuffer class
The toString method
Strings and the Java compiler
Concatenation and the + operator
Run the programs
Looking ahead
Miscellaneous

Preface

This module discusses the String
and StringBuffer
classes in detail.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_

Viewing tip

I recommend that you open another copy of this module in a separate browser window and
use the following links to easily find and view the listings while you are reading about them.

Listings

Listing 1
. File String01.java
Listing 2
. File String02.java.

Introduction

A string in Java is an object. Java provides two different string classes from which objects
that encapsulate string data can be instantiated:

String
StringBuffer

The String
class is used for strings that are not allowed to change once an object has been
instantiated (an immutable object)
. The StringBuffer
class is used for strings that may be
modified by the program.

You can't modify a String object, but you can replace it

While the contents of a String
object cannot be modified, a reference to a String
object can
be caused to point to a different String
object as illustrated in the sample program shown in
Listing 1
. Sometimes this makes it appear that the original String
object is being modified.

Listing 1
. File String01.java.

Listing 1
. File String01.java.

/*File String01.java Copyright 1997, R.G.Baldwin

This application illustrates the fact that while a String

object cannot be modified, the reference variable can be

modified to point to a new String object which can have

the appearance of modifying the original String object.

The program was tested using JDK 1.1.3 under Win95.

The output from this program is

Display original string values

THIS STRING IS NAMED str1

This string is named str2

Replace str1 with another string

Display new string named str1

THIS STRING IS NAMED str1 This string is named str2

Terminating program

**/

class String01{

 String str1 = "THIS STRING IS NAMED str1";

 String str2 = "This string is named str2";

 public static void main(String[] args){

 String01 thisObj = new String01();

 System.out.println("Display original string values");

 System.out.println(thisObj.str1);

 System.out.println(thisObj.str2);

 System.out.println("Replace str1 with another string");

 thisObj.str1 = thisObj.str1 + " " + thisObj.str2;

 System.out.println("Display new string named str1");

 System.out.println(thisObj.str1);

 System.out.println("Terminating program");

 }//end main()

}//end class String01

It is important to note that the following statement does not modify the original object
pointed to by the reference variable named str1
.

Note:

thisObj.str1 = thisObj.str1 + " " + thisObj.str2;

Rather, this statement creates a new object, which is concatenation of two existing objects
and causes the reference variable named str1
to point to the new object instead of the
original object.

The original object then becomes eligible for garbage collection (unless there is another
reference to the object hanging around somewhere)
.

Many aspects of string manipulation can be accomplished in this manner, particularly when
the methods of the String
class are brought into play.

Why are there two string classes?

According to The Java Tutorial
by Campione and Walrath:

Note:
"Because they are constants, Strings are typically cheaper than StringBuffers and they can
be shared. So it's important to use Strings when they're appropriate."

Creating String and StringBuffer objects

The String
and StringBuffer
classes have numerous overloaded constructors and many
different methods. I will attempt to provide a sampling of constructors and methods that will
prepare you to explore other constructors and methods on your own.

The next sample program touches on some of the possibilities provided by the wealth of
constructors and methods in the String
and StringBuffer
classes.

At this point, I will refer you to Java OOP: Java Documentation
where you will find a link to
online Java documentation. Among other things, the online documentation provides a list of
the overloaded constructors and methods for the String
and StringBuffer
classes.

As of Java version 7, there are four overloaded constructors in the StringBuffer
class and
about thirteen different overloaded versions of the append
method. There are many
additional methods in the StringBuffer
class including about twelve overloaded versions of
the insert
method.

http://cnx.org/content/m45117

As you can see, there are lots of constructors and lots of methods from which to choose. One
of your challenges as a Java programmer will be to find the right methods of the right classes
to accomplish what you want your program to accomplish.

The sample program named String02

The sample program shown in Listing 2
illustrates a variety of ways to create and initialize
String
and StringBuffer
objects.

Listing 2
. File String02.java.

/*File String02.java Copyright 1997, R.G.Baldwin

Illustrates different ways to create String objects and

StringBuffer objects.

The program was tested using JDK 1.1.3 under Win95.

The output from this program is as follows. In some cases,

manual line breaks were inserted to make the material fin

this presentation format.

Create a String the long way and display it

String named str2

Create a String the short way and display it

String named str1

Create, initialize, and display a StringBuffer using new

StringBuffer named str3

Try to create/initialize StringBuffer without

using new - not allowed

Create an empty StringBuffer of default length

Now put some data in it and display it

StringBuffer named str5

Listing 2
. File String02.java.

Create an empty StringBuffer and specify length

when it is created

Now put some data in it and display it

StringBuffer named str6

Try to create and append to StringBuffer without

using new -- not allowed

**/

class String02{

 void d(String displayString){//method to display strings

 System.out.println(displayString);

 }//end method d()

 public static void main(String[] args){

 String02 o = new String02();//obj of controlling class

 o.d("Create a String the long way and display it");

 String str1 = new String("String named str2");

 o.d(str1 + "\n");

 o.d("Create a String the short way and display it");

 String str2 = "String named str1";

 o.d(str2 + "\n");

 o.d("Create, initialize, and display a StringBuffer " +

 "using new");

 StringBuffer str3 = new StringBuffer(

 "StringBuffer named str3");

 o.d(str3.toString()+"\n");

 o.d("Try to create/initialize StringBuffer without " +

 "using new - not allowed\n");

 //StringBuffer str4 = "StringBuffer named str4";x

 o.d("Create an empty StringBuffer of default length");

 StringBuffer str5 = new StringBuffer();

 o.d("Now put some data in it and display it");

 //modify length as needed

 str5.append("StringBuffer named str5");

 o.d(str5.toString() + "\n");

Listing 2
. File String02.java.

 o.d("Create an empty StringBuffer and specify " +

 "length when it is created");

 StringBuffer str6 = new StringBuffer(

 "StringBuffer named str6".length());

 o.d("Now put some data in it and display it");

 str6.append("StringBuffer named str6");

 o.d(str6.toString() + "\n");

 o.d("Try to create and append to StringBuffer " +

 "without using new -- not allowed");

 //StringBuffer str7;

 //str7.append("StringBuffer named str7");

 }//end main()

}//end class String02

Alternative String instantiation constructs

The first thing to notice is that a String
object can be created using either of the following
constructs:

Note:
Alternative String instantiation constructs

 String str1 = new String("String named str2");

 String str2 = "String named str1";

The first approach uses the new
operator to instantiate an object while the shorter version
doesn't use the new operator.

Later I will discuss the fact that

the second approach is not simply a shorthand version of the first construct, but that
they involve two different compilation scenarios with the second construct being more
efficient than the first.

Instantiating StringBuffer objects

The next thing to notice is that a similar alternative strategy does not hold for the
StringBuffer
class.

For example, it is not possible to create a StringBuffer
object without use of the new
operator. (It is possible to create a reference to a StringBuffer
object but it is later necessary
to use the new
operator to actually instantiate an object.)

Note the following code fragments that illustrate allowable and non-allowable instantiation
scenarios for StringBuffer
objects.

Note:
Instantiating StringBuffer objects

//allowed

StringBuffer str3 = new StringBuffer(

 "StringBuffer named str3");

//not allowed

//StringBuffer str4 = "StringBuffer named str4";

o.d("Try to create and append to StringBuffer " +

 "without using new -- not allowed");

//StringBuffer str7;

//str7.append("StringBuffer named str7");

Declaration, memory allocation, and initialization

To review what you learned in an earlier module, three steps are normally involved in
creating an object (but the third step may be omitted)
.

declaration
memory allocation
initialization

The following code fragment performs all three steps:

Note:
Declaration, memory allocation, and initialization

StringBuffer str3 =

 new StringBuffer("StringBuffer named str3");

The code

StringBuffer str3

declares the type and name of a reference variable of the correct type for the benefit of the
compiler.

The new
operator allocates memory for the new object.

The constructor call

StringBuffer("StringBuffer named str3")

constructs and initializes the object.

Instantiating an empty StringBuffer object

The instantiation of the StringBuffer
object shown above
uses a version of the constructor
that accepts a String
object and initializes the StringBuffer
object when it is created.

The following code fragment instantiates an empty StringBuffer
object of a default capacity
and then uses a version of the append
method to put some data into the object. (Note that the
data is actually a String
object -- a sequence of characters surrounded by quotation marks.)

Note:
Instantiating an empty StringBuffer object

//default initial length

StringBuffer str5 = new StringBuffer();

//modify length as needed

str5.append("StringBuffer named str5");

It is also possible to specify the capacity when you instantiate a StringBuffer
object.

Some authors suggest that if you know the final length of such an object, it is more efficient
to specify that length when the object is instantiated than to start with the default length and
then require the system to increase the length "on the fly" as you manipulate the object.

This is illustrated in the following code fragment. This fragment also illustrates the use of the
length
method of the String
class just to make things interesting. (A simple integer value for
the capacity of the StringBuffer
object would have worked just as well.)

Note:
Instantiating a StringBuffer object of a non-default length

 StringBuffer str6 = new StringBuffer(

 "StringBuffer named str6".length());

 str6.append("StringBuffer named str6");

Accessor methods

The following quotation is taken directly from The Java Tutorial
by Campione and Walrath.

Note:
"An object's instance variables are encapsulated within the object, hidden inside, safe from
inspection or manipulation by other objects. With certain well-defined exceptions, the
object's methods are the only means by which other objects can inspect or alter an object's
instance variables. Encapsulation of an object's data protects the object from corruption by
other objects and conceals an object's implementation details from outsiders. This
encapsulation of data behind an object's methods is one of the cornerstones of object-
oriented programming."

The above statement lays out an important consideration in good object-oriented
programming.

The methods used to obtain information about an object are often referred to as accessor
methods
.

Constructors and methods of the String class

I told you in an earlier section
that the StringBuffer
class provides a large number of
overloaded constructors and methods. The same holds true for the String
class.

Once again, I will refer you to Java OOP: Java Documentation
where you will find a link to
online Java documentation. Among other things, the documentation provides a list of the
overloaded constructors and methods for the String
class

String objects encapsulate data

The characters in a String
object are not directly available to other objects. However, as you
can see from the documentation, there are a large number of methods that can be used to
access and manipulate those characters. For example, in an earlier sample program (
Listing
2
)
, I used the length
method to access the number of characters stored in a String
object as
shown in the following code fragment.

Note:

StringBuffer str6 = new StringBuffer(

 "StringBuffer named str6".length());

In this case, I applied the length
method to a literal string, but it can be applied to any valid
representation of an object of type String
.

I then passed the value returned by the length
method to the constructor for a StringBuffer
object.

As you can determine by examining the argument lists for the various methods of the String
class,

some methods return data stored in the string while
other methods return information about that data.

For example, the length
method returns information about the data stored in the String
object.

Methods such as charAt
and substring
return portions of the actual data.

Methods such toUpperCase
can be thought of as returning the data, but returning it in a
different format.

http://cnx.org/content/m45117

Creating String objects without calling the constructor

Methods in other classes and objects may create String
objects without an explicit call to the
constructor by the programmer. For example the toString
method of the Float
class receives
a float
value as an incoming parameter and returns a reference to a String
object that
represents the float
argument.

Memory management by the StringBuffer
class

If the additional characters cause the size of the StringBuffer
to grow beyond its current
capacity when characters are added, additional memory is automatically allocated.

However, memory allocation is a relatively expensive operation and you can make your code
more efficient by initializing StringBuffer
capacity to a reasonable first guess. This will
minimize the number of times memory must be allocated for it.

When using the insert
methods of the StringBuffer
class, you specify the index before
which
you want the data inserted.

The toString method

Frequently you will need to convert an object to a String
object because you need to pass it
to a method that accepts only String
values (or perhaps for some other reason)
.

All classes inherit the toString
method from the Object
class. Many of the classes override
this method to provide an implementation that is meaningful for objects of that class.

In addition, you may sometimes need to override
the toString
method for classes that you
define to provide a meaningful toString
behavior for objects of that class.

I explain the concept of overriding the toString
method in detail in the module titled
Java
OOP: Polymorphism and the Object Class
.

Strings and the Java compiler

In Java, you specify literal strings between double quotes as in:

Note:
Literal strings

"I am a literal string of the String type."

http://cnx.org/content/m44190

You can use literal strings anywhere you would use a String
object.

You can also apply String
methods directly to a literal string as in an earlier program
that
calls the length
method on a literal string as shown below.

Note:
Using String methods with literal strings

StringBuffer str6 = new StringBuffer(

 StringBuffer named str6".length());

Because the compiler automatically creates a new String
object for every literal string, you
can use a literal string to initialize a String
object (without use of the new operator)
as in the
following code fragment from a previous program
:

Note:

String str1 = "THIS STRING IS NAMED str1";

The above construct is equivalent to, but more efficient than the following, which, according
to The Java Tutorial
by Campione and Walrath, ends up creating two String
objects instead
of one:

Note:

String str1 = new String("THIS STRING IS NAMED str1");

In this case, the compiler creates the first String
object when it encounters the literal string,
and the second one when it encounters new String()
.

Concatenation and the + operator

The plus (+) operator is overloaded so that in addition to performing the normal arithmetic
operations, it can also be used to concatenate strings.

This will come as no surprise to you because we have been using code such as the following
since the beginning of this group of Programming Fundamentals
modules:

Note:

String cat = "cat";

System.out.println("con" + cat + "enation");

According to Campione and Walrath, Java uses StringBuffer
objects behind the scenes to
implement concatenation. They indicate that the above code fragment compiles to:

Note:

String cat = "cat";

System.out.println(new StringBuffer().append("con").

 append(cat).append("enation"));

Fortunately, that takes place behind the scenes and we don't have to deal directly with the
syntax.

Run the programs

I encourage you to copy the code from Listing 1
and
Listing 2
. Compile the code and
execute it. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

Looking ahead

As you approach the end of this group of Programming Fundamentals
modules, you should
be preparing yourself for the more challenging ITSE 2321 OOP
tracks identified below:

Java OOP: The Guzdial-Ericson Multimedia Class Library
Java OOP: Objects and Encapsulation

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0280: Java OOP: String and StringBuffer
File: Jb0280.htm
Originally published: 1997
Published at cnx.org: 11/25/12

Note:
Disclaimers:
Financial
: Although the Connexions
site makes it possible for you to download a PDF file
for this
module at no charge, and also makes it possible for you to
purchase a pre-printed
version of the PDF file, you should be
aware that some of the HTML elements in this
module may not translate well into
PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

http://cnx.org/content/m45222
http://cnx.org/content/m44148
http://cnx.org/content/m44153

Jb0280r Review
This module contains review questions and answers keyed to the module titled Jb0280: Java
OOP: String and StringBuffer.

Revised: Tue Mar 29 11:29:05 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Table of Contents

Preface
Questions

1
, 2
,
3
, 4
,
5
, 6
,
7
, 8
,
9
, 10
, 11
, 12
, 13
, 14

Listings
Answers
Miscellaneous

Preface

This module contains review questions and answers keyed to the module titled Jb0280: Java
OOP: String and StringBuffer
.

The questions and the answers are connected by hyperlinks to make it easy for you to
navigate from the question to the answer and back again.

Questions

Question 1
.

Java provides two different string classes from which string objects can be instantiated. What
are they?

Answer 1

Question 2

True or false? The StringBuffer
class is used for strings that are not allowed to change. The
String
class is used for strings that are modified by the program. If false, explain why.

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45237

Answer 2

Question 3

True or false? While the contents of a String
object cannot be modified, a reference to a
String
object can be caused to point to a different String
object. If false, explain why.

Answer 3

Question 4

True or false? The use of the new
operator is required for instantiation of objects of type
String
. If false, explain your answer.

Answer 4

Question 5

True or false? The use of the new
operator is required for instantiation of objects of type
StringBuffer
. If false, explain your answer

Answer 5

Question 6

Provide a code fragment that illustrates how to instantiate an empty StringBuffer
object of a
default length and then use a version of the
append
method to put some data into the object.

Answer 6

Question 7

Without specifying any explicit numeric values, provide a code fragment that will instantiate
an empty StringBuffer
object of the correct initial length to contain the string "StringBuffer
named str6"
and then store that string in the object.

Answer 7

Question 8

Provide a code fragment consisting of a single statement showing how to use the Integer
wrapper class to convert a string containing digits to an integer and store it in a variable of
type int
.

Answer 8

Question 9

Explain the difference between the capacity
method and the
length
method of the
StringBuffer
class.

Answer 9

Question 10

True or false? The following is a valid code fragment. If false, explain why.

Note:

StringBuffer str6 =

 new StringBuffer("StringBuffer named str6".length());

Answer 10

Question 11

Which of the following code fragments is the most efficient, first or second?

Note:

String str1 = "THIS STRING IS NAMED str1";

String str1 = new String("THIS STRING IS NAMED str1");

Answer 11

Question 12

Write a Java
application that illustrates the fact that while a String
object cannot be
modified, the reference variable can be modified to point to a new String
object, which can
have the
appearance of modifying the original String
object.

Answer 12

Question 13

Write a Java application that illustrates different ways to
create String
objects and
StringBuffer
objects.

Answer 13

Question 14

Write a Java application that illustrates conversion from string to numeric.

Answer 14

Listings

Listing 1
. File SampProg26.java.
Listing 2
. File SampProg25.java.
Listing 3
. File SampProg24.java.

What is the meaning of the following two images?

This image was inserted here simply to insert some space between the questions and the
answers to keep them from being visible on the screen at the same time.

The image is also an example of the kinds of things that we do in my course titled ITSE
2321, Object-Oriented Programming.

This image was also inserted for the purpose of inserting space between the questions and the
answers.

Answers

Answer 14

Listing 1
. File SampProg26.java.

Listing 1
. File SampProg26.java.

/*File SampProg26.java from module 50

Copyright 1997, R.G.Baldwin

Without viewing the solution that follows, write a Java

application that illustrates conversion from string to

numeric, similar to the atoi() function in C.

The output from the program should be:

The value of the int variable num is 3625

===

*/

class SampProg26{

 public static void main(String[] args){

 int num = new Integer("3625").intValue();

 System.out.println(

 "The value of the int variable num is " + num);

 }//end main()

}//end class SampProg26

Back to Question 14

Answer 13

Listing 2
. File SampProg25.java.

/*File SampProg25.java from module 50

Copyright 1997, R.G.Baldwin

Write a Java application that illustrates different ways to

create String objects and StringBuffer objects.

The output from this program should be (line breaks

Listing 2
. File SampProg25.java.

manually inserted to make it fit the format):

Create a String using new and display it

String named str2

Create a String without using new and display it

String named str1

Create, initialize, and display a StringBuffer using new

StringBuffer named str3

Try to create/initialize StringBuffer without using new

Create an empty StringBuffer of default length

Now put some data in it and display it

StringBuffer named str5

Create an empty StringBuffer and specify length when

created

Now put some data in it and display it

StringBuffer named str6

Try to create and append to StringBuffer without using new

**/

class SampProg25{

 void d(String displayString){//method to display strings

 System.out.println(displayString);

 }//end method d()

 public static void main(String[] args){

 //instantiate an object to display methods

 SampProg25 o = new SampProg25();

 o.d("Create a String using new and display it");

 String str1 = new String("String named str2");

 o.d(str1 + "\n");

 o.d(

 "Create a String without using new and display it");

 String str2 = "String named str1";

 o.d(str2 + "\n");

Listing 2
. File SampProg25.java.

 o.d("Create, initialize, and display a StringBuffer "

 + "using new");

 StringBuffer str3 = new StringBuffer(

 "StringBuffer named str3");

 o.d(str3.toString()+"\n");

 o.d("Try to create/initialize StringBuffer without "

 + "using new \n");

 //StringBuffer str4 = //not allowed by compiler

 // "StringBuffer named str4";

 o.d(

 "Create an empty StringBuffer of default length");

 //accept default initial length

 StringBuffer str5 = new StringBuffer();

 o.d("Now put some data in it and display it");

 //modify length as needed

 str5.append("StringBuffer named str5");

 o.d(str5.toString() + "\n");

 o.d("Create an empty StringBuffer and specify length "

 + "when created");

 StringBuffer str6 = new StringBuffer(

 "StringBuffer named str6".length());

 o.d("Now put some data in it and display it");

 str6.append("StringBuffer named str6");

 o.d(str6.toString() + "\n");

 o.d(

 "Try to create and append to StringBuffer without "

 + "using new");

 //StringBuffer str7;

 //str7.append("StringBuffer named str7");

 }//end main()

}//end class SampProg25

Back to Question 13

Answer 12

Listing 3
. File SampProg24.java.

/*File SampProg24.java from module 50

Copyright 1997, R.G.Baldwin

Without viewing the solution that follows, Write a Java

application that illustrates the fact that while a String

object cannot be modified, the reference variable can be

modified to point to a new String object which can have the

appearance of modifying the original String object.

The output from this program should be

Display original string values

THIS STRING IS NAMED str1

This string is named str2

Replace str1 with another string

Display new string named str1

THIS STRING IS NAMED str1 This string is named str2

Terminating program

**/

class SampProg24{

 String str1 = "THIS STRING IS NAMED str1";

 String str2 = "This string is named str2";

 public static void main(String[] args){

 SampProg24 thisObj = new SampProg24();

 System.out.println("Display original string values");

 System.out.println(thisObj.str1);

 System.out.println(thisObj.str2);

 System.out.println(

 "Replace str1 with another string");

 thisObj.str1 = thisObj.str1 + " " + thisObj.str2;

 System.out.println("Display new string named str1");

 System.out.println(thisObj.str1);

 System.out.println("Terminating program");

 }//end main()

}//end class SampProg24

Back to Question 12

Answer 11

The first code fragment is the most efficient.

Back to Question 11

Answer 10

True.

Back to Question 10

Answer 9

The capacity
method returns the amount of space currently allocated for the StringBuffer
object. The length
method returns the amount of space used.

Back to Question 9

Answer 8

Note:

 int num = new Integer("3625").intValue();

Back to Question 8

Answer 7

Note:

StringBuffer str6 =

 new StringBuffer("StringBuffer named str6".length());

str6.append("StringBuffer named str6");

Back to Question 7

Answer 6

Note:

StringBuffer str5 =

 new StringBuffer();//accept default initial length

str5.append(

 "StringBuffer named str5");//modify length as needed

Back to Question 6

Answer 5

True.

Back to Question 5

Answer 4

False. A String object can be instantiated using either of the following statements:

Note:

 String str1 = new String("String named str2");

 String str2 = "String named str1";

Back to Question 4

Answer 3

True.

Back to Question 3

Answer 2

False. This statement is backwards. The String
class is used for strings that are not allowed
to change. The StringBuffer
class is used for strings that are modified by the program.

Back to Question 2

Answer 1

The two classes are:

String
StringBuffer

Back to Question 1

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0280r Review: String and StringBuffer
File: Jb0280r.htm
Originally published: 1997
Published at cnx.org: 11/29/12

Note:
Disclaimers:
Financial
: Although the Connexions site makes it possible for you to download a PDF file
for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF file, you should be aware that some of the HTML elements in this
module may not translate well into PDF.
I also want you to know that, I receive no financial compensation from the Connexions
website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org, converted them to
Kindle books, and placed them for sale on Amazon.com showing me as the author. I neither
receive compensation for those sales nor do I know who does receive compensation. If you
purchase such a book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior knowledge.
Affiliation
: I am a professor of Computer Information Technology at Austin Community
College in Austin, TX.

-end-

Jb0290: The end of Programming Fundamentals
This module signals the end of the section on Programming Fundamentals

Revised: Tue Mar 29 11:40:13 CDT 2016

This page is included in the following Books:

Programming Fundamentals with Java
Object-Oriented Programming (OOP) with Java

Looking ahead

You have now reached the end of this
Programming Fundamentals
book.

The next stop along your journey to become a Java/OOP programmer
should be either the OOP Self-Assessment
, or the course material for the
ITSE 2321 OOP
tracks identified below:

Java OOP: The Guzdial-Ericson Multimedia Class Library
Java OOP: Objects and Encapsulation

Miscellaneous

This section contains a variety of miscellaneous information.

Note:
Housekeeping material

Module name: Jb0290: Java OOP: The end of Programming
Fundamentals
File: Jb0290.htm
Published: 11/29/12

Note:
Disclaimers:

http://cnx.org/contents/EHRr6hjR:pDHzTeQb
http://cnx.org/contents/-2RmHFs_:kFS-maG_
http://cnx.org/content/m45179
http://cnx.org/content/m45252
http://cnx.org/content/m45222
http://cnx.org/content/m44148
http://cnx.org/content/m44153

Financial
: Although the Connexions
site makes it possible for you to
download a PDF file for this
module at no charge, and also makes it
possible for you to
purchase a pre-printed version of the PDF file, you
should be
aware that some of the HTML elements in this module may not
translate well into
PDF.
I also want you to know that, I receive no financial compensation from the
Connexions website even if you purchase the PDF version of the module.
In the past, unknown individuals have copied my modules from cnx.org,
converted them to Kindle books, and placed them for sale on Amazon.com
showing me as the author. I neither receive compensation for those sales
nor do I know who does receive compensation. If you purchase such a
book, please be aware that it is a copy of a module that is freely available
on cnx.org and that it was made and published without my prior
knowledge.
Affiliation
: I am a professor of Computer Information Technology at
Austin Community College in Austin, TX.

-end-

	Jb0103 Preface to Programming Fundamentals with Java
	Jb0105: Java OOP: Similarities and Differences between Java and C++
	Jb0110: Java OOP: Programming Fundamentals, Getting Started
	Jb0110r Review
	Jb0115: Java OOP: First Program
	Jb0120: Java OOP: A Gentle Introduction to Java Programming
	Jb0120r Review
	Jb0130: Java OOP: A Gentle Introduction to Methods in Java
	Jb0130r Review
	Jb0140: Java OOP: Java comments
	Jb0140r Review
	Jb0150: Java OOP: A Gentle Introduction to Java Data Types
	Jb0150r Review
	Jb0160: Java OOP: Hello World
	Jb0160r Review
	Jb0170: Java OOP: A little more information about classes.
	Jb0170r: Review
	Jb0180: Java OOP: The main method.
	Jb0180r Review
	Jb0190: Java OOP: Using the System and PrintStream Classes
	Jb0190r: Review
	Jb0200: Java OOP: Variables
	Jb0200r: Review
	Jb0210: Java OOP: Operators
	Jb0210r Review
	Jb0220: Java OOP: Statements and Expressions
	Jb0220r Review
	Jb0230: Java OOP: Flow of Control
	Jb0230r Review
	Jb0240: Java OOP: Arrays and Strings
	Jb0240r Review
	Jb0250: Java OOP: Brief Introduction to Exceptions
	Jb0260: Java OOP: Command-Line Arguments
	Jb0260r Review
	Jb0270: Java OOP: Packages
	Jb0280: Java OOP: String and StringBuffer
	Jb0280r Review
	Jb0290: The end of Programming Fundamentals

