
Tunnel
Secure, multiplexed, TCP/UDP port forwarder using piping-server by @nwtgck as relay. Designed
mainly for p2p connections between peers behind (multiple) NAT/firewalls.

Features
1. TCP/UDP tunnel between peers, each of which may be behind (multiple) NAT(s), i.e.

unreachable from the public internet.
2. Firewalls don't cause problems as only outgoing http(s) connections are used.
3. Security: To connect, peers must know the unique ID of the serving peer and a shared secret

key. Traffic between peer and relay is encrypted (TLS). Relay doesn't store anything.
4. Multiplexing: Each tunnel supports multiple concurrent connections. Connections are full-

duplex.
5. Many-to-One: The forwarding peer acts as the client and the forwardee peer acts as the

server. Server can support multiple clients at any given time. Each node can act as both
server and client.

6. Resilience: Peers auto-reconnect in the face of intermittent connectivity.
7. No superuser privilege required.
8. Option to host your own relay server (easily and for free).
9. KISS: Just a single, small, portable, shell-script.

10. Built in installer and updater.

Command-line
ID: Every node is given a unique (base64) ID -

ID is bound to hardware (MAC address) and the environment variables USER, HOME and
HOSTNAME. Share it with your peers once and for all. Note: two users on the same machine are
given separate node-IDs because their USER and HOME variables differ.

Server mode: Expose your local port to peers with whom you share any secret string -

Client mode: Forward your local port to peer's exposed local port -

If no local-port is provided using the -b option, tunnel uses a random unused port. The port
used, is always reported at stdout.

Client and server must use the same secret to be able to connect with each other. The secret
string may also be passed using the environment variable TUNNEL_KEY . Secret passed with [-k]
takes precedence.

[-u] flag denotes use of UDP instead of the default TCP. If used, it must be used by both the
peers.

tunnel -i

tunnel [options] [-u] [-k <shared-secret>] <local-port>

tunnel [options] [-u] [-k <shared-secret>] [-b <local-port>] <peer-ID:peer-port>

af://n0
https://github.com/nwtgck/piping-server
https://github.com/nwtgck
af://n3
https://github.com/nwtgck/piping-server#ideas
https://github.com/nwtgck/piping-server#self-host-on-free-services
af://n25
https://datatracker.ietf.org/doc/html/rfc2045#page-24

All logs are at stderr by default.

Options:

 -v Version

 -h Help

 -p "<piping-server URL>"

 Can use environment variable TUNNEL_RELAY instead. Default: https://ppng.io. See list.

 -l "<path to log file>"

 Runs tunnel as daemon with stderr redirected to given path.

Installation and Updating
Download with:

Make it executable:

Then install system-wide with:

If you don't have sudo privilege, you can install locally instead:

To update anytime after installation:

Dependency/Portability
This program is simply an executable bash script depending on standard GNU tools including
socat , openssl , curl , mktemp , cut , awk , sed , flock , pkill , dd , xxd , base64 etc. that
are readily available on standard Linux distros.

If your system lacks any of these tools, and you do not have the sudo privilege required to install
it from the native package repository (e.g. sudo apt-get install <package>), try downloading a
portable binary and install it locally at ${HOME}/.bin .

Examples
SSH:

Peer A exposes local SSH port -

curl -LO https://raw.githubusercontent.com/SomajitDey/tunnel/main/tunnel

chmod +x ./tunnel

./tunnel -c install

./tunnel -c install -l

tunnel -c update

https://ppng.io/
https://github.com/nwtgck/piping-server#public-servers
af://n44
af://n55
https://github.com/ernw/static-toolbox/releases
af://n58

Peer B connects -

IPFS:

Let peer A has IPFS-peer-ID: 12orQmAlphanumeric . Her IPFS daemon listens at default TCP port
4001. She exposes it with -

Peer B now connects with peer A for file-sharing or pubsub or p2p -

Remote Shell:

Suppose you would regularly need to launch commands at your workplace Linux box from your
home machine. And you don't want to / can't use SSH over tunnel for some reason.

At the workplace computer, expose some random local TCP port, e.g. 49090 and connect a shell
to that port:

Back at your home:

Using rlwrap is not a necessity. But it sure makes the experience sweeter as it uses GNU Readline
and remembers the input history (accessible with the up/down arrow keys similar to your local
bash sessions).

Redis:

Need to connect to a remote Redis instance hosted by a peer or yourself? At the remote host,
expose the TCP port that redis-server runs on (default: 6379), with tunnel .

At your local machine, use tunnel to forward a TCP port to the remote port. Point your redis-

cli at the forwarded local port.

Applications

tunnel -k "${secret}" 22

tunnel -b 67868 -k "${secret}" -l /dev/null "${peerA_ID}:22" # Daemon due to -l

ssh -l "${login_name}" -p 67868 localhost

tunnel -k "${swarm_key}" 4001

port=$(TUNNEL_KEY="${swarm_key}" tunnel -l /dev/null "${peerA_ID}:4001")

ipfs swarm connect /ip4/127.0.0.1/tcp/${port}/p2p/12orQmAlphanumeric

tunnel -l "/tmp/tunnel.log" -k "your secret" 49090 # Note the base64 node id

emitted

socat TCP-LISTEN:49090,reuseaddr,fork SYSTEM:'bash 2>&1'

tunnel -l "/dev/null" -b 5000 -k "your secret" "node_id_of_workplace:49090"

rlwrap nc localhost 5000

https://docs.libp2p.io/concepts/peer-id/
https://docs.ipfs.io/concepts/usage-ideas-examples/
https://github.com/ipfs/go-ipfs/blob/master/docs/experimental-features.md#ipfs-pubsub
https://github.com/ipfs/go-ipfs/blob/master/docs/experimental-features.md#ipfs-p2p
https://github.com/hanslub42/rlwrap
https://redis.io/
af://n79

Below are some random use-cases I could think of for tunnel . Broadly speaking, anything that
involves NAT/firewall traversal (e.g. WebRTC without TURN) or joining a remote LAN, should find
tunnel useful. Some of the following ideas are rather sketchy, haven't been tested at all, and
may not work, but nonetheless are documented here, at least for the time being, just for the sake
of inspiration. If you found any of these useful, or useless, or you have found entirely new
applications for tunnel , please post at discussions. Those cases that I have tested are labelled as
"working".

Connecting to IPFS peers (Working).
P2P chatting, mailing, VoIP, streaming, gaming, screen-sharing, file-sharing, gambling,
troubleshooting and what not.
Connecting IOT devices.
Connecting your workstation with your home-computer or laptop with SSH (Working), RDP or
VNC.
Shell-shovelling (Working).
Beat your firewall with a self-hosted or peer-provided VPN.
Joining intranet office chats (over office LAN) from your home across the internet. For
example, BeeBEEP and LAN Messenger may use a local port that has been forwarded to
from a node inside your office using tunnel .
P2P (serverless) audio/video. For example, forward a local TCP/UDP port to peer's localhost
and point your p2p client to it. Ready-made FOSS: Jami, Jitsi, Toxchat and Retroshare.
Serverless remote-control using Teamviewer or Anydesk. Forward a local port, say 6000, to
peer's local TCP port 5938 (for TV) and 7070 (for Anydesk) and use 127.0.0.1:6000 as the
IP:port tuple of the peer.
Making a local (web) port publicly accessible, a.k.a reverse-proxy accessible from the
internet: Simply run tunnel at Heroku (for free) and forward the port stored in the
environment variable PORT to your local port that you want to expose. And you have your
public URL as: https://your-app-name.herokuapp.com.
Accessing feed from a remote IP webcam using a universal network camera adapter:
Forward a local port to a remote node that can access the mobile cam over WLAN.
Streaming with VLC: Movies and Music, Webcam [command-line]. Just connect the server and
client using tunnel .

Security
tunnel encrypts all traffic between a peer and the relay with TLS, if the relay uses https. There is
no end-to-end encryption per se between the peers themselves. However, the piping-server relay
is claimed to be storageless.

A client peer can connect with a serving peer only if they use the same secret key (TUNNEL_KEY).
The key is primarily used for peer discovery at the relay stage. For every new connection to the
forwarded local port, the client sends a random session key to the serving peer. The peers then
form a new connection at another relay point based on this random key for the actual data
transfer to occur. Outsiders, viz. bad actors who don't know the TUNNEL_KEY shouldn't be able to
disrupt this flow.

However, a malicious peer can do the following. Because he knows the TUNNEL_KEY and the
node ID of the serving peer, he can impersonate the latter. Data from an unsuspecting connecting
peer, therefore, would be forwarded to the impersonator, starving the genuine server. Future
updates/implementations of tunnel should handle this threat using public key crypto. [In that
case, the random session key generated for every new connection to be forwarded, would be
decryptable by the genuine server alone].

https://github.com/SomajitDey/tunnel/discussions
https://docs.ipfs.io/concepts/what-is-ipfs/#decentralization
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://en.wikipedia.org/wiki/Shell_shoveling
https://www.beebeep.net/
https://lanmessenger.github.io/
https://jami.net/
https://jitsi.org/
https://tox.chat/
https://retroshare.cc/
https://community.teamviewer.com/English/kb/articles/4618-can-teamviewer-be-used-within-a-local-network-lan-only
https://support.anydesk.com/Settings#Direct_Connection
https://community.teamviewer.com/English/kb/articles/4139-which-ports-are-used-by-teamviewer
https://support.anydesk.com/Settings#Local_Port_Listening
https://your-app-name.herokuapp.com/
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en_IN&gl=US
http://ip-webcam.appspot.com/
https://en.wikipedia.org/wiki/Wireless_LAN
https://www.howtogeek.com/118075/how-to-stream-videos-and-music-over-the-network-using-vlc/
https://forums.tomsguide.com/faq/how-to-stream-videos-over-the-internet-with-vlc.23235/
https://medium.com/@petehouston/streaming-webcam-to-http-using-vlc-dda7259176c9
af://n106
https://github.com/nwtgck/piping-server#ideas

Given that tunnel is essentially the transport layer, the above points should not be discouraging,
because most applications such as SSH and IPFS encrypt data at the application layer. Encrypting
tunnel end-to-end for all data transfers would only add to the latency. However, you can always
create an SSH-tunnel after establishing the low-level peering with tunnel , if you so choose.

Relay
The default relay used by tunnel is https://ppng.io. You can also use some other public relay
from this list or host your own instance on free services such as offered by Heroku. Needless to
say, to connect, two peers must use the same relay.

If you so choose, you can also write your own relay to be used by tunnel using simple tools like
sertain. Just make sure your relay service has the same API as piping-server. If your relay code is
open source, you are most welcome to introduce it at discussions.

See also
gsocket ; ipfs p2p with circuit-relay enabled ; go-piping-duplex ; pipeto.me ; uplink ; localhost.run ;
ngrok ; localtunnel ; sshreach.me (free trial for limited period only) ; more

Notes:

1. Unlike piping-server, most of these do not offer easy, free self-hosting of the all-important
relay or reverse proxy. If these services ever go down, you are doomed. With tunnel and
piping-server, however, you can simply deploy your own relay instance, share its public URL
with your peers once and for all, export the same as TUNNEL_RELAY inside .bashrc and
you are good to go. Also, multiple public piping-servers are available for redundancy.

2. Some of these services, in the free tier, give a new random public URL for every session,
which is problematic for intermittent connectivity (in IOT applications for example). Some
free plans also expire sessions after a certain time even if connections are not idling.

3. Some expose your local port for web-traffic only. The onus of transporting non-web
protocols over HTTP is left on you and your peers.

Future directions
IPFS:

Connecting to IPFS would be much simpler:

tunnel -k <secret> ipfs to expose and tunnel -k <secret> <IPFS_peerID> to connect.

These will launch the IPFS daemon on their own, if offline. The latter command will repeatedly
swarm connect to the given peer at 30s intervals. The IPFS-peer-ID will be used as the node ID, so
peers would no more need to share their node IDs separately. Non-default IPFS repo paths may
be passed with option -r . or IPFS_PATH .

SSH:

Creating an SSH tunnel between local and peer port would be as easy as:

tunnel -k <secret> ssh to expose &

tunnel -sk <secret> -b <local-port> <peerID>:<peer-port> to create.

af://n111
https://ppng.io/
https://github.com/nwtgck/piping-server#public-servers
https://github.com/nwtgck/piping-server#self-host-on-free-services
https://www.heroku.com/
https://github.com/SomajitDey/sertain
https://github.com/nwtgck/piping-server
https://github.com/SomajitDey/tunnel/discussions
af://n114
https://github.com/hackerschoice/gsocket
https://github.com/ipfs/go-ipfs/blob/master/docs/experimental-features.md#ipfs-p2p
https://gist.github.com/SomajitDey/7c17998825bb105466ef2f9cefdc6d43
https://github.com/nwtgck/go-piping-duplex
https://pipeto.me/
https://getuplink.de/
https://localhost.run/
https://ngrok.io/
https://github.com/localtunnel/localtunnel
https://sshreach.me/
https://gist.github.com/SomajitDey/efd8f449a349bcd918c120f37e67ac00
https://github.com/nwtgck/piping-server
https://github.com/nwtgck/piping-server#self-host-on-free-services
https://github.com/nwtgck/piping-server
https://github.com/nwtgck/piping-server#public-servers
af://n124

Note that, while connecting, one no more needs to provide a login name. The ${USER} of the
serving node is taken as the login name by default. However, if needed, a non-default login name
can always be passed using an environment variable or option.

GPG:

Virtual machines, such as used by cloud-shells and dynos, do not have persistent, unique
hardware addresses. The node ID therefore keeps on changing from session to session for such a
VM. Future tunnel would have a -g option which would pass a GPG private key to tunnel . The
node ID would be generated from the fingerprint of this key, akin to what IPFS does. This would
also make tunnel more secure.

Argon2:

Option [-a] to use argon2 for hashing TUNNEL_KEY before use, so that a weaker secret isn't too
vulnerable.

Bug-reports and Feedbacks
Please report bugs at issues. Post your thoughts, comments, ideas, use-cases and feature-
requests at discussion. Let me know how this helped you, if it did at all.

Also feel free to write to me directly about anything regarding this project.

If this little script is of any use to you, a star would be immensely encouraging for me.

Thanks ! 😃

Copyright © 2021 Somajit Dey

https://docs.libp2p.io/concepts/peer-id/
https://github.com/P-H-C/phc-winner-argon2
af://n138
https://github.com/SomajitDey/tunnel/issues
https://github.com/SomajitDey/tunnel/discussions
mailto://hereistitan@gmail.com
https://github.com/SomajitDey/tunnel/blob/main/tunnel
https://github.com/SomajitDey/tunnel/stargazers
https://github.com/SomajitDey/tunnel/blob/main/LICENSE
https://github.com/SomajitDey
af://n144

	Tunnel
	Features
	Command-line
	Installation and Updating
	Dependency/Portability
	Examples
	Applications
	Security
	Relay
	See also
	Future directions
	Bug-reports and Feedbacks
	Copyright © 2021 Somajit Dey

